WO2021088355A1 - 一种可超低温制冷运行的直膨空调系统 - Google Patents

一种可超低温制冷运行的直膨空调系统 Download PDF

Info

Publication number
WO2021088355A1
WO2021088355A1 PCT/CN2020/092318 CN2020092318W WO2021088355A1 WO 2021088355 A1 WO2021088355 A1 WO 2021088355A1 CN 2020092318 W CN2020092318 W CN 2020092318W WO 2021088355 A1 WO2021088355 A1 WO 2021088355A1
Authority
WO
WIPO (PCT)
Prior art keywords
way valve
heat exchanger
indoor
port
indoor heat
Prior art date
Application number
PCT/CN2020/092318
Other languages
English (en)
French (fr)
Inventor
游永生
杨亚华
易博
戴德平
任洋
Original Assignee
南京天加环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京天加环境科技有限公司 filed Critical 南京天加环境科技有限公司
Publication of WO2021088355A1 publication Critical patent/WO2021088355A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • the invention relates to an air conditioning system, in particular to an air conditioning system capable of performing refrigeration operation in an ultra-low temperature environment, in particular to a direct expansion air conditioning system capable of ultra-low temperature refrigeration operation.
  • the purpose of the present invention is to provide a direct expansion air conditioning system capable of ultra-low temperature refrigeration operation in view of the deficiencies of the prior art, which can perform refrigeration operation when the outdoor ambient temperature is lower than -5° C., so as to fully meet the market demand.
  • a direct expansion air conditioning system capable of ultra-low temperature refrigeration operation, comprising an outdoor unit and an indoor unit.
  • the outdoor unit includes a compressor, a main four-way valve, an auxiliary four-way valve, an outdoor heat exchanger, and a gas-liquid separator; the indoor unit Including a first indoor heat exchanger and a second indoor heat exchanger;
  • each outdoor heat exchanger is connected in parallel, the inlet collecting end is connected to the C port of the main four-way valve, and the outlet collecting end is simultaneously connected to the liquid pipe end of the first indoor heat exchanger and all The liquid pipe end of the second indoor heat exchanger; the inlet end of each outdoor heat exchanger is respectively provided with an electric ball valve or an outdoor solenoid valve;
  • each second indoor heat exchanger There are two or more second indoor heat exchangers, which are connected in parallel; the air pipe ends of each second indoor heat exchanger are collected and connected to port C of the auxiliary four-way valve; each of the second heat exchangers The air pipe end of the device is equipped with or without solenoid valve;
  • the discharge port of the compressor is respectively connected to the D port of the main four-way valve and the D port of the auxiliary four-way valve, and the suction port is connected to the outlet of the gas-liquid separator;
  • the S port of the main four-way valve and the S port and E port of the auxiliary four-way valve are respectively connected to the inlet of the gas-liquid separator; the E port of the main four-way valve is connected to the first indoor changer The air pipe end of the heater;
  • the liquid pipe end of the first indoor heat exchanger is provided with a first electronic expansion valve, and the liquid pipe collecting ends of all the second heat exchangers are provided with a second electronic expansion valve.
  • the exhaust port of the compressor is provided with a first one-way valve, and the direction of the first one-way valve is away from the compressor.
  • outlet collection ends of all the outdoor heat exchangers are provided with a second one-way valve, and the direction of the second one-way valve is away from the outdoor heat exchanger.
  • the air pipe end of only one of the second indoor heat exchangers is not provided with an indoor solenoid valve, and the air pipe ends of the other second indoor heat exchangers are all provided with indoor solenoid valves.
