WO2021092182A1 - Tire having tread of specified rubber composition and related methods - Google Patents
Tire having tread of specified rubber composition and related methods Download PDFInfo
- Publication number
- WO2021092182A1 WO2021092182A1 PCT/US2020/059121 US2020059121W WO2021092182A1 WO 2021092182 A1 WO2021092182 A1 WO 2021092182A1 US 2020059121 W US2020059121 W US 2020059121W WO 2021092182 A1 WO2021092182 A1 WO 2021092182A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phr
- tire
- rubber composition
- rubber
- certain embodiments
- Prior art date
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 264
- 239000005060 rubber Substances 0.000 title claims abstract description 191
- 239000000203 mixture Substances 0.000 title claims abstract description 147
- 238000000034 method Methods 0.000 title claims abstract description 35
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 191
- 239000000945 filler Substances 0.000 claims abstract description 91
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 78
- 239000000806 elastomer Substances 0.000 claims abstract description 73
- 239000011347 resin Substances 0.000 claims abstract description 61
- 229920005989 resin Polymers 0.000 claims abstract description 61
- HECLRDQVFMWTQS-UHFFFAOYSA-N Dicyclopentadiene Chemical compound C1C2C3CC=CC3C1C=C2 HECLRDQVFMWTQS-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000004014 plasticizer Substances 0.000 claims abstract description 46
- 150000003505 terpenes Chemical class 0.000 claims abstract description 44
- 235000007586 terpenes Nutrition 0.000 claims abstract description 44
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 41
- 239000005011 phenolic resin Substances 0.000 claims abstract description 40
- 239000006229 carbon black Substances 0.000 claims abstract description 38
- 239000007788 liquid Substances 0.000 claims abstract description 25
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 23
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 103
- 239000002174 Styrene-butadiene Substances 0.000 claims description 71
- 125000000524 functional group Chemical group 0.000 claims description 62
- 229920001194 natural rubber Polymers 0.000 claims description 49
- 244000043261 Hevea brasiliensis Species 0.000 claims description 37
- 229920003052 natural elastomer Polymers 0.000 claims description 34
- 229920002857 polybutadiene Polymers 0.000 claims description 32
- 239000005062 Polybutadiene Substances 0.000 claims description 16
- 239000000178 monomer Substances 0.000 claims description 16
- 238000005096 rolling process Methods 0.000 claims description 13
- 239000006235 reinforcing carbon black Substances 0.000 claims description 12
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims description 4
- 239000011115 styrene butadiene Substances 0.000 claims description 4
- 239000004615 ingredient Substances 0.000 abstract description 11
- 239000003921 oil Substances 0.000 description 58
- 235000019198 oils Nutrition 0.000 description 58
- 150000001875 compounds Chemical class 0.000 description 50
- 125000004432 carbon atom Chemical group C* 0.000 description 45
- 235000019241 carbon black Nutrition 0.000 description 35
- 239000007822 coupling agent Substances 0.000 description 31
- -1 ethylene-butylene Chemical group 0.000 description 29
- 229920000642 polymer Polymers 0.000 description 29
- 238000002156 mixing Methods 0.000 description 25
- 239000012763 reinforcing filler Substances 0.000 description 24
- 239000003795 chemical substances by application Substances 0.000 description 22
- 150000002148 esters Chemical class 0.000 description 18
- 238000004073 vulcanization Methods 0.000 description 18
- 229910052717 sulfur Inorganic materials 0.000 description 17
- 239000011593 sulfur Substances 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 15
- 238000005259 measurement Methods 0.000 description 13
- UMGDCJDMYOKAJW-UHFFFAOYSA-N aminothiocarboxamide Natural products NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 12
- 125000003545 alkoxy group Chemical group 0.000 description 11
- 125000000217 alkyl group Chemical group 0.000 description 11
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 10
- 229920001195 polyisoprene Polymers 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000004606 Fillers/Extenders Substances 0.000 description 8
- 239000004594 Masterbatch (MB) Substances 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 239000012190 activator Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical class S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 8
- 229920002554 vinyl polymer Polymers 0.000 description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 7
- 125000001931 aliphatic group Chemical group 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 7
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 6
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 125000000962 organic group Chemical group 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Natural products CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 229910000077 silane Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 5
- 239000012936 vulcanization activator Substances 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 235000021355 Stearic acid Nutrition 0.000 description 4
- 235000019486 Sunflower oil Nutrition 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 4
- 239000000378 calcium silicate Substances 0.000 description 4
- 229910052918 calcium silicate Inorganic materials 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 4
- AUZONCFQVSMFAP-UHFFFAOYSA-N disulfiram Chemical compound CCN(CC)C(=S)SSC(=S)N(CC)CC AUZONCFQVSMFAP-UHFFFAOYSA-N 0.000 description 4
- 125000001841 imino group Chemical group [H]N=* 0.000 description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 4
- 239000005077 polysulfide Substances 0.000 description 4
- 229920001021 polysulfide Polymers 0.000 description 4
- 150000008117 polysulfides Polymers 0.000 description 4
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 description 4
- 239000008117 stearic acid Substances 0.000 description 4
- 239000002600 sunflower oil Substances 0.000 description 4
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 4
- 229960002447 thiram Drugs 0.000 description 4
- PRKPGWQEKNEVEU-UHFFFAOYSA-N 4-methyl-n-(3-triethoxysilylpropyl)pentan-2-imine Chemical compound CCO[Si](OCC)(OCC)CCCN=C(C)CC(C)C PRKPGWQEKNEVEU-UHFFFAOYSA-N 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- 239000006236 Super Abrasion Furnace Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 150000002466 imines Chemical class 0.000 description 3
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 3
- 229910001507 metal halide Inorganic materials 0.000 description 3
- 150000005309 metal halides Chemical class 0.000 description 3
- 229910052752 metalloid Inorganic materials 0.000 description 3
- CNBZTHQYUOSCDJ-UHFFFAOYSA-N n-(3-triethoxysilylpropyl)butan-2-imine Chemical compound CCO[Si](OCC)(OCC)CCCN=C(C)CC CNBZTHQYUOSCDJ-UHFFFAOYSA-N 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 239000011236 particulate material Substances 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000010773 plant oil Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 229960004029 silicic acid Drugs 0.000 description 3
- 235000012424 soybean oil Nutrition 0.000 description 3
- 239000003549 soybean oil Substances 0.000 description 3
- 150000003585 thioureas Chemical class 0.000 description 3
- JAEZSIYNWDWMMN-UHFFFAOYSA-N 1,1,3-trimethylthiourea Chemical compound CNC(=S)N(C)C JAEZSIYNWDWMMN-UHFFFAOYSA-N 0.000 description 2
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 description 2
- LOVYCUYJRWLTSU-UHFFFAOYSA-N 2-(3,4-dichlorophenoxy)-n,n-diethylethanamine Chemical compound CCN(CC)CCOC1=CC=C(Cl)C(Cl)=C1 LOVYCUYJRWLTSU-UHFFFAOYSA-N 0.000 description 2
- GXDMUOPCQNLBCZ-UHFFFAOYSA-N 3-(3-triethoxysilylpropyl)oxolane-2,5-dione Chemical compound CCO[Si](OCC)(OCC)CCCC1CC(=O)OC1=O GXDMUOPCQNLBCZ-UHFFFAOYSA-N 0.000 description 2
- WBUSESIMOZDSHU-UHFFFAOYSA-N 3-(4,5-dihydroimidazol-1-yl)propyl-triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN1CCN=C1 WBUSESIMOZDSHU-UHFFFAOYSA-N 0.000 description 2
- DIGKGWWSMMWBIZ-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]-n,n-bis(trimethylsilyl)propan-1-amine Chemical compound CCO[Si](C)(OCC)CCCN([Si](C)(C)C)[Si](C)(C)C DIGKGWWSMMWBIZ-UHFFFAOYSA-N 0.000 description 2
- CPGFMWPQXUXQRX-UHFFFAOYSA-N 3-amino-3-(4-fluorophenyl)propanoic acid Chemical compound OC(=O)CC(N)C1=CC=C(F)C=C1 CPGFMWPQXUXQRX-UHFFFAOYSA-N 0.000 description 2
- BUZICZZQJDLXJN-UHFFFAOYSA-N 3-azaniumyl-4-hydroxybutanoate Chemical compound OCC(N)CC(O)=O BUZICZZQJDLXJN-UHFFFAOYSA-N 0.000 description 2
- FMGBDYLOANULLW-UHFFFAOYSA-N 3-isocyanatopropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCN=C=O FMGBDYLOANULLW-UHFFFAOYSA-N 0.000 description 2
- SLSKAIZCBJQHFI-UHFFFAOYSA-N 3-triethoxysilyl-n,n-bis(trimethylsilyl)propan-1-amine Chemical compound CCO[Si](OCC)(OCC)CCCN([Si](C)(C)C)[Si](C)(C)C SLSKAIZCBJQHFI-UHFFFAOYSA-N 0.000 description 2
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- GCSNSTLNJOCKES-UHFFFAOYSA-N CC(C)O[SiH2]CCCN1CCN=C1 Chemical compound CC(C)O[SiH2]CCCN1CCN=C1 GCSNSTLNJOCKES-UHFFFAOYSA-N 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 239000006238 High Abrasion Furnace Substances 0.000 description 2
- FLVIGYVXZHLUHP-UHFFFAOYSA-N N,N'-diethylthiourea Chemical compound CCNC(=S)NCC FLVIGYVXZHLUHP-UHFFFAOYSA-N 0.000 description 2
- FCSHMCFRCYZTRQ-UHFFFAOYSA-N N,N'-diphenylthiourea Chemical compound C=1C=CC=CC=1NC(=S)NC1=CC=CC=C1 FCSHMCFRCYZTRQ-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 241001495453 Parthenium argentatum Species 0.000 description 2
- 239000006242 Semi-Reinforcing Furnace Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- TYYRQXKKUMORJD-UHFFFAOYSA-N azepan-1-ylmethyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)CN1CCCCCC1 TYYRQXKKUMORJD-UHFFFAOYSA-N 0.000 description 2
- PWVJFYYQPCSIDR-UHFFFAOYSA-N azepan-1-ylmethyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CN1CCCCCC1 PWVJFYYQPCSIDR-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- QOTYLQBPNZRMNL-UHFFFAOYSA-N bis(2-methylpropyl)carbamothioylsulfanyl n,n-bis(2-methylpropyl)carbamodithioate Chemical compound CC(C)CN(CC(C)C)C(=S)SSC(=S)N(CC(C)C)CC(C)C QOTYLQBPNZRMNL-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- BQOFWKZOCNGFEC-UHFFFAOYSA-N carene Chemical compound C1C(C)=CCC2C(C)(C)C12 BQOFWKZOCNGFEC-UHFFFAOYSA-N 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 2
- WITDFSFZHZYQHB-UHFFFAOYSA-N dibenzylcarbamothioylsulfanyl n,n-dibenzylcarbamodithioate Chemical compound C=1C=CC=CC=1CN(CC=1C=CC=CC=1)C(=S)SSC(=S)N(CC=1C=CC=CC=1)CC1=CC=CC=C1 WITDFSFZHZYQHB-UHFFFAOYSA-N 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 150000002019 disulfides Chemical class 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical group 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- 235000001510 limonene Nutrition 0.000 description 2
- 229940087305 limonene Drugs 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000005055 methyl trichlorosilane Substances 0.000 description 2
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 2
- BVBBZEKOMUDXMZ-UHFFFAOYSA-N n,n-diethyl-3-triethoxysilylpropan-1-amine Chemical compound CCO[Si](OCC)(OCC)CCCN(CC)CC BVBBZEKOMUDXMZ-UHFFFAOYSA-N 0.000 description 2
- AQIQPUUNTCVHBS-UHFFFAOYSA-N n,n-dimethyl-3-triethoxysilylpropan-1-amine Chemical compound CCO[Si](OCC)(OCC)CCCN(C)C AQIQPUUNTCVHBS-UHFFFAOYSA-N 0.000 description 2
- QIOYHIUHPGORLS-UHFFFAOYSA-N n,n-dimethyl-3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN(C)C QIOYHIUHPGORLS-UHFFFAOYSA-N 0.000 description 2
- IUJLOAKJZQBENM-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)-2-methylpropan-2-amine Chemical compound C1=CC=C2SC(SNC(C)(C)C)=NC2=C1 IUJLOAKJZQBENM-UHFFFAOYSA-N 0.000 description 2
- DEQZTKGFXNUBJL-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)cyclohexanamine Chemical compound C1CCCCC1NSC1=NC2=CC=CC=C2S1 DEQZTKGFXNUBJL-UHFFFAOYSA-N 0.000 description 2
- PHYRCSSYBSJTMI-UHFFFAOYSA-N n-(3-triethoxysilylpropyl)ethanimine Chemical compound CCO[Si](OCC)(OCC)CCCN=CC PHYRCSSYBSJTMI-UHFFFAOYSA-N 0.000 description 2
- 235000014571 nuts Nutrition 0.000 description 2
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 150000003512 tertiary amines Chemical group 0.000 description 2
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 2
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- GRWFGVWFFZKLTI-UHFFFAOYSA-N α-pinene Chemical compound CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 2
- LFJQCDVYDGGFCH-JTQLQIEISA-N (+)-β-phellandrene Chemical compound CC(C)[C@@H]1CCC(=C)C=C1 LFJQCDVYDGGFCH-JTQLQIEISA-N 0.000 description 1
- WTARULDDTDQWMU-RKDXNWHRSA-N (+)-β-pinene Chemical compound C1[C@H]2C(C)(C)[C@@H]1CCC2=C WTARULDDTDQWMU-RKDXNWHRSA-N 0.000 description 1
- LFJQCDVYDGGFCH-SNVBAGLBSA-N (+/-)-beta-Phellandrene Natural products CC(C)[C@H]1CCC(=C)C=C1 LFJQCDVYDGGFCH-SNVBAGLBSA-N 0.000 description 1
- WTARULDDTDQWMU-IUCAKERBSA-N (-)-Nopinene Natural products C1[C@@H]2C(C)(C)[C@H]1CCC2=C WTARULDDTDQWMU-IUCAKERBSA-N 0.000 description 1
- VXLFMCZPFIKKDZ-UHFFFAOYSA-N (4-methylphenyl)thiourea Chemical compound CC1=CC=C(NC(N)=S)C=C1 VXLFMCZPFIKKDZ-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- KCOYHFNCTWXETP-UHFFFAOYSA-N (carbamothioylamino)thiourea Chemical compound NC(=S)NNC(N)=S KCOYHFNCTWXETP-UHFFFAOYSA-N 0.000 description 1
- CXWGKAYMVASWDQ-UHFFFAOYSA-N 1,2-dithiane Chemical compound C1CCSSC1 CXWGKAYMVASWDQ-UHFFFAOYSA-N 0.000 description 1
- KREOCUNMMFZOOS-UHFFFAOYSA-N 1,3-di(propan-2-yl)thiourea Chemical compound CC(C)NC(S)=NC(C)C KREOCUNMMFZOOS-UHFFFAOYSA-N 0.000 description 1
- KAJICSGLHKRDLN-UHFFFAOYSA-N 1,3-dicyclohexylthiourea Chemical compound C1CCCCC1NC(=S)NC1CCCCC1 KAJICSGLHKRDLN-UHFFFAOYSA-N 0.000 description 1
- DEILIWSHLDNQRR-UHFFFAOYSA-N 1-(2-triethoxysilyl-4-bicyclo[2.2.1]hept-2-enyl)ethanethione Chemical compound C1CC2C([Si](OCC)(OCC)OCC)=CC1(C(C)=S)C2 DEILIWSHLDNQRR-UHFFFAOYSA-N 0.000 description 1
- BEINZVXQFFJBGC-UHFFFAOYSA-N 1-(2-triethoxysilyl-5-bicyclo[2.2.1]hept-2-enyl)ethanethione Chemical compound C1C2C([Si](OCC)(OCC)OCC)=CC1C(C(C)=S)C2 BEINZVXQFFJBGC-UHFFFAOYSA-N 0.000 description 1
- RYTALXFKQSSDOL-UHFFFAOYSA-N 1-[2-(2-triethoxysilylethyl)-5-bicyclo[2.2.1]hept-2-enyl]ethanethione Chemical compound C1C2C(CC[Si](OCC)(OCC)OCC)=CC1C(C(C)=S)C2 RYTALXFKQSSDOL-UHFFFAOYSA-N 0.000 description 1
- FSLUHJNPNRHGBF-UHFFFAOYSA-N 1-[4-(2-triethoxysilylethyl)cyclohexyl]ethanethione Chemical compound CCO[Si](OCC)(OCC)CCC1CCC(C(C)=S)CC1 FSLUHJNPNRHGBF-UHFFFAOYSA-N 0.000 description 1
- MRFMYANPSJUQPW-UHFFFAOYSA-N 1-propyl-5-triethoxysilylcyclohexa-2,4-diene-1-carbothioic S-acid Chemical compound CCCC1(C(S)=O)CC([Si](OCC)(OCC)OCC)=CC=C1 MRFMYANPSJUQPW-UHFFFAOYSA-N 0.000 description 1
- JBHRGAHUHVVXQI-UHFFFAOYSA-N 1-triethoxysilylpropan-1-amine Chemical compound CCO[Si](OCC)(OCC)C(N)CC JBHRGAHUHVVXQI-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- JXNPYDJBQLMKJP-UHFFFAOYSA-N 18-[chloro(diethoxy)silyl]octadecane-1-thiol Chemical compound CCO[Si](Cl)(OCC)CCCCCCCCCCCCCCCCCCS JXNPYDJBQLMKJP-UHFFFAOYSA-N 0.000 description 1
- GRWFGVWFFZKLTI-IUCAKERBSA-N 1S,5S-(-)-alpha-Pinene Natural products CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- JIDHFKQYRQEGCQ-UHFFFAOYSA-N 2-[diethoxy(methyl)silyl]-n,n-bis(trimethylsilyl)ethanamine Chemical compound CCO[Si](C)(OCC)CCN([Si](C)(C)C)[Si](C)(C)C JIDHFKQYRQEGCQ-UHFFFAOYSA-N 0.000 description 1
- ZPOBBCVISKKFBH-UHFFFAOYSA-N 2-[dimethoxy(methyl)silyl]-n,n-bis(trimethylsilyl)ethanamine Chemical compound CO[Si](C)(OC)CCN([Si](C)(C)C)[Si](C)(C)C ZPOBBCVISKKFBH-UHFFFAOYSA-N 0.000 description 1
- 229940054266 2-mercaptobenzothiazole Drugs 0.000 description 1
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- VNWOJVJCRAHBJJ-UHFFFAOYSA-N 2-pentylcyclopentan-1-one Chemical compound CCCCCC1CCCC1=O VNWOJVJCRAHBJJ-UHFFFAOYSA-N 0.000 description 1
- FKHKSWSHWLYDOI-UHFFFAOYSA-N 2-phenylbenzene-1,4-diamine Chemical compound NC1=CC=C(N)C(C=2C=CC=CC=2)=C1 FKHKSWSHWLYDOI-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- CBDWNRVMCWOYEK-UHFFFAOYSA-N 2-triethoxysilyl-n,n-bis(trimethylsilyl)ethanamine Chemical compound CCO[Si](OCC)(OCC)CCN([Si](C)(C)C)[Si](C)(C)C CBDWNRVMCWOYEK-UHFFFAOYSA-N 0.000 description 1
- DVNPFNZTPMWRAX-UHFFFAOYSA-N 2-triethoxysilylethanethiol Chemical compound CCO[Si](CCS)(OCC)OCC DVNPFNZTPMWRAX-UHFFFAOYSA-N 0.000 description 1
- RHAYEZASBOVCGH-UHFFFAOYSA-N 2-trimethoxysilyl-n,n-bis(trimethylsilyl)ethanamine Chemical compound CO[Si](OC)(OC)CCN([Si](C)(C)C)[Si](C)(C)C RHAYEZASBOVCGH-UHFFFAOYSA-N 0.000 description 1
- UZEBPNPRXOYGRA-UHFFFAOYSA-N 2-tripropoxysilylethanethiol Chemical compound CCCO[Si](CCS)(OCCC)OCCC UZEBPNPRXOYGRA-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- KQVVPOMBWBKNRS-UHFFFAOYSA-N 3-(1,3-benzothiazol-2-yl)propyl-triethoxysilane Chemical compound C1=CC=C2SC(CCC[Si](OCC)(OCC)OCC)=NC2=C1 KQVVPOMBWBKNRS-UHFFFAOYSA-N 0.000 description 1
- IABJHLPWGMWHLX-UHFFFAOYSA-N 3-(1,3-benzothiazol-2-yl)propyl-trimethoxysilane Chemical compound C1=CC=C2SC(CCC[Si](OC)(OC)OC)=NC2=C1 IABJHLPWGMWHLX-UHFFFAOYSA-N 0.000 description 1
- OZDJZALISQJWEQ-UHFFFAOYSA-N 3-(3-diethoxysilylpropyl)-4-methyloxolane-2,5-dione Chemical compound CCO[SiH](OCC)CCCC1C(C)C(=O)OC1=O OZDJZALISQJWEQ-UHFFFAOYSA-N 0.000 description 1
- ZADOWCXTUZWAKL-UHFFFAOYSA-N 3-(3-trimethoxysilylpropyl)oxolane-2,5-dione Chemical compound CO[Si](OC)(OC)CCCC1CC(=O)OC1=O ZADOWCXTUZWAKL-UHFFFAOYSA-N 0.000 description 1
- GBCNIMMWOPWZEG-UHFFFAOYSA-N 3-(diethoxymethylsilyl)-n,n-dimethylpropan-1-amine Chemical compound CCOC(OCC)[SiH2]CCCN(C)C GBCNIMMWOPWZEG-UHFFFAOYSA-N 0.000 description 1
- DFWCPLGXFMSUCW-UHFFFAOYSA-N 3-(dimethylamino)propyl carbamimidothioate;hydron;dichloride Chemical compound Cl.Cl.CN(C)CCCSC(N)=N DFWCPLGXFMSUCW-UHFFFAOYSA-N 0.000 description 1
- NLJVXZFCYKWXLH-DXTIXLATSA-N 3-[(3r,6s,9s,12s,15s,17s,20s,22r,25s,28s)-20-(2-amino-2-oxoethyl)-9-(3-aminopropyl)-3,22,25-tribenzyl-15-[(4-hydroxyphenyl)methyl]-6-(2-methylpropyl)-2,5,8,11,14,18,21,24,27-nonaoxo-12-propan-2-yl-1,4,7,10,13,16,19,23,26-nonazabicyclo[26.3.0]hentriacontan Chemical compound C([C@H]1C(=O)N[C@H](C(=O)N[C@@H](CCCN)C(=O)N[C@H](C(N[C@H](CC=2C=CC=CC=2)C(=O)N2CCC[C@H]2C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)N1)=O)CC(C)C)C(C)C)C1=CC=C(O)C=C1 NLJVXZFCYKWXLH-DXTIXLATSA-N 0.000 description 1
- MBNRBJNIYVXSQV-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propane-1-thiol Chemical compound CCO[Si](C)(OCC)CCCS MBNRBJNIYVXSQV-UHFFFAOYSA-N 0.000 description 1
- DOYKFSOCSXVQAN-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](C)(OCC)CCCOC(=O)C(C)=C DOYKFSOCSXVQAN-UHFFFAOYSA-N 0.000 description 1
- JRFVCFVEJBDLDT-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]-n,n-bis(trimethylsilyl)propan-1-amine Chemical compound CO[Si](C)(OC)CCCN([Si](C)(C)C)[Si](C)(C)C JRFVCFVEJBDLDT-UHFFFAOYSA-N 0.000 description 1
- MAHRLLLROOZJJX-UHFFFAOYSA-N 3-dimethoxysilylbutoxy-(3-dimethoxysilylbutylsulfanyl)-ethyl-sulfanylidene-lambda5-phosphane Chemical compound CC(CCSP(OCCC(C)[SiH](OC)OC)(=S)CC)[SiH](OC)OC MAHRLLLROOZJJX-UHFFFAOYSA-N 0.000 description 1
- YSRUGGVNBXSYMN-UHFFFAOYSA-N 3-dimethoxysilylbutoxy-(3-dimethoxysilylbutylsulfanyl)-methyl-sulfanylidene-lambda5-phosphane Chemical compound CO[SiH](OC)C(C)CCOP(C)(=S)SCCC(C)[SiH](OC)OC YSRUGGVNBXSYMN-UHFFFAOYSA-N 0.000 description 1
- XCOFOOGNWJLSDM-UHFFFAOYSA-N 3-dimethoxysilylbutoxy-bis(3-dimethoxysilylbutylsulfanyl)-sulfanylidene-lambda5-phosphane Chemical compound CO[SiH](OC)C(C)CCOP(=S)(SCCC(C)[SiH](OC)OC)SCCC(C)[SiH](OC)OC XCOFOOGNWJLSDM-UHFFFAOYSA-N 0.000 description 1
- JQKBYCKXGRPGAV-UHFFFAOYSA-N 3-isocyanatopropyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)CCCN=C=O JQKBYCKXGRPGAV-UHFFFAOYSA-N 0.000 description 1
- CZKIATYJHXKWFK-UHFFFAOYSA-N 3-methyl-11-triethoxysilylundecanethioic S-acid Chemical compound CCO[Si](OCC)(OCC)CCCCCCCCC(C)CC(S)=O CZKIATYJHXKWFK-UHFFFAOYSA-N 0.000 description 1
- JPSSZFVPDCJVFL-UHFFFAOYSA-N 3-propyl-7-triethoxysilylheptanethioic S-acid Chemical compound CCCC(CC(S)=O)CCCC[Si](OCC)(OCC)OCC JPSSZFVPDCJVFL-UHFFFAOYSA-N 0.000 description 1
- CHPNMYQJQQGAJS-UHFFFAOYSA-N 3-tri(propan-2-yloxy)silylpropyl 2-methylprop-2-enoate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)CCCOC(=O)C(C)=C CHPNMYQJQQGAJS-UHFFFAOYSA-N 0.000 description 1
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical compound CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 description 1
- JOGZENPUTBJZBI-UHFFFAOYSA-N 3-trimethoxysilyl-n,n-bis(trimethylsilyl)propan-1-amine Chemical compound CO[Si](OC)(OC)CCCN([Si](C)(C)C)[Si](C)(C)C JOGZENPUTBJZBI-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- ANZPQOTXVAYKBE-UHFFFAOYSA-N 4-(4,5-dihydroimidazol-1-yl)butan-2-yl-diethoxysilane Chemical compound CC(CCN1C=NCC1)[SiH](OCC)OCC ANZPQOTXVAYKBE-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- MQWJJJNANKMRBF-UHFFFAOYSA-N 4-[diethoxy(propyl)silyl]oxypentanenitrile Chemical compound CCC[Si](OCC)(OCC)OC(C)CCC#N MQWJJJNANKMRBF-UHFFFAOYSA-N 0.000 description 1
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 1
- VRKQEIXDEZVPSY-UHFFFAOYSA-N 4-n-phenyl-4-n-propan-2-ylbenzene-1,4-diamine Chemical compound C=1C=C(N)C=CC=1N(C(C)C)C1=CC=CC=C1 VRKQEIXDEZVPSY-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- PIVQQUNOTICCSA-UHFFFAOYSA-N ANTU Chemical compound C1=CC=C2C(NC(=S)N)=CC=CC2=C1 PIVQQUNOTICCSA-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- RKAGYZNMZUIYTP-UHFFFAOYSA-N C(C)O[Si](OCC)(OCC)COS(=O)(=S)C1(C(C=CC=C1)C)C Chemical compound C(C)O[Si](OCC)(OCC)COS(=O)(=S)C1(C(C=CC=C1)C)C RKAGYZNMZUIYTP-UHFFFAOYSA-N 0.000 description 1
- PUWODOWHRBTFLK-UHFFFAOYSA-N C(C)O[Si](OCC)(OCC)COS(=O)(=S)CC Chemical compound C(C)O[Si](OCC)(OCC)COS(=O)(=S)CC PUWODOWHRBTFLK-UHFFFAOYSA-N 0.000 description 1
- FDJLHMMBYKZDOF-UHFFFAOYSA-N C(C)O[Si](OCC)(OCC)COS(=O)(=S)CC1=CC=CC=C1 Chemical compound C(C)O[Si](OCC)(OCC)COS(=O)(=S)CC1=CC=CC=C1 FDJLHMMBYKZDOF-UHFFFAOYSA-N 0.000 description 1
- SQCDFRZTWJYYSV-UHFFFAOYSA-N C1=CC=C2C(S(=O)(=S)OC[Si](OCC)(OCC)OCC)=CC=CC2=C1 Chemical compound C1=CC=C2C(S(=O)(=S)OC[Si](OCC)(OCC)OCC)=CC=CC2=C1 SQCDFRZTWJYYSV-UHFFFAOYSA-N 0.000 description 1
- VWOCJSYXZSVJQY-UHFFFAOYSA-N CC(C)(C[SiH2]OC)C(O)=S Chemical compound CC(C)(C[SiH2]OC)C(O)=S VWOCJSYXZSVJQY-UHFFFAOYSA-N 0.000 description 1
- XUUMUAOLWOYCKK-UHFFFAOYSA-N CC(C)O[SiH2]CC(C)(C)C(O)=S Chemical compound CC(C)O[SiH2]CC(C)(C)C(O)=S XUUMUAOLWOYCKK-UHFFFAOYSA-N 0.000 description 1
- FJNUAAGMNLHEJS-UHFFFAOYSA-N CCO[SiH2]CC(C)(C)C(O)=S Chemical compound CCO[SiH2]CC(C)(C)C(O)=S FJNUAAGMNLHEJS-UHFFFAOYSA-N 0.000 description 1
- DKTGMWVQXPAOPX-UHFFFAOYSA-N CCO[Si](CCCC[S+]=S([O-])(O)=O)(OCC)OCC Chemical compound CCO[Si](CCCC[S+]=S([O-])(O)=O)(OCC)OCC DKTGMWVQXPAOPX-UHFFFAOYSA-N 0.000 description 1
- PREBCAKMHSEJMH-UHFFFAOYSA-N CCO[Si](CCCOP(=S)(CC)SCCC[Si](OCC)(OCC)OCC)(OCC)OCC Chemical compound CCO[Si](CCCOP(=S)(CC)SCCC[Si](OCC)(OCC)OCC)(OCC)OCC PREBCAKMHSEJMH-UHFFFAOYSA-N 0.000 description 1
- DFVVUQQSIRKQBX-UHFFFAOYSA-N CCO[Si](CCCSP(=S)(CC)SCCC[Si](OCC)(OCC)OCC)(OCC)OCC Chemical compound CCO[Si](CCCSP(=S)(CC)SCCC[Si](OCC)(OCC)OCC)(OCC)OCC DFVVUQQSIRKQBX-UHFFFAOYSA-N 0.000 description 1
- FSPIGXNLDXWYKZ-UHFFFAOYSA-N CCO[Si](CCC[S+]=C(N(C)C)SSSSC(N(C)C)=[S+]CCC[Si](OCC)(OCC)OCC)(OCC)OCC Chemical compound CCO[Si](CCC[S+]=C(N(C)C)SSSSC(N(C)C)=[S+]CCC[Si](OCC)(OCC)OCC)(OCC)OCC FSPIGXNLDXWYKZ-UHFFFAOYSA-N 0.000 description 1
- LAIDFYFXTGQDOB-UHFFFAOYSA-N CCO[Si](OCC)(OCC)CCCOP(C)(=S)SCCC[Si](OCC)(OCC)OCC Chemical compound CCO[Si](OCC)(OCC)CCCOP(C)(=S)SCCC[Si](OCC)(OCC)OCC LAIDFYFXTGQDOB-UHFFFAOYSA-N 0.000 description 1
- BXICXWXVNPQKTM-UHFFFAOYSA-N CCO[Si](OCC)(OCC)COS(=O)(=S)C1=CC=CC=C1 Chemical compound CCO[Si](OCC)(OCC)COS(=O)(=S)C1=CC=CC=C1 BXICXWXVNPQKTM-UHFFFAOYSA-N 0.000 description 1
- SKFGZHGVWONCTD-UHFFFAOYSA-N CN(C)C(SSSSC(N(C)C)=[S+]CCC[Si](OC)(OC)OC)=[S+]CCC[Si](OC)(OC)OC Chemical compound CN(C)C(SSSSC(N(C)C)=[S+]CCC[Si](OC)(OC)OC)=[S+]CCC[Si](OC)(OC)OC SKFGZHGVWONCTD-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 235000019492 Cashew oil Nutrition 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PDQAZBWRQCGBEV-UHFFFAOYSA-N Ethylenethiourea Chemical compound S=C1NCCN1 PDQAZBWRQCGBEV-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PWWVAXIEGOYWEE-UHFFFAOYSA-N Isophenergan Chemical compound C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 PWWVAXIEGOYWEE-UHFFFAOYSA-N 0.000 description 1
- 229920002633 Kraton (polymer) Polymers 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 235000018330 Macadamia integrifolia Nutrition 0.000 description 1
- 240000000912 Macadamia tetraphylla Species 0.000 description 1
- 235000003800 Macadamia tetraphylla Nutrition 0.000 description 1
- SPAGIJMPHSUYSE-UHFFFAOYSA-N Magnesium peroxide Chemical compound [Mg+2].[O-][O-] SPAGIJMPHSUYSE-UHFFFAOYSA-N 0.000 description 1
- VLCDUOXHFNUCKK-UHFFFAOYSA-N N,N'-Dimethylthiourea Chemical compound CNC(=S)NC VLCDUOXHFNUCKK-UHFFFAOYSA-N 0.000 description 1
- KFFQABQEJATQAT-UHFFFAOYSA-N N,N'-dibutylthiourea Chemical compound CCCCNC(=S)NCCCC KFFQABQEJATQAT-UHFFFAOYSA-N 0.000 description 1
- OUBMGJOQLXMSNT-UHFFFAOYSA-N N-isopropyl-N'-phenyl-p-phenylenediamine Chemical compound C1=CC(NC(C)C)=CC=C1NC1=CC=CC=C1 OUBMGJOQLXMSNT-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- COQGTXSRUFWIHS-UHFFFAOYSA-N O-methyl 3-di(propan-2-yloxy)silylpropanethioate Chemical compound COC(CC[SiH](OC(C)C)OC(C)C)=S COQGTXSRUFWIHS-UHFFFAOYSA-N 0.000 description 1
- ZIRZHZPXSOKIGF-UHFFFAOYSA-N O-methyl 3-diethoxysilylpropanethioate Chemical compound COC(CC[SiH](OCC)OCC)=S ZIRZHZPXSOKIGF-UHFFFAOYSA-N 0.000 description 1
- UYKPRDGGENWWDO-UHFFFAOYSA-N O-methyl 3-dimethoxysilylpropanethioate Chemical compound COC(CC[SiH](OC)OC)=S UYKPRDGGENWWDO-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- WTARULDDTDQWMU-UHFFFAOYSA-N Pseudopinene Natural products C1C2C(C)(C)C1CCC2=C WTARULDDTDQWMU-UHFFFAOYSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 229920005683 SIBR Polymers 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 240000001949 Taraxacum officinale Species 0.000 description 1
- 235000005187 Taraxacum officinale ssp. officinale Nutrition 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 229910021623 Tin(IV) bromide Inorganic materials 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- GCTFWCDSFPMHHS-UHFFFAOYSA-M Tributyltin chloride Chemical compound CCCC[Sn](Cl)(CCCC)CCCC GCTFWCDSFPMHHS-UHFFFAOYSA-M 0.000 description 1
- WAPYKDZPBOBYSR-UHFFFAOYSA-N [[dihydroxy(oxo)-lambda6-sulfanylidene]-methyl-lambda4-sulfanyl]methyl-triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CS(C)=S(O)(O)=O WAPYKDZPBOBYSR-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 125000005370 alkoxysilyl group Chemical group 0.000 description 1
- 125000005055 alkyl alkoxy group Chemical group 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- LFJQCDVYDGGFCH-UHFFFAOYSA-N beta-phellandrene Natural products CC(C)C1CCC(=C)C=C1 LFJQCDVYDGGFCH-UHFFFAOYSA-N 0.000 description 1
- 229930006722 beta-pinene Natural products 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- VLLYOYVKQDKAHN-UHFFFAOYSA-N buta-1,3-diene;2-methylbuta-1,3-diene Chemical compound C=CC=C.CC(=C)C=C VLLYOYVKQDKAHN-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- BDMFYHHLDXQFQD-UHFFFAOYSA-N butyl(trichloro)germane Chemical compound CCCC[Ge](Cl)(Cl)Cl BDMFYHHLDXQFQD-UHFFFAOYSA-N 0.000 description 1
- FQEKAFQSVPLXON-UHFFFAOYSA-N butyl(trichloro)silane Chemical compound CCCC[Si](Cl)(Cl)Cl FQEKAFQSVPLXON-UHFFFAOYSA-N 0.000 description 1
- YMLFYGFCXGNERH-UHFFFAOYSA-K butyltin trichloride Chemical compound CCCC[Sn](Cl)(Cl)Cl YMLFYGFCXGNERH-UHFFFAOYSA-K 0.000 description 1
- 229910000171 calcio olivine Inorganic materials 0.000 description 1
- ZFXVRMSLJDYJCH-UHFFFAOYSA-N calcium magnesium Chemical compound [Mg].[Ca] ZFXVRMSLJDYJCH-UHFFFAOYSA-N 0.000 description 1
