WO2021085450A1 - Mouse mait-like cells and mouse rich in mait cells - Google Patents

Mouse mait-like cells and mouse rich in mait cells Download PDF

Info

Publication number
WO2021085450A1
WO2021085450A1 PCT/JP2020/040361 JP2020040361W WO2021085450A1 WO 2021085450 A1 WO2021085450 A1 WO 2021085450A1 JP 2020040361 W JP2020040361 W JP 2020040361W WO 2021085450 A1 WO2021085450 A1 WO 2021085450A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
mait
mouse
cell
mice
Prior art date
Application number
PCT/JP2020/040361
Other languages
French (fr)
Japanese (ja)
Inventor
宏 若尾
智恵 杉本
Original Assignee
学校法人獨協学園獨協医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人獨協学園獨協医科大学 filed Critical 学校法人獨協学園獨協医科大学
Priority to JP2021510136A priority Critical patent/JP7050381B2/en
Publication of WO2021085450A1 publication Critical patent/WO2021085450A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to mouse MAIT-like cells and mice rich in MAIT cells.
  • MAIT cells are a type of innate immune T cells that play a "bridge" between innate immunity and acquired immunity through the production of various cytokines and control the immune response of individuals.
  • MAIT cells are abundant in humans, for example, 20-50% in T cells in the liver, in intestinal lamina limba lymphocytes (LPL) and peripheral blood mononuclear cells (PBMC). While accounting for 1-10%, it is a rare cell in mice (Non-Patent Document 1: Dusseaux et al., 2011; Non-Patent Document 2: Le Bourhis et al., 2011).
  • MAIT cells are associated with autoimmune diseases such as multiple sclerosis, inflammatory diseases, and the onset and progression of cancer.
  • CD8 + / CD161 high T cells accumulate in inflammatory sites, such as liver or joints, it is a T cell population that is eye-onset factors of multiple sclerosis, is in human PBMC of CD8 + / CD161 high T cells
  • V ⁇ 7.2 + which is a MAIT cell-specific T cell receptor (TCR) ⁇ chain
  • Non-Patent Document 4 Illes et al., 2004; Non-Patent Document 5: Miyazaki et al. , 2011). Accumulation of MAIT cells has also been reported in renal cancer and brain tumors (Non-Patent Document 6: Peterfalvi et al., 2008) and chronic inflammatory demyelinating polyneuritis (Non-Patent Document 4: Illes et al., 2004). ing.
  • inflammatory bowel diseases such as ulcerative colitis and Crohn's disease
  • Reference 7 Xiao Ruijing et al., 2012).
  • MAIT cells are suggested to be involved in various diseases and pathological conditions, but detailed mechanisms such as immune control mechanism, especially role in immune response and its mechanism, factors and molecules contributing to it, and further At present, the study and analysis of the significance of the onset and progression of pathological conditions have not been sufficiently advanced.
  • One of the major reasons for this is the problem of cell / animal sources that can be used for in vitro and in vivo tests.
  • MAIT cells are a very rare cell population in mice that are frequently used as experimental animals, and it is difficult to analyze their functions using the animals.
  • MAIT cells are abundant in humans as compared with mice, there is a limit to preparing large amounts of MAIT cells from human biological samples such as peripheral blood. Further, in such a method, there is a high possibility that the number and properties of the obtained MAIT cells fluctuate greatly, and there is a difficulty in the stability and reproducibility of the test using the cells.
  • MAIT cells are usually in a state of having little cell proliferation ability, and it is difficult to amplify them under in vitro conditions because the factors and stimuli that induce their proliferation have not been identified ().
  • MAIT cells As a cell source used for so-called cell transplantation therapy, in which MAIT cells or artificially modified MAIT cells are transferred and treated in patients suffering from various infectious diseases, autoimmune diseases, and cancers. Can be used.
  • it is essential to establish a method for preparing a large amount of MAIT cells, which also has stable quality. Since MAIT cells do not respond to any previously known T cell proliferation stimulus, it has been difficult to prepare a large amount of MAIT cells required for functional analysis.
  • MAIT cells are a very rare cell population in mice that are frequently used as laboratory animals, and there is a limit to the progress of research and development using conventional laboratory mice.
  • mice expressing MAIT cells as frequently as humans have been sought.
  • mouse MAIT cell-derived iPS cells are known (Patent Document 1: Patent No. 6275646), but there is no specific description of a method for concentrating and purifying mouse MAIT cells to convert them into iPS cells.
  • the patent does not state that MAIT-like cells are effective for cell therapy only for bacterial infections and for cancer.
  • mice rich in MAIT cells that enable functional elucidation in disease models of MAIT cells have not been described.
  • the present inventor has succeeded in reprogramming mouse MAIT cells to produce MAIT cell-derived induced pluripotent stem cells (iPS cells).
  • iPS cells MAIT cell-derived induced pluripotent stem cells
  • by transferring the obtained MAIT-like cells into a mouse we succeeded in producing a mouse rich in MAIT-like cells.
  • Mice and V ⁇ 8 mice were obtained to complete the present invention.
  • the present invention includes the following embodiments.
  • a MAIT cell-enriched mouse obtained by transferring MAIT-like cells obtained by inducing differentiation of induced pluripotent stem cells in which mouse-derived MAIT cells have been reprogrammed.
  • the mouse according to (1) wherein the transfer of MAIT-like cells is into the abdominal cavity or via the tail vein.
  • the mouse having an allelic gene.
  • the mouse according to (3) which has an allele in which the V ⁇ 19 gene and the J ⁇ 33 gene are rearranged so as to be adjacent to each other.
  • the mouse according to (3) which has an allele in which the V ⁇ gene, the D gene and the J gene are rearranged so as to be adjacent to each other.
  • a model mouse for pathological analysis or drug screening which comprises the mouse according to any one of (1) to (7).
  • the mouse according to (8) which has a pathological condition of cancer.
  • Production of MAIT cell-enriched mouse which comprises isolating MAIT cells from the mouse according to any one of (1) to (9) and transferring the isolated MAIT cells into a wild-type mouse.
  • Method. (11) A method for screening a cancer metastasis inhibitor, which comprises contacting a mouse with the candidate substance according to any one of (1) to (9).
  • a therapeutic and / or prophylactic agent for cancer which comprises MAIT-like cells obtained by inducing differentiation of induced pluripotent stem cells in which MAIT cells have been reprogrammed.
  • artificial pluripotent stem cells can be prepared from mouse MAIT cells
  • mouse MAIT-like cells can be prepared from artificial pluripotent stem cells.
  • the mice into which the MAIT-like cells have been transferred are rich in MAIT-like cells, and also show suppression of cancer metastasis and prolongation of survival time.
  • inhibition of metastasis and prolongation of survival of transplanted cancer were also observed in V ⁇ 8 mice rich in MAIT cells derived from induced pluripotent stem cells from mouse MAIT cells.
  • m-reMAIT cell MAIT-like cell
  • MAIT-iPS cells were seeded on OP9 / dlk-1, which are feeder cells, and differentiated into m-re MAIT cells via mesoderm and lymphocyte immature cells.
  • m-reMAIT cells are defined as TCR ⁇ + mMR1Tet + cells.
  • the m-reMAIT cell purity after differentiation was 92% or more (left figure), and most of them were so-called double positives of CD4 + CD8 + (center figure).
  • the TCR ⁇ chain repatova of m-reMAIT cells derived from this iPS cell was V ⁇ 8 (right figure). It is a figure which shows the suppression of melanoma lung metastasis by m-reMAIT cell transfer.
  • Intraperitoneal administration of m-reMAIT cells (m-reMAIT cell transfer group) or PBS (control group) was performed, and 5 days later, B16F10 melanoma was transplanted via the tail vein. Eighteen days after melanoma transplantation, the lungs were removed and the number of cancer nodules was measured.
  • A Representative lungs of each group. Many black cancer nodules were found in the control group.
  • Lung cancer cell (LLC) transplanted mouse (dashed line)
  • m-reMAIT cell transfer + LLC transplanted mouse (solid line)
  • P value is based on Log rank test. It is a figure which shows the amount (percentage) of MAIT cell in the blood of a novel mouse via a chimeric mouse derived from MAIT-iPS cell.
  • Wild-type mice MAIT cell mass in (C57BL / 6) (percentage of MMR1Tet + cells numbers circled TCR [beta] + cells) (left), Vbeta8 mouse MAIT cell-specific gene reconstructed V ⁇ chain (Vbeta8 .2-D1-J1.2) the MAIT cell mass in mice peripheral blood with the allele of one side (the ratio of MMR1Tet + cells numbers circled TCR [beta] + cells) (middle), Varufa19 mouse MAIT cell specificity MAIT cell mass in mice peripheral blood with genetic reconstructed V ⁇ chain (V ⁇ 19-J ⁇ 33) alleles of one side (the ratio of MMR1Tet + cells numbers circled TCR [beta] + cells) (right).
  • V ⁇ 8 mouse a mouse which is genetically rich in MAIT cells. LLC was transplanted into wild-type (C57BL / 6) mice (broken line) and V ⁇ 8 mice (solid line), and the survival time was measured. The P value depends on the Log rank test. It is a figure which shows the TCR ⁇ and TCR ⁇ gene arrangement at the TCR locus in MAIT cell-derived iPS cell, V ⁇ 19 mouse, and V ⁇ 8 mouse, and the TCR ⁇ and TCR ⁇ gene arrangement in a wild-type mouse.
  • MAIT cell-derived iPS cells and V ⁇ 19 mice have gene-rearranged arrangements of MAIT cell-specific TCR ⁇ V ⁇ 19 and ⁇ J33, but this rearrangement is not observed in wild-type mice.
  • TCR ⁇ s V ⁇ 8 or V ⁇ 6 and D, J which are often found in MAIT cells, have a gene-rearranged arrangement, but this rearrangement is not observed in wild-type mice.
  • Figure 8 shows Ly5.2m-reMAIT cells (1.0 x 10 6 ) divided into a wild-type mouse (C57BL / 6) intraperitoneal adoptive group (also referred to as “L7-1”) and a non-transfer group.
  • the vertical axis represents the survival rate of mice, and the horizontal axis represents the number of days of survival. * Indicates that there is a significant difference due to the Log Rank test (correction of multiple comparisons by the Bonferroni method).
  • Figure 9 shows the group in which Ly5.2 m-reMAIT cells (1.0 x 10 6 ) were adopted into the abdominal cavity of wild-type mice (C57BL / 6) (also referred to as “L7-1”) and the non-transfer group.
  • C57BL / 6 wild-type mice
  • L7-1 wild-type mice
  • the vertical axis represents the survival rate of mice
  • the horizontal axis represents the number of days of survival. * Indicates that there is a significant difference due to the Log Rank test (correction of multiple comparisons by the Bonferroni method).
  • the present invention relates to a mouse rich in MAIT cells, in which mouse MAIT cells are reprogrammed (reprogrammed) to obtain iPS cells, and MAIT-like cells (m-reMAIT) induced to differentiate from the iPS cells are transferred.
  • the present invention also relates to MAIT cell-rich V ⁇ 19 mice and V ⁇ 8 mice established via chimeric mice produced from chimeric embryos into which the MAIT cell-derived iPS cells have been transferred.
  • the present invention also relates to a method for producing these mice. When cancer is transplanted after adopting m-reMAIT cells into wild-type mice, or when cancer is transplanted into V ⁇ 8 mice rich in MAIT cells, the transplanted mice are compared to wild-type mice. The effect of suppressing lung metastasis and significantly prolonging the survival time of mice was obtained.
  • MAIT cells are T cells with the highest abundance ratio in humans and are considered to be involved in pathological control of cancer, infectious diseases, autoimmune diseases, asthma, lifestyle-related diseases and skin diseases.
  • MAIT cells are extremely small in mice, which are frequently used in disease models, functional analysis in mice is extremely difficult.
  • the present inventor reprograms (iPS) mouse MAIT cells, induces differentiation of a large amount of mouse MAIT-like cells (hereinafter, also referred to as "m-reMAIT cells”) from the reprogrammed iPS cells, and chimeric mice.
  • m-reMAIT cells mouse MAIT-like cells
  • MHC that binds adaptive immune T cells such as CAR-T cells exhibits diversity
  • MR1 which is a molecule that binds MAIT cells, exhibits unity. Therefore, m-produced by the present invention. Immune cell therapy using reMAIT cells can be expected to have a uniform effect among individuals.
  • iPS cells are artificially differentiated pluripotency and self-renewal ability by introducing a reprogramming factor (nuclear reprogramming factor) into somatic cells and expressing it. Is a cell that has acquired traits and has similar traits to ES cells.
  • reprogramming factor nuclear reprogramming factor
  • Potency is defined as a cell capable of differentiating into cells of all lineages under appropriate conditions, but in the practice of the present invention, the ability to differentiate into cells of all lineages is not necessarily the case. It is not necessary to have MAIT cells, and it is sufficient that they have the ability to differentiate into MAIT cells and their stem cells or progenitor cells, and have the ability to differentiate into one or more other cell lines.
  • the traits similar to ES cells are the presence of surface marker molecules specific to ES cells, cell biological properties specific to ES cells such as teratoma forming ability, expression of genes specific to ES cells, or target cells. It can be defined by the degree of similarity in the expression patterns of a large number of gene groups in.
  • the pluripotency of the MAIT cell-derived induced pluripotent stem cells (iPS cells) obtained in the present invention is guaranteed by the ability to produce chimeric mice.
  • the "MAIT cell” is a T cell in which the TCR ⁇ chain gene is uniquely and uniformly composed of V ⁇ -J ⁇ (V ⁇ 19-J ⁇ 33 in mouse), and more preferably expresses CD26 or IL-18R ⁇ . It can be defined as a cell.
  • Another characteristic of MAIT cells is that their TCR is constrained by a single MR1.
  • the TCR ⁇ chain gene was biased to a specific combination, and one iPS cell obtained in the present invention showed gene-reconstituted V ⁇ 8.2, whereas another iPS cell showed V ⁇ 6 and V ⁇ 5. Met.
  • the MAIT cells used for reprogramming can be derived from mice.
  • Examples of the mouse used here include, but are not limited to, C57BL / 6, Balb / c, C3H, and DBA strains. Since MAIT cells in vivo have very poor proliferative capacity and techniques for in vitro proliferation have not been established, MAIT cells need to be collected from in vivo.
  • the collection site is not particularly limited, and examples thereof include umbilical cord blood, peripheral blood, lung, liver, thymus, spleen, bone marrow, and intestinal tract (lamina basement, Peyer's patch), but lung is preferable. ..
  • MAIT-iPS cells When MAIT cells are collected from tissues such as lung, the efficiency of inducing differentiation of iPS cells (MAIT-iPS cells) obtained by reprogramming MAIT cells into MAIT-like cells is higher than when MAIT cells are collected from umbilical cord blood. May be higher.
  • MAIT cells can be obtained, for example, by the following methods. For example, tissue is removed from wild-type mice, then shredded and crushed to become unicellular. Mononuclear cells are collected from these cells and washed. Recovery of MAIT cell fractions can be performed using, for example, APC-labeled 5-OP-RU-loaded murine MR1 tetramer reagents, anti-APC beads and MS columns. If the mononuclear cell fraction recovered from the tissue is extremely rich in other immune cells, the negative cell population is treated with one or more of biotin-labeled CD19, CD62L, Gr1, CD11b and TCR ⁇ antibodies, for example.
  • the recovered MAIT cell fraction is treated with a CD44 antibody, a B220 antibody, a mouse F4 / 80 antibody, and a TCR ⁇ antibody.
  • Each antibody may be labeled, for example, the CD44 antibody may be FITC labeled, the B220 antibody and mouse F4 / 80 antibody may be PE labeled, and the TCR ⁇ antibody may be PE-Cy7 labeled.
  • Cells were then washed with MACS buffer and the like, mMR1-Tet + TCR ⁇ + B220 - Gr1 - CD44 high (MAIT cells) purified by cell sorter.
  • a known reprogramming factor for reprogramming MAIT cells
  • a proteinaceous factor or a nucleic acid encoding the same (a form incorporated in a vector)
  • a proteinaceous factor or a nucleic acid encoding the same (a form incorporated in a vector)
  • a proteinaceous factor or a nucleic acid encoding the same (a form incorporated in a vector)
  • Or may be composed of any substance such as a low molecular weight compound.
  • four factors can be used: Oct3 / 4 gene product known as Yamanaka factor, Klf family gene product such as Klf4, Myc family gene product such as c-Myc, and Sox family gene product such as Sox2 (Takahashi K). , Yamanaka S. (2006). “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors”.
  • iPS cells can also be obtained by introducing three factors, Oct3 / 4 gene product, Klf family gene product, and Sox family gene product, and then culturing in the presence of basic fibroblast growth factor (bFGF) or the like. (See WO2007 / 69666).
  • bFGF basic fibroblast growth factor
  • the method of introducing the above factor as a protein is also adopted, or it is used in the form of a nucleic acid (DNA, RNA, DNA / RNA chimera) encoding the protein. You can also do it.
  • the nucleic acid (preferably cDNA) is inserted into a plasmid vector or viral vector capable of functioning in a host MAIT cell to construct an expression vector, and is subjected to a nuclear reprogramming step.
  • Sendai virus vector is a virus having a single-stranded non-segmented negative-strand RNA as a genome, and has been widely used in the field of cell biology.
  • the Sendai virus vector has the advantage that genes can be introduced into cells and tissues of many mammals, and the vector genome remains in the cytoplasm in the RNA state, so that the host chromosome is not affected. Kit products for constructing Sendai virus vectors are commercially available and can be appropriately obtained by those skilled in the art.