  • the invention has reasonable design, simple structure and convenient control. By changing the number of outdoor heat exchangers participating in operation, and adjusting the operation utility of different indoor heat exchangers, the normal refrigeration operation can be ensured in the ultra-low temperature environment, and the market demand can be fully satisfied.
  • Fig. 1 is a schematic diagram of the structure of the present invention.
  • Fig. 2 is a schematic diagram of the refrigerant flow in the normal cooling mode of the present invention.
  • FIG. 3 is a schematic diagram of the refrigerant flow in the ultra-low temperature refrigeration mode I of the present invention.
  • Fig. 4 is a schematic diagram of the refrigerant flow in the ultra-low temperature refrigeration mode II of the present invention.
  • 1- compressor 1- compressor; 2- first check valve; 3- main four-way valve; 4- auxiliary four-way valve; 5- electric ball valve; 6-outdoor solenoid valve; 7- second one-way valve; 8- Outdoor heat exchanger; 9-first electronic expansion valve; 10-first indoor heat exchanger; 11-second indoor heat exchanger; 12-second electronic expansion valve; 13-indoor solenoid valve; 14-gas-liquid separation Device.
  • the arrow represents the direction of refrigerant flow.
  • a direct expansion air conditioning system capable of ultra-low temperature refrigeration operation includes an outdoor unit and an indoor unit.
  • the outdoor unit includes a compressor 1, a main four-way valve 3, an auxiliary four-way valve 4, an outdoor heat exchanger 8 and a gas-liquid separator 14.
  • the indoor unit includes a first indoor heat exchanger 10 and a second indoor heat exchanger 11.
  • the collecting end of the inlet is connected to port C of the main four-way valve 3, and the collecting end of the outlet is connected to the first indoor heat exchanger 10 at the same time.
  • One of the outdoor heat exchangers 8 is provided with an electric ball valve 5 at the inlet end to control its opening or on-off.
  • the inlet ends of the other outdoor heat exchangers 8 are all provided with an outdoor solenoid valve 6 to control the on and off of the outdoor heat exchanger 8.
  • a second one-way valve 7 is provided at the outlet collecting end of all the outdoor heat exchangers 8. The direction of the second one-way valve 7 is away from the outdoor heat exchanger 8, which can prevent the refrigerant from flowing back.
  • the air pipe ends of the second indoor heat exchangers 11 are collected and connected to the C port of the auxiliary four-way valve 4.
  • the air pipe end of one of the second indoor heat exchangers 11 is not provided with a solenoid valve, and the air pipe ends of the other second indoor heat exchangers 11 are all provided with an indoor solenoid valve 13 to control the second indoor heat exchanger 11 The on-off.
  • the discharge port of the compressor 1 is connected to the D port of the main four-way valve 3 and the D port of the auxiliary four-way valve 4 respectively, and the suction port is connected to the outlet of the gas-liquid separator 14.
  • the discharge port of the compressor 1 is also provided with a first one-way valve 2. The direction of the first one-way valve 2 is away from the compressor 1, which can prevent the refrigerant from flowing back.
  • the S port of the main four-way valve 3 and the S ports and E ports of the auxiliary four-way valve 4 are respectively connected to the inlet of the gas-liquid separator 14; the E port of the main four-way valve 3 is connected to the The air pipe end of the first indoor heat exchanger 10.
  • the liquid pipe end of the first indoor heat exchanger 10 is provided with a first electronic expansion valve 9, and the liquid pipe collecting ends of all the second heat exchangers 11 are provided with a second electronic expansion valve 12, which can be throttled separately The role or the role of flow control.
  • the operation process of the present invention is:
  • the electric ball valve has the largest opening, all the solenoid valves are fully opened, and the first electronic expansion valve and the second electronic expansion valve are fully opened.