- 239000010495 camellia oil Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000010467 cashew oil Substances 0.000 description 1
- 229940059459 cashew oil Drugs 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- MPVDXIMFBOLMNW-UHFFFAOYSA-N chembl1615565 Chemical compound OC1=CC=C2C=C(S(O)(=O)=O)C=C(S(O)(=O)=O)C2=C1N=NC1=CC=CC=C1 MPVDXIMFBOLMNW-UHFFFAOYSA-N 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- WZQSBCHNVPAYOC-UHFFFAOYSA-N chloro(trihexyl)silane Chemical compound CCCCCC[Si](Cl)(CCCCCC)CCCCCC WZQSBCHNVPAYOC-UHFFFAOYSA-N 0.000 description 1
- HZSATSWHBKSURR-UHFFFAOYSA-N chloro(trioctyl)silane Chemical compound CCCCCCCC[Si](Cl)(CCCCCCCC)CCCCCCCC HZSATSWHBKSURR-UHFFFAOYSA-N 0.000 description 1
- ONQMBYVVEVFYRP-UHFFFAOYSA-N chloro(triphenyl)germane Chemical compound C=1C=CC=CC=1[Ge](C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 ONQMBYVVEVFYRP-UHFFFAOYSA-N 0.000 description 1
- MNKYQPOFRKPUAE-UHFFFAOYSA-N chloro(triphenyl)silane Chemical compound C=1C=CC=CC=1[Si](C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 MNKYQPOFRKPUAE-UHFFFAOYSA-N 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- ATGKAFZFOALBOF-UHFFFAOYSA-N cyclohexyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C1CCCCC1 ATGKAFZFOALBOF-UHFFFAOYSA-N 0.000 description 1
- BAAAEEDPKUHLID-UHFFFAOYSA-N decyl(triethoxy)silane Chemical compound CCCCCCCCCC[Si](OCC)(OCC)OCC BAAAEEDPKUHLID-UHFFFAOYSA-N 0.000 description 1
- KQAHMVLQCSALSX-UHFFFAOYSA-N decyl(trimethoxy)silane Chemical compound CCCCCCCCCC[Si](OC)(OC)OC KQAHMVLQCSALSX-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- IQDXNHZDRQHKEF-UHFFFAOYSA-N dialuminum;dicalcium;dioxido(oxo)silane Chemical compound [Al+3].[Al+3].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O IQDXNHZDRQHKEF-UHFFFAOYSA-N 0.000 description 1
- OKGXJRGLYVRVNE-UHFFFAOYSA-N diaminomethylidenethiourea Chemical compound NC(N)=NC(N)=S OKGXJRGLYVRVNE-UHFFFAOYSA-N 0.000 description 1
- VKMPTHGEGBKPBQ-UHFFFAOYSA-N dibutyl(dichloro)germane Chemical compound CCCC[Ge](Cl)(Cl)CCCC VKMPTHGEGBKPBQ-UHFFFAOYSA-N 0.000 description 1
- NJKDOKBDBHYMAH-UHFFFAOYSA-N dibutyl(dichloro)silane Chemical compound CCCC[Si](Cl)(Cl)CCCC NJKDOKBDBHYMAH-UHFFFAOYSA-N 0.000 description 1
- RJGHQTVXGKYATR-UHFFFAOYSA-L dibutyl(dichloro)stannane Chemical compound CCCC[Sn](Cl)(Cl)CCCC RJGHQTVXGKYATR-UHFFFAOYSA-L 0.000 description 1
- NRAYZPGATNMOSB-UHFFFAOYSA-N dichloro(dihexyl)silane Chemical compound CCCCCC[Si](Cl)(Cl)CCCCCC NRAYZPGATNMOSB-UHFFFAOYSA-N 0.000 description 1
- CVAGYCLEIYGJQT-UHFFFAOYSA-N dichloro(dioctyl)silane Chemical compound CCCCCCCC[Si](Cl)(Cl)CCCCCCCC CVAGYCLEIYGJQT-UHFFFAOYSA-N 0.000 description 1
- PFPTYRFVUHDUIN-UHFFFAOYSA-N dichloro(diphenyl)germane Chemical compound C=1C=CC=CC=1[Ge](Cl)(Cl)C1=CC=CC=C1 PFPTYRFVUHDUIN-UHFFFAOYSA-N 0.000 description 1
- OSXYHAQZDCICNX-UHFFFAOYSA-N dichloro(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](Cl)(Cl)C1=CC=CC=C1 OSXYHAQZDCICNX-UHFFFAOYSA-N 0.000 description 1
- ISXUHJXWYNONDI-UHFFFAOYSA-L dichloro(diphenyl)stannane Chemical compound C=1C=CC=CC=1[Sn](Cl)(Cl)C1=CC=CC=C1 ISXUHJXWYNONDI-UHFFFAOYSA-L 0.000 description 1
- PJIFJEUHCQYNHO-UHFFFAOYSA-N diethoxy-(3-isocyanatopropyl)-methylsilane Chemical compound CCO[Si](C)(OCC)CCCN=C=O PJIFJEUHCQYNHO-UHFFFAOYSA-N 0.000 description 1
- WQVJKRKRRMJKMC-UHFFFAOYSA-N diethoxy-methyl-octylsilane Chemical compound CCCCCCCC[Si](C)(OCC)OCC WQVJKRKRRMJKMC-UHFFFAOYSA-N 0.000 description 1
- AXQSJCWCXATTNE-UHFFFAOYSA-L dihexyltin(2+);dichloride Chemical compound CCCCCC[Sn](Cl)(Cl)CCCCCC AXQSJCWCXATTNE-UHFFFAOYSA-L 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- SLQTWNAJXFHMHM-UHFFFAOYSA-N dimethoxy-methyl-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](C)(OC)OC)CCC2OC21 SLQTWNAJXFHMHM-UHFFFAOYSA-N 0.000 description 1
- PWPGWRIGYKWLEV-UHFFFAOYSA-N dimethoxy-methyl-[2-(oxiran-2-ylmethoxy)ethyl]silane Chemical compound CO[Si](C)(OC)CCOCC1CO1 PWPGWRIGYKWLEV-UHFFFAOYSA-N 0.000 description 1
- WHGNXNCOTZPEEK-UHFFFAOYSA-N dimethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](C)(OC)CCCOCC1CO1 WHGNXNCOTZPEEK-UHFFFAOYSA-N 0.000 description 1
- GOIPELYWYGMEFQ-UHFFFAOYSA-N dimethoxy-methyl-octylsilane Chemical compound CCCCCCCC[Si](C)(OC)OC GOIPELYWYGMEFQ-UHFFFAOYSA-N 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- SBOSGIJGEHWBKV-UHFFFAOYSA-L dioctyltin(2+);dichloride Chemical compound CCCCCCCC[Sn](Cl)(Cl)CCCCCCCC SBOSGIJGEHWBKV-UHFFFAOYSA-L 0.000 description 1
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 1
- LOZWAPSEEHRYPG-UHFFFAOYSA-N dithiane Natural products C1CSCCS1 LOZWAPSEEHRYPG-UHFFFAOYSA-N 0.000 description 1
- YGUFXEJWPRRAEK-UHFFFAOYSA-N dodecyl(triethoxy)silane Chemical compound CCCCCCCCCCCC[Si](OCC)(OCC)OCC YGUFXEJWPRRAEK-UHFFFAOYSA-N 0.000 description 1
- SCPWMSBAGXEGPW-UHFFFAOYSA-N dodecyl(trimethoxy)silane Chemical compound CCCCCCCCCCCC[Si](OC)(OC)OC SCPWMSBAGXEGPW-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052634 enstatite Inorganic materials 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- RSIHJDGMBDPTIM-UHFFFAOYSA-N ethoxy(trimethyl)silane Chemical compound CCO[Si](C)(C)C RSIHJDGMBDPTIM-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- NJVOZLGKTAPUTQ-UHFFFAOYSA-M fentin chloride Chemical compound C=1C=CC=CC=1[Sn](C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 NJVOZLGKTAPUTQ-UHFFFAOYSA-M 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- LCWMKIHBLJLORW-UHFFFAOYSA-N gamma-carene Natural products C1CC(=C)CC2C(C)(C)C21 LCWMKIHBLJLORW-UHFFFAOYSA-N 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010460 hemp oil Substances 0.000 description 1
- VRINOTYEGADLMW-UHFFFAOYSA-N heptyl(trimethoxy)silane Chemical compound CCCCCCC[Si](OC)(OC)OC VRINOTYEGADLMW-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000000879 imine group Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- 150000004658 ketimines Chemical group 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- XTOSZDRAGWRSBP-UHFFFAOYSA-N n,n-dimethyl-2-triethoxysilylethanamine Chemical compound CCO[Si](OCC)(OCC)CCN(C)C XTOSZDRAGWRSBP-UHFFFAOYSA-N 0.000 description 1
- RKOBOSOXEJGFTF-UHFFFAOYSA-N n,n-dimethyl-2-trimethoxysilylethanamine Chemical compound CO[Si](OC)(OC)CCN(C)C RKOBOSOXEJGFTF-UHFFFAOYSA-N 0.000 description 1
- SULYJYHNLMOZIP-UHFFFAOYSA-N n-(3-triethoxysilylpropyl)cyclohexanimine Chemical compound CCO[Si](OCC)(OCC)CCCN=C1CCCCC1 SULYJYHNLMOZIP-UHFFFAOYSA-N 0.000 description 1
- MPKNGASSKGJBSA-UHFFFAOYSA-N n-(3-triethoxysilylpropyl)propan-2-imine Chemical compound CCO[Si](OCC)(OCC)CCCN=C(C)C MPKNGASSKGJBSA-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- DLAUQJZKDAKQGO-UHFFFAOYSA-N n-butyl-n-(3-triethoxysilylpropyl)butan-1-amine Chemical compound CCCCN(CCCC)CCC[Si](OCC)(OCC)OCC DLAUQJZKDAKQGO-UHFFFAOYSA-N 0.000 description 1
- GZNRISJLOXVOSH-UHFFFAOYSA-N n-phenylaniline;propan-2-one Chemical compound CC(C)=O.C=1C=CC=CC=1NC1=CC=CC=C1 GZNRISJLOXVOSH-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 239000010466 nut oil Substances 0.000 description 1
- QXBLIUBAPLUCFY-UHFFFAOYSA-N o-(triethoxysilylmethyl) ethanethioate Chemical compound CCO[Si](OCC)(OCC)COC(C)=S QXBLIUBAPLUCFY-UHFFFAOYSA-N 0.000 description 1
- DUGAFPBTRVNWOH-UHFFFAOYSA-N o-(trimethoxysilylmethyl) ethanethioate Chemical compound CO[Si](OC)(OC)COC(C)=S DUGAFPBTRVNWOH-UHFFFAOYSA-N 0.000 description 1
- ACLZYRNSDLQOIA-UHFFFAOYSA-N o-tolylthiourea Chemical compound CC1=CC=CC=C1NC(N)=S ACLZYRNSDLQOIA-UHFFFAOYSA-N 0.000 description 1
- SLYCYWCVSGPDFR-UHFFFAOYSA-N octadecyltrimethoxysilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC)(OC)OC SLYCYWCVSGPDFR-UHFFFAOYSA-N 0.000 description 1
- QTDSLDJPJJBBLE-PFONDFGASA-N octyl (z)-octadec-9-enoate Chemical compound CCCCCCCCOC(=O)CCCCCCC\C=C/CCCCCCCC QTDSLDJPJJBBLE-PFONDFGASA-N 0.000 description 1
- MSRJTTSHWYDFIU-UHFFFAOYSA-N octyltriethoxysilane Chemical compound CCCCCCCC[Si](OCC)(OCC)OCC MSRJTTSHWYDFIU-UHFFFAOYSA-N 0.000 description 1
- 229960003493 octyltriethoxysilane Drugs 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- MMMNTDFSPSQXJP-UHFFFAOYSA-N orphenadrine citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=C(C)C=1C(OCCN(C)C)C1=CC=CC=C1 MMMNTDFSPSQXJP-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- UBOGEXSQACVGEC-UHFFFAOYSA-K phenyltin(3+);trichloride Chemical compound Cl[Sn](Cl)(Cl)C1=CC=CC=C1 UBOGEXSQACVGEC-UHFFFAOYSA-K 0.000 description 1
- 239000005054 phenyltrichlorosilane Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- IPNPIHIZVLFAFP-UHFFFAOYSA-N phosphorus tribromide Chemical compound BrP(Br)Br IPNPIHIZVLFAFP-UHFFFAOYSA-N 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical class OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 229920002589 poly(vinylethylene) polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 238000010058 rubber compounding Methods 0.000 description 1
- JPPLPDOXWBVPCW-UHFFFAOYSA-N s-(3-triethoxysilylpropyl) octanethioate Chemical compound CCCCCCCC(=O)SCCC[Si](OCC)(OCC)OCC JPPLPDOXWBVPCW-UHFFFAOYSA-N 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- AIFMYMZGQVTROK-UHFFFAOYSA-N silicon tetrabromide Chemical compound Br[Si](Br)(Br)Br AIFMYMZGQVTROK-UHFFFAOYSA-N 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical group [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- KHTZKHQMYLOHFT-UHFFFAOYSA-N sulfanylidene-(3-triethoxysilylpropoxy)-bis(3-triethoxysilylpropylsulfanyl)-$l^{5}-phosphane Chemical compound CCO[Si](OCC)(OCC)CCCOP(=S)(SCCC[Si](OCC)(OCC)OCC)SCCC[Si](OCC)(OCC)OCC KHTZKHQMYLOHFT-UHFFFAOYSA-N 0.000 description 1
- VGGJNLGZARHOQV-UHFFFAOYSA-N sulfanylidene-tris(3-triethoxysilylpropylsulfanyl)-$l^{5}-phosphane Chemical compound CCO[Si](OCC)(OCC)CCCSP(=S)(SCCC[Si](OCC)(OCC)OCC)SCCC[Si](OCC)(OCC)OCC VGGJNLGZARHOQV-UHFFFAOYSA-N 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- RIECPYZYOLVSJK-UHFFFAOYSA-N tert-butyl 2-dimethylsilyl-5-methylindole-1-carboxylate Chemical compound C[SiH](C)c1cc2cc(C)ccc2n1C(=O)OC(C)(C)C RIECPYZYOLVSJK-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- VJHDVMPJLLGYBL-UHFFFAOYSA-N tetrabromogermane Chemical compound Br[Ge](Br)(Br)Br VJHDVMPJLLGYBL-UHFFFAOYSA-N 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 229940095070 tetrapropyl orthosilicate Drugs 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 150000007970 thio esters Chemical group 0.000 description 1
- 125000005309 thioalkoxy group Chemical group 0.000 description 1
- 125000005068 thioepoxy group Chemical group S(O*)* 0.000 description 1
- 125000005323 thioketone group Chemical group 0.000 description 1
- LTSUHJWLSNQKIP-UHFFFAOYSA-J tin(iv) bromide Chemical compound Br[Sn](Br)(Br)Br LTSUHJWLSNQKIP-UHFFFAOYSA-J 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- DDFYIVSQEDKSGY-UHFFFAOYSA-M tri(propan-2-yl)stannanylium;chloride Chemical compound CC(C)[Sn](Cl)(C(C)C)C(C)C DDFYIVSQEDKSGY-UHFFFAOYSA-M 0.000 description 1
- XCQYKITYUMPINW-UHFFFAOYSA-N tributoxy(cyclohexyl)silane Chemical compound CCCCO[Si](OCCCC)(OCCCC)C1CCCCC1 XCQYKITYUMPINW-UHFFFAOYSA-N 0.000 description 1
- JSQJUDVTRRCSRU-UHFFFAOYSA-N tributyl(chloro)silane Chemical compound CCCC[Si](Cl)(CCCC)CCCC JSQJUDVTRRCSRU-UHFFFAOYSA-N 0.000 description 1
- LFXJGGDONSCPOF-UHFFFAOYSA-N trichloro(hexyl)silane Chemical compound CCCCCC[Si](Cl)(Cl)Cl LFXJGGDONSCPOF-UHFFFAOYSA-N 0.000 description 1
- RCHUVCPBWWSUMC-UHFFFAOYSA-N trichloro(octyl)silane Chemical compound CCCCCCCC[Si](Cl)(Cl)Cl RCHUVCPBWWSUMC-UHFFFAOYSA-N 0.000 description 1
- INTLMJZQCBRQAT-UHFFFAOYSA-K trichloro(octyl)stannane Chemical compound CCCCCCCC[Sn](Cl)(Cl)Cl INTLMJZQCBRQAT-UHFFFAOYSA-K 0.000 description 1
- ORVMIVQULIKXCP-UHFFFAOYSA-N trichloro(phenyl)silane Chemical compound Cl[Si](Cl)(Cl)C1=CC=CC=C1 ORVMIVQULIKXCP-UHFFFAOYSA-N 0.000 description 1
- KFZYOLRKZIKUSD-UHFFFAOYSA-N triethoxy(2-hydroxysulfonothioylethyl)silane Chemical compound CCO[Si](OCC)(OCC)CCS(O)(=O)=S KFZYOLRKZIKUSD-UHFFFAOYSA-N 0.000 description 1
- ALVYUZIFSCKIFP-UHFFFAOYSA-N triethoxy(2-methylpropyl)silane Chemical compound CCO[Si](CC(C)C)(OCC)OCC ALVYUZIFSCKIFP-UHFFFAOYSA-N 0.000 description 1
- FRGPKMWIYVTFIQ-UHFFFAOYSA-N triethoxy(3-isocyanatopropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCN=C=O FRGPKMWIYVTFIQ-UHFFFAOYSA-N 0.000 description 1
- LENYMJLFWIMHEP-UHFFFAOYSA-N triethoxy(3-pyrrolidin-1-ylpropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCN1CCCC1 LENYMJLFWIMHEP-UHFFFAOYSA-N 0.000 description 1
- BRTXVSVHFSOGED-UHFFFAOYSA-N triethoxy(4-hydroxysulfonothioylbutyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCCS(O)(=O)=S BRTXVSVHFSOGED-UHFFFAOYSA-N 0.000 description 1
- RBDAXWQGOZWYFH-UHFFFAOYSA-N triethoxy(4-hydroxysulfonothioylpentyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCC(C)S(O)(=O)=S RBDAXWQGOZWYFH-UHFFFAOYSA-N 0.000 description 1
- DENFJSAFJTVPJR-UHFFFAOYSA-N triethoxy(ethyl)silane Chemical compound CCO[Si](CC)(OCC)OCC DENFJSAFJTVPJR-UHFFFAOYSA-N 0.000 description 1
- SAWDTKLQESXBDN-UHFFFAOYSA-N triethoxy(heptyl)silane Chemical compound CCCCCCC[Si](OCC)(OCC)OCC SAWDTKLQESXBDN-UHFFFAOYSA-N 0.000 description 1
- WUMSTCDLAYQDNO-UHFFFAOYSA-N triethoxy(hexyl)silane Chemical compound CCCCCC[Si](OCC)(OCC)OCC WUMSTCDLAYQDNO-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- FZXOVEZAKDRQJC-UHFFFAOYSA-N triethoxy(nonyl)silane Chemical compound CCCCCCCCC[Si](OCC)(OCC)OCC FZXOVEZAKDRQJC-UHFFFAOYSA-N 0.000 description 1
- FZMJEGJVKFTGMU-UHFFFAOYSA-N triethoxy(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OCC)(OCC)OCC FZMJEGJVKFTGMU-UHFFFAOYSA-N 0.000 description 1
- SVKDNKCAGJVMMY-UHFFFAOYSA-N triethoxy(tetradecyl)silane Chemical compound CCCCCCCCCCCCCC[Si](OCC)(OCC)OCC SVKDNKCAGJVMMY-UHFFFAOYSA-N 0.000 description 1
- SHQJOFANKPSLCU-UHFFFAOYSA-N triethoxy-(4-hydroxysulfonothioyl-4-propyl-3H-naphthalen-2-yl)silane Chemical compound C1=CC=C2C(CCC)(S(O)(=O)=S)CC([Si](OCC)(OCC)OCC)=CC2=C1 SHQJOFANKPSLCU-UHFFFAOYSA-N 0.000 description 1
- XGCGZQRQPNUUPB-UHFFFAOYSA-N triethoxy-(5-hydroxysulfonothioyl-5-propylcyclohexa-1,3-dien-1-yl)silane Chemical compound CCCC1(S(O)(=O)=S)CC([Si](OCC)(OCC)OCC)=CC=C1 XGCGZQRQPNUUPB-UHFFFAOYSA-N 0.000 description 1
- SCONUHVNGPLTMV-UHFFFAOYSA-N triethoxy-[10-(2h-1,3-oxazol-3-yl)decyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCCCCCCCCN1COC=C1 SCONUHVNGPLTMV-UHFFFAOYSA-N 0.000 description 1
- UDUKMRHNZZLJRB-UHFFFAOYSA-N triethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OCC)(OCC)OCC)CCC2OC21 UDUKMRHNZZLJRB-UHFFFAOYSA-N 0.000 description 1
- RWJUTPORTOUFDY-UHFFFAOYSA-N triethoxy-[2-(oxiran-2-ylmethoxy)ethyl]silane Chemical compound CCO[Si](OCC)(OCC)CCOCC1CO1 RWJUTPORTOUFDY-UHFFFAOYSA-N 0.000 description 1
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- FVCAMBAGVUGJHH-UHFFFAOYSA-N triethoxy-[5-(hydroxysulfonothioylmethyl)-5-propylcyclohexa-1,3-dien-1-yl]silane Chemical compound CCCC1(CC(=CC=C1)[Si](OCC)(OCC)OCC)CS(=O)(=S)O FVCAMBAGVUGJHH-UHFFFAOYSA-N 0.000 description 1
- XSIGLRIVXRKQRA-UHFFFAOYSA-N triethoxysilylmethanethiol Chemical compound CCO[Si](CS)(OCC)OCC XSIGLRIVXRKQRA-UHFFFAOYSA-N 0.000 description 1
- JFRDMMAVFUOTMP-UHFFFAOYSA-M trihexylstannanylium;chloride Chemical compound CCCCCC[Sn](Cl)(CCCCCC)CCCCCC JFRDMMAVFUOTMP-UHFFFAOYSA-M 0.000 description 1
- XVZMLSWFBPLMEA-UHFFFAOYSA-N trimethoxy(2-pyridin-2-ylethyl)silane Chemical compound CO[Si](OC)(OC)CCC1=CC=CC=N1 XVZMLSWFBPLMEA-UHFFFAOYSA-N 0.000 description 1
- NGLLPRYTJGRGEU-UHFFFAOYSA-N trimethoxy(3-pyrrolidin-1-ylpropyl)silane Chemical compound CO[Si](OC)(OC)CCCN1CCCC1 NGLLPRYTJGRGEU-UHFFFAOYSA-N 0.000 description 1
- JEPXSTGVAHHRBD-UHFFFAOYSA-N trimethoxy(nonyl)silane Chemical compound CCCCCCCCC[Si](OC)(OC)OC JEPXSTGVAHHRBD-UHFFFAOYSA-N 0.000 description 1
- NMEPHPOFYLLFTK-UHFFFAOYSA-N trimethoxy(octyl)silane Chemical compound CCCCCCCC[Si](OC)(OC)OC NMEPHPOFYLLFTK-UHFFFAOYSA-N 0.000 description 1
- AXNJHBYHBDPTQF-UHFFFAOYSA-N trimethoxy(tetradecyl)silane Chemical compound CCCCCCCCCCCCCC[Si](OC)(OC)OC AXNJHBYHBDPTQF-UHFFFAOYSA-N 0.000 description 1
- ZNXDCSVNCSSUNB-UHFFFAOYSA-N trimethoxy-[2-(oxiran-2-ylmethoxy)ethyl]silane Chemical compound CO[Si](OC)(OC)CCOCC1CO1 ZNXDCSVNCSSUNB-UHFFFAOYSA-N 0.000 description 1
- JTTSZDBCLAKKAY-UHFFFAOYSA-N trimethoxy-[3-(3-trimethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CO[Si](OC)(OC)CCCSSSSCCC[Si](OC)(OC)OC JTTSZDBCLAKKAY-UHFFFAOYSA-N 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- KBMBVTRWEAAZEY-UHFFFAOYSA-N trisulfane Chemical compound SSS KBMBVTRWEAAZEY-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 150000003739 xylenols Chemical class 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L7/00—Compositions of natural rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0008—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L47/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/06—Copolymers with styrene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0008—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
- B60C2011/0016—Physical properties or dimensions
- B60C2011/0025—Modulus or tan delta
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/06—Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2310/00—Masterbatches
Definitions
- the present application is directed to tires having a tread of a specified rubber compositions and related methods.
- Tires comprise many components including a road-contacting tread.
- the particular ingredients used to prepare the rubber composition which comprises the tire tread may vary.
- Formulation of tire tread rubber compositions is a complex science since changes to the formulation which result in an improvement in one property (e.g., wet performance) may result in deterioration of another property (e.g., stiffness).
- a tire comprising a tread having improved stiffness and made from a rubber composition
- the rubber composition comprises: (a) 100 parts of an elastomer component including at least one rubber selected from the group consisting of styrene-butadiene copolymer, polybutadiene, natural rubber, and polyisoprene, (b) 30 to 60 phr of a resin component comprising 20 to 50 phr of a terpene phenol resin having a hydroxyl value of 50 or less, preferably 30 or less, more preferably 20 or less and a DCPD-based resin, (c) a filler component comprising (i) 91 to 140 phr of a reinforcing silica filler, preferably 100 to 130 phr, and (ii) 1 to 20 phr, preferably 5 to 10 phr of a carbon black filler, (d) 0 to 30 phr of
- a method for improving the stiffness of a tire tread.
- the method comprises utilizing 30 to 60 phr of a resin component comprising 20 to 50 phr of a terpene phenol resin having a hydroxyl value of 50 or less, preferably 30 or less, more preferably 20 or less and a DCPD-based resin in a tire tread rubber composition comprising 100 parts of an elastomer component including at least one rubber selected from the group consisting of styrene-butadiene copolymer, polybutadiene, natural rubber, and polyisoprene; a filler component comprising 91 to 140 phr of a reinforcing silica filler, and 1 to 20 phr, preferably 5 to 10 phr of a carbon black filler; 0 to 30 phr of a liquid plasticizer; and a cure package, thereby producing a rubber composition for the tire tread.
- a tire comprising a tread having improved stiffness and made from a rubber composition
- the rubber composition comprises: (a) 100 parts of an elastomer component including at least one rubber selected from the group consisting of styrene-butadiene copolymer, polybutadiene, natural rubber, and polyisoprene, (b) 30 to 60 phr of a resin component comprising 20 to 50 phr of a terpene phenol resin having a hydroxyl value of 50 or less, preferably 30 or less, more preferably 20 or less and a DCPD-based resin, (c) a filler component comprising (i) 91 to 140 phr of a reinforcing silica filler, preferably 100 to 130 phr, and (ii) 1 to 20 phr, preferably 5 to 10 phr of a carbon black filler, (d) 0 to 30 phr of
- a method for improving the stiffness of a tire tread.
- the method comprises utilizing 30 to 60 phr of a resin component comprising 20 to 50 phr of a terpene phenol resin having a hydroxyl value of 50 or less, preferably 30 or less, more preferably 20 or less and a DCPD-based resin in a tire tread rubber composition comprising 100 parts of an elastomer component including at least one rubber selected from the group consisting of styrene-butadiene copolymer, polybutadiene, natural rubber, and polyisoprene; a filler component comprising 91 to 140 phr of a reinforcing silica filler, and 1 to 20 phr, preferably 5 to 10 phr of a carbon black filler; 0 to 30 phr of a liquid plasticizer; and a cure package, thereby producing a rubber composition for the tire tread.
- BR polybutadiene
- the term “majority” refers to more than 50% (e.g., at least 50.1%, at least 50.5%, at least 51%, etc.).
- the term “minority” refers to less than 50% (e.g., no more than 49.5%, no more than 49%, etc.).
- Mn is used for numberaverage molecularweight.
- Mp is used for peak molecular weight.
- Mw is used for weight average molecularweight.
- Mooney viscosity refers to the Mooney viscosity, MLi + 4. As those of skill in the art will understand, a rubber composition's Mooney viscosity is measured prior to vulcanization or curing.
- natural rubber means naturally occurring rubber such as can be harvested from sources such as Hevea rubber trees and non-/7eveo sources (e.g., guayule shrubs and dandelions such as TKS).
- sources such as Hevea rubber trees and non-/7eveo sources (e.g., guayule shrubs and dandelions such as TKS).
- natural rubber should be construed so as to exclude synthetic polyisoprene.
- the term "phr” means parts per one hundred parts rubber.
- the one hundred parts rubber is also referred to herein as 100 parts of an elastomer component.
- polyisoprene means synthetic polyisoprene.
- the term is used to indicate a polymer that is manufactured from isoprene monomers, and should not be construed as including naturally occurring rubber (e.g., Hevea natural rubber, guayule-sourced natural rubber, or dandelion-sourced natural rubber).
- polyisoprene should be construed as including polyisoprenes manufactured from natural sources of isoprene monomer.
- SBR styrene-butadiene copolymer rubber
- tread refers to both the portion of a tire that comes into contact with the road under normal inflation and load as well as any subtread.
- the first and second embodiments disclosed herein are directed to a tire comprising a tread having improved stiffness and made from a specified rubber composition and to a method for improving the stiffness of a tire tread by producing a specified rubber composition.
- the rubber compositions are used in preparing treads for tires, generally by a process which includes forming of a tread pattern by molding and curing one of the rubber compositions.
- the tire treads will contain a cured form of one of the rubber compositions.
- the rubber compositions may be present in the form of a tread which has been formed but not yet incorporated into a tire and/or they may be present in a tread which forms part of a tire.
- the rubber composition for the tire tread includes 100 parts of an elastomer component which includes at least one rubber selected from the group consisting of styrene-butadiene copolymer, polybutadiene, natural rubber, polyisoprene, and combinations thereof.
- the total amount of 100 parts of elastomer or rubber is used so that the amount of other ingredients may be listed in amounts of phr or the number of parts per hundred parts of rubber (or 100 parts of the elastomer component).
- the amount of silica filler can also be described as 110 phr.
- the 100 parts of elastomer component includes at least one styrene-butadiene copolymer rubber, at least one polybutadiene rubber, and at least one of natural rubber or polyisoprene.
- the elastomer component includes at least 40 parts of natural rubber, 10-40 parts of polybutadiene having a cis-bond content of at least 95% and a Tg of less than -101 ° C, and 10- 40 parts of styrene-butadiene copolymer rubber.
- the elastomer component includes at least 60 parts of polybutadiene rubber having a cis-bond content of at least 95% and a Tg of less than -101 ° C. In yet other embodiments of the first and second embodiments, the elastomer component includes at least 20 phr, preferably 30-60 phr of an SBR having a silica-reactive functional group, as discussed in more detail below.
- the 100 parts of elastomer component consists (only) of rubbers selected from styrene-butadiene copolymer, polybutadiene, natural rubber, polyisoprene, and combinations thereof. In other embodiments of the first and second embodiments, the 100 parts of elastomer component includes one or more additional rubbers.
- the amount when one or more additional rubbers is present, the amount will generally be limited, preferably to no more than 20 parts (e.g., 20 parts, 15 parts, 10 parts, 5 parts, or less), no more than 15 parts (e.g., 15 parts, 10 parts, 5 parts, or less), or no more than 5 parts (e.g., 5 parts, 4 parts, 3 parts, 2 parts, 1 part, or less).
- one or more additional rubbers are selected from diene monomer-containing rubbers.
- the one or more additional rubbers (iv) are selected from the group consisting of styrene-isoprene rubber, butadiene-isoprene rubber, styrene-isoprene-butadiene rubber, butyl rubber (both halogenated and non-halogenated), ethylene-propylene rubber (EPR), ethylene-butylene rubber (EBR), ethylene-propylene-diene rubber (EPDM), and combinations thereof.
- the particular styrene-butadiene copolymer(s) and the amount thereof that is used in the elastomer component of the rubber composition for tire treads may vary.
- One or more than one (e.g., two orthree) styrene-butadiene copolymer rubbers may be used.
- the elastomer component includes at least 20 phr (e.g., 20 phr, 30 phr, 40 phr, 50 phr, 60 phr, 70 phr, 80 phr, etc.) of a styrene-butadiene copolymer rubber.
- the elastomer component includes a majority by weight of a styrene- butadiene copolymer rubber (e.g., 51 phr or more, 60 phr or more, 70 phr or more, 51-80 phr, 51-70 phr, 60-80 phr, etc.).
- a styrene- butadiene copolymer rubber e.g., 51 phr or more, 60 phr or more, 70 phr or more, 51-80 phr, 51-70 phr, 60-80 phr, etc.
- the styrene- butadiene copolymer rubber may be functionalized or non-functionalized.
- the term functionalized should be understood to encompass the use of both functional groups and coupling agents.
- One or more than one type of functional group may be utilized for each SBR.
- a functional group may be present at the head of the polymer, at the tail of the polymer, along the backbone of the polymer chain, or a combination thereof.
- Functional groups present at one or both terminals of a polymer are generally the result of the use of a functional initiator, a functional terminator, or both.
- the functional group may be present as a result of coupling of multiple polymer chains using a coupling agent (as described below).
- the rubber component includes at least one styrene-butadiene copolymer rubber that is functionalized, preferably with a silica-reactive functional group.
- the only styrene-butadiene copolymer rubber used in the elastomer component is a styrene-butadiene copolymer rubber functionalized with a silica-reactive functional group.
- the amount of styrene-butadiene copolymer rubber having a silica-reactive functional group is at least 20 phr (e.g., 20 phr, 30 phr, 40 phr, 50 phr, 60 phr, 70 phr, 80 phr, etc.), preferably 30-60 phr (e.g., 30 phr, 40 phr, 50 phr, or 60 phr).
- the elastomer component includes at least one styrene-butadiene rubber which is not functionalized; in certain such embodiments, the non- functionalized styrene-butadiene rubber is used in combination with a functionalized styrene- butadiene copolymer rubber, e.g., functionalized with a silica-reactive functional group.
- silica-reactive functional groups generally include nitrogen-containing functional groups, silicon-containing functional groups, oxygen- or sulfur-containing functional groups, and metal-containing functional groups, as discussed in more detail below.
