WO2021088946A1 - Methods and apparatuses for sl carrier aggregation enhancement - Google Patents

Methods and apparatuses for sl carrier aggregation enhancement Download PDF

Info

Publication number
WO2021088946A1
WO2021088946A1 PCT/CN2020/126918 CN2020126918W WO2021088946A1 WO 2021088946 A1 WO2021088946 A1 WO 2021088946A1 CN 2020126918 W CN2020126918 W CN 2020126918W WO 2021088946 A1 WO2021088946 A1 WO 2021088946A1
Authority
WO
WIPO (PCT)
Prior art keywords
validity area
rat
cell
resource configuration
area information
Prior art date
Application number
PCT/CN2020/126918
Other languages
French (fr)
Inventor
Yunglan TSENG
Hungchen CHEN
Meiju SHIH
Yuhsin CHENG
Original Assignee
FG Innovation Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FG Innovation Company Limited filed Critical FG Innovation Company Limited
Priority to JP2022526181A priority Critical patent/JP7335441B2/en
Priority to EP20885571.8A priority patent/EP4046438A4/en
Priority to KR1020227018511A priority patent/KR20220093343A/en
Priority to CN202080077305.6A priority patent/CN114642063A/en
Publication of WO2021088946A1 publication Critical patent/WO2021088946A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present disclosure is related to wireless communication, and more particularly, to methods and apparatuses for sidelink (SL) carrier aggregation enhancement in wireless communication networks.
  • SL sidelink
  • 5G fifth generation
  • NR New Radio
  • the 5G NR system is designed to provide flexibility and configurability to optimize the network services and types, accommodating various use cases such as Vehicle to Vehicle (V2V) , Vehicle to Pedestrian (V2P) , and Vehicle to Everything (V2X) communications.
  • V2V Vehicle to Vehicle
  • V2P Vehicle to Pedestrian
  • V2X Vehicle to Everything
  • the present disclosure is related to methods and apparatuses for SL carrier aggregation enhancement in wireless communication networks.
  • a user equipment includes one or more non-transitory computer-readable media containing computer-executable instructions embodied therein and at least one processor coupled to the one or more non-transitory computer-readable media.
  • the at least one processor is configured to receive through a serving cell of a first Radio Access Technology (RAT) , a sidelink resource configuration of a second RAT, determine first validity area information associated with the first RAT and second validity area information associated with the second RAT, the first validity area information and the second validity area information being associated with different frequency carriers, and identify a validity area of the sidelink resource configuration based on the first validity area information and the second validity area information.
  • RAT Radio Access Technology
  • the at least one processor is further configured to execute the computer-executable instructions to access a sidelink resource associated with the validity area after the validity area is identified as valid.
  • the first validity area information is associated with a first Public Land Mobile Network (PLMN) identity (PLMNidentity) in a PLMNidentity list or a first Non-Public Network (NPN) identity (NPNidentity) in a NPNidentity list, and the PLMNidentity list and the NPNidentity list are broadcast by the serving cell.
  • PLMN Public Land Mobile Network
  • NPN Non-Public Network
  • the second validity area information is associated with at least one of one or more SL transmission resource pools, one or more SL reception resource pools, one or more (Type1/Type2) sidelink configured grant, and one or more exceptional transmission resource pools.
  • the first RAT is a 5 th Generation New Radio (5G NR) RAT.
  • 5G NR 5 th Generation New Radio
  • NR sidelink communication is considered as part of the 5G NR RAT (or is associated with the 5G NR RAT) .
  • the NR sidelink communication is implemented based on the 5G NR RAT.
  • the second RAT is an Evolved Universal Terrestrial Radio Access (E-UTRA) RAT.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • the sidelink resource configuration of the second RAT is for Long Term Evolution (LTE) Vehicle to Everything (V2X) sidelink communication associated with an Evolved Universal Terrestrial Radio Access (E-UTRA) RAT.
  • LTE Long Term Evolution
  • V2X Vehicle to Everything
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • V2X sidelink communication and sidelink communication/discovery are considered as part of the E-UTRA RAT (or are associated with the E-UTRA RAT) .
  • V2X sidelink communication and sidelink communication/discovery are implemented based on the E-UTRA RAT.
  • the sidelink resource configuration of the second RAT (e.g., V2X sidelink communication) is received through system information broadcast by the serving cell of the first RAT.
  • the sidelink resource configuration of the first RAT (e.g., NR sidelink communication) is received through system information broadcast by the serving cell of the second RAT.
  • the validity area of the sidelink resource configuration is composed of at least one system information area identifier (systemInformationAreaID) broadcast by the serving cell of the first RAT.
  • systemInformationAreaID system information area identifier
  • the first validity area of the first RAT is composed by the serving cell of the first RAT, when the systemInformationAreaID is absent or when the sidelink resource configuration is not indicated by the systemInformationAreaID broadcast by the serving cell.
  • the sidelink resource configuration associated with the validity area is invalidated by the UE after the UE moves out of either a first validity area associated with the first validity area information and/or a second validity area associated with the second validity area information.
  • a method performed by a UE includes receiving, through a serving cell of a first Radio Access Technology (RAT) , a sidelink resource configuration of a second RAT, determining first validity area information associated with the first RAT and second validity area information associated with the second RAT, the first validity area information and the second validity area information being associated with different frequency carriers, and identifying a validity area of the sidelink resource configuration based on the first validity area information and the second validity area information.
  • RAT Radio Access Technology
  • the method further includes accessing a sidelink resource associated with the validity area after the validity area is identified as valid.
  • the first validity area information is associated with a first Public Land Mobile Network (PLMN) identity (PLMNidentity) in a PLMNidentity list or a first Non-Public Network (NPN) identity (NPNidentity) in a NPNidentity list, and the PLMNidentity list and the NPNidentity list are broadcast by the serving cell.
  • PLMN Public Land Mobile Network
  • NPN Non-Public Network
  • the UE may also check the first validity area information by checking whether the first PLMN identity (or the first NPN identity) of the serving cell has changed. Moreover, the UE may check the first PLMN identity (in the PLMNidentity list broadcast by the serving cell) while the UE is checking the validity of the first validity area information and the UE is not under the Stand-alone Non-Public Network (SNPN) access mode. On the other hand, the UE may check the first NPN identity (in the NPNidentity list broadcast by the serving cell) while the UE is checking the validity of the first validity area information and the UE is under the SNPN access mode.
  • SNPN Stand-alone Non-Public Network
  • the second validity area information is associated with at least one of one or more SL transmission resource pools, one or more SL reception resource pools, one or more exceptional transmission resource pools, and one or more (Type1/Type2) sidelink configured grants.
  • the first RAT is a 5 th Generation New Radio (5G NR) RAT.
  • 5G NR 5 th Generation New Radio
  • the second RAT is an Evolved Universal Terrestrial Radio Access (E-UTRA) RAT.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • the sidelink resource configuration of the second RAT (e.g., a V2X sidelink resource configuration associated with the E-UTRA RAT) is received through system information broadcast by the serving cell of the first RAT (e.g., an NR Cell) .
  • the serving cell of the first RAT e.g., an NR Cell
  • the validity area of the sidelink resource configuration is composed of at least one system information area identifier (systemInformationAreaID) broadcast by the serving cell of the first RAT.
  • systemInformationAreaID system information area identifier
  • the first validity area of the first RAT is composed by the serving cell of the first RAT, when the systemInformationAreaID is absent or when the sidelink resource configuration is not indicated by the systemInformationAreaID broadcast by the serving cell.
  • the sidelink resource configuration associated with the validity area is invalidated by the UE after the UE moves out of either a first validity area associated with the first validity area information or a second validity area associated with the second validity area information.
  • FIG. 1 is a diagram illustrating LTE/NR (V2X) SL operations, in accordance with an example implementation of the present disclosure.
  • FIG. 2A and FIG. 2B are diagrams illustrating carrier aggregation for (LTE) V2X SL communication/NR SL communication, in accordance with example implementations of the present disclosure.
  • FIG. 3 is a flowchart 300 of a method performed by a UE for NR SL operations, in accordance with an example implementation of the present disclosure.
  • FIG. 4 illustrates a diagram showing a UE performing SL synchronization and SL cell (re) selection procedures under a fallback mechanism to a cross-carrier validity area configuration, in accordance with an example implementation of the present disclosure.
  • FIG. 5 illustrates a range-based SL resource association in accordance with an example implementation of the present disclosure.
  • FIG. 6 is a block diagram illustrating a node for wireless communication in accordance with various aspects of the present disclosure.
  • the phrases “in one implementation, ” or “in some implementations, ” may each refer to one or more of the same or different implementations.
  • the term “coupled” is defined as connected whether directly or indirectly through intervening components and is not necessarily limited to physical connections.
  • the term “comprising” means “including, but not necessarily limited to” and specifically indicates open-ended inclusion or membership in the so-described combination, group, series or equivalent.
  • the expression “at least one of A, B and C” or “at least one of the following: A, B and C” means “only A, or only B, or only C, or any combination of A, B and C. ”
  • system and “network” may be used interchangeably.
  • the term “and/or” is only an association relationship for describing associated objects and represents that three relationships may exist such that A and/or B may indicate that A exists alone, A and B exist at the same time, or B exists alone.
  • the character “/” generally represents that the associated objects are in an “or” relationship.
  • any network function (s) or algorithm (s) disclosed may be implemented by hardware, software or a combination of software and hardware.
  • Disclosed functions may correspond to modules which may be software, hardware, firmware, or any combination thereof.
  • a software implementation may include computer-executable instructions stored on a computer-readable medium such as memory or other types of storage devices.
  • a computer-readable medium such as memory or other types of storage devices.
  • One or more microprocessors or general-purpose computers with communication processing capability may be programmed with corresponding executable instructions and perform the disclosed network function (s) or algorithm (s) .
  • the microprocessors or general-purpose computers may include Applications Specific Integrated Circuitry (ASIC) , programmable logic arrays, and/or using one or more Digital Signal Processor (DSPs) .
  • ASIC Applications Specific Integrated Circuitry
  • DSP Digital Signal Processor
  • some of the disclosed implementations are oriented to software installed and executing on computer hardware, alternative implementations implemented as firmware or as hardware or as a combination of hardware and software are well within the scope of the present disclosure.
  • the computer readable medium includes but is not limited to Random Access Memory (RAM) , Read Only Memory (ROM) , Erasable Programmable Read-Only Memory (EPROM) , Electrically Erasable Programmable Read-Only Memory (EEPROM) , flash memory, Compact Disc Read-Only Memory (CD-ROM) , magnetic cassettes, magnetic tape, magnetic disk storage, or any other equivalent medium capable of storing computer-readable instructions.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • flash memory Compact Disc Read-Only Memory (CD-ROM)
  • CD-ROM Compact Disc Read-Only Memory
  • magnetic cassettes magnetic tape
  • magnetic disk storage or any other equivalent medium capable of storing computer-readable instructions.
  • a radio communication network architecture such as a Long Term Evolution (LTE) system, an LTE-Advanced (LTE-A) system, an LTE-Advanced Pro system, or a 5G NR Radio Access Network (RAN) typically includes at least one base station (BS) , at least one UE, and one or more optional network elements that provide connection within a network.
  • the UE communicates with the network such as a Core Network (CN) , an Evolved Packet Core (EPC) network, an Evolved Universal Terrestrial RAN (E-UTRAN) , a 5G Core (5GC) , or an internet via a RAN established by one or more BSs.
  • CN Core Network
  • EPC Evolved Packet Core
  • E-UTRAN Evolved Universal Terrestrial RAN
  • 5GC 5G Core
  • a UE may include but is not limited to a mobile station, a mobile terminal or device, or a user communication radio terminal.
  • the UE may be a portable radio equipment that includes but is not limited to a mobile phone, a tablet, a wearable device, a sensor, a vehicle, or a Personal Digital Assistant (PDA) with wireless communication capability.
  • PDA Personal Digital Assistant
  • the UE is configured to receive and transmit signals over an air interface to one or more cells in a RAN.
  • the BS may be configured to provide communication services according to at least a Radio Access Technology (RAT) such as Worldwide Interoperability for Microwave Access (WiMAX) , Global System for Mobile communications (GSM) that is often referred to as 2G, GSM Enhanced Data rates for GSM Evolution (EDGE) RAN (GERAN) , General Packet Radio Service (GPRS) , Universal Mobile Telecommunication System (UMTS) that is often referred to as 3G based on basic wideband-code division multiple access (W-CDMA) , high-speed packet access (HSPA) , LTE, LTE-A, evolved LTE (eLTE) that is LTE connected to 5GC, NR (often referred to as 5G) , and/or LTE-A Pro.
  • RAT Radio Access Technology
  • WiMAX Worldwide Interoperability for Microwave Access
  • GSM Global System for Mobile communications
  • EDGE GSM Enhanced Data rates for GSM Evolution
  • GERAN GSM Enhanced Data rates for GSM Evolution
  • the BS may include but is not limited to a node B (NB) in the UMTS, an evolved node B (eNB) in LTE or LTE-A, a radio network controller (RNC) in UMTS, a BS controller (BSC) in the GSM/GERAN, an ng-eNB in an Evolved Universal Terrestrial Radio Access (E-UTRA) BS in connection with 5GC, a next generation Node B (gNB) in the 5G-RAN, or any other apparatus capable of controlling radio communication and managing radio resources within a cell.
  • the BS may serve one or more UEs via a radio interface.
  • the BS is operable to provide radio coverage to a specific geographical area using a plurality of cells forming the RAN.
  • the BS supports the operations of the cells.
  • Each cell is operable to provide services to at least one UE within its radio coverage.
  • Each cell (often referred to as a serving cell) provides services to serve one or more UEs within its radio coverage such that each cell schedules the DL and optionally uplink (UL) resources to at least one UE within its radio coverage for DL and optionally UL packet transmissions.
  • the BS can communicate with one or more UEs in the radio communication system via the plurality of cells.
  • a cell may allocate SL resources for supporting Proximity Service (ProSe) , sidelink service (e.g., (LTE) sidelink communication service and/or (LTE) sidelink discovery service) or Vehicle to Everything (V2X) service (e.g., NR sidelink communication and/or (LTE) V2X sidelink communication) .
  • Proximity Service Proximity Service
  • sidelink service e.g., (LTE) sidelink communication service and/or (LTE) sidelink discovery service
  • V2X Vehicle to Everything
  • NR sidelink communication and/or (LTE) V2X sidelink communication e.g., NR sidelink communication and/or (LTE) V2X sidelink communication
  • the frame structure for NR supports flexible configurations for accommodating various next generation (e.g., 5G) communication requirements such as Enhanced Mobile Broadband (eMBB) , Massive Machine Type Communication (mMTC) , and Ultra-Reliable and Low-Latency Communication (URLLC) , while fulfilling high reliability, high data rate and low latency requirements.
  • 5G next generation
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-Reliable and Low-Latency Communication
  • OFDM Orthogonal Frequency-Division Multiplexing
  • 3GPP 3rd Generation Partnership Project
  • the scalable OFDM numerology such as adaptive sub-carrier spacing, channel bandwidth, and Cyclic Prefix (CP) may also be used.
  • coding schemes Two coding schemes are considered for NR, specifically Low-Density Parity-Check (LDPC) code and Polar Code.
  • LDPC Low-Density Parity-Check
  • the coding scheme adaption may be configured based on channel conditions and/or service applications.
  • a transmission time interval (TTI) of a single NR frame includes DL transmission data, a guard period, and UL transmission data
  • the respective portions of the DL transmission data, the guard period, and the UL transmission data may be configured based on the network dynamics of NR.
  • SL resources may also be provided in an NR frame to support ProSe services or V2X services.
  • PCell Primary Cell
  • MCG master cell group
  • PSCell Primary SCG Cell
  • SCG secondary cell group
  • Special Cell For DC operation the term Special Cell (SpCell) refers to the PCell of the MCG or the PSCell of the SCG, otherwise (e.g., for CA operation) , the term Special Cell refers to the PCell.
  • Secondary Cell For a UE configured with carrier aggregation (CA) , a cell providing additional radio resources on top of Special Cell.
  • CA carrier aggregation
  • serving cells For a UE in RRC_CONNECTED not configured with CA/DC, there is only one serving cell, which may be referred to as the primary cell. For a UE in RRC_CONNECTED configured with CA/DC, the term “serving cells” may be used to denote the set of cells including the SpCell (s) and all secondary cells.
  • LBT Listen Before Talk
  • CCA clear channel assessment
  • 3GPP 3rd Generation Partnership Project
  • LAA uses carrier aggregation in DL to combine LTE in the unlicensed spectrum (e.g., 5 GHz) with LTE in the licensed band.
  • LBT may be also required prior to any transmission when operating on the unlicensed spectrum.
  • both Frequency Range 1 (FR1) and Frequency Range 2 (FR2) may be considered to support (NR-V2X) SL operations.
  • the UE may require additional power to support SL operations, such as SL synchronization, sidelink resource (pools) configuration, and SL (serving/non-serving) cell (re) selection cross multiple SL component carriers.
  • SL operations such as SL synchronization, sidelink resource (pools) configuration, and SL (serving/non-serving) cell (re) selection cross multiple SL component carriers.
  • various implementations of the present disclosure provide, among other things, a cross-carrier validity area configuration in an SL resource configuration, as discussed in IMPLEMENTATION 1 of the present disclosure.
  • various implementations of the present disclosure provide, among other things, fallback mechanisms when a cross-carrier validity area configuration is absent, as discussed in IMPLEMENTATION 2 of the present disclosure.
  • a range-based SL resource association is provided to enable an SL logical channel (LCH) to be associated with different combinations of SL component carrier (s) , (so to be the SL resource configuration on these configured SL components) based on the distance (e.g., physical distance) between the UEs (e.g., transmission (Tx) /reception (Rx) UEs) , as discussed in IMPLEMENTATION 2 of the present disclosure.
  • LCH SL logical channel
  • s SL component carrier
  • Rx transmission
  • an NR Non-standalone (NSA) cell may not support LTE/NR SL operations.
  • the UE may not attempt to decode the system information broadcast by an NR NSA cell (e.g., SIB1) to obtain system information about SL resource configuration for LTE V2X sidelink (communication) services and NR V2X services/NR sidelink (communication) service (e.g., the NSA cell is not a suitable cell to the UE and the UE can not access V2X services if the UE is in a limited service state) .
  • some component carriers may be deployed with NR NSA cells.
  • the UE may select to camp on an NR NSA cell.
  • the UE may be in a ‘camped on any cell’ state, and the camped NSA cell is an ‘acceptable cell’ to the UE.
  • these NSA cells may still support NR/LTE SL operations and these NSA cells can still broadcast one or more SL configurations in system information to the UEs.
  • the UEs may be in a limited service state and able to access (public safety) V2X service (s) or public safety related SL service (s) .
  • IMPLEMENTATION 3 of the present disclosure describes how an NR NSA cell supports NR/LTE SL operations.
  • implementations of the present disclosure provide assistance information regarding how channel quality or packet delivery status may be delivered by the component carriers in FR1.
  • IMPLEMENTATION 4 of the present disclosure provides support for ‘FR2 assistance information exchange’ on FR1.
  • the range of FR1 may be specified to the SL component carriers in a lower frequency range (e.g., less than 7 GHz)
  • the range of FR2 may be specified to the SL component carriers in a higher frequency range (e.g., greater than equal to 7GHz) .
  • Implementations of the present disclosure may be applicable to SL unicast group scenarios, SL multi-cast/group-cast group scenarios, and SL broadcast scenarios.
  • implementations of the present disclosure may be applicable to public-safety V2X services, non-public safety (e.g., commercial) V2X services, and (public-safety/non-public-safety) SL communication/discovery services.
  • IMPLEMENTATION 5 of the present disclosure provides stored validity area and SL resource configuration cross serving frequency (ies) and non-serving frequency (ies) while cell (re) selection may be implemented on the serving frequency (ies) and non-serving frequency (ies) .