  • the refrigerant flow direction is divided into the main road and the auxiliary road.
  • the main road is: compressor exhaust port-main four-way valve D/C port-outdoor heat exchanger-the first indoor exchange Heater and second indoor heat exchanger----Main four-way valve E/S port or auxiliary four-way valve C/S port----gas-liquid separator----compressor suction port;
  • auxiliary circuit is : Compressor exhaust port-auxiliary four-way valve D/E port-gas-liquid separator-compressor suction port.
  • the first electronic expansion valve and the second electronic expansion valve both play a throttling function, respectively throttling the refrigerant flowing into the first indoor heat exchanger and the second indoor heat exchanger.
  • the first indoor heat exchanger and the second indoor heat exchanger both serve as evaporators, and absorb heat through the evaporation of the refrigerant to achieve indoor cooling.
  • the auxiliary circuit can return excess refrigerant to the compressor through the capillary tube.
  • Ultra-low temperature refrigeration mode I As shown in Figure 3, at this time, the electric ball valve is closed, all the outdoor solenoid valves are closed, and the indoor solenoid valves can be fully opened or partially closed; the first electronic expansion valve is fully opened, and the second electronic expansion valve is appropriate Opening.
  • the flow direction of the refrigerant is: compressor exhaust port ---- auxiliary four-way valve D/C port ---- second indoor heat exchanger ---- second electronic expansion valve ---- first electronic expansion valve ----The first indoor heat exchanger----the main four-way valve E/S port----gas-liquid separator----compressor suction port.
  • all outdoor heat exchangers are not involved in the work.
  • the second indoor heat exchanger is used as a condenser to partially condense the refrigerant indoors, increase the condensation pressure, and control the indoor heat dissipation to ensure the outlet temperature requirements; the second electronic expansion valve simultaneously controls the refrigerant flow and The role of preliminary throttling.
  • the first indoor heat exchanger serves as an evaporator, and the first electronic expansion valve serves as a throttling function, so that the refrigerant evaporates in the first indoor heat exchanger to absorb heat, and cools the room.
  • Ultra-low temperature refrigeration mode II As shown in Figure 4, at this time, the electric ball valve has a proper opening, the outdoor solenoid valve is fully closed, the indoor solenoid valve is fully or partially opened, the first electronic expansion valve is fully opened, and the second electronic expansion valve is fully opened. Partial opening.
  • the refrigerant flow direction is divided into two ways, one way is: compressor exhaust port----main four-way valve D/C port----outdoor heat exchanger----first indoor heat exchanger---- Main four-way valve E/S port----gas-liquid separator-----compressor suction port; the other way is: compressor exhaust port----auxiliary four-way valve D/C port-- --The second indoor heat exchanger-----The first indoor heat exchanger----the main four-way valve E/S port----gas-liquid separator-----compressor suction port.
  • This operating mode is basically the same as the ultra-low temperature cooling mode I.
  • the main difference is that there is an outdoor heat exchanger in operation, which reduces the condensation pressure of the refrigerant and can make up for the high indoor air temperature to meet different ultra-low temperatures. Refrigeration requirements under the environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种可超低温制冷运行的直膨空调系统,包括室外机和室内机,所述室外机包括压缩机(1)、主四通阀(3)、辅四通阀(4)、室外换热器(8)和气液分离器(14);所述室内机包括第一室内换热器(10)和第二室内换热器(11);所述室外换热器(8)为两个或以上,并联连接,其入口汇集端连接所述主四通阀(3)的C口,其出口汇集端同时连接所述第一室内换热器(10)的液管端和所述第二室内换热器(11)的液管端;每个所述室外换热器(8)的入口端分别设有电动球阀(5)或室外电磁阀(6);所述第二室内换热器(11)为两个或以上,并联连接;各所述第二室内换热器(11)的气管端汇集后连接所述辅四通阀(4)的C口;每个第二室内换热器(11)的气管端分别设有或不设室内电磁阀(13)。通过多组室内换热器的分段调节,确保机组在超低温下的制冷运行。