- the functionalization can be achieved by adding a functional group to one or both terminus of the polymer, by adding a functional group to the backbone of the poly (or a combination of the foregoing) or by coupling more than one polymer chains to a coupling agent, or by a combination thereof.
- Such effects can be achieved by treating a living polymer with coupling agents, functionalizing agents, or a combination thereof which serve to couple and/or functionalize other chains.
- the functionalized SBR contains one or more functional groups but is not coupled (i.e., does not contain any coupling agents).
- a coupling agent and/or functionalizing agent can be used at various molar ratios.
- the functionalized SBR may be silica-reactive merely from the result of using a coupling agent.
- coupling agent is added in a one to one ratio between the equivalents of lithium on the initiator and equivalents of leaving groups (e.g., halogen atoms) on the coupling agent.
- leaving groups e.g., halogen atoms
- coupling agents include metal halides, metalloid halides, alkoxysilanes, alkoxystannanes, and combinations thereof.
- Non-limiting examples of nitrogen-containing functional groups that can be utilized in certain embodiments of the first and second embodiments as a silica-reactive functional group in the SBR include, but are not limited to, a substituted or unsubstituted amino group, an amide residue, an isocyanate group, an imidazolyl group, an indolyl group, an imino group, a nitrile group, a pyridyl group, and a ketimine group.
- the SBR of the elastomer component comprises at one silica-reactive functional group selected from the foregoing list of nitrogen-containing functional groups.
- the SBR includes a silica-reactive functional group from a compound which includes nitrogen in the form of an imino group.
- Such an imino-containing functional group may be added by reacting the active terminal of a polymer chain with a compound having the following formula (I): wherein R, R', R”, and R'” each independently are selected from a group having 1 to 18 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 carbon atoms) selected from the group consisting of an alkyl group, an allyl group, and an aryl group; m and n are integers of 1 to 20 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20) and 1 to 3 (1, 2, or 3), respectively.
- R, R', R”, and R' each independently are selected from a group having 1 to 18 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 carbon atoms) selected from the group consisting of an alkyl group, an allyl group, and an ary
- each of R, R', R”, and R' are preferably hydrocarbyl and contain no heteroatoms.
- each R and R' are independently selected from an alkyl group having 1 to 6 carbon atoms (e.g., 1, 2, 3, 4, 5, or 6 carbon atoms), preferably 1 to 3 carbon atoms (e.g., 1, 2, or 3 carbon atoms).
- m is an integer of 2 to 6 (e.g., 2, 3, 4, 5, or 6), preferably 2 to 3.
- R' is selected from a group having 1 to 6 carbon atoms (e.g., 1, 2, 3, 4, 5, or 6 carbon atoms), preferably 2 to 4 carbon atoms (e.g., 2, 3, or 4 carbon atoms).
- R is selected from an alkyl group having 1 to 6 carbon atoms (e.g., 1, 2, 3, 4, 5, or 6 carbon atoms), preferably 1 to 3 carbon atoms (e.g., 1, 2, or 3 carbon atoms), most preferably 1 carbon atom (e.g., methyl).
- n is 3 resulting in a compound with a trihydrocarboxysilane moiety such as a trialkoxysilane moiety.
- compounds having an imino group and meeting formula (I) above, which are suitable for providing the silica-reactive functional group for the SBR include, but are not limited to, N-(l,3-dimethylbutylidene)-3-(triethoxysilyl)-l-propaneamine, N-(l- methylethylidene)-3-(triethoxysilyl)-l-propaneamine, N-ethylidene-3-(triethoxysilyl)-l- propaneamine, N-(l-methylpropylidene)-3-(triethoxysilyl)-l-propaneamine, and N-(4-N,N- dimethylaminobenzylidene )-3-( triethoxysilyl)-l-l-
- Non-limiting examples of silicon-containing functional groups that can be utilized in certain embodiments of the first and second embodiments as a silica-reactive functional group in the SBR include, but are not limited to, an organic silyl or siloxy group, and more precisely, such a functional group may be selected from an alkoxysilyl group, an alkylhalosilyl group, a siloxy group, an alkylaminosilyl group, and an alkoxyhalosilyl group.
- the organic silyl or siloxy group may also contain one or more nitrogens.
- Suitable silicon-containing functional groups for use in functionalizing diene-based elastomers also include those disclosed in U.S. Patent No. 6,369,167, the entire disclosure of which is herein incorporated by reference.
- the SBR comprises at least one silica- reactive functional group selected from the foregoing list of silicon-containing functional groups.
- the SBR includes a silica-reactive functional group which includes a silicon-containing functional group having a siloxy group (e.g., a hydrocarbyloxysilane-containing compound), wherein the compound optionally includes a monovalent group having at least one functional group.
- a silica-reactive functional group which includes a silicon-containing functional group having a siloxy group (e.g., a hydrocarbyloxysilane-containing compound), wherein the compound optionally includes a monovalent group having at least one functional group.
- Such a silicon- containing functional group may be added by reacting the active terminal of a polymer chain with a compound having the following formula (II): wherein A 1 represents a monovalent group having at least one functional group selected from epoxy, isocyanate, imine, cyano, carboxylic ester, carboxylic anhydride, cyclic tertiary amine, non-cyclic tertiary amine, pyridine, silazane and sulfide; R c represents a single bond or a divalent hydrocarbon group having from 1 to 20 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 carbon atoms); R d represents a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 carbon atoms), a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms (e.g.,
- a partial condensation product refers to a product in which a part (not all) of a SiOR group in the hydrocarbyloxysilane compound is turned into a SiOSi bond by condensation.
- R c represents a divalent hydrocarbon group having 1 to 12 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 carbon atoms), 2 to 6 carbon atoms (e.g., 2, 3, 4, 5, or 6 carbon atoms), or 2 to 3 carbon atoms (e.g., 2 or 3 carbon atoms);
- R e represents a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 carbon atoms), 2 to 6 carbon atoms (e.g., 2, 3, 4, 5, or 6 carbon atoms), or 1 to 2 carbon atoms or a monovalent aromatic
- the functional group of the SBR results from a compound represented by Formula (II) wherein A 1 has at least one epoxy group.
- Non-limiting specific examples of such compounds include 2- glycidoxyethyltrimethoxysilane, 2-glycidoxyethyltriethoxysilane, (2- glycidoxyethyl)methyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- glycidoxypropyltriethoxysilane, (3-glycidoxypropyl)-methyldimethoxysilane, 2-(3,4- epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 2-(3,4- epoxycyclohexyl)ethyl(methyl)dimethoxysilane and the like.
- 3- glycidoxyethyltrimethoxysilane 2-g
- the functional group of the SBR results from a compound represented by Formula (II) wherein A 1 has at least one isocyanate group.
- a 1 has at least one isocyanate group.
- Non-limiting specific examples of such compounds include 3- isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3- isocyanatopropylmethyldiethoxysilane, 3-isocyanatopropyltriisopropoxysilane and the like, and among them, 3-isocyanatopropyltrimethoxysilane is particularly preferred.
- the functional group of the SBR results from a compound represented by Formula (II) wherein A 1 has at least one imine group.
- a 1 has at least one imine group.
- Non-limiting specific examples of such compounds include N-(l,3- dimethylbutylidene)-3-(triethoxysilyl)-l-propaneamine, N-(l-methylethylidene)-3-
- N-(l,3- dimethylbutylidene)-3-(triethoxysilyl)-l-propaneamine and N-(l-methylpropylidene)-3- (triethoxysilyl)-l-propaneamine are particularly suited.
- the imine(amidine) group- containing compounds include preferably l-[3-trimethoxysilyl]propyl]-4,5-dihydroimidazole, 3- (l-hexamethyleneimino)propyl(triethoxy)silane, (1- hexamethyleneimino)methyl(trimethoxy)silane, N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole, N-(3-isopropoxysilylpropyl)-4,5-dihydroimidazole, N-(3-methyldiethoxysilylpropyl)-4,5- dihydroimidazole and the like, and among them, N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole and N-(3-isopropoxysilylpropyl)-4,5-dihydroimidazole are preferred.
- the functional group of the SBR results from a compound represented by Formula (II) wherein A 1 has at least one carboxylic ester group.
- a 1 has at least one carboxylic ester group.
- Non-limiting specific examples of such compounds include 3- methacryloyloxypropyltriethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3- methacryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropyltriisopropoxysilane and the like, and among them, 3-methacryloyloxypropyltriethoxysilane is preferred.
- the functional group of the SBR results from a compound represented by Formula (II) wherein A 1 has at least one carboxylic anhydride group.
- a 1 has at least one carboxylic anhydride group.
- Non-limiting specific examples of such compounds include 3- trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilylpropylsuccinic anhydride, 3- methyldiethoxysilylpropylsuccinic anhydride and the like, and among them, 3- triethoxysilylpropylsuccinic anhydride is preferred.
- the functional group of the SBR results from a compound represented by Formula (II) wherein A 1 has at least one cyano group.
- a 1 has at least one cyano group.
- Non-limiting specific examples of such compounds include 2- cyanoethylpropyltriethoxysilane and the like.
- the functional group of the SBR results from a compound represented by Formula (II) wherein A 1 has at least one cyclic tertiary amine group.
- Non-limiting specific examples of such compounds include 3-(l- hexamethyleneimino)propyltriethoxysilane, 3-(l-hexamethyleneimino)propyltrimethoxysilane, (l-hexamethyleneimino)methyltriethoxysilane, (1- hexamethyleneimino)methyltrimethoxysilane, 2-(l-hexamethyleneimino)ethyltriethoxysilane, 3-(l-hexamethyleneimino)ethyltrimethoxysilane, 3-(l-pyrrolidinyl)propyltrimethoxysilane, 3-(l- pyrrolidinyl)propyltriethoxysilane, 3-(l-heptamethyleneimino
- the functional group of the SBR results from a compound represented by Formula (II) wherein A 1 has at least one non-cyclic tertiary amine group.
- a 1 has at least one non-cyclic tertiary amine group.
- the functional group of the SBR results from a compound represented by Formula (II) wherein A 1 has at least one pyridine group.
- a 1 has at least one pyridine group.
- Non-limiting specific examples of such compounds include 2- trimethoxysilylethylpyridine and the like.
- the functional group of the SBR results from a compound represented by Formula (II) wherein A 1 has at least one silazane group.
- Non-limiting specific examples of such compounds include N,N- bis(trimethylsilyl)-aminopropylmethyldimethoxysilane, l-trimethylsilyl-2,2-dimethoxy-l-aza-2- silacyclopentane, N,N-bis(trimethylsilyl)aminopropyltrimethoxysilane, N,N- bis(trimethylsilyl)aminopropyltriethoxysilane, N,N- bis(trimethylsilyl)aminopropylmethyldiethoxysilane, N,N- bis(trimethylsilyl)aminoethyltrimethoxysilane, N,N-bis(trimethylsilyl)aminoethyltriethoxysilane, N,N-bis(trimethylsilyl)aminoethyltrie
- N,N- bis(trimethylsilyl)aminopropyltriethoxysilane, N,N- bis(trimethylsilyl)aminopropylmethyldiethoxysilane or l-trimethylsilyl-2,2-dimethoxy-l-aza-2- silacyclopentane are particularly preferred.
- the nitrogen(s) may be deprotected or deblocked by hydrolysis or other procedures to convert the protected nitrogen(s) into a primary nitrogen.
- a nitrogen bonded to two trimethylsilyl groups could be deprotected and converted to a primary amine nitrogen (such a nitrogen would still be bonded to the remainder of the formula (II) compound).
- the functionalized polymer can be understood as containing a functional group resulting from a deprotected (or hydrolyzed) version of the compound.
- Non-limiting examples of oxygen- or sulfur-containing functional groups that can be utilized in certain embodiments of the first and second embodiments as a silica-reactive functional group in the SBR include, but are not limited to, a hydroxyl group, a carboxyl group, an epoxy group, a glycidoxy group, a diglycidylamino group, a cyclic dithiane-derived functional group, an ester group, an aldehyde group, an alkoxy group, a ketone group, a thiocarboxyl group, a thioepoxy group, a thioglycidoxy group, a thiodiglycidylamino group, a thioester group, a thioaldehyde group, a thioalkoxy group, and a thioketone group.
- the foregoing alkoxy group may be an alcohol-derived alkoxy group derived from a benzophenone.
- the SBR comprises at least silica-reactive functional group selected from the foregoing list of oxygen- or sulfur-containing functional groups.
- the one or more SBRs including SBRs having a silica-reactive functional group may be prepared by either solution polymerization or by emulsion polymerization.
- the only SBR or SBR having a silica-reactive functional group is prepared by solution polymerization.
- the only SBR or SBR having a silica-reactive functional group is prepared by emulsion polymerization.
- the rubbers are a combination of solution polymerized SBR and emulsion polymerized SBR (e.g., one solution SBR and one emulsion SBR).
- the only SBR(s) present in the elastomer component is a solution SBR (i.e., no emulsion SBR is present).
- the coupling agent for the SBR comprises a metal halide or metalloid halide selected from the group comprising compounds expressed by the formula (1) e formula (2) M C U 4 , and the formula (3) M Y , where each R is independently a monovalent organic group having 1 to 20
- M is a tin atom, silicon atom, or germanium atom
- M is a phosphorous atom
- Y is a halogen atom
- n is an integer of 0-3.
- Exemplary compounds expressed by the formula (1) include halogenated organic metal compounds, and the compounds expressed by the formulas (2) and (3) include halogenated metal compounds.
- the compounds expressed by the formula (1) can be, for example, triphenyltin chloride, tributyltin chloride, triisopropyltin chloride, trihexyltin chloride, trioctyltin chloride, diphenyltin dichloride, dibutyltin dichloride, dihexyltin dichloride, dioctyltin dichloride, phenyltin trichloride, butyltin trichloride, octyltin trichloride and the like.
- tin tetrachloride, tin tetrabromide and the like can be exemplified as the compounds expressed by formula (2).
- the compounds expressed by the formula (1) can be, for example, triphenylchlorosilane, trihexylchlorosilane, trioctylchlorosilane, tributylchlorosilane, trimethylchlorosilane, diphenyldichlorosilane, dihexyldichlorosilane, dioctyldichlorosilane, dibutyldichlorosilane, dimethyldichlorosilane, methyltrichlorosilane, phenyltrichlorosilane, hexyltrichlorosilane, octyltrichlorosilane, butyltrichlorosilane, methyltrichlorosilane and the like.
- silicon tetrachloride, silicon tetrabromide and the like can be exemplified as the compounds expressed by the formula (2).
- the compounds expressed by the formula (1) can be, for example, triphenylgermanium chloride, dibutylgermanium dichloride, diphenylgermanium dichloride, butylgermanium trichloride and the like.
- germanium tetrachloride, germanium tetrabromide and the like can be exemplified as the compounds expressed by the formula (2).
- Phosphorous trichloride, phosphorous tribromide and the like can be exemplified as the compounds expressed by the formula (3).
- the coupling agent for the SBR comprises an alkoxysilane or alkoxystannane selected from the group comprising compounds expressed by the formula (4) R n M 1 (OR A ) 4 , where each R* is
- M is a tin atom, silicon atom, or germanium atom
- OR A is an alkoxy group where R A is a monovalent organic group
- n is an integer of 0-3.
- Exemplary compounds expressed by the formula (4) include tetraethyl orthosilicate, tetramethyl orthosilicate, tetrapropyl orthosilicate, tetraethoxy tin, tetramethoxy tin, and tetrapropoxy tin.
- the Mw, Mn and polydispersity (Mw/Mn) of the styrene-butadiene rubber(s) may vary.
- the SBR(s) have a Mw of 300,000 to 600,000 grams/mole (e.g., 300,000; 325,000; 350,000; 375,000; 400,000; 425,000; 450,000; 475,000; 500,000; 525,000; 550,000; 575,000; or 600,000 grams/mole).
- the SBR(s) have a Mw of 350,000 to 550,000, or 400,000 to 500,000 grams/mole.
- the Mw values referred to herein are weight average molecular weights which can be determined by using gel permeation chromatography (GPC) calibrated with styrene-butadiene standards and Mark- Houwink constants for the polymer in question.
- the SBR(s) have a Mn of 200,000 to 400,000 grams/mole (e.g., 200,000; 225,000; 250,000; 275,000; 300,000; 325,000; 350,000; 375,000; or 400,000 grams/mole).
- the SBR(s) have a Mn of 200,000 to 300,000.
- the Mn values referred to herein are number average molecular weights which can be determined by using gel permeation chromatography (GPC) calibrated with styrene-butadiene standards and Mark-Houwink constants for the polymer in question.
- the SBR(s) have a Mw/Mn (polydispersity) of 1.2 to 2.5 to (e.g., 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, or 2.5, preferably 1.3 to 2.
- the SBR(s) have a Mw, Mn and Mw/Mn all falling within one of the foregoing ranges; in certain such embodiments, each of the Mw, Mn and Mw/Mn fall within one of the foregoing preferred ranges.
- the SBR(s) utilized either (a) include at least one of the foregoing SBRs having a Mw, Mn, and/or Mn/Mn falling within one of the foregoing ranges in combination with an SBR having a Mw of 350,000 to 600,000 grams/mole (e.g., 350,000; 400,000; 450,000; 500,000; 550,000; or 600,000 grams/mole) or 400,000 to 550,000 grams/mole (e.g., 400,000; 425,000; 450,000; 475,000; 500,000; 525,000; or 550,000 grams/mole), (b) or only include one or more SBRs having a Mw of 350,000 to 600,000 grams/mole (e.g., 350,000; 400,000; 450,000; 500,000; 550,000; or 600,000 grams/mole) or 400,000 to 550,000 grams/mole (e.g., 400,000; 425,000; 450,000; 475,000; 500,000; 525,000; or 550,000 grams/mole).
- the Tg of any SBR used in the elastomer component may vary.
- the SBR(s) have a Tg of about -75 to about -50 °C, -75 to -50 °C (e.g., -75, -70, -65, -60, -55, or -50 °C), preferably -70 to -55 °C (e.g., -70, -65, -60, or -55 °C), or more preferably -65 to -55 °C (e.g., -65, -60, or -55 °C).
- the SBR(s) utilized include a SBR having a Tg of about -10 to about -70 °C, -10 to -70 °C (e.g., -10, -15, -20, -25, -30, -35, -40, -45, -50, -55, -60, -65, or -70 °C), preferably about -10 to about -49 °C or -10 to -49 °C (e.g., -10, -12, -14, -15, -16, -18, -20, -22, -24, -26, -28, -30, -32, -34, -36, -35, -38, -40, -42, -44, -45, -46, -48, or -49 °C).
- Tg of about -10 to about -70 °C, -10 to -70 °C (e.g., -10, -15, -20, -25
- the SBR(s) may have a Tg within one of the foregoing ranges, optionally in combination with one or more of the Mw, Mn, and/or Mw/Mn ranges discussed above, and in certain embodiments optionally in combination with one of the styrene monomer contents discussed below.
- the Tg values referred to herein for elastomers represent a Tg measurement made upon the elastomer without any oil-extension. In other words, for an oil-extended elastomer, the Tg values above refer to the Tg prior to oil extension or to a non-oil- extended version of the same elastomer.
- Elastomer or polymerTg values may be measured using a differential scanning calorimeter (DSC) instrument, such as manufactured by TA Instruments (New Castle, Delaware), where the measurement is conducted using a temperature elevation of 10°C/minute after cooling at -120°C. Thereafter, a tangent is drawn to the base lines before and after the jump of the DSC curve. The temperature on the DSC curve (read at the point corresponding to the middle of the two contact points) can be used as Tg.
- DSC differential scanning calorimeter
- the styrene monomer content (i.e., weight percent of the polymer chain comprising styrene units as opposed to butadiene units) of any SBR(s) used in the elastomer component may vary.
- the SBR(s) have a styrene monomer content of about 10 to about 40 weight %, 10-40 weight % (e.g., 10%, 15%, 20%, 25%, 30%, 35%, or 40%), 10-30 weight % (e.g., 10%, 15%, 20%, 25%, or 30%), or 10-20 weight % (e.g., 10%, 12%, 14%, 16%, 18%, or 20%).
- the SBR(s) may have a styrene monomer content within one of the foregoing ranges, optionally in combination with one or more of the Mw, Mn, and/or Mw/Mn ranges discussed below, and in certain embodiments optionally in combination with one of the Tg ranges discussed above and/or vinyl bond contents discussed below.
- the vinyl bond content (i.e., 1,2- microstructure) of any SBR(s) used in the elastomer component may vary.
- the SBR has a vinyl bond content of about 10 to about 50%, 10-50% (e.g., 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50%), about 10 to about 40%, 10-40% (e.g., 10%, 15%, 20%, 25%, 30%, 35%, or 40%), about 20 to about 40%, or 20- 40% (e.g., 20%, 25%, 30%, 35%, or 40%).
- the SBR(s) may have a vinyl bond content within one of the foregoing ranges, optionally in combination with one or more of the Mw, Mn, Mw/Mn, Tg, and/or styrene monomer content ranges discussed above.
- the vinyl bond contents referred to herein should be understood as being for the overall vinyl bond content in the SBR polymer chain rather than of the vinyl bond content in the butadiene portion of the SBR polymer chain, and can be determined by H 1 -NMR and C 13 -NMR (e.g., using a 300 MHz Gemini 300 NMR Spectrometer System (Varian)).
- the average Tg of the elastomer component is about -60 to about -90 °C.
- the average Tg of the elastomer component is about -60 to about -90 °C, or -60 to -90 °C (e.g., -60, -61, -62, -63, -64, -65, -66, -67, -68, -69, -70, -71, -72, -73, -74, -75, - 76, -77, -78, -79, -80, -81, -82, -83, -84, -85, -86, -87, -88, -89, or -90 °C).
- the average Tg of the elastomer component is about -75 to about -90 °C, -75 to -90 °C (e.g., -75, -80, -85, or -90 °C ), about -80 to about -85 °C, or -80 to -85 °C (e.g., -80, -81, -82, -83, -84, or -85 °C).
- the average Tg of the elastomer component can be calculated using the Tg of each rubber present in the 100 parts of elastomer component and accounting for their relative weight percentage.
- the rubbers When one (or more) of the rubbers is oil- extended, only the amount of rubber (i.e., excluding any amount of oil) is utilized in calculating the average Tg of the elastomer component. When one (or more) of the rubbers is oil-extended, the Tg of non-oil extended rubber is utilized in calculating the average Tg of the elastomer component.
- the elastomer component of the rubber composition for the tire tread may include polybutadiene rubber.
- the particular type of polybutadiene rubber utilized may vary.
- any polybutadiene rubber present in the elastomer component has a cis bond content of at least 95% (e.g., 95%, 96%, 97%, 98%, 99%, or more) and a Tg of less than -101 °C (e.g., -102, -103, -104, -105, -106, -107, -108, -109 °C or less).
- the Tg of the polybutadiene rubber is -101 to -110 °C.
- the cis bond content refers to the cis 1,4- bond content.
- the cis 1,4-bond contents referred to herein are determined by FTIR (Fourier Transform Infrared Spectroscopy) wherein a polymer sample is dissolved in CS2 and then subjected to FTIR.
- the polybutadiene rubber present in the elastomer component may have a cis 1,4-bond content of at least 98% (e.g., 98%, 99%, or more) or at least 99% (e.g., 99%, 99.5%, or more).
- any polybutadiene rubber present in the elastomer component has a Tg of -105 °C or less (e.g., -105, -106, -107, -108, -109 °C or less) such as -105 to -110 °C or -105 to -108 °C.
- any polybutadiene rubber present in the elastomer component contains less than 3% by weight (e.g., 3%, 2%, 1%, 0.5%, or less), preferably less than 1% by weight (e.g., 1%, 0.5%, or less) or 0% by weight syndiotactic 1,2-polybutadiene.
- one or more than one polybutadiene rubber having a cis bond content of at least 95% and a Tg of less than -101 °C may be used in the elastomer component.
- the only polybutadiene rubber used has a cis bond content of at least 95% (e.g., 95%, 96%, 97%, 98%, 99%, or more) and a Tg of less than -101 °C.
- the amount of any polybutadiene rubber having a high vinyl content (i.e., above about 70%) that is used in the elastomer component is limited to less than 25 parts, more preferably less than 10 parts, even more preferably less than 5 parts or 0 parts.
- the amount utilized may vary.
- the total amount of any polybutadiene rubber present in the elastomer component will be a minority by weight, or less than 50% by weight.
- the total amount of polybutadiene rubber present in the elastomer component is less than 50 phr, less than 40 phr, less than 30 phr, less than 20 phr, or less than 10 phr.
- the total amount of polybutadiene rubber present in the elastomer component is 5-49 phr, 5-40 phr, 5-30 phr, 5-20 phr, 5-10 phr, 10-49 phr, 10-40 phr, 10-30 phr, 10-20 phr, 20-49 phr, 20-40 phr, or 20-30 phr.
- the total amount of any polybutadiene rubber present in the elastomer component is a majority by weight, or more than 50% by weight.
- the total amount of polybutadiene rubber present in the elastomer component is 51 phr or more, 60 phr or more, 70 phr, or more, 75 phr or more, 80 phr or more, 85 phr or more, 51-85 phr, 51-80 phr, 51-75 phr, 51-70 phr, 60-85 phr, 60-80 phr, 60-75 phr, or 60-70 phr.
- the elastomer component may include natural rubber, polyisoprene, or a combination thereof.
- the elastomer component includes natural rubber, but not polyisoprene.
- the elastomer component includes only polyisoprene, but not natural rubber.
- when natural rubber is present in the elastomer component it may include Hevea natural rubber, non-/7eveo natural rubber (e.g., guayule natural rubber), or a combination thereof.
- the natural rubber When natural rubber is used in the rubber composition of the first and second embodiments, the natural rubber preferably has a Mw of 1,000,000 to 2,000,000 grams/mole (e.g., 1 million, 1.1 million, 1.2 million, 1.3 million, 1.4 million, 1.5 million, 1.6 million, 1.7 million, 1.8 million, 1.9 million, 2 million grams/mole); 1,250,000 to 2,000,000 grams/mole, or 1,500,000 to 2,000,000 grams/mole (as measured by GPC using a polystyrene standard).
- the Tg of the natural rubber may vary.
- the first and second embodiments when natural rubber is utilized it has a Tg of -65 to -80 °C (e.g., -65, -66, -67, -68, -69, -70, -71-, -72, -73, -74, -75, -76, -77, -78, -79, or -80 °C), more preferably a Tg of -67 to -77 °C (e.g., -67, -68, -69, -70, -71, -72, -73, -74, -75, -76, or -77 °C).
- the Tg of the polyisoprene may vary.
- the Tg of the polyisoprene when polyisoprene is utilized it has a Tg of -55 to -75 °C (e.g., -55, -56, -57, -58, -59, -60, -61, -62, -63, -64, -65, -66, -67, -68, -69, -70, -71, -72, -73, -74, or -75 °C), more preferably -58 to -74 °C (e.g., -58, -59, -60, -61, -62, -63, -64, -65, -66, -67, -68, -69, -70, -71, -72, -73, or -74
- the amount utilized may vary. Generally, according to the first and second embodiments, the total amount of any natural rubber and/or polyisoprene present in the elastomer component will be a minority by weight, or less than 50% by weight. In certain embodiments of the first and second embodiments, the total amount of natural rubber and/or polyisoprene present in the elastomer component is less than 50 phr, less than 40 phr, less than 30 phr, less than 20 phr, or less than 10 phr.
- the total amount of natural rubber and/or polyisoprene present in the elastomer component is 5-49 phr, 5-40 phr, 5-30 phr, 5-20 phr, 5-10 phr, 10-49 phr, 10-40 phr, 10-30 phr, 10-20 phr, 20-49 phr, 20-40 phr, or 20-30 phr.
- the elastomer component includes natural rubber but no polyisoprene, and the amount of natural rubber is within one of the foregoing ranges.
- the rubber composition for the tire tread includes a resin component in an amount of BO to 60 phr.
- the resin component comprises 20 to 50 phr (e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 phr) of a terpene phenol resin having a hydroxyl value of 50 or less (e.g., 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, or less), preferably a hydroxyl value of 30 or less (e.g., 30, 25, 20, 15, 10, 5, or less), more preferably a hydroxyl value of 20 or less (e.g., 20, 18, 16, 15, 14, 12, 10, 8, 6, 5, 4, 2, or 1).
- the resin component comprises 20 to 45 phr, 25 to 45 phr, 20 to 40 phr, 25 to 40 phr, or 20 to 30 phr of a terpene phenol resin having a hydroxyl value according to one of the foregoing (e.g., 50 or less, 30 or less, 20 or less, etc.).
- the terpene phenol resin has a hydroxyl value of 50-1, 50-5, 50-10, 40-1, 40-5, 40-10, 30-1, 30-5, 30-10, 20-1, 20-5, or 20-10 and is used in one of the foregoing amounts.
- the resin component also includes a DCPD-based resin which may be present in varying amounts (e.g., 5- 40 phr, 10-40 phr, 15-40 phr, 20-40 phr, 5-30 phr, 10-30 phr, 15-30 phr, or 20-30 phr).
- a DCPD-based resin which may be present in varying amounts (e.g., 5- 40 phr, 10-40 phr, 15-40 phr, 20-40 phr, 5-30 phr, 10-30 phr, 15-30 phr, or 20-30 phr).
- One or more than one terpene phenol resin having a limited hydroxyl value may be present in the resin component. In certain embodiments of the first and second embodiments, only one such terpene phenol resin is present. In other embodiments, two or more terpene phenol resins are present. Otherthan the hydroxyl value, which is discussed above, the other properties of the terpene phenol resin may vary. In certain embodiments of the first and second embodiments, the terpene phenol resin has a Tg of 50 to 110 °C, preferably 60 to 100 °C.
- the terpene phenol resin has a softening point of 90 to 170 °C, preferably 100 to 160 °C.
- the hydroxyl value of the terpene phenol resin can be determined according to ASTM E222-17 using an instrument such as an 848 Titrino Plus from Metrohm.
- the Tg of the terpene phenol resin can be determined by using a differential scanning calorimeter (DSC) instrument, such as manufactured by TA Instruments (New Castle, Delaware), where the measurement is conducted using a temperature elevation of 10°C/minute after cooling at -120°C. Thereafter, a tangent is drawn to the base lines before and after the jump of the DSC curve.
- DSC differential scanning calorimeter
- the temperature on the DSC curve (read at the point corresponding to the middle of the two contact points) can be used as Tg.
- the softening point of the terpene phenol resin can be determined by ASTM E28-18 (a ring and ball method).
- the terpene phenol resin not only has a hydroxyl value within one of the foregoing ranges but also a Tg within one of the foregoing ranges.
- the terpene phenol resin not only has a hydroxyl value within one of the foregoing ranges but also a softening point within one of the foregoing ranges.
- the terpene phenol resin not only has a hydroxyl value within one of the foregoing ranges but also a Tg and a softening point within one of the foregoing respective ranges. In certain embodiments of the first and second embodiments, the terpene phenol resin not only has a hydroxyl value within one of the foregoing preferred ranges but also a Tg within one of the foregoing preferred ranges. In certain embodiments of the first and second embodiments, the terpene phenol resin not only has a hydroxyl value within one of the foregoing preferred ranges but also a softening point within the foregoing range.
- the terpene phenol resin not only has a hydroxyl value within one of the foregoing preferred ranges but also a Tg and a softening point within one of the foregoing respective preferred ranges.
- the terpene phenol resin has a Mw of 600 to 1500 grams/mole, preferably 700 to 1200 grams/mole. In certain embodiments of the first and second embodiments, the terpene phenol resin has a Mn of 500 to 1000 grams/mole, preferably 500 to 800 grams/mole. In certain embodiments of the first and second embodiments, the terpene phenol resin has a Mw and Mn within one of the foregoing respective ranges. In certain embodiments of the first and second embodiments, the terpene phenol resin has a Mw and Mn within the foregoing respective preferred ranges.
- the particular monomers which comprise the terpene phenol resin may vary but will generally include at least one terpene and at least one phenolic compound.
- terpenes are compounds derived from isoprene units and have a basic formula of (C5H8)n with n being the number of linked isoprene units.
- the terpene monomer portion of the terpene phenol resin may be selected from the group consisting of alpha-pinene, beta-pinene, D- limonene, dipentene (racemic limonene), careen (also known as delta-3-carene), beta- phellandrene, and combinations thereof.
- the phenol monomer portion of the terpene phenol resin may be selected from the group consisting of phenol, alkylphenols, bisphenol A, cresol, xylenol, and combinations thereof.
- the terpene phenol resin will comprise a majority by weight of terpene monomer(s).
- the terpene monomer portion of the terpene phenol resin is 60-95%, 70-95%, or 60-85% by weight of the overall terpene phenol resin and the phenol monomer portion is 5 to 40%, 5-30%, or 15-40% by weight of the overall terpene phenol resin.
- Terpene phenol resins suitable for use in the first and second embodiments are commercially available from various suppliers.
- tepene phenol resins for use in the first and second embodiments are available from Pinova (under the tradename Dertophene ® such as T, T105, T110 and T115), from Yasuhara Chemical (under the tradename Polyster ® such as T160), and from Kraton (under the tradenames Sylvares and Sylvatraxx such as TP2019, 5216 and 4202).
- the resin component of the rubber composition for the tread also includes a DCPD-based resin (ii).
- DCPD refers to dicyclopentadiene.
- the DCPD-based resin may be a DCPD homopolymer resin or a DCPD copolymer resin.
- DCPD-based is meant that the resin contains a proportion of DCPD as monomer, more specifically at least 15% by weight (e.g., 15, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75%, etc.), at least 20% by weight (e.g., 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% by weight), at least 25% by weight (e.g., 25%, 30%, 35%, etc.), at least 30% by weight (e.g., 30%, 40%, etc.), at least 40% by weight (e.g., 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% by weight), at least 50% by weight (e.g., 50%, 60%, 70%, 80%, 90%, 95%, or 100% by weight), or more.
- the resin contains a proportion of DCPD as monomer, more specifically at least 15% by weight (e.g., 15, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75%, etc.), at least 20% by weight
- the DCPD-based resin comprises a majority by weight of DCPD as monomer, e.g., at least 51%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or even 100% by weight); in certain such embodiments, the DCPD-based resin can be considered to be a relatively pure DCPD resin, especially when the percentage by weight of DCPD monomer at least 80% (e.g., 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or more), at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or more), or more.
- the percentage by weight of DCPD monomer at least 80% (e.g., 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%
- the DCPD-based resin comprises a minority by weight of DCPD as monomer, e.g., no more than 49% (e.g., 49%, 45%, 40%, 35%, 30%, 25%, 20%, or less), no more than 40% (e.g., 40%, 35%, 30%, 25%, 20%, or less), no more than 30% (e.g., 30%, 25%, 20%, or less), no more than 20% (e.g., 20%, 19%, 18%, etc.), or any amount within one of the foregoing amounts, e.g., 49-20%, 40-20%, 30-20%, etc.
- the amount of DCPD-based resin that is present in the rubber composition for the tire tread may vary but generally will be at least 5 phr and up to 40 phr. In certain embodiments of the first and second embodiments, the amount of DCPD-based resin used in the resin component is 5-40 phr, 10-40 phr, 15-40 phr, 20- 40 phr, 5-30 phr, 10-30 phr, 15-30 phr, or 20-30 phr.
- the DCPD-based resin is hydrogenated.
- the amount of hydrogenation may vary.
- the hydrogenated DCPD-based resin has a degree of hydrogenation of at least 50%, at least 60%, at least 70%, or more.
- the hydrogenated DCPD-based resin has a degree of hydrogenation of 50-90%, 50-80%, 50-70%, 60-90%, 60-80%, or 60-70%.
- DCPD-based resins suitable for use in the first and second embodiments are commercially available from various suppliers.