  • FIG. 1 is a diagram 100 illustrating V2X SL operations, in accordance with an example implementation of the present disclosure.
  • at least two UEs e.g., UE1 and UE2 may be configured in an (Access Stratum (AS) -layer/Non-Access Stratum (NAS) ) unicast group to implement NR-SL (which is also referred to as NR-V2X in some applications) services and/or LTE-V2X (sidelink) services based on configured NR and/or LTE SL configurations (e.g., the NR SL configuration and LTE V2X configuration) .
  • AS Access Stratum
  • NAS Non-Access Stratum
  • LTE-V2X sidelink
  • the LTE V2X services may include the LTE V2X communication through an LTE Uu interface (e.g., packets exchange through downlink/uplink direction between the UE (s) and serving Radio Access Network) and/or the LTE V2X SL packets exchange (e.g., LTE V2X SL communication and/or LTE V2X SL discovery between UEs) through an LTE PC5 interface.
  • LTE Uu interface e.g., packets exchange through downlink/uplink direction between the UE (s) and serving Radio Access Network
  • LTE V2X SL packets exchange e.g., LTE V2X SL communication and/or LTE V2X SL discovery between UEs
  • the LTE V2X configuration may include the configuration for LTE V2X communication through the LTE Uu interface and/or the configuration for LTE V2X SL communication/LTE V2X SL discovery through the LTE PC5 interface (e.g., LTE V2X SL configuration) .
  • the NR SL service may include NR SL packet exchange (e.g., NR SL communication and/or NR SL discovery between UEs) through an NR PC5 interface. Therefore, in some implementations, the NR SL configuration may include the configuration for NR SL communication and/or NR SL discovery.
  • the NR SL communication may include NR SL transmission (e.g., one UE transmits NR SL packets and/or SL NR control messages (e.g., SL Control Information (SCI) and/or PC5 Radio Resource Control (RRC signaling and/or SL Hybrid Automatic Repeat reQuest (HARQ) Acknowledgement/Non-Acknowledgement messages) and/or NR SL synchronization signals (NR SL synchronization burst sets) to nearby UEs in the same NR SL unicast/multi-cast (group-cast) /broadcast groups) and/or NR SL reception (e.g., one UE receives NR SL packets and/or NR SL control messages (e.g., SCI or PC5 RRC signaling) and/or NR SL synchronization signals (NR SL synchronization burst sets) to nearby UEs in the same NR SL unicast/Multi-cast (group-cast) /broad
  • the serving cell may configure multiple SL CCs and the associated RATs (or associated RANs) in the corresponding SL CCs.
  • at least two UEs e.g., UE1 and UE2 may be configured in an (Access Stratum (AS) -layer/Non-Access Stratum (NAS) ) multi-cast group to implement NR-SL (which is also referred to as NR-V2X (sidelink) in some applications) services and/or LTE-V2X (sidelink) services based on configured NR and/or LTE SL configurations.
  • AS Access Stratum
  • NAS Non-Access Stratum
  • LTE-V2X sidelink
  • the serving cell may configure multiple SL CCs and the associated RATs (or associated RANs) in the corresponding SL CCs.
  • at least two UEs e.g., UE1 and UE2 may be configured in an AS-layer/NAS layer) broadcast group to implement NR-SL (which is also referred to as NR-V2X in some applications) services and/or LTE-V2X services based on configured NR and/or LTE SL configurations.
  • the serving cell e.g., an NR cell in FIG.
  • the UEs in one unicast group/multi-cast group/broadcast group may be served by one or more cells, which may be served by one or more RATs (e.g., New Radio, E-UTRA) .
  • RATs e.g., New Radio, E-UTRA
  • one or more UEs in the unicast group/multi-cast group/broadcast group may be out of the coverage of cellular networks (e.g., the UE (s) could not find out at least one cell which the downlink reference signaling quality, such as the DL Reference Signal Received Power (RSRP) , is higher than a pre-defined threshold) .
  • one out-of-coverage UE may communicate with other UEs in the same unicast/multi-cast/broadcast group based on SL-pre-configuration or configurations obtained from the neighboring UEs (e.g., through SL-Master Information Block (MIB) reception or PC5 RRC signaling exchange or PC5-Ssignaling) .
  • MIB SL-Master Information Block
  • a UE may join in one or more unicast/multi-cast/broadcast group (s) and each group may be associated with one Layer 2 Identifier independently.
  • the ProSe (Proximity Service) unicast group may be in-coverage, partial-coverage, or out-of-coverage with a serving RAN, that is an NR RAN connected to a 5GC (5G Core) and/or a Evolved Packet Core (EPC) as shown in FIG. 1.
  • a serving RAN that is an NR RAN connected to a 5GC (5G Core) and/or a Evolved Packet Core (EPC) as shown in FIG. 1.
  • 5G Core 5G Core
  • EPC Evolved Packet Core
  • the ProSe unicast group (or SL unicast group in the AS-layer) may be in-coverage, partial-coverage, or out-of-coverage with a serving RAN, that is an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) connected to an EPC (Evolved Packet Core) and/or an 5GC (5G Core) .
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • 5G Core 5GC
  • a (NR) gNB in an NR-RAN may provide physical resource (s) to support NR-V2X SL operation (s) and/or LTE-V2X SL operation (s) .
  • the interface between UE1 and UE 2 to support NR-V2X SL operation (s) is referred to as an NR PC5 interface.
  • an NR PC5 interface may be configured by a serving RAN (e.g., an NR-RAN or an E-UTRAN) or by pre-configuration, which may be stored in the memory modules or USIMs (UMTS Subscriber Identity Modules) of the UEs, to support NR V2X service (s) .
  • a serving RAN e.g., an NR-RAN or an E-UTRAN
  • pre-configuration which may be stored in the memory modules or USIMs (UMTS Subscriber Identity Modules) of the UEs, to support NR V2X service (s) .
  • the interface between the vehicles to support LTE-V2X SL operation (s) is referred to as an LTE PC5 interface.
  • the LTE PC5 interface may be configured by the serving RAN (e.g., an NR-RAN or an E-UTRAN) or by pre-configuration, which is stored in the memory module (s) or USIM (s) (UMTS Subscriber Identity Module (s) ) of the UEs, to support LTE V2X service (s) .
  • the serving NR cell is the PCell (primary cell) to the UE.
  • the serving NR cell may be the PSCell (primary SCell) to the UE (s) while the UE(s) is/are configured with an additional secondary node based on an NR dual-connectivity (or multi-connectivity) configuration.
  • the serving PSCell may transmit SL resource configuration to the UE (s) directly through a configured radio bearer (e.g., SRB3) .
  • SRB3 configured radio bearer
  • implementations of the present disclosure may cover both an intra-RAT SL resource configuration (e.g., an NR cell may provide an NR SL resource configuration and an LTE cell may provide an LTE (V2X) SL resource configuration) and an inter-RAT SL resource configuration (e.g., an NR cell may provide an LTE SL resource configuration and an LTE cell may provide an NR SL resource configuration) .
  • an intra-RAT SL resource configuration e.g., an NR cell may provide an NR SL resource configuration and an LTE cell may provide an LTE (V2X) SL resource configuration
  • an inter-RAT SL resource configuration e.g., an NR cell may provide an LTE SL resource configuration and an LTE cell may provide an NR SL resource configuration
  • FIGS. 2A and 2B are diagrams illustrating V2X SL carrier aggregation, in accordance with example implementations of the present disclosure.
  • one or more UEs e.g., UE1 and UE2 may be served by a serving cell (Cell#1) via an SL component carrier (e.g., CC#1) .
  • Cell#1 is deployed in CC#1, where is in FR1.
  • SL component carrier e.g., CC#2
  • CC#2C SL component carrier
  • CC#2 is in FR2. Both CC#1 and CC#2 support (NR/LTE) SL operation (s) .
  • CC#2 may have a paired DL frequency carrier (e.g., also in FR2) in Cell#A, Cell#B, Cell#C in the (LTE/NR) Uu interface.
  • CC#1/CC#2 may or may not be the secondary frequency carrier to the UE (s) while the UE (s) is configured with carrier aggregation in an (LTE/NR) Uu interface.
  • CC#1/CC#2 may or may not be the serving frequency carrier to the UE (s) while the UE (s) is implementing SL operations with non-serving cell (s) , which are operating on the non-serving frequency carrier.
  • Cell#1 may configure an SL resource configuration indicating CC#2 to the UE (s) (e.g., UE1 and UE2) with a cross-carrier validity area configuration.
  • the UE (s) may not need to perform SL synchronization and SL cell (re) selection on the associated SL frequency carrier of CC#2.
  • the UE (s) may not be configured with special cell (s) and secondary cell (s) in the concerned frequency carrier.
  • the concerned CC#2 is neither a primary frequency carrier nor a secondary frequency carrier to the UEs.
  • the serving cell e.g., Cell#1 in FIG. 2 may transmit timing adjustment instructions (e.g., timing advance instructions) to the UE (s) to adjust their transmission timing (s) based on the instructions from the serving cell.
  • timing adjustment instructions e.g., timing advance instructions
  • SL resources among multiple SL carriers may be configured through a v2x-InterFreqInfoList (e.g., by broadcasting system information or by dedicated RRC signaling on a Uu interface) .
  • the UE (s) may need to implement SL synchronization and SL cell (re) selection on the concerned frequency (or on the paired DL frequency carrier with the one used to transmit V2X SL communication) , while the concerned frequency carrier is not a serving frequency to the UE (s) .
  • the UE (s) may be optionally configured with a SyncFreqList, which specifies a list of candidate SL synchronization carrier frequencies for V2X SL communications on these non-serving frequency carriers. Additional SL synchronization may require additional power consumption by the UE (s) .
  • Cell#1 may deliver an SL resource configuration associated with CC#2 (and the cross-carrier validity area configuration) to the UE (s) through control signaling (e.g., by broadcasting system information or (UE-specific) dedicated RRC signaling) .
  • the associated validity area may be composed by cells in CC#1 and Cell#1 may also locate in the given validity area.
  • the validity area may be composed by one or more cell identity (ies) , physical cell identity (ies) , systemInformationAreaID (s) , RAN notification Area Code (s) or Tracking Area Code (s) , etc.
  • the cells in CC#1 may also deliver the assistance information (e.g., cell identity (ies) , physical cell identity (ies) , systemInformationAreaID (s) , RAN notification Area Code (s) , Tracking Area Code (s) , and/or zone ID (s) which the cell belongs to) for the UE (s) to identify the range of the validity area.
  • assistance information e.g., cell identity (ies) , physical cell identity (ies) , systemInformationAreaID (s) , RAN notification Area Code (s) , Tracking Area Code (s) , and/or zone ID (s) which the cell belongs to
  • the UE (s) may transmit SL packet (s) on CC#2 directly without implementing SL synchronization or SL cell (re) selection on CC#2 (or the DL frequency carrier associated with CC#2) .
  • the UE (s) may transmit SL packets on CC#2 based on the timing reference which the UE (s) obtains from CC#1.
  • the UE (s) may not need to use the DL frequency carrier associated with CC#2 in the LTE/NR Uu interface (which may also be the operating DL frequency carrier of Cell#A, Cell#B, and/or Cell#C) as the timing reference when the UE (s) is/are transmitting SL packets on CC#2.
  • the UE may still implement sidelink synchronization and/or (non-serving) cell (re) selection on the CC#2. However, the UE may only need to check whether the selected cell on CC#2 is located on the sidelink resource validity area based on the pre-stored validity area information associated with CC#2 (e.g., the UE may receive the MIB and/or System information block Type1 (SIB1) of the selected cell after the cell (re) selection procedure (e.g., for cell identity reception and/or system information area ID reception, which may be broadcast by the selected cell in the MIB/SIB1) .
  • SIB1 System information block Type1
  • the UE may check the validity of stored sidelink resource configuration based on the received cell identity/system information area ID broadcast by the selected cell and the stored validity area information associated with the stored sidelink resource configuration. However, the UE may not need to monitor the other system information or broadcasting control signaling broadcast by the selected cell for sidelink resource configuration reception) while the stored sidelink resource configuration is still valid.
  • Cell#1 may support both a normal uplink (NUL) carrier and at least one supplementary uplink (SUL) carrier.
  • Cell#1 may provide SL resource configurations in both the NUL carrier and SUL carrier (s) .
  • at least one SL Bandwidth Part (BWP) configuration is associated with the NUL carrier
  • at least one SL BWP configuration is associated with the SUL carrier.
  • the UE (s) may transmit SL packets by accessing the SL resource (s) on the NUL carrier and/or the SUL carrier (s) .
  • the UE (s) may transmit SL packets on the NUL carrier and the SUL carrier (s) simultaneously.
  • the UE (s) may only choose the SL resource (s) on either the NUL carrier or the SUL carrier (s) (e.g., depending on whether a NUL or a SUL is used in the UL direction) .
  • the UE may need to transmit the UE’s capability of SL carrier aggregation to the serving cell.
  • a validity area configuration in FR2 may be associated with Cell#1 in FR1. Implementations of the present disclosure may improve the UE’s power consumption since the UE (s) does not need to perform SL synchronization and SL cell (re) selection in FR2.
  • the SL synchronization on CC#1 may be with a Global Navigation Satellite System (GNSS) , a base station (eNB or gNB) , or a neighboring UE (LTE UE or NR UE) .
  • GNSS Global Navigation Satellite System
  • eNB or gNB base station
  • LTE UE or NR UE a neighboring UE
  • the UE may be in an NR-RRC Idle state, an NR-RRC Inactive state, an LTE-RRC Idle state, or an LTE-RRC Inactive state.
  • the UE may receive the above-mentioned configurations through system information.
  • the UE may receive the above-mentioned configurations while the UE in an NR-RRC Connected state or an LTE-RRC Connected state. In some implementations of the present disclosure, the UE may receive the above-mentioned configurations through (UE-specific) dedicated RRC signaling. In some implementations of the present disclosure, the UE may receive the above-mentioned configurations through dedicated RRC signaling (e.g., an RRC Connection Resume message, an RRC Release with suspend configuration message) , while the UE is an NR-RRC Inactive state or an LTE-RRC Inactive state.
  • RRC signaling e.g., an RRC Connection Resume message, an RRC Release with suspend configuration message
  • the UE e.g., UE1 and/or UE2 is camped on Cell#1 in CC#1 (located on FR1) .
  • the UE may be in an NR-RRC Inactive state/NR-RRC Idle state/NR-RRC Connected state.
  • the SL resource configuration on FR1 (e.g., CC#1) and FR2 (e.g., CC#2 ) may be configured with one associated validity area.
  • the UE e.g., UE1 and/or UE2
  • the UE may know that the SL resource configuration on CC#2 is valid under the coverage of the configured validity area associated with cells in CC#1 (e.g., Cell#1) .
  • the UE may not need to perform SL synchronization or SL cell (re) selection in CC#2 when the UE is accessing the configured SL resource (e.g., while the UE is transmitting SL packets on the configured SL resource) .
  • the UE may still implement sidelink synchronization and/or (non-serving) cell (re) selection on the CC#2.
  • the UE may only need to check whether the selected cell on CC#2 is located on the sidelink resource validity area based on the pre-stored validity area information associated with CC#2. In other words, the UE may not need to monitor other DL control signaling for sidelink resource configuration delivered by the selected cell on the CC#2.
  • the configured SL resource may include dynamic SL grant, Type 1 SL configured grant, Type 2 SL configured grant, SL resource pool, and SL exceptional pool in the appointed SL component carrier (e.g., CC#2 in FIG. 2B) .
  • the serving cell e.g., Cell#1
  • the configuration of Type 1 SL configured grant is valid to the UE (e.g., UE1 and/or UE2) right after the UE decoding the configuration from the serving cell successfully. So, the UE (e.g., UE1 and/or UE2) can transmit SL packets by accessing the configured Type 1 SL configured grant.
  • the serving cell may transmit part of the configuration of Type 2 SL configured grant (e.g., the periodicity in time domain for the Type 2 SL configured grant) to the UE (e.g., UE1 and/or UE2) through broadcasting message (e.g., system information) or dedicated control signaling (e.g., RRC signaling) .
  • the serving cell may configure the other part of Type 2 SL configured grant (e.g., the locations of SL resource blocks, such as sub-channel and symbols in frequency domain and time domain respectively) by transmitting other dedicated control signaling (e.g., Downlink control information scrambled by C-RNTI of the UE or Medium Access Control Control Element (MAC CE) ) to the UE.
  • dedicated control signaling e.g., Downlink control information scrambled by C-RNTI of the UE or Medium Access Control Control Element (MAC CE)
  • the configured Type 2 SL configured grant is activated to the UE and so the UE can transmit SL packets on the configured Type 2 SL configured grant.
  • the serving cell may transmit another DCI to de-activate this SL configured grant.
  • the UE may stop accessing the configured Type 2 SL configured grant and release the stored configurations which the UE receives through the activation DCI message. In other words, the configurations received through RRC signaling may still be kept by the UE, so that next time the serving cell may configure other SL resource in another activation DCI to activate one Type 2 SL configured grant.
  • the SL resource pool configuration or SL exceptional resource pool configuration may be provided to the UE (e.g., UE1 and/or UE2) so that the UE can select SL grant autonomously with/without sensing (e.g., by random selection) or through partial sensing mechanism.
  • the SL resource configuration may be associated with (at least) one SL bandwidth part (SL-BWP) configuration in one SL component carrier.
  • SL-BWP SL bandwidth part
  • Each SL bandwidth part configuration may include the numerology of the operating SL component carrier (e.g., the length of cyclic prefix, subcarrier spacing, etc) .
  • RRC signaling may cover the RRC signaling in (LTE/NR) Uu interface, such as RRC (Connection) (Re) Establishment message, RRC (Connection) Setup message, RRC (Connection) Resume message, RRC (Connection) Release message with/without suspend configuration, RRC (Connection) Reconfiguration message with/without mobilitycontrolinfoV2X, or RRC (Connection) Reconfiguration message with/without reconfigurationwithsync message, etc.
  • the reconfigurationwithsync/mobilitycontrolinfoV2X message may be delivered when the serving RAN is instructing the UE to implement (intra-RAT/inter-RAT) handover procedure, Secondary Cell Group change, etc.
  • the above-mentioned configurations may also be applicable during an intra-RAT (e.g., from a source LTE cell to a target LTE cell or from a source NR cell to a target NR cell) handover procedure, an inter-RAT (e.g., from a source LTE/NR cell to a target NR/LTE cell respectively) handover procedure, an inter-system handover procedure in LTE protocols, an conditional handover procedure and a Dual Active Protocol Stack (DAPS) handover procedure.
  • the above-mentioned configuration may also be applicable during an MCG-change/SCG-change procedure.
  • the serving cell may apply delta signaling approach to re-configure the SL resource configuration (e.g., SL resource configuration of CC#2 in this disclosure) .
  • the serving cell may transmit SL_Resource_ (Pool) _ToAdd list to transmit new SL resource (pool) configuration to the UE.
  • the UE may store the new SL resource (pool) configuration with the stored SL resource (pool) configuration.
  • all of the stored SL resource (pool) configuration may be further associated an SL resource (pool) index.
  • the serving cell may instruct the UE to release one SL resource (pool) configuration by indicating the associated SL resource (pool) index in another SL_Resource_ (Pool) _ToRemove list.
  • the SL_Resource_ (Pool) _ToAdd list &SL_Resource_ (Pool) _ToRemove list may be included in the IE reconfigurationwithsync (in NR protocols) /mobilitycontrolinfoV2X (in LTE protocols) when the serving cell is transmitting RRC Connection Reconfiguration message to initiate handover procedure.
  • the above-mentioned mechanisms and signaling may also be applicable to conditional handover procedure.
  • the sidelink resource pool configuration may include a normal sidelink resource pool configuration and/or an exceptional sidelink resource pool configuration.
  • the delta signaling approach may be applicable to a (Type1/Type2) sidelink configured grant configuration.
  • the UE may start to access the configured SL resource (pool) after the handover procedure is finished successfully. In some implementations, the UE could access the configured SL resource (pool) during the handover procedure. In some additional implementations, the UE could access the configured SL resource (pool) during the conditional handover procedure.
  • the UE may obtain the timing advance instruction or timing offset value represented in symbols, microseconds, etc (or assistance information for the UE to adjust timing when the UE is transmitting/receive SL packets) for SL packet delivery on FR2 by receiving the timing reference or timing advance instructions from the serving cell on FR1 (e.g., Cell#A) .
  • FR1 e.g., Cell#A
  • Table 1 shows a validity area configuration of an SL resource on FR1 (e.g., CC#1 in Fig. 3) or FR2 (e.g., CC#2 in FIG. 2A) .
  • FR1 e.g., CC#1 in Fig. 3
  • FR2 e.g., CC#2 in FIG. 2A
  • FIG. 3 is a flowchart 300 of a method performed by a UE for NR SL operations, in accordance with an example implementation of the present disclosure.
  • the UE may receive, through a serving cell of a first (e.g., 5G NR) Radio Access Technology (RAT) , an SL resource configuration of a second RAT (e.g., E-UTRA) .
  • a serving cell of a first e.g., 5G NR
  • Radio Access Technology RAT
  • an SL resource configuration of a second RAT e.g., E-UTRA
  • the UE may determine first validity area information associated with the first RAT and second validity area information associated with the second RAT, the first validity area information and the second validity area information being associated with different frequency carriers.
  • the UE may identify a validity area of the SL resource configuration based on the first validity area information and the second validity area information.
  • the UE may Access an SL resource associated with the validity area after the validity area is identified as valid.
  • FIG. 4 illustrates a diagram showing a UE performing SL synchronization and SL cell (re) selection procedures under a fallback mechanism to a cross-carrier validity area configuration, in accordance with an example implementation of the present disclosure.