  • the iPS cells obtained by reprogramming MAIT cells oppose the TCR ⁇ chain gene whose gene rearrangement has been completed specifically for MAIT cells and / or the TCR ⁇ chain gene that selectively binds to this TCR ⁇ chain. It differs from the conventional pluripotent stem cells such as ES cells and iPS cells in that it has a gene.
  • a pluripotent stem cell having a TCR ⁇ chain gene whose gene rearrangement has been completed specifically for MAIT cells has characteristics similar to those of MAIT cells by being placed under conditions capable of inducing differentiation into T cells. It can be obtained to selectively produce cells.
  • the MAIT-iPS cells can be recovered in a high purity and in a large amount by a cell recovery, separation, purification method or the like by a known method.
  • MAIT-like cells are obtained by inducing differentiation of MAIT-iPS cells.
  • the cells induced to differentiate in this way have characteristics similar to those of MAIT cells, and since MAIT cells are derived from mice, they are referred to as "m-re MAIT cells" in the present invention.
  • m-reMAIT cells are mMR1-tetramer + (recognized by the MR1 tetramer molecule presented with 5-OP-RU) and TCR ⁇ + , but are characterized by very weak expression of the activation marker CD44. ..
  • MAIT cell-enriched mice V ⁇ 8 and V ⁇ 19 mice
  • MAIT cells are mMR1-tetramer + (recognized by the MR1 tetramer molecule presented with 5-OP-RU) and TCR ⁇ + , as well as CD44 is highly expressed, and the expression of the naive marker CD62L is very low.
  • the culture method for obtaining m-reMAIT-like cells by inducing differentiation is not particularly limited, and for example, a co-culture method with feeder cells, a suspension culture method, a hanging drop culture method, and a swirling culture method. , Soft agar culture method, microcarrier culture method and the like.
  • co-culture is preferable in order to induce differentiation of iPS cells to obtain m-reMAIT cells.
  • stromal cells such as OP9 cells are co-cultured as feeder cells, and further.
  • M-re MAIT cells can be efficiently obtained from MAIT-iPS cells.
  • the m-reMAIT cells thus obtained can be recovered, separated and purified by a known method.
  • Any known method for purifying m-reMAIT cells can be used as long as it is a known cell separation and purification method, but it is based on an antigen-antibody reaction such as a flow cytometer, magnetic beads, or a panning method. Examples thereof include a method and a cell fractionation method by density gradient centrifugation using a carrier such as sucrose or Percoll.
  • the m-reMAIT cells obtained by the present invention are cells exhibiting morphological, physiological and / or immunological characteristics almost equivalent to those of MAIT cells in vivo.
  • Identification of a MAIT-like cell can be made by confirming the expression of one or more markers specific to the MAIT cell. Marker expression should be confirmed by known cell tissue biological methods such as immunostaining using antibodies, reverse transcriptase-mediated polymerase chain reaction (RT-PCR), hybridization analysis, or molecular biological methods. Can be done.
  • the present invention is obtained by transferring MAIT-like cells obtained by inducing differentiation of induced pluripotent stem cells in which mouse-derived MAIT cells have been reprogrammed. , MAIT cell-enriched mouse, or a method for producing the MAIT cell-enriched mouse.
  • the m-reMAIT cells established by the present invention have almost the same cell surface antigen, gene expression, and cytokine production ability as in vivo MAIT cells (below), and by transferring into mice, the intestinal tract, spleen, and liver. Localized in tissues such as.
  • 1.0 x10 6 to 1.0 x10 7 cells may be suspended in a suitable buffer or Hanks balanced salt solution (HBSS) and injected intraperitoneally or via the tail vein.
  • HBSS Hanks balanced salt solution
  • Cell surface antigen mouse MR1 tetramer reagent (obtained from NIH) and anti-mouse TCR ⁇ antibody presenting 5-OP-RU
  • a chimeric mouse can be performed by a standard method.
  • the type of mouse used in the present invention is not particularly limited.
  • Balb / c system, ICR, etc. are used.
  • an ICR that is easy to handle and reproduce is preferable.
  • a chimeric embryo is prepared by transferring MAIT-iPS cells, which is the purpose of lineage establishment, into the embryo. Chimeric mice are produced by transplanting this chimeric embryo into the uterus of a pseudopregnant foster mother and giving birth.
  • the "embryo" to which m-reMAIT cells are transferred means an embryo in the stage from fertilization to birth in ontogeny, a 2-cell stage embryo, a 4-cell stage embryo, an 8-cell stage embryo, and a mulberry. Includes stage embryos, blastocysts, etc.
  • a known method such as a microinjection method or an agglutination method can be used.
  • a known method such as a microinjection method or an agglutination method can be used.
  • To prepare a chimeric embryo first, a female mouse that has been overovulated with a hormonal agent is mated with a male mouse. Then, for example, early developmental embryos are collected from the oviduct or uterus 2-2.5 days after fertilization when using 8-cell stage embryos and 3.5-4 days after fertilization when using blastocysts. .. M-reMAIT cells are injected into the collected embryos to prepare chimeric embryos.
  • MAIT-iPS cells are injected into the collected embryos with an injector.
  • MAIT-iPS cells may be mixed with normal embryos from which the zona pellucida has been removed and aggregated.
  • a pseudopregnant female mouse to be a foster parent can be obtained by mating a female mouse with a normal cycle with a male mouse castrated by vas deferens ligation or the like.
  • a chimeric mouse can be produced by intrauterine transplantation of a chimeric embryo prepared by the above-mentioned method into the created pseudopregnant mouse and then giving birth.
  • mice derived from MAIT-iPS cells are selected. After the male chimeric mouse with a high chimeric rate has matured, this mouse is mated with a female mouse of a pure mouse lineage. Then, it is possible that the gene-reconstructed TCR locus derived from MAIT cells was introduced into the germline of chimeric mice by the appearance of the coat color of mice derived from MAIT-iPS cells in the born offspring mice. I can judge.
  • mice From the mice thus obtained, offspring having a TCR ⁇ chain or TCR ⁇ chain locus for which MAIT cell-specific gene rearrangement has been completed for the allele is selected by the PCR method.
  • TCR ⁇ chain examples include V ⁇ 19 and J ⁇ 33
  • examples of the TCR ⁇ chain include the V ⁇ , D and J genes.
  • V ⁇ genes include V ⁇ 8.2, V ⁇ 8.1, V ⁇ 8.3, V ⁇ 6, V ⁇ 5.1, etc.
  • D genes include D1, D2, etc.
  • J genes include 12 types such as J1.2. J fragments (J1.1-J1.6 and J2.1-J2.6) of.
  • V ⁇ 19-J ⁇ 33 V ⁇ fragment, D fragment, and V (x) -D (y) -J (z) (y, z are the fragments described above, in which the V ⁇ 19 fragment and the J ⁇ 33 fragment are bound.
  • x reflects the genomic arrangement such as (preferably 8, 6 and 5).
  • V ⁇ 19 and J ⁇ 33 are adjacently arranged on one allele.
  • V ⁇ , D and J such as V ⁇ 8.2, D1 and J1-2, are adjacently arranged on one allele (Fig. 7).
  • the mice of the present invention are rich in MAIT cells and have more MAIT cells than wild-type mice.
  • the present invention provides a method for producing a MAIT cell-enriched mouse, which comprises isolating MAIT cells from the mice prepared as described above and transferring the isolated MAIT cells into a wild-type mouse. ..
  • a method for producing a MAIT cell-enriched mouse which comprises isolating MAIT cells from the mice prepared as described above and transferring the isolated MAIT cells into a wild-type mouse. ..
  • the same method as described in the above section "2. iPS conversion of mouse MAIT cells” can be adopted. After the MAIT cells are isolated, the MAIT cells are transferred to wild-type mice by intraperitoneal administration or via the tail vein.
  • the mouse of the present invention can be used as a model mouse for various disease studies. For example, since V ⁇ 8 mice show an anticancer effect, they can be used for screening for drugs that enhance the suppression of cancer metastasis by transplanting cancer cells into these mice and using the degree of metastasis as an index. In addition, since mice adopting m-reMAIT cells and V ⁇ 8 mice show prolongation of survival against transplanted cancers, they can be used to screen for drugs that prolong survival. Since the mouse of the present invention suppresses lung metastasis of melanoma and lung cancer cells, for example, a drug that further enhances this metastasis-suppressing activity can be screened as an anticancer agent. Therefore, the present invention provides a method for screening a cancer metastasis inhibitor, which comprises contacting a mouse prepared as described above with a candidate substance.
  • the present invention includes the following steps.
  • the candidate substance is not particularly limited, and may be an existing drug, or may be in any form such as a peptide, a low molecular weight compound, a high molecular weight compound, a salt or a precursor thereof.
  • "contact" is an embodiment in which a candidate substance is administered to a mouse. Administration may be oral or parenteral. That is, the administration route of the candidate substance is not particularly limited as long as it is a route generally adopted for administration of the drug, for example, oral, sublingual, nasal, transpulmonary, transdigestive tract, trans. Skin, eye drops, intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, local injection, surgical transplantation are mentioned, and oral administration is preferable.
  • the item to be inspected in the step (b) is at least one of the following (i) to (vii).
  • (ii) Shrinkage of metastatic cancer cells iii) Mouse body weight (iv) Mouse feeding (v) Mouse survival
  • the candidate substance can be selected as a cancer metastasis inhibitor.
  • a candidate expected to have metastasis-suppressing activity may be administered to the mouse of the present invention, and whether or not the metastasis is suppressed may be evaluated.
  • MAIT cells are considered to be involved in pathological control in human infectious diseases, obesity / type II diabetes, allergies, asthma, and various autoimmune diseases. Therefore, by analyzing these disease models using the mice of the present invention (V ⁇ 19 mouse and V ⁇ 8 mouse), it is possible to obtain new findings on disease onset and pathological conditions that cannot be obtained by the conventional mouse model. For example, when the above disease model is created using V ⁇ 19 mice and V ⁇ 8 mice, it can be expected that the exacerbation of the pathological condition is suppressed or promoted as compared with the wild-type mouse, and in any case, the deterioration is expected. By elucidating the mechanism, new findings on the disease can be obtained.
  • the invention comprises MAIT-like cells obtained by inducing differentiation of induced pluripotent stem cells in which MAIT cells have been reprogrammed. And / or preventive agents.
  • the present invention comprises administering to a subject a MAIT-like cell obtained by inducing differentiation of induced pluripotent stem cells in which MAIT cells have been reprogrammed, or a therapeutic and / or prophylactic agent for cancer. Including cancer treatment and / or prevention methods.
  • the origin of MAIT cells is not limited, and examples thereof include mammals such as primates such as humans, experimental animals such as rats, mice, and rats, and domestic animals such as pigs, cows, horses, and sheep, and examples thereof include humans. May be derived from.
  • the cancer therapeutic and / or prophylactic agents described herein, or MAIT-like cells exert an anti-cancer effect without the intervention of CD8 cells.
  • the cancer therapeutic and / or prophylactic agents described herein, or MAIT-like cells exert an anti-cancer effect via NK cells.
  • the therapeutic and / or prophylactic agents for cancer of the present invention are known pharmaceutically acceptable carriers such as excipients, bulking agents, binders and lubricants, in addition to the MAI T-like cells described herein.
  • One or more components selected from known additives may be included.
  • the type of cancer is not limited, but for example, cancer in the skin, lung, stomach, pancreas, colonic rectum, liver, prostate, pancreas, esophagus, bladder, gallbladder / bile duct, breast, uterus, thyroid, and ovary. It may be a metastatic cancer.
  • the route of administration of the MAIT-like cells or cancer treatment and / or prophylactic agents described herein is not limited, but may be oral or parenteral, eg, intravenous, muscle, intraperitoneal. It can also be administered to a living body (target cells or organs) by intratumoral or subcutaneous injection; inhalation from the nasal cavity, oral cavity or lungs; or by a suppository, external preparation, or the like.
  • therapeutic and / or prophylactic agents for cancer described herein are not limited, and are tablets, capsules, powders, granules, pills, solutions, syrups, injections, topical agents, suppositories, eye drops. It may be an agent.
  • the dose of the therapeutic and / or prophylactic agent for cancer described in the present specification is appropriately selected depending on the type of active ingredient, the route of administration, the subject of administration, the age, weight, sex, symptoms and other conditions of the patient.
  • the number of administrations is not limited, and it can be administered once a day or in several divided doses.
  • the target of administration of the MAIT-like cells or cancer treatment and / or preventive agent described herein is, for example, mammals, for example, primates such as humans, experimental animals such as rats, mice, and rats, pigs, cows, and the like. Examples include domestic animals such as horses and sheep, and are humans, for example.
  • the monocytes present in the intermediate layer were collected and washed with PBS. After centrifugation, mononuclear cells were suspended in MACS buffer (PBS containing 0.5% BSA, 2 mM EDTA), biotin-labeled CD19 (clone 6D5), CD62L (clone MEL-14), Gr1 (clone RB6-8C5), CD11b. (Clone M1 / 70) and TCR ⁇ antibody (clone GL3) (both from Biolegend, 4 ⁇ g / ml each) were added and reacted at 4 ° C. for 15 minutes.
  • MACS buffer PBS containing 0.5% BSA, 2 mM EDTA
  • biotin-labeled CD19 clone 6D5
  • CD62L clone MEL-14
  • Gr1 clone RB6-8C5
  • CD11b CD11b.
  • TCR ⁇ antibody clone GL3
  • FITC-labeled CD44 antibody (clone IM7, Biolegend)
  • PE-labeled B220 antibody (clone RA3-6B2)
  • PE-labeled mouse F4 / 80 antibody (clone BM8)
  • PE-Cy7-labeled TCR ⁇ antibody (clone H57-597) (either Biolegend) was added to each 0.25 ⁇ g / 1x10 6 cells / 100 ⁇ L, and the mixture was left in a dark place at room temperature for another 15 minutes.
  • IPS cellization of mouse MAIT cells by Sendai virus vector Sendai virus (KOSM302L) carrying iPS-forming factor was donated by Dr. Masato Nakanishi, National Institute of Advanced Industrial Science and Technology.
  • the MAIT cells obtained as described above were infected with KOSM302L (WO2012 / 063817) to obtain iPS cells.
  • Ly5.2 MAIT cells 6,300 purified MAIT cells were centrifuged and anti-CD3 / CD28 antibody (15 ⁇ g / ml CD3 ⁇ (clone 145-2C11), 20 ⁇ g / ml CD28 (clone 37.51), both from Biolegend). Transfer to a coated 96-well plate and suspend in 20 ⁇ L KOSM302L (8,000 pfu / ⁇ L) and 80 ⁇ L cRPMI (RPMI culture medium containing 10% (v / v) FBS, 10 mM HEPES-NaOH pH 7.4). Inked at 37 ° C for 16 hours.
  • virus-infected MAIT cells were transferred to a 6-well plate in which mitomycin (MMC) -treated mouse fetal fibroblasts (MEF) were seeded as feeder cells, and 4 mL of mouse ES cell medium (StemSure DMEM) was transferred.
  • MMC mitomycin
  • MEF mouse fetal fibroblasts
  • Fujifilm Wako Pure Chemical Industries, Ltd. 15% (v / v) FBS (BioSera), x1 Non-essential amino acids (NEAA) (Fujifilm Wako Pure Chemical Industries, Ltd.), 2 mM glutamate (Fujifilm Wako Pure Chemical Industries, Ltd.), 100 U / mL penicillin / IPS colonies were formed by culturing in 100 ⁇ g / mL streptomycin (Lonza), 1,000 U / mL mouse LIF (Fujifilm Wako Pure Chemical Industries, Ltd.), 0.1 mM 2-mercaptoethanol (Fujifilm Wako Pure Chemical Industries, Ltd.) for 4 weeks. ..
  • the medium was changed every 2 days, and CHIR99021 (Fujifilm Wako Pure Chemical Industries, Ltd., final concentration 3 ⁇ M) and PD0325901 (Fujifilm Wako Pure Chemical Industries, Ltd., final concentration 1 ⁇ M) were added from the 3rd day of culture for the purpose of naive iPS cells. Finally, 46 iPS colonies were acquired.
  • Ly5.1 MAIT cells Centrifuge 31,390 purified MAIT cells, suspend in 20 ⁇ L KOSM302L (8,000 pfu / ⁇ L) and 240 ⁇ L cRPMI, and shake slowly at 37 ° C for 2 hours and 45 minutes. did. After centrifugation, iPS colonies were formed in the same manner as in (1), and finally 36 iPS colonies were obtained.
  • iPS colonies were physically peeled from the MEF using a 27-gauge needle, aspirated with a P20 pipette (Nichiryo), and dispensed into a 96-well plate at 0.25% ( w / v) Trypsin-1 mM EDTA (TE) (Fujifilm Wako Pure Chemical Industries, Ltd.) Transferred to 80 ⁇ L. Incubate at 37 ° C. for 30 minutes, add 120 ⁇ L of cRPMI, suspend well and centrifuge. After centrifugation, iPS cells were transferred to a 12-well plate seeded with MMC-treated MEF, proliferated and cryopreserved.
  • TE Trypsin-1 mM EDTA
  • MAIT cell-derived iPS cells have a genetically rearranged MAIT cell-specific TCR locus genome arrangement (Fig. 7).
  • the TCR of MAIT cells is composed of ⁇ and ⁇ chains, and the ⁇ chain is limited to V ⁇ 19-J ⁇ 33.
  • the ⁇ chain has limited repatova such as V ⁇ 8 and V ⁇ 6, but is not uniquely determined. Therefore, by using the following primer set 1, V ⁇ 19-J ⁇ 33 for which gene rearrangement has been completed is detected by PCR.