Description

一种可超低温制冷运行的直膨空调系统 技术领域
本发明涉及一种空调系统,尤其是一种可在超低温环境下进行制冷运行的空调系统,具体的说是一种可超低温制冷运行的直膨空调系统。
背景技术
在部分特殊应用场合时,如医院、电子厂房、洁净车间、机房等尽管室外环境处于低温时节,但是由于室内存在热负荷所以仍然有制冷的需求。此时由于室内有洁净、舒适度、压差等工艺要求同时如果有水盘管系统(需防止室内水盘管冻坏)不能直接引入新风进行通风散热。而普遍空调或者其他直膨空调系统,由于受制冷系统运行动力、压缩机运行可靠性(高低压力、高低压力差等)的限制,目前均标称其最低运行温度为-5℃左右。如果温度再低,机组会出现频繁故障保护,对压缩机造成不利影响。同时,对用户使用也会造成很大影响,造成客户抱怨。因此,急需研发一种能够在超低温环境下进行制冷运行的直膨空调系统,满足市场需求。
发明内容
本发明的目的是针对现有技术的不足,提供一种可超低温制冷运行的直膨空调系统,可在室外环境温度低于-5℃的情况下,进行制冷运行,充分满足市场需求。
本发明的技术方案是:
一种可超低温制冷运行的直膨空调系统,包括室外机和室内机,所述室外机包括压缩机、主四通阀、辅四通阀、室外换热器和气液分离器;所述室内机包括第一室内换热器和第二室内换热器;
所述室外换热器为两个或以上,并联连接,其入口汇集端连接所述主四通阀的C口,其出口汇集端同时连接所述第一室内换热器的液管端和所述第二室内换热器的液管端;每个所述室外换热器的入口端分别设有电动球阀或室外电磁阀;
所述第二室内换热器为两个或以上,并联连接;各所述第二室内换热器的气管端汇集后连接所述辅四通阀的C口;每个所述第二换热器的气管端分别设有或不设电磁阀;
所述压缩机的排气口分别连接所述主四通阀的D口和所述辅四通阀的D口,其吸气口连接所述气液分离器的出口;
所述主四通阀的S口和所述辅四通阀的S口及E口分别连接到所述气液分离器的入口;所述主四通阀的E口连接所述第一室内换热器的气管端;
所述所述第一室内换热器的液管端设有第一电子膨胀阀,全部所述第二换热器的液管汇集端 设有第二电子膨胀阀。
进一步的,所述压缩机的排气口设有第一单向阀,该第一单向阀的方向为离开压缩机。
进一步的,全部所述室外换热器的出口汇集端设有第二单向阀,该第二单向阀的方向为离开所述室外换热器。
进一步的,只有一个所述第二室内换热器的气管端不设室内电磁阀,其他所述第二室内换热器的气管端均设有室内电磁阀。
本发明的有益效果:
本发明设计合理,结构简单,控制方便,通过改变参与运行的室外换热器数量,以及调整不同室内换热器的运行效用,确保在超低温环境下能够进行正常的制冷运行,充分满足市场需求。
附图说明
图1是本发明的结构示意图。
图2是本发明在正常制冷模式下的制冷剂流向示意图。
图3是本发明在超低温制冷模式I下的制冷剂流向示意图。
图4是本发明在超低温制冷模式II下的制冷剂流向示意图。
其中:1-压缩机;2-第一单向阀;3-主四通阀;4-辅四通阀;5-电动球阀;6-室外电磁阀;7-第二单向阀;8-室外换热器;9-第一电子膨胀阀;10-第一室内换热器;11-第二室内换热器;12-第二电子膨胀阀;13-室内电磁阀;14-气液分离器。箭头代表制冷剂流向。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
如图1所示。
一种可超低温制冷运行的直膨空调系统,包括室外机和室内机。所述室外机包括压缩机1、主四通阀3、辅四通阀4、室外换热器8和气液分离器14。所述室内机包括第一室内换热器10和第二室内换热器11。