  • the cross-carrier SL resource configuration associated with a validity area may be invalidated by a UE after the UE moves out of the validity area to another validity area (e.g., Validity Area #2) .
  • the UE may release the invalidated cross-carrier SL resource configuration after the UE moves out of the validity area associated with the stored SL resource configuration.
  • the UE may start performing SL synchronization and SL cell (re) selection procedures on FR2 when one of more of the following fallback conditions are met:
  • Condition 1 the UE may not be configured with other SL resource configuration nor validity area in FR2 (e.g., but CC#2 still supports SL in the areas out of Validity Area#1) . In this condition, the UE may initiate SL synchronization and SL cell (re) selection in the SL CC#2 by the UE itself.
  • Condition 2 In some other conditions, the UE may be configured with another validity Area#2 in FR1 but the UE may temporarily fail to find out a suitable cell (e.g., while the UE moves to a coverage hole) . In this condition, the UE may implement SL synchronization and SL cell (re) selection in the SL CC#2 by the UE itself.
  • the serving cell in FR1 does not provide validity area in FR1. Instead, the serving cell in FR1 may configure SL resource configuration in FR2 with validity area indicated in FR2 (e.g., the Validity Area#2 in Fig. 3) .
  • the Validity Area#2 may be composed by the cells operating in CC#2.
  • the Validity Area#2 is composed by the cellidentity/PCI/RANAC/Tracking area code/SysteminformationareaID broadcast by cells in FR2.
  • the UE may implement SL synchronization and SL cell (re) selection in the SL CC#2 by the UE itself.
  • the UE may start monitor the system information broadcast by the selected (non-serving) cell for sidelink resource configuration reception (on the CC#2) .
  • FIG. 5 illustrates a range-based SL resource association in accordance with an example implementation of the present disclosure.
  • each SL LCH may have one or more associated SL carriers.
  • One or more range-based SL resource configurations may be configured to a UE.
  • SL-Resource configuration#1 and SL-Resource configuration#2 may be provided to the UE with a distance-based threshold, R1 (e.g., in the unit of meters) .
  • a UE may apply SL-Resource Configuration#1 to transmit SL packets with a paired UE (e.g., UE#1 in FIG. 2B) while the physical distance between the Tx UE/Rx UE is smaller than R1.
  • the value of R1 may be up to several hundred meters.
  • a UE may apply SL-Resource Configuration#2 to transmit SL packets with a paired UE (e.g., UE#1 in FIG. 2B) while the physical distance between the Tx UE and Rx UE is larger than R1.
  • a UE may estimate the physical distance with another UE (e.g., UE#12 in FIG. 2B) by receiving the SL control information (SCI) (e.g., based on the received 1 st SCI and/or the 2 nd SCI during the two-stage SCI transmission procedure) transmitted by the (Tx) UE (e.g., by decoding the location information, such as zone ID or GNSS location information, of the Tx UE) .
  • SCI SL control information
  • Tx UE
  • a UE may estimate the physical distance with another UE through other radio access technologies, such as an NR positioning technique or a GNSS information exchange.
  • the SL packet delivery may become more critical when UE#1 and UE#2 are close to each other.
  • the channel effect e.g., pathloss
  • the SL resource configurations such as Type1/Type2 SL configured grant (s) , SL dynamic grant (s) , resource pool (s) , exceptional resource pool (s) associated with the SL CC
  • QoS Quality of Service
  • SL logical channel#1 may be associated with CC#1 (in FR1) in the SL-Resource Configuration#2 since the pathloss effect in FR1 is smaller than that in FR2. Then, while the physical distance between the Tx UE/Rx UE is smaller than R1, the SL logical channel#1 may be associated with CC#2 (e.. g, in FR2) in the SL-Resource Configuration#2.
  • CC#2 e.. g, in FR2
  • one SL LCH may be associated with more than one SL component carrier.
  • the SL logical channel#2 may be associated ⁇ CC#1 ⁇ in the SL-Resource configuration#2 and the same SL logical channel#2 may be associated ⁇ CC#1, CC#2, CC#3 ⁇ in the SL-Resource configuration#2 and so the UE may implement SL multiplexing to an SL grant (based on the received SL resource configuration in one SL CC, such as Type1/Type2 SL configured grant (s) , SL dynamic grant (s) , resource pool (s) , resource pool (s) with zone configuration, exceptional resource pool (s) associated with the SL CC) based on the range-based association with the SL LCH and SL CC.
  • SL grant based on the received SL resource configuration in one SL CC, such as Type1/Type2 SL configured grant (s) , SL dynamic grant (s) , resource pool (s) , resource pool (s) with zone configuration, exceptional resource pool (s) associated with the SL CC
  • the operating SL CC (s) for SL HARQ or SL Automatic Repeat reQuest (ARQ) packet re-transmission or SL packet repetition may be decided while the UE is preparing to transmit a first SL packet. So, the UE may not change the operating SL CC while the UE is implementing SL HARQ/ARQ packet re-transmission and SL packet repetition to the same SL packets after the UE sending the first SL packet.
  • the UE may decide the operating SL CC (s) (based on the configured rules) of each SL packet delivery independently every time when the UE is preparing to transmit one or more SL packet (s) (no matter whether the SL packet is first transmission, (SL-HARQ) re-transmission, or repetition) .
  • SL-Resource config. #2 SL-Resource config. #1 SL logical channel#1 ⁇ CC#1 ⁇ ⁇ CC#2 ⁇ SL logical channel#2 ⁇ CC#1 ⁇ ⁇ CC#1, CC#2, CC#3 ⁇
  • a default SL resource association (e.g., SL-Resource config. #1) may be indicated to the UEs in the SL-group (e.g., unicast group or group-cast group) .
  • the Tx UE may apply the default SL resource association to transmit SL packets.
  • the default SL resource association may be obtained through SL pre-configuration or through broadcasting message (e.g., System Information (SI) ) or through SI on-demand procedure which the Tx UE obtains from the serving RAN.
  • SI System Information
  • IMPLEMENTATION 3 NR Non-Standalone Cell Broadcasting SL Configuration
  • An NR non-standalone cell may also broadcast system information to support NR (public safety) V2X service/LTE V2X service or public safety SL communication service.
  • a NR-NSA cell may not broadcast tracking area code (TAC) while the NR-NSA cell is broadcasting system information and so the UE could identity whether a cell is an NSA cell by checking the TAC.
  • the UE may consider the NR-NSA cell as a non-suitable cell while the UE is performing cell (re) selection (e.g., cell (re) selection in (LTE/NR) Uu interface) .
  • the UE may select one NR-NSA cell during (serving/non-serving) cell (re) selection as the cell to provide SL communication. So, an NSA cell may become the serving cell to the UE and the concerned SL CC is also the serving frequency to the UE.
  • the NR-NSA cell may be an ‘acceptable cell’ to the UE and the UE may select to camp on a NR-NSA cell after the (serving/non-serving) cell (re) selection procedure (so the UE may also move to ‘camped on any cell’ state) .
  • the UE may stay in ‘limited service state’ .
  • an NR-NSA cell may broadcast NR/LTE SL configurations, which may include SL resource pool configuration, SL exceptional pool configuration, and SL synchronization configuration, to support SL operations for NR/LTE V2X service.
  • the UE may think it is in-coverage while it is camping on an NR-NSA cell (or while the UE selects an NR-NSA cell) .
  • the NSA cell may broadcast SL transmission resource pool configuration (e.g., v2x-CommTxPoolNormalCommon or p2x-CommTxPoolNormalCommon or discovery resource pool based on the 3GPP TS 36.331. f. 6.0) associated with the camped frequency in the broadcasting system information.
  • SL transmission resource pool configuration e.g., v2x-CommTxPoolNormalCommon or p2x-CommTxPoolNormalCommon or discovery resource pool based on the 3GPP TS 36.331. f. 6.0
  • the UE may not initiate an RRC connection with the NSA cell when the NSA cell does broadcast SL information about V2X service, but the NSA cell does not transmit SL transmission resource pool configuration which the UE needs (e.g., for V2X service, P2X service or for discovery service) in the broadcast system information.
  • the UE may not expect an NSA cell would broadcast SL resource configuration without delivering the SL transmission resource pool configuration (e.g., v2x-delCommTxPoolNormalCommon or p2x-CommTxPoolNormalCommon) in the camped frequency carrier.
  • the NSA cell may operate on a non-serving frequency
  • the NSA cell may also be included while the UE is implementing cell selection and reselection for SL operations (by taking the cell selection and reselection for SL mechanism in 3GPP TS 36.304.15.6.0 as the baseline) .
  • the NSA cell may also transmit SL resource configuration associated with the concerned SL frequency carrier (with or without SL resource configuration associated with other SL CCs)
  • the UE may transmit and/or receive SL packets on the concerned SL CC based on the received SL resource configuration and based on the timing information (e.g., DL timing) obtained from the NSA cell.
  • the timing information e.g., DL timing
  • a UE may be configured to deliver FR2 assistance information of SL operation on FR2 through the SL CC#1.
  • the UE may transmit FR2 assistance information to the serving cell in FR1 (e.g., CC#1 in Fig. 2) through LTE/NR Uu interface.
  • the UE may transmit FR2 assistance information to neighboring UEs (e.g., an SL group leader in an SL multi-cast (/group-cast) group, such as UE#1 in Fig.
  • FR2 assistance information may be transmitted to a serving cell (through (LTE/NR) Uu interface) or a paired UE (through PC5 RRC signaling (LTE/NR) PC5 interface) by transmitting an SL-measurement report.
  • a UE may be configured with event-based SL measurement objects to provide SL-measurement reports after an SL radio link failure event (or SL physical layer problem) occurs.
  • an additional timer, T312_SL is introduced where the T312_SL may be configured to a UE with configured SL measurement objects.
  • the SL measurement objects may include the SL-measurement report to serving cell (s) (e.g., special cell, such as PCell and PSCell of the UE) , the SL-measurement report to a paired UE in an SL unicast group, or other UEs.
  • serving cell e.g., special cell, such as PCell and PSCell of the UE
  • an SL-measurement report corresponding to one SL-measObject may be transmitted through a (LTE/NR) Uu interface or a (LTE/NR) PC5 interface based on the target of an associated SL-measObject.
  • the UE needs to report to the serving RAN that it supports T312_SL during an SL-radio link failure (RLF) event.
  • an SL-measurement report initiated while a T312_SL starts counting/running may cover the SL-measurement report for an LTE PC5 interface (e.g., a CBR report on LTE SL resource pools) and/or an NR PC5 interface (CBR report on NR SL resource pools) .
  • the initiation and stop/expiry conditions of the T312_SL may be tightly coupled with the initiation and stop/expiry conditions of the T310_SL, which are summarized in Table 5.
  • the UE may be configured with SL measurement objects to provide SL measurement reports to other UEs through a (LTE/NR) PC5 interface.
  • the SL measurement objects may be event-triggered, as shown in Table 7A (Event V1a) and Table 7B (Event V2a) respectively.
  • the UE may trigger an SL-measurement report (e.g., a CBR report) when the inequality V1-1 is fulfilled in some of the present implementations.
  • the UE may stop transmitting the CBR report when the inequality V1-2 is fulfilled, as defined in the above Table 7A.
  • the triggering event V2a may also trigger an SL-measurement report, as defined in Table 7B below.
  • the Event V1a/V2a in Table 7B may be associated with the LTE (V2X) SL or NR (V2X) SL.
  • a UE may also be configured with the Event V1a/V2a, associated with the LTE SL and/or NR SL.
  • different parameters may be configured for the LTE SL and NR SL in one UE.
  • the UE may be configured with SL measurement objects to provide SL reports to serving RAN through (LTE/NR) Uu interface, as shown in Table 7C/Table 7D.
  • the SL measurement objects may be event-triggered, as shown in Table 7C (Event V1) and Table 7D (Event V2) respectively.
  • the UE may obtain the configured parameters in Tables 7A through 7D by SL pre-configuration, dedicated control signaling (e.g., RRC signaling in (LTE/NR) Uu interface) /broadcasting control signaling (e.g., system information or SI on-demand procedure) from serving Cell, or dedicated control signaling (e.g., PC5 RRC signaling) /broadcasting control signaling (e.g., MIB-SL signaling) in PC5 interface.
  • dedicated control signaling e.g., RRC signaling in (LTE/NR) Uu interface
  • Broadcasting control signaling e.g., system information or SI on-demand procedure
  • dedicated control signaling e.g., PC5 RRC signaling
  • BC-SL signaling e.g., MIB-SL signaling
  • the UE may also be enabled to transmit SL-measurement report (e.g., the CBR report) to the serving cell through (Type 1/Type 2) UL configured grant (s) or through a (2-step/4-step) random access procedure while the UE is staying in RRC inactive state.
  • SL-measurement report e.g., the CBR report
  • the serving cell may also be enabled to transmit SL-measurement report (e.g., the CBR report) to the serving cell through (Type 1/Type 2) UL configured grant (s) or through a (2-step/4-step) random access procedure while the UE is staying in RRC inactive state.
  • a UE may need to perform (LTE/NR) V2X SL communication/discovery services on one or more serving frequencies (e.g., the frequency carrier that the UE has a serving cell, which may be a camped cell, Primary cell (e.g., on primary frequency) , secondary cell (e.g., on secondary frequency) , or Primary Secondary cell (e.g., on primary frequency) in (LTE/NR) Uu interface) and/or on one or more non-serving frequency (e.g., the frequency carrier that the UE has no serving cell in (LTE/NR) Uu interface, so the UE may have a selected cell on the non-serving frequency after cell selection/reselection procedure to implement (NR/LTE) V2X (sidelink) service on this non-serving frequency) while the V2X services are supported on these frequencies.
  • a UE may check and record validity area configurations on serving cell (s) of serving frequencies and selected cell (s) of non-serving
  • cells in different frequencies may share the same SL resource configuration and validity area configuration.
  • the validity area for SL resource configuration may be composed by cells operates on different frequencies (which may include serving frequencies and non-serving frequencies) .
  • the validity area for SL resource configuration may be composed by systemInformationAreaID (s) /RAN notification area Code (s) or Tracking Area Code. Then, cells in different frequencies may also share the same systemInformationAreaID/RAN notification area Code or Tracking Area Code.
  • the UE may record the obtained SL resource configuration and the associated validity area that the UE obtains from the cells on serving frequencies and non-serving frequencies (e.g., cells in CC#1 and CC#2 respectively) .
  • the UE may apply the SL resource configuration (which may cover SL resource on CC#1 and CC#2) and validity area configurations (which covers cells in CC#1 and CC#2) , which are obtained from the cells of non-serving frequency (ies) , when the UE is implementing (NR/LTE) V2X (sidelink) service on CC#1.
  • the UE may apply the stored SL resource configuration associated with the systemInformationAreaID without reading the rest of system information about SL resource configuration (or the UE may not initiate random access procedure to request the system information to obtain the SL resource configuration) , no matter the cell (re) selection is implementing on a serving frequency or a non-serving frequency.
  • the stored validity area and the associated SL resource configuration may be applied to the fallback mechanisms described in Implementation 2 above.
  • a UE may still keep the stored SL resource configuration and the validity area configuration while the UE camps or selects a cell (in one concerned frequency. e.g., CC#1) which does not belong to the stored validity area.
  • the stored validity area and SL resource configuration may still be applicable in the cells operating on other SL frequencies (e.g., CC#2) .
  • the UE may release or remove one stored validity area and associated SL resource configuration if none of the serving cell (serving frequency) /selected cell (non-serving frequency) on all of the frequencies (which the UE is implementing SL operation) belongs to the stored validity area.
  • a timer may be further configured with the validity area configuration. The timer ( ⁇ 0) may be triggered after the UE finds out that none of the serving cell (serving frequency) and selected cell (non-serving frequency) on all of the frequencies (which the UE is implementing SL operations) belongs to the validity area. Then, the UE may release the stored validity area (and the associated SL resource configuration) after the timer expires. In some additional implementations, it may be up to specific UE implementations to decide when to release/remove an invalid SL resource configuration.
  • FIG. 6 is a block diagram illustrating a node 600 for wireless communication according to the present disclosure.
  • a node 600 may include a transceiver 620, a processor 628, a memory 634, one or more presentation components 638, and at least one antenna 636.
  • the node 600 may also include a radio frequency (RF) spectrum band module, a BS communications module, a network communications module, and a system communications management module, Input /Output (I/O) ports, I/O components, and a power supply (not illustrated in FIG. 6) .
  • RF radio frequency
  • the node 600 may be a UE or a BS that performs various functions disclosed with reference to FIGS. 1 through 5.
  • the transceiver 620 has a transmitter 622 (e.g., transmitting/transmission circuitry) and a receiver 624 (e.g., receiving/reception circuitry) and may be configured to transmit and/or receive time and/or frequency resource partitioning information.
  • the transceiver 620 may be configured to transmit in different types of subframes and slots including but not limited to usable, non-usable and flexibly usable subframes and slot formats.
  • the transceiver 620 may be configured to receive data and control channels.
  • the node 600 may include a variety of computer-readable media.
  • Computer-readable media may be any available media that may be accessed by the node 600 and include both volatile and non-volatile media, and removable and non-removable media.
  • the computer-readable media may include computer storage media and communication media.
  • Computer storage media may include both volatile and non-volatile media, and removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or data.
  • Computer storage media may include RAM, ROM, EPROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices.
  • Computer storage media may not include a propagated data signal.
  • Communication media may typically embody computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and include any information delivery media.
  • modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • Communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the previously listed components should also be included within the scope of computer-readable media.
  • the memory 634 may include computer-storage media in the form of volatile and/or non-volatile memory.
  • the memory 634 may be removable, non-removable, or a combination thereof.
  • Example memory may include solid-state memory, hard drives, optical-disc drives, etc.
  • the memory 634 may store computer-readable, computer-executable instructions 632 (e.g., software codes) that are configured to cause the processor 628 to perform various functions disclosed herein, for example, with reference to FIGS. 1 through 5.
  • the instructions 632 may not be directly executable by the processor 628 but be configured to cause the node 600 (e.g., when compiled and executed) to perform various functions disclosed herein.
  • the processor 628 may include an intelligent hardware device, e.g., a Central Processing Unit (CPU) , a microcontroller, an ASIC, etc.
  • the processor 628 may include memory.
  • the processor 628 may process the data 630 and the instructions 632 received from the memory 634, and information transmitted and received via the transceiver 620, the baseband communications module, and/or the network communications module.
  • the processor 628 may also process information to be sent to the transceiver 620 for transmission via the antenna 636 to the network communications module for transmission to a core network.
  • One or more presentation components 638 may present data indications to a person or another device.
  • Examples of presentation components 638 may include a display device, a speaker, a printing component, and a vibrating component, etc.
  • configurations for NR SL/LTE V2X SL synchronization rules are utilized when multiple SL CCs are configured to support (NR/LTE) (V2X) SL operations among UEs.
  • information regarding SL CCs associated with NR e.g., for NR sidelink communication
  • LTE RATs e.g., for (LTE) V2X sidelink communication
  • the UE e.g., through an Uu interface
  • the associations between SL CCs and the associated RATs may be network-specific (e.g., PLMN-specific or NPN-specific) .
  • SL CCs with associated NR SL/LTE V2X SL synchronization rules are indicated.
  • the associations between SL CCs and the NR SL/LTE V2X SL synchronization rules may be PLMN-specific/NPN-specific.
  • the associations between SL CCs and the NR SL/LTE V2X SL synchronization rules may be valid within a defined validity area.
  • the above-mentioned indications and/or association rules may be pre-specified in technical specifications or pre-defined in the USIM or memory module in the UE so that the UE is able to interpret and apply the above-mentioned indications and/or association rules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user equipment (UE) includes one or more non-transitory computer-readable media containing computer-executable instructions embodied therein and at least one processor coupled to the one or more non-transitory computer-readable media. The at least one processor is configured to receive through a serving cell of a first Radio Access Technology (RAT), a sidelink resource configuration of a second RAT, determine first validity area information associated with the first RAT and second validity area information associated with the second RAT, the first validity area information and the second validity area information being associated with different frequency carriers, and identify a validity area of the sidelink resource configuration based on the first validity area information and the second validity area information.