  • primer set 2 P1 and P2 sequence
  • P1 5'-TCAACTGCACATACAGCACCTC-3' (SEQ ID NO: 1)
  • P2 5'-AGCTGCAGAGGTTAGCACAG-3' (SEQ ID NO: 2)
  • m-reMAIT cells differentiation of mouse MAIT-like cells was induced according to the method for inducing T cell differentiation from pluripotent stem cells (hereinafter referred to as m-reMAIT cells).
  • MAIT-iPS cells derived from Ly5.2 or Ly5.1
  • TE pluripotent stem cells
  • 1.2 x 10 5 cells were seeded on two confluent OP9 / dlk-1 (10 cm culture dishes).
  • 10% (v / v) FBS was cultured in ⁇ MEM (Fujifilm Wako Pure Chemical Industries, Ltd.) for 5 days to induce mesoderm.
  • mesoderm containing OP9 / dlk-1 was treated with 2 ml TE for 10 minutes to make it unicellular. 8 ml of the same medium was added, suspended well, and allowed to stand at 37 ° C. for 45 minutes. The mesoderm contained in the supernatant was collected by centrifugation, human FLT3 ligand (Biolegend) was added to a concentration of 5 ng / m, and two OP9 / dlk-1 (10 cm culture dishes) became confluent. It was sown on top and cultured.
  • lymphocyte immature cells were collected by pipetting and re-sown on confluent OP9 / dlk-1 cells (6-well plate), 20% (v / v) FBS (BioSerum), human FLT3 ligand (5 ng). / mL, Biolegend), cultivated in ⁇ MEM (Fujifilm Wako Pure Chemical Industries, Ltd.) containing mouse IL-7 (1 ng / mL, Biolegend). Then, when the lymphocyte immature cells proliferated, these cells were transferred onto the confluent OP9 / dlk-1 in a 10 cm culture dish, further proliferated, and flow cytometric analysis was performed.
  • Ly5.2m-reMAIT cells 1.0 x10 8 or more can be acquired (Fig. 1). Ly5.1m-reMAIT cells also showed a similar differentiation pattern.
  • mice 4. Anti-cancer effect using m-reMAIT cells
  • Ly5.2 m-reMAIT cells (1.0 x 10 6 ) obtained above were adopted into the abdominal cavity of wild-type mice (C57BL / 6), and 5 days later, mouse melanoma (B16F10) was transplanted via the tail vein. Eighteen days after B16F10 transplantation, mice were euthanized and the number of cancer nodules metastasized to the lungs was measured. As a result, cancer metastasis was significantly suppressed compared to the control group transplanted with B16F10 alone (Fig. 2A-). 2B).
  • mice transferred with Ly5.2m-reMAIT cells showed a significant prolongation of survival compared with non-transferred mice, which was also observed with Ly5.1m-reMAIT cell transfer. It was observed (Fig. 3).
  • prolongation of survival by Ly5.2 m-reMAIT cell transfer was also observed in mouse lung cancer Lewis lung carcinoma (LLC) (Fig. 4).
  • a new model mouse from MAIT cell-derived iPS cells (MAIT-iPS cells) via a chimeric mouse MAIT-iPS cells were used to prepare chimeric mice as follows. Three clones were selected from the obtained 46 (clones) Ly5.2 MAIT-iPS cells and injected into 8-cell embryos prepared from ICR. This injection was performed by the Nonprofit Organization Developmental Engineering Study Group (Osaka University Microbial Research Institute). Each clone was injected into 10-20 embryos and returned to 3 fostered female mice, resulting in a total of 11 male chimeric mice.
  • iPS cells are germline chimeras that contribute to the differentiation into primordial germ cells (sperm) in one mouse with a chimera rate of 60-90%, and this was confirmed as an 8-week-old female C57BL / 6 (Japan). It was mated with Claire) and black offspring were selected.
  • the black offspring may have inherited the reconstituted TCR locus, which is a gene derived from C57BL / 6 MAIT cells, and this was confirmed by PCR.
  • mice carrying V ⁇ 19-J ⁇ 33 or V ⁇ 8.2-D1-J1.2 produced wild-type and mice with these gene arrangements as offspring in a 1: 1 ratio according to Mendel's laws when mated with C57BL / 6. ..
  • mice having both V ⁇ 19-J ⁇ 33 and V ⁇ 8.2-D1-J1.2 were produced.
  • Mice carrying the V ⁇ 8.2-D1-J1.2 locus can be detected by PCR using the following primer set 3 (primers P4 and P6).
  • Primer set 3 Primer 4: 5'-GTACTGGTATCGGCAGGAC-3' (SEQ ID NO: 4)
  • Primer 6 5'-GAGCCGAAGGTGTAGTCGG-3' (SEQ ID NO: 6)
  • the wild type (not completed gene rearrangement) TCR ⁇ locus can be detected by PCR using the following primer set 4 (P4 and P5) (Fig. 7).
  • Primer set 4 Primer 4: 5'-GTACTGGTATCGGCAGGAC-3' (SEQ ID NO: 4)
  • 50 ⁇ L of blood was drawn from the buccal vein of V ⁇ 19, V ⁇ 8, and wild-type C57BL / 6 mice and transferred to a 1.5 ml tube containing 5 ⁇ L EDTA (100 mM). After stirring, 20 ⁇ L was placed in another 1.5 ml tube, PE-labeled anti-B220 antibody (0.05 ⁇ g), PE-labeled anti-Gr1 antibody (0.05 ⁇ g), APC-labeled mMR1tet (0.012 ⁇ g), PE-Cy7-labeled mouse TCR ⁇ antibody (0.05 ⁇ g). It was mixed with ⁇ g) and inked for 45 minutes in a dark place at room temperature.
  • mice had tens to hundreds of times more MAIT cells than C57BL / 6 (Fig. 5).
  • MAIT cells have an anticancer effect (not specific to cancer antigens)
  • m-reMAIT cells can be used as a cell therapy method for cancer
  • a mouse POC Proof of Concept
  • 1.0 x10 6 L7-1 was administered 5 days before LLC administration, and 200 ⁇ g of anti-CD8 antibody (clone 2.43: Bio X cell) or the same amount of rat IgG2b isotype control (clone LTF2:) was administered the day before LLC administration. Bio X cell) was administered intraperitoneally. The same amount of anti-CD8 antibody or control IgG was administered 7 days and 14 days after the administration of LLC, and the survival time was measured.
  • Fig. 8 The results are shown in Fig. 8.
  • the vertical axis represents the survival rate of mice, and the horizontal axis represents the number of days of survival.
  • Statistical calculations between each group were performed using the Log Rank test, and multiple comparisons were corrected by the Bonferroni method, and P ⁇ 0.05 was determined to be statistically significant (*). Similar to FIG. 4, the group in which reMAIT cells were adopted had a longer survival time than the group in which IgG was injected but did not transfer reMAIT cells (comparison between L7-1 + IgG and IgG).
  • Ly5.2m-reMAIT cells (1.0 x 10 6 ) were adopted into the abdominal cavity of wild-type mice (C57BL / 6), and the Ly5.2m-reMAIT cell transfer group (also referred to as "L7-1") was transferred.
  • Ly5.2m-reMAIT cell transfer group also referred to as "L7-1”
  • Inject a rabbit polyclonal antibody (rabbit anti-AsialoGM1: described as Fujifilm anti-AGM1) that removes natural killer (NK) cells from individuals into the (described) and non-implanted groups, respectively, and then add LLC (3.0 x 10 5 ). Rabbits were transplanted via a vein and the survival time was measured.
  • 1.0 x10 6 L7-1 was intraperitoneally administered 5 days before LLC administration, and 50 ⁇ l of anti-AGM1 (rabbit anti-asialoGM1: Fujifilm) was intraperitoneally administered the day before LLC administration. Fourteen days after the administration of LLC, the same amount of antibody was administered and the survival time was measured.
  • anti-AGM1 rabbit anti-asialoGM1: Fujifilm
  • FIG. 9 The results are shown in Fig. 9.
  • the vertical axis represents the survival rate of mice, and the horizontal axis represents the number of days of survival.
  • Statistical calculations between each group were performed using the Log Rank test, and multiple comparisons were corrected by the Bonferroni method, and P ⁇ 0.05 was determined to be statistically significant (*).
  • Figure 4 shows that the mouse survival extension observed by reMAIT cell adoption (comparison of none / none L7-1 / none) was canceled by injection of anti-AGM1 (L7-1 / none and L7-1). / anti-Comparison of AGM1) Therefore, it was shown that the anticancer effect (extension of survival time) by reMAIT cells is mediated by NK cells.

Abstract

Provided is a MAIT-like cell enriched mouse. Also, provided are: a MAIT cell enriched mouse having introduced therein a MAIT-like cell obtained by inducing the differentiation of an artificial pluripotent stem cell derived by reprogramming of a mouse-derived MAIT cell; and a MAIT cell enriched mouse that is produced through a chimeric mouse using a MAIT cell-derived artificial pluripotent stem cell, and that has, in an allele, a TCR α chain gene or a TCR β chain gene for which gene rearrangement has been done in a MAIT cell-specific manner.

Description

マウスMAIT様細胞及びMAIT細胞豊富なマウスMice MAIT-like cells and mice rich in MAIT cells
 本発明は、マウスMAIT様細胞、及びMAIT細胞豊富なマウスに関する。 The present invention relates to mouse MAIT-like cells and mice rich in MAIT cells.
 MAIT細胞(Mucosal associated invariant T cells)は、多様なサイトカイン産生を介して自然免疫と獲得免疫の「橋渡し役」を担い、個体の免疫応答を制御する自然免疫型T細胞の一種である。MAIT細胞はヒトにおいて豊富に存在し、例えば肝臓中のT細胞では20-50%、腸管粘膜固有層リンパ球(lamina propria lymphocytes:LPL)や末梢血単核球(peripheral blood mononuclear cells:PBMC)では1-10%を占める一方、マウスでは稀有な細胞である(非特許文献1:Dusseaux et al.,2011; 非特許文献2:Le Bourhis et al.,2011)。 MAIT cells (Mucosal associated invariant T cells) are a type of innate immune T cells that play a "bridge" between innate immunity and acquired immunity through the production of various cytokines and control the immune response of individuals. MAIT cells are abundant in humans, for example, 20-50% in T cells in the liver, in intestinal lamina propria lymphocytes (LPL) and peripheral blood mononuclear cells (PBMC). While accounting for 1-10%, it is a rare cell in mice (Non-Patent Document 1: Dusseaux et al., 2011; Non-Patent Document 2: Le Bourhis et al., 2011).
 MAIT細胞は、多発性硬化症をはじめとする自己免疫疾患や炎症性疾患、がんの発症及び進展との関連性が示唆されている。CD8+/CD161highT細胞は肝臓や関節等の炎症部位に集積し、多発性硬化症の発症要因と目されているT細胞群であるが、ヒトPBMC中ではCD8+/CD161highT細胞の90%がMAIT細胞特異的T細胞受容体(TCR)α鎖であるVα7.2+を発現することが示されている(非特許文献3:Walker et al.,2012)。さらに、多発性硬化症患者ではその病変部に、多くのMAIT細胞が集積していることが報告されている(非特許文献4:Illes et al.,2004; 非特許文献5:Miyazaki et al.,2011)。MAIT細胞の集積は、腎がんや脳腫瘍(非特許文献6:Peterfalvi et al.,2008)、慢性炎症性脱髄性多発神経炎(非特許文献4:Illes et al.,2004)でも報告されている。また、潰瘍性大腸炎やクローン病に代表される炎症性腸疾患に関し、薬剤で惹起された炎症性組織傷害に対して移入したMAIT細胞が保護的に作用することが報告されている(非特許文献7:Xiao Ruijing et al.,2012)。 It has been suggested that MAIT cells are associated with autoimmune diseases such as multiple sclerosis, inflammatory diseases, and the onset and progression of cancer. CD8 + / CD161 high T cells accumulate in inflammatory sites, such as liver or joints, it is a T cell population that is eye-onset factors of multiple sclerosis, is in human PBMC of CD8 + / CD161 high T cells It has been shown that 90% express Vα7.2 +, which is a MAIT cell-specific T cell receptor (TCR) α chain (Non-Patent Document 3: Walker et al., 2012). Furthermore, it has been reported that many MAIT cells are accumulated in the lesions of patients with multiple sclerosis (Non-Patent Document 4: Illes et al., 2004; Non-Patent Document 5: Miyazaki et al. , 2011). Accumulation of MAIT cells has also been reported in renal cancer and brain tumors (Non-Patent Document 6: Peterfalvi et al., 2008) and chronic inflammatory demyelinating polyneuritis (Non-Patent Document 4: Illes et al., 2004). ing. In addition, regarding inflammatory bowel diseases such as ulcerative colitis and Crohn's disease, it has been reported that the transferred MAIT cells act protectively against drug-induced inflammatory tissue damage (non-patent). Reference 7: Xiao Ruijing et al., 2012).
 このように、MAIT細胞は種々の疾患や病態への関与が示唆されるが、免疫制御機構、特に免疫応答における役割やその機序等の詳細なメカニズム、そこに寄与する因子や分子、さらには病態発症及び進展における意義等については、検討及び解析が十分に進んでいないのが現状である。その大きな理由の1つとして、in vitro及びin vivo試験に供し得る細胞・動物ソースの問題が挙げられる。 In this way, MAIT cells are suggested to be involved in various diseases and pathological conditions, but detailed mechanisms such as immune control mechanism, especially role in immune response and its mechanism, factors and molecules contributing to it, and further At present, the study and analysis of the significance of the onset and progression of pathological conditions have not been sufficiently advanced. One of the major reasons for this is the problem of cell / animal sources that can be used for in vitro and in vivo tests.
 すなわち、実験用動物として頻用されるマウスではMAIT細胞は非常に稀有な細胞集団であり、当該動物を用いた機能解析は困難である。一方、ヒトにはMAIT細胞がマウスと比較すれば豊富に存在するものの、MAIT細胞を末梢血等のヒト生体試料から大量に調製するには限界がある。また、このような方法では、得られるMAIT細胞の数や性質が大きく変動する可能性も高く、当該細胞を用いた試験の安定性及び再現性に難がある。
 さらに、MAIT細胞は通常、細胞増殖能をほとんど有していない状態にあり、しかも、その増殖を誘導する因子や刺激が同定されていないため、in vitro条件下で増幅させることは困難である(非特許文献1:Dusseaux et al.,2011)
That is, MAIT cells are a very rare cell population in mice that are frequently used as experimental animals, and it is difficult to analyze their functions using the animals. On the other hand, although MAIT cells are abundant in humans as compared with mice, there is a limit to preparing large amounts of MAIT cells from human biological samples such as peripheral blood. Further, in such a method, there is a high possibility that the number and properties of the obtained MAIT cells fluctuate greatly, and there is a difficulty in the stability and reproducibility of the test using the cells.
Furthermore, MAIT cells are usually in a state of having little cell proliferation ability, and it is difficult to amplify them under in vitro conditions because the factors and stimuli that induce their proliferation have not been identified (). Non-Patent Document 1: Dusseaux et al., 2011)
 MAIT細胞の活用法の1つとして、各種感染症や自己免疫疾患、がんの罹患患者に、MAIT細胞又は人為的に修飾したMAIT細胞を移入し治療する、いわゆる細胞移植療法に用いる細胞ソースとしての利用が考えられる。しかしながら、当該治療法を実現させるためには、やはり安定した品質を有した、大量のMAIT細胞を調製する方法の確立が必須である。
 MAIT細胞は、これまで知られている如何なるT細胞増殖刺激にも反応しないため、機能解析に必要な大量のMAIT細胞を調製することが困難であった。特に、実験用動物として頻用されるマウスではMAIT細胞は非常に希有な細胞集団であり、従前の実験用マウスを用いて研究開発を進めるには限界がある。さらに上記疾患におけるMAIT細胞の病態制御能やその機序を明らかにするためには、ヒトと同じくらいの頻度でMAIT細胞を発現するマウスが希求されている。
As one of the utilization methods of MAIT cells, as a cell source used for so-called cell transplantation therapy, in which MAIT cells or artificially modified MAIT cells are transferred and treated in patients suffering from various infectious diseases, autoimmune diseases, and cancers. Can be used. However, in order to realize the therapeutic method, it is essential to establish a method for preparing a large amount of MAIT cells, which also has stable quality.
Since MAIT cells do not respond to any previously known T cell proliferation stimulus, it has been difficult to prepare a large amount of MAIT cells required for functional analysis. In particular, MAIT cells are a very rare cell population in mice that are frequently used as laboratory animals, and there is a limit to the progress of research and development using conventional laboratory mice. Furthermore, in order to clarify the pathological control ability of MAIT cells in the above diseases and the mechanism thereof, mice expressing MAIT cells as frequently as humans have been sought.
 従来、マウスMAIT細胞由来iPS細胞が知られているが(特許文献1:特許6275646号)、具体的にマウスMAIT細胞を濃縮及び純化し、iPS細胞化する方法の記載はされてない。また、同特許ではMAIT様細胞が細胞治療として有効性が示された疾患は細菌感染に対してのみであり、がんに有効であることは記載されていない。さらにMAIT細胞の疾患モデルにおける機能解明を可能とするMAIT細胞が豊富なマウスも記載されていない。  Conventionally, mouse MAIT cell-derived iPS cells are known (Patent Document 1: Patent No. 6275646), but there is no specific description of a method for concentrating and purifying mouse MAIT cells to convert them into iPS cells. In addition, the patent does not state that MAIT-like cells are effective for cell therapy only for bacterial infections and for cancer. Furthermore, mice rich in MAIT cells that enable functional elucidation in disease models of MAIT cells have not been described.