- DCPD-based resins for use in the first and second embodiments are available from companies such as Neville Chemical Company (Pittsburgh, Pennsylvania) under their LX ® brand, Resinall Corporation (Sovern, North Carolina), The Dow Chemical Company, and Zeon Corporation of Japan (doing business in the United States as Zeon Chemicals LP) under their Quintone ® brand).
- the Tg and softening point of the DCPD-based resin may vary.
- the DCPD-based resin has a Tg of about 35 to about 110 °C or 35-110 °C (e.g., 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, or 110 °C).
- the DCPD-based resin has a softening point of about 90 to about 160 °C or 90-160 °C (e.g., 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, or 160 °C). In certain preferred embodiments of the first and second embodiments, the DCPD-based resin has both a Tg and a softening point with the foregoing ranges.
- the DCPD-based resin has at least one of a Tg and a softening point at the lower end of above broadest ranges.
- the DCPD-based resin may have a Tg of about 35 to about 60 °C or 35-60 °C (e.g., 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 55, 56, 58, or 60 °C), or preferably about 40 to about 55 °C, or 40-55 °C (e.g., 40, 42, 44, 45, 46, 48, 50, 52, 54, or 55 °C).
- the DCPD-based resin has a softening point of about 90 to about 120 °C, 90-120 °C (e.g., 90, 95, 100, 105, 110, 115, or 120 °C); preferably about 95 to about 115 °C or 95-115 °C (e.g., 95, 100, 105, 110, or 115 °C); or about 95 to about 110 °C or 95-110 °C (e.g., 95, 100, 105 or 110 °C).
- the DCPD-based resin has both a Tg and a softening point with the foregoing ranges.
- the DCPD-based resin has at least one of a Tg and a softening point at the upper end of the above broadest ranges.
- the DCPD-based resin may have a Tg of about 70 to about 110 °C or 70-110 °C [e.g., 70, 75, 80, 85, 90, 95, 100, 105, or 110 °C); preferably about 75 to about 105 °C or 75-105 °C (e.g., 75, 80, 85, 90, 95, 100 or 105 °C), or more preferably 80-100 °C (e.g., 80, 82, 84, 85, 86, 88, 90, 92, 94, 95, 96, 98, or 100 °C).
- the DCPD-based resin has a softening point of about 120 to about 160 °C or 120-160 °C (e.g., 120, 125, 130, 135, 140, 145, 150, 155, or 160 °C), preferably about 130 to about 150 °C or 130-150 °C (e.g., 130, 135, 140, 145, or 150 °C).
- the DCPD-based resin has both a Tg and a softening point with the foregoing ranges.
- the Mw, Mn and Mw/Mn of the DCPD-based resin may vary.
- the DCPD-based resin meets at least one of the following: (a) a Mw of about 1000 to about 4000 grams/mole, 1000-4000 grams/mole (e.g., 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700,
- 1800 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, or 4000 grams/mole), about 1000 to about 3000 grams/mole, 1000-3000 grams/mole (e.g., (e.g., 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, or 3000 grams/mole), about 1000 to about 2500 grams/mole, 1000-2500 grams/mole (e.g., 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, or 2500 grams/mole), about 1100 to about 2000 grams/mole, or 1100-2000 grams/mole (e
- the DCPD-based resin has a Mw according to one of the ranges provided above, in combination with a Mn according to one of the ranges provided above, further in combination with a Mw/Mn according to one of the ranges provided above.
- the rubber composition for the tire tread includes a filler component which comprises 91 to 140 phr of a reinforcing silica filler and 1 to 20 phr of a carbon black filler.
- the filler component comprises 100 to 130 phr of a reinforcing silica filler.
- the filler component comprises 5 to 10 phr of a carbon black filler.
- the filler component comprises reinforcing silica filler and carbon black filler with the foregoing preferred amounts.
- the filler component is limited to (i.e., consists of or contains only) the reinforcing silica filler and carbon black filler in the foregoing discussed amounts. In other embodiments of the first and second embodiments, the filler component includes not only the reinforcing silica filler and carbon black filler in the foregoing discussed amounts but also one or more reinforcing or non-reinforcing fillers, as discussed in more detail below.
- the filler component of the rubber compositions for the tire tread comprises (includes) at least one reinforcing silica filler in an amount of 91-140 phr (e.g., 91, 93, 95, 97, 99, 100, 102,
- the filler component of the rubber compositions for the tire tread comprises (includes) at least one reinforcing silica filler in an amount of 100-130 phr (e.g., 100, 102, 104,
- the surface area of the reinforcing silica filler may vary.
- the particular type of silica for the at least one reinforcing silica filler may vary.
- Non-limiting examples of reinforcing silica fillers suitable for use in certain embodiments of the first and second embodiments include, but are not limited to, precipitated amorphous silica, wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), fumed silica, calcium silicate and the like.
- suitable reinforcing silica fillers for use in certain embodiments of the first and second embodiments include, but are not limited to, aluminum silicate, magnesium silicate (Mg 2 Si0 4 , MgSi0 3 etc.), magnesium calcium silicate (CaMgSi0 ), calcium silicate (Ca 2 Si0 4 etc.), aluminum silicate (AI 2 Si0 5 , AI 4 .3Si0 4 .5H 2 0 etc.), aluminum calcium silicate (AI 2 0 3 .Ca0 2 Si0 2 , etc.), and the like.
- magnesium silicate Mg 2 Si0 4 , MgSi0 3 etc.
- CaMgSi0 magnesium calcium silicate
- Ca 2 Si0 4 etc. calcium silicate
- AI 2 Si0 5 AI 4 .3Si0 4 .5H 2 0 etc.
- AI 2 0 3 .Ca0 2 Si0 2 , etc. aluminum calcium silicate
- precipitated amorphous wet-process hydrated silica fillers
- Such reinforcing silica fillers are produced by a chemical reaction in water, from which they are precipitated as ultrafine, spherical particles, with primary particles strongly associated into aggregates, which in turn combine less strongly into agglomerates.
- the surface area, as measured by the BET method, is a preferred measurement for characterizing the reinforcing character of different reinforcing silica fillers.
- the rubber composition comprises a reinforcing silica filler having a surface area (as measured by the BET method) of about 100 m 2 /g to about 400 m 2 /g, 100 m 2 /g to 400 m 2 /g (e.g., 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, or 400 m 2 /g), about 100 m 2 /g to about 350 m 2 /g, or 100 m 2 /g to 350 m 2 /g (e.g., 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270,
- a reinforcing silica filler having
- the rubber composition comprises a reinforcing silica filler having a BET surface area of about 140 m 2 /g to about 230 m 2 /g, 140 m 2 /g to 230 m 2 /g (e.g., 140, 150, 160, 170, 180, 190, 200, 210, 220, or 230 m 2 /g), with the ranges of about 170 m 2 /g to about 230 m 2 /g and 170 m 2 /g to 230 m 2 /g (e.g., 170, 180, 190, 200, 210, 220, or 230 m 2 /g) being included; in certain such embodiments the only silica filler present in the rubber composition has a BET surface area within one of the foregoing ranges.
- the rubber composition comprises a reinforcing silica filler having a BET surface of about 100 m 2 /g to about 140 m 2 /g, 100 m 2 /g to 140 m 2 /g (e.g., 100, 105, 110, 115, 120, 125, 130, 135, or 140 m 2 /g), about 100 m 2 /g to about 125 m 2 /g, 100 m 2 /g to 125 m 2 /g (e.g., 100, 105, 110, 115, 120, or 125 m 2 /g), about 100 m 2 /g to about 120 m 2 /g, or 100 to 120 m 2 /g (e.g., 100, 105, 110, 115, or 120 m 2 /g); in certain such embodiments the only silica filler present in the rubber composition has a BET surface area within one of the foregoing ranges.
- the rubber composition comprises reinforcing silica filler having a pH of about 5.5 to about 8, 5.5 to 8 (e.g., 5.5, 5.7, 5.9, 6.1, 6.3, 6.5, 6.7, 6.9, 7.1, 7.3, 7.5, 7.7, 7.9, or 8), about 6 to about 8, 6 to 8 (e.g., 6, 6.2, 6.4, 6.6, 6.8, 7, 7.2, 7.4, 7.6, 7.8, or 8), about 6 to about 7.5, 6 to 7.5, about 6.5 to about 8, 6.5 to 8, about 6.5 to about 7.5, 6.5 to 7.5, about 5.5 to about 6.8, or 5.5 to 6.8.
- 5.5 to about 8 e.g., 5.5, 5.7, 5.9, 6.1, 6.3, 6.5, 6.7, 6.9, 7.1, 7.3, 7.5, 7.7, 7.9, or 8
- about 6 to about 8, 6 to 8 e.g., 6, 6.2, 6.4, 6.6, 6.8, 7, 7.2, 7.4, 7.
- Some of the commercially available reinforcing silica fillers which can be used in certain embodiments of the first and second embodiments include, but are not limited to, Hi-Sil ® EZ120G, Hi-Sil ® EZ120G-D, Hi-Sil ® 134G, Hi-Sil ® EZ 160G, Hi-Sil ® EZ 160G-D, Hi-Sil ® 190, Hi-Sil ® 190G-D, Hi-Sil ® EZ 200G, Hi-Sil ® EZ 200G-D, Hi-Sil ® 210, Hi-Sil ® 233, Hi-Sil ® 243LD, Hi-Sil ® 255CG-D, Hi-Sil ® 315-D, Hi-Sil ® 315G-D, Hi-Sil ® HDP 320G and the like, produced by PPG Industries (Pittsburgh, Pa.) As well, a number of useful commercial grades of different reinforcing silica fill
- one or more than one silica coupling agent may also (optionally) be utilized.
- at least one silica coupling agent is utilized.
- Silica coupling agents are useful in preventing or reducing aggregation of the silica filler in rubber compositions. Aggregates of the silica filler particles are believed to increase the viscosity of a rubber composition, and, therefore, preventing this aggregation reduces the viscosity and improves the processability and blending of the rubber composition.
- any conventional type of silica coupling agent can be used, such as those having a silane and a constituent component or moiety that can react with a polymer, particularly a vulcanizable polymer.
- the silica coupling agent acts as a connecting bridge between silica and the polymer.
- Suitable silica coupling agents for use in certain embodiments of the first and second embodiments disclosed herein include those containing groups such as alkyl alkoxy, mercapto, blocked mercapto, sulfide-containing (e.g., monosulfide-based alkoxy-containing, disulfide-based alkoxy-containing, tetrasulfide-based alkoxy-containing), amino, vinyl, epoxy, and combinations thereof.
- the silica coupling agent can be added to the rubber composition in the form of a pre-treated silica; a pre-treated silica has been pre surface treated with a silane prior to being added to the rubber composition.
- a pre treated silica can allow for two ingredients (i.e., silica and a silica coupling agent) to be added in one ingredient, which generally tends to make rubber compounding easier.
- Alkyl alkoxysilanes have the general formula R 10 p Si(OR 11 )4- p where each R 11 is independently a monovalent organic group, and p is an integer from 1 to 3, with the proviso that at least one R 10 is an alkyl group. Preferably p is 1.
- each R 10 independently comprises Ci to C20 aliphatic, C5 to C20 cycloaliphatic, or C 6 to C20 aromatic; and each R 11 independently comprises Ci to C 6 aliphatic.
- each R 10 independently comprises C 6 to C15 aliphatic and in additional embodiments each R 10 independently comprises C 8 to CM aliphatic.
- Mercapto silanes have the general formula HS-R 13 -Si(R 14 )(R 15 ) 2 where R 13 is a divalent organic group, R 14 is a halogen atom or an alkoxy group, each R 15 is independently a halogen, an alkoxy group or a monovalent organic group.
- the halogen is chlorine, bromine, fluorine, or iodine.
- the alkoxy group preferably has 1-3 carbon atoms.
- Blocked mercapto silanes have the general formula B-S-R 16 -Si-X3 with an available silyl group for reaction with silica in a silica-silane reaction and a blocking group B that replaces the mercapto hydrogen atom to block the reaction of the sulfur atom with the polymer.
- B is a block group which can be in the form of an unsaturated heteroatom or carbon bound directly to sulfur via a single bond
- R 16 is Ci to C 6 linear or branched alkylidene and each X is independently selected from the group consisting of Ci to C alkyl or Ci to C alkoxy.
- alkyl alkoxysilanes suitable for use in certain embodiments of the first and second embodiments include, but are not limited to, octyltriethoxysilane, octyltrimethoxysilane, trimethylethoxysilane, cyclohexyltriethoxysilane, isobutyltriethoxy-silane, ethyltrimethoxysilane, cyclohexyl-tributoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, propyltriethoxysilane, hexyltriethoxysilane, heptyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tetradecyltriethoxysilane, octadecyltriethoxy
- Non-limiting examples of bis(trialkoxysilylorgano)polysulfides suitable for use in certain embodiments of the first and second embodiments include bis(trialkoxysilylorgano) disulfides and bis(trialkoxysilylorgano)tetrasulfides.
- bis(trialkoxysilylorgano)disulfides include, but are not limited to, 3,3'-bis(triethoxysilylpropyl) disulfide, 3,3'-bis(trimethoxysilylpropyl)disulfide, 3,3'-bis(tributoxysilylpropyl)disulfide, 3,3'- bis(tri-t-butoxysilylpropyl)disulfide, 3,3'-bis(trihexoxysilylpropyl)disulfide, 2,2'- bis(dimethylmethoxysilylethyl)disulfide, 3,3'- bis(diphenylcyclohexoxysilylpropyl)disulfide, 3,3'- bis(ethyl-di-sec-butoxysilylpropyl)disulfide, 3,3'-bis(propyldiethoxysilylpropyl)disulfide,
- Non-limiting examples of bis(trialkoxysilylorgano)tetrasulfide silica coupling agents suitable for use in certain embodiments of the first and second embodiments include, but are not limited to, bis(3-triethoxysilylpropyl)tetrasulfide, bis(2-triethoxysilylethyl) tetrasufide, bis(3-trimethoxysilylpropyl)tetrasulfide, 3- trimethoxysilylpropyl-N,N- dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N,N-dimethylthiocarbamoyl tetrasulfide, 2-triethoxysilyl-N,N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropyl- benzothiazole tetrasulfide, 3-trie
- Non-limiting examples of mercapto silanes suitable for use in certain embodiments of the first and second embodiments disclosed herein include, but are not limited to, 1-mercaptomethyltriethoxysilane, 2- mercaptoethyltriethoxysilane, 3- mercaptopropyltriethoxysilane, 3- mercaptopropylmethyldiethoxysilane, 2 mercaptoethyltripropoxysilane, 18- mercaptooctadecyldiethoxychlorosilane, and mixtures thereof.
- Non-limiting examples of blocked mercapto silanes suitable for use in certain embodiments of the first and second embodiments disclosed herein include, but are not limited to, those described in U.S. Pat. Nos. 6,127,468; 6,204,339; 6,528,673; 6,635,700; 6,649,684; and 6,683,135, the disclosures of which are hereby incorporated by reference.
- blocked mercapto silanes include, but are not limited to, 2- triethoxysilyl-1- ethylthioacetate; 2-trimethoxysilyl-l-ethylthioacetate; 2-(methyldimethoxysilyl)- 1- ethylthioacetate; 3-trimethoxysilyl-l-propylthioacetate; triethoxysilylmethyl-thioacetate; trimethoxysilylmethylthioacetate; triisopropoxysilylmethylthioacetate; methyldiethoxysilylmethylthioacetate; methyldimethoxysilylmethylthioacetate; methyldiisopropoxysilylmethylthioacetate; dimethylethoxysilylmethylthioacetate; dimethylmethoxysilylmethylthioacetate; dimethylisopropoxysilylmethylthioacetate; 2- triisopropoxysilyl-l-ethylthioacetate; 2-(
- NXTTM silane (3- octanoylthio-l-propyltriethoxysilane), commercially available from Momentive Performance Materials Inc. of Albany, NY.
- Non-limiting examples of pre-treated silicas i.e., silicas that have been pre-surface treated with a silane
- suitable for use in certain embodiments of the first and second embodiments disclosed herein include, but are not limited to, Ciptane ® 255 LD and Ciptane ® LP (PPG Industries) silicas that have been pre-treated with a mercaptosilane, and Coupsil ® 8113 (Degussa) that is the product of the reaction between organosilane bis(triethoxysilylpropyl) polysulfide (Si69) and Ultrasil ® VN3 silica.
- the pre-treated silica is used in an amount as previously disclosed for the silica filler (i.e., 81-120 phr or about 90 to about 120 phr, etc.).
- the amount used may vary.
- the rubber compositions do not contain any silica coupling agent.
- the silica coupling agent is present in an amount sufficient to provide a ratio of the total amount of silica coupling agent to silica filler of about 0.1:100 to about 1:5 (i.e., about 0.1 to about 20 parts by weight per 100 parts of silica), including 0.1:100 to 1:5, about 1:100 to about 1:10, 1:100 to 1:10, about 1:100 to about 1:20, 1:100 to 1:20, about 1:100 to about 1:25, and 1:100 to 1:25 as well as about 1:100 to about 0:100 and 1:100 to 0:100.
- the ratio of the total amount of silica coupling agent to silica filler falls within a ratio of 1:10 to 1:20 (i.e., 10 to 5 parts by weight per 100 parts of silica).
- the rubber composition comprises about 0.1 to about 15 phr silica coupling agent, including 0.1 to 15 phr (e.g., 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 phr), about 0.1 to about 12 phr, 0.1 to 12 phr, about 0.1 to about 10 phr, 0.1 to 10 phr, about 0.1 to about 7 phr, 0.1 to 7 phr, about 0.1 to about 5 phr, 0.1 to 5 phr, about 0.1 to 5 phr, about 0.1 to 5 phr, about 0.1 to 5 phr, about 0.1 to 3 phr, 0.1 to 3 phr, about 1 to about 15 phr
- the amount of carbon black filler used in the rubber composition for the tread is limited. More specifically, according to the first and second embodiments disclosed herein, the filler component of the rubber composition includes only 1 to 20 phr of carbon black filler (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 phr). In certain preferred embodiments of the first and second embodiments, the tread rubber composition contains only 5-10 phr of carbon black filler (e.g., 5, 6, 7, 8, 9, or 10 phr).
- the foregoing limited amounts of carbon black filler should be understood to refer to reinforcing carbon black filler (in other words, 1 to 20 phr of reinforcing carbon black filler or 5-10 phr of reinforcing carbon black filler is used). In other embodiments of the first and second embodiments, the foregoing limited amounts of carbon black filler should be understood to refer to non-reinforcing carbon black filler (in other words, 1 to 20 phr of non-reinforcing carbon black filler or 5-10 phr of non-reinforcing carbon black filler). In yet other embodiments of the first and second embodiments, the foregoing limited amounts of carbon black filler should be understood to refer to a combination of carbon black fillers (i.e., both reinforcing and non-reinforcing carbon black filler).
- suitable carbon blacks for use as a reinforcing filler in the rubber composition of certain embodiments of the first and second embodiments include any of the commonly available, commercially-produced carbon blacks, including those having a surface area of at least about 20 m 2 /g (including at least 20 m 2 /g) and, more preferably, at least about 35 m 2 /g up to about 200 m 2 /g or higher (including 35 m 2 /g up to 200 m 2 /g).
- Surface area values used herein for carbon blacks are determined by ASTM D-1765 using the cetyltrimethyl- ammonium bromide (CTAB) technique.
- useful carbon blacks are furnace black, channel blacks, and lamp blacks. More specifically, examples of useful carbon blacks include super abrasion furnace (SAF) blacks, high abrasion furnace (HAF) blacks, fast extrusion furnace (FEF) blacks, fine furnace (FF) blacks, intermediate super abrasion furnace (ISAF) blacks, semi reinforcing furnace (SRF) blacks, medium processing channel blacks, hard processing channel blacks and conducting channel blacks.
- SAF super abrasion furnace
- HAF high abrasion furnace
- FEF fast extrusion furnace
- FF fine furnace
- ISRF intermediate super abrasion furnace
- SRF semi reinforcing furnace
- the rubber composition includes a mixture of two or more of the foregoing blacks.
- a carbon black filler if a carbon black filler is present it consists of only one type (or grade) of reinforcing carbon black.
- Typical suitable carbon blacks for use in certain embodiments of the first and second embodiments are N-110, N-220, N-339, N-330, N-351, N- 550, and N-660, as designated by ASTM D-1765-82a.
- the carbon blacks utilized can be in pelletized form or an unpelletized flocculent mass. Preferably, for more uniform mixing, unpelletized carbon black is preferred.
- the tread rubber composition comprises a reinforcing filler other than carbon black or silica (i.e., an additional reinforcing filler). While one or more than one additional reinforcing filler may be utilized, their total amount is preferably limited to no more than 10 phr (e.g., 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 or 0 phr), or no more than 5 phr (e.g., 5, 4, 3, 2, 1, or 0 phr).
- 10 phr e.g., 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 or 0 phr
- 5 phr e.g., 5, 4, 3, 2, 1, or 0 phr
- the tread rubber composition contains no additional reinforcing filler (i.e., 0 phr); in other words, in such embodiments no reinforcing filler other than silica and optionally carbon black are present.
- the additional reinforcing filler or fillers may vary.
- suitable additional reinforcing fillers for use in the rubber compositions of certain embodiments of the first and second embodiments include, but are not limited to, alumina, aluminum hydroxide, clay (reinforcing grades), magnesium hydroxide, boron nitride, aluminum nitride, titanium dioxide, reinforcing zinc oxide, and combinations thereof.
- Non-Reinforcing Fillers include, but are not limited to, alumina, aluminum hydroxide, clay (reinforcing grades), magnesium hydroxide, boron nitride, aluminum nitride, titanium dioxide, reinforcing zinc oxide, and combinations thereof.
- the rubber composition for the tread further comprises at least one non-reinforcing filler which is a non carbon black non-reinforcing filler.
- the rubber composition contains no non-carbon black non-reinforcing fillers (i.e., 0 phr).
- the rubber composition contains no non-reinforcing fillers (in such embodiments, the carbon black filler of the filler component will be a reinforcing carbon black filler).
- the at least one non-reinforcing filler may be selected from clay (non-reinforcing grades), graphite, magnesium dioxide, aluminum oxide, starch, boron nitride (non-reinforcing grades), silicon nitride, aluminum nitride (non-reinforcing grades), calcium silicate, silicon carbide, ground rubber, and combinations thereof.
- non-reinforcing filler is used to refer to a particulate material that has a nitrogen absorption specific surface area (N2SA) of less than about 20 m 2 /g (including less than 20 m 2 /g), and in certain embodiments less than about 10 m 2 /g (including less than 10 m 2 /g).
- N2SA surface area of a particulate material can be determined according to various standard methods including ASTM D6556.
- the term “non-reinforcing filler” is alternatively or additionally used to refer to a particulate material that has a particle size of greater than about 1000 nm (including greater than 1000 nm).
- the total amount of non-carbon black non-reinforcing filler may vary but is preferably no more than 20 phr (e.g., 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 phr), and in certain embodiments 1-10 phr, no more than 10 phr, no more than 5 phr (e.g., 5, 4, 3, 2, or 1 phr), 1-5 phr, or no more than 1 phr.
- the rubber composition for the tire tread comprises (includes) 0 to 30 phr of a liquid plasticizer.
- the lower limit forthe liquid plasticizer is 0 phr is meant that the liquid plasticizer component is optional in certain embodiments of the first and second embodiments.
- the phrase liquid plasticizer should be understood to refer to plasticizers that are liquid at 25 °C, including, but not limited, to oils and ester plasticizers.
- a liquid plasticizer when a liquid plasticizer is used one or more than one liquid plasticizer may be utilized.
- the total amount of liquid plasticizer may be referred to as the amount of plasticizer component.
- the rubber composition includes 1 to 30 phr of liquid plasticizer (e.g., 1, 2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 25, 26, 28, or 30 phr) or an amount falling within the foregoing range such as 1 to 20 phr or 5 to 20 phr, preferably 10 to 30 phr (e.g., 10, 12, 14, 15, 16, 18, 20, 22, 24, 25, 26, 28, or 30 phr) of liquid plasticizer or an amount falling within such as 10 to 25 phr or 10 to 20 phr.
- the term oil is meant to encompass both free oil (which is usually added during the compounding process) and extender oil (which is used to extend a rubber).
- the rubber composition includes 20 phr of oil it should be understood that the total amount of any free oil and any extender oil is 20 phr.
- the rubber composition contains 20 phr of liquid plasticizer, it should be understood that the total amount of any liquid plasticizer (including free oil, extender oil, and ester plasticizer) is 20 phr.
- the only oil is free oil in one of the foregoing amounts (e.g., 1 to 30 phr, 10 to 30 phr, 5 to 20 phr, etc.).
- the only oil is extender oil in one of the foregoing amounts (e.g., 1 to 30 phr, 10 to 30 phr, 5 to 20 phr, etc.).
- the amount of oil used to prepare the oil-extended rubber may vary; in certain such embodiments, the amount of extender oil present in the oil-extended rubber (polymer) is 10-50 parts oil per 100 parts of rubber (e.g., 10, 15, 20, 25, 30, 35, 40, 45 or 50 parts oil per 100 parts of rubber), preferably 10-40 parts oil per 100 parts of rubber or 20-40 parts oil per 100 parts of rubber.
- the amounts specified for the rubber(s) of the elastomer component should be understood to refer to the amounts of rubber only rather than the amounts of oil- extended rubber.
- extender oil could be used in an amount of 40 parts oil per 100 parts rubber in an SBR used in an amount of 15 parts in the overall rubber composition and, thus, the amount of oil contributed by the oil-extended SBR to the rubber composition would be described as 6 phr.
- oil refers to both petroleum based oils (e.g., aromatic, naphthenic, and low PCA oils) as well as plant oils (such as can be harvested from vegetables, nuts, and seeds).
- Plant oils will generally comprise triglycerides and the term should be understood to include synthetic triglycerides as well as those actually sourced from a plant.
- processing and extender oils may be utilized, including, but not limited to aromatic, naphthenic, and low PCA oils (petroleum-sourced or plant- sourced).
- Suitable low PCA oils include those having a polycyclic aromatic content of less than S percent by weight as determined by the IPS46 method. Procedures for the IPS46 method may be found in Standard Methods for Analysis & Testing of Petroleum and Related Products and British Standard 2000 Parts, 2003, 62nd edition, published by the Institute of Petroleum, United Kingdom.
- Exemplary petroleum-sourced low PCA oils include mild extraction solvates (MES), treated distillate aromatic extracts (TDAE), TRAE, and heavy naphthenics.
- Exemplary MES oils are available commercially as CATENEX SNR from SHELL, PROREX 15, and FLEXON 683 from EXXONMOBIL, VIVATEC 200 from BP, PLAXOLENE MS from TOTAL FINA ELF, TUDALEN 4160/4225 from DAHLEKE, MES-H from REPSOL, MES from Z8, and OLIO MES S201 from AGIP.
- Exemplary TDAE oils are available as TYREX 20 from EXXONMOBIL, VIVATEC 500, VIVATEC 180, and ENERTHENE 1849 from BP, and EXTENSOIL 1996 from REPSOL.
- Exemplary heavy naphthenic oils are available as SHELLFLEX 794, ERGON BLACK OIL, ERGON H2000, CROSS C2000, CROSS C2400, and SAN JOAQUIN 2000L.
- Exemplary low PCA oils also include various plant-sourced oils such as can be harvested from vegetables, nuts, and seeds. Non-limiting examples include, but are not limited to, soy or soybean oil, sunflower oil (including high oleic sunflower oil), safflower oil, corn oil, linseed oil, cotton seed oil, rapeseed oil, cashew oil, sesame oil, camellia oil, jojoba oil, hemp oil, macadamia nut oil, coconut oil, and palm oil.
- the foregoing processing oils can be used as an extender oil, i.e., to prepare an oil-extended polymer or copolymer or as a processing or free oil.
- the Tg of the oil or oils used may vary.
- any oil utilized has a Tg of about -40 to about -100 °C, -40 to -100 °C (e.g., -40, -45, -50, -55, -60, -65, -70, -75, -80, -85, -90, -95, or -100 °C), about -40 to about -90 °C, -40 to -90 °C (e.g., -40, -45, -50, -55, -60, -65, -70, -75, -80, -85, or -90 °C), about -45 to about -85 °C, -45 to -85 °C (e.g., -45, -50, -55, -60, -65, -70, -75, -80, -85, or -90 °C), about -45 to about -
- the rubber composition contains less than 5 phr (e.g., 4.5, 4, 3, 2, 1, or 0 phr) of MES or TDAE oil, preferably no MES or TDAE oil (i.e., 0 phr).
- the rubber composition contains no petroleum oil (i.e., 0 phr) and instead any oil utilized is a plant oil.
- the rubber composition contains soybean oil in one of the above-mentioned amounts; in certain such embodiments the only oil included is soybean oil.
- the rubber composition contains no sunflower oil (i.e., 0 phr). In other embodiments of the first and second embodiments, the only oil included is sunflower oil.
- the tread rubber composition includes one or more ester plasticizers, which is a type of plasticizer that is generally liquid at room temperature.
- ester plasticizers are known to those of skill in the art and include, but are not limited to, phosphate esters, phthalate esters, adipate esters and oleate esters (i.e., derived from oleic acid).
- an ester is a chemical compound derived from an acid wherein at least one -OH is replaced with an -O-alkyl group
- various alkyl groups may be used in suitable ester plasticizers for use in the tread rubber compositions, including generally linear or branched alkyl of Ci to C20 (e.g., Ci, C2, C3, C4, C5, C 6 , C7, Cs, Cg, C10, C11, C12, Ci3, CM, Ci5, Ci 6 , Ci7, Cis, Cig, C20), or C 6 to C12.
- esters are based upon acids which have more than one -OH group and, thus, can accommodate one or more than one O-alkyl group (e.g., trialkyl phosphates, dialkyl phthalates, dialkyl adipates).
- suitable ester plasticizers include trioctyl phosphate, dioctyl phthalate, dioctyl adipate, nonyl oleate, octyl oleate, and combinations thereof.
- ester plasticizer such as one or more of the foregoing may be beneficial to the snow or ice performance of a tire made from a tread rubber composition containing such ester plasticizer at least in part due to the relatively low Tg of ester plasticizers.
- the tread rubber composition includes one or more ester plasticizers having a Tg of -40 °C to -70 °C (e.g., -40, -45, -50, -55, -60, -65, or -70 °C), or -50 °C to -65 °C (e.g., -50, -51, - 52, -53, -54, -55, -56, -57, -58, -59, -60, -61, -62, -63, -64, or -65 °C ).
- ester plasticizers having a Tg of -40 °C to -70 °C (e.g., -40, -45, -50, -55, -60, -65, or -70 °C), or -50 °C to -65 °C (e.g., -50, -51, - 52, -53, -54, -55,
- the amount utilized may vary.
- one or more ester plasticizers are utilized in a total amount of 1-25 phr (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
- the amount of any ester plasticizer is no more than 15 phr or no more than 12 phr.
- one or more ester plasticizers are used (in one of the foregoing amounts) in combination with oil where the oil is present in an amount of 1 to less than 10 phr, or 1-5 phr. In other embodiments of the first and second embodiments, one or more ester plasticizers is used without any oil being present in the tread rubber composition (i.e., 0 phr of oil).
- the rubber composition comprises a total amount of plasticizer of 30-70 phr (e.g., 30, 32, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 55, 56, 58, 60, 62, 64, 65, 66, 68, or 70 phr), with the plasticizer including the resins of the resin component and any liquid plasticizer (e.g., any oil and any ester plasticizer), all as discussed above.
- the rubber composition comprises a total amount of plasticizer of no more than 60 phr (e.g., 60,
- 20-60 phr e.g., 20, 22, 24, 25, 26, 28, 30, 32, 34, 35, 36, 38, 40, 42,
- 40-60 phr e.g., 40, 42, 44, 45, 46, 48, 50, 52, 54, 55, 56, 58, or 60 phr
- 40-60 phr e.g., 40, 42, 44, 45, 46, 48, 50, 52, 54, 55,
- 50 phr no more than 50 phr (e.g., 50, 45, 40, 35, or 30 phr), 20-50 phr (e.g., 20, 22,
- the total amount of plasticizer includes a minority by weight of liquid plasticizer (e.g., no more than 49% by weight, no more than 40% by weight, no more than 30% by weight, no more than 25% by weight, no more than 20% by weight, no more than 10% by weight, or no more than 5% by weight).
- the rubber composition used for the tire tread includes (comprises) a cure package.
- the cure package includes at least one of: a vulcanizing agent; a vulcanizing accelerator; a vulcanizing activator (e.g., zinc oxide, stearic acid, and the like); a vulcanizing inhibitor; and an anti-scorching agent.
- the cure package includes at least one vulcanizing agent, at least one vulcanizing accelerator, at least one vulcanizing activator and optionally a vulcanizing inhibitor and/or an anti-scorching agent.
- Vulcanizing accelerators and vulcanizing activators act as catalysts for the vulcanization agent.
- Various vulcanizing inhibitors and anti-scorching agents are known in the art and can be selected by one skilled in the art based on the vulcanizate properties desired.
- Suitable types of vulcanizing agents for use in certain embodiments of the first and second embodiments include but are not limited to, sulfur or peroxide-based curing components.
- the cure package includes a sulfur-based curative or a peroxide-based curative.
- the vulcanizing agent is a sulfur-based curative; in certain such embodiments the vulcanizing agent consists of (only) a sulfur-based curative.
- sulfur vulcanizing agents examples include "rubbermaker's" soluble sulfur; sulfur donating curing agents, such as an amine disulfide, polymeric polysulfide, or sulfur olefin adducts; and insoluble polymeric sulfur.
- the sulfur vulcanizing agent is soluble sulfur or a mixture of soluble and insoluble polymeric sulfur.
- suitable vulcanizing agents and other components used in curing e.g., vulcanizing inhibitor and anti-scorching agents, one can referto Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd ed., Wiley Interscience, N.Y. 1982, Vol. 20, pp.
- Vulcanizing agents can be used alone or in combination.
- the vulcanizing agents may be used in certain embodiments of the first and second embodiments in an amount ranging from 0.1 to 10 phr (e.g., 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 phr), including from 1 to 7.5 phr, including from 1 to 5 phr, and preferably from 1 to 3.5 phr (e.g., 1, 1.5, 2, 2.5, 3, or 3.5 phr).
- Vulcanizing accelerators are used to control the time and/or temperature required for vulcanization and to improve properties of the vulcanizate.
- suitable vulcanizing accelerators for use in certain embodiments of the first and second embodiments disclosed herein include, but are not limited to, thiazole vulcanization accelerators, such as 2- mercaptobenzothiazole, 2,2'-dithiobis(benzothiazole) (MBTS), N-cyclohexyl-2-benzothiazole- sulfenamide (CBS), N-tert-butyl-2-benzothiazole-sulfenamide (TBBS), and the like; guanidine vulcanization accelerators, such as diphenyl guanidine (DPG) and the like; thiuram vulcanizing accelerators; carbamate vulcanizing accelerators; and the like.
- thiazole vulcanization accelerators such as 2- mercaptobenzothiazole, 2,2'-dithiobis(
- the amount of the vulcanization accelerator used ranges from 0.1 to 10 phr (e.g., 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 phr), preferably 0.5 to 5 phr (e.g., 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, or 5 phr).
- any vulcanization accelerator used in the rubber compositions of the first and second embodiments excludes any thiurams such as thiuram monosulfides and thiuram polysulfides (examples of which include TMTM (tetramethyl thiuram monosulfide), TMTD (tetramethyl thiuram disulfide), DPTT (dipentamethylene thiuram tetrasulfide), TETD (tetraethyl thiuram disulfide), TiBTD (tetraisobutyl thiuram disulfide), and TBzTD (tetrabenzyl thiuram disulfide)); in other words, the rubber compositions of the first and second embodiments preferably contain no thiuram accelerators (i.e., 0 phr).
- Vulcanizing activators are additives used to support vulcanization.