Description

METHODS AND APPARATUSES FOR SL CARRIER AGGREGATION ENHANCEMENT
CROSS-REFERENCE TO RELATED APPLICATION (S)
The present disclosure claims the benefit of and priority of provisional U.S. Patent Application Serial No. 62/931,401, filed on November 6, 2019, entitled “SL Carrier Aggregation Enhancement” ( “the ’ 401 provisional” ) . The disclosure of the ’ 401 provisional is hereby incorporated fully by reference into the present disclosure for all purposes.
FIELD
The present disclosure is related to wireless communication, and more particularly, to methods and apparatuses for sidelink (SL) carrier aggregation enhancement in wireless communication networks.
BACKGROUND
With the tremendous growth in the number of connected devices and the rapid increase in user/network traffic volume, various efforts have been made to improve different aspects of wireless communication for cellular wireless communication systems, such as fifth generation (5G) New Radio (NR) , by improving data rate, latency, reliability and mobility.
The 5G NR system is designed to provide flexibility and configurability to optimize the network services and types, accommodating various use cases such as Vehicle to Vehicle (V2V) , Vehicle to Pedestrian (V2P) , and Vehicle to Everything (V2X) communications.
However, as the demand for radio access continues to increase, there exists a need for further improvements in the art.
SUMMARY
The present disclosure is related to methods and apparatuses for SL carrier aggregation enhancement in wireless communication networks.
According to a first aspect of the present disclosure, a user equipment (UE) includes one or more non-transitory computer-readable media containing computer-executable instructions embodied therein and at least one processor coupled to the one or more non-transitory computer-readable media. The at least one processor is configured to receive through a serving cell of a first Radio Access Technology (RAT) , a sidelink resource configuration of a second RAT, determine first validity area information associated with the first RAT and second validity area information associated with the second RAT, the first validity area information and the second validity area  information being associated with different frequency carriers, and identify a validity area of the sidelink resource configuration based on the first validity area information and the second validity area information.
In an implementation of the first aspect, the at least one processor is further configured to execute the computer-executable instructions to access a sidelink resource associated with the validity area after the validity area is identified as valid.
In another implementation of the first aspect, the first validity area information is associated with a first Public Land Mobile Network (PLMN) identity (PLMNidentity) in a PLMNidentity list or a first Non-Public Network (NPN) identity (NPNidentity) in a NPNidentity list, and the PLMNidentity list and the NPNidentity list are broadcast by the serving cell.
In yet another implementation of the first aspect, the second validity area information is associated with at least one of one or more SL transmission resource pools, one or more SL reception resource pools, one or more (Type1/Type2) sidelink configured grant, and one or more exceptional transmission resource pools.
In yet another implementation of the first aspect, the first RAT is a 5 th Generation New Radio (5G NR) RAT.
In yet another implementation of the first aspect, NR sidelink communication is considered as part of the 5G NR RAT (or is associated with the 5G NR RAT) .
In yet another implementation of the first aspect the NR sidelink communication is implemented based on the 5G NR RAT.
In yet another implementation of the first aspect, the second RAT is an Evolved Universal Terrestrial Radio Access (E-UTRA) RAT.
In yet another implementation of the first aspect, the sidelink resource configuration of the second RAT is for Long Term Evolution (LTE) Vehicle to Everything (V2X) sidelink communication associated with an Evolved Universal Terrestrial Radio Access (E-UTRA) RAT.
In yet another implementation of the first aspect, V2X sidelink communication and sidelink communication/discovery are considered as part of the E-UTRA RAT (or are associated with the E-UTRA RAT) .
In yet another implementation of the first aspect, V2X sidelink communication and sidelink communication/discovery are implemented based on the E-UTRA RAT.
In yet another implementation of the first aspect, the sidelink resource configuration of the second RAT (e.g., V2X sidelink communication) is received through system information broadcast by the serving cell of the first RAT.
In yet another implementation of the first aspect, the sidelink resource configuration of the first RAT (e.g., NR sidelink communication) is received through system information broadcast by the serving cell of the second RAT.
In yet another implementation of the first aspect, the validity area of the sidelink resource configuration is composed of at least one system information area identifier (systemInformationAreaID) broadcast by the serving cell of the first RAT.
In yet another implementation of the first aspect, the first validity area of the first RAT is composed by the serving cell of the first RAT, when the systemInformationAreaID is absent or when the sidelink resource configuration is not indicated by the systemInformationAreaID broadcast by the serving cell.
In yet another implementation of the first aspect, the sidelink resource configuration associated with the validity area is invalidated by the UE after the UE moves out of either a first validity area associated with the first validity area information and/or a second validity area associated with the second validity area information.
According to a second aspect of the present disclosure, a method performed by a UE is provided. The method includes receiving, through a serving cell of a first Radio Access Technology (RAT) , a sidelink resource configuration of a second RAT, determining first validity area information associated with the first RAT and second validity area information associated with the second RAT, the first validity area information and the second validity area information being associated with different frequency carriers, and identifying a validity area of the sidelink resource configuration based on the first validity area information and the second validity area information.
In an implementation of the second aspect, the method further includes accessing a sidelink resource associated with the validity area after the validity area is identified as valid.
In another implementation of the second aspect, the first validity area information is associated with a first Public Land Mobile Network (PLMN) identity (PLMNidentity) in a PLMNidentity list or a first Non-Public Network (NPN) identity (NPNidentity) in a NPNidentity list, and the PLMNidentity list and the NPNidentity list are broadcast by the serving cell.
In yet another implementation of the second aspect, after cell (re) selection procedures triggered by an UE mobility event, the UE may also check the first validity area information by checking whether the first PLMN identity (or the first NPN identity) of the serving cell has changed. Moreover, the UE may check the first PLMN identity (in the PLMNidentity list broadcast by the serving cell) while the UE is checking the validity of the first validity area information and the UE is not under the Stand-alone Non-Public Network (SNPN) access mode. On the other hand, the UE may check the first NPN identity (in the NPNidentity list broadcast by the serving cell)  while the UE is checking the validity of the first validity area information and the UE is under the SNPN access mode.
In yet another implementation of the second aspect, the second validity area information is associated with at least one of one or more SL transmission resource pools, one or more SL reception resource pools, one or more exceptional transmission resource pools, and one or more (Type1/Type2) sidelink configured grants.
In yet another implementation of the second aspect, the first RAT is a 5 th Generation New Radio (5G NR) RAT.
In yet another implementation of the second aspect, the second RAT is an Evolved Universal Terrestrial Radio Access (E-UTRA) RAT.
In yet another implementation of the second aspect, the sidelink resource configuration of the second RAT (e.g., a V2X sidelink resource configuration associated with the E-UTRA RAT) is received through system information broadcast by the serving cell of the first RAT (e.g., an NR Cell) .
In yet another implementation of the second aspect, the validity area of the sidelink resource configuration is composed of at least one system information area identifier (systemInformationAreaID) broadcast by the serving cell of the first RAT.
In yet another implementation of the second aspect, the first validity area of the first RAT is composed by the serving cell of the first RAT, when the systemInformationAreaID is absent or when the sidelink resource configuration is not indicated by the systemInformationAreaID broadcast by the serving cell.
In yet another implementation of the second aspect, the sidelink resource configuration associated with the validity area is invalidated by the UE after the UE moves out of either a first validity area associated with the first validity area information or a second validity area associated with the second validity area information.
BRIEF DESCRIPTION OF THE DRAWINGS
Aspects of the disclosure are best understood from the following detailed description when read with the accompanying drawings. Various features are not drawn to scale. Dimensions of various features may be arbitrarily increased or reduced for clarity of discussion.
FIG. 1 is a diagram illustrating LTE/NR (V2X) SL operations, in accordance with an example implementation of the present disclosure.
FIG. 2A and FIG. 2B are diagrams illustrating carrier aggregation for (LTE) V2X SL communication/NR SL communication, in accordance with example implementations of the present disclosure.
FIG. 3 is a flowchart 300 of a method performed by a UE for NR SL operations, in accordance with an example implementation of the present disclosure.
FIG. 4 illustrates a diagram showing a UE performing SL synchronization and SL cell (re) selection procedures under a fallback mechanism to a cross-carrier validity area configuration, in accordance with an example implementation of the present disclosure.
FIG. 5 illustrates a range-based SL resource association in accordance with an example implementation of the present disclosure.
FIG. 6 is a block diagram illustrating a node for wireless communication in accordance with various aspects of the present disclosure.
DESCRIPTION
The following description contains specific information related to implementations of the present disclosure. The drawings and their accompanying detailed description are merely directed to implementations. However, the present disclosure is not limited to these implementations. Other variations and implementations of the present disclosure will be obvious to those skilled in the art.
Unless noted otherwise, like or corresponding elements among the drawings may be indicated by like or corresponding reference numerals. Moreover, the drawings and illustrations in the present disclosure are generally not to scale and are not intended to correspond to actual relative dimensions.
For the purpose of consistency and ease of understanding, like features may be identified (although, in some examples, not illustrated) by the same numerals in the drawings. However, the features in different implementations may be differed in other respects and shall not be narrowly confined to what is illustrated in the drawings.
The phrases “in one implementation, ” or “in some implementations, ” may each refer to one or more of the same or different implementations. The term “coupled” is defined as connected whether directly or indirectly through intervening components and is not necessarily limited to physical connections. The term “comprising” means “including, but not necessarily limited to” and specifically indicates open-ended inclusion or membership in the so-described combination, group, series or equivalent. The expression “at least one of A, B and C” or “at least one of the following: A, B and C” means “only A, or only B, or only C, or any combination of A, B and C. ”
The terms “system” and “network” may be used interchangeably. The term “and/or” is only an association relationship for describing associated objects and represents that three relationships may exist such that A and/or B may indicate that A exists alone, A and B exist at the same time, or B exists alone. The character “/” generally represents that the associated objects are in an “or” relationship.
For the purposes of explanation and non-limitation, specific details such as functional entities, techniques, protocols, and standards are set forth for providing an understanding of the disclosed technology. In other examples, detailed description of well-known methods, technologies, systems, and architectures are omitted so as not to obscure the description with unnecessary details.
Persons skilled in the art will immediately recognize that any network function (s) or algorithm (s) disclosed may be implemented by hardware, software or a combination of software and hardware. Disclosed functions may correspond to modules which may be software, hardware, firmware, or any combination thereof.
A software implementation may include computer-executable instructions stored on a computer-readable medium such as memory or other types of storage devices. One or more microprocessors or general-purpose computers with communication processing capability may be programmed with corresponding executable instructions and perform the disclosed network function (s) or algorithm (s) .
The microprocessors or general-purpose computers may include Applications Specific Integrated Circuitry (ASIC) , programmable logic arrays, and/or using one or more Digital Signal Processor (DSPs) . Although some of the disclosed implementations are oriented to software installed and executing on computer hardware, alternative implementations implemented as firmware or as hardware or as a combination of hardware and software are well within the scope of the present disclosure. The computer readable medium includes but is not limited to Random Access Memory (RAM) , Read Only Memory (ROM) , Erasable Programmable Read-Only Memory (EPROM) , Electrically Erasable Programmable Read-Only Memory (EEPROM) , flash memory, Compact Disc Read-Only Memory (CD-ROM) , magnetic cassettes, magnetic tape, magnetic disk storage, or any other equivalent medium capable of storing computer-readable instructions.
A radio communication network architecture such as a Long Term Evolution (LTE) system, an LTE-Advanced (LTE-A) system, an LTE-Advanced Pro system, or a 5G NR Radio Access Network (RAN) typically includes at least one base station (BS) , at least one UE, and one or more optional network elements that provide connection within a network. The UE communicates with the network such as a Core Network (CN) , an Evolved Packet Core (EPC)  network, an Evolved Universal Terrestrial RAN (E-UTRAN) , a 5G Core (5GC) , or an internet via a RAN established by one or more BSs.
A UE may include but is not limited to a mobile station, a mobile terminal or device, or a user communication radio terminal. The UE may be a portable radio equipment that includes but is not limited to a mobile phone, a tablet, a wearable device, a sensor, a vehicle, or a Personal Digital Assistant (PDA) with wireless communication capability. The UE is configured to receive and transmit signals over an air interface to one or more cells in a RAN.
The BS may be configured to provide communication services according to at least a Radio Access Technology (RAT) such as Worldwide Interoperability for Microwave Access (WiMAX) , Global System for Mobile communications (GSM) that is often referred to as 2G, GSM Enhanced Data rates for GSM Evolution (EDGE) RAN (GERAN) , General Packet Radio Service (GPRS) , Universal Mobile Telecommunication System (UMTS) that is often referred to as 3G based on basic wideband-code division multiple access (W-CDMA) , high-speed packet access (HSPA) , LTE, LTE-A, evolved LTE (eLTE) that is LTE connected to 5GC, NR (often referred to as 5G) , and/or LTE-A Pro. However, the scope of the present disclosure is not limited to these protocols.
The BS may include but is not limited to a node B (NB) in the UMTS, an evolved node B (eNB) in LTE or LTE-A, a radio network controller (RNC) in UMTS, a BS controller (BSC) in the GSM/GERAN, an ng-eNB in an Evolved Universal Terrestrial Radio Access (E-UTRA) BS in connection with 5GC, a next generation Node B (gNB) in the 5G-RAN, or any other apparatus capable of controlling radio communication and managing radio resources within a cell. The BS may serve one or more UEs via a radio interface.
The BS is operable to provide radio coverage to a specific geographical area using a plurality of cells forming the RAN. The BS supports the operations of the cells. Each cell is operable to provide services to at least one UE within its radio coverage.
Each cell (often referred to as a serving cell) provides services to serve one or more UEs within its radio coverage such that each cell schedules the DL and optionally uplink (UL) resources to at least one UE within its radio coverage for DL and optionally UL packet transmissions. The BS can communicate with one or more UEs in the radio communication system via the plurality of cells.
A cell may allocate SL resources for supporting Proximity Service (ProSe) , sidelink service (e.g., (LTE) sidelink communication service and/or (LTE) sidelink discovery service) or Vehicle to Everything (V2X) service (e.g., NR sidelink communication and/or (LTE) V2X sidelink communication) . Each cell may have overlapped coverage areas with other cells.
As discussed previously, the frame structure for NR supports flexible configurations for accommodating various next generation (e.g., 5G) communication requirements such as Enhanced Mobile Broadband (eMBB) , Massive Machine Type Communication (mMTC) , and Ultra-Reliable and Low-Latency Communication (URLLC) , while fulfilling high reliability, high data rate and low latency requirements. The Orthogonal Frequency-Division Multiplexing (OFDM) technology in the 3rd Generation Partnership Project (3GPP) may serve as a baseline for an NR waveform. The scalable OFDM numerology such as adaptive sub-carrier spacing, channel bandwidth, and Cyclic Prefix (CP) may also be used.
Two coding schemes are considered for NR, specifically Low-Density Parity-Check (LDPC) code and Polar Code. The coding scheme adaption may be configured based on channel conditions and/or service applications.
When a transmission time interval (TTI) of a single NR frame includes DL transmission data, a guard period, and UL transmission data, the respective portions of the DL transmission data, the guard period, and the UL transmission data may be configured based on the network dynamics of NR. SL resources may also be provided in an NR frame to support ProSe services or V2X services.