所述室外换热器8为两个或以上,并联连接,其入口的汇集端连接所述主四通阀3的C口,其出口的汇集端同时连接所述第一室内换热器10的液管端和所述第二室内换热器11的液管端。其中一个所述室外换热器8的入口端设有电动球阀5,以便控制其开度或通断。其他所述室外换热器8的入口端均设有室外电磁阀6,以便控制该室外换热器8的通断。全部所述室外换热器8的出口汇集端设有第二单向阀7。该第二单向阀7的方向为离开所述室外换热器8,可防止制冷剂倒流。
所述第二室内换热器11为两个或以上,并联连接。各所述第二室内换热器11的气管端汇集后连接所述辅四通阀4的C口。其中一个所述第二室内换热器11的气管端不设电磁阀,其他所述第二室内换热器11的气管端均设有室内电磁阀13,以便控制该第二室内换热器11的通断。
所述压缩机1的排气口分别连接所述主四通阀3的D口和所述辅四通阀4的D口,其吸气口连接所述气液分离器14的出口。该压缩机1的排气口还设有第一单向阀2。该第一单向阀2的方向为离开所述压缩机1,可防止制冷剂倒流。
所述主四通阀3的S口和所述辅四通阀4的S口及E口分别连接到所述气液分离器14的入口;所述主四通阀3的E口连接所述第一室内换热器10的气管端。所述第一室内换热器10的液管端设有第一电子膨胀阀9,全部所述第二换热器11的液管汇集端设有第二电子膨胀阀12,可分别起节流作用或控制流量的作用。
本发明的运行过程为:
1.常规制冷模式:如图2所示,此时,电动球阀开度最大,全部的电磁阀均全开,第一电子膨胀阀和第二电子膨胀阀全开。制冷剂流向分为主路和辅路,其中,主路为:压缩机排气口----主四通阀D/C口----室外换热器-----第一室内换热器和第二室内换热器----主四通阀E/S口或辅四通阀C/S口----气液分离器----压缩机吸气口;辅路为:压缩机排气口----辅四通阀D/E口----气液分离器----压缩机吸气口。其中,第一电子膨胀阀和第二电子膨胀阀均起节流作用,分别对流入第一室内换热器和第二室内换热器的制冷剂进行节流。所述第一室内换热器和第二室内换热器均作为蒸发器,通过制冷剂的蒸发而吸热,实现室内降温。所述辅路可将多余的制冷剂通过毛细管回流压缩机。
2.超低温制冷模式I:如图3所示,此时,电动球阀关闭,全部室外电磁阀关闭,室内电磁阀可全开或部分关闭;第一电子膨胀阀全开,第二电子膨胀阀适当开度。制冷剂流向为:压缩机排气口----辅四通阀D/C口----第二室内换热器----第二电子膨胀阀----第一电子膨胀阀----第一室内换热器----主四通阀E/S口----气液分离器----压缩机吸气口。其中,全部室外换热器均不参与工作。所述第二室内换热器作为冷凝器,将制冷剂在室内部分冷凝,提高冷凝压力,并控制室内散热量,保证出风温度要求;所述第二电子膨胀阀同时起控制制冷剂流量和初步节流的作用。所述第一室内换热器作为蒸发器,所述第一电子膨胀阀起节流作用,使制冷剂在所述第一室内换热器中蒸发而吸热,对室内进行制冷。通过控制该两个电子膨胀阀,可控制第一室内换热器和第二室内换热器的蒸发与冷凝的换热量,满足在超低温环境下的制冷需求。
3.超低温制冷模式II:如图4所示,此时,电动球阀适当开度,室外电磁阀全关,室 内电磁阀全开或部分开启,第一电子膨胀阀全开,第二电子膨胀阀部分开度。制冷剂流向分为两路,一路为:压缩机排气口----主四通阀D/C口----室外换热器----第一室内换热器----主四通阀E/S口----气液分离器-----压缩机吸气口;另一路为:压缩机排气口----辅四通阀D/C口----第二室内换热器-----第一室内换热器----主四通阀E/S口----气液分离器-----压缩机吸气口。本运行模式与超低温制冷模式I的运行过程基本相同,主要区别在于:有一个室外换热器参与运行,降低了制冷剂的冷凝压力,可弥补室内出风温度偏高的不足,以便满足不同超低温环境下的制冷要求。
本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。