特許6275646号Patent No. 6275646
 従って、MAIT細胞と類似の機能を有するMAIT様細胞を樹立し、ヒトと同様な頻度でMAIT細胞を有するマウスを作製することが求められていた。  Therefore, it has been required to establish MAIT-like cells having a function similar to that of MAIT cells and to produce mice having MAIT cells at the same frequency as humans.
 本発明者は、上記課題を解決するために鋭意検討を行った結果、マウスMAIT細胞を初期化してMAIT細胞由来の人工多能性幹細胞(iPS細胞)を作製することに成功し、当該人工多能性幹細胞を分化誘導してMAIT様細胞を得ることに成功した。そして、得られたMAIT様細胞をマウスに移入することにより、MAIT様細胞に富むマウスを作出することに成功した。また、MAIT細胞由来人工多能性幹細胞(iPS細胞)を使用したキメラマウスを経由してMAIT細胞特異的に遺伝子再構成したT細胞受容体(TCR)の遺伝子配置を対立遺伝子に有するマウス(Vα19マウスとVβ8マウス:ヒトと同様な、もしくはヒト以上の頻度でMAIT細胞を有する)を得て、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventor has succeeded in reprogramming mouse MAIT cells to produce MAIT cell-derived induced pluripotent stem cells (iPS cells). We succeeded in inducing differentiation of pluripotent stem cells to obtain MAIT-like cells. Then, by transferring the obtained MAIT-like cells into a mouse, we succeeded in producing a mouse rich in MAIT-like cells. In addition, a mouse (Vα19) having a T cell receptor (TCR) gene rearrangement specific to MAIT cells via a chimeric mouse using MAIT cell-derived induced pluripotent stem cells (iPS cells) as an allelic gene. Mice and Vβ8 mice (having MAIT cells similar to or more frequently than humans) were obtained to complete the present invention.
 すなわち、本発明は以下の実施形態を包含する。
(1)マウス由来MAIT細胞が初期化された人工多能性幹細胞の分化誘導により得られたMAIT様細胞を移入してなる、MAIT細胞富化マウス。
(2)MAIT様細胞の移入が、腹腔内への又は尾静脈経由による移入である、(1)に記載のマウス。
(3)マウス由来MAIT細胞が初期化された人工多能性幹細胞を胚移入したキメラ胚由来のMAIT細胞富化マウスであって、MAIT細胞特異的にTCR遺伝子が再構成されたゲノム配置をその対立遺伝子に持つ、前記マウス。
(4)Vα19遺伝子及びJα33遺伝子が隣接するように再構成された対立遺伝子を有する、(3)に記載のマウス。
(5)Vβ遺伝子、D遺伝子及びJ遺伝子が隣接するように再構成された対立遺伝子を有する、(3)に記載のマウス。
(6)Vβ8.2遺伝子、D1遺伝子及びJβ1.2遺伝子が隣接するように再構成された、(5)に記載のマウス。
(7)MAIT細胞が肺に由来する、(1)~(6)のいずれかに記載のマウス。
(8)(1)~(7)のいずれかに記載のマウスからなる、病態解析用又は薬剤スクリーニング用モデルマウス。
(9)病態ががんである(8)に記載のマウス。
(10)(1)~(9)のいずれかに記載のマウスからMAIT細胞を単離し、単離されたMAIT細胞を野生型マウスに移入することを特徴とする、MAIT細胞富化マウスの製造方法。
(11)(1)~(9)のいずれかに記載のマウスに候補物質を接触させることを特徴とする、がん転移抑制増強剤のスクリーニング方法。
(12)MAIT細胞が初期化された人工多能性幹細胞の分化誘導により得られたMAIT様細胞を含む、がんの治療及び/又は予防剤。
That is, the present invention includes the following embodiments.
(1) A MAIT cell-enriched mouse obtained by transferring MAIT-like cells obtained by inducing differentiation of induced pluripotent stem cells in which mouse-derived MAIT cells have been reprogrammed.
(2) The mouse according to (1), wherein the transfer of MAIT-like cells is into the abdominal cavity or via the tail vein.
(3) MAIT cell-enriched mice derived from chimeric embryos into which artificial pluripotent stem cells reprogrammed from mouse-derived MAIT cells have been transferred, and the genome arrangement in which the TCR gene is rearranged specifically for MAIT cells is defined. The mouse having an allelic gene.
(4) The mouse according to (3), which has an allele in which the Vα19 gene and the Jα33 gene are rearranged so as to be adjacent to each other.
(5) The mouse according to (3), which has an allele in which the Vβ gene, the D gene and the J gene are rearranged so as to be adjacent to each other.
(6) The mouse according to (5), wherein the Vβ8.2 gene, the D1 gene and the Jβ1.2 gene were reconstituted so as to be adjacent to each other.
(7) The mouse according to any one of (1) to (6), wherein the MAIT cells are derived from the lung.
(8) A model mouse for pathological analysis or drug screening, which comprises the mouse according to any one of (1) to (7).
(9) The mouse according to (8), which has a pathological condition of cancer.
(10) Production of MAIT cell-enriched mouse, which comprises isolating MAIT cells from the mouse according to any one of (1) to (9) and transferring the isolated MAIT cells into a wild-type mouse. Method.
(11) A method for screening a cancer metastasis inhibitor, which comprises contacting a mouse with the candidate substance according to any one of (1) to (9).
(12) A therapeutic and / or prophylactic agent for cancer, which comprises MAIT-like cells obtained by inducing differentiation of induced pluripotent stem cells in which MAIT cells have been reprogrammed.
 本発明によれば、マウスMAIT細胞から人工多能性幹細胞を作製し、人工多能性幹細胞からマウスMAIT様細胞を作製することができる。当該MAIT様細胞を移入したマウスはMAIT様細胞が豊富であり、しかもがんの転移抑制、生存期間の延長を示す。またマウスMAIT細胞からの人工多能性幹細胞に由来する、MAIT細胞を豊富に有するVβ8マウスにおいても移植したがんの転移阻害と生存期間の延長が観察された。 According to the present invention, artificial pluripotent stem cells can be prepared from mouse MAIT cells, and mouse MAIT-like cells can be prepared from artificial pluripotent stem cells. The mice into which the MAIT-like cells have been transferred are rich in MAIT-like cells, and also show suppression of cancer metastasis and prolongation of survival time. In addition, inhibition of metastasis and prolongation of survival of transplanted cancer were also observed in Vβ8 mice rich in MAIT cells derived from induced pluripotent stem cells from mouse MAIT cells.
MAIT-iPS細胞からのMAIT様細胞(以下、m-reMAIT細胞)の分化誘導とその表面抗原発現(一例)を示す図である。MAIT-iPS細胞をフィーダー細胞であるOP9/dlk-1上に播種し、中胚葉、リンパ球幼若細胞を経て、m-reMAIT細胞へと分化誘導した。m-reMAIT細胞はTCRβ+mMR1Tet+細胞として定義される。分化後のm-reMAIT細胞純度は92%以上(左図)でそのほとんどはCD4+CD8+のいわゆるdouble positive であった(中央図)。また本iPS細胞由来のm-reMAIT細胞のTCRβ鎖レパトワはVβ8であった(右図)。It is a figure which shows the differentiation induction of a MAIT-like cell (hereinafter, m-reMAIT cell) from a MAIT-iPS cell, and the expression (an example) of the surface antigen thereof. MAIT-iPS cells were seeded on OP9 / dlk-1, which are feeder cells, and differentiated into m-re MAIT cells via mesoderm and lymphocyte immature cells. m-reMAIT cells are defined as TCRβ + mMR1Tet + cells. The m-reMAIT cell purity after differentiation was 92% or more (left figure), and most of them were so-called double positives of CD4 + CD8 + (center figure). The TCRβ chain repatova of m-reMAIT cells derived from this iPS cell was Vβ8 (right figure). m-reMAIT細胞移入によるメラノーマ肺転移の抑制を示す図である。m-reMAIT細胞(m-reMAIT細胞移入群)またはPBS(コントロール群)を腹腔内投与し、5日後にB16F10メラノーマを尾静脈経由で移植した。メラノーマ移植18日後に肺を摘出し、がん結節数を測定した。(A)各群の代表的な肺。コントロール群には多数の黒色のがん結節が認められた。(B)各群9匹ずつのマウスから得られた肺のがん結節数を顕微鏡下でカウントした(Mann-Whitney testによるP値=0.0006)。It is a figure which shows the suppression of melanoma lung metastasis by m-reMAIT cell transfer. Intraperitoneal administration of m-reMAIT cells (m-reMAIT cell transfer group) or PBS (control group) was performed, and 5 days later, B16F10 melanoma was transplanted via the tail vein. Eighteen days after melanoma transplantation, the lungs were removed and the number of cancer nodules was measured. (A) Representative lungs of each group. Many black cancer nodules were found in the control group. (B) The number of cancer nodules in the lungs obtained from 9 mice in each group was counted under a microscope (P value by Mann-Whitney test = 0.0006). m-reMAIT細胞移入による担がんマウス生存期間延長(カプラン・マイヤー曲線)を示す図である。B16F10メラノーマ移植マウス(破線)、m-reMAIT細胞移入+メラノーマ移植マウス(実線) P値はLog rank testによる。It is a figure which shows the survival time extension (Kaplan-Meier curve) of a cancer-bearing mouse by m-reMAIT cell transfer. B16F10 melanoma transplanted mouse (broken line), m-reMAIT cell transfer + melanoma transplanted mouse (solid line) P value is based on Log rank test. m-reMAIT細胞移入による担がんマウス生存期間延長(カプラン・マイヤー曲線)を示す図である。肺がん細胞(LLC)移植マウス(破線)、m-reMAIT細胞移入+LLC移植マウス(実線) P値はLog rank testによる。It is a figure which shows the survival time extension (Kaplan-Meier curve) of a cancer-bearing mouse by m-reMAIT cell transfer. Lung cancer cell (LLC) transplanted mouse (dashed line), m-reMAIT cell transfer + LLC transplanted mouse (solid line) P value is based on Log rank test. MAIT-iPS細胞由来キメラマウスを経由した新規マウス血液中におけるMAIT細胞量(割合)を示す図である。上図: 野生型マウス(C57BL/6)対立遺伝子におけるMAIT細胞TCR遺伝子座のゲノム配置(左)、Vβ8 マウス対立遺伝子におけるMAIT細胞TCR遺伝子座のゲノム配置(中央)、Vα19 マウス対立遺伝子におけるMAIT細胞TCR遺伝子座のゲノム配置(右)。下図: 野生型マウス(C57BL/6)におけるMAIT細胞量(丸囲みの数字はTCRβ+細胞中のmMR1Tet+細胞の割合)(左)、Vβ8マウス MAIT細胞特異的な遺伝子再構成済みVβ鎖(Vβ8.2-D1-J1.2)を片側の対立遺伝子にもつマウス末梢血でのMAIT細胞量(丸囲みの数字はTCRβ+細胞中のmMR1Tet+細胞の割合)(中央)、Vα19マウス MAIT細胞特異的な遺伝子再構成済みVα鎖(Vα19-Jα33)を片側の対立遺伝子にもつマウス末梢血でのMAIT細胞量(丸囲みの数字はTCRβ+細胞中のmMR1Tet+細胞の割合)(右)。It is a figure which shows the amount (percentage) of MAIT cell in the blood of a novel mouse via a chimeric mouse derived from MAIT-iPS cell. Above: Genome arrangement of the MAIT cell TCR locus in the wild-type mouse (C57BL / 6) allele (left), genome arrangement of the MAIT cell TCR locus in the Vβ8 mouse allele (center), MAIT cell in the Vα19 mouse allele Genome arrangement of the TCR locus (right). Below: Wild-type mice MAIT cell mass in (C57BL / 6) (percentage of MMR1Tet + cells numbers circled TCR [beta] + cells) (left), Vbeta8 mouse MAIT cell-specific gene reconstructed Vβ chain (Vbeta8 .2-D1-J1.2) the MAIT cell mass in mice peripheral blood with the allele of one side (the ratio of MMR1Tet + cells numbers circled TCR [beta] + cells) (middle), Varufa19 mouse MAIT cell specificity MAIT cell mass in mice peripheral blood with genetic reconstructed Vα chain (Vα19-Jα33) alleles of one side (the ratio of MMR1Tet + cells numbers circled TCR [beta] + cells) (right). Vβ8マウス(遺伝的にMAIT細胞が豊富なマウス)における生存期間の延長(カプラン・マイヤー曲線)を示す図である。野生型(C57BL/6)マウス(破線)、Vβ8マウス (実線)に LLCを移植し、生存期間を測定した。P値はLog rank testによる。It is a figure which shows the prolongation of survival time (Kaplan-Meier curve) in a Vβ8 mouse (a mouse which is genetically rich in MAIT cells). LLC was transplanted into wild-type (C57BL / 6) mice (broken line) and Vβ8 mice (solid line), and the survival time was measured. The P value depends on the Log rank test. MAIT細胞由来iPS細胞、Vα19マウス、Vβ8マウス中のTCR遺伝子座におけるTCRαおよびTCRβ遺伝子配置と野生型マウスにおけるTCRαおよびTCRβ遺伝子配置を示す図である。MAIT細胞由来iPS細胞やVα19マウスではMAIT細胞特異的なTCRαであるVα19とαJ33が遺伝子再構成された配置を有するが、野生型マウスではこの再構成は見られない。一方、MAIT細胞由来iPS細胞やVβ8マウスではMAIT細胞に多く見られるTCRβであるVβ8もしくはVβ6とD,Jが遺伝子再構成された配置を有するが、野生型マウスではこの再構成は見られない。P1-P6のプライマーを組みあわせることで、被検体中にMAIT細胞に特異的に遺伝子再構成が終了したTCR遺伝子座が存在するのかを明らかにすることができる。It is a figure which shows the TCRα and TCRβ gene arrangement at the TCR locus in MAIT cell-derived iPS cell, Vα19 mouse, and Vβ8 mouse, and the TCRα and TCRβ gene arrangement in a wild-type mouse. MAIT cell-derived iPS cells and Vα19 mice have gene-rearranged arrangements of MAIT cell-specific TCRα Vα19 and αJ33, but this rearrangement is not observed in wild-type mice. On the other hand, in MAIT cell-derived iPS cells and Vβ8 mice, TCRβs Vβ8 or Vβ6 and D, J, which are often found in MAIT cells, have a gene-rearranged arrangement, but this rearrangement is not observed in wild-type mice. By combining P1-P6 primers, it is possible to clarify whether there is a TCR locus in the subject whose gene rearrangement has been completed specifically for MAIT cells. 図8は、Ly5.2m-reMAIT細胞(1.0 x106)を野生型マウス(C57BL/6)腹腔内に養子移入した群(「L7-1」とも記載する)と、非移入群に分けて、それぞれanti-CD8抗体を注入、又は対照として同容量のIgGを注入したマウスにLLC(3.0 x105)を尾静脈経由で移植した際の、マウスの生存期間を示す。縦軸はマウスの生存率、横軸は生存日数を表す。*はLog Rank test(Bonferroni法で多重比較の補正)による有意差ありを表す。Figure 8 shows Ly5.2m-reMAIT cells (1.0 x 10 6 ) divided into a wild-type mouse (C57BL / 6) intraperitoneal adoptive group (also referred to as “L7-1”) and a non-transfer group. each injected anti-CD8 antibody, or mice injected with IgG of the same capacity as a control LLC (3.0 x10 5) of when transplanted via tail vein, showing the survival of mice. The vertical axis represents the survival rate of mice, and the horizontal axis represents the number of days of survival. * Indicates that there is a significant difference due to the Log Rank test (correction of multiple comparisons by the Bonferroni method). 図9は、Ly5.2m-reMAIT細胞(1.0 x106)を野生型マウス(C57BL/6)腹腔内に養子移入した群(「L7-1」とも記載する)と、非移入群に分けて、それぞれ抗AsialoGM1抗体を注入したマウスにLLC(3.0 x105)を尾静脈経由で移植した際の、マウスの生存期間を示す。縦軸はマウスの生存率、横軸は生存日数を表す。*はLog Rank test(Bonferroni法で多重比較の補正)による有意差ありを表す。Figure 9 shows the group in which Ly5.2 m-reMAIT cells (1.0 x 10 6 ) were adopted into the abdominal cavity of wild-type mice (C57BL / 6) (also referred to as “L7-1”) and the non-transfer group. when the LLC mice injected with anti AsialoGM1 antibody respectively (3.0 x10 5) were transplanted via the tail vein, showing the survival of mice. The vertical axis represents the survival rate of mice, and the horizontal axis represents the number of days of survival. * Indicates that there is a significant difference due to the Log Rank test (correction of multiple comparisons by the Bonferroni method).
1.概要
 本発明は、マウスMAIT細胞をリプログラミング(初期化)してiPS細胞を得て、当該iPS細胞から分化誘導したMAIT様細胞(m-reMAIT)が移入された、MAIT細胞豊富なマウスに関する。また本発明は、前記MAIT細胞由来iPS細胞を胚移入したキメラ胚から作出したキメラマウスを介して樹立した、MAIT細胞豊富なVα19マウス及びVβ8マウスに関する。また、本発明はこれらのマウスの作製方法にも関する。m-reMAIT細胞を野生型マウスに養子移入した上でがんを移植すると、あるいはMAIT細胞が豊富なVβ8マウスにがんを移植すると、移植されたマウスは、野生型マウスに比較して、がんの肺転移抑制及びマウスの生存期間を有意に延長する効果が得られた。
1. 1. Outline The present invention relates to a mouse rich in MAIT cells, in which mouse MAIT cells are reprogrammed (reprogrammed) to obtain iPS cells, and MAIT-like cells (m-reMAIT) induced to differentiate from the iPS cells are transferred. The present invention also relates to MAIT cell-rich Vα19 mice and Vβ8 mice established via chimeric mice produced from chimeric embryos into which the MAIT cell-derived iPS cells have been transferred. The present invention also relates to a method for producing these mice. When cancer is transplanted after adopting m-reMAIT cells into wild-type mice, or when cancer is transplanted into Vβ8 mice rich in MAIT cells, the transplanted mice are compared to wild-type mice. The effect of suppressing lung metastasis and significantly prolonging the survival time of mice was obtained.