Example description of some selected terms used in this disclosure are given below.
Primary Cell (PCell) : For dual connectivity (DC) operation or carrier aggregation (CA) operation, PCell is the master cell group (MCG) cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure.
Primary SCG Cell (PSCell) : For DC operation, PSCell is the secondary cell group (SCG) cell in which the UE performs random access when performing the Reconfiguration with Sync procedure.
Special Cell: For DC operation the term Special Cell (SpCell) refers to the PCell of the MCG or the PSCell of the SCG, otherwise (e.g., for CA operation) , the term Special Cell refers to the PCell.
Secondary Cell: For a UE configured with carrier aggregation (CA) , a cell providing additional radio resources on top of Special Cell.
Serving Cell: For a UE in RRC_CONNECTED not configured with CA/DC, there is only one serving cell, which may be referred to as the primary cell. For a UE in RRC_CONNECTED configured with CA/DC, the term “serving cells” may be used to denote the set of cells including the SpCell (s) and all secondary cells.
Listen Before Talk (LBT) is a feature available in Wi-Fi that allows coexistence with other Wi-Fi nodes. LBT is a mechanism by which an equipment applies clear channel assessment  (CCA) before using the channel. The 3rd Generation Partnership Project (3GPP) chose to specify a conservative LBT scheme similar to what Wi-Fi nodes use in order to ensure coexistence of Licensed Assisted Access (LAA) with Wi-Fi. LAA uses carrier aggregation in DL to combine LTE in the unlicensed spectrum (e.g., 5 GHz) with LTE in the licensed band. In NR, LBT may be also required prior to any transmission when operating on the unlicensed spectrum.
In the present disclosure, various implementations focus on the functionality of NR cells to support SL operation under SL carrier aggregation. In the present disclosure, both Frequency Range 1 (FR1) and Frequency Range 2 (FR2) may be considered to support (NR-V2X) SL operations. The UE may require additional power to support SL operations, such as SL synchronization, sidelink resource (pools) configuration, and SL (serving/non-serving) cell (re) selection cross multiple SL component carriers. In an effort to reduce power consumption by the UE supporting these SL operations, various implementations of the present disclosure provide, among other things, a cross-carrier validity area configuration in an SL resource configuration, as discussed in IMPLEMENTATION 1 of the present disclosure. Moreover, various implementations of the present disclosure provide, among other things, fallback mechanisms when a cross-carrier validity area configuration is absent, as discussed in IMPLEMENTATION 2 of the present disclosure.
In various implementations of the present disclosure, to maintain channel quality (e.g., beam management) in FR2, a range-based SL resource association is provided to enable an SL logical channel (LCH) to be associated with different combinations of SL component carrier (s) , (so to be the SL resource configuration on these configured SL components) based on the distance (e.g., physical distance) between the UEs (e.g., transmission (Tx) /reception (Rx) UEs) , as discussed in IMPLEMENTATION 2 of the present disclosure.
Under an SL carrier aggregation scenario, in some implementations of the present disclosure, an NR Non-standalone (NSA) cell may not support LTE/NR SL operations. In addition, the UE may not attempt to decode the system information broadcast by an NR NSA cell (e.g., SIB1) to obtain system information about SL resource configuration for LTE V2X sidelink (communication) services and NR V2X services/NR sidelink (communication) service (e.g., the NSA cell is not a suitable cell to the UE and the UE can not access V2X services if the UE is in a limited service state) . In some implementations of the present disclosure, some component carriers may be deployed with NR NSA cells. As a result, the UE may select to camp on an NR NSA cell. For example, the UE may be in a ‘camped on any cell’ state, and the camped NSA cell is an ‘acceptable cell’ to the UE. However, these NSA cells may still support NR/LTE SL operations and these NSA cells can still broadcast one or more SL configurations in system information to the UEs. The UEs may be in a limited service state and able to access (public safety) V2X service (s)  or public safety related SL service (s) . IMPLEMENTATION 3 of the present disclosure describes how an NR NSA cell supports NR/LTE SL operations.
In addition, with the introduction of FR2 for SL carrier aggregation, implementations of the present disclosure provide assistance information regarding how channel quality or packet delivery status may be delivered by the component carriers in FR1. As discussed below, IMPLEMENTATION 4 of the present disclosure provides support for ‘FR2 assistance information exchange’ on FR1. In the present disclosure, the range of FR1 may be specified to the SL component carriers in a lower frequency range (e.g., less than 7 GHz) , and the range of FR2 may be specified to the SL component carriers in a higher frequency range (e.g., greater than equal to 7GHz) . Implementations of the present disclosure may be applicable to SL unicast group scenarios, SL multi-cast/group-cast group scenarios, and SL broadcast scenarios. In addition, implementations of the present disclosure may be applicable to public-safety V2X services, non-public safety (e.g., commercial) V2X services, and (public-safety/non-public-safety) SL communication/discovery services.
IMPLEMENTATION 5 of the present disclosure provides stored validity area and SL resource configuration cross serving frequency (ies) and non-serving frequency (ies) while cell (re) selection may be implemented on the serving frequency (ies) and non-serving frequency (ies) .
IMPLEMENTATION 1: Cross-Carrier Validity Area Configuration
Referring to FIG. 1, FIG. 1 is a diagram 100 illustrating V2X SL operations, in accordance with an example implementation of the present disclosure. In FIG. 1, at least two UEs (e.g., UE1 and UE2) may be configured in an (Access Stratum (AS) -layer/Non-Access Stratum (NAS) ) unicast group to implement NR-SL (which is also referred to as NR-V2X in some applications) services and/or LTE-V2X (sidelink) services based on configured NR and/or LTE SL configurations (e.g., the NR SL configuration and LTE V2X configuration) . It should be noted that, in some implementations, the LTE V2X services may include the LTE V2X communication through an LTE Uu interface (e.g., packets exchange through downlink/uplink direction between the UE (s) and serving Radio Access Network) and/or the LTE V2X SL packets exchange (e.g., LTE V2X SL communication and/or LTE V2X SL discovery between UEs) through an LTE PC5 interface. Thus, in some implementations, the LTE V2X configuration may include the configuration for LTE V2X communication through the LTE Uu interface and/or the configuration for LTE V2X SL communication/LTE V2X SL discovery through the LTE PC5 interface (e.g., LTE V2X SL configuration) . It should also be noted that, in some implementations, the NR SL service may include NR SL packet exchange (e.g., NR SL communication and/or NR SL discovery between UEs) through an NR PC5 interface. Therefore, in some implementations, the NR SL configuration may include the configuration for NR SL communication and/or NR SL discovery.  Furthermore, the NR SL communication may include NR SL transmission (e.g., one UE transmits NR SL packets and/or SL NR control messages (e.g., SL Control Information (SCI) and/or PC5 Radio Resource Control (RRC signaling and/or SL Hybrid Automatic Repeat reQuest (HARQ) Acknowledgement/Non-Acknowledgement messages) and/or NR SL synchronization signals (NR SL synchronization burst sets) to nearby UEs in the same NR SL unicast/multi-cast (group-cast) /broadcast groups) and/or NR SL reception (e.g., one UE receives NR SL packets and/or NR SL control messages (e.g., SCI or PC5 RRC signaling) and/or NR SL synchronization signals (NR SL synchronization burst sets) to nearby UEs in the same NR SL unicast/Multi-cast (group-cast) /broadcast groups) .
In various implementations of the present disclosure, the serving cell (e.g., an NR cell in FIG. 1) may configure multiple SL CCs and the associated RATs (or associated RANs) in the corresponding SL CCs. In accordance with an example implementation of the present disclosure, with reference to FIG. 1, at least two UEs (e.g., UE1 and UE2) may be configured in an (Access Stratum (AS) -layer/Non-Access Stratum (NAS) ) multi-cast group to implement NR-SL (which is also referred to as NR-V2X (sidelink) in some applications) services and/or LTE-V2X (sidelink) services based on configured NR and/or LTE SL configurations. In various implementations of the present disclosure, the serving cell (e.g., an NR cell in FIG. 1) may configure multiple SL CCs and the associated RATs (or associated RANs) in the corresponding SL CCs. In accordance with an example implementation of the present disclosure, with reference to FIG. 1, at least two UEs (e.g., UE1 and UE2) may be configured in an AS-layer/NAS layer) broadcast group to implement NR-SL (which is also referred to as NR-V2X in some applications) services and/or LTE-V2X services based on configured NR and/or LTE SL configurations. In various implementations of the present disclosure, the serving cell (e.g., an NR cell in FIG. 1) may configure multiple SL CCs and the associated RATs (or associated RANs) in the corresponding SL CCs. It should be noted that, in some implementations, the UEs in one unicast group/multi-cast group/broadcast group may be served by one or more cells, which may be served by one or more RATs (e.g., New Radio, E-UTRA) . In some other implementations, one or more UEs in the unicast group/multi-cast group/broadcast group may be out of the coverage of cellular networks (e.g., the UE (s) could not find out at least one cell which the downlink reference signaling quality, such as the DL Reference Signal Received Power (RSRP) , is higher than a pre-defined threshold) . In addition, one out-of-coverage UE may communicate with other UEs in the same unicast/multi-cast/broadcast group based on SL-pre-configuration or configurations obtained from the neighboring UEs (e.g., through SL-Master Information Block (MIB) reception or PC5 RRC signaling exchange or PC5-Ssignaling) . A UE may join in one or more unicast/multi-cast/broadcast group (s) and each group may be associated with one Layer 2 Identifier independently.
The ProSe (Proximity Service) unicast group (or SL unicast group in the AS-layer) may be in-coverage, partial-coverage, or out-of-coverage with a serving RAN, that is an NR RAN connected to a 5GC (5G Core) and/or a Evolved Packet Core (EPC) as shown in FIG. 1. In another implementation, the ProSe unicast group (or SL unicast group in the AS-layer) may be in-coverage, partial-coverage, or out-of-coverage with a serving RAN, that is an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) connected to an EPC (Evolved Packet Core) and/or an 5GC (5G Core) .
In FIG. 1, a (NR) gNB in an NR-RAN (or a LTE eNB in an E-UTRAN) may provide physical resource (s) to support NR-V2X SL operation (s) and/or LTE-V2X SL operation (s) . The interface between UE1 and UE 2 to support NR-V2X SL operation (s) is referred to as an NR PC5 interface. For example, an NR PC5 interface may be configured by a serving RAN (e.g., an NR-RAN or an E-UTRAN) or by pre-configuration, which may be stored in the memory modules or USIMs (UMTS Subscriber Identity Modules) of the UEs, to support NR V2X service (s) . The interface between the vehicles to support LTE-V2X SL operation (s) is referred to as an LTE PC5 interface. The LTE PC5 interface may be configured by the serving RAN (e.g., an NR-RAN or an E-UTRAN) or by pre-configuration, which is stored in the memory module (s) or USIM (s) (UMTS Subscriber Identity Module (s) ) of the UEs, to support LTE V2X service (s) . In some implementations, the serving NR cell is the PCell (primary cell) to the UE. In some implementations, the serving NR cell may be the PSCell (primary SCell) to the UE (s) while the UE(s) is/are configured with an additional secondary node based on an NR dual-connectivity (or multi-connectivity) configuration. In addition, the serving PSCell may transmit SL resource configuration to the UE (s) directly through a configured radio bearer (e.g., SRB3) . It should be noted that, in the implementations of the present disclosure, the serving RAN is not limited to an NR RAN. For example, the serving RAN may be an E-UTRAN. In addition, implementations of the present disclosure may cover both an intra-RAT SL resource configuration (e.g., an NR cell may provide an NR SL resource configuration and an LTE cell may provide an LTE (V2X) SL resource configuration) and an inter-RAT SL resource configuration (e.g., an NR cell may provide an LTE SL resource configuration and an LTE cell may provide an NR SL resource configuration) .
Referring to FIGS. 2A and 2B, FIGS. 2A and 2B are diagrams illustrating V2X SL carrier aggregation, in accordance with example implementations of the present disclosure. As shown in diagram 200A in FIG. 2A, one or more UEs (e.g., UE1 and UE2) may be served by a serving cell (Cell#1) via an SL component carrier (e.g., CC#1) . As shown in diagram 200B in FIG. 2B, Cell#1 is deployed in CC#1, where is in FR1. Also shown in diagram 200B, There are several cells (Cell#A, Cell#B, and Cell#C) deployed in another SL component carrier (e.g., CC#2) . In one example, CC#2 is in FR2. Both CC#1 and CC#2 support (NR/LTE) SL operation (s) . In addition,  CC#2 may have a paired DL frequency carrier (e.g., also in FR2) in Cell#A, Cell#B, Cell#C in the (LTE/NR) Uu interface. It should be noted that CC#1/CC#2 may or may not be the secondary frequency carrier to the UE (s) while the UE (s) is configured with carrier aggregation in an (LTE/NR) Uu interface. Furthermore, in some additional implementations, CC#1/CC#2 may or may not be the serving frequency carrier to the UE (s) while the UE (s) is implementing SL operations with non-serving cell (s) , which are operating on the non-serving frequency carrier.
In the present disclosure, Cell#1 may configure an SL resource configuration indicating CC#2 to the UE (s) (e.g., UE1 and UE2) with a cross-carrier validity area configuration. In addition, the UE (s) may not need to perform SL synchronization and SL cell (re) selection on the associated SL frequency carrier of CC#2. The UE (s) may not be configured with special cell (s) and secondary cell (s) in the concerned frequency carrier. In other words, the concerned CC#2 is neither a primary frequency carrier nor a secondary frequency carrier to the UEs. In some implementations, the serving cell (e.g., Cell#1 in FIG. 2) may transmit timing adjustment instructions (e.g., timing advance instructions) to the UE (s) to adjust their transmission timing (s) based on the instructions from the serving cell.
In comparison, in LTE V2X protocols, SL resources among multiple SL carriers may be configured through a v2x-InterFreqInfoList (e.g., by broadcasting system information or by dedicated RRC signaling on a Uu interface) . It should be noted that, in some implementations, the UE (s) may need to implement SL synchronization and SL cell (re) selection on the concerned frequency (or on the paired DL frequency carrier with the one used to transmit V2X SL communication) , while the concerned frequency carrier is not a serving frequency to the UE (s) . In some other implementations, the UE (s) may be optionally configured with a SyncFreqList, which specifies a list of candidate SL synchronization carrier frequencies for V2X SL communications on these non-serving frequency carriers. Additional SL synchronization may require additional power consumption by the UE (s) .
In the implementations of the present disclosure, as shown in FIG. 2A, Cell#1 may deliver an SL resource configuration associated with CC#2 (and the cross-carrier validity area configuration) to the UE (s) through control signaling (e.g., by broadcasting system information or (UE-specific) dedicated RRC signaling) . In addition, the associated validity area may be composed by cells in CC#1 and Cell#1 may also locate in the given validity area. In some implementations, the validity area may be composed by one or more cell identity (ies) , physical cell identity (ies) , systemInformationAreaID (s) , RAN notification Area Code (s) or Tracking Area Code (s) , etc. The cells in CC#1 may also deliver the assistance information (e.g., cell identity (ies) , physical cell identity (ies) , systemInformationAreaID (s) , RAN notification Area Code (s) , Tracking Area  Code (s) , and/or zone ID (s) which the cell belongs to) for the UE (s) to identify the range of the validity area.
Based on the associated validity area configuration, the UE (s) may transmit SL packet (s) on CC#2 directly without implementing SL synchronization or SL cell (re) selection on CC#2 (or the DL frequency carrier associated with CC#2) . The UE (s) may transmit SL packets on CC#2 based on the timing reference which the UE (s) obtains from CC#1. In addition, the UE (s) may not need to use the DL frequency carrier associated with CC#2 in the LTE/NR Uu interface (which may also be the operating DL frequency carrier of Cell#A, Cell#B, and/or Cell#C) as the timing reference when the UE (s) is/are transmitting SL packets on CC#2. In some additional implementations, the UE may still implement sidelink synchronization and/or (non-serving) cell (re) selection on the CC#2. However, the UE may only need to check whether the selected cell on CC#2 is located on the sidelink resource validity area based on the pre-stored validity area information associated with CC#2 (e.g., the UE may receive the MIB and/or System information block Type1 (SIB1) of the selected cell after the cell (re) selection procedure (e.g., for cell identity reception and/or system information area ID reception, which may be broadcast by the selected cell in the MIB/SIB1) . Then, the UE may check the validity of stored sidelink resource configuration based on the received cell identity/system information area ID broadcast by the selected cell and the stored validity area information associated with the stored sidelink resource configuration. However, the UE may not need to monitor the other system information or broadcasting control signaling broadcast by the selected cell for sidelink resource configuration reception) while the stored sidelink resource configuration is still valid.
In some implementations, Cell#1 (e.g., an NR cell) may support both a normal uplink (NUL) carrier and at least one supplementary uplink (SUL) carrier. In addition, Cell#1 may provide SL resource configurations in both the NUL carrier and SUL carrier (s) . For example, at least one SL Bandwidth Part (BWP) configuration is associated with the NUL carrier, and at least one SL BWP configuration is associated with the SUL carrier. As such, the UE (s) may transmit SL packets by accessing the SL resource (s) on the NUL carrier and/or the SUL carrier (s) . In some implementations, the UE (s) may transmit SL packets on the NUL carrier and the SUL carrier (s) simultaneously. In some implementations, the UE (s) may only choose the SL resource (s) on either the NUL carrier or the SUL carrier (s) (e.g., depending on whether a NUL or a SUL is used in the UL direction) .