Claims (4)

  1. 一种可超低温制冷运行的直膨空调系统,包括室外机和室内机,其特征是:所述室外机包括压缩机、主四通阀、辅四通阀、室外换热器和气液分离器;所述室内机包括第一室内换热器和第二室内换热器;
    所述室外换热器为两个或以上,并联连接,其入口汇集端连接所述主四通阀的C口,其出口汇集端同时连接所述第一室内换热器的液管端和所述第二室内换热器的液管端;每个所述室外换热器的入口端分别设有电动球阀或室外电磁阀;
    所述第二室内换热器为两个或以上,并联连接;各所述第二室内换热器的气管端汇集后连接所述辅四通阀的C口;每个所述第二换热器的气管端分别设有或不设室内电磁阀;
    所述压缩机的排气口分别连接所述主四通阀的D口和所述辅四通阀的D口,其吸气口连接所述气液分离器的出口;
    所述主四通阀的S口和所述辅四通阀的S口及E口分别连接到所述气液分离器的入口;所述主四通阀的E口连接所述第一室内换热器的气管端;
    所述所述第一室内换热器的液管端设有第一电子膨胀阀,全部所述第二换热器的液管汇集端设有第二电子膨胀阀。
  2. 根据权利要求1所述的可超低温制冷运行的直膨空调系统,其特征是:所述压缩机的排气口设有第一单向阀,该第一单向阀的方向为离开压缩机。
  3. 根据权利要求1所述的可超低温制冷运行的直膨空调系统,其特征是:全部所述室外换热器的出口汇集端设有第二单向阀,该第二单向阀的方向为离开所述室外换热器。
  4. 根据权利要求1所述的可超低温制冷运行的直膨空调系统,其特征是:只有一个所述第二室内换热器的气管端不设电磁阀,其他所述第二室内换热器的气管端均设有室内电磁阀。
PCT/CN2020/092318 2019-11-04 2020-05-26 一种可超低温制冷运行的直膨空调系统 WO2021088355A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911063610.5 2019-11-04
CN201911063610.5A CN110925872A (zh) 2019-11-04 2019-11-04 一种可超低温制冷运行的直膨空调系统

Publications (1)

Publication Number Publication Date
WO2021088355A1 true WO2021088355A1 (zh) 2021-05-14

Family

ID=69850180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092318 WO2021088355A1 (zh) 2019-11-04 2020-05-26 一种可超低温制冷运行的直膨空调系统

Country Status (2)