 MAIT細胞は、ヒトで最大の存在比率を有するT細胞であり、がん、感染症、自己免疫疾患、喘息、生活習慣病及び皮膚疾患等の病態制御に関与すると考えられている。しかし、MAIT細胞は疾患モデルで頻用されるマウスには極めて微量であることから、マウスでの機能解析は困難を極める。 MAIT cells are T cells with the highest abundance ratio in humans and are considered to be involved in pathological control of cancer, infectious diseases, autoimmune diseases, asthma, lifestyle-related diseases and skin diseases. However, since MAIT cells are extremely small in mice, which are frequently used in disease models, functional analysis in mice is extremely difficult.
 本発明者は、マウスMAIT細胞を初期化(iPS化)させ、当該初期化したiPS細胞から大量のマウスMAIT様細胞(以下、「m-reMAIT細胞」ともいう)を分化誘導すると共に、キメラマウスを介して従前にないVα19マウス/Vβ8マウスというMAIT細胞豊富なマウスを樹立することに成功した。 The present inventor reprograms (iPS) mouse MAIT cells, induces differentiation of a large amount of mouse MAIT-like cells (hereinafter, also referred to as "m-reMAIT cells") from the reprogrammed iPS cells, and chimeric mice. We succeeded in establishing a MAIT cell-rich mouse called Vα19 mouse / Vβ8 mouse, which has never existed before.
 m-reMAIT細胞を野生型マウスに養子移入すると、移植されたマウスは、移植されたがんの肺転移を抑制するのみならず、マウスの生存期間を有意に延長した。また、MAIT細胞が豊富なVβ8マウスにがんを移植した場合にも、同様の効果が発揮された。さらに、m-reMAIT細胞を養子移入したマウス、及びVβ8マウスにおける抗がん効果(転移阻害と生存期間延長)は、メラノーマ及び肺がんに対して観察された。この結果は、MAIT細胞による抗がん効果が「特定のがん抗原」に依存しないことを意味し、現行のChimeric antigen receptor(CAR)-T細胞を用いた治療法に比して、より適応範囲が広いという点で優位である。さらに、CAR-T細胞など適応免疫T細胞を拘束するMHCは多様性を呈するのに対し、MAIT細胞を拘束する分子であるMR1は単一性を示すことから、本発明により作製されたm-reMAIT細胞を用いた免疫細胞治療では、個体間で均一の効果を期待することができる。 When m-reMAIT cells were adopted into wild-type mice, the transplanted mice not only suppressed lung metastasis of the transplanted cancer, but also significantly extended the survival time of the mice. In addition, the same effect was exhibited when cancer was transplanted into Vβ8 mice rich in MAIT cells. Furthermore, anti-cancer effects (inhibition of metastasis and prolongation of survival) in mice adopted with m-reMAIT cells and Vβ8 mice were observed for melanoma and lung cancer. This result means that the anticancer effect of MAIT cells does not depend on "specific cancer antigens", and is more adaptive than the current treatment methods using Chimeric antigen receptor (CAR) -T cells. It has an advantage in that it has a wide range. Furthermore, MHC that binds adaptive immune T cells such as CAR-T cells exhibits diversity, whereas MR1, which is a molecule that binds MAIT cells, exhibits unity. Therefore, m-produced by the present invention. Immune cell therapy using reMAIT cells can be expected to have a uniform effect among individuals.
2.マウスMAIT細胞のiPS化
 本発明において「iPS細胞」とは、体細胞内に初期化因子(核初期化因子)を導入し発現させることにより人為的に分化多能性(pluripotency)及び自己複製能を獲得した細胞であり、ES細胞と類似した形質を有する細胞である。「分化多能性」とは、適当な条件下において全ての系譜の細胞に分化する能力をもった細胞と定義されるが、本発明の実施においては、必ずしも全ての系譜の細胞への分化能を有している必要はなく、MAIT細胞、及びその幹細胞又は前駆細胞への分化能を有し、その他1つ以上の細胞系列に分化し得る能力を有していれば良い。ES細胞と類似の形質とは、ES細胞に特異的な表面マーカー分子の存在やテラトーマ形成能等のES細胞に特異的な細胞生物学的性質やES細胞特異的な遺伝子の発現、又は対象細胞における多数の遺伝子群の発現様式の類似性の高さ等で規定することができる。一方、本発明で得られたMAIT細胞由来人工多能性幹細胞(iPS細胞)の多能性はキメラマウスの作製能力により、担保されている。
2. IPS conversion of mouse MAIT cells In the present invention, "iPS cells" are artificially differentiated pluripotency and self-renewal ability by introducing a reprogramming factor (nuclear reprogramming factor) into somatic cells and expressing it. Is a cell that has acquired traits and has similar traits to ES cells. "Potency" is defined as a cell capable of differentiating into cells of all lineages under appropriate conditions, but in the practice of the present invention, the ability to differentiate into cells of all lineages is not necessarily the case. It is not necessary to have MAIT cells, and it is sufficient that they have the ability to differentiate into MAIT cells and their stem cells or progenitor cells, and have the ability to differentiate into one or more other cell lines. The traits similar to ES cells are the presence of surface marker molecules specific to ES cells, cell biological properties specific to ES cells such as teratoma forming ability, expression of genes specific to ES cells, or target cells. It can be defined by the degree of similarity in the expression patterns of a large number of gene groups in. On the other hand, the pluripotency of the MAIT cell-derived induced pluripotent stem cells (iPS cells) obtained in the present invention is guaranteed by the ability to produce chimeric mice.
 本発明において「MAIT細胞」とは、TCRα鎖遺伝子が特有かつ均一なVα-Jα(マウスではVα19-Jα33)で構成されているT細胞であり、より好ましくは、CD26やIL-18Rαを発現する細胞として規定することができる。また、MAIT細胞は、そのTCRが単一性のMR1によって拘束されることも特徴の一つである。さらに、MAIT細胞はTCRβ鎖遺伝子がある特定の組み合わせに偏っており、本発明で得られた一つのiPS細胞では遺伝子再構成済みVβ8. 2が見られたが、別のiPS細胞ではVβ6およびVβ5であった。 In the present invention, the "MAIT cell" is a T cell in which the TCRα chain gene is uniquely and uniformly composed of Vα-Jα (Vα19-Jα33 in mouse), and more preferably expresses CD26 or IL-18Rα. It can be defined as a cell. Another characteristic of MAIT cells is that their TCR is constrained by a single MR1. Furthermore, in MAIT cells, the TCRβ chain gene was biased to a specific combination, and one iPS cell obtained in the present invention showed gene-reconstituted Vβ8.2, whereas another iPS cell showed Vβ6 and Vβ5. Met.
 本発明において、初期化に使用するMAIT細胞は、マウス由来のものを使用することができる。ここで使用されるマウスとしては、例えばC57BL/6、Balb/c、C3H, DBA系統などが挙げられるが、これに限定されるものではない。
 生体内のMAIT細胞は増殖能が非常に貧弱であり、in vitroで増殖させる技術も確立されていないため、MAIT細胞は生体内から採取する必要がある。
 採取部位は特に限定されるものではなく、例えば、臍帯血、末梢血、肺、肝臓、胸腺、脾臓、骨髄、腸管(粘膜固有層、パイエル板)などが挙げられるが、肺であることが好ましい。肺などの組織からMAIT細胞を採取した場合、臍帯血からMAIT細胞を採取した場合に比べてMAIT細胞を初期化して得られたiPS細胞(MAIT-iPS細胞)からMAIT様細胞への分化誘導効率がより高い可能性がある。
In the present invention, the MAIT cells used for reprogramming can be derived from mice. Examples of the mouse used here include, but are not limited to, C57BL / 6, Balb / c, C3H, and DBA strains.
Since MAIT cells in vivo have very poor proliferative capacity and techniques for in vitro proliferation have not been established, MAIT cells need to be collected from in vivo.
The collection site is not particularly limited, and examples thereof include umbilical cord blood, peripheral blood, lung, liver, thymus, spleen, bone marrow, and intestinal tract (lamina propria, Peyer's patch), but lung is preferable. .. When MAIT cells are collected from tissues such as lung, the efficiency of inducing differentiation of iPS cells (MAIT-iPS cells) obtained by reprogramming MAIT cells into MAIT-like cells is higher than when MAIT cells are collected from umbilical cord blood. May be higher.
 MAIT細胞は、例えば以下の方法により得ることができる。例えば、野生型マウスから組織を摘出した後に細断及び粉砕し、単細胞化する。この細胞から単核球を回収し洗浄する。MAIT細胞分画の回収は、例えばAPC-標識した5-OP-RU-loaded murine MR1 tetramer試薬と、抗APCビーズとMSカラムを用いて行うことができる。組織から回収した単核球分画にその他の免疫細胞が極めて多く存在する場合には、例えばビオチン標識したCD19、CD62L、Gr1、CD11b及びTCRγδ抗体の一つ以上で処理した後、陰性細胞集団を回収し、回収した細胞にmurine MR1 tetramer試薬を加えて上記の処理をすることもできる。その後、回収したMAIT細胞分画をCD44抗体、B220抗体、マウスF4/80抗体、TCRβ抗体で処理する。各抗体は標識してもよく、例えばCD44抗体はFITC標識してもよく、B220抗体及びマウスF4/80抗体はPE標識してもよく、TCRβ抗体はPE-Cy7標識してもよい。その後、MACSバッファー等で細胞を洗浄し、mMR1-Tet+TCRβ+B220-Gr1-CD44high(MAIT細胞)をセルソーターで精製する。 MAIT cells can be obtained, for example, by the following methods. For example, tissue is removed from wild-type mice, then shredded and crushed to become unicellular. Mononuclear cells are collected from these cells and washed. Recovery of MAIT cell fractions can be performed using, for example, APC-labeled 5-OP-RU-loaded murine MR1 tetramer reagents, anti-APC beads and MS columns. If the mononuclear cell fraction recovered from the tissue is extremely rich in other immune cells, the negative cell population is treated with one or more of biotin-labeled CD19, CD62L, Gr1, CD11b and TCRγδ antibodies, for example. It is also possible to carry out the above treatment by adding the murine MR1 tetramer reagent to the collected cells. Then, the recovered MAIT cell fraction is treated with a CD44 antibody, a B220 antibody, a mouse F4 / 80 antibody, and a TCRβ antibody. Each antibody may be labeled, for example, the CD44 antibody may be FITC labeled, the B220 antibody and mouse F4 / 80 antibody may be PE labeled, and the TCRβ antibody may be PE-Cy7 labeled. Cells were then washed with MACS buffer and the like, mMR1-Tet + TCRβ + B220 - Gr1 - CD44 high (MAIT cells) purified by cell sorter.
 本発明において、MAIT細胞を初期化するための初期化因子(核初期化因子)としては、公知のものを使用することができ、タンパク性因子又はそれをコードする核酸(ベクターに組み込まれた形態を含む)、あるいは低分子化合物等のいかなる物質から構成されてもよい。例えば、山中因子として知られるOct3/4遺伝子産物、Klf4等のKlfファミリー遺伝子産物、c-Myc等のMycファミリー遺伝子産物、及びSox2等のSoxファミリー遺伝子産物の4因子を用いることができる(Takahashi K, Yamanaka S. (2006). “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors”. Cell 126: 663-676. PMID 16904174)。また、Oct3/4遺伝子産物、Klfファミリー遺伝子産物、及びSoxファミリー遺伝子産物の3因子を導入した後に塩基性線維芽細胞増殖因子(bFGF)などの存在下で培養してiPS細胞を得ることもできる(WO2007/69666号参照)。 In the present invention, a known reprogramming factor (nuclear reprogramming factor) for reprogramming MAIT cells can be used, and a proteinaceous factor or a nucleic acid encoding the same (a form incorporated in a vector) can be used. , Or may be composed of any substance such as a low molecular weight compound. For example, four factors can be used: Oct3 / 4 gene product known as Yamanaka factor, Klf family gene product such as Klf4, Myc family gene product such as c-Myc, and Sox family gene product such as Sox2 (Takahashi K). , Yamanaka S. (2006). “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors”. Cell 126: 663-676. PMID 16904174). In addition, iPS cells can also be obtained by introducing three factors, Oct3 / 4 gene product, Klf family gene product, and Sox family gene product, and then culturing in the presence of basic fibroblast growth factor (bFGF) or the like. (See WO2007 / 69666).
 初期化因子をMAIT細胞に導入するための方法としては、上記の因子をタンパク質として導入する方法を採用することも、当該タンパク質をコードする核酸(DNA、RNA、DNA/RNAキメラ)の形態で用いることもできる。当該核酸(好ましくはcDNA)は、宿主となるMAIT細胞で機能し得るプラスミドベクターやウイルスベクターに挿入して発現ベクターを構築し、核初期化工程に供される。 As a method for introducing the reprogramming factor into MAIT cells, the method of introducing the above factor as a protein is also adopted, or it is used in the form of a nucleic acid (DNA, RNA, DNA / RNA chimera) encoding the protein. You can also do it. The nucleic acid (preferably cDNA) is inserted into a plasmid vector or viral vector capable of functioning in a host MAIT cell to construct an expression vector, and is subjected to a nuclear reprogramming step.
 発現ベクターとしては、MAIT細胞において初期化因子遺伝子の効率的な転写及び発現が可能であり、その後の初期化(iPS細胞化)を誘導できるものであれば限定されるものではないが、当該発明において好適な例としてセンダイウイルスベクターが挙げられる。センダイウイルスは、一本鎖の非分節型マイナス鎖RNAをゲノムとして有するウイルスであり、細胞生物学の分野で幅広く利用されてきたものである。センダイウイルスベクターは、多くの哺乳動物の細胞や組織に遺伝子を導入することができ、ベクターゲノムがRNAの状態で細胞質に留まるため宿主染色体に影響を与えずに済むというメリットがある。センダイウイルスベクターを構築するためのキット製品は市販されており、当業者であれば適宜入手することが可能である。 The expression vector is not limited as long as it can efficiently transcribe and express the reprogramming factor gene in MAIT cells and induce subsequent reprogramming (iPS cellization), but the present invention. As a suitable example in the above, Sendai virus vector can be mentioned. Sendai virus is a virus having a single-stranded non-segmented negative-strand RNA as a genome, and has been widely used in the field of cell biology. The Sendai virus vector has the advantage that genes can be introduced into cells and tissues of many mammals, and the vector genome remains in the cytoplasm in the RNA state, so that the host chromosome is not affected. Kit products for constructing Sendai virus vectors are commercially available and can be appropriately obtained by those skilled in the art.
 また、複数の初期化因子を導入するには、その1つ又は複数の遺伝子を個別のベクターに挿入したものを複数作製し、これら複数種のベクターを同時に処理することが一般的であるが、複数の初期化遺伝子を1つのベクターに搭載し、全ての遺伝子を発現し得るベクターを用いることもできる。 Further, in order to introduce a plurality of reprogramming factors, it is common to prepare a plurality of genes in which one or a plurality of genes are inserted into individual vectors and process these multiple types of vectors at the same time. It is also possible to mount a plurality of reprogramming genes in one vector and use a vector capable of expressing all the genes.
 MAIT細胞を初期化して得られたiPS細胞(MAIT-iPS細胞)は、MAIT細胞特異的に遺伝子再構成が終了したTCRα鎖遺伝子及び/又はこのTCRα鎖と選択的に結合するTCRβ鎖遺伝子を対立遺伝子に有する点で、従来から存在するES細胞やiPS細胞などの多能性幹細胞とは異なる。
 MAIT細胞特異的に遺伝子再構成が終了したTCRα鎖遺伝子を有している多能性幹細胞は、T細胞への分化を誘導し得る条件下におくことによってMAIT細胞と類似の特性を有するMAIT様細胞を選択的に産生する得ることができる。
 なお、MAIT-iPS細胞は、公知の方法による細胞回収、分離、精製法などによって高純度かつ多量に回収することができる。
The iPS cells (MAIT-iPS cells) obtained by reprogramming MAIT cells oppose the TCRα chain gene whose gene rearrangement has been completed specifically for MAIT cells and / or the TCRβ chain gene that selectively binds to this TCRα chain. It differs from the conventional pluripotent stem cells such as ES cells and iPS cells in that it has a gene.
A pluripotent stem cell having a TCRα chain gene whose gene rearrangement has been completed specifically for MAIT cells has characteristics similar to those of MAIT cells by being placed under conditions capable of inducing differentiation into T cells. It can be obtained to selectively produce cells.
The MAIT-iPS cells can be recovered in a high purity and in a large amount by a cell recovery, separation, purification method or the like by a known method.