In some implementations, the UE may need to transmit the UE’s capability of SL carrier aggregation to the serving cell.
As shown in FIG. 2B, a validity area configuration in FR2 may be associated with Cell#1 in FR1. Implementations of the present disclosure may improve the UE’s power  consumption since the UE (s) does not need to perform SL synchronization and SL cell (re) selection in FR2.
As discussed above, the SL synchronization on CC#1 may be with a Global Navigation Satellite System (GNSS) , a base station (eNB or gNB) , or a neighboring UE (LTE UE or NR UE) . In addition, in some implementations, the UE may be in an NR-RRC Idle state, an NR-RRC Inactive state, an LTE-RRC Idle state, or an LTE-RRC Inactive state. In some implementations of the present disclosure, the UE may receive the above-mentioned configurations through system information. In some implementations of the present disclosure, the UE may receive the above-mentioned configurations while the UE in an NR-RRC Connected state or an LTE-RRC Connected state. In some implementations of the present disclosure, the UE may receive the above-mentioned configurations through (UE-specific) dedicated RRC signaling. In some implementations of the present disclosure, the UE may receive the above-mentioned configurations through dedicated RRC signaling (e.g., an RRC Connection Resume message, an RRC Release with suspend configuration message) , while the UE is an NR-RRC Inactive state or an LTE-RRC Inactive state.
As shown in FIG. 2A, the UE (e.g., UE1 and/or UE2) is camped on Cell#1 in CC#1 (located on FR1) . The UE may be in an NR-RRC Inactive state/NR-RRC Idle state/NR-RRC Connected state.
In some implementations, the SL resource configuration on FR1 (e.g., CC#1) and FR2 (e.g., CC#2 ) may be configured with one associated validity area. On the UE side, the UE (e.g., UE1 and/or UE2) may know that the SL resource configuration on CC#2 is valid under the coverage of the configured validity area associated with cells in CC#1 (e.g., Cell#1) . In addition, the UE (e.g., UE1 and/or UE2) may not need to perform SL synchronization or SL cell (re) selection in CC#2 when the UE is accessing the configured SL resource (e.g., while the UE is transmitting SL packets on the configured SL resource) . In some additional implementations, the UE may still implement sidelink synchronization and/or (non-serving) cell (re) selection on the CC#2. However, the UE may only need to check whether the selected cell on CC#2 is located on the sidelink resource validity area based on the pre-stored validity area information associated with CC#2. In other words, the UE may not need to monitor other DL control signaling for sidelink resource configuration delivered by the selected cell on the CC#2.
In some implementations, the configured SL resource may include dynamic SL grant, Type 1 SL configured grant, Type 2 SL configured grant, SL resource pool, and SL exceptional pool in the appointed SL component carrier (e.g., CC#2 in FIG. 2B) . In addition, it is noted that the serving cell (e.g., Cell#1) may transmit the configuration of Type 1 SL configured grant to the UE (e.g., UE1 and/or UE2) through broadcasting message (e.g., system information) or dedicated  control signaling (e.g., (UE-specific) RRC signaling) . On the UE side, the configuration of Type 1 SL configured grant is valid to the UE (e.g., UE1 and/or UE2) right after the UE decoding the configuration from the serving cell successfully. So, the UE (e.g., UE1 and/or UE2) can transmit SL packets by accessing the configured Type 1 SL configured grant.
The serving cell (e.g., Cell#1) may transmit part of the configuration of Type 2 SL configured grant (e.g., the periodicity in time domain for the Type 2 SL configured grant) to the UE (e.g., UE1 and/or UE2) through broadcasting message (e.g., system information) or dedicated control signaling (e.g., RRC signaling) . Then, the serving cell may configure the other part of Type 2 SL configured grant (e.g., the locations of SL resource blocks, such as sub-channel and symbols in frequency domain and time domain respectively) by transmitting other dedicated control signaling (e.g., Downlink control information scrambled by C-RNTI of the UE or Medium Access Control Control Element (MAC CE) ) to the UE. So, after receiving the DCI from the serving cell (e.g., Cell#1 in CC#1) , the configured Type 2 SL configured grant is activated to the UE and so the UE can transmit SL packets on the configured Type 2 SL configured grant. On the other hand, to an activated SL configured grant, the serving cell may transmit another DCI to de-activate this SL configured grant. After receiving the de-activation message, the UE may stop accessing the configured Type 2 SL configured grant and release the stored configurations which the UE receives through the activation DCI message. In other words, the configurations received through RRC signaling may still be kept by the UE, so that next time the serving cell may configure other SL resource in another activation DCI to activate one Type 2 SL configured grant.
The SL resource pool configuration or SL exceptional resource pool configuration may be provided to the UE (e.g., UE1 and/or UE2) so that the UE can select SL grant autonomously with/without sensing (e.g., by random selection) or through partial sensing mechanism.
The SL resource configuration may be associated with (at least) one SL bandwidth part (SL-BWP) configuration in one SL component carrier. Each SL bandwidth part configuration may include the numerology of the operating SL component carrier (e.g., the length of cyclic prefix, subcarrier spacing, etc) .
It should be noted that, in various implementations of the present disclosure, RRC signaling may cover the RRC signaling in (LTE/NR) Uu interface, such as RRC (Connection) (Re) Establishment message, RRC (Connection) Setup message, RRC (Connection) Resume message, RRC (Connection) Release message with/without suspend configuration, RRC (Connection) Reconfiguration message with/without mobilitycontrolinfoV2X, or RRC (Connection) Reconfiguration message with/without reconfigurationwithsync message, etc. In addition, the reconfigurationwithsync/mobilitycontrolinfoV2X message may be delivered when  the serving RAN is instructing the UE to implement (intra-RAT/inter-RAT) handover procedure, Secondary Cell Group change, etc.
It should noted that, the above-mentioned configurations may also be applicable during an intra-RAT (e.g., from a source LTE cell to a target LTE cell or from a source NR cell to a target NR cell) handover procedure, an inter-RAT (e.g., from a source LTE/NR cell to a target NR/LTE cell respectively) handover procedure, an inter-system handover procedure in LTE protocols, an conditional handover procedure and a Dual Active Protocol Stack (DAPS) handover procedure. In some additional implementations, the above-mentioned configuration may also be applicable during an MCG-change/SCG-change procedure. In addition, during the handover procedure, the serving cell may apply delta signaling approach to re-configure the SL resource configuration (e.g., SL resource configuration of CC#2 in this disclosure) . For example, to provide new SL resource (pool) configuration, the serving cell may transmit SL_Resource_ (Pool) _ToAdd list to transmit new SL resource (pool) configuration to the UE. Then, the UE may store the new SL resource (pool) configuration with the stored SL resource (pool) configuration. In addition, all of the stored SL resource (pool) configuration may be further associated an SL resource (pool) index. So, the serving cell may instruct the UE to release one SL resource (pool) configuration by indicating the associated SL resource (pool) index in another SL_Resource_ (Pool) _ToRemove list. The SL_Resource_ (Pool) _ToAdd list &SL_Resource_ (Pool) _ToRemove list may be included in the IE reconfigurationwithsync (in NR protocols) /mobilitycontrolinfoV2X (in LTE protocols) when the serving cell is transmitting RRC Connection Reconfiguration message to initiate handover procedure. It should be noted that the above-mentioned mechanisms and signaling may also be applicable to conditional handover procedure. It should be noted that the sidelink resource pool configuration may include a normal sidelink resource pool configuration and/or an exceptional sidelink resource pool configuration. It should be noted that the delta signaling approach may be applicable to a (Type1/Type2) sidelink configured grant configuration.
In some implementations, the UE may start to access the configured SL resource (pool) after the handover procedure is finished successfully. In some implementations, the UE could access the configured SL resource (pool) during the handover procedure. In some additional implementations, the UE could access the configured SL resource (pool) during the conditional handover procedure.
In some implementations , the UE may obtain the timing advance instruction or timing offset value represented in symbols, microseconds, etc (or assistance information for the UE to adjust timing when the UE is transmitting/receive SL packets) for SL packet delivery on FR2 by receiving the timing reference or timing advance instructions from the serving cell on FR1 (e.g., Cell#A) .
Table 1 shows a validity area configuration of an SL resource on FR1 (e.g., CC#1 in Fig. 3) or FR2 (e.g., CC#2 in FIG. 2A) .
Table 1: Cross-Carrier Validity Area Configuration
Figure PCTCN2020126918-appb-000001
Figure PCTCN2020126918-appb-000002
Figure PCTCN2020126918-appb-000003
Figure PCTCN2020126918-appb-000004
Figure PCTCN2020126918-appb-000005
FIG. 3 is a flowchart 300 of a method performed by a UE for NR SL operations, in accordance with an example implementation of the present disclosure.
In action 302, the UE may receive, through a serving cell of a first (e.g., 5G NR) Radio Access Technology (RAT) , an SL resource configuration of a second RAT (e.g., E-UTRA) .
In action 304, the UE may determine first validity area information associated with the first RAT and second validity area information associated with the second RAT, the first validity area information and the second validity area information being associated with different frequency carriers.
In action 306, the UE may identify a validity area of the SL resource configuration based on the first validity area information and the second validity area information.
In action 308, the UE may Access an SL resource associated with the validity area after the validity area is identified as valid.
IMPLEMENTATION 2: Fallback Mechanism to Cross-Carrier Validity Area Configuration
Referring to FIG. 4, FIG. 4 illustrates a diagram showing a UE performing SL synchronization and SL cell (re) selection procedures under a fallback mechanism to a cross-carrier validity area configuration, in accordance with an example implementation of the present disclosure.
In the present implementation, the cross-carrier SL resource configuration associated with a validity area (e.g., Validity Area #1) may be invalidated by a UE after the UE moves out of the validity area to another validity area (e.g., Validity Area #2) .
In some implementations, the UE may release the invalidated cross-carrier SL resource configuration after the UE moves out of the validity area associated with the stored SL resource configuration.
In some implementations, the UE may start performing SL synchronization and SL cell (re) selection procedures on FR2 when one of more of the following fallback conditions are met:
Condition 1: the UE may not be configured with other SL resource configuration nor validity area in FR2 (e.g., but CC#2 still supports SL in the areas out of Validity Area#1) . In this condition, the UE may initiate SL synchronization and SL cell (re) selection in the SL CC#2 by the UE itself.
Condition 2: In some other conditions, the UE may be configured with another validity Area#2 in FR1 but the UE may temporarily fail to find out a suitable cell (e.g., while the UE moves to a coverage hole) . In this condition, the UE may implement SL synchronization and SL cell (re) selection in the SL CC#2 by the UE itself.
Condition 3: the serving cell in FR1 does not provide validity area in FR1. Instead, the serving cell in FR1 may configure SL resource configuration in FR2 with validity area  indicated in FR2 (e.g., the Validity Area#2 in Fig. 3) . For example, the Validity Area#2 may be composed by the cells operating in CC#2. In some additional implementations, the Validity Area#2 is composed by the cellidentity/PCI/RANAC/Tracking area code/SysteminformationareaID broadcast by cells in FR2. In this condition, the UE may implement SL synchronization and SL cell (re) selection in the SL CC#2 by the UE itself.
It is noted that, after the SL cell (re) selection procedure, the UE may start monitor the system information broadcast by the selected (non-serving) cell for sidelink resource configuration reception (on the CC#2) .
Referring to FIG. 5, FIG. 5 illustrates a range-based SL resource association in accordance with an example implementation of the present disclosure. In the present implementation, each SL LCH may have one or more associated SL carriers. One or more range-based SL resource configurations may be configured to a UE. For example, SL-Resource configuration#1 and SL-Resource configuration#2 may be provided to the UE with a distance-based threshold, R1 (e.g., in the unit of meters) .
In one example, a UE (e.g., UE#2 in FIG. 2B) may apply SL-Resource Configuration#1 to transmit SL packets with a paired UE (e.g., UE#1 in FIG. 2B) while the physical distance between the Tx UE/Rx UE is smaller than R1. For example, the value of R1 may be up to several hundred meters.
In another example, a UE (e.g., UE#2 in FIG. 2B) may apply SL-Resource Configuration#2 to transmit SL packets with a paired UE (e.g., UE#1 in FIG. 2B) while the physical distance between the Tx UE and Rx UE is larger than R1.
In some implementations, a UE (e.g., UE#2 in FIG. 2B) may estimate the physical distance with another UE (e.g., UE#12 in FIG. 2B) by receiving the SL control information (SCI) (e.g., based on the received 1 st SCI and/or the 2 nd SCI during the two-stage SCI transmission procedure) transmitted by the (Tx) UE (e.g., by decoding the location information, such as zone ID or GNSS location information, of the Tx UE) . In some other implementations, a UE may estimate the physical distance with another UE through other radio access technologies, such as an NR positioning technique or a GNSS information exchange.
It should be noted that the SL packet delivery may become more critical when UE#1 and UE#2 are close to each other. In addition, the channel effect (e.g., pathloss) on different SL CC may also need to be considered. Therefore, to one SL LCH, associations with different SL CCs (and so the SL resource configurations, such as Type1/Type2 SL configured grant (s) , SL dynamic grant (s) , resource pool (s) , exceptional resource pool (s) associated with the SL CC) may be helpful to preserve the QoS (Quality of Service) of SL packet delivery. As shown in Table 2, SL logical channel#1 may be associated with CC#1 (in FR1) in the SL-Resource Configuration#2 since the  pathloss effect in FR1 is smaller than that in FR2. Then, while the physical distance between the Tx UE/Rx UE is smaller than R1, the SL logical channel#1 may be associated with CC#2 (e.. g, in FR2) in the SL-Resource Configuration#2. In addition, in some other implementations, one SL LCH may be associated with more than one SL component carrier. As shown in Table 2, the SL logical channel#2 may be associated {CC#1} in the SL-Resource configuration#2 and the same SL logical channel#2 may be associated {CC#1, CC#2, CC#3} in the SL-Resource configuration#2 and so the UE may implement SL multiplexing to an SL grant (based on the received SL resource configuration in one SL CC, such as Type1/Type2 SL configured grant (s) , SL dynamic grant (s) , resource pool (s) , resource pool (s) with zone configuration, exceptional resource pool (s) associated with the SL CC) based on the range-based association with the SL LCH and SL CC. Also, it is noted that, in some implementations, the operating SL CC (s) for SL HARQ or SL Automatic Repeat reQuest (ARQ) packet re-transmission or SL packet repetition may be decided while the UE is preparing to transmit a first SL packet. So, the UE may not change the operating SL CC while the UE is implementing SL HARQ/ARQ packet re-transmission and SL packet repetition to the same SL packets after the UE sending the first SL packet. In some implementations, the UE may decide the operating SL CC (s) (based on the configured rules) of each SL packet delivery independently every time when the UE is preparing to transmit one or more SL packet (s) (no matter whether the SL packet is first transmission, (SL-HARQ) re-transmission, or repetition) .
Table 2: Range-Based SL Resource Association
  SL-Resource config. #2 SL-Resource config. #1
SL logical channel#1  {CC#1}  {CC#2}
SL logical channel#2  {CC#1}  {CC#1, CC#2, CC#3}
In some implementations, a default SL resource association (e.g., SL-Resource config. #1) may be indicated to the UEs in the SL-group (e.g., unicast group or group-cast group) . Thus, if the location information is (temporarily) unavailable to the Tx UE side, then the Tx UE may apply the default SL resource association to transmit SL packets. In some implementations, the default SL resource association may be obtained through SL pre-configuration or through broadcasting message (e.g., System Information (SI) ) or through SI on-demand procedure which the Tx UE obtains from the serving RAN.
IMPLEMENTATION 3: NR Non-Standalone Cell Broadcasting SL Configuration