- Generally vulcanizing activators include both an inorganic and organic component.
- Zinc oxide is the most widely used inorganic vulcanization activator.
- Various organic vulcanization activators are commonly used including stearic acid, palmitic acid, lauric acid, and zinc salts of each of the foregoing.
- the amount of vulcanization activator used ranges from 0.1 to 6 phr (e.g., 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, or 6 phr), preferably 0.5 to 4 phr (e.g., 0.5, 1, 1.5, 2, 2.5, 3 3.5, or 4 phr).
- both zinc oxide and stearic acid are used as vulcanizing activators with the total amount utilized falling within one of the foregoing ranges; in certain such embodiments, the only vulcanizing activators used are zinc oxide and stearic acid.
- one or more vulcanization activators are used which includes one or more thiourea compounds (used in the of the foregoing amounts), and optionally in combination with one or more of the foregoing vulcanization activators.
- two of the foregoing structures can be bonded together through N (removing one of the R groups) in a dithiobiurea compound.
- one of R 1 or R 2 and one of R 3 or R 4 can be bonded together with one or more methylene groups (-CH 2 -) therebetween.
- the thiourea has one or two of R 1 , R 2 , R 3 and R 4 selected from one of the foregoing groups with the remaining R groups being hydrogen.
- Exemplary alkyl include Cl- C6 linear, branched or cyclic groups such as methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, pentyl, hexyl, and cyclohexyl.
- Exemplary aryl include C6-C12 aromatic groups such as phenyl, tolyl, and naphthyl.
- Exemplary thiourea compounds include, but are not limited to, dihydrocarbylthioureas such as dialkylthioureas and diarylthioureas.
- Non-limiting examples of particular thiourea compounds include one or more of thiourea, N,N'-diphenylthiourea, trimethylthiourea, N,N'-diethylthiourea (DEU), N,N'-dimethylthiourea, N,N'-dibutylthiourea, ethylenethiourea, N,N'-diisopropylthiourea, N,N'-dicyclohexylthiourea, l,3-di(o-tolyl)thiourea, l,3-di(p-tolyl)thiourea, l,l-diphenyl-2-thiourea, 2,5-dithiobiurea, guanylthiourea, 1-(1- naphthyl)-2-thiourea, l-phenyl-2-thiourea, p-tolylthiourea, and o-tolylthioure
- the activator includes at least one thiourea compound selected from thiourea, N,N'-diethylthiourea, trimethylthiourea, N,N'- diphenylthiourea, and N-N'-dimethylthiourea.
- Vulcanization inhibitors are used to control the vulcanization process and generally retard or inhibit vulcanization until the desired time and/or temperature is reached.
- Common vulcanization inhibitors include, but are not limited to, PVI (cyclohexylthiophthalmide) from Santogard.
- the amount of vulcanization inhibitor is 0.1 to 3 phr (e.g., 0.1, 0.5, 1, 1.5, 2, 2.5, or 3 phr), preferably 0.5 to 2 phr [e.g., 0.5, 1, 1.5, or 2 phr).
- Various other ingredients that may optionally be added to the rubber compositions of the first and second embodiment as disclosed herein include waxes (which in some instances are antioxidants), processing aids, reinforcing resins, peptizers, and antioxidants/antidegradant.
- Ingredients which are antidegradants may also be classified as an antiozonant or antioxidant, such as those selected from: N,N'disubstituted-p- phenylenediamines, such as N-l,3-dimethylbutyl-N'phenyl-p-phenylenediamine (6PPD), N,N'- Bis(l,4-dimethylpently)-p-phenylenediamine (77PD), N-phenyl-N-isopropyl-p-phenylenediamine (IPPD), and N-phenyl-N'-(l,3-dimethylbutyl)-p-phenylenediamine (HPPD).
- N,N'disubstituted-p- phenylenediamines such as N-l,3-dimethylbutyl-N'phenyl-p-phenylenediamine (6PPD), N,N'- Bis(l,4-dimethylpently)-p-phen
- antidegradants include, acetone diphenylamine condensation product, 2,4-Trimethyl-l,2- dihydroquinoline, Octylated Diphenylamine, 2,6-di-t-butyl-4-methyl phenol and certain waxes.
- the composition may be free or essentially free of antidegradants such as antioxidants or antiozonants.
- the tread rubber composition is prepared by combining the ingredients for the rubber composition (as disclosed above) by methods known in the art, such as, for example, by kneading the ingredients together in a Banbury mixer or on a milled roll. Such methods generally include at least one non-productive master-batch mixing stage and a final productive mixing stage.
- non-productive master-batch stage is known to those of skill in the art and generally understood to be a mixing stage (or stages) where no vulcanizing agents or vulcanization accelerators are added.
- final productive mixing stage is also known to those of skill in the art and generally understood to be the mixing stage where the vulcanizing agents and vulcanization accelerators are added into the rubber composition.
- the rubber composition is prepared by a process comprising more than one non-productive master-batch mixing stage.
- the tread rubber composition is prepared by a process wherein the master-batch mixing stage includes at least one of tandem mixing or intermeshing mixing.
- Tandem mixing can be understood as including the use of a mixer with two mixing chambers with each chamber having a set of mixing rotors; generally, the two mixing chambers are stacked together with the upper mixer being the primary mixer and the lower mixer accepting a batch from the upper or primary mixer.
- the primary mixer utilizes intermeshing rotors and in other embodiments the primary mixer utilizes tangential rotors.
- the lower mixer utilizes intermeshing rotors.
- Intermeshing mixing can be understood as including the use of a mixer with intermeshing rotors.
- Intermeshing rotors refers to a set of rotors where the major diameter of one rotor in a set interacts with the minor diameter of the opposing rotor in the set such that the rotors intermesh with each other. Intermeshing rotors must be driven at an even speed because of the interaction between the rotors.
- tangential rotors refers to a set of rotors where each rotor turns independently of the other in a cavity that may be referred to as a side.
- a mixer with tangential rotors will include a ram whereas a ram is not necessary in a mixer with intermeshing rotors.
- the rubbers (or polymers) and at least one reinforcing filler will be added in a non-productive or master-batch mixing stage or stages.
- at least the vulcanizing agent component and the vulcanizing accelerator component of a cure package will be added in a final or productive mixing stage.
- the rubber composition is prepared using a process wherein at least one non-productive master batch mixing stage is conducted at a temperature of about 130 °C to about 200 °C.
- the tread rubber composition is prepared using a final productive mixing stage conducted at a temperature below the vulcanization temperature in order to avoid unwanted pre-cure of the rubber composition. Therefore, the temperature of the productive or final mixing stage generally should not exceed about 120 °C and is typically about 40 °C to about 120 °C, or about 60 °C to about 110 °C and, especially, about 75 °C to about 100 °C.
- the tread rubber composition is prepared according to a process that includes at least one non-productive mixing stage and at least one productive mixing stage.
- the use of silica fillers may optionally necessitate a separate re-mill stage for separate addition of a portion or all of such filler. This stage often is performed at temperatures similar to, although often slightly lower than, those employed in the masterbatch stage, i.e., ramping from about 90°C to a drop temperature of about 150°C.
- the tread of the tire has an improved stiffness.
- a method is provided for improving the stiffness of a tire tread.
- Measurements of E' (dynamic storage modulus) at different temperatures can provide an indication of various properties of a rubber composition when it is utilized as a tire tread (e.g., E' at -20 °C correlates to snow traction with a relatively lower E' indicating better snow traction, and E' at 30 °C correlates to stiffness or cornering with a relatively higher E' indicating improved stiffness or cornering).
- the stiffness properties referred to herein can be quantified by measuring the E' at 30 °C of a sample rubber composition after curing at 170 °C for 15 minutes.
- E' measurements can be performed using Gabo equipment according to the following methods. Gabo measurements may be made using a dynamic mechanical thermal spectrometer (Eplexor ® 500N from Gabo Qualimeter Testanlagen GmbH of Ahiden, Germany) under the following conditions: measurement mode: tensile test mode, measuring frequency: 52 Hz, applying 0.2% strain from 50 to -5 °C and 1% strain from -5 to 65 °C, measuring temperatures (including e.g., - 20 °C, 30 °C, etc.), sample shape: 4.75 mm wide x 29 mm long x 2.0 mm thick.
- Tan d values can be measured with a dynamic mechanical thermal spectrometer (Eplexor ® 500N from Gabo Qualimeter Testanlagen GmbH of Ahiden, Germany) generally following the guidelines of ASTM D5992-96 (2011) under the following conditions: measurement mode: tensile test mode; measuring frequency: 52 Hz; temperature sweep measurement, applying 0.2% strain from -50 to -5 °C and 1% strain from -5 to 65 °C, with the starting temperature being somewhat below -50 °C and the ending temperature being somewhat above -5 °C; collecting data approximately every 1 °C in order to provide measurements at temperatures of -30 °C, 0 °C, 30°C, and 60 °C; sample shape: 4.75 mm wide x 29 mm long x 2.0 mm thick.
- a rubber composition's tan d at 0 °C is indicative of its wet traction when incorporated into a tire tread and its tan d at 60 °C is indicative of its rolling resistance when incorporated into a tire tread.
- the rubber composition for the tire tread has a stiffness as measured by E' at 30 °C of at least 15 (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, or more), preferably at least 17 (e.g., 17, 18, 19, 20, 21, 22, 23, or more), more preferably at least 20 (e.g., 20, 21, 22, 23, or more).
- the rubber composition for the tire tread has a stiffness as measured by E' at 30 °C of 15-25, 15-23, 17-25, 17-23, 20-25, or 20-23.
- the rubber composition for the tire tread has a wet performance as measured by tan d at 0 °C of at least 0.42 (e.g., 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, or more), preferably at least 0.45 (e.g., 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, or more).
- the rubber composition for the tire tread has a wet performance as measured by tan d at 0 °C of 0.42-0.6, 0.42-0.55, or 0.42-0.5, preferably 0.45-0.6, 0.45-0.55, or 0.45-0.5.
- the rubber composition forthe tire tread has a wet performance falling within one of the foregoing ranges in combination with a stiffness falling within one of the foregoing ranges; in certain such embodiments, the wet performance and stiffness both fall within the foregoing preferred (or more preferred) ranges.
- the rubber composition for the tire tread has a rolling resistance as measured by tan d at 60 °C of no more than 0.35 (e.g., 0.35, 0.34, 0.33, 0.32, 0.31, 0.3, 0.29, 0.28, 0.27, 0.26, 0.25, or less), preferably no more than 0.33 (e.g., 0.33, 0.32, 0.31, 0.3, 0.29, 0.28, 0.27, 0.26, 0.25, or less).
- the rubber composition for the tire tread has a rolling resistance as measured by tan d at 60 °C of 0.2-0.35, 0.22-0.35, or 0.25-0.35, preferably 0.2-0.33, 0.22-0.33, or 0.25-0.33.
- the rubber composition for the tire tread has a rolling resistance falling within one of the foregoing ranges in combination with a stiffness falling within one of the foregoing ranges; in certain such embodiments, the rolling resistance and stiffness both fall within the foregoing preferred (or more preferred) ranges.
- the rubber composition for the tire tread has a stiffness, wet performance and rolling resistance falling within one of the foregoing ranges; in certain such embodiments, the stiffness, wet performance and rolling resistance all fall within the foregoing preferred (or most preferred) ranges.
- the rubber composition for the tire tread has snow performance as measured by E' at -20 °C of no more than 200 (e.g., 200, 190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, or less), preferably no more than 150 (e.g., 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, or less).
- the rubber composition for the tire tread has snow performance as measured by E' at -20 °C of 40-200, 50-200, or 60-200, preferably 40-150, 50-150, or 60-150.
- the rubber composition for the tire tread has a snow performance falling within one of the foregoing ranges in combination with a stiffness falling within one of the foregoing ranges; in certain such embodiments, the snow performance and stiffness both fall within the foregoing preferred (or more preferred) ranges. In certain preferred embodiments of the first and second embodiments, the rubber composition for the tire tread has a snow performance falling within one of the foregoing ranges in combination with a rolling resistance falling within one of the foregoing ranges; in certain such embodiments, the snow performance and rolling resistance both fall within the foregoing preferred (or more preferred) ranges.
- the rubber composition for the tire tread has a snow performance falling within one of the foregoing ranges in combination with a wet performance falling within one of the foregoing ranges; in certain such embodiments, the snow performance and wet performance both fall within the foregoing preferred (or more preferred) ranges.
- the rubber composition for the tire tread has a snow performance, stiffness, wet performance and rolling resistance falling within one of the foregoing ranges; in certain such embodiments, the snow performance, stiffness, wet performance and rolling resistance all fall within the foregoing preferred (or most preferred) ranges.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
Abstract
Disclosed herein are tires having a tread having stiffness made from a rubber composition of specified ingredients including an elastomer component, a resin component including a terpene phenol resin having a specified hydroxyl value and a DCPD-based resin, a filler component including reinforcing silica filler and carbon black, optionally a liquid plasticizer, and a cure package. Also disclosed are methods for stiffness in a tire tread by using a resin component comprising a terpene phenol resin having a specified hydroxyl value and a DCPD-based resin in a rubber composition comprising an elastomer component, a filler component including reinforcing silica filler and carbon black, optionally a liquid plasticizer, and a cure package.
Description
TIRE HAVING TREAD OF SPECIFIED RUBBER COMPOSITION AND RELATED METHODS
FIELD
[0001] The present application is directed to tires having a tread of a specified rubber compositions and related methods.
BACKGROUND
[0002] Tires comprise many components including a road-contacting tread. The particular ingredients used to prepare the rubber composition which comprises the tire tread may vary. Formulation of tire tread rubber compositions is a complex science since changes to the formulation which result in an improvement in one property (e.g., wet performance) may result in deterioration of another property (e.g., stiffness).
SUMMARY
[0003] Disclosed herein are tires having a tread of a specified rubber composition and related methods.
[0004] In a first embodiment, a tire comprising a tread having improved stiffness and made from a rubber composition is disclosed. According to the first embodiment, the rubber composition comprises: (a) 100 parts of an elastomer component including at least one rubber selected from the group consisting of styrene-butadiene copolymer, polybutadiene, natural rubber, and polyisoprene, (b) 30 to 60 phr of a resin component comprising 20 to 50 phr of a terpene phenol resin having a hydroxyl value of 50 or less, preferably 30 or less, more preferably 20 or less and a DCPD-based resin, (c) a filler component comprising (i) 91 to 140 phr of a reinforcing silica filler, preferably 100 to 130 phr, and (ii) 1 to 20 phr, preferably 5 to 10 phr of a carbon black filler, (d) 0 to 30 phr of a liquid plasticizer, and (e) a cure package.
[0005] In a second embodiment, a method is disclosed for improving the stiffness of a tire tread. According to the second embodiment, the method comprises utilizing 30 to 60 phr of a resin component comprising 20 to 50 phr of a terpene phenol resin having a hydroxyl value of 50 or less, preferably 30 or less, more preferably 20 or less and a DCPD-based resin in a tire tread rubber composition comprising 100 parts of an elastomer component including at least one rubber selected from the group consisting of styrene-butadiene copolymer, polybutadiene,
natural rubber, and polyisoprene; a filler component comprising 91 to 140 phr of a reinforcing silica filler, and 1 to 20 phr, preferably 5 to 10 phr of a carbon black filler; 0 to 30 phr of a liquid plasticizer; and a cure package, thereby producing a rubber composition for the tire tread.
DETAILED DESCRIPTION
[0006] Disclosed herein are tires having a tread of a specified rubber composition and related methods.
[0007] In a first embodiment, a tire comprising a tread having improved stiffness and made from a rubber composition is disclosed. According to the first embodiment, the rubber composition comprises: (a) 100 parts of an elastomer component including at least one rubber selected from the group consisting of styrene-butadiene copolymer, polybutadiene, natural rubber, and polyisoprene, (b) 30 to 60 phr of a resin component comprising 20 to 50 phr of a terpene phenol resin having a hydroxyl value of 50 or less, preferably 30 or less, more preferably 20 or less and a DCPD-based resin, (c) a filler component comprising (i) 91 to 140 phr of a reinforcing silica filler, preferably 100 to 130 phr, and (ii) 1 to 20 phr, preferably 5 to 10 phr of a carbon black filler, (d) 0 to 30 phr of a liquid plasticizer, and (e) a cure package.
[0008] In a second embodiment, a method is disclosed for improving the stiffness of a tire tread. According to the second embodiment, the method comprises utilizing 30 to 60 phr of a resin component comprising 20 to 50 phr of a terpene phenol resin having a hydroxyl value of 50 or less, preferably 30 or less, more preferably 20 or less and a DCPD-based resin in a tire tread rubber composition comprising 100 parts of an elastomer component including at least one rubber selected from the group consisting of styrene-butadiene copolymer, polybutadiene, natural rubber, and polyisoprene; a filler component comprising 91 to 140 phr of a reinforcing silica filler, and 1 to 20 phr, preferably 5 to 10 phr of a carbon black filler; 0 to 30 phr of a liquid plasticizer; and a cure package, thereby producing a rubber composition for the tire tread. The method of the second embodiment can also be understood as a method for improving the stiffness of a tire tread using a rubber composition according to the first embodiment disclosed herein.
Definitions
[0009] The terminology as set forth herein is for description of the embodiments only and should not be construed as limiting the invention as a whole.
[0010] As used herein, the term "BR" or "polybutadiene" refers to homopolymer of 1,3- butadiene.
[0011] As used herein, the term "majority" refers to more than 50% (e.g., at least 50.1%, at least 50.5%, at least 51%, etc.).
[0012] As used herein, the term "minority" refers to less than 50% (e.g., no more than 49.5%, no more than 49%, etc.).
[0013] As used herein, the abbreviation Mn is used for numberaverage molecularweight.
[0014] As used herein, the abbreviation Mp is used for peak molecular weight.
[0015] As used herein, the abbreviation Mw is used for weight average molecularweight.
[0016] Unless otherwise indicated herein, the term "Mooney viscosity" refers to the Mooney viscosity, MLi+4. As those of skill in the art will understand, a rubber composition's Mooney viscosity is measured prior to vulcanization or curing.
[0017] As used herein, the term "natural rubber" means naturally occurring rubber such as can be harvested from sources such as Hevea rubber trees and non-/7eveo sources (e.g., guayule shrubs and dandelions such as TKS). In other words, the term "natural rubber" should be construed so as to exclude synthetic polyisoprene.
[0018] As used herein, the term "phr" means parts per one hundred parts rubber. The one hundred parts rubber is also referred to herein as 100 parts of an elastomer component.
[0019] As used herein the term "polyisoprene" means synthetic polyisoprene. In other words, the term is used to indicate a polymer that is manufactured from isoprene monomers, and should not be construed as including naturally occurring rubber (e.g., Hevea natural rubber, guayule-sourced natural rubber, or dandelion-sourced natural rubber). However, the term polyisoprene should be construed as including polyisoprenes manufactured from natural sources of isoprene monomer.
[0020] As used herein the term "SBR" means styrene-butadiene copolymer rubber.
[0021] As used herein, the term "tread," refers to both the portion of a tire that comes into contact with the road under normal inflation and load as well as any subtread.
Rubber Composition Of The Tire Tread
[0022] As mentioned above, the first and second embodiments disclosed herein are directed to a tire comprising a tread having improved stiffness and made from a specified rubber composition and to a method for improving the stiffness of a tire tread by producing a specified rubber composition. The rubber compositions are used in preparing treads for tires, generally by a process which includes forming of a tread pattern by molding and curing one of the rubber compositions. Thus, the tire treads will contain a cured form of one of the rubber compositions. The rubber compositions may be present in the form of a tread which has been formed but not yet incorporated into a tire and/or they may be present in a tread which forms part of a tire.
Elastomer Component
[0023] As mentioned above, according to the first and second embodiments, the rubber composition for the tire tread includes 100 parts of an elastomer component which includes at least one rubber selected from the group consisting of styrene-butadiene copolymer, polybutadiene, natural rubber, polyisoprene, and combinations thereof. The total amount of 100 parts of elastomer or rubber is used so that the amount of other ingredients may be listed in amounts of phr or the number of parts per hundred parts of rubber (or 100 parts of the elastomer component). As a non-limiting example, for a rubber composition containing 25 parts of styrene- butadiene rubber, 55 parts of polybutadiene, 20 parts of natural rubber, and 110 parts of reinforcing silica filler, the amount of silica filler can also be described as 110 phr. In certain embodiments of the first and second embodiments, the 100 parts of elastomer component includes at least one styrene-butadiene copolymer rubber, at least one polybutadiene rubber, and at least one of natural rubber or polyisoprene. In certain such embodiments, only one of each of the foregoing rubbers is used for the elastomer component, i.e., one SBR, one BR, and one of natural rubber of polyisoprene. In certain embodiments of the first and second embodiments, the elastomer component includes at least 40 parts of natural rubber, 10-40 parts of polybutadiene having a cis-bond content of at least 95% and a Tg of less than -101 ° C, and 10-
40 parts of styrene-butadiene copolymer rubber. In other embodiments of the first and second embodiments, the elastomer component includes at least 60 parts of polybutadiene rubber having a cis-bond content of at least 95% and a Tg of less than -101 ° C. In yet other embodiments of the first and second embodiments, the elastomer component includes at least 20 phr, preferably 30-60 phr of an SBR having a silica-reactive functional group, as discussed in more detail below.
[0024] In certain embodiments of the first and second embodiments, the 100 parts of elastomer component consists (only) of rubbers selected from styrene-butadiene copolymer, polybutadiene, natural rubber, polyisoprene, and combinations thereof. In other embodiments of the first and second embodiments, the 100 parts of elastomer component includes one or more additional rubbers. According to the first and second embodiments, when one or more additional rubbers is present, the amount will generally be limited, preferably to no more than 20 parts (e.g., 20 parts, 15 parts, 10 parts, 5 parts, or less), no more than 15 parts (e.g., 15 parts, 10 parts, 5 parts, or less), or no more than 5 parts (e.g., 5 parts, 4 parts, 3 parts, 2 parts, 1 part, or less). In certain embodiments of the first and second embodiments, one or more additional rubbers are selected from diene monomer-containing rubbers. In certain embodiments, the one or more additional rubbers (iv) are selected from the group consisting of styrene-isoprene rubber, butadiene-isoprene rubber, styrene-isoprene-butadiene rubber, butyl rubber (both halogenated and non-halogenated), ethylene-propylene rubber (EPR), ethylene-butylene rubber (EBR), ethylene-propylene-diene rubber (EPDM), and combinations thereof.
Styrene-Butadiene Copolymer Rubber
[0025] According to the first and second embodiments, when one or more styrene- butadiene copolymer rubbers are used, the particular styrene-butadiene copolymer(s) and the amount thereof that is used in the elastomer component of the rubber composition for tire treads may vary. One or more than one (e.g., two orthree) styrene-butadiene copolymer rubbers may be used. In certain embodiments of the first and second embodiments, the elastomer component includes at least 20 phr (e.g., 20 phr, 30 phr, 40 phr, 50 phr, 60 phr, 70 phr, 80 phr, etc.) of a styrene-butadiene copolymer rubber. In certain other embodiments of the first and second embodiments, the elastomer component includes a majority by weight of a styrene-
butadiene copolymer rubber (e.g., 51 phr or more, 60 phr or more, 70 phr or more, 51-80 phr, 51-70 phr, 60-80 phr, etc.). According to the first and second embodiments, the styrene- butadiene copolymer rubber may be functionalized or non-functionalized. As used herein, the term functionalized should be understood to encompass the use of both functional groups and coupling agents. One or more than one type of functional group may be utilized for each SBR. Generally, a functional group may be present at the head of the polymer, at the tail of the polymer, along the backbone of the polymer chain, or a combination thereof. Functional groups present at one or both terminals of a polymer are generally the result of the use of a functional initiator, a functional terminator, or both. Alternatively or additionally, the functional group may be present as a result of coupling of multiple polymer chains using a coupling agent (as described below). In certain preferred embodiments of the first and second embodiments, the rubber component includes at least one styrene-butadiene copolymer rubber that is functionalized, preferably with a silica-reactive functional group. In certain embodiments of the first and second embodiments, the only styrene-butadiene copolymer rubber used in the elastomer component is a styrene-butadiene copolymer rubber functionalized with a silica-reactive functional group. In certain of the foregoing embodiments, the amount of styrene-butadiene copolymer rubber having a silica-reactive functional group is at least 20 phr (e.g., 20 phr, 30 phr, 40 phr, 50 phr, 60 phr, 70 phr, 80 phr, etc.), preferably 30-60 phr (e.g., 30 phr, 40 phr, 50 phr, or 60 phr). In other embodiments of the first and second embodiments, the elastomer component includes at least one styrene-butadiene rubber which is not functionalized; in certain such embodiments, the non- functionalized styrene-butadiene rubber is used in combination with a functionalized styrene- butadiene copolymer rubber, e.g., functionalized with a silica-reactive functional group. Non limiting examples of silica-reactive functional groups generally include nitrogen-containing functional groups, silicon-containing functional groups, oxygen- or sulfur-containing functional groups, and metal-containing functional groups, as discussed in more detail below.
[0026] When a functionalized SBR is used in the elastomer component for certain embodiments of the first and second embodiments, the functionalization can be achieved by adding a functional group to one or both terminus of the polymer, by adding a functional group to the backbone of the poly (or a combination of the foregoing) or by coupling more than one
polymer chains to a coupling agent, or by a combination thereof. Such effects can be achieved by treating a living polymer with coupling agents, functionalizing agents, or a combination thereof which serve to couple and/or functionalize other chains. In certain embodiments of the first and second embodiments, the functionalized SBR contains one or more functional groups but is not coupled (i.e., does not contain any coupling agents). Generally, a coupling agent and/or functionalizing agent can be used at various molar ratios. Alternatively, in certain embodiments of the first and second embodiments, the functionalized SBR may be silica-reactive merely from the result of using a coupling agent. Although reference is made herein to the use of both coupling agents and functionalizing groups (and compounds used therefor), those skilled in the art appreciate that certain compounds may serve both functions. That is, certain compounds may both couple and provide the polymer chains with a functional group. Those skilled in the art also appreciate that the ability to couple polymer chains may depend upon the amount of coupling agent reacted with the polymer chains. For example, advantageous coupling may be achieved where the coupling agent is added in a one to one ratio between the equivalents of lithium on the initiator and equivalents of leaving groups (e.g., halogen atoms) on the coupling agent. Non-limiting examples of coupling agents include metal halides, metalloid halides, alkoxysilanes, alkoxystannanes, and combinations thereof.
[0027] Non-limiting examples of nitrogen-containing functional groups that can be utilized in certain embodiments of the first and second embodiments as a silica-reactive functional group in the SBR include, but are not limited to, a substituted or unsubstituted amino group, an amide residue, an isocyanate group, an imidazolyl group, an indolyl group, an imino group, a nitrile group, a pyridyl group, and a ketimine group. The foregoing substituted or unsubstituted amino group should be understood to include a primary alkylamine, a secondary alkylamine, or a cyclic amine, and an amino group derived from a substituted or unsubstituted imine. In certain embodiments of the first and second embodiments, the SBR of the elastomer component comprises at one silica-reactive functional group selected from the foregoing list of nitrogen-containing functional groups.
[0028] In certain embodiments of the first and second embodiments, the SBR includes a silica-reactive functional group from a compound which includes nitrogen in the form of an imino group. Such an imino-containing functional group may be added by reacting the active terminal of a polymer chain with a compound having the following formula (I):
wherein R, R', R”, and R'” each independently are selected from a group having 1 to 18 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 carbon atoms) selected from the group consisting of an alkyl group, an allyl group, and an aryl group; m and n are integers of 1 to 20 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20) and 1 to 3 (1, 2, or 3), respectively. Each of R, R', R”, and R'” are preferably hydrocarbyl and contain no heteroatoms. In certain embodiments of the first and second embodiments, each R and R' are independently selected from an alkyl group having 1 to 6 carbon atoms (e.g., 1, 2, 3, 4, 5, or 6 carbon atoms), preferably 1 to 3 carbon atoms (e.g., 1, 2, or 3 carbon atoms). In certain embodiments of the first and second embodiments, m is an integer of 2 to 6 (e.g., 2, 3, 4, 5, or 6), preferably 2 to 3. In certain embodiments of the first and second embodiments, R'” is selected from a group having 1 to 6 carbon atoms (e.g., 1, 2, 3, 4, 5, or 6 carbon atoms), preferably 2 to 4 carbon atoms (e.g., 2, 3, or 4 carbon atoms). In certain embodiments of the first and second embodiments, R” is selected from an alkyl group having 1 to 6 carbon atoms (e.g., 1, 2, 3, 4, 5, or 6 carbon atoms), preferably 1 to 3 carbon atoms (e.g., 1, 2, or 3 carbon atoms), most preferably 1 carbon atom (e.g., methyl). In certain embodiments of the first and second embodiments, n is 3 resulting in a compound with a trihydrocarboxysilane moiety such as a trialkoxysilane moiety. Non-limiting examples of compounds having an imino group and meeting formula (I) above, which are suitable for providing the silica-reactive functional group for the SBR include, but are not limited to, N-(l,3-dimethylbutylidene)-3-(triethoxysilyl)-l-propaneamine, N-(l- methylethylidene)-3-(triethoxysilyl)-l-propaneamine, N-ethylidene-3-(triethoxysilyl)-l-
propaneamine, N-(l-methylpropylidene)-3-(triethoxysilyl)-l-propaneamine, and N-(4-N,N- dimethylaminobenzylidene )-3-( triethoxysilyl)-l-propaneamine.
[0029] Non-limiting examples of silicon-containing functional groups that can be utilized in certain embodiments of the first and second embodiments as a silica-reactive functional group in the SBR include, but are not limited to, an organic silyl or siloxy group, and more precisely, such a functional group may be selected from an alkoxysilyl group, an alkylhalosilyl group, a siloxy group, an alkylaminosilyl group, and an alkoxyhalosilyl group. Optionally, the organic silyl or siloxy group may also contain one or more nitrogens. Suitable silicon-containing functional groups for use in functionalizing diene-based elastomers also include those disclosed in U.S. Patent No. 6,369,167, the entire disclosure of which is herein incorporated by reference. In certain embodiments of the first and second embodiments, the SBR comprises at least one silica- reactive functional group selected from the foregoing list of silicon-containing functional groups.
[0030] In certain embodiments of the first and second embodiments, the SBR includes a silica-reactive functional group which includes a silicon-containing functional group having a siloxy group (e.g., a hydrocarbyloxysilane-containing compound), wherein the compound optionally includes a monovalent group having at least one functional group. Such a silicon- containing functional group may be added by reacting the active terminal of a polymer chain with a compound having the following formula (II):
wherein A1 represents a monovalent group having at least one functional group selected from epoxy, isocyanate, imine, cyano, carboxylic ester, carboxylic anhydride, cyclic tertiary amine, non-cyclic tertiary amine, pyridine, silazane and sulfide; Rc represents a single bond or a divalent hydrocarbon group having from 1 to 20 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 carbon atoms); Rd represents a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, or 20 carbon atoms), a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 carbon atoms) or a reactive group; Re represents a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 carbon atoms) or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 carbon atoms); b is an integer of 0 to 2; when more than one Rd or ORe are present, each Rd and/or ORe may be the same as or different from each other; and an active proton is not contained in a molecule) and/or a partial condensation product thereof. As used herein, a partial condensation product refers to a product in which a part (not all) of a SiOR group in the hydrocarbyloxysilane compound is turned into a SiOSi bond by condensation. In certain embodiments of the first and second embodiments, at least one of the following is met: (a) Rc represents a divalent hydrocarbon group having 1 to 12 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 carbon atoms), 2 to 6 carbon atoms (e.g., 2, 3, 4, 5, or 6 carbon atoms), or 2 to 3 carbon atoms (e.g., 2 or 3 carbon atoms); (b) Re represents a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 carbon atoms), 2 to 6 carbon atoms (e.g., 2, 3, 4, 5, or 6 carbon atoms), or 1 to 2 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 8 carbon atoms; (c) Rd represents a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms(e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 carbon atoms), 2 to 6 carbon atoms (e.g., 2, 3, 4, 5, or 6 carbon atoms), or 1 to 2 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 8 carbon atoms; in certain such embodiments, each of (a), (b) and (c) are met and Rc, Re and Rd are selected from one of the foregoing groups.
[0031] In certain embodiments of the first and second embodiments, the functional group of the SBR results from a compound represented by Formula (II) wherein A1 has at least one epoxy group. Non-limiting specific examples of such compounds include 2- glycidoxyethyltrimethoxysilane, 2-glycidoxyethyltriethoxysilane, (2- glycidoxyethyl)methyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- glycidoxypropyltriethoxysilane, (3-glycidoxypropyl)-methyldimethoxysilane, 2-(3,4- epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 2-(3,4-
epoxycyclohexyl)ethyl(methyl)dimethoxysilane and the like. Among them, 3- glycidoxypropyltrimethoxysilane and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane are particularly suited.
[0032] In certain embodiments of the first and second embodiments, the functional group of the SBR results from a compound represented by Formula (II) wherein A1 has at least one isocyanate group. Non-limiting specific examples of such compounds include 3- isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3- isocyanatopropylmethyldiethoxysilane, 3-isocyanatopropyltriisopropoxysilane and the like, and among them, 3-isocyanatopropyltrimethoxysilane is particularly preferred.
[0033] In certain embodiments of the first and second embodiments, the functional group of the SBR results from a compound represented by Formula (II) wherein A1 has at least one imine group. Non-limiting specific examples of such compounds include N-(l,3- dimethylbutylidene)-3-(triethoxysilyl)-l-propaneamine, N-(l-methylethylidene)-3-
(triethoxysilyl)-l-propaneamine, N-ethylidene-3-(triethoxysilyl)-l-propaneamine, N-(l- methylpropylidene)-3-(triethoxysilyl)-l-propaneamine, N-(4-N,N-dimethylaminobenzylidene)-3- (triethoxysilyl)-l-propaneamine, N-(cyclohexylidene)-3-(triethoxysilyl)-l-propaneamine and trimethoxysilyl compounds, methyldiethoxysilyl compounds, ethyldimethoxysilyl compounds and the like each corresponding to the above triethoxysilyl compounds. Among them, N-(l,3- dimethylbutylidene)-3-(triethoxysilyl)-l-propaneamine and N-(l-methylpropylidene)-3- (triethoxysilyl)-l-propaneamine are particularly suited. Also, the imine(amidine) group- containing compounds include preferably l-[3-trimethoxysilyl]propyl]-4,5-dihydroimidazole, 3- (l-hexamethyleneimino)propyl(triethoxy)silane, (1- hexamethyleneimino)methyl(trimethoxy)silane, N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole, N-(3-isopropoxysilylpropyl)-4,5-dihydroimidazole, N-(3-methyldiethoxysilylpropyl)-4,5- dihydroimidazole and the like, and among them, N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole and N-(3-isopropoxysilylpropyl)-4,5-dihydroimidazole are preferred.
[0034] In certain embodiments of the first and second embodiments, the functional group of the SBR results from a compound represented by Formula (II) wherein A1 has at least one carboxylic ester group. Non-limiting specific examples of such compounds include 3-
methacryloyloxypropyltriethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3- methacryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropyltriisopropoxysilane and the like, and among them, 3-methacryloyloxypropyltriethoxysilane is preferred.
[0035] In certain embodiments of the first and second embodiments, the functional group of the SBR results from a compound represented by Formula (II) wherein A1 has at least one carboxylic anhydride group. Non-limiting specific examples of such compounds include 3- trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilylpropylsuccinic anhydride, 3- methyldiethoxysilylpropylsuccinic anhydride and the like, and among them, 3- triethoxysilylpropylsuccinic anhydride is preferred.
[0036] In certain embodiments of the first and second embodiments, the functional group of the SBR results from a compound represented by Formula (II) wherein A1 has at least one cyano group. Non-limiting specific examples of such compounds include 2- cyanoethylpropyltriethoxysilane and the like.