Country Link
CN (1) CN110925872A (zh)
WO (1) WO2021088355A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114484806A (zh) * 2022-03-01 2022-05-13 青岛海尔空调器有限总公司 空调除菌的控制方法、控制系统、电子设备和存储介质
CN114608136A (zh) * 2022-03-01 2022-06-10 青岛海尔空调器有限总公司 空调自清洁的控制方法、控制系统、电子设备和存储介质
CN115930334A (zh) * 2022-12-29 2023-04-07 清华大学 多级复叠式新风分级处理系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110925872A (zh) * 2019-11-04 2020-03-27 南京天加环境科技有限公司 一种可超低温制冷运行的直膨空调系统
CN111649500A (zh) * 2020-06-17 2020-09-11 南京天加环境科技有限公司 一种连续制热的空调系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10258737A (ja) * 1997-03-19 1998-09-29 Hitachi Ltd 車両用空調装置およびその制御方法
WO2011150940A1 (en) * 2010-06-03 2011-12-08 Arctiko A/S A cooling system and a non-azeotropic refrigerant mixture of environmentally friendly refrigerants
CN102913994A (zh) * 2012-10-24 2013-02-06 江苏兆胜空调有限公司 超低温环境车船用空调机
CN202835956U (zh) * 2012-10-10 2013-03-27 南京天加空调设备有限公司 制冷低负荷稳定运行的水源多联机空调系统
CN202902493U (zh) * 2012-10-29 2013-04-24 江苏兆胜空调有限公司 一种超低温空调外机
CN203385150U (zh) * 2013-06-17 2014-01-08 南京天加空调设备有限公司 适用于寒冷地区的直流变频多联式空调机组
CN206890904U (zh) * 2017-04-01 2018-01-16 珠海格力电器股份有限公司 空调系统
CN108758902A (zh) * 2018-04-02 2018-11-06 南京天加环境科技有限公司 一种采用数码变容量热回收技术的直膨空调箱系统
CN109916114A (zh) * 2017-12-13 2019-06-21 申鹏 一种超低温环境车船用空调系统
CN110925872A (zh) * 2019-11-04 2020-03-27 南京天加环境科技有限公司 一种可超低温制冷运行的直膨空调系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10258737A (ja) * 1997-03-19 1998-09-29 Hitachi Ltd 車両用空調装置およびその制御方法
WO2011150940A1 (en) * 2010-06-03 2011-12-08 Arctiko A/S A cooling system and a non-azeotropic refrigerant mixture of environmentally friendly refrigerants
CN202835956U (zh) * 2012-10-10 2013-03-27 南京天加空调设备有限公司 制冷低负荷稳定运行的水源多联机空调系统
CN102913994A (zh) * 2012-10-24 2013-02-06 江苏兆胜空调有限公司 超低温环境车船用空调机
CN202902493U (zh) * 2012-10-29 2013-04-24 江苏兆胜空调有限公司 一种超低温空调外机
CN203385150U (zh) * 2013-06-17 2014-01-08 南京天加空调设备有限公司 适用于寒冷地区的直流变频多联式空调机组
CN206890904U (zh) * 2017-04-01 2018-01-16 珠海格力电器股份有限公司 空调系统
CN109916114A (zh) * 2017-12-13 2019-06-21 申鹏 一种超低温环境车船用空调系统
CN108758902A (zh) * 2018-04-02 2018-11-06 南京天加环境科技有限公司 一种采用数码变容量热回收技术的直膨空调箱系统
CN110925872A (zh) * 2019-11-04 2020-03-27 南京天加环境科技有限公司 一种可超低温制冷运行的直膨空调系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114484806A (zh) * 2022-03-01 2022-05-13 青岛海尔空调器有限总公司 空调除菌的控制方法、控制系统、电子设备和存储介质
CN114608136A (zh) * 2022-03-01 2022-06-10 青岛海尔空调器有限总公司 空调自清洁的控制方法、控制系统、电子设备和存储介质
CN114484806B (zh) * 2022-03-01 2024-01-16 青岛海尔空调器有限总公司 空调除菌的控制方法、控制系统、电子设备和存储介质
CN114608136B (zh) * 2022-03-01 2024-01-16 青岛海尔空调器有限总公司 空调自清洁的控制方法、控制系统、电子设备和存储介质
CN115930334A (zh) * 2022-12-29 2023-04-07 清华大学 多级复叠式新风分级处理系统

Also Published As

Publication number Publication date
CN110925872A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
WO2021088355A1 (zh) 一种可超低温制冷运行的直膨空调系统
WO2019134509A1 (zh) 室外机、空调系统及控制方法
WO2017219650A1 (zh) 空调系统、复合冷凝器、空调系统的运行控制方法及装置
CN206055810U (zh) 一种空调的联合供冷系统
CN101694315A (zh) 一种带自然冷却和湿度控制的空气处理装置
CN104515319B (zh) 空调系统
CN111811035A (zh) 一种除湿再热的单元式空调系统及其控制方法
CN210725423U (zh) 可调温除湿的空调系统
CN107655124B (zh) 一种融霜非间断供热的空气源热泵系统
CN207438787U (zh) 一种融霜非间断供热的空气源热泵系统
CN109827304B (zh) 一种新风-毛细管网空气联合调节系统及其冬、夏季新风温度调节方法
CN106123414A (zh) 一种数据中心用蒸发前置气液分离装置的微通道机房空调
WO2021012332A1 (zh) 一种可全热回收并精确调节热回收量的空调系统
CN210951666U (zh) 空调系统
CN210801435U (zh) 一种基于无油压缩机的全新风空调系统
CN109631171B (zh) 一种具备新风功能的多换热器窗式空调器
CN209877206U (zh) 一种新风除湿再热系统
CN112432379A (zh) 空调系统
CN216693810U (zh) 空调系统
CN110779115A (zh) 一种用于被动式住宅的空调独立除湿系统
WO2023060882A1 (zh) 空调
CN203550269U (zh) 空调系统
CN211854512U (zh) 一种防止频繁停机化霜的结构及空调器
CN205957320U (zh) 多功能双系统列间空调装置
CN205957318U (zh) 多功能型列间空调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885129

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20885129

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/05/2023)