An NR non-standalone cell (NR-NSA cell) may also broadcast system information to support NR (public safety) V2X service/LTE V2X service or public safety SL communication  service. In some implementation, a NR-NSA cell may not broadcast tracking area code (TAC) while the NR-NSA cell is broadcasting system information and so the UE could identity whether a cell is an NSA cell by checking the TAC. In addition, the UE may consider the NR-NSA cell as a non-suitable cell while the UE is performing cell (re) selection (e.g., cell (re) selection in (LTE/NR) Uu interface) . However, it is still possible that the UE may select one NR-NSA cell during (serving/non-serving) cell (re) selection as the cell to provide SL communication. So, an NSA cell may become the serving cell to the UE and the concerned SL CC is also the serving frequency to the UE. At this stage, the NR-NSA cell may be an ‘acceptable cell’ to the UE and the UE may select to camp on a NR-NSA cell after the (serving/non-serving) cell (re) selection procedure (so the UE may also move to ‘camped on any cell’ state) . The UE may stay in ‘limited service state’ . However, even in ‘limited service state’ , the UE may still be able to access some (limited) LTE/NR V2X service through NR/LTE SL while the UE is camping on a NR-NSA cell. In addition, one UE may still be able to exchange PC5 RRC signaling with neighboring UEs while the UE is in the ‘limited service state’ (so, the PC5 RRC signaling exchange may not be impacted if one of the UEs move to ‘camped on any cell state’ ) . Thus, an NR-NSA cell may broadcast NR/LTE SL configurations, which may include SL resource pool configuration, SL exceptional pool configuration, and SL synchronization configuration, to support SL operations for NR/LTE V2X service. In addition, the UE may think it is in-coverage while it is camping on an NR-NSA cell (or while the UE selects an NR-NSA cell) . It should be noted, in some implementations, the NSA cell may broadcast SL transmission resource pool configuration (e.g., v2x-CommTxPoolNormalCommon or p2x-CommTxPoolNormalCommon or discovery resource pool based on the 3GPP TS 36.331. f. 6.0) associated with the camped frequency in the broadcasting system information. In addition, the UE may not initiate an RRC connection with the NSA cell when the NSA cell does broadcast SL information about V2X service, but the NSA cell does not transmit SL transmission resource pool configuration which the UE needs (e.g., for V2X service, P2X service or for discovery service) in the broadcast system information. In some implementations, the UE may not expect an NSA cell would broadcast SL resource configuration without delivering the SL transmission resource pool configuration (e.g., v2x-delCommTxPoolNormalCommon or p2x-CommTxPoolNormalCommon) in the camped frequency carrier.
In some implementations, the NSA cell may operate on a non-serving frequency, the NSA cell may also be included while the UE is implementing cell selection and reselection for SL operations (by taking the cell selection and reselection for SL mechanism in 3GPP TS 36.304.15.6.0 as the baseline) . Moreover, the NSA cell may also transmit SL resource configuration associated with the concerned SL frequency carrier (with or without SL resource  configuration associated with other SL CCs) , the UE may transmit and/or receive SL packets on the concerned SL CC based on the received SL resource configuration and based on the timing information (e.g., DL timing) obtained from the NSA cell.
IMPLEMENTATION 4: FR2 Assistance Information Delivery Through FR1
In IMPLEMENTATION 4, further association between an SL CC on FR1 (e.g., CC#1) and an SL CC on FR2 (e.g., CC#2) may be configured. For example, a UE may be configured to deliver FR2 assistance information of SL operation on FR2 through the SL CC#1. In some implementations, the UE may transmit FR2 assistance information to the serving cell in FR1 (e.g., CC#1 in Fig. 2) through LTE/NR Uu interface. In some implementations, the UE may transmit FR2 assistance information to neighboring UEs (e.g., an SL group leader in an SL multi-cast (/group-cast) group, such as UE#1 in Fig. 2) through LTE/NR PC5 interface. In some implementations, FR2 assistance information may be transmitted to a serving cell (through (LTE/NR) Uu interface) or a paired UE (through PC5 RRC signaling (LTE/NR) PC5 interface) by transmitting an SL-measurement report.
Table 3: FR2 Assistance Information
Figure PCTCN2020126918-appb-000006
Figure PCTCN2020126918-appb-000007
Figure PCTCN2020126918-appb-000008
Figure PCTCN2020126918-appb-000009
Figure PCTCN2020126918-appb-000010
In some of the present implementations, a UE may be configured with event-based SL measurement objects to provide SL-measurement reports after an SL radio link failure event (or SL physical layer problem) occurs. In the present disclosure, an additional timer, T312_SL, is introduced where the T312_SL may be configured to a UE with configured SL measurement objects. Moreover, in the present disclosure, the SL measurement objects may include the SL-measurement report to serving cell (s) (e.g., special cell, such as PCell and PSCell of the UE) , the SL-measurement report to a paired UE in an SL unicast group, or other UEs. So, it is clear that an SL-measurement report corresponding to one SL-measObject may be transmitted through a (LTE/NR) Uu interface or a (LTE/NR) PC5 interface based on the target of an associated SL-measObject.
In some implementations, the UE needs to report to the serving RAN that it supports T312_SL during an SL-radio link failure (RLF) event. In an example, an Information Element, ‘Timer312_SL=support’ , may be explicitly indicated by the UE in the UE (NR/LTE) capability information to the serving cell. It should be noted that an SL-measurement report initiated while a T312_SL starts counting/running may cover the SL-measurement report for an LTE PC5 interface (e.g., a CBR report on LTE SL resource pools) and/or an NR PC5 interface (CBR report on NR SL resource pools) . In some implementations, the ‘Timer312_SL=support’ IE may only be applied to an SL-measurement report for an LTE PC5 interface or an NR PC5 interface. In some implementations, the ‘Timer312_SL=support’ IE may be applied to an SL-measurement report for both an LTE PC5 interface or an NR PC5 interface. In addition, on the UE side, the UE may not support the Timer312_SL in a default setting. Thus, the UE need not to indicate Timer312_SL being not support if the UE does not support an SL-measurement report initiated after T312_SL starts counting.
Table 4: SL-Measurement Object with T312_SL
Figure PCTCN2020126918-appb-000011
Figure PCTCN2020126918-appb-000012
Figure PCTCN2020126918-appb-000013
In some of the implementations, the initiation and stop/expiry conditions of the T312_SL may be tightly coupled with the initiation and stop/expiry conditions of the T310_SL, which are summarized in Table 5.
Table 5: T310_SL Counting and Expiry
Figure PCTCN2020126918-appb-000014
Figure PCTCN2020126918-appb-000015
Then, the initiation and stop/expiry conditions of T312_SL are summarized in Table 6.
Table 6: T312_SL Initiation and Stop/Expiry Conditions
Figure PCTCN2020126918-appb-000016
Figure PCTCN2020126918-appb-000017
In some implementations of the present disclosure, the UE may be configured with SL measurement objects to provide SL measurement reports to other UEs through a (LTE/NR) PC5 interface. In some of the implementations, the SL measurement objects may be event-triggered, as shown in Table 7A (Event V1a) and Table 7B (Event V2a) respectively. For example, the UE may trigger an SL-measurement report (e.g., a CBR report) when the inequality V1-1 is fulfilled in some of the present implementations. Similarly, the UE may stop transmitting the CBR report when the inequality V1-2 is fulfilled, as defined in the above Table 7A. Conversely, in some of the present implementations, the triggering event V2a may also trigger an SL-measurement report, as defined in Table 7B below. It should also be noted that the Event V1a/V2a in Table 7B may be associated with the LTE (V2X) SL or NR (V2X) SL. In addition, a UE may also be configured with the Event V1a/V2a, associated with the LTE SL and/or NR SL. In some of the present implementations, different parameters may be configured for the LTE SL and NR SL in one UE.
In some implementations, the UE may be configured with SL measurement objects to provide SL reports to serving RAN through (LTE/NR) Uu interface, as shown in Table 7C/Table 7D.In some of the implementations, the SL measurement objects may be event-triggered, as shown in Table 7C (Event V1) and Table 7D (Event V2) respectively.
Table 7A: CBR report (Event V1a) through NR/LTE PC5 Interface
Figure PCTCN2020126918-appb-000018
Figure PCTCN2020126918-appb-000019
Table 7B: CBR report (Event V2a) through NR/LTE PC5 interface
Figure PCTCN2020126918-appb-000020
Table 7C: CBR Report (Event V1) through NR/LTE Uu Interface
Figure PCTCN2020126918-appb-000021
Table 7D: CBR report (Event V2) through NR/LTE Uu interface
Figure PCTCN2020126918-appb-000022
Figure PCTCN2020126918-appb-000023
The UE may obtain the configured parameters in Tables 7A through 7D by SL pre-configuration, dedicated control signaling (e.g., RRC signaling in (LTE/NR) Uu interface) /broadcasting control signaling (e.g., system information or SI on-demand procedure) from serving Cell, or dedicated control signaling (e.g., PC5 RRC signaling) /broadcasting control signaling (e.g., MIB-SL signaling) in PC5 interface. Moreover, in some implementations, the UE may also be enabled to transmit SL-measurement report (e.g., the CBR report) to the serving cell through (Type 1/Type 2) UL configured grant (s) or through a (2-step/4-step) random access procedure while the UE is staying in RRC inactive state.
IMPLEMENTATION 5: Optimization of Cell (Re) Selection for SL
In the present implementation, a UE may need to perform (LTE/NR) V2X SL communication/discovery services on one or more serving frequencies (e.g., the frequency carrier that the UE has a serving cell, which may be a camped cell, Primary cell (e.g., on primary frequency) , secondary cell (e.g., on secondary frequency) , or Primary Secondary cell (e.g., on primary frequency) in (LTE/NR) Uu interface) and/or on one or more non-serving frequency (e.g., the frequency carrier that the UE has no serving cell in (LTE/NR) Uu interface, so the UE may have a selected cell on the non-serving frequency after cell selection/reselection procedure to implement (NR/LTE) V2X (sidelink) service on this non-serving frequency) while the V2X services are supported on these frequencies. In the present implementation, a UE may check and record validity area configurations on serving cell (s) of serving frequencies and selected cell (s) of non-serving frequencies.
In some implementations, cells in different frequencies (e.g., CC#1 and CC#2 which may be serving frequency and non-serving frequency to the UE respectively) may share the same SL resource configuration and validity area configuration. For example, the validity area for SL resource configuration may be composed by cells operates on different frequencies (which may  include serving frequencies and non-serving frequencies) . In some implementations, the validity area for SL resource configuration may be composed by systemInformationAreaID (s) /RAN notification area Code (s) or Tracking Area Code. Then, cells in different frequencies may also share the same systemInformationAreaID/RAN notification area Code or Tracking Area Code. Thus, in the present implementation, the UE may record the obtained SL resource configuration and the associated validity area that the UE obtains from the cells on serving frequencies and non-serving frequencies (e.g., cells in CC#1 and CC#2 respectively) . For example, the UE may apply the SL resource configuration (which may cover SL resource on CC#1 and CC#2) and validity area configurations (which covers cells in CC#1 and CC#2) , which are obtained from the cells of non-serving frequency (ies) , when the UE is implementing (NR/LTE) V2X (sidelink) service on CC#1. In addition, if the validity area is represented by systemInformationAreaID and the SL resource configuration is broadcast in system information (or the system information may be delivered through SI on-demand procedure) , then the UE may apply the stored SL resource configuration associated with the systemInformationAreaID without reading the rest of system information about SL resource configuration (or the UE may not initiate random access procedure to request the system information to obtain the SL resource configuration) , no matter the cell (re) selection is implementing on a serving frequency or a non-serving frequency.
It should be noted that the stored validity area and the associated SL resource configuration may be applied to the fallback mechanisms described in Implementation 2 above. In the fallback implementation, a UE may still keep the stored SL resource configuration and the validity area configuration while the UE camps or selects a cell (in one concerned frequency. e.g., CC#1) which does not belong to the stored validity area. The stored validity area and SL resource configuration may still be applicable in the cells operating on other SL frequencies (e.g., CC#2) . In some implementations, the UE may release or remove one stored validity area and associated SL resource configuration if none of the serving cell (serving frequency) /selected cell (non-serving frequency) on all of the frequencies (which the UE is implementing SL operation) belongs to the stored validity area. In some implementations, a timer may be further configured with the validity area configuration. The timer (≥0) may be triggered after the UE finds out that none of the serving cell (serving frequency) and selected cell (non-serving frequency) on all of the frequencies (which the UE is implementing SL operations) belongs to the validity area. Then, the UE may release the stored validity area (and the associated SL resource configuration) after the timer expires. In some additional implementations, it may be up to specific UE implementations to decide when to release/remove an invalid SL resource configuration.
FIG. 6 is a block diagram illustrating a node 600 for wireless communication according to the present disclosure. As illustrated in FIG. 6, a node 600 may include a transceiver 620, a  processor 628, a memory 634, one or more presentation components 638, and at least one antenna 636. The node 600 may also include a radio frequency (RF) spectrum band module, a BS communications module, a network communications module, and a system communications management module, Input /Output (I/O) ports, I/O components, and a power supply (not illustrated in FIG. 6) .
Each of the components may directly or indirectly communicate with each other over one or more buses 640. The node 600 may be a UE or a BS that performs various functions disclosed with reference to FIGS. 1 through 5.
The transceiver 620 has a transmitter 622 (e.g., transmitting/transmission circuitry) and a receiver 624 (e.g., receiving/reception circuitry) and may be configured to transmit and/or receive time and/or frequency resource partitioning information. The transceiver 620 may be configured to transmit in different types of subframes and slots including but not limited to usable, non-usable and flexibly usable subframes and slot formats. The transceiver 620 may be configured to receive data and control channels.
The node 600 may include a variety of computer-readable media. Computer-readable media may be any available media that may be accessed by the node 600 and include both volatile and non-volatile media, and removable and non-removable media.
The computer-readable media may include computer storage media and communication media. Computer storage media may include both volatile and non-volatile media, and removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or data.
Computer storage media may include RAM, ROM, EPROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices. Computer storage media may not include a propagated data signal. Communication media may typically embody computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and include any information delivery media.
The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. Communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the previously listed components should also be included within the scope of computer-readable media.
The memory 634 may include computer-storage media in the form of volatile and/or non-volatile memory. The memory 634 may be removable, non-removable, or a combination thereof. Example memory may include solid-state memory, hard drives, optical-disc drives, etc. As illustrated in FIG. 6, the memory 634 may store computer-readable, computer-executable instructions 632 (e.g., software codes) that are configured to cause the processor 628 to perform various functions disclosed herein, for example, with reference to FIGS. 1 through 5. Alternatively, the instructions 632 may not be directly executable by the processor 628 but be configured to cause the node 600 (e.g., when compiled and executed) to perform various functions disclosed herein.
The processor 628 (e.g., having processing circuitry) may include an intelligent hardware device, e.g., a Central Processing Unit (CPU) , a microcontroller, an ASIC, etc. The processor 628 may include memory. The processor 628 may process the data 630 and the instructions 632 received from the memory 634, and information transmitted and received via the transceiver 620, the baseband communications module, and/or the network communications module. The processor 628 may also process information to be sent to the transceiver 620 for transmission via the antenna 636 to the network communications module for transmission to a core network.
One or more presentation components 638 may present data indications to a person or another device. Examples of presentation components 638 may include a display device, a speaker, a printing component, and a vibrating component, etc.
In some implementations of the present disclosure, configurations for NR SL/LTE V2X SL synchronization rules are utilized when multiple SL CCs are configured to support (NR/LTE) (V2X) SL operations among UEs.
In some implementations of the present disclosure, information regarding SL CCs associated with NR (e.g., for NR sidelink communication) and/or LTE RATs (e.g., for (LTE) V2X sidelink communication) is indicated to the UE (e.g., through an Uu interface) .
In some implementations of the present disclosure, the associations between SL CCs and the associated RATs may be network-specific (e.g., PLMN-specific or NPN-specific) .
In some implementations of the present disclosure, SL CCs with associated NR SL/LTE V2X SL synchronization rules are indicated.
In some implementations of the present disclosure, the associations between SL CCs and the NR SL/LTE V2X SL synchronization rules may be PLMN-specific/NPN-specific.
In some implementations of the present disclosure, the associations between SL CCs and the NR SL/LTE V2X SL synchronization rules may be valid within a defined validity area.
In some implementations of the present disclosure, the above-mentioned indications and/or association rules may be pre-specified in technical specifications or pre-defined in the  USIM or memory module in the UE so that the UE is able to interpret and apply the above-mentioned indications and/or association rules.
In view of the disclosure, it is obvious that various techniques may be used for implementing the concepts in the present disclosure without departing from the scope of those concepts. Moreover, while the concepts have been disclosed with specific reference to certain implementations, a person of ordinary skill in the art may recognize that changes may be made in form and detail without departing from the scope of those concepts. As such, the disclosed implementations are to be considered in all respects as illustrative and not restrictive. It should also be understood that the present disclosure is not limited to the particular implementations disclosed and many rearrangements, modifications, and substitutions are possible without departing from the scope of the present disclosure.