[0037] In certain embodiments of the first and second embodiments, the functional group of the SBR results from a compound represented by Formula (II) wherein A1 has at least one cyclic tertiary amine group. Non-limiting specific examples of such compounds include 3-(l- hexamethyleneimino)propyltriethoxysilane, 3-(l-hexamethyleneimino)propyltrimethoxysilane, (l-hexamethyleneimino)methyltriethoxysilane, (1- hexamethyleneimino)methyltrimethoxysilane, 2-(l-hexamethyleneimino)ethyltriethoxysilane, 3-(l-hexamethyleneimino)ethyltrimethoxysilane, 3-(l-pyrrolidinyl)propyltrimethoxysilane, 3-(l- pyrrolidinyl)propyltriethoxysilane, 3-(l-heptamethyleneimino)propyltriethoxysilane, 3-(l- dodecamethyleneimino)propyltriethoxysilane, 3-(l- hexamethyleneimino)propyldiethoxymethylsilane, 3-(l- hexamethyleneimino)propyldiethoxyethylsilane, 3-[10-(triethoxysilyl)decyl]-4-oxazoline and the like. Among them, 3-(l-hexamethyleneimino)propyltriethoxysilane and (1- hexamethyleneimino)methyltriethoxysilane can preferably be listed.
[0038] In certain embodiments of the first and second embodiments, the functional group of the SBR results from a compound represented by Formula (II) wherein A1 has at least
one non-cyclic tertiary amine group. Non-limiting specific examples of such compounds include
3-dimethylaminopropyltriethoxysilane, 3-dimethylaminopropyltrimethoxysilane, 3- diethylaminopropyltriethoxysilane, 3-dimethylaminopropyltrimethoxysilane, 2- dimethylaminoethyltriethoxysilane, 2-dimethylaminoethyltrimethoxysilane, 3- dimethylaminopropyldiethoxymethylsilane, 3-dibutylaminopropyltriethoxysilane and the like, and among them, 3-dimethylaminopropyltriethoxysilane and 3- diethylaminopropyltriethoxysilane are suited.
[0039] In certain embodiments of the first and second embodiments, the functional group of the SBR results from a compound represented by Formula (II) wherein A1 has at least one pyridine group. Non-limiting specific examples of such compounds include 2- trimethoxysilylethylpyridine and the like.
[0040] In certain preferred embodiments of the first and second embodiments, the functional group of the SBR results from a compound represented by Formula (II) wherein A1 has at least one silazane group. Non-limiting specific examples of such compounds include N,N- bis(trimethylsilyl)-aminopropylmethyldimethoxysilane, l-trimethylsilyl-2,2-dimethoxy-l-aza-2- silacyclopentane, N,N-bis(trimethylsilyl)aminopropyltrimethoxysilane, N,N- bis(trimethylsilyl)aminopropyltriethoxysilane, N,N- bis(trimethylsilyl)aminopropylmethyldiethoxysilane, N,N- bis(trimethylsilyl)aminoethyltrimethoxysilane, N,N-bis(trimethylsilyl)aminoethyltriethoxysilane, N,N-bis(trimethylsilyl)aminoethylmethyldimethoxysilane, N,N- bis(trimethylsilyl)aminoethylmethyldiethoxysilane and the like. N,N- bis(trimethylsilyl)aminopropyltriethoxysilane, N,N- bis(trimethylsilyl)aminopropylmethyldiethoxysilane or l-trimethylsilyl-2,2-dimethoxy-l-aza-2- silacyclopentane are particularly preferred.
[0041] In those embodiments of the first and second embodiments wherein a silica- reactive functional group according to formula (II) is used wherein A1 contains one or more protected nitrogens (as discussed in detail above), the nitrogen(s) may be deprotected or deblocked by hydrolysis or other procedures to convert the protected nitrogen(s) into a primary nitrogen. As a non-limiting example, a nitrogen bonded to two trimethylsilyl groups could be
deprotected and converted to a primary amine nitrogen (such a nitrogen would still be bonded to the remainder of the formula (II) compound). Accordingly, in certain embodiments of the first and second embodiments wherein a silica-reactive functional group of the SBR results from use of a compound according to formula (II) wherein A1 contains one or more protected nitrogens, the functionalized polymer can be understood as containing a functional group resulting from a deprotected (or hydrolyzed) version of the compound.
[0042] Non-limiting examples of oxygen- or sulfur-containing functional groups that can be utilized in certain embodiments of the first and second embodiments as a silica-reactive functional group in the SBR include, but are not limited to, a hydroxyl group, a carboxyl group, an epoxy group, a glycidoxy group, a diglycidylamino group, a cyclic dithiane-derived functional group, an ester group, an aldehyde group, an alkoxy group, a ketone group, a thiocarboxyl group, a thioepoxy group, a thioglycidoxy group, a thiodiglycidylamino group, a thioester group, a thioaldehyde group, a thioalkoxy group, and a thioketone group. In certain embodiments of the first and second embodiments, the foregoing alkoxy group may be an alcohol-derived alkoxy group derived from a benzophenone. In certain embodiments of the first and second embodiments, the SBR comprises at least silica-reactive functional group selected from the foregoing list of oxygen- or sulfur-containing functional groups.
[0043] According to the first and second embodiments, the one or more SBRs including SBRs having a silica-reactive functional group may be prepared by either solution polymerization or by emulsion polymerization. In certain preferred embodiments of the first and second embodiments, the only SBR or SBR having a silica-reactive functional group is prepared by solution polymerization. In other embodiments of the first and second embodiments, the only SBR or SBR having a silica-reactive functional group is prepared by emulsion polymerization. In certain embodiments of the first and second embodiments, when more than one SBR or SBR having a silica-reactive functional group is used, the rubbers are a combination of solution polymerized SBR and emulsion polymerized SBR (e.g., one solution SBR and one emulsion SBR). In certain embodiments of the first and second embodiments, the only SBR(s) present in the elastomer component (including for the SBR having a silica-reactive functional group) is a solution SBR (i.e., no emulsion SBR is present).
[0044] In one or more embodiments of the first and second embodiments, the coupling agent for the SBR comprises a metal halide or metalloid halide selected from the group comprising compounds expressed by the formula (1)
e formula (2) MCU4, and the formula (3) M Y , where each R is independently a monovalent organic group having 1 to 20
1 2 carbon atoms, M is a tin atom, silicon atom, or germanium atom, M is a phosphorous atom, Y is a halogen atom, and n is an integer of 0-3.
[0045] Exemplary compounds expressed by the formula (1) include halogenated organic metal compounds, and the compounds expressed by the formulas (2) and (3) include halogenated metal compounds.
[0046] In the case where M1 represents a tin atom, the compounds expressed by the formula (1) can be, for example, triphenyltin chloride, tributyltin chloride, triisopropyltin chloride, trihexyltin chloride, trioctyltin chloride, diphenyltin dichloride, dibutyltin dichloride, dihexyltin dichloride, dioctyltin dichloride, phenyltin trichloride, butyltin trichloride, octyltin trichloride and the like. Furthermore, tin tetrachloride, tin tetrabromide and the like can be exemplified as the compounds expressed by formula (2).
[0047] In the case where M1 represents a silicon atom, the compounds expressed by the formula (1) can be, for example, triphenylchlorosilane, trihexylchlorosilane, trioctylchlorosilane, tributylchlorosilane, trimethylchlorosilane, diphenyldichlorosilane, dihexyldichlorosilane, dioctyldichlorosilane, dibutyldichlorosilane, dimethyldichlorosilane, methyltrichlorosilane, phenyltrichlorosilane, hexyltrichlorosilane, octyltrichlorosilane, butyltrichlorosilane, methyltrichlorosilane and the like. Furthermore, silicon tetrachloride, silicon tetrabromide and the like can be exemplified as the compounds expressed by the formula (2). In the case where M1 represents a germanium atom, the compounds expressed by the formula (1) can be, for example, triphenylgermanium chloride, dibutylgermanium dichloride, diphenylgermanium dichloride, butylgermanium trichloride and the like. Furthermore, germanium tetrachloride, germanium tetrabromide and the like can be exemplified as the compounds expressed by the formula (2). Phosphorous trichloride, phosphorous tribromide and the like can be exemplified as the compounds expressed by the formula (3). In one or more embodiments, mixtures of metal halides and/or metalloid halides can be used.
[0048] In one or more embodiments of the first and second embodiments, the coupling agent for the SBR comprises an alkoxysilane or alkoxystannane selected from the group comprising compounds expressed by the formula (4) R nM1(ORA)4 , where each R* is
1 independently a monovalent organic group having 1 to 20 carbon atoms, M is a tin atom, silicon atom, or germanium atom, ORA is an alkoxy group where RA is a monovalent organic group, and n is an integer of 0-3.
[0049] Exemplary compounds expressed by the formula (4) include tetraethyl orthosilicate, tetramethyl orthosilicate, tetrapropyl orthosilicate, tetraethoxy tin, tetramethoxy tin, and tetrapropoxy tin.
[0050] According to the first and second embodiments disclosed herein, when at least one SBR is present in the elastomer component), the Mw, Mn and polydispersity (Mw/Mn) of the styrene-butadiene rubber(s) may vary. In certain embodiments of the first and second embodiments, the SBR(s) have a Mw of 300,000 to 600,000 grams/mole (e.g., 300,000; 325,000; 350,000; 375,000; 400,000; 425,000; 450,000; 475,000; 500,000; 525,000; 550,000; 575,000; or 600,000 grams/mole). In certain embodiments of the first and second embodiments, the SBR(s) have a Mw of 350,000 to 550,000, or 400,000 to 500,000 grams/mole. The Mw values referred to herein are weight average molecular weights which can be determined by using gel permeation chromatography (GPC) calibrated with styrene-butadiene standards and Mark- Houwink constants for the polymer in question. In certain embodiments of the first and second embodiments, the SBR(s) have a Mn of 200,000 to 400,000 grams/mole (e.g., 200,000; 225,000; 250,000; 275,000; 300,000; 325,000; 350,000; 375,000; or 400,000 grams/mole). In certain embodiments of the first and second embodiments, the SBR(s) have a Mn of 200,000 to 300,000. The Mn values referred to herein are number average molecular weights which can be determined by using gel permeation chromatography (GPC) calibrated with styrene-butadiene standards and Mark-Houwink constants for the polymer in question. In certain embodiments of the first and second embodiments disclosed herein, the SBR(s) have a Mw/Mn (polydispersity) of 1.2 to 2.5 to (e.g., 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, or 2.5, preferably 1.3 to 2. In certain embodiments of the first and second embodiments, the SBR(s) have a Mw, Mn and Mw/Mn all falling within one of the foregoing ranges; in certain such embodiments, each of the
Mw, Mn and Mw/Mn fall within one of the foregoing preferred ranges. In other embodiments of the first and second embodiments, the SBR(s) utilized either (a) include at least one of the foregoing SBRs having a Mw, Mn, and/or Mn/Mn falling within one of the foregoing ranges in combination with an SBR having a Mw of 350,000 to 600,000 grams/mole (e.g., 350,000; 400,000; 450,000; 500,000; 550,000; or 600,000 grams/mole) or 400,000 to 550,000 grams/mole (e.g., 400,000; 425,000; 450,000; 475,000; 500,000; 525,000; or 550,000 grams/mole), (b) or only include one or more SBRs having a Mw of 350,000 to 600,000 grams/mole (e.g., 350,000; 400,000; 450,000; 500,000; 550,000; or 600,000 grams/mole) or 400,000 to 550,000 grams/mole (e.g., 400,000; 425,000; 450,000; 475,000; 500,000; 525,000; or 550,000 grams/mole).
[0051] According to the first and second embodiments, the Tg of any SBR used in the elastomer component may vary. In certain preferred embodiments of the first and second embodiments, the SBR(s) have a Tg of about -75 to about -50 °C, -75 to -50 °C (e.g., -75, -70, -65, -60, -55, or -50 °C), preferably -70 to -55 °C (e.g., -70, -65, -60, or -55 °C), or more preferably -65 to -55 °C (e.g., -65, -60, or -55 °C). In other embodiments of the first and second embodiments, the SBR(s) utilized include a SBR having a Tg of about -10 to about -70 °C, -10 to -70 °C (e.g., -10, -15, -20, -25, -30, -35, -40, -45, -50, -55, -60, -65, or -70 °C), preferably about -10 to about -49 °C or -10 to -49 °C (e.g., -10, -12, -14, -15, -16, -18, -20, -22, -24, -26, -28, -30, -32, -34, -36, -35, -38, -40, -42, -44, -45, -46, -48, or -49 °C). The SBR(s) may have a Tg within one of the foregoing ranges, optionally in combination with one or more of the Mw, Mn, and/or Mw/Mn ranges discussed above, and in certain embodiments optionally in combination with one of the styrene monomer contents discussed below. The Tg values referred to herein for elastomers represent a Tg measurement made upon the elastomer without any oil-extension. In other words, for an oil-extended elastomer, the Tg values above refer to the Tg prior to oil extension or to a non-oil- extended version of the same elastomer. Elastomer or polymerTg values may be measured using a differential scanning calorimeter (DSC) instrument, such as manufactured by TA Instruments (New Castle, Delaware), where the measurement is conducted using a temperature elevation of 10°C/minute after cooling at -120°C. Thereafter, a tangent is drawn to the base lines before and after the jump of the DSC curve. The temperature on the DSC curve (read at the point corresponding to the middle of the two contact points) can be used as Tg.
[0052] According to the first and second embodiments, the styrene monomer content (i.e., weight percent of the polymer chain comprising styrene units as opposed to butadiene units) of any SBR(s) used in the elastomer component may vary. In certain embodiments of the first and second embodiments, the SBR(s) have a styrene monomer content of about 10 to about 40 weight %, 10-40 weight % (e.g., 10%, 15%, 20%, 25%, 30%, 35%, or 40%), 10-30 weight % (e.g., 10%, 15%, 20%, 25%, or 30%), or 10-20 weight % (e.g., 10%, 12%, 14%, 16%, 18%, or 20%). In certain embodiments of the first and second embodiments, the SBR(s) may have a styrene monomer content within one of the foregoing ranges, optionally in combination with one or more of the Mw, Mn, and/or Mw/Mn ranges discussed below, and in certain embodiments optionally in combination with one of the Tg ranges discussed above and/or vinyl bond contents discussed below.
[0053] According to the first and second embodiments, the vinyl bond content (i.e., 1,2- microstructure) of any SBR(s) used in the elastomer component may vary. In certain embodiments of the first and second embodiments, the SBR has a vinyl bond content of about 10 to about 50%, 10-50% (e.g., 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50%), about 10 to about 40%, 10-40% (e.g., 10%, 15%, 20%, 25%, 30%, 35%, or 40%), about 20 to about 40%, or 20- 40% (e.g., 20%, 25%, 30%, 35%, or 40%). In certain embodiments of the first and second embodiments, the SBR(s) may have a vinyl bond content within one of the foregoing ranges, optionally in combination with one or more of the Mw, Mn, Mw/Mn, Tg, and/or styrene monomer content ranges discussed above. The vinyl bond contents referred to herein should be understood as being for the overall vinyl bond content in the SBR polymer chain rather than of the vinyl bond content in the butadiene portion of the SBR polymer chain, and can be determined by H1-NMR and C13-NMR (e.g., using a 300 MHz Gemini 300 NMR Spectrometer System (Varian)).
[0054] As mentioned above, according to the third embodiment, the average Tg of the elastomer component is about -60 to about -90 °C. In certain embodiments of the first, second and fourth embodiments, the average Tg of the elastomer component is about -60 to about -90 °C, or -60 to -90 °C (e.g., -60, -61, -62, -63, -64, -65, -66, -67, -68, -69, -70, -71, -72, -73, -74, -75, - 76, -77, -78, -79, -80, -81, -82, -83, -84, -85, -86, -87, -88, -89, or -90 °C). In certain embodiments of the first-fourth embodiments, the average Tg of the elastomer component is about -75 to
about -90 °C, -75 to -90 °C (e.g., -75, -80, -85, or -90 °C ), about -80 to about -85 °C, or -80 to -85 °C (e.g., -80, -81, -82, -83, -84, or -85 °C). The average Tg of the elastomer component can be calculated using the Tg of each rubber present in the 100 parts of elastomer component and accounting for their relative weight percentage. When one (or more) of the rubbers is oil- extended, only the amount of rubber (i.e., excluding any amount of oil) is utilized in calculating the average Tg of the elastomer component. When one (or more) of the rubbers is oil-extended, the Tg of non-oil extended rubber is utilized in calculating the average Tg of the elastomer component.
Polybutadiene
[0055] According to the first and second embodiments, the elastomer component of the rubber composition for the tire tread may include polybutadiene rubber. The particular type of polybutadiene rubber utilized may vary. Preferably, according to the first and second embodiments, any polybutadiene rubber present in the elastomer component has a cis bond content of at least 95% (e.g., 95%, 96%, 97%, 98%, 99%, or more) and a Tg of less than -101 °C (e.g., -102, -103, -104, -105, -106, -107, -108, -109 °C or less). In certain such embodiments, the Tg of the polybutadiene rubber is -101 to -110 °C. The cis bond content refers to the cis 1,4- bond content. The cis 1,4-bond contents referred to herein are determined by FTIR (Fourier Transform Infrared Spectroscopy) wherein a polymer sample is dissolved in CS2 and then subjected to FTIR. In certain embodiments of the first and second embodiments, the polybutadiene rubber present in the elastomer component may have a cis 1,4-bond content of at least 98% (e.g., 98%, 99%, or more) or at least 99% (e.g., 99%, 99.5%, or more). In certain embodiments of the first and second embodiments, any polybutadiene rubber present in the elastomer component has a Tg of -105 °C or less (e.g., -105, -106, -107, -108, -109 °C or less) such as -105 to -110 °C or -105 to -108 °C. In certain embodiments of the first and second embodiments, any polybutadiene rubber present in the elastomer component contains less than 3% by weight (e.g., 3%, 2%, 1%, 0.5%, or less), preferably less than 1% by weight (e.g., 1%, 0.5%, or less) or 0% by weight syndiotactic 1,2-polybutadiene. Generally, according to the first and second embodiments, one or more than one polybutadiene rubber having a cis bond content of at least 95% and a Tg of less than -101 °C may be used in the elastomer component. In certain
embodiments of the first-third embodiments, the only polybutadiene rubber used has a cis bond content of at least 95% (e.g., 95%, 96%, 97%, 98%, 99%, or more) and a Tg of less than -101 °C. In preferred embodiments of the first and second embodiments, the amount of any polybutadiene rubber having a high vinyl content (i.e., above about 70%) that is used in the elastomer component is limited to less than 25 parts, more preferably less than 10 parts, even more preferably less than 5 parts or 0 parts.
[0056] According to the first and second embodiments, when a polybutadiene rubber is used in the rubber composition, the amount utilized may vary. In certain embodiments of the first and second embodiments, the total amount of any polybutadiene rubber present in the elastomer component will be a minority by weight, or less than 50% by weight. In such embodiments of the first and second embodiments, the total amount of polybutadiene rubber present in the elastomer component is less than 50 phr, less than 40 phr, less than 30 phr, less than 20 phr, or less than 10 phr. In certain embodiments of the first and second embodiments, the total amount of polybutadiene rubber present in the elastomer component is 5-49 phr, 5-40 phr, 5-30 phr, 5-20 phr, 5-10 phr, 10-49 phr, 10-40 phr, 10-30 phr, 10-20 phr, 20-49 phr, 20-40 phr, or 20-30 phr. In other embodiments of the first and second embodiments, the total amount of any polybutadiene rubber present in the elastomer component is a majority by weight, or more than 50% by weight. In such embodiments of the first and second embodiments, the total amount of polybutadiene rubber present in the elastomer component is 51 phr or more, 60 phr or more, 70 phr, or more, 75 phr or more, 80 phr or more, 85 phr or more, 51-85 phr, 51-80 phr, 51-75 phr, 51-70 phr, 60-85 phr, 60-80 phr, 60-75 phr, or 60-70 phr.
Natural Rubber Or Polyisoprene
[0057] According to the first and second embodiments, the elastomer component may include natural rubber, polyisoprene, or a combination thereof. In certain embodiments of the first and second embodiment, the elastomer component includes natural rubber, but not polyisoprene. In other embodiments of the first and second embodiments, the elastomer component includes only polyisoprene, but not natural rubber. According to the first and second embodiments, when natural rubber is present in the elastomer component, it may include Hevea natural rubber, non-/7eveo natural rubber (e.g., guayule natural rubber), or a combination
thereof. When natural rubber is used in the rubber composition of the first and second embodiments, the natural rubber preferably has a Mw of 1,000,000 to 2,000,000 grams/mole (e.g., 1 million, 1.1 million, 1.2 million, 1.3 million, 1.4 million, 1.5 million, 1.6 million, 1.7 million, 1.8 million, 1.9 million, 2 million grams/mole); 1,250,000 to 2,000,000 grams/mole, or 1,500,000 to 2,000,000 grams/mole (as measured by GPC using a polystyrene standard). When natural rubber is used in the rubber compositions of the first and second embodiments, the Tg of the natural rubber may vary. Preferably, according to the first and second embodiments, when natural rubber is utilized it has a Tg of -65 to -80 °C (e.g., -65, -66, -67, -68, -69, -70, -71-, -72, -73, -74, -75, -76, -77, -78, -79, or -80 °C), more preferably a Tg of -67 to -77 °C (e.g., -67, -68, -69, -70, -71, -72, -73, -74, -75, -76, or -77 °C). When polyisoprene is utilized in the rubber compositions of the first and second embodiments, the Tg of the polyisoprene may vary. Preferably, according to the first and second embodiments, when polyisoprene is utilized it has a Tg of -55 to -75 °C (e.g., -55, -56, -57, -58, -59, -60, -61, -62, -63, -64, -65, -66, -67, -68, -69, -70, -71, -72, -73, -74, or -75 °C), more preferably -58 to -74 °C (e.g., -58, -59, -60, -61, -62, -63, -64, -65, -66, -67, -68, -69, -70, -71, -72, -73, or -74 °C).
[0058] According to the first and second embodiments, when natural rubber and/or polyisoprene are used in the rubber composition, the amount utilized may vary. Generally, according to the first and second embodiments, the total amount of any natural rubber and/or polyisoprene present in the elastomer component will be a minority by weight, or less than 50% by weight. In certain embodiments of the first and second embodiments, the total amount of natural rubber and/or polyisoprene present in the elastomer component is less than 50 phr, less than 40 phr, less than 30 phr, less than 20 phr, or less than 10 phr. In certain embodiments of the first and second embodiments, the total amount of natural rubber and/or polyisoprene present in the elastomer component is 5-49 phr, 5-40 phr, 5-30 phr, 5-20 phr, 5-10 phr, 10-49 phr, 10-40 phr, 10-30 phr, 10-20 phr, 20-49 phr, 20-40 phr, or 20-30 phr. In embodiments of the first and second embodiments, the elastomer component includes natural rubber but no polyisoprene, and the amount of natural rubber is within one of the foregoing ranges.
Resin Component
[0059] As mentioned above, according to the first and second embodiments, the rubber composition for the tire tread includes a resin component in an amount of BO to 60 phr. The resin component comprises 20 to 50 phr (e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 phr) of a terpene phenol resin having a hydroxyl value of 50 or less (e.g., 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, or less), preferably a hydroxyl value of 30 or less (e.g., 30, 25, 20, 15, 10, 5, or less), more preferably a hydroxyl value of 20 or less (e.g., 20, 18, 16, 15, 14, 12, 10, 8, 6, 5, 4, 2, or 1). In certain embodiments of the first and second embodiments, the resin component comprises 20 to 45 phr, 25 to 45 phr, 20 to 40 phr, 25 to 40 phr, or 20 to 30 phr of a terpene phenol resin having a hydroxyl value according to one of the foregoing (e.g., 50 or less, 30 or less, 20 or less, etc.). In certain embodiments of the first and second embodiments, the terpene phenol resin has a hydroxyl value of 50-1, 50-5, 50-10, 40-1, 40-5, 40-10, 30-1, 30-5, 30-10, 20-1, 20-5, or 20-10 and is used in one of the foregoing amounts. According to the first and second embodiments, the resin component also includes a DCPD-based resin which may be present in varying amounts (e.g., 5- 40 phr, 10-40 phr, 15-40 phr, 20-40 phr, 5-30 phr, 10-30 phr, 15-30 phr, or 20-30 phr).
Terpene phenol resin
[0060] One or more than one terpene phenol resin having a limited hydroxyl value, as discussed above, may be present in the resin component. In certain embodiments of the first and second embodiments, only one such terpene phenol resin is present. In other embodiments, two or more terpene phenol resins are present. Otherthan the hydroxyl value, which is discussed above, the other properties of the terpene phenol resin may vary. In certain embodiments of the first and second embodiments, the terpene phenol resin has a Tg of 50 to 110 °C, preferably 60 to 100 °C. In certain embodiments of the first and second embodiments, the terpene phenol resin has a softening point of 90 to 170 °C, preferably 100 to 160 °C. The hydroxyl value of the terpene phenol resin can be determined according to ASTM E222-17 using an instrument such as an 848 Titrino Plus from Metrohm. The Tg of the terpene phenol resin can be determined by using a differential scanning calorimeter (DSC) instrument, such as manufactured by TA Instruments (New Castle, Delaware), where the measurement is conducted using a temperature elevation of 10°C/minute after cooling at -120°C. Thereafter, a tangent is drawn to the base lines
before and after the jump of the DSC curve. The temperature on the DSC curve (read at the point corresponding to the middle of the two contact points) can be used as Tg. The softening point of the terpene phenol resin can be determined by ASTM E28-18 (a ring and ball method). In certain embodiments of the first and second embodiments, the terpene phenol resin not only has a hydroxyl value within one of the foregoing ranges but also a Tg within one of the foregoing ranges. In certain embodiments of the first and second embodiments, the terpene phenol resin not only has a hydroxyl value within one of the foregoing ranges but also a softening point within one of the foregoing ranges. In certain embodiments of the first and second embodiments, the terpene phenol resin not only has a hydroxyl value within one of the foregoing ranges but also a Tg and a softening point within one of the foregoing respective ranges. In certain embodiments of the first and second embodiments, the terpene phenol resin not only has a hydroxyl value within one of the foregoing preferred ranges but also a Tg within one of the foregoing preferred ranges. In certain embodiments of the first and second embodiments, the terpene phenol resin not only has a hydroxyl value within one of the foregoing preferred ranges but also a softening point within the foregoing range. In certain embodiments of the first and second embodiments, the terpene phenol resin not only has a hydroxyl value within one of the foregoing preferred ranges but also a Tg and a softening point within one of the foregoing respective preferred ranges.
[0061] In certain embodiments of the first and second embodiments, the terpene phenol resin has a Mw of 600 to 1500 grams/mole, preferably 700 to 1200 grams/mole. In certain embodiments of the first and second embodiments, the terpene phenol resin has a Mn of 500 to 1000 grams/mole, preferably 500 to 800 grams/mole. In certain embodiments of the first and second embodiments, the terpene phenol resin has a Mw and Mn within one of the foregoing respective ranges. In certain embodiments of the first and second embodiments, the terpene phenol resin has a Mw and Mn within the foregoing respective preferred ranges.
[0062] According to the first and second embodiments, the particular monomers which comprise the terpene phenol resin may vary but will generally include at least one terpene and at least one phenolic compound. Generally, terpenes are compounds derived from isoprene units and have a basic formula of (C5H8)n with n being the number of linked isoprene units. According to the first and second embodiments, the terpene monomer portion of the terpene phenol resin may be selected from the group consisting of alpha-pinene, beta-pinene, D- limonene, dipentene (racemic limonene), careen (also known as delta-3-carene), beta- phellandrene, and combinations thereof. According to the first and second embodiments, the phenol monomer portion of the terpene phenol resin may be selected from the group consisting of phenol, alkylphenols, bisphenol A, cresol, xylenol, and combinations thereof. Generally, according to the first and second embodiments, the terpene phenol resin will comprise a majority by weight of terpene monomer(s). In certain embodiments of the first and second embodiments, the terpene monomer portion of the terpene phenol resin is 60-95%, 70-95%, or 60-85% by weight of the overall terpene phenol resin and the phenol monomer portion is 5 to 40%, 5-30%, or 15-40% by weight of the overall terpene phenol resin.
[0063] Terpene phenol resins suitable for use in the first and second embodiments are commercially available from various suppliers. As non-limiting examples, tepene phenol resins for use in the first and second embodiments are available from Pinova (under the tradename Dertophene® such as T, T105, T110 and T115), from Yasuhara Chemical (under the tradename Polyster ® such as T160), and from Kraton (under the tradenames Sylvares and Sylvatraxx such as TP2019, 5216 and 4202).
DCPD-based Resin
[0064] As mentioned above, according to the first and second embodiments, the resin component of the rubber composition for the tread also includes a DCPD-based resin (ii). DCPD refers to dicyclopentadiene. Generally, the DCPD-based resin may be a DCPD homopolymer resin or a DCPD copolymer resin. By the phrase DCPD-based is meant that the resin contains a proportion of DCPD as monomer, more specifically at least 15% by weight (e.g., 15, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75%, etc.), at least 20% by weight (e.g., 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% by weight), at least 25% by weight (e.g., 25%, 30%, 35%, etc.), at least 30% by
weight (e.g., 30%, 40%, etc.), at least 40% by weight (e.g., 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% by weight), at least 50% by weight (e.g., 50%, 60%, 70%, 80%, 90%, 95%, or 100% by weight), or more. In certain embodiments of the first and second embodiments, the DCPD-based resin comprises a majority by weight of DCPD as monomer, e.g., at least 51%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or even 100% by weight); in certain such embodiments, the DCPD-based resin can be considered to be a relatively pure DCPD resin, especially when the percentage by weight of DCPD monomer at least 80% (e.g., 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or more), at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or more), or more. In other embodiments of the first and second embodiments, the DCPD-based resin comprises a minority by weight of DCPD as monomer, e.g., no more than 49% (e.g., 49%, 45%, 40%, 35%, 30%, 25%, 20%, or less), no more than 40% (e.g., 40%, 35%, 30%, 25%, 20%, or less), no more than 30% (e.g., 30%, 25%, 20%, or less), no more than 20% (e.g., 20%, 19%, 18%, etc.), or any amount within one of the foregoing amounts, e.g., 49-20%, 40-20%, 30-20%, etc.
[0065] According to the first and second embodiments, the amount of DCPD-based resin that is present in the rubber composition for the tire tread may vary but generally will be at least 5 phr and up to 40 phr. In certain embodiments of the first and second embodiments, the amount of DCPD-based resin used in the resin component is 5-40 phr, 10-40 phr, 15-40 phr, 20- 40 phr, 5-30 phr, 10-30 phr, 15-30 phr, or 20-30 phr.
[0066] In certain embodiments of the first and second embodiments, the DCPD-based resin is hydrogenated. In such embodiments, the amount of hydrogenation may vary. In certain embodiments, the hydrogenated DCPD-based resin has a degree of hydrogenation of at least 50%, at least 60%, at least 70%, or more. In certain embodiments, the hydrogenated DCPD-based resin has a degree of hydrogenation of 50-90%, 50-80%, 50-70%, 60-90%, 60-80%, or 60-70%.
[0067] DCPD-based resins suitable for use in the first and second embodiments are commercially available from various suppliers. As non-limiting examples, DCPD-based resins for use in the first and second embodiments are available from companies such as Neville Chemical Company (Pittsburgh, Pennsylvania) under their LX® brand, Resinall Corporation (Sovern, North
Carolina), The Dow Chemical Company, and Zeon Corporation of Japan (doing business in the United States as Zeon Chemicals LP) under their Quintone® brand).
[0068] According to the first and second embodiments, the Tg and softening point of the DCPD-based resin may vary. In certain embodiments of the first and second embodiments, the DCPD-based resin has a Tg of about 35 to about 110 °C or 35-110 °C (e.g., 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, or 110 °C). In certain embodiments of the first and second embodiments, the DCPD-based resin has a softening point of about 90 to about 160 °C or 90-160 °C (e.g., 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, or 160 °C). In certain preferred embodiments of the first and second embodiments, the DCPD-based resin has both a Tg and a softening point with the foregoing ranges.
[0069] In certain embodiments of the first and second embodiments, the DCPD-based resin has at least one of a Tg and a softening point at the lower end of above broadest ranges. For example, in such embodiments, the DCPD-based resin may have a Tg of about 35 to about 60 °C or 35-60 °C (e.g., 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 55, 56, 58, or 60 °C), or preferably about 40 to about 55 °C, or 40-55 °C (e.g., 40, 42, 44, 45, 46, 48, 50, 52, 54, or 55 °C). In certain embodiments of the first and second embodiments, the DCPD-based resin has a softening point of about 90 to about 120 °C, 90-120 °C (e.g., 90, 95, 100, 105, 110, 115, or 120 °C); preferably about 95 to about 115 °C or 95-115 °C (e.g., 95, 100, 105, 110, or 115 °C); or about 95 to about 110 °C or 95-110 °C (e.g., 95, 100, 105 or 110 °C). In certain preferred embodiments of the first and second embodiments, the DCPD-based resin has both a Tg and a softening point with the foregoing ranges.
[0070] In other embodiments of the first and second embodiments, the DCPD-based resin has at least one of a Tg and a softening point at the upper end of the above broadest ranges. For example, in such embodiments, the DCPD-based resin may have a Tg of about 70 to about 110 °C or 70-110 °C [e.g., 70, 75, 80, 85, 90, 95, 100, 105, or 110 °C); preferably about 75 to about 105 °C or 75-105 °C (e.g., 75, 80, 85, 90, 95, 100 or 105 °C), or more preferably 80-100 °C (e.g., 80, 82, 84, 85, 86, 88, 90, 92, 94, 95, 96, 98, or 100 °C). In certain embodiments of the first and second embodiments, the DCPD-based resin has a softening point of about 120 to about 160 °C or 120-160 °C (e.g., 120, 125, 130, 135, 140, 145, 150, 155, or 160 °C), preferably about 130 to
about 150 °C or 130-150 °C (e.g., 130, 135, 140, 145, or 150 °C). In certain preferred embodiments of the first and second embodiments, the DCPD-based resin has both a Tg and a softening point with the foregoing ranges.
[0071] According to the first and second embodiments, the Mw, Mn and Mw/Mn of the DCPD-based resin may vary. In certain embodiments of the first and second embodiments, the DCPD-based resin meets at least one of the following: (a) a Mw of about 1000 to about 4000 grams/mole, 1000-4000 grams/mole (e.g., 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700,
1800. 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, or 4000 grams/mole), about 1000 to about 3000 grams/mole, 1000-3000 grams/mole (e.g., (e.g., 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, or 3000 grams/mole), about 1000 to about 2500 grams/mole, 1000-2500 grams/mole (e.g., 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, or 2500 grams/mole), about 1100 to about 2000 grams/mole, or 1100-2000 grams/mole (e.g., 1100, 1200, 1300, 1400, 1500,
1600. 1700. 1800. 1900, or 2000 grams/mole); (b) a Mn of about 700 to about 1500 grams/mole, 700-1500 grams/mole (e.g., 700, 800, 900, 1000, 1100, 1200, 1300, 1400, or 1500 grams/mole), about 800 to about 1400 grams/mole, 800-1400 grams/mole (e.g., 800, 900, 1000, 1100, 1200, 1300, or 1400 grams/mole), about 800 to about 1300 grams/mole, 800-1300 grams/mole (e.g., 800, 900, 1000, 1100, 1200, or 1300 grams/mole), about 900 to about 1200 grams/mole, or 900- 1200 grams/mole (e.g., 900, 950, 1000, 1050, 1100, 1150, or 1200 grams/mole); or (c) a polydispersity (Mw/Mn) of about 1 to about 2.5, 1-2.5 (e.g., 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, or 2.5), about 1.1 to about 2.2, 1.1-2.2 (e.g., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, or 2.2), about 1.1 to about 2, 1.1-2 (e.g., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, or 2), about 1.2 to about 2, or 1.2 to 2 (e.g., 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, or 2). In certain embodiments of the first and second embodiments, the DCPD-based resin has a Mw according to one of the ranges provided above, in combination with a Mn according to one of the ranges provided above, further in combination with a Mw/Mn according to one of the ranges provided above.
Filler Component
[0072] As mentioned above, according to the first and second embodiments, the rubber composition for the tire tread includes a filler component which comprises 91 to 140 phr of a reinforcing silica filler and 1 to 20 phr of a carbon black filler. In certain preferred embodiments of the first and second embodiments, the filler component comprises 100 to 130 phr of a reinforcing silica filler. In certain preferred embodiments of the first and second embodiments, the filler component comprises 5 to 10 phr of a carbon black filler. In certain particularly preferred embodiments, the filler component comprises reinforcing silica filler and carbon black filler with the foregoing preferred amounts. In certain embodiments of the first and second embodiments, the filler component is limited to (i.e., consists of or contains only) the reinforcing silica filler and carbon black filler in the foregoing discussed amounts. In other embodiments of the first and second embodiments, the filler component includes not only the reinforcing silica filler and carbon black filler in the foregoing discussed amounts but also one or more reinforcing or non-reinforcing fillers, as discussed in more detail below.
Reinforcing Silica Filler
[0073] As mentioned above, according to the first and second embodiments disclosed herein, the filler component of the rubber compositions for the tire tread comprises (includes) at least one reinforcing silica filler in an amount of 91-140 phr (e.g., 91, 93, 95, 97, 99, 100, 102,
104, 105, 106, 108, 110, 112, 114, 115, 116, 118, 120, 122, 124, 125, 126, 128, 130, 132, 134, 135, 136, 138, or 140 phr). In certain preferred embodiments of the first and second embodiments, the filler component of the rubber compositions for the tire tread comprises (includes) at least one reinforcing silica filler in an amount of 100-130 phr (e.g., 100, 102, 104,
105, 106, 108, 110, 112, 114, 115, 116, 118, 120, 122, 124, 125, 126, 128, or 130 phr).
[0074] According to the first and second embodiments, the surface area of the reinforcing silica filler may vary. According to the first and second embodiments, the particular type of silica for the at least one reinforcing silica filler may vary. Non-limiting examples of reinforcing silica fillers suitable for use in certain embodiments of the first and second embodiments include, but are not limited to, precipitated amorphous silica, wet silica (hydrated silicic acid), dry silica
(anhydrous silicic acid), fumed silica, calcium silicate and the like. Other suitable reinforcing silica fillers for use in certain embodiments of the first and second embodiments include, but are not limited to, aluminum silicate, magnesium silicate (Mg2Si04, MgSi03 etc.), magnesium calcium silicate (CaMgSi0 ), calcium silicate (Ca2Si04 etc.), aluminum silicate (AI2Si05, AI4.3Si04.5H20 etc.), aluminum calcium silicate (AI203.Ca02Si02, etc.), and the like. Among the listed reinforcing silica fillers, precipitated amorphous wet-process, hydrated silica fillers are preferred. Such reinforcing silica fillers are produced by a chemical reaction in water, from which they are precipitated as ultrafine, spherical particles, with primary particles strongly associated into aggregates, which in turn combine less strongly into agglomerates. The surface area, as measured by the BET method, is a preferred measurement for characterizing the reinforcing character of different reinforcing silica fillers. In certain embodiments of the first and second embodiments disclosed herein, the rubber composition comprises a reinforcing silica filler having a surface area (as measured by the BET method) of about 100 m2/g to about 400 m2/g, 100 m2/g to 400 m2/g (e.g., 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, or 400 m2/g), about 100 m2/g to about 350 m2/g, or 100 m2/g to 350 m2/g (e.g., 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, or 350 m2/g). In certain embodiments of the first and second embodiments disclosed herein, the rubber composition comprises a reinforcing silica filler having a BET surface area of about 140 m2/g to about 230 m2/g, 140 m2/g to 230 m2/g (e.g., 140, 150, 160, 170, 180, 190, 200, 210, 220, or 230 m2/g), with the ranges of about 170 m2/g to about 230 m2/g and 170 m2/g to 230 m2/g (e.g., 170, 180, 190, 200, 210, 220, or 230 m2/g) being included; in certain such embodiments the only silica filler present in the rubber composition has a BET surface area within one of the foregoing ranges. In other embodiments of the first and second embodiments disclosed herein, the rubber composition comprises a reinforcing silica filler having a BET surface of about 100 m2/g to about 140 m2/g, 100 m2/g to 140 m2/g (e.g., 100, 105, 110, 115, 120, 125, 130, 135, or 140 m2/g), about 100 m2/g to about 125 m2/g, 100 m2/g to 125 m2/g (e.g., 100, 105, 110, 115, 120, or 125 m2/g), about 100 m2/g to about 120 m2/g, or 100 to 120 m2/g (e.g., 100, 105, 110, 115, or 120 m2/g); in certain such embodiments the only silica filler present in the rubber composition has a BET
surface area within one of the foregoing ranges. In certain embodiments of the first and second embodiments disclosed herein, the rubber composition comprises reinforcing silica filler having a pH of about 5.5 to about 8, 5.5 to 8 (e.g., 5.5, 5.7, 5.9, 6.1, 6.3, 6.5, 6.7, 6.9, 7.1, 7.3, 7.5, 7.7, 7.9, or 8), about 6 to about 8, 6 to 8 (e.g., 6, 6.2, 6.4, 6.6, 6.8, 7, 7.2, 7.4, 7.6, 7.8, or 8), about 6 to about 7.5, 6 to 7.5, about 6.5 to about 8, 6.5 to 8, about 6.5 to about 7.5, 6.5 to 7.5, about 5.5 to about 6.8, or 5.5 to 6.8. Some of the commercially available reinforcing silica fillers which can be used in certain embodiments of the first and second embodiments include, but are not limited to, Hi-Sil® EZ120G, Hi-Sil® EZ120G-D, Hi-Sil® 134G, Hi-Sil®EZ 160G, Hi-Sil®EZ 160G-D, Hi-Sil®190, Hi-Sil®190G-D, Hi-Sil® EZ 200G, Hi-Sil® EZ 200G-D, Hi-Sil® 210, Hi-Sil® 233, Hi-Sil® 243LD, Hi-Sil® 255CG-D, Hi-Sil® 315-D, Hi-Sil® 315G-D, Hi-Sil® HDP 320G and the like, produced by PPG Industries (Pittsburgh, Pa.) As well, a number of useful commercial grades of different reinforcing silica fillers are also available from Evonik Corporation (e.g., Ultrasil® 320 GR, Ultrasil® 5000 GR, Ultrasil® 5500 GR, Ultrasil® 7000 GR, Ultrasil® VN2 GR, Ultrasil® VN2, Ultrasil® VN3, Ultrasil® VN3 GR, Ultrasil®7000 GR, Ultrasil® 7005, Ultrasil® 7500 GR, Ultrasil® 7800 GR, Ultrasil® 9500 GR, Ultrasil® 9000 G, Ultrasil® 9100 GR), and Solvay (e.g., Zeosil® 1115MP, Zeosil® 1085GR, Zeosil® 1165MP, Zeosil® 1200MP, Zeosil® Premium, Zeosil® 195HR, Zeosil® 195GR, Zeosil® 185GR, Zeosil® 175GR, and Zeosil® 165 GR).
Silica Coupling Agent
[0075] In certain embodiments of the first and second embodiments disclosed herein, one or more than one silica coupling agent may also (optionally) be utilized. In preferred embodiments of the first and second embodiments, at least one silica coupling agent is utilized. Silica coupling agents are useful in preventing or reducing aggregation of the silica filler in rubber compositions. Aggregates of the silica filler particles are believed to increase the viscosity of a rubber composition, and, therefore, preventing this aggregation reduces the viscosity and improves the processability and blending of the rubber composition.
[0076] Generally, any conventional type of silica coupling agent can be used, such as those having a silane and a constituent component or moiety that can react with a polymer, particularly a vulcanizable polymer. The silica coupling agent acts as a connecting bridge between silica and the polymer. Suitable silica coupling agents for use in certain embodiments of the first
and second embodiments disclosed herein include those containing groups such as alkyl alkoxy, mercapto, blocked mercapto, sulfide-containing (e.g., monosulfide-based alkoxy-containing, disulfide-based alkoxy-containing, tetrasulfide-based alkoxy-containing), amino, vinyl, epoxy, and combinations thereof. In certain embodiments, the silica coupling agent can be added to the rubber composition in the form of a pre-treated silica; a pre-treated silica has been pre surface treated with a silane prior to being added to the rubber composition. The use of a pre treated silica can allow for two ingredients (i.e., silica and a silica coupling agent) to be added in one ingredient, which generally tends to make rubber compounding easier.
[0077] Alkyl alkoxysilanes have the general formula R10 pSi(OR11)4-p where each R11 is independently a monovalent organic group, and p is an integer from 1 to 3, with the proviso that at least one R10 is an alkyl group. Preferably p is 1. Generally, each R10 independently comprises Ci to C20 aliphatic, C5 to C20 cycloaliphatic, or C6 to C20 aromatic; and each R11 independently comprises Ci to C6 aliphatic. In certain exemplary embodiments, each R10 independently comprises C6 to C15 aliphatic and in additional embodiments each R10 independently comprises C8 to CM aliphatic. Mercapto silanes have the general formula HS-R13-Si(R14)(R15)2 where R13 is a divalent organic group, R14 is a halogen atom or an alkoxy group, each R15 is independently a halogen, an alkoxy group or a monovalent organic group. The halogen is chlorine, bromine, fluorine, or iodine. The alkoxy group preferably has 1-3 carbon atoms. Blocked mercapto silanes have the general formula B-S-R16-Si-X3 with an available silyl group for reaction with silica in a silica-silane reaction and a blocking group B that replaces the mercapto hydrogen atom to block the reaction of the sulfur atom with the polymer. In the foregoing general formula, B is a block group which can be in the form of an unsaturated heteroatom or carbon bound directly to sulfur via a single bond; R16 is Ci to C6 linear or branched alkylidene and each X is independently selected from the group consisting of Ci to C alkyl or Ci to C alkoxy.
[0078] Non-limiting examples of alkyl alkoxysilanes suitable for use in certain embodiments of the first and second embodiments include, but are not limited to, octyltriethoxysilane, octyltrimethoxysilane, trimethylethoxysilane, cyclohexyltriethoxysilane, isobutyltriethoxy-silane, ethyltrimethoxysilane, cyclohexyl-tributoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, propyltriethoxysilane, hexyltriethoxysilane,
heptyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tetradecyltriethoxysilane, octadecyltriethoxysilane, methyloctyldiethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, propyltrimethoxysilane, hexyltrimethoxysilane, heptyltrimethoxysilane, nonyltrimethoxysilane, decyltrimethoxysilane, dodecyltrimethoxysilane, tetradecyltrimethoxysilane, octadecyl-trimethoxysilane, methyloctyl dimethoxysilane, and mixtures thereof.
[0079] Non-limiting examples of bis(trialkoxysilylorgano)polysulfides suitable for use in certain embodiments of the first and second embodiments include bis(trialkoxysilylorgano) disulfides and bis(trialkoxysilylorgano)tetrasulfides. Specific non-limiting examples of bis(trialkoxysilylorgano)disulfides include, but are not limited to, 3,3'-bis(triethoxysilylpropyl) disulfide, 3,3'-bis(trimethoxysilylpropyl)disulfide, 3,3'-bis(tributoxysilylpropyl)disulfide, 3,3'- bis(tri-t-butoxysilylpropyl)disulfide, 3,3'-bis(trihexoxysilylpropyl)disulfide, 2,2'- bis(dimethylmethoxysilylethyl)disulfide, 3,3'- bis(diphenylcyclohexoxysilylpropyl)disulfide, 3,3'- bis(ethyl-di-sec-butoxysilylpropyl)disulfide, 3,3'-bis(propyldiethoxysilylpropyl)disulfide, 12,12'- bis(triisopropoxysilylpropyl)disulfide, 3,3'-bis(dimethoxyphenylsilyl-2-methylpropyl)disulfide, and mixtures thereof. Non-limiting examples of bis(trialkoxysilylorgano)tetrasulfide silica coupling agents suitable for use in certain embodiments of the first and second embodiments include, but are not limited to, bis(3-triethoxysilylpropyl)tetrasulfide, bis(2-triethoxysilylethyl) tetrasufide, bis(3-trimethoxysilylpropyl)tetrasulfide, 3- trimethoxysilylpropyl-N,N- dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N,N-dimethylthiocarbamoyl tetrasulfide, 2-triethoxysilyl-N,N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropyl- benzothiazole tetrasulfide, 3-triethoxysilylpropylbenzothiazole tetrasulfide, and mixtures thereof. Bis ( 3 -t ri et h oxys i ly I p ro py I )tet ra s u If i de is sold commercially as Si69® by Evonik Degussa Corporation.
[0080] Non-limiting examples of mercapto silanes suitable for use in certain embodiments of the first and second embodiments disclosed herein include, but are not limited to, 1-mercaptomethyltriethoxysilane, 2- mercaptoethyltriethoxysilane, 3- mercaptopropyltriethoxysilane, 3- mercaptopropylmethyldiethoxysilane, 2
mercaptoethyltripropoxysilane, 18- mercaptooctadecyldiethoxychlorosilane, and mixtures thereof.
[0081] Non-limiting examples of blocked mercapto silanes suitable for use in certain embodiments of the first and second embodiments disclosed herein include, but are not limited to, those described in U.S. Pat. Nos. 6,127,468; 6,204,339; 6,528,673; 6,635,700; 6,649,684; and 6,683,135, the disclosures of which are hereby incorporated by reference. Representative examples of the blocked mercapto silanes include, but are not limited to, 2- triethoxysilyl-1- ethylthioacetate; 2-trimethoxysilyl-l-ethylthioacetate; 2-(methyldimethoxysilyl)- 1- ethylthioacetate; 3-trimethoxysilyl-l-propylthioacetate; triethoxysilylmethyl-thioacetate; trimethoxysilylmethylthioacetate; triisopropoxysilylmethylthioacetate; methyldiethoxysilylmethylthioacetate; methyldimethoxysilylmethylthioacetate; methyldiisopropoxysilylmethylthioacetate; dimethylethoxysilylmethylthioacetate; dimethylmethoxysilylmethylthioacetate; dimethylisopropoxysilylmethylthioacetate; 2- triisopropoxysilyl-l-ethylthioacetate; 2-(methyldiethoxysilyl)-l-ethylthioacetate, 2-
(methyldiisopropoxysilyl)-l- ethylthioacetate; 2-(dimethylethoxysilyl-l-ethylthioacetate; 2- (dimethylmethoxysilyl)-l- ethylthioacetate; 2-(dimethylisopropoxysilyl)-l-ethylthioacetate; 3- triethoxysilyl-l-propylthioacetate; 3-triisopropoxysilyl-l-propylthioacetate; 3- methyldiethoxysilyl-l-propyl-thioacetate; 3-methyldimethoxysilyl-l-propylthioacetate; 3- methyldiisopropoxysilyl-l-propylthioacetate; 1- (2-triethoxysilyl-l-ethyl)-4- thioacetylcyclohexane; l-(2-triethoxysilyl-l-ethyl)-3- thioacetylcyclohexane; 2-triethoxysilyl-5- thioacetylnorbornene; 2-triethoxysilyl-4-thioacetylnorbornene; 2-(2-triethoxysilyl-l-ethyl)-5- thioacetylnorbornene; 2-(2-triethoxy-silyl-l- ethyl)-4-thioacetylnorbornene; l-(l-oxo-2-thia-5- triethoxysilylphenyl)benzoic acid; 6- triethoxysilyl-l-hexylthioacetate; l-triethoxysilyl-5- hexylthioacetate; 8-triethoxysilyl-l- octylthioacetate; l-triethoxysilyl-7-octylthioacetate; 6- triethoxysilyl-l-hexylthioacetate; 1- triethoxysilyl-5-octylthioacetate; 8-trimethoxysilyl-l- octylthioacetate; l-trimethoxysilyl-7- octylthioacetate; 10-triethoxysilyl-l-decylthioacetate; 1- triethoxysilyl-9-decylthioacetate; 1- triethoxysilyl-2-butylthioacetate; l-triethoxysilyl-3- butylthioacetate; l-triethoxysilyl-3-methyl-2- butylthioacetate; l-triethoxysilyl-3-methyl-3- butylthioacetate; 3-trimethoxysilyl-l- propylthiooctanoate; 3-triethoxysilyl-l-propyl-l-
propylthiopalmitate; 3-triethoxysilyl-l- propylthiooctanoate; 3-triethoxysilyl-l- propylthiobenzoate; 3-triethoxysilyl-l-propylthio-2- ethylhexanoate; 3-methyldiacetoxysilyl-l- propylthioacetate; 3-triacetoxysilyl-l- propylthioacetate; 2-methyldiacetoxysilyl-l- ethylthioacetate; 2-triacetoxysilyl-l- ethylthioacetate; 1-methyldiacetoxysilyl-l- ethylthioacetate; 1-triacetoxysilyl-l-ethyl-thioacetate; tris-(3-triethoxysilyl-l- propyl)trithiophosphate; bis-(3-triethoxysilyl-l- propyl)methyldithiophosphonate; bis-(3- triethoxysilyl-l-propyl)ethyldithiophosphonate; 3- triethoxysilyl-1- propyldimethylthiophosphinate; 3-triethoxysilyl-l-propyldiethylthiophosphinate; tris-(3- triethoxysilyl-l-propyl)tetrathiophosphate; bis-(3-triethoxysilyl-l propyl)methyltrithiophosphonate; bis-(3-triethoxysilyl-l-propyl)ethyltrithiophosphonate; 3- triethoxysilyl-l-propyldimethyldithiophosphinate; 3-triethoxysilyl-l- propyldiethyldithiophosphinate; tris-(3-methyldimethoxysilyl-l-propyl)trithiophosphate; bis-(3- methyldimethoxysilyl- l-propyl)methyldithiophosphonate; bis-(3-methyldimethoxysilyl-l- propyl)-ethyldithiophosphonate; 3-methyldimethoxysilyl-l-propyldimethylthiophosphinate; 3- methyldimethoxysilyl-l-propyldiethylthiophosphinate; 3-triethoxysilyl-l- propylmethylthiosulfate; 3-triethoxysilyl-l-propylmethanethiosulfonate; 3-triethoxysilyl-l- propylethanethiosulfonate; 3-triethoxysilyl-l-propylbenzenethiosulfonate; 3-triethoxysilyl-l- propyltoluenethiosulfonate; 3-triethoxysilyl-l-propylnaphthalenethiosulfonate; 3-triethoxysilyl- 1-propylxylenethiosulfonate; triethoxysilylmethylmethylthiosulfate; triethoxysilylmethylmethanethiosulfonate; triethoxysilylmethylethanethiosulfonate; triethoxysilylmethylbenzenethiosulfonate; triethoxysilylmethyltoluenethiosulfonate; triethoxysilylmethylnaphthalenethiosulfonate; triethoxysilylmethylxylenethiosulfonate, and the like. Mixtures of various blocked mercapto silanes can be used. A further example of a suitable blocked mercapto silane for use in certain exemplary embodiments is NXT™ silane (3- octanoylthio-l-propyltriethoxysilane), commercially available from Momentive Performance Materials Inc. of Albany, NY.
[0082] Non-limiting examples of pre-treated silicas (i.e., silicas that have been pre-surface treated with a silane) suitable for use in certain embodiments of the first and second embodiments disclosed herein include, but are not limited to, Ciptane® 255 LD and Ciptane® LP
(PPG Industries) silicas that have been pre-treated with a mercaptosilane, and Coupsil® 8113 (Degussa) that is the product of the reaction between organosilane bis(triethoxysilylpropyl) polysulfide (Si69) and Ultrasil® VN3 silica. Coupsil 6508, Agilon 400™ silica from PPG Industries, Agilon 454® silica from PPG Industries, and 458® silica from PPG Industries. In those embodiments where the silica comprises a pre-treated silica, the pre-treated silica is used in an amount as previously disclosed for the silica filler (i.e., 81-120 phr or about 90 to about 120 phr, etc.).
[0083] When a silica coupling agent is utilized in an embodiment of the first and second embodiments, the amount used may vary. In certain embodiments of the first and second embodiments, the rubber compositions do not contain any silica coupling agent. In other preferred embodiments of the first and second embodiments, the silica coupling agent is present in an amount sufficient to provide a ratio of the total amount of silica coupling agent to silica filler of about 0.1:100 to about 1:5 (i.e., about 0.1 to about 20 parts by weight per 100 parts of silica), including 0.1:100 to 1:5, about 1:100 to about 1:10, 1:100 to 1:10, about 1:100 to about 1:20, 1:100 to 1:20, about 1:100 to about 1:25, and 1:100 to 1:25 as well as about 1:100 to about 0:100 and 1:100 to 0:100. In preferred embodiments of the first and second embodiments, the ratio of the total amount of silica coupling agent to silica filler falls within a ratio of 1:10 to 1:20 (i.e., 10 to 5 parts by weight per 100 parts of silica). In certain embodiments according to the first and second embodiments, the rubber composition comprises about 0.1 to about 15 phr silica coupling agent, including 0.1 to 15 phr (e.g., 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 phr), about 0.1 to about 12 phr, 0.1 to 12 phr, about 0.1 to about 10 phr, 0.1 to 10 phr, about 0.1 to about 7 phr, 0.1 to 7 phr, about 0.1 to about 5 phr, 0.1 to 5 phr, about 0.1 to about 3 phr, 0.1 to 3 phr, about 1 to about 15 phr, 1 to 15 phr (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 phr), about 1 to about 12 phr, 1 to 12 phr (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 phr), about 1 to about 10 phr, 1 to 10 phr (e.g., 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, or 10 phr), about 1 to about 7 phr, 1 to 7 phr, about 1 to about 5 phr, 1 to 5 phr, about 1 to about 3 phr, 1 to 3 phr, about 3 to about 15 phr, 3 to 15 phr, about 3 to about 12 phr, 3 to 12 phr, about 3 to about 10 phr, 3 to 10 phr, about 3 to about 7 phr, 3 to 7 phr, about 3 to about 5 phr, 3 to 5 phr, about 5 to about 15 phr, 5 to 15 phr, about 5 to about 12 phr, 5 to 12 phr, about
5 to about 10 phr, 5 to 10 phr, about 5 to about 7 phr, or 5 to 7 phr. In preferred embodiments of the first and second embodiments, the rubber composition comprises silica coupling agent in an amount of 8 to 12 phr or one of the foregoing ranges falling within this range.
Carbon Black Filler
[0084] According to the first and second embodiments disclosed herein, the amount of carbon black filler used in the rubber composition for the tread is limited. More specifically, according to the first and second embodiments disclosed herein, the filler component of the rubber composition includes only 1 to 20 phr of carbon black filler (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 phr). In certain preferred embodiments of the first and second embodiments, the tread rubber composition contains only 5-10 phr of carbon black filler (e.g., 5, 6, 7, 8, 9, or 10 phr). In certain embodiments of the first and second embodiments, the foregoing limited amounts of carbon black filler should be understood to refer to reinforcing carbon black filler (in other words, 1 to 20 phr of reinforcing carbon black filler or 5-10 phr of reinforcing carbon black filler is used). In other embodiments of the first and second embodiments, the foregoing limited amounts of carbon black filler should be understood to refer to non-reinforcing carbon black filler (in other words, 1 to 20 phr of non-reinforcing carbon black filler or 5-10 phr of non-reinforcing carbon black filler). In yet other embodiments of the first and second embodiments, the foregoing limited amounts of carbon black filler should be understood to refer to a combination of carbon black fillers (i.e., both reinforcing and non-reinforcing carbon black filler).
[0085] According to the first and second embodiments, the particular type or types of carbon black utilized may vary. Generally, suitable carbon blacks for use as a reinforcing filler in the rubber composition of certain embodiments of the first and second embodiments include any of the commonly available, commercially-produced carbon blacks, including those having a surface area of at least about 20 m2/g (including at least 20 m2/g) and, more preferably, at least about 35 m2/g up to about 200 m2/g or higher (including 35 m2/g up to 200 m2/g). Surface area values used herein for carbon blacks are determined by ASTM D-1765 using the cetyltrimethyl- ammonium bromide (CTAB) technique. Among the useful carbon blacks are furnace black, channel blacks, and lamp blacks. More specifically, examples of useful carbon blacks include
super abrasion furnace (SAF) blacks, high abrasion furnace (HAF) blacks, fast extrusion furnace (FEF) blacks, fine furnace (FF) blacks, intermediate super abrasion furnace (ISAF) blacks, semi reinforcing furnace (SRF) blacks, medium processing channel blacks, hard processing channel blacks and conducting channel blacks. Other carbon blacks which can be utilized include acetylene blacks. In certain embodiments of the first and second embodiments, the rubber composition includes a mixture of two or more of the foregoing blacks. Preferably according to the first and second embodiments, if a carbon black filler is present it consists of only one type (or grade) of reinforcing carbon black. Typical suitable carbon blacks for use in certain embodiments of the first and second embodiments are N-110, N-220, N-339, N-330, N-351, N- 550, and N-660, as designated by ASTM D-1765-82a. The carbon blacks utilized can be in pelletized form or an unpelletized flocculent mass. Preferably, for more uniform mixing, unpelletized carbon black is preferred.
Other Reinforcing Fillers
[0086] In certain embodiments of the first and second embodiments, the tread rubber composition comprises a reinforcing filler other than carbon black or silica (i.e., an additional reinforcing filler). While one or more than one additional reinforcing filler may be utilized, their total amount is preferably limited to no more than 10 phr (e.g., 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 or 0 phr), or no more than 5 phr (e.g., 5, 4, 3, 2, 1, or 0 phr). In certain preferred embodiments of the first and second embodiments, the tread rubber composition contains no additional reinforcing filler (i.e., 0 phr); in other words, in such embodiments no reinforcing filler other than silica and optionally carbon black are present.
[0087] In those embodiments of the first and second embodiments wherein an additional reinforcing filler is utilized, the additional reinforcing filler or fillers may vary. Non-limiting examples of suitable additional reinforcing fillers for use in the rubber compositions of certain embodiments of the first and second embodiments include, but are not limited to, alumina, aluminum hydroxide, clay (reinforcing grades), magnesium hydroxide, boron nitride, aluminum nitride, titanium dioxide, reinforcing zinc oxide, and combinations thereof.
Non-Reinforcing Fillers
[0088] In certain embodiments of the first and second embodiments, the rubber composition for the tread further comprises at least one non-reinforcing filler which is a non carbon black non-reinforcing filler. In other preferred embodiments of the first and second embodiments, the rubber composition contains no non-carbon black non-reinforcing fillers (i.e., 0 phr). In yet other embodiments of the first and second embodiments, the rubber composition contains no non-reinforcing fillers (in such embodiments, the carbon black filler of the filler component will be a reinforcing carbon black filler). In embodiments of the first and second embodiments wherein at least one non-carbon black non-reinforcing filler is utilized, the at least one non-reinforcing filler may be selected from clay (non-reinforcing grades), graphite, magnesium dioxide, aluminum oxide, starch, boron nitride (non-reinforcing grades), silicon nitride, aluminum nitride (non-reinforcing grades), calcium silicate, silicon carbide, ground rubber, and combinations thereof. The term "non-reinforcing filler" is used to refer to a particulate material that has a nitrogen absorption specific surface area (N2SA) of less than about 20 m2/g (including less than 20 m2/g), and in certain embodiments less than about 10 m2/g (including less than 10 m2/g). The N2SA surface area of a particulate material can be determined according to various standard methods including ASTM D6556. In certain embodiments, the term "non-reinforcing filler" is alternatively or additionally used to refer to a particulate material that has a particle size of greater than about 1000 nm (including greater than 1000 nm). In those embodiments of the first and second embodiments, wherein a non-carbon black non-reinforcing filler is present in the rubber composition, the total amount of non-carbon black non-reinforcing filler may vary but is preferably no more than 20 phr (e.g., 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 phr), and in certain embodiments 1-10 phr, no more than 10 phr, no more than 5 phr (e.g., 5, 4, 3, 2, or 1 phr), 1-5 phr, or no more than 1 phr.
Liquid Plasticizer
[0089] As mentioned above, according to the first and second embodiments, the rubber composition for the tire tread comprises (includes) 0 to 30 phr of a liquid plasticizer. By stating that the lower limit forthe liquid plasticizer is 0 phr is meant that the liquid plasticizer component is optional in certain embodiments of the first and second embodiments. The phrase liquid
plasticizer should be understood to refer to plasticizers that are liquid at 25 °C, including, but not limited, to oils and ester plasticizers. Generally, according to the first and second embodiments, when a liquid plasticizer is used one or more than one liquid plasticizer may be utilized. The total amount of liquid plasticizer may be referred to as the amount of plasticizer component. In certain embodiments of the first and second embodiments, the rubber composition includes 1 to 30 phr of liquid plasticizer (e.g., 1, 2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 25, 26, 28, or 30 phr) or an amount falling within the foregoing range such as 1 to 20 phr or 5 to 20 phr, preferably 10 to 30 phr (e.g., 10, 12, 14, 15, 16, 18, 20, 22, 24, 25, 26, 28, or 30 phr) of liquid plasticizer or an amount falling within such as 10 to 25 phr or 10 to 20 phr. The term oil is meant to encompass both free oil (which is usually added during the compounding process) and extender oil (which is used to extend a rubber). As a non-limiting example, by stating that the rubber composition includes 20 phr of oil it should be understood that the total amount of any free oil and any extender oil is 20 phr. Similarly, by stating that the rubber composition contains 20 phr of liquid plasticizer, it should be understood that the total amount of any liquid plasticizer (including free oil, extender oil, and ester plasticizer) is 20 phr. In certain embodiments of the first and second embodiments, when the tread rubber composition contains oil, the only oil is free oil in one of the foregoing amounts (e.g., 1 to 30 phr, 10 to 30 phr, 5 to 20 phr, etc.). In other embodiments of the first and second embodiments, when the tread rubber composition contains oil, the only oil is extender oil in one of the foregoing amounts (e.g., 1 to 30 phr, 10 to 30 phr, 5 to 20 phr, etc.). In those embodiments of the first and second embodiments wherein an oil-extended rubber is used the amount of oil used to prepare the oil-extended rubber may vary; in certain such embodiments, the amount of extender oil present in the oil-extended rubber (polymer) is 10-50 parts oil per 100 parts of rubber (e.g., 10, 15, 20, 25, 30, 35, 40, 45 or 50 parts oil per 100 parts of rubber), preferably 10-40 parts oil per 100 parts of rubber or 20-40 parts oil per 100 parts of rubber. When an oil-extended rubber is used in the elastomer component of the rubber composition disclosed herein, the amounts specified for the rubber(s) of the elastomer component, as discussed above, should be understood to refer to the amounts of rubber only rather than the amounts of oil- extended rubber. As a non-limiting example, extender oil could be used in an amount of 40 parts oil per 100 parts rubber in an SBR used in an amount of 15 parts in the overall rubber composition
and, thus, the amount of oil contributed by the oil-extended SBR to the rubber composition would be described as 6 phr.
[0090] As used herein, oil refers to both petroleum based oils (e.g., aromatic, naphthenic, and low PCA oils) as well as plant oils (such as can be harvested from vegetables, nuts, and seeds). Plant oils will generally comprise triglycerides and the term should be understood to include synthetic triglycerides as well as those actually sourced from a plant.
[0091] According to the first and second embodiments when one or more oils are present in the rubber composition, various types of processing and extender oils may be utilized, including, but not limited to aromatic, naphthenic, and low PCA oils (petroleum-sourced or plant- sourced). Suitable low PCA oils include those having a polycyclic aromatic content of less than S percent by weight as determined by the IPS46 method. Procedures for the IPS46 method may be found in Standard Methods for Analysis & Testing of Petroleum and Related Products and British Standard 2000 Parts, 2003, 62nd edition, published by the Institute of Petroleum, United Kingdom. Exemplary petroleum-sourced low PCA oils include mild extraction solvates (MES), treated distillate aromatic extracts (TDAE), TRAE, and heavy naphthenics. Exemplary MES oils are available commercially as CATENEX SNR from SHELL, PROREX 15, and FLEXON 683 from EXXONMOBIL, VIVATEC 200 from BP, PLAXOLENE MS from TOTAL FINA ELF, TUDALEN 4160/4225 from DAHLEKE, MES-H from REPSOL, MES from Z8, and OLIO MES S201 from AGIP. Exemplary TDAE oils are available as TYREX 20 from EXXONMOBIL, VIVATEC 500, VIVATEC 180, and ENERTHENE 1849 from BP, and EXTENSOIL 1996 from REPSOL. Exemplary heavy naphthenic oils are available as SHELLFLEX 794, ERGON BLACK OIL, ERGON H2000, CROSS C2000, CROSS C2400, and SAN JOAQUIN 2000L. Exemplary low PCA oils also include various plant-sourced oils such as can be harvested from vegetables, nuts, and seeds. Non-limiting examples include, but are not limited to, soy or soybean oil, sunflower oil (including high oleic sunflower oil), safflower oil, corn oil, linseed oil, cotton seed oil, rapeseed oil, cashew oil, sesame oil, camellia oil, jojoba oil, hemp oil, macadamia nut oil, coconut oil, and palm oil. The foregoing processing oils can be used as an extender oil, i.e., to prepare an oil-extended polymer or copolymer or as a processing or free oil.
[0092] In those embodiments of the first and second embodiments wherein one or more oils are present in the rubber composition, the Tg of the oil or oils used may vary. In certain
embodiments of the first and second embodiments, any oil utilized has a Tg of about -40 to about -100 °C, -40 to -100 °C (e.g., -40, -45, -50, -55, -60, -65, -70, -75, -80, -85, -90, -95, or -100 °C), about -40 to about -90 °C, -40 to -90 °C (e.g., -40, -45, -50, -55, -60, -65, -70, -75, -80, -85, or -90 °C), about -45 to about -85 °C, -45 to -85 °C (e.g., -45, -50, -55, -60, -65, -70, -75, -80, or -85 °C), about -50 to about -80 °C, or -50 to -80 °C (e.g., -50, -55, -60, -65, -70, -75, or -80 °C).
[0093] Preferably according to the first and second embodiments, the rubber composition contains less than 5 phr (e.g., 4.5, 4, 3, 2, 1, or 0 phr) of MES or TDAE oil, preferably no MES or TDAE oil (i.e., 0 phr). In certain embodiments of the first and second embodiments, the rubber composition contains no petroleum oil (i.e., 0 phr) and instead any oil utilized is a plant oil. In certain embodiments of the first and second embodiments, the rubber composition contains soybean oil in one of the above-mentioned amounts; in certain such embodiments the only oil included is soybean oil. In certain embodiments of the first and second embodiments, the rubber composition contains no sunflower oil (i.e., 0 phr). In other embodiments of the first and second embodiments, the only oil included is sunflower oil.
[0094] In certain embodiments of the first and second embodiments, the tread rubber composition includes one or more ester plasticizers, which is a type of plasticizer that is generally liquid at room temperature. Suitable ester plasticizers are known to those of skill in the art and include, but are not limited to, phosphate esters, phthalate esters, adipate esters and oleate esters (i.e., derived from oleic acid). Taking into account that an ester is a chemical compound derived from an acid wherein at least one -OH is replaced with an -O-alkyl group, various alkyl groups may be used in suitable ester plasticizers for use in the tread rubber compositions, including generally linear or branched alkyl of Ci to C20 (e.g., Ci, C2, C3, C4, C5, C6, C7, Cs, Cg, C10, C11, C12, Ci3, CM, Ci5, Ci6, Ci7, Cis, Cig, C20), or C6 to C12. Certain of the foregoing esters are based upon acids which have more than one -OH group and, thus, can accommodate one or more than one O-alkyl group (e.g., trialkyl phosphates, dialkyl phthalates, dialkyl adipates). Non-limiting examples of suitable ester plasticizers include trioctyl phosphate, dioctyl phthalate, dioctyl adipate, nonyl oleate, octyl oleate, and combinations thereof. The use of an ester plasticizer such as one or more of the foregoing may be beneficial to the snow or ice performance of a tire made from a tread rubber composition containing such ester plasticizer at least in part due to the
relatively low Tg of ester plasticizers. In certain embodiments of the first and second embodiments, the tread rubber composition includes one or more ester plasticizers having a Tg of -40 °C to -70 °C (e.g., -40, -45, -50, -55, -60, -65, or -70 °C), or -50 °C to -65 °C (e.g., -50, -51, - 52, -53, -54, -55, -56, -57, -58, -59, -60, -61, -62, -63, -64, or -65 °C ). In those embodiments of the first and second embodiments wherein one or more ester plasticizers is utilized the amount utilized may vary. In certain embodiments of the first and second embodiments, one or more ester plasticizers are utilized in a total amount of 1-25 phr (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 phr), 1-20 phr (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 phr), 1-15 phr (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, or 15 phr), 1-10, phr (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 phr), 2-6 phr (e.g., 2, 3, 4, 5, or 6 phr) or 2-5 phr (e.g., 2, 3, 4, or 5 phr). In certain preferred embodiments of the first and second embodiments, the amount of any ester plasticizer is no more than 15 phr or no more than 12 phr. In certain embodiments of the first and second embodiments, one or more ester plasticizers are used (in one of the foregoing amounts) in combination with oil where the oil is present in an amount of 1 to less than 10 phr, or 1-5 phr. In other embodiments of the first and second embodiments, one or more ester plasticizers is used without any oil being present in the tread rubber composition (i.e., 0 phr of oil).
[0095] In certain embodiments of the first and second embodiments, the rubber composition comprises a total amount of plasticizer of 30-70 phr (e.g., 30, 32, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 55, 56, 58, 60, 62, 64, 65, 66, 68, or 70 phr), with the plasticizer including the resins of the resin component and any liquid plasticizer (e.g., any oil and any ester plasticizer), all as discussed above. In certain embodiments of the first and second embodiments, the rubber composition comprises a total amount of plasticizer of no more than 60 phr (e.g., 60,
55, 50, 45, 40, 35 or 30 phr), 20-60 phr (e.g., 20, 22, 24, 25, 26, 28, 30, 32, 34, 35, 36, 38, 40, 42,
44, 45, 46, 48, 50, 52, 54, 55, 56, 58, or 60 phr), 30-60 phr (e.g., 30, 32, 34, 35, 36, 38, 40, 42, 44,
45, 46, 48, 50, 52, 54, 55, 56, 58, or 60 phr), 40-60 phr (e.g., 40, 42, 44, 45, 46, 48, 50, 52, 54, 55,
56, 58, or 60 phr), no more than 50 phr (e.g., 50, 45, 40, 35, or 30 phr), 20-50 phr (e.g., 20, 22,
24, 25, 26, 28, 30, 32, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, or 50 phr), or 30-50 phr (e.g., 30, 32, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, or 50 phr). In certain of the foregoing embodiments, the
total amount of plasticizer includes a minority by weight of liquid plasticizer (e.g., no more than 49% by weight, no more than 40% by weight, no more than 30% by weight, no more than 25% by weight, no more than 20% by weight, no more than 10% by weight, or no more than 5% by weight).
Cure Package
[0096] As discussed above, according to the first and second embodiments disclosed herein, the rubber composition used for the tire tread includes (comprises) a cure package. Although the contents of the cure package may vary according to the first and second embodiments, generally, the cure package includes at least one of: a vulcanizing agent; a vulcanizing accelerator; a vulcanizing activator (e.g., zinc oxide, stearic acid, and the like); a vulcanizing inhibitor; and an anti-scorching agent. In certain embodiments of the first and second embodiments, the cure package includes at least one vulcanizing agent, at least one vulcanizing accelerator, at least one vulcanizing activator and optionally a vulcanizing inhibitor and/or an anti-scorching agent. Vulcanizing accelerators and vulcanizing activators act as catalysts for the vulcanization agent. Various vulcanizing inhibitors and anti-scorching agents are known in the art and can be selected by one skilled in the art based on the vulcanizate properties desired.
[0097] Examples of suitable types of vulcanizing agents for use in certain embodiments of the first and second embodiments, include but are not limited to, sulfur or peroxide-based curing components. Thus, in certain such embodiments, the cure package includes a sulfur-based curative or a peroxide-based curative. In preferred embodiments of the first and second embodiments, the vulcanizing agent is a sulfur-based curative; in certain such embodiments the vulcanizing agent consists of (only) a sulfur-based curative. Examples of specific suitable sulfur vulcanizing agents include "rubbermaker's" soluble sulfur; sulfur donating curing agents, such as an amine disulfide, polymeric polysulfide, or sulfur olefin adducts; and insoluble polymeric sulfur. Preferably, the sulfur vulcanizing agent is soluble sulfur or a mixture of soluble and insoluble polymeric sulfur. For a general disclosure of suitable vulcanizing agents and other components used in curing, e.g., vulcanizing inhibitor and anti-scorching agents, one can referto Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd ed., Wiley Interscience, N.Y. 1982, Vol. 20, pp. 365 to 468, particularly Vulcanization Agents and Auxiliary Materials, pp. 390 to 402, or Vulcanization
by A. Y. Coran, Encyclopedia of Polymer Science and Engineering, Second Edition (1989 John Wiley & Sons, Inc.), both of which are incorporated herein by reference. Vulcanizing agents can be used alone or in combination. Generally, the vulcanizing agents may be used in certain embodiments of the first and second embodiments in an amount ranging from 0.1 to 10 phr (e.g., 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 phr), including from 1 to 7.5 phr, including from 1 to 5 phr, and preferably from 1 to 3.5 phr (e.g., 1, 1.5, 2, 2.5, 3, or 3.5 phr).
[0098] Vulcanizing accelerators are used to control the time and/or temperature required for vulcanization and to improve properties of the vulcanizate. Examples of suitable vulcanizing accelerators for use in certain embodiments of the first and second embodiments disclosed herein include, but are not limited to, thiazole vulcanization accelerators, such as 2- mercaptobenzothiazole, 2,2'-dithiobis(benzothiazole) (MBTS), N-cyclohexyl-2-benzothiazole- sulfenamide (CBS), N-tert-butyl-2-benzothiazole-sulfenamide (TBBS), and the like; guanidine vulcanization accelerators, such as diphenyl guanidine (DPG) and the like; thiuram vulcanizing accelerators; carbamate vulcanizing accelerators; and the like. Generally, the amount of the vulcanization accelerator used ranges from 0.1 to 10 phr (e.g., 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 phr), preferably 0.5 to 5 phr (e.g., 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, or 5 phr). Preferably, any vulcanization accelerator used in the rubber compositions of the first and second embodiments excludes any thiurams such as thiuram monosulfides and thiuram polysulfides (examples of which include TMTM (tetramethyl thiuram monosulfide), TMTD (tetramethyl thiuram disulfide), DPTT (dipentamethylene thiuram tetrasulfide), TETD (tetraethyl thiuram disulfide), TiBTD (tetraisobutyl thiuram disulfide), and TBzTD (tetrabenzyl thiuram disulfide)); in other words, the rubber compositions of the first and second embodiments preferably contain no thiuram accelerators (i.e., 0 phr).
[0099] Vulcanizing activators are additives used to support vulcanization. Generally vulcanizing activators include both an inorganic and organic component. Zinc oxide is the most widely used inorganic vulcanization activator. Various organic vulcanization activators are commonly used including stearic acid, palmitic acid, lauric acid, and zinc salts of each of the foregoing. Generally, in certain embodiments of the first and second embodiments the amount of vulcanization activator used ranges from 0.1 to 6 phr (e.g., 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,
5, 5.5, or 6 phr), preferably 0.5 to 4 phr (e.g., 0.5, 1, 1.5, 2, 2.5, 3 3.5, or 4 phr). In certain embodiments of the first and second embodiments, both zinc oxide and stearic acid are used as vulcanizing activators with the total amount utilized falling within one of the foregoing ranges; in certain such embodiments, the only vulcanizing activators used are zinc oxide and stearic acid. In certain embodiments of the first and second embodiments, one or more vulcanization activators are used which includes one or more thiourea compounds (used in the of the foregoing amounts), and optionally in combination with one or more of the foregoing vulcanization activators. Generally, a thiourea compound can be understood as a compound having the structure (R1)(R2)NS(=C)N(R3)(R4) wherein each of R1, R2, R3, and R4 are independently selected from H, alkyl, aryl, and N-containing substituents (e.g., guanyl). Optionally, two of the foregoing structures can be bonded together through N (removing one of the R groups) in a dithiobiurea compound. In certain embodiments, one of R1 or R2 and one of R3 or R4 can be bonded together with one or more methylene groups (-CH2-) therebetween. In certain embodiments of the first and second embodiments, the thiourea has one or two of R1, R2, R3 and R4 selected from one of the foregoing groups with the remaining R groups being hydrogen. Exemplary alkyl include Cl- C6 linear, branched or cyclic groups such as methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, pentyl, hexyl, and cyclohexyl. Exemplary aryl include C6-C12 aromatic groups such as phenyl, tolyl, and naphthyl. Exemplary thiourea compounds include, but are not limited to, dihydrocarbylthioureas such as dialkylthioureas and diarylthioureas. Non-limiting examples of particular thiourea compounds include one or more of thiourea, N,N'-diphenylthiourea, trimethylthiourea, N,N'-diethylthiourea (DEU), N,N'-dimethylthiourea, N,N'-dibutylthiourea, ethylenethiourea, N,N'-diisopropylthiourea, N,N'-dicyclohexylthiourea, l,3-di(o-tolyl)thiourea, l,3-di(p-tolyl)thiourea, l,l-diphenyl-2-thiourea, 2,5-dithiobiurea, guanylthiourea, 1-(1- naphthyl)-2-thiourea, l-phenyl-2-thiourea, p-tolylthiourea, and o-tolylthiourea. In certain embodiments of the first and second embodiments, the activator includes at least one thiourea compound selected from thiourea, N,N'-diethylthiourea, trimethylthiourea, N,N'- diphenylthiourea, and N-N'-dimethylthiourea.
[00100] Vulcanization inhibitors are used to control the vulcanization process and generally retard or inhibit vulcanization until the desired time and/or temperature is reached.
Common vulcanization inhibitors include, but are not limited to, PVI (cyclohexylthiophthalmide) from Santogard. Generally, in certain embodiments of the first and second embodiments the amount of vulcanization inhibitor is 0.1 to 3 phr (e.g., 0.1, 0.5, 1, 1.5, 2, 2.5, or 3 phr), preferably 0.5 to 2 phr [e.g., 0.5, 1, 1.5, or 2 phr).
Other Ingredients
[00101] Various other ingredients that may optionally be added to the rubber compositions of the first and second embodiment as disclosed herein include waxes (which in some instances are antioxidants), processing aids, reinforcing resins, peptizers, and antioxidants/antidegradant. Ingredients which are antidegradants may also be classified as an antiozonant or antioxidant, such as those selected from: N,N'disubstituted-p- phenylenediamines, such as N-l,3-dimethylbutyl-N'phenyl-p-phenylenediamine (6PPD), N,N'- Bis(l,4-dimethylpently)-p-phenylenediamine (77PD), N-phenyl-N-isopropyl-p-phenylenediamine (IPPD), and N-phenyl-N'-(l,3-dimethylbutyl)-p-phenylenediamine (HPPD). Other examples of antidegradants include, acetone diphenylamine condensation product, 2,4-Trimethyl-l,2- dihydroquinoline, Octylated Diphenylamine, 2,6-di-t-butyl-4-methyl phenol and certain waxes. In certain other embodiments of the first and second embodiments, the composition may be free or essentially free of antidegradants such as antioxidants or antiozonants.
Preparing The Rubber Compositions
[00102] The particular steps involved in preparing the rubber compositions of the first and second embodiments disclosed herein are generally those of conventionally practiced methods comprising mixing the ingredients in at least one non-productive master-batch stage and a final productive mixing stage. In certain embodiments of the first and second embodiments, the tread rubber composition is prepared by combining the ingredients for the rubber composition (as disclosed above) by methods known in the art, such as, for example, by kneading the ingredients together in a Banbury mixer or on a milled roll. Such methods generally include at least one non-productive master-batch mixing stage and a final productive mixing stage. The term non-productive master-batch stage is known to those of skill in the art and generally understood to be a mixing stage (or stages) where no vulcanizing agents or vulcanization accelerators are added. The term final productive mixing stage is also known to
those of skill in the art and generally understood to be the mixing stage where the vulcanizing agents and vulcanization accelerators are added into the rubber composition. In certain embodiments of the first and second embodiments, the rubber composition is prepared by a process comprising more than one non-productive master-batch mixing stage.
[00103] In certain preferred embodiments of the first and second embodiments, the tread rubber composition is prepared by a process wherein the master-batch mixing stage includes at least one of tandem mixing or intermeshing mixing. Tandem mixing can be understood as including the use of a mixer with two mixing chambers with each chamber having a set of mixing rotors; generally, the two mixing chambers are stacked together with the upper mixer being the primary mixer and the lower mixer accepting a batch from the upper or primary mixer. In certain embodiments, the primary mixer utilizes intermeshing rotors and in other embodiments the primary mixer utilizes tangential rotors. Preferably, the lower mixer utilizes intermeshing rotors. Intermeshing mixing can be understood as including the use of a mixer with intermeshing rotors. Intermeshing rotors refers to a set of rotors where the major diameter of one rotor in a set interacts with the minor diameter of the opposing rotor in the set such that the rotors intermesh with each other. Intermeshing rotors must be driven at an even speed because of the interaction between the rotors. In contrast to intermeshing rotors, tangential rotors refers to a set of rotors where each rotor turns independently of the other in a cavity that may be referred to as a side. Generally, a mixer with tangential rotors will include a ram whereas a ram is not necessary in a mixer with intermeshing rotors.
[00104] Generally, the rubbers (or polymers) and at least one reinforcing filler (as well as any silane coupling agent, liquid plasticizers and resin) will be added in a non-productive or master-batch mixing stage or stages. Generally, at least the vulcanizing agent component and the vulcanizing accelerator component of a cure package will be added in a final or productive mixing stage.
[00105] In certain embodiments of the first and second embodiments, the rubber composition is prepared using a process wherein at least one non-productive master batch mixing stage is conducted at a temperature of about 130 °C to about 200 °C. In certain embodiments of the first and second embodiments, the tread rubber composition is prepared
using a final productive mixing stage conducted at a temperature below the vulcanization temperature in order to avoid unwanted pre-cure of the rubber composition. Therefore, the temperature of the productive or final mixing stage generally should not exceed about 120 °C and is typically about 40 °C to about 120 °C, or about 60 °C to about 110 °C and, especially, about 75 °C to about 100 °C. In certain embodiments of the first and second embodiments, the tread rubber composition is prepared according to a process that includes at least one non-productive mixing stage and at least one productive mixing stage. The use of silica fillers may optionally necessitate a separate re-mill stage for separate addition of a portion or all of such filler. This stage often is performed at temperatures similar to, although often slightly lower than, those employed in the masterbatch stage, i.e., ramping from about 90°C to a drop temperature of about 150°C.
Properties Of The Rubber Composition Used For The Tire Tread
[00106] As mentioned above, according to the first embodiment, the tread of the tire has an improved stiffness. As also mentioned above, according to the second embodiment, a method is provided for improving the stiffness of a tire tread. Measurements of E' (dynamic storage modulus) at different temperatures can provide an indication of various properties of a rubber composition when it is utilized as a tire tread (e.g., E' at -20 °C correlates to snow traction with a relatively lower E' indicating better snow traction, and E' at 30 °C correlates to stiffness or cornering with a relatively higher E' indicating improved stiffness or cornering). When the rubber composition is incorporated into a tire tread, steering stability including cornering on a dry road surface is generally impacted by E' at higher temperatures (e.g., 30 °C) with higher values preferred and snow traction is generally impacted by E' at lower temperatures (e.g., -20 °C and - 40 °C) with lower values preferred. The measurements and performance referred to herein can be measured upon a slab of cured rubber composition (the rubber composition being as discussed herein for the first and second embodiments) that has been prepared in a laboratory or can be measured upon a sample cut from a tire tread (e.g., that contains a cured version of a rubber composition as discussed herein for the first and second embodiments).
[00107] The stiffness properties referred to herein can be quantified by measuring the E' at 30 °C of a sample rubber composition after curing at 170 °C for 15 minutes. E'
measurements can be performed using Gabo equipment according to the following methods. Gabo measurements may be made using a dynamic mechanical thermal spectrometer (Eplexor® 500N from Gabo Qualimeter Testanlagen GmbH of Ahiden, Germany) under the following conditions: measurement mode: tensile test mode, measuring frequency: 52 Hz, applying 0.2% strain from 50 to -5 °C and 1% strain from -5 to 65 °C, measuring temperatures (including e.g., - 20 °C, 30 °C, etc.), sample shape: 4.75 mm wide x 29 mm long x 2.0 mm thick.
[00108] Measurements of tan d at various temperatures can be used to quantify the expected wet performance and rolling resistance of the rubber compositions when they are incorporated into tire treads. Tan d values can be measured with a dynamic mechanical thermal spectrometer (Eplexor® 500N from Gabo Qualimeter Testanlagen GmbH of Ahiden, Germany) generally following the guidelines of ASTM D5992-96 (2011) under the following conditions: measurement mode: tensile test mode; measuring frequency: 52 Hz; temperature sweep measurement, applying 0.2% strain from -50 to -5 °C and 1% strain from -5 to 65 °C, with the starting temperature being somewhat below -50 °C and the ending temperature being somewhat above -5 °C; collecting data approximately every 1 °C in order to provide measurements at temperatures of -30 °C, 0 °C, 30°C, and 60 °C; sample shape: 4.75 mm wide x 29 mm long x 2.0 mm thick. Measurement is made upon a cured sample of rubber (cured for 15 minutes at 170°C). A rubber composition's tan d at 0 °C is indicative of its wet traction when incorporated into a tire tread and its tan d at 60 °C is indicative of its rolling resistance when incorporated into a tire tread.
[00109] In certain embodiments of the first and second embodiments, the rubber composition for the tire tread has a stiffness as measured by E' at 30 °C of at least 15 (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, or more), preferably at least 17 (e.g., 17, 18, 19, 20, 21, 22, 23, or more), more preferably at least 20 (e.g., 20, 21, 22, 23, or more). In certain embodiments of the first and second embodiments, the rubber composition for the tire tread has a stiffness as measured by E' at 30 °C of 15-25, 15-23, 17-25, 17-23, 20-25, or 20-23.
[00110] In certain embodiments of the first and second embodiments, the rubber composition for the tire tread has a wet performance as measured by tan d at 0 °C of at least 0.42 (e.g., 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, or more), preferably at least 0.45 (e.g., 0.45,
0.46, 0.47, 0.48, 0.49, 0.5, or more). In certain embodiments of the first and second embodiments, the rubber composition for the tire tread has a wet performance as measured by tan d at 0 °C of 0.42-0.6, 0.42-0.55, or 0.42-0.5, preferably 0.45-0.6, 0.45-0.55, or 0.45-0.5. In preferred certain embodiments of the first and second embodiments, the rubber composition forthe tire tread has a wet performance falling within one of the foregoing ranges in combination with a stiffness falling within one of the foregoing ranges; in certain such embodiments, the wet performance and stiffness both fall within the foregoing preferred (or more preferred) ranges.
[00111] In certain embodiments of the first and second embodiments, the rubber composition for the tire tread has a rolling resistance as measured by tan d at 60 °C of no more than 0.35 (e.g., 0.35, 0.34, 0.33, 0.32, 0.31, 0.3, 0.29, 0.28, 0.27, 0.26, 0.25, or less), preferably no more than 0.33 (e.g., 0.33, 0.32, 0.31, 0.3, 0.29, 0.28, 0.27, 0.26, 0.25, or less). In certain embodiments of the first and second embodiments, the rubber composition for the tire tread has a rolling resistance as measured by tan d at 60 °C of 0.2-0.35, 0.22-0.35, or 0.25-0.35, preferably 0.2-0.33, 0.22-0.33, or 0.25-0.33. In certain preferred embodiments of the first and second embodiments, the rubber composition for the tire tread has a rolling resistance falling within one of the foregoing ranges in combination with a stiffness falling within one of the foregoing ranges; in certain such embodiments, the rolling resistance and stiffness both fall within the foregoing preferred (or more preferred) ranges. In certain particularly preferred embodiments of the first and second embodiments, the rubber composition for the tire tread has a stiffness, wet performance and rolling resistance falling within one of the foregoing ranges; in certain such embodiments, the stiffness, wet performance and rolling resistance all fall within the foregoing preferred (or most preferred) ranges.
[00112] In certain embodiments of the first and second embodiments, the rubber composition for the tire tread has snow performance as measured by E' at -20 °C of no more than 200 (e.g., 200, 190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, or less), preferably no more than 150 (e.g., 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, or less). In certain embodiments of the first and second embodiments, the rubber composition for the tire tread has snow performance as measured by E' at -20 °C of 40-200, 50-200, or 60-200, preferably 40-150, 50-150, or 60-150. In certain preferred embodiments of the first and second
embodiments, the rubber composition for the tire tread has a snow performance falling within one of the foregoing ranges in combination with a stiffness falling within one of the foregoing ranges; in certain such embodiments, the snow performance and stiffness both fall within the foregoing preferred (or more preferred) ranges. In certain preferred embodiments of the first and second embodiments, the rubber composition for the tire tread has a snow performance falling within one of the foregoing ranges in combination with a rolling resistance falling within one of the foregoing ranges; in certain such embodiments, the snow performance and rolling resistance both fall within the foregoing preferred (or more preferred) ranges. In certain preferred embodiments of the first and second embodiments, the rubber composition for the tire tread has a snow performance falling within one of the foregoing ranges in combination with a wet performance falling within one of the foregoing ranges; in certain such embodiments, the snow performance and wet performance both fall within the foregoing preferred (or more preferred) ranges. In certain particularly preferred embodiments of the first and second embodiments, the rubber composition for the tire tread has a snow performance, stiffness, wet performance and rolling resistance falling within one of the foregoing ranges; in certain such embodiments, the snow performance, stiffness, wet performance and rolling resistance all fall within the foregoing preferred (or most preferred) ranges.
[00113] This application discloses several numerical range limitations that support any range within the disclosed numerical ranges, even though a precise range limitation is not stated verbatim in the specification, because the embodiments of the compositions and methods disclosed herein could be practiced throughout the disclosed numerical ranges. With respect to the use of substantially any plural or singular terms herein, those having skill in the art can translate from the plural to the singular or from the singular to the plural as is appropriate to the context or application. The various singular or plural permutations may be expressly set forth herein for sake of clarity.
[00114] It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims are generally intended as "open" terms. For example, the term "including" should be interpreted as "including but not limited to," the term "having" should be interpreted as "having at least," the term "includes" should be interpreted as
"includes but is not limited to." It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases "at least one" and "one or more" to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles "a" or "an" limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases "one or more" or "at least one" and indefinite articles such as "a" or "an" (e.g., "a" or "an" should typically be interpreted to mean "at least one" or "one or more"); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of "two recitations," without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to "at least one of A, B, and C, etc." is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., " a system having at least one of A, B, and C" would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase "A or B" will be understood to include the possibilities of "A" or "B" or "A and B." All references, including but not limited to patents, patent applications, and non-patent literature are hereby incorporated by reference herein in their entirety. While various aspects and embodiments of the compositions and methods have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein
are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the claims.
Claims
1. A tire comprising a tread having improved stiffness and made from a rubber composition comprising:
100 parts of an elastomer component including at least one rubber selected from the group consisting of styrene-butadiene copolymer, polybutadiene, natural rubber, and polyisoprene,
BO to 60 phr of a resin component comprising 20 to 50 phr of a terpene phenol resin having a hydroxyl value of 50 or less, preferably 30 or less, more preferably 20 or less and a DCPD-based resin, an elastomer component comprising
91 to 140 phr of a reinforcing silica filler, preferably 100 to 130 phr, and 1 to 20 phr, preferably 5 to 10 phr of a carbon black filler,
0 to 30 phr of a liquid plasticizer, and a cure package.
2. The tire of claim 1, wherein the terpene phenol resin having a hydroxyl value of 50 or less comprises a majority by weight of the resin component.
3. The tire of claim 1 or claim 2, wherein the DCPD-based resin has a minority by weight of DCPD monomers.
4. The tire of claim 1 or claim 2, wherein the DCPD-based resin has a majority by weight of DCPD monomers, preferably at least 60%, at least 70%, at least 80%, or at least 90% by weight of DCPD monomers.
5. The tire of any one of claims 1-4, wherein the reinforcing silica filler has a BET surface area of about 140 to about 230 m2/g.
6. The tire of any one of claims 1-4, wherein the reinforcing silica filler has a BET surface area of about 100 to about 140 m2/g.
7. The tire of any one of claims 1-6, wherein the elastomer component includes at least 60 parts of polybutadiene having a cis-bond content of at least 95% and a Tg of less than - 101 °C.
8. The tire of any one of claims 1-6, wherein the elastomer component includes at least 40 parts of natural rubber or polyisoprene, 10-40 parts of polybutadiene having a cis-bond content of at least 95% and a Tg of less than -101 °C, and 10-40 parts of styrene-butadiene copolymer.
9. The tire of any one of claims 1-6, wherein the elastomer component includes at least 20 phr, preferably 30-60 phr, of styrene-butadiene having a silica-reactive functional group.
10. The tire of any one of claims 1-6, wherein the elastomer component includes at least 20 phr, preferably 30-60 phr, of styrene-butadiene copolymer having a Tg of about -65 to about -40 °C.
11. The tire of any one of claims 1-10, wherein the rubber composition of the tread includes 10-30 phr of a liquid plasticizer.
12. The tire of any one of claims 1-11, wherein the filler component includes no more than 10 phr of reinforcing carbon black filler, preferably no more than 5 phr of reinforcing carbon black filler or 0 phr of reinforcing carbon black filler.
13. The tire of any one of claims 1-12, wherein the rubber composition has a stiffness as measured by E' at 30 °C of at least 15, preferably at least 17, more preferably at least 20.
14. The tire of claim 13, wherein the reinforcing silica filler has a BET surface area of about 140 to about 230 m2/g-
15. The tire of any one of claims 1-14, wherein the rubber composition has a wet performance as measured by tan d at 0 °C of at least 0.42, preferably at least 0.45.
16. The tire of claim 15, wherein the elastomer component includes at least 60 parts of polybutadiene having a cis-bond content of at least 95% and a Tg of less than -101 °C.
17. The tire of any one of claims 1-14, wherein the rubber composition has a wet performance as measured by tan d at 0 °C of at least 0.5, preferably at least 0.55.
18. The tire of claim 17, wherein the elastomer component includes at least 20 phr, preferably 30-60 phr, of styrene-butadiene having a silica-reactive functional group.
19. The tire of any one of claims 1-12, wherein the rubber composition has a rolling resistance as measured by tan d at 60 °C of no more than 0.35, preferably no more than 0.3.
20. A method for improving the stiffness of a tire tread comprising providing a tire comprising a tread according to any one of claims 1-19.
21. A tire tread resulting from the method of claim 20.
22. A tire incorporating the tire tread of claim 21.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022525847A JP7555403B2 (en) | 2019-11-06 | 2020-11-05 | Tire having a tread of a particular rubber composition and related methods |
US17/755,636 US20220356329A1 (en) | 2019-11-06 | 2020-11-05 | Tire Having Tread Of Specified Rubber Composition And Related Methods |
EP20885718.5A EP4055099A4 (en) | 2019-11-06 | 2020-11-05 | Tire having tread of specified rubber composition and related methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962931377P | 2019-11-06 | 2019-11-06 | |
US62/931,377 | 2019-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021092182A1 true WO2021092182A1 (en) | 2021-05-14 |
Family
ID=75849431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2020/059121 WO2021092182A1 (en) | 2019-11-06 | 2020-11-05 | Tire having tread of specified rubber composition and related methods |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220356329A1 (en) |
EP (1) | EP4055099A4 (en) |
JP (1) | JP7555403B2 (en) |
WO (1) | WO2021092182A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6127468A (en) | 1997-08-21 | 2000-10-03 | Ck Witco Corporation | Filled rubbers comprising blocked mercaptosilanes and thiuram deblocking agents |
US6369167B1 (en) | 1999-12-02 | 2002-04-09 | Bridgestone Corporation | Polymer, process for making the polymer, and rubber composition using the polymer |
US6635700B2 (en) | 2000-12-15 | 2003-10-21 | Crompton Corporation | Mineral-filled elastomer compositions |
US6649684B1 (en) | 1999-08-19 | 2003-11-18 | Ppg Industries Ohio, Inc. | Chemically treated fillers and polymeric compositions containing same |
US20130203890A1 (en) * | 2010-03-31 | 2013-08-08 | Garance Lopitaux | Tire, the tread of which comprises a rubber composition a polyvinyl ester resin |
US20160312015A1 (en) * | 2014-12-26 | 2016-10-27 | Compagnie Generale Des Etablissements Michelin | Functionalized rubber composition with sbr/br rubber |
KR101775624B1 (en) * | 2016-06-03 | 2017-09-06 | 넥센타이어 주식회사 | Rubber composition for tire |
US20180105681A1 (en) * | 2016-10-14 | 2018-04-19 | Kraton Chemical, Llc | Rubber compositions containing improved tread enhancement additives and use thereof |
US20190085156A1 (en) * | 2014-11-27 | 2019-03-21 | Bridgestone Corporation | Rubber composition, method for producing same, and tire |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2984896B1 (en) * | 2011-12-21 | 2014-10-24 | Michelin Soc Tech | PNEUMATIC COMPRISING A COMPOSITION ESSENTIALLY FREE OF GUANIDIC DERIVATIVE AND COMPRISING PRIMARY AMINE |
JP6018207B2 (en) * | 2012-08-03 | 2016-11-02 | 住友ゴム工業株式会社 | Rubber composition for tread and pneumatic tire |
JP5913188B2 (en) * | 2013-04-30 | 2016-04-27 | 住友ゴム工業株式会社 | Rubber composition for tire and pneumatic tire |
CN107001713B (en) * | 2014-12-24 | 2020-10-27 | 住友橡胶工业株式会社 | Pneumatic tire |
EP3237515B1 (en) * | 2014-12-26 | 2018-10-03 | Compagnie Générale des Etablissements Michelin | Reactive silica in epoxidized polybutadiene |
US9441098B1 (en) * | 2015-11-18 | 2016-09-13 | The Goodyear Tire & Rubber Company | Tire with tread for low temperature performance and wet traction |
WO2018004579A1 (en) * | 2016-06-30 | 2018-01-04 | Compagnie Generale Des Etablissements Michelin | Functionalized rubber composition with sbr/br rubber |
CN110382609B (en) * | 2017-03-01 | 2022-03-22 | 住友橡胶工业株式会社 | Studless tire |
JP2019031659A (en) * | 2017-08-04 | 2019-02-28 | 旭化成株式会社 | Modified conjugated diene-based polymer composition and tire |
JP7151083B2 (en) * | 2018-01-11 | 2022-10-12 | 住友ゴム工業株式会社 | Rubber composition for tire |
US11015042B2 (en) * | 2018-04-19 | 2021-05-25 | Kraton Polymers Llc | Tread enhancement additives for tires |
-
2020
- 2020-11-05 JP JP2022525847A patent/JP7555403B2/en active Active
- 2020-11-05 US US17/755,636 patent/US20220356329A1/en active Pending
- 2020-11-05 WO PCT/US2020/059121 patent/WO2021092182A1/en unknown
- 2020-11-05 EP EP20885718.5A patent/EP4055099A4/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6127468A (en) | 1997-08-21 | 2000-10-03 | Ck Witco Corporation | Filled rubbers comprising blocked mercaptosilanes and thiuram deblocking agents |
US6204339B1 (en) | 1997-08-21 | 2001-03-20 | Crompton Corporation | Elastomeric composition comprising a blocked mercaptosilane coupling agent and a deblocking agent |
US6528673B2 (en) | 1997-08-21 | 2003-03-04 | Crompton Corporation | Blocked mercaptosilane coupling agents for filled rubbers |
US6683135B2 (en) | 1997-08-21 | 2004-01-27 | Richard W. Cruse | Blocked mercaptosilane coupling agents for filled rubbers |
US6649684B1 (en) | 1999-08-19 | 2003-11-18 | Ppg Industries Ohio, Inc. | Chemically treated fillers and polymeric compositions containing same |
US6369167B1 (en) | 1999-12-02 | 2002-04-09 | Bridgestone Corporation | Polymer, process for making the polymer, and rubber composition using the polymer |
US6635700B2 (en) | 2000-12-15 | 2003-10-21 | Crompton Corporation | Mineral-filled elastomer compositions |
US20130203890A1 (en) * | 2010-03-31 | 2013-08-08 | Garance Lopitaux | Tire, the tread of which comprises a rubber composition a polyvinyl ester resin |
US20190085156A1 (en) * | 2014-11-27 | 2019-03-21 | Bridgestone Corporation | Rubber composition, method for producing same, and tire |
US20160312015A1 (en) * | 2014-12-26 | 2016-10-27 | Compagnie Generale Des Etablissements Michelin | Functionalized rubber composition with sbr/br rubber |
KR101775624B1 (en) * | 2016-06-03 | 2017-09-06 | 넥센타이어 주식회사 | Rubber composition for tire |
US20180105681A1 (en) * | 2016-10-14 | 2018-04-19 | Kraton Chemical, Llc | Rubber compositions containing improved tread enhancement additives and use thereof |
Non-Patent Citations (3)
Title |
---|
A. Y. CORAN: "Encyclopedia of Polymer Science and Engineering", 1989, JOHN WILEY & SONS, article "Vulcanization", pages: 390 - 402 |
KIRK-OTHMER: "Encyclopedia of Chemical Technology", vol. 20, 1982, WILEY INTERSCIENCE, pages: 365 - 468 |
See also references of EP4055099A4 |
Also Published As
Publication number | Publication date |
---|---|
JP7555403B2 (en) | 2024-09-24 |
EP4055099A1 (en) | 2022-09-14 |
JP2023500520A (en) | 2023-01-06 |
US20220356329A1 (en) | 2022-11-10 |
EP4055099A4 (en) | 2023-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7513347B2 (en) | Tire tread rubber composition | |
US12103334B2 (en) | Tire tread rubber composition | |
WO2020243304A1 (en) | Tire tread rubber composition and related methods | |
EP3781625A1 (en) | Tire tread rubber composition | |
EP3976392A1 (en) | Tire tread rubber composition and related methods | |
WO2019213233A1 (en) | Tire tread rubber composition | |
US20210300116A1 (en) | Tire Tread Rubber Composition | |
JP7553706B2 (en) | Tire tread rubber composition and related methods | |
EP4053208A1 (en) | Tire tread rubber composition | |
WO2020243311A1 (en) | Tire tread rubber composition and related methods | |
JP7555403B2 (en) | Tire having a tread of a particular rubber composition and related methods | |
EP4055098A1 (en) | Tire having tread of specified rubber composition and related methods | |
WO2021092179A1 (en) | Tire having tread of specified rubber composition and related methods | |
WO2022147464A1 (en) | Tire having tread of specified rubber composition and related methods | |
WO2024182417A1 (en) | Tire tread rubber composition and related methods | |
WO2024182408A1 (en) | Tire tread rubber composition and related methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20885718 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022525847 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020885718 Country of ref document: EP Effective date: 20220607 |