3.MAIT様細胞の分化誘導
 本発明においては、MAIT-iPS細胞を分化誘導させることによりMAIT様細胞を得る。このようにして分化誘導された細胞は、MAIT細胞と類似の特性を有しており、MAIT細胞がマウスに由来することから、本発明において「m-reMAIT細胞」という。
3. 3. Induction of differentiation of MAIT-like cells In the present invention, MAIT-like cells are obtained by inducing differentiation of MAIT-iPS cells. The cells induced to differentiate in this way have characteristics similar to those of MAIT cells, and since MAIT cells are derived from mice, they are referred to as "m-re MAIT cells" in the present invention.
 m-reMAIT細胞は、mMR1-tetramer(5-OP-RUが提示されたMR1tetramer分子によって認識される)かつTCRβ+であるが、活性化マーカーであるCD44の発現は非常に弱いという特徴を有する。一方、MAIT細胞が富化されたマウス(Vβ8マウスとVα19マウス)では、MAIT細胞はmMR1-tetramer+ (5-OP-RUが提示されたMR1tetramer分子によって認識される)かつTCRβ+であるとともに、CD44は高発現であり、ナイーブマーカーであるCD62Lの発現は非常に低いという特徴を有する。 m-reMAIT cells are mMR1-tetramer + (recognized by the MR1 tetramer molecule presented with 5-OP-RU) and TCRβ + , but are characterized by very weak expression of the activation marker CD44. .. On the other hand, in MAIT cell-enriched mice (Vβ8 and Vα19 mice), MAIT cells are mMR1-tetramer + (recognized by the MR1 tetramer molecule presented with 5-OP-RU) and TCRβ + , as well as CD44 is highly expressed, and the expression of the naive marker CD62L is very low.
 本発明において、分化誘導によってm-reMAIT様細胞を得るための培養法は、特に限定されるものではなく、例えば、フィーダー細胞との共培養法、浮遊培養法、ハンギングドロップ培養法、旋回培養法、軟寒天培養法、マイクロキャリア培養法などを挙げることができる。本発明の好ましい態様において、iPS細胞を分化誘導してm-reMAIT細胞を得るには共培養を行うことが好ましく、具体的には、OP9細胞などのストローマ細胞をフィーダー細胞として共培養し、さらに、Notchリガンドであるdelta-like 1(dlk-1)を強制発現させたOP9細胞(OP9/dlk-1)と共培養すること、又は最初からOP9/dlk-1細胞と共培養することによって、MAIT-iPS細胞から効率的にm-reMAIT細胞を得ることができる。 In the present invention, the culture method for obtaining m-reMAIT-like cells by inducing differentiation is not particularly limited, and for example, a co-culture method with feeder cells, a suspension culture method, a hanging drop culture method, and a swirling culture method. , Soft agar culture method, microcarrier culture method and the like. In a preferred embodiment of the present invention, co-culture is preferable in order to induce differentiation of iPS cells to obtain m-reMAIT cells. Specifically, stromal cells such as OP9 cells are co-cultured as feeder cells, and further. , By co-culturing with OP9 cells (OP9 / dlk-1) forcibly expressing the Notch ligand delta-like 1 (dlk-1), or by co-culturing with OP9 / dlk-1 cells from the beginning. M-re MAIT cells can be efficiently obtained from MAIT-iPS cells.
 このようにして得られたm-reMAIT細胞は、公知の方法による細胞回収、分離、精製を行うことができる。m-reMAIT細胞を精製する方法は、公知となっている細胞の分離精製法であればいずれも用いることができるが、例えばフローサイトメーターや磁気ビーズ、パンニング法等の抗原-抗体反応に準じた方法や、ショ糖、パーコール等の担体を用いた密度勾配遠心による細胞分画法を挙げることができる。 The m-reMAIT cells thus obtained can be recovered, separated and purified by a known method. Any known method for purifying m-reMAIT cells can be used as long as it is a known cell separation and purification method, but it is based on an antigen-antibody reaction such as a flow cytometer, magnetic beads, or a panning method. Examples thereof include a method and a cell fractionation method by density gradient centrifugation using a carrier such as sucrose or Percoll.
 本発明により得られたm-reMAIT細胞は、生体内のMAIT細胞とほぼ同等の形態学的、生理学的及び/又は免疫学的特徴を示す細胞である。MAIT様細胞であることの同定は、MAIT細胞に特異的な1つ又はそれ以上のマーカーの発現を確認することによって行うことができる。マーカーの発現は、抗体を用いた免疫染色法や逆転写酵素介在性ポリメラーゼ連鎖反応(RT-PCR)、ハイブリダイゼーション解析等の公知の細胞組織生物学的手法又は分子生物学的方法により確認することができる。 The m-reMAIT cells obtained by the present invention are cells exhibiting morphological, physiological and / or immunological characteristics almost equivalent to those of MAIT cells in vivo. Identification of a MAIT-like cell can be made by confirming the expression of one or more markers specific to the MAIT cell. Marker expression should be confirmed by known cell tissue biological methods such as immunostaining using antibodies, reverse transcriptase-mediated polymerase chain reaction (RT-PCR), hybridization analysis, or molecular biological methods. Can be done.
4.m-reMAIT細胞が養子移入されたマウス
 一実施形態において、本発明は、マウス由来MAIT細胞が初期化された人工多能性幹細胞の分化誘導により得られたMAIT様細胞を移入することにより得られる、MAIT細胞富化マウス、又は当該MAIT細胞富化マウスの作製方法に関する。
 本発明によって樹立されたm-reMAIT細胞は、生体内MAIT細胞とほぼ同様の細胞表面抗原、遺伝子発現、サイトカイン産生能を備えており(下記)、マウスに移入することにより、腸管や脾臓、肝臓などの組織に局在する。
 マウスへの移入は、1.0 x10~1.0 x107個の細胞を適当な緩衝液又はハンクス平衡塩溶液(HBSS)に懸濁し、これを腹腔内に、又は尾静脈経由で注入すればよい。
 細胞表面抗原:5-OP-RUを提示するmouse MR1 tetramer試薬(NIHより入手)と抗マウスTCRαβ抗体
4. Mice in which m-reMAIT cells have been adopted In one embodiment, the present invention is obtained by transferring MAIT-like cells obtained by inducing differentiation of induced pluripotent stem cells in which mouse-derived MAIT cells have been reprogrammed. , MAIT cell-enriched mouse, or a method for producing the MAIT cell-enriched mouse.
The m-reMAIT cells established by the present invention have almost the same cell surface antigen, gene expression, and cytokine production ability as in vivo MAIT cells (below), and by transferring into mice, the intestinal tract, spleen, and liver. Localized in tissues such as.
For transfer to mice, 1.0 x10 6 to 1.0 x10 7 cells may be suspended in a suitable buffer or Hanks balanced salt solution (HBSS) and injected intraperitoneally or via the tail vein.
Cell surface antigen: mouse MR1 tetramer reagent (obtained from NIH) and anti-mouse TCRαβ antibody presenting 5-OP-RU
5.キメラマウスの作製
 キメラマウスの作製は標準的な方法で行うことができる。本発明において使用されるマウスの種類は、特に限定されるものではない。例えば、Balb/c系統、ICR等が用いられる。本発明においては、取り扱い・繁殖が容易なICRが好ましい。
5. Preparation of Chimeric Mouse The production of a chimeric mouse can be performed by a standard method. The type of mouse used in the present invention is not particularly limited. For example, Balb / c system, ICR, etc. are used. In the present invention, an ICR that is easy to handle and reproduce is preferable.
 まず、系統樹立の目的となるMAIT-iPS細胞を胚内に移入することで、キメラ胚を作製する。このキメラ胚を偽妊娠仮親の子宮内に移植して出産させることによりキメラマウスを作製する。
 ここで、m-reMAIT細胞を移入する対象となる「胚」は、個体発生における受精から出生までの段階の胚を意味し、2細胞期胚、4細胞期胚、8細胞期胚、桑実期胚、胚盤胞などを包含する。
First, a chimeric embryo is prepared by transferring MAIT-iPS cells, which is the purpose of lineage establishment, into the embryo. Chimeric mice are produced by transplanting this chimeric embryo into the uterus of a pseudopregnant foster mother and giving birth.
Here, the "embryo" to which m-reMAIT cells are transferred means an embryo in the stage from fertilization to birth in ontogeny, a 2-cell stage embryo, a 4-cell stage embryo, an 8-cell stage embryo, and a mulberry. Includes stage embryos, blastocysts, etc.
 m-reMAIT細胞を胚内に移入させる方法として、マイクロインジェクション法、凝集法などの公知手法を用いることができる。
 キメラ胚の作製は、まず、ホルモン剤により過排卵処理を施した雌マウスを、雄マウスと交配させる。その後、例えば8細胞期胚を用いる場合には受精から2-2.5日目に、胚盤胞を用いる場合には受精から3.5-4日目に、それぞれ卵管又は子宮から初期発生胚を回収する。回収した胚に、m-reMAIT細胞を注入し、キメラ胚を作製する。
As a method for transferring m-reMAIT cells into an embryo, a known method such as a microinjection method or an agglutination method can be used.
To prepare a chimeric embryo, first, a female mouse that has been overovulated with a hormonal agent is mated with a male mouse. Then, for example, early developmental embryos are collected from the oviduct or uterus 2-2.5 days after fertilization when using 8-cell stage embryos and 3.5-4 days after fertilization when using blastocysts. .. M-reMAIT cells are injected into the collected embryos to prepare chimeric embryos.
 マイクロインジェクション法を採用する場合は、回収した胚に、MAIT-iPS細胞をインジェクターにて注入する。また、凝集法を採用する場合は、MAIT-iPS細胞を、透明帯を除去した正常胚と混合し、凝集させればよい。 When the microinjection method is adopted, MAIT-iPS cells are injected into the collected embryos with an injector. When the aggregation method is adopted, MAIT-iPS cells may be mixed with normal embryos from which the zona pellucida has been removed and aggregated.
 一方、仮親にするための偽妊娠雌マウスは、正常性周期の雌マウスを、精管結紮などにより去勢した雄マウスと交配することにより得ることができる。作出した偽妊娠マウスに対して、上述の方法により作製したキメラ胚を子宮内移植し、その後出産させることによりキメラマウスを作製することができる。 On the other hand, a pseudopregnant female mouse to be a foster parent can be obtained by mating a female mouse with a normal cycle with a male mouse castrated by vas deferens ligation or the like. A chimeric mouse can be produced by intrauterine transplantation of a chimeric embryo prepared by the above-mentioned method into the created pseudopregnant mouse and then giving birth.
 このようなキメラマウスの中から、MAIT-iPS細胞由来の雄マウスを選択する。キメラ率が高い雄のキメラマウスが成熟した後、このマウスを純系マウス系統の雌マウスと交配させる。そして、誕生した子マウスに、MAIT-iPS細胞に由来するマウスの被毛色が現れることにより、MAIT 細胞由来の遺伝子再構成済みTCR遺伝子座がキメラマウスの生殖系列へ導入された可能性があると判断できる。 From such chimeric mice, male mice derived from MAIT-iPS cells are selected. After the male chimeric mouse with a high chimeric rate has matured, this mouse is mated with a female mouse of a pure mouse lineage. Then, it is possible that the gene-reconstructed TCR locus derived from MAIT cells was introduced into the germline of chimeric mice by the appearance of the coat color of mice derived from MAIT-iPS cells in the born offspring mice. I can judge.
 このようにして得られたマウスから、対立遺伝子にMAIT細胞特異的な遺伝子再構成が終了したTCRα鎖またはTCRβ鎖の遺伝子座を有する産仔をPCR法にて選別する。これらマウスを野生型マウスと交配し、その子孫から、対立遺伝子にMAIT細胞特異的TCRα鎖又はTCRβ鎖を有する本発明のマウスを得る。
 ここで、TCRα鎖としては、Vα19及びJα33が挙げられ、TCRβ鎖としてはVβ、D及びJ遺伝子が挙げられる。Vβ遺伝子としては、Vβ8.2、Vβ8.1、Vβ8.3、Vβ6、Vβ5.1等が挙げられ、D遺伝子としてはD1,D2 等が挙げられ、J遺伝子としては、J1.2など12種類のJ断片(J1.1~J1.6とJ2.1~J2.6)が挙げられる。
From the mice thus obtained, offspring having a TCRα chain or TCRβ chain locus for which MAIT cell-specific gene rearrangement has been completed for the allele is selected by the PCR method. These mice are mated with wild-type mice, and the offspring of the mice are obtained from the mice of the present invention having MAIT cell-specific TCRα chains or TCRβ chains as alleles.
Here, examples of the TCRα chain include Vα19 and Jα33, and examples of the TCRβ chain include the Vβ, D and J genes. Examples of Vβ genes include Vβ8.2, Vβ8.1, Vβ8.3, Vβ6, Vβ5.1, etc., D genes include D1, D2, etc., and J genes include 12 types such as J1.2. J fragments (J1.1-J1.6 and J2.1-J2.6) of.
 これらは、Vα19断片とJα33断片が結合したVα19-Jα33、Vβ断片、D断片、J断片が結合したV(x)-D(y)-J(z)( y, zは上に記載した断片であるが、xは8、6、5が好ましい)といったゲノム配置を反映するものである。
 本発明のMAIT細胞特異的TCRα鎖ではVα19及びJα33が隣接して片側の対立遺伝子上に配置されている。また、MAIT細胞特異的TCRβ鎖では、Vβ、D及びJ、例えばVβ8.2、D1及びJ1-2が隣接して片側の対立遺伝子上に配置されている(図7)。
 本発明のマウスは、MAIT細胞に富んでおり、野生型マウスよりも多いMAIT細胞を有する。
These are Vα19-Jα33, Vβ fragment, D fragment, and V (x) -D (y) -J (z) (y, z are the fragments described above, in which the Vα19 fragment and the Jα33 fragment are bound. However, x reflects the genomic arrangement such as (preferably 8, 6 and 5).
In the MAIT cell-specific TCRα chain of the present invention, Vα19 and Jα33 are adjacently arranged on one allele. In the MAIT cell-specific TCRβ chain, Vβ, D and J, such as Vβ8.2, D1 and J1-2, are adjacently arranged on one allele (Fig. 7).
The mice of the present invention are rich in MAIT cells and have more MAIT cells than wild-type mice.
 従って、本発明は、上記の通り作製されたマウスからMAIT細胞を単離し、単離されたMAIT細胞を野生型マウスに移入することを特徴とする、MAIT細胞富化マウスの製造方法を提供する。
 本発明のマウスからMAIT細胞を単離するには、前記「2.マウスMAIT細胞のiPS化」の項で説明した内容と同様の手法を採用することができる。
 MAIT細胞を単離した後は、野生型マウスに対し、腹腔内投与、又は尾静脈経由によりMAIT細胞を移入する。
Therefore, the present invention provides a method for producing a MAIT cell-enriched mouse, which comprises isolating MAIT cells from the mice prepared as described above and transferring the isolated MAIT cells into a wild-type mouse. ..
In order to isolate MAIT cells from the mouse of the present invention, the same method as described in the above section "2. iPS conversion of mouse MAIT cells" can be adopted.
After the MAIT cells are isolated, the MAIT cells are transferred to wild-type mice by intraperitoneal administration or via the tail vein.
6. MAIT細胞を豊富に有するマウスを用いた解析
 本発明のマウスは、種々の疾患研究用モデルマウスとして利用することができる。例えば、Vβ8マウスは抗がん効果を示すため、このマウスにがん細胞を移植してその転移度合いを指標とすることでがん転移抑制を増強する薬剤のスクリーニングに用いることができる。また、m-reMAIT細胞を養子移入したマウスやVβ8マウスは移植されたがんに対して生存延長を示すので、これらを用いて生存期間を延伸させるような薬剤をスクリーニングすることができる。
 本発明のマウスは、例えばメラノーマや肺がん細胞の肺転移を抑制するため、この転移抑制活性をさらに増強する薬剤を抗がん剤としてスクリーニングすることができる。従って、本発明は、上記のとおり作製されたマウスに候補物質を接触させることを特徴とする、がん転移抑制増強剤のスクリーニング方法を提供する。
6. Analysis using a mouse rich in MAIT cells The mouse of the present invention can be used as a model mouse for various disease studies. For example, since Vβ8 mice show an anticancer effect, they can be used for screening for drugs that enhance the suppression of cancer metastasis by transplanting cancer cells into these mice and using the degree of metastasis as an index. In addition, since mice adopting m-reMAIT cells and Vβ8 mice show prolongation of survival against transplanted cancers, they can be used to screen for drugs that prolong survival.
Since the mouse of the present invention suppresses lung metastasis of melanoma and lung cancer cells, for example, a drug that further enhances this metastasis-suppressing activity can be screened as an anticancer agent. Therefore, the present invention provides a method for screening a cancer metastasis inhibitor, which comprises contacting a mouse prepared as described above with a candidate substance.
 本発明は、具体的には以下の工程を含む。(a)本発明のマウスに候補物質を接触させる工程(b)前記接触させたマウスのがん転移抑制を検査する工程 Specifically, the present invention includes the following steps. (A) Step of contacting the candidate substance with the mouse of the present invention (b) Step of examining the suppression of cancer metastasis of the contacted mouse
 候補物質は特に限定されず、既存の薬剤でもよく、その他に、ペプチド、低分子化合物、高分子化合物、これらの塩又は前駆体等のあらゆる形態にあってもよい。本発明において、「接触」とは、候補物質をマウスに投与する態様がある。投与には経口であると非経口であるとを問わない。すなわち、候補物質の投与経路は、薬剤の投与に一般的に採用されている経路であれば、特に限定されるものではなく、例えば経口、舌下、経鼻、経肺、経消化管、経皮、点眼、静脈内注射、皮下注射、筋肉内注射、腹腔内注射、局所注射、外科的移植が挙げられ、好ましくは経口投与である。 The candidate substance is not particularly limited, and may be an existing drug, or may be in any form such as a peptide, a low molecular weight compound, a high molecular weight compound, a salt or a precursor thereof. In the present invention, "contact" is an embodiment in which a candidate substance is administered to a mouse. Administration may be oral or parenteral. That is, the administration route of the candidate substance is not particularly limited as long as it is a route generally adopted for administration of the drug, for example, oral, sublingual, nasal, transpulmonary, transdigestive tract, trans. Skin, eye drops, intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, local injection, surgical transplantation are mentioned, and oral administration is preferable.
 工程(b)で検査の対象となる項目は、以下の(i)~(vii)の少なくとも一つである。
  (i) がん転移の有無(程度の差異)
 (ii) 転移先がん細胞の縮小  (iii) マウスの体重  (iv) マウスの摂食量  (v) マウス生存期間
The item to be inspected in the step (b) is at least one of the following (i) to (vii).
(i) Presence or absence of cancer metastasis (difference in degree)
(ii) Shrinkage of metastatic cancer cells (iii) Mouse body weight (iv) Mouse feeding (v) Mouse survival
 上記項目の少なくとも1つが、候補物質の接触により改善した場合は、候補物質は、がん転移抑制薬として選択することができる。
 例えば、本発明のマウスに転移抑制活性を有すると予想される候補を投与し、当該転移が抑制されたか否かを評価すればよい。
If at least one of the above items is improved by contact with the candidate substance, the candidate substance can be selected as a cancer metastasis inhibitor.
For example, a candidate expected to have metastasis-suppressing activity may be administered to the mouse of the present invention, and whether or not the metastasis is suppressed may be evaluated.
 また、MAIT細胞はヒトの感染症、肥満・II型糖尿病、アレルギー、喘息、各種自己免疫疾患において病態制御に関わっていると考えられている。したがって、これら疾患モデルの解析を本発明のマウス(Vα19マウスとVβ8マウス)を使用して行うことで、従来のマウスモデルでは得られない疾患発症や病態に関する新規知見を取得できる。
 例えばVα19マウスやVβ8マウスも用いて上記疾患モデルを作り出した時に、野生型マウスに比して病態の悪化が抑制される、もしくは促進される、等が期待でき、いずれの場合であってもその機序解明により、疾患に対する新知見を得ることができる。
In addition, MAIT cells are considered to be involved in pathological control in human infectious diseases, obesity / type II diabetes, allergies, asthma, and various autoimmune diseases. Therefore, by analyzing these disease models using the mice of the present invention (Vα19 mouse and Vβ8 mouse), it is possible to obtain new findings on disease onset and pathological conditions that cannot be obtained by the conventional mouse model.
For example, when the above disease model is created using Vα19 mice and Vβ8 mice, it can be expected that the exacerbation of the pathological condition is suppressed or promoted as compared with the wild-type mouse, and in any case, the deterioration is expected. By elucidating the mechanism, new findings on the disease can be obtained.
7.抗がん剤およびがんの治療及び/又は予防法
 一実施形態において、本発明は、MAIT細胞が初期化された人工多能性幹細胞の分化誘導により得られたMAIT様細胞を含む、がんの治療及び/又は予防剤に関する。別の実施形態において、本発明は、MAIT細胞が初期化された人工多能性幹細胞の分化誘導により得られたMAIT様細胞、又はがんの治療及び/又は予防剤を対象に投与することを含む、がんの治療及び/又は予防法に関する。MAIT細胞の由来は限定せず、例えば哺乳動物、例えばヒト等の霊長類、ラット、マウス、及びドブネズミ等の実験動物、ブタ、ウシ、ウマ、及びヒツジ等の家畜動物等が挙げられ、例えばヒトに由来してよい。
7. Antineoplastic Agents and Treatment and / or Prevention of Cancer In one embodiment, the invention comprises MAIT-like cells obtained by inducing differentiation of induced pluripotent stem cells in which MAIT cells have been reprogrammed. And / or preventive agents. In another embodiment, the present invention comprises administering to a subject a MAIT-like cell obtained by inducing differentiation of induced pluripotent stem cells in which MAIT cells have been reprogrammed, or a therapeutic and / or prophylactic agent for cancer. Including cancer treatment and / or prevention methods. The origin of MAIT cells is not limited, and examples thereof include mammals such as primates such as humans, experimental animals such as rats, mice, and rats, and domestic animals such as pigs, cows, horses, and sheep, and examples thereof include humans. May be derived from.
 一実施形態において、本明細書に記載のがんの治療及び/又は予防剤、又はMAIT様細胞は、CD8 細胞を介さずに抗がん効果を奏する。一実施形態において、本明細書に記載のがんの治療及び/又は予防剤、又はMAIT様細胞は、NK細胞を介して抗がん効果を奏する。
 本発明のがんの治療及び/又は予防剤は、本明細書に記載のMAIT様細胞に加えて、賦形剤、増量剤、結合剤、滑沢剤等公知の薬学的に許容される担体、公知の添加剤(緩衝剤、等張化剤、キレート剤、着色剤、保存剤、香料、風味剤、甘味剤等)から選択される一つ以上の成分を含んでもよい。
In one embodiment, the cancer therapeutic and / or prophylactic agents described herein, or MAIT-like cells, exert an anti-cancer effect without the intervention of CD8 cells. In one embodiment, the cancer therapeutic and / or prophylactic agents described herein, or MAIT-like cells, exert an anti-cancer effect via NK cells.
The therapeutic and / or prophylactic agents for cancer of the present invention are known pharmaceutically acceptable carriers such as excipients, bulking agents, binders and lubricants, in addition to the MAI T-like cells described herein. , One or more components selected from known additives (buffers, tonicity agents, chelating agents, colorants, preservatives, flavors, flavoring agents, sweetening agents, etc.) may be included.
 本明細書において、がんの種類は限定しないが、例えば皮膚、肺、胃、膵臓、結腸直腸、肝臓、前立腺、膵臓、食道、膀胱、胆嚢・胆管、乳房、子宮、甲状腺、卵巣におけるがんであってよく、転移性がんであってもよい。 In the present specification, the type of cancer is not limited, but for example, cancer in the skin, lung, stomach, pancreas, colonic rectum, liver, prostate, pancreas, esophagus, bladder, gallbladder / bile duct, breast, uterus, thyroid, and ovary. It may be a metastatic cancer.
 本明細書に記載のMAIT様細胞又はがんの治療及び/又は予防剤の投与経路は限定しないが、経口投与又は非経口投与のいずれであってもよく、例えば、静脈、筋肉、腹腔内、腫瘍内又は皮下注射;鼻腔、口腔又は肺からの吸入;又は坐剤、外用剤等により生体(対象となる細胞や臓器)に投与することもできる。 The route of administration of the MAIT-like cells or cancer treatment and / or prophylactic agents described herein is not limited, but may be oral or parenteral, eg, intravenous, muscle, intraperitoneal. It can also be administered to a living body (target cells or organs) by intratumoral or subcutaneous injection; inhalation from the nasal cavity, oral cavity or lungs; or by a suppository, external preparation, or the like.
 本明細書に記載のがんの治療及び/又は予防剤の形態は限定されず、錠剤、カプセル剤、散剤、顆粒剤、丸剤、液剤、シロップ剤、注射剤、外用剤、坐剤、点眼剤であってよい。 The forms of therapeutic and / or prophylactic agents for cancer described herein are not limited, and are tablets, capsules, powders, granules, pills, solutions, syrups, injections, topical agents, suppositories, eye drops. It may be an agent.
 本明細書に記載のがんの治療及び/又は予防剤の投与量は、有効成分の種類、投与経路、投与対象、患者の年齢、体重、性別、症状その他の条件により適宜選択される。投与回数は限定されず、1日1回投与することもでき、数回に分けて投与することもできる。 The dose of the therapeutic and / or prophylactic agent for cancer described in the present specification is appropriately selected depending on the type of active ingredient, the route of administration, the subject of administration, the age, weight, sex, symptoms and other conditions of the patient. The number of administrations is not limited, and it can be administered once a day or in several divided doses.
 本明細書に記載のMAIT様細胞又はがんの治療及び/又は予防剤の投与対象は、例えば哺乳動物、例えばヒト等の霊長類、ラット、マウス、及びドブネズミ等の実験動物、ブタ、ウシ、ウマ、及びヒツジ等の家畜動物等が挙げられ、例えばヒトである。 The target of administration of the MAIT-like cells or cancer treatment and / or preventive agent described herein is, for example, mammals, for example, primates such as humans, experimental animals such as rats, mice, and rats, pigs, cows, and the like. Examples include domestic animals such as horses and sheep, and are humans, for example.
実施例
 以下、実施例により本発明をさらに具体的に説明する。但し、本発明の範囲はこれらの実施例により限定されるものではない。
Examples Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to these examples.
1.マウスからのMAIT細胞濃縮とiPS細胞化
 6週齢C57BL/6(Ly5.2)雄マウス11匹から肺を摘出してPBSで洗浄した後、手術用ハサミで2-3ミリ角に細断し、組織分散溶液(4ml/3匹)(Hank’s平衡塩溶液中に 90U/mlコラゲナーゼ(ヤクルト、521843)、コラゲナーゼタイプII(Worthington, CLS-2)、ディスパーゼ(富士フイルム和光純薬、383-02281)、4% BSAを含む)に入れ、GentleMACS (Miltenyi BioTec社)のマウス肺細胞調製用プログラム1にて組織を粉砕し、組織溶液を回転させながら37℃で30分間インキュベートした。再度GentleMACSにてマウス肺細胞調製用プログラム2でさらに細断し、単細胞化した。これら細胞を100μMのセルストレナーを通してから遠心し、細胞を沈殿させた。沈殿細胞を8mlの40%(v/v)のパーコール溶液に懸濁して、3ml の67%(v/v) のパーコール溶液に重層し、400xgで20分間遠心した。
1. MAIT cell enrichment and iPS cellization from mice After removing the lungs from 11 6-week-old C57BL / 6 (Ly5.2) male mice and washing them with PBS, they are finely divided into 2-3 mm squares with surgical scissors. Tissue dispersion solution (4 ml / 3 animals) (90 U / ml collagenase (Yakult, 521843), collagenase type II (Worthington, CLS-2), dispase (Fujifilm Wako Pure Chemical Industries, Ltd., 383-) in Hank's balanced salt solution) 02281), containing 4% BSA), the tissue was crushed by GentleMACS (Miltenyi BioTec) Mouse Lung Cell Preparation Program 1 and incubated at 37 ° C. for 30 minutes while rotating the tissue solution. It was further shredded again with Gentle MACS in Program 2 for mouse lung cell preparation and unicellularized. These cells were passed through a 100 μM cell strainer and then centrifuged to precipitate the cells. Precipitated cells were suspended in 8 ml of 40% (v / v) Percoll solution, layered in 3 ml of 67% (v / v) Percoll solution, and centrifuged at 400 xg for 20 minutes.
 遠心後、中間層に存在する単核球を回収してPBSで洗浄した。遠心後、単核球細胞をMACSバッファー(0.5% BSA, 2mM EDTAを含むPBS)に懸濁し、ビオチン標識CD19(クローン6D5)、CD62L(クローンMEL-14)、Gr1(クローンRB6-8C5)、CD11b(クローンM1/70)及びTCRγδ抗体(クローンGL3)(いずれもBiolegend社、各4μg/ml)を添加して4℃、15分間反応させた。MACSバッファーで洗浄後、Mojo-sort streptoavidine beads(Biolegend社)とMSカラム(Miltenyi BioTec社)を用いて陰性細胞集団を回収した。回収した細胞をAPC-標識した5-OP-RU-loaded murine MR1 tetramer試薬(NIH tetramer core facilityより分与。以下、mMR1-Tet)を1.2μg/mlの最終濃度となるように加え、室温暗所で45分放置した。 After centrifugation, the monocytes present in the intermediate layer were collected and washed with PBS. After centrifugation, mononuclear cells were suspended in MACS buffer (PBS containing 0.5% BSA, 2 mM EDTA), biotin-labeled CD19 (clone 6D5), CD62L (clone MEL-14), Gr1 (clone RB6-8C5), CD11b. (Clone M1 / 70) and TCRγδ antibody (clone GL3) (both from Biolegend, 4 μg / ml each) were added and reacted at 4 ° C. for 15 minutes. After washing with MACS buffer, negative cell populations were collected using Mojo-sort streptoavidine beads (Biolegend) and MS column (Miltenyi BioTec). The collected cells were added with APC-labeled 5-OP-RU-loaded murine MR1 tetramer reagent (distributed from NIH tetramer core facility; hereinafter, mMR1-Tet) to a final concentration of 1.2 μg / ml, and the temperature was dark. I left it for 45 minutes.
 その後FITC標識CD44抗体(クローンIM7、Biolegend社)、PE標識B220抗体(クローンRA3-6B2)、PE標識マウスF4/80抗体(クローンBM8)、PE-Cy7標識TCRβ抗体(クローンH57-597)(いずれもBiolegend社)を各0.25μg/1x106細胞/100μL となるよう添加し、室温暗所でさらに15分間放置した。標識後、MACSバッファーにて細胞を洗浄し、mMR1-Tet+TCRβ+B220-Gr1-CD44high(MAIT細胞)をセルソーター(BD社、FACS Jazz)で精製した。この時の純度は97%以上で、6,300個のMAIT細胞を得た。同様に10-12週齢C57BL/6(Ly5.1)雄マウス6匹の肺からmMR1-Tet+TCRβ+B220-Gr1-CD44high(MAIT細胞)を精製したところ純度97%以上で31,390個のMAIT細胞が得られた。 After that, FITC-labeled CD44 antibody (clone IM7, Biolegend), PE-labeled B220 antibody (clone RA3-6B2), PE-labeled mouse F4 / 80 antibody (clone BM8), PE-Cy7-labeled TCRβ antibody (clone H57-597) (either Biolegend) was added to each 0.25 μg / 1x10 6 cells / 100 μL, and the mixture was left in a dark place at room temperature for another 15 minutes. After labeling, the cells were washed with MACS buffer, mMR1-Tet + TCRβ + B220 - Gr1 - CD44h igh (MAIT cells) cell sorter (BD Co., FACS Jazz) was purified. At this time, the purity was 97% or more, and 6,300 MAIT cells were obtained. Similarly 10-12 week old C57BL / 6 (Ly5.1) mMR1- Tet + TCRβ from male mice Six lung + B220 - Gr1 - CD44 high ( MAIT cells) 31,390 pieces in the place of 97% purity or more purified MAIT cells were obtained.
センダイウイルスベクターによるマウスMAIT細胞のiPS細胞化
 iPS化因子を搭載したセンダイウイルス(KOSM302L)は産業技術総合研究所 中西 眞人博士より供与された。
 上記の通り得られたMAIT細胞にKOSM302L(WO2012/063817)を感染させて、iPS細胞を得た。
IPS cellization of mouse MAIT cells by Sendai virus vector Sendai virus (KOSM302L) carrying iPS-forming factor was donated by Dr. Masato Nakanishi, National Institute of Advanced Industrial Science and Technology.
The MAIT cells obtained as described above were infected with KOSM302L (WO2012 / 063817) to obtain iPS cells.
(1)Ly5.2 MAIT細胞:6,300個の精製MAIT細胞を遠心し、抗CD3/CD28抗体(15μg/ml CD3ε(クローン145-2C11)、20μg/ml CD28(クローン37.51)いずれもBiolegend社)でコートした96穴プレートに移して、20μLのKOSM302L(8,000 pfu/μL)と80μLのcRPMI(10% (v/v)のFBS、10 mM HEPES-NaOH pH 7.4を含むRPMI培養液)に懸濁し、37℃で16 時間インキユベートした。遠心後、ウイルスに感染したMAIT細胞をマイトマイシン(MMC)処理されたマウス胎児線維芽細胞(MEF)がフィーダー細胞として播種された6穴プレートに移して、4 mLのマウスES細胞培地(StemSure DMEM (富士フイルム和光純薬)、15% (v/v)FBS (BioSera社)、x1 非必須アミノ酸(NEAA) (富士フイルム和光純薬), 2mMグルタミン酸(富士フイルム和光純薬)、100U/mLペニシリン/100μg/mLストレプトマイシン (Lonza社)、1,000 U/mLマウスLIF(富士フイルム和光純薬)、0.1mM 2-メルカプトエタノール(富士フイルム和光純薬))中で4週間培養し、iPSコロニーを形成させた。2日毎に培地交換行い、培養3日目からiPS細胞のナイーブ化を目的としてCHIR99021 (富士フイルム和光純薬、最終濃度3μM)とPD0325901(富士フイルム和光純薬、最終濃度1μM)を添加した。最終的に46個のiPSコロニーを取得した。 (1) Ly5.2 MAIT cells: 6,300 purified MAIT cells were centrifuged and anti-CD3 / CD28 antibody (15 μg / ml CD3ε (clone 145-2C11), 20 μg / ml CD28 (clone 37.51), both from Biolegend). Transfer to a coated 96-well plate and suspend in 20 μL KOSM302L (8,000 pfu / μL) and 80 μL cRPMI (RPMI culture medium containing 10% (v / v) FBS, 10 mM HEPES-NaOH pH 7.4). Inked at 37 ° C for 16 hours. After centrifugation, virus-infected MAIT cells were transferred to a 6-well plate in which mitomycin (MMC) -treated mouse fetal fibroblasts (MEF) were seeded as feeder cells, and 4 mL of mouse ES cell medium (StemSure DMEM) was transferred. Fujifilm Wako Pure Chemical Industries, Ltd.), 15% (v / v) FBS (BioSera), x1 Non-essential amino acids (NEAA) (Fujifilm Wako Pure Chemical Industries, Ltd.), 2 mM glutamate (Fujifilm Wako Pure Chemical Industries, Ltd.), 100 U / mL penicillin / IPS colonies were formed by culturing in 100 μg / mL streptomycin (Lonza), 1,000 U / mL mouse LIF (Fujifilm Wako Pure Chemical Industries, Ltd.), 0.1 mM 2-mercaptoethanol (Fujifilm Wako Pure Chemical Industries, Ltd.) for 4 weeks. .. The medium was changed every 2 days, and CHIR99021 (Fujifilm Wako Pure Chemical Industries, Ltd., final concentration 3 μM) and PD0325901 (Fujifilm Wako Pure Chemical Industries, Ltd., final concentration 1 μM) were added from the 3rd day of culture for the purpose of naive iPS cells. Finally, 46 iPS colonies were acquired.
(2)Ly5.1MAIT細胞:31,390個の精製
 MAIT細胞を遠心し、20μLのKOSM302L(8,000 pfu/μL)と240μLのcRPMIで懸濁し、ゆっくりと振とうさせながら、37℃で2時間45分インキェベートした。遠心後、(1)と同様にしてiPSコロニーを形成し、最終的に36個のiPSコロニーを得た。
(2) Ly5.1 MAIT cells: Centrifuge 31,390 purified MAIT cells, suspend in 20 μL KOSM302L (8,000 pfu / μL) and 240 μL cRPMI, and shake slowly at 37 ° C for 2 hours and 45 minutes. did. After centrifugation, iPS colonies were formed in the same manner as in (1), and finally 36 iPS colonies were obtained.
2.iPSコロニーのピックアップと保存
 顕微鏡下で27ゲージの注射針を用いてiPSコロニーをMEFから物理的に引き剥がし、P20ピペット(Nichiryo)で吸引して、96穴プレートに分注した0.25 % (w/v)Trypsin-1mM EDTA(TE)(富士フイルム和光純薬) 80μL中に移した。37℃で30分間インキュベートし、120μLのcRPMIを加え、よく懸濁して遠心した。遠心後、iPS細胞をMMC処理したMEFが播種されている12穴プレートに移し、増殖させて凍結保存した。 
2. Picking up and storing iPS colonies Under a microscope, the iPS colonies were physically peeled from the MEF using a 27-gauge needle, aspirated with a P20 pipette (Nichiryo), and dispensed into a 96-well plate at 0.25% ( w / v) Trypsin-1 mM EDTA (TE) (Fujifilm Wako Pure Chemical Industries, Ltd.) Transferred to 80 μL. Incubate at 37 ° C. for 30 minutes, add 120 μL of cRPMI, suspend well and centrifuge. After centrifugation, iPS cells were transferred to a 12-well plate seeded with MMC-treated MEF, proliferated and cryopreserved.
3.iPSコロニーがMAIT細胞に由来することの証明
 得られたiPS細胞がMAIT細胞に由来することはPCRを用いて証明した。すなわち、MAIT細胞由来のiPS細胞は遺伝子再構成済みのMAIT細胞特異的なTCR遺伝子座のゲノム配置を有する(図7)。MAIT細胞のTCRはα鎖とβ鎖で構成されており、α鎖はVα19-Jα33に限定される。一方、β鎖はVβ8やVβ6などレパトワが限定されるが一義的には決定されない。そこで下記プライマーセット1を使用することにより、遺伝子再構成が終了したVα19-Jα33をPCRで検出する。
3. Proof that iPS colonies are derived from MAIT cells It was proved by PCR that the obtained iPS cells were derived from MAIT cells. That is, MAIT cell-derived iPS cells have a genetically rearranged MAIT cell-specific TCR locus genome arrangement (Fig. 7). The TCR of MAIT cells is composed of α and β chains, and the α chain is limited to Vα19-Jα33. On the other hand, the β chain has limited repatova such as Vβ8 and Vβ6, but is not uniquely determined. Therefore, by using the following primer set 1, Vα19-Jα33 for which gene rearrangement has been completed is detected by PCR.
プライマーセット1(P1と P3)の配列
 P1: 5’-TCAACTGCACATACAGCACCTC-3’(配列番号1)  P3: 5’-CATGCATTATTCAGCCAGTGCCTTCT-3’ (配列番号3)
 また、下記プライマーセット2(P1とP2)を使用することで遺伝子再構成が終了していないVα19遺伝子をPCRで検出する。
 プライマーセット2の配列
 P1: 5’-TCAACTGCACATACAGCACCTC-3’ (配列番号1)
 P2: 5’-AGCTGCAGAGGTTAGCACAG-3’ (配列番号2)
Primer set 1 (P1 and P3) sequence P1: 5'-TCAACTGCACATACAGCACCTC-3'(SEQ ID NO: 1) P3: 5'-CATGCATTATTCAGCCAGTGCCTTCT-3' (SEQ ID NO: 3)
In addition, by using the following primer set 2 (P1 and P2), the Vα19 gene whose gene rearrangement has not been completed is detected by PCR.
Primer set 2 sequence P1: 5'-TCAACTGCACATACAGCACCTC-3' (SEQ ID NO: 1)
P2: 5'-AGCTGCAGAGGTTAGCACAG-3' (SEQ ID NO: 2)
 これらPCRの組み合わせからLy5.2 MAIT細胞から得られた46個のiPSコロニーが全て遺伝子再構成済みのVα19-Jα33を有しており、MAIT細胞由来であると確認できた。一方、同様な方法によってLy5.1MAIT細胞由来の36個のiPSコロニーを解析したところ、34個において遺伝子再構成済みのVα19-Jα33が確認された。 From the combination of these PCRs, all 46 iPS colonies obtained from Ly5.2 MAIT cells had gene-rearranged Vα19-Jα33, confirming that they were derived from MAIT cells. On the other hand, when 36 iPS colonies derived from Ly5.1 MAIT cells were analyzed by the same method, gene-rearranged Vα19-Jα33 was confirmed in 34 cells.
 得られたiPS細胞を用いて多能性幹細胞からのT細胞分化誘導法に準じてマウスMAIT様細胞の分化誘導を行った(以下、m-reMAIT細胞)。具体的にはMAIT-iPS細胞(Ly5.2もしくはLy5.1由来)をTEで単細胞化し、コンフルエントになった2枚のOP9/dlk-1(10cm 培養皿)上に1.2 x105 細胞ずつ播種し、10% (v/v) FBS (Corning社)を含むαMEM (富士フイルム和光純薬)中で5日間培養して、中胚葉に誘導した。5日後にOP9/dlk-1を含む中胚葉を2 mlのTEで10分間処理して、単細胞化にした。同培地を8 ml添加し、よく懸濁して37℃で45分間静置した。上清に含まれる中胚葉を遠心にて回収して、ヒトFLT3リガンド(Biolegend社)を5 ng/mとなるよう添加し、コンフルエントになった2枚のOP9/dlk-1(10cm 培養皿)上に播種し、培養した。 Using the obtained iPS cells, differentiation of mouse MAIT-like cells was induced according to the method for inducing T cell differentiation from pluripotent stem cells (hereinafter referred to as m-reMAIT cells). Specifically, MAIT-iPS cells (derived from Ly5.2 or Ly5.1) were unicellularized with TE, and 1.2 x 10 5 cells were seeded on two confluent OP9 / dlk-1 (10 cm culture dishes). , 10% (v / v) FBS (Corning) was cultured in αMEM (Fujifilm Wako Pure Chemical Industries, Ltd.) for 5 days to induce mesoderm. After 5 days, mesoderm containing OP9 / dlk-1 was treated with 2 ml TE for 10 minutes to make it unicellular. 8 ml of the same medium was added, suspended well, and allowed to stand at 37 ° C. for 45 minutes. The mesoderm contained in the supernatant was collected by centrifugation, human FLT3 ligand (Biolegend) was added to a concentration of 5 ng / m, and two OP9 / dlk-1 (10 cm culture dishes) became confluent. It was sown on top and cultured.
 3日後にリンパ球幼若細胞をピペティングによって回収し、コンフルエントになったOP9/dlk-1細胞(6穴プレート)上に蒔き直し、20% (v/v) FBS (BioSerum), ヒトFLT3リガンド(5ng/mL、Biolegend社), マウスIL-7 (1 ng/mL、Biolegend社)を含むαMEM (富士フイルム和光純薬)中で培養した。その後、リンパ球幼若細胞が増殖してきたら、これら細胞を10 cmの培養皿中でコンフルエントになったOP9/dlk-1上に移し、さらに増殖させ、フローサイトメトリー解析を行った。
 その結果、3週間で純度92%以上(TCRβ+mMR1tet+で定義)のLy5.2m-reMAIT細胞が1.0 x108 以上、取得できた(図1)。Ly5.1m-reMAIT細胞もほぼ同様の分化パターンを示した。
Three days later, lymphocyte immature cells were collected by pipetting and re-sown on confluent OP9 / dlk-1 cells (6-well plate), 20% (v / v) FBS (BioSerum), human FLT3 ligand (5 ng). / mL, Biolegend), cultivated in αMEM (Fujifilm Wako Pure Chemical Industries, Ltd.) containing mouse IL-7 (1 ng / mL, Biolegend). Then, when the lymphocyte immature cells proliferated, these cells were transferred onto the confluent OP9 / dlk-1 in a 10 cm culture dish, further proliferated, and flow cytometric analysis was performed.
As a result, purity of 92% or more in three weeks (TCRβ + mMR1tet + definition) Ly5.2m-reMAIT cells 1.0 x10 8 or more, can be acquired (Fig. 1). Ly5.1m-reMAIT cells also showed a similar differentiation pattern.
4.m-reMAIT細胞を用いた抗がん効果 
 上記で得られたLy5.2m-reMAIT細胞(1.0 x106)を野生型マウス(C57BL/6)腹腔内に養子移入し、5日後にマウスメラノーマ(B16F10)を尾静脈経由で移植した。B16F10移植18日後にマウスを安楽死させ、肺に転移したがん結節数を測定したところ、B16F10のみを移植した対照群に比して、有意にがん転移が抑制されていた(図2A-2B)。
 さらに同条件にてマウス生存を追跡したところ、Ly5.2m-reMAIT細胞を移入したマウスは非移入マウスに比して生存期間の有意な延長が見られ、これはLy5.1m-reMAIT細胞移入でも観察された(図3)。さらにLy5.2m-reMAIT細胞移入による生存延長はマウス肺がんLewis lung carcinoma(LLC)でも観察された(図4)。
4. Anti-cancer effect using m-reMAIT cells
The Ly5.2 m-reMAIT cells (1.0 x 10 6 ) obtained above were adopted into the abdominal cavity of wild-type mice (C57BL / 6), and 5 days later, mouse melanoma (B16F10) was transplanted via the tail vein. Eighteen days after B16F10 transplantation, mice were euthanized and the number of cancer nodules metastasized to the lungs was measured. As a result, cancer metastasis was significantly suppressed compared to the control group transplanted with B16F10 alone (Fig. 2A-). 2B).
Furthermore, when mouse survival was followed under the same conditions, mice transferred with Ly5.2m-reMAIT cells showed a significant prolongation of survival compared with non-transferred mice, which was also observed with Ly5.1m-reMAIT cell transfer. It was observed (Fig. 3). In addition, prolongation of survival by Ly5.2 m-reMAIT cell transfer was also observed in mouse lung cancer Lewis lung carcinoma (LLC) (Fig. 4).
5.キメラマウスを経由したMAIT細胞由来iPS細胞(MAIT-iPS細胞)からの新規モデルマウス
 MAIT-iPS細胞を用いて、以下の通りキメラマウスを作製した。得られた46個(クローン)のLy5.2 MAIT-iPS細胞から3クローンを選択し、これをICRから調製した8細胞胚にインジェクションした。このインジェクションは特定非営利法人発生工学研究会(大阪大学微生物研究所)によって行われた。各クローンを10―20個の胚にインジェクトし、それぞれ3匹の仮腹メスマウスに戻した結果、全部で11匹のオスのキメラマウスが得られた。このうちキメラ率が60-90%のマウス1匹においてiPS細胞が始原生殖細胞(精子)への分化に寄与する生殖系列キメラであることが確認され、これを8週齢メスC57BL/6 (日本クレア)と交配させ、黒色の産仔を選択した。黒色の産仔はC57BL/6 MAIT細胞由来の遺伝子である遺伝子再構成済みTCR遺伝子座を受け継いでいる可能性があるので、これをPCRにて確認した。
5. A new model mouse from MAIT cell-derived iPS cells (MAIT-iPS cells) via a chimeric mouse MAIT-iPS cells were used to prepare chimeric mice as follows. Three clones were selected from the obtained 46 (clones) Ly5.2 MAIT-iPS cells and injected into 8-cell embryos prepared from ICR. This injection was performed by the Nonprofit Organization Developmental Engineering Study Group (Osaka University Microbial Research Institute). Each clone was injected into 10-20 embryos and returned to 3 fostered female mice, resulting in a total of 11 male chimeric mice. Of these, it was confirmed that iPS cells are germline chimeras that contribute to the differentiation into primordial germ cells (sperm) in one mouse with a chimera rate of 60-90%, and this was confirmed as an 8-week-old female C57BL / 6 (Japan). It was mated with Claire) and black offspring were selected. The black offspring may have inherited the reconstituted TCR locus, which is a gene derived from C57BL / 6 MAIT cells, and this was confirmed by PCR.
 得られた黒色産仔36匹から6匹がVα19-Jα33を、14匹がVβ8.2-D1-J1.2を、また4匹がVα19-Jα33とVβ8.2-D1-J1.2をその対立遺伝子中に有していた。Vα19-Jα33またはVβ8. 2-D1-J1.2を有するマウスはC57BL/6と交配させるとメンデルの法則に従い、産仔として野生型とこれら遺伝子配置を持つマウスを1対1の割合で産生した。Vα19-Jα33とVβ8.2-D1-J1.2の両方を持つマウスとC57BL/6とを交配したところ、産仔としてVα19-Jα33のみを有するマウス(Vα19マウス)、Vβ8.2-D-1-J1-2のみを有するマウス(Vβ8マウス)、野生型マウス、Vα19-Jα33とVβ8.2-D1-J1.2の両方を持つマウスが産生された。Vβ8.2-D1-J1.2遺伝子座を有するマウスは下記プライマーセット3(プライマーP4とP6)を用いたPCRにて検出可能である。 From the 36 black pups obtained, 6 had Vα19-Jα33, 14 had Vβ8.2-D1-J1.2, and 4 had Vα19-Jα33 and Vβ8.2-D1-J1.2. It was in the allele. Mice carrying Vα19-Jα33 or Vβ8.2-D1-J1.2 produced wild-type and mice with these gene arrangements as offspring in a 1: 1 ratio according to Mendel's laws when mated with C57BL / 6. .. When C57BL / 6 was crossed with a mouse having both Vα19-Jα33 and Vβ8.2-D1-J1.2, a mouse having only Vα19-Jα33 as a offspring (Vα19 mouse), Vβ8.2-D-1 -Mice with only J1-2 (Vβ8 mice), wild-type mice, mice with both Vα19-Jα33 and Vβ8.2-D1-J1.2 were produced. Mice carrying the Vβ8.2-D1-J1.2 locus can be detected by PCR using the following primer set 3 (primers P4 and P6).
プライマーセット3
 プライマー4: 5’-GTACTGGTATCGGCAGGAC-3’ (配列番号4)
 プライマー6: 5’-GAGCCGAAGGTGTAGTCGG-3’ (配列番号6)
 一方、野性型(遺伝子再構成の終了していない)のTCRβ遺伝子座は下記プライマーセット4(P4とP5)を用いたPCRにて検出可能である(図7)。プライマーセット4
 プライマー4: 5’-GTACTGGTATCGGCAGGAC-3’ (配列番号4)
 プライマー5: 5’-CTCATGCTGTGTGGTTCCTAGT-3’ (配列番号5)
Primer set 3
Primer 4: 5'-GTACTGGTATCGGCAGGAC-3' (SEQ ID NO: 4)
Primer 6: 5'-GAGCCGAAGGTGTAGTCGG-3' (SEQ ID NO: 6)
On the other hand, the wild type (not completed gene rearrangement) TCRβ locus can be detected by PCR using the following primer set 4 (P4 and P5) (Fig. 7). Primer set 4
Primer 4: 5'-GTACTGGTATCGGCAGGAC-3' (SEQ ID NO: 4)
Primer 5: 5'-CTCATGCTGTGTGGTTCCTAGT-3' (SEQ ID NO: 5)
 Vα19マウス、Vβ8マウス、野生型C57BL/6マウスの頬静脈から50μL採血し、5μL EDTA (100 mM)が入った1.5 mlチューブに移した。攪拌後、20μLを別の1.5 mlチューブに入れて、PE標識抗B220抗体(0.05μg)、PE標識抗Gr1抗体(0.05μg)、APC標識mMR1tet(0.012μg) PE-Cy7標識マウスTCRβ抗体(0.05μg) と混合し、室温暗所で45分間インキェベートした。次にBD Lysing solution (BD Bioscience社)を300μL添加し、よく攪拌して、10分間室温で静置した。1mLのFACSバッファーを添加して遠心を行い、上清を捨てて、細胞を100μLのFACSバッファーに懸濁し、MACS Quant(Miltenyi BioTec社)にてフローサイトメトリー解析を行った。
 その結果、これらマウスはC57BL/6に比して、数十倍から数百倍のMAIT細胞を有していた(図5)。
50 μL of blood was drawn from the buccal vein of Vα19, Vβ8, and wild-type C57BL / 6 mice and transferred to a 1.5 ml tube containing 5 μL EDTA (100 mM). After stirring, 20 μL was placed in another 1.5 ml tube, PE-labeled anti-B220 antibody (0.05 μg), PE-labeled anti-Gr1