Claims (20)

  1. A user equipment (UE) , comprising:
    one or more non-transitory computer-readable media having computer-executable instructions embodied thereon;
    at least one processor coupled to the one or more non-transitory computer-readable media, and configured to execute the computer-executable instructions to:
    receive, through a serving cell of a first Radio Access Technology (RAT) , a sidelink resource configuration of a second RAT;
    determine first validity area information associated with the first RAT and second validity area information associated with the second RAT, the first validity area information and the second validity area information being associated with different frequency carriers;
    identify a validity area of the sidelink resource configuration based on the first validity area information and the second validity area information.
  2. The UE of claim 1, wherein the at least one processor is further configured to execute the computer-executable instructions to:
    access a sidelink resource associated with the validity area after the validity area is identified as valid.
  3. The UE of claim 1, wherein the first validity area information is associated with a first Public Land Mobile Network (PLMN) identity (PLMNidentity) in a PLMNidentity list or a first Non-Public Network (NPN) identity (NPNidentity) in a NPNidentity list, wherein the PLMNidentity list and the NPNidentity list are broadcast by the serving cell.
  4. The UE of claim 1, wherein the second validity area information is associated with at least one of one or more SL transmission resource pools, one or more SL reception resource pools, and one or more exceptional transmission resource pools.
  5. The UE of claim 1, wherein the first RAT is a 5 th Generation New Radio (5G NR) RAT.
  6. The UE of claim 1, wherein the sidelink resource configuration of the second RAT is for Long Term Evolution (LTE) Vehicle to Everything (V2X) sidelink communication associated with an Evolved Universal Terrestrial Radio Access (E-UTRA) RAT.
  7. The UE of claim 1, wherein the sidelink resource configuration of the second RAT is received through system information broadcast by the serving cell of the first RAT.
  8. The UE of claim 1, wherein the validity area of the sidelink resource configuration is composed of at least one system information area identifier (systemInformationAreaID) broadcast by the serving cell of the first RAT.
  9. The UE of claim 8, wherein a first validity area of the first RAT is composed by the cell identity of the serving cell of the first RAT, when the sidelink resource configuration is not indicated by the systemInformationAreaID broadcast by the serving cell or the systemInformationAreaID is absent from the system information broadcast by the serving cell.
  10. The UE of claim 1, wherein the sidelink resource configuration associated with the validity area is invalidated by the UE after the UE moves out of either a first validity area associated with the first validity area information or a second validity area associated with the second validity area information.
  11. A method by a user equipment (UE) , the method comprising:
    receiving, through a serving cell of a first Radio Access Technology (RAT) , a sidelink resource configuration of a second RAT;
    determining first validity area information associated with the first RAT and second validity area information associated with the second RAT, the first validity area information and the second validity area information being associated with different frequency carriers;
    identifying a validity area of the sidelink resource configuration based on the first validity area information and the second validity area information.
  12. The method of claim 11, further comprising:
    accessing a sidelink resource associated with the validity area after the validity area is identified as valid.
  13. The method of claim 11, wherein the first validity area information is associated with a first Public Land Mobile Network (PLMN) identity (PLMNidentity) in a PLMNidentity list or a first Non-Public Network (NPN) identity (NPNidentity) in a NPNidentity list, wherein the PLMNidentity list and the NPNidentity list are broadcast by the serving cell.
  14. The method of claim 11, wherein the second validity area information is associated with at least one of one or more SL transmission resource pools, one or more SL reception resource pools, and one or more exceptional transmission resource pools.
  15. The method of claim 11, wherein the first RAT is a 5 th Generation New Radio (5G NR) RAT.
  16. The method of claim 11, the sidelink resource configuration of the second RAT is for Long Term Evolution (LTE) Vehicle to Everything (V2X) sidelink communication associated with an Evolved Universal Terrestrial Radio Access (E-UTRA) RAT.
  17. The method of claim 11, wherein the sidelink resource configuration of the second RAT is received through system information broadcast by the serving cell of the first RAT.
  18. The method of claim 11, wherein the validity area of the sidelink resource configuration is composed of at least one system information area identifier (systemInformationAreaID) broadcast by the serving cell of the first RAT.
  19. The method of claim 18, wherein a first validity area of the first RAT is composed by the cell identity of the serving cell of the first RAT, when the sidelink resource configuration is not indicated by the systemInformationAreaID broadcast by the serving cell or the systemInformationAreaID is absent from the system information broadcast by the serving cell.
  20. The method of claim 11, wherein the sidelink resource configuration associated with the validity area is invalidated by the UE after the UE moves out of either a first validity area associated with the first validity area information or a second validity area associated with the second validity area information.
PCT/CN2020/126918 2019-11-06 2020-11-06 Methods and apparatuses for sl carrier aggregation enhancement WO2021088946A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022526181A JP7335441B2 (en) 2019-11-06 2020-11-06 Method and apparatus for SL carrier aggregation extension
EP20885571.8A EP4046438A4 (en) 2019-11-06 2020-11-06 Methods and apparatuses for sl carrier aggregation enhancement
KR1020227018511A KR20220093343A (en) 2019-11-06 2020-11-06 Methods and apparatuses for improving SL carrier aggregation
CN202080077305.6A CN114642063A (en) 2019-11-06 2020-11-06 Method and apparatus for SL carrier aggregation enhancement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962931401P 2019-11-06 2019-11-06
US62/931,401 2019-11-06

Publications (1)

Publication Number Publication Date
WO2021088946A1 true WO2021088946A1 (en) 2021-05-14

Family

ID=75686375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126918 WO2021088946A1 (en) 2019-11-06 2020-11-06 Methods and apparatuses for sl carrier aggregation enhancement

Country Status (6)

Country Link
US (2) US11323938B2 (en)
EP (1) EP4046438A4 (en)
JP (1) JP7335441B2 (en)
KR (1) KR20220093343A (en)
CN (1) CN114642063A (en)
WO (1) WO2021088946A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022268172A1 (en) * 2021-06-24 2022-12-29 FG Innovation Company Limited Method and device for performing configured grant-based small data transmission

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4046438A4 (en) * 2019-11-06 2023-12-06 FG Innovation Company Limited Methods and apparatuses for sl carrier aggregation enhancement
US11564248B2 (en) * 2020-01-29 2023-01-24 Qualcomm Incorporated Techniques for activation and deactivation of resources configured across multiple component carriers
US11729851B2 (en) * 2020-07-30 2023-08-15 Qualcomm Incorporated Beam failure detection with carrier aggregation in millimeter wave sidelinks
EP4213582A1 (en) * 2020-08-31 2023-07-19 Ofinno, LLC Subsequent data information for small data transmission
US11689325B2 (en) * 2020-12-16 2023-06-27 Qualcomm Incorporated Feedback transmission via a sidelink feedback channel resource of a sidelink resource pool
US20220200738A1 (en) * 2020-12-17 2022-06-23 Qualcomm Incorporated Resource determination for sidelink hybrid automatic repeat request feedback
WO2023068993A1 (en) * 2021-10-20 2023-04-27 Telefonaktiebolaget Lm Ericsson (Publ) Method for handling sidelink communication between user equipments using quality indications of sidelink carriers.
US20230254819A1 (en) * 2022-02-04 2023-08-10 Samsung Electronics Co., Ltd. Method and apparatus for (re)selection of candidate carriers for transmission in sl ca
WO2023199171A1 (en) * 2022-04-11 2023-10-19 Lenovo (Singapore) Pte. Ltd. Sidelink carrier aggregation selection
EP4366347A1 (en) * 2022-11-07 2024-05-08 INTEL Corporation Methods and apparatus for cellular communication devices to establish and maintain peer-to-peer connections

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534828A (en) * 2015-04-08 2018-01-02 英特尔公司 Control signaling mechanism for the device-to-device (D2D) of enhancing
CN109246659A (en) * 2017-06-15 2019-01-18 中兴通讯股份有限公司 A kind of communication control method, device and computer readable storage medium
CN109479292A (en) * 2017-02-20 2019-03-15 瑞典爱立信有限公司 Method and apparatus for sidelinks transmission control
CN109644457A (en) 2018-11-13 2019-04-16 北京小米移动软件有限公司 Resource allocation method and device
CN109845373A (en) * 2019-01-10 2019-06-04 北京小米移动软件有限公司 Determine method, apparatus, user equipment and the base station of direct connected link resource
US10356738B2 (en) * 2016-07-26 2019-07-16 Lg Electronics Inc. Method for acquiring synchronization in a communication system and device therefor
US20190274121A1 (en) 2018-03-01 2019-09-05 Qualcomm Incorporated Multi-radio access technology scheduling of sidelink interface

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515410B2 (en) 2014-07-22 2019-05-22 シャープ株式会社 Terminal apparatus, base station apparatus, communication system, communication method and integrated circuit
US11457431B2 (en) * 2018-08-03 2022-09-27 FG Innovation Company Limited Sidelink radio resource allocation
WO2020069668A1 (en) * 2018-10-02 2020-04-09 FG Innovation Company Limited Multi-rat sidelink communications
US11224007B2 (en) * 2018-11-19 2022-01-11 Huawei Technologies Co., Ltd. System and method for supporting sidelink radio bearers
WO2020188347A1 (en) * 2019-03-20 2020-09-24 Lenovo (Singapore) Pte. Ltd. V2x communication resource for mobility event
WO2020212751A1 (en) * 2019-04-18 2020-10-22 Lenovo (Singapore) Pte. Ltd. Multiple zone configuration
US11711785B2 (en) * 2019-08-09 2023-07-25 Huawei Technologies Co., Ltd. System and method for sidelink resource allocation in user equipment groups
EP4046438A4 (en) * 2019-11-06 2023-12-06 FG Innovation Company Limited Methods and apparatuses for sl carrier aggregation enhancement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534828A (en) * 2015-04-08 2018-01-02 英特尔公司 Control signaling mechanism for the device-to-device (D2D) of enhancing
US10356738B2 (en) * 2016-07-26 2019-07-16 Lg Electronics Inc. Method for acquiring synchronization in a communication system and device therefor
CN109479292A (en) * 2017-02-20 2019-03-15 瑞典爱立信有限公司 Method and apparatus for sidelinks transmission control
CN109246659A (en) * 2017-06-15 2019-01-18 中兴通讯股份有限公司 A kind of communication control method, device and computer readable storage medium
US20190274121A1 (en) 2018-03-01 2019-09-05 Qualcomm Incorporated Multi-radio access technology scheduling of sidelink interface
CN109644457A (en) 2018-11-13 2019-04-16 北京小米移动软件有限公司 Resource allocation method and device
CN109845373A (en) * 2019-01-10 2019-06-04 北京小米移动软件有限公司 Determine method, apparatus, user equipment and the base station of direct connected link resource

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3GPP DRAFT; R4-1911451_TR 38.886 V0.3.0 V2X SERVICE BASED ON NR; UE", 13 October 2019, MOBILE COMPETENCE CENTRE, article "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; V2X Services based on NR; User Equipment (UE) radio transmission and reception; (Release 16"
"3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 37.985, 3RD GENERATION PARTNERSHIP PROJECT (3GPP", 7 October 2019, MOBILE COMPETENCE, article "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Overall description of Radio Access Network (RAN) aspects for Vehicle-to-everything (V2X) based on LTE and NR (Release 16", pages: 1 - 26
INTEL CORPORATION: "3GPP DRAFT; R1-1705446 INTEL - V2X SLCA, 3RD GENERATION PARTNERSHIP", vol. RAN WG1, 25 March 2017, MOBILE COMPETENCE CENTRE, article "On Carrier Aggregation for LTE V2V Sidelink Communication"
See also references of EP4046438A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022268172A1 (en) * 2021-06-24 2022-12-29 FG Innovation Company Limited Method and device for performing configured grant-based small data transmission

Also Published As

Publication number Publication date
US11323938B2 (en) 2022-05-03
JP2023500345A (en) 2023-01-05
EP4046438A1 (en) 2022-08-24
KR20220093343A (en) 2022-07-05
CN114642063A (en) 2022-06-17
US20210136646A1 (en) 2021-05-06
US20220225198A1 (en) 2022-07-14
EP4046438A4 (en) 2023-12-06
JP7335441B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2021088946A1 (en) Methods and apparatuses for sl carrier aggregation enhancement
US11457431B2 (en) Sidelink radio resource allocation
US11304122B2 (en) On-demand system information request procedure and error handling
CN114982288B (en) User equipment and method for multi-SIM card operation
US11589277B2 (en) User equipment and method for sidelink failure management
US11979780B2 (en) Dedicated system information block request
US11671901B2 (en) Management of system information block segmentation
US11700596B2 (en) Methods and apparatuses for sidelink operations
US20230015859A1 (en) Methods and apparatuses for handling conflict between sidelink data transmission and uplink small data transmission
WO2022012589A1 (en) User equipment and method for idle mode measurement
WO2022233268A1 (en) Method related to emergency service and user equipment
WO2022194272A1 (en) User equipment and method for mbs service management
US20240098833A1 (en) Method and apparatus for mobility enhancement in wireless communication systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526181

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020885571

Country of ref document: EP

Effective date: 20220518

ENP Entry into the national phase

Ref document number: 20227018511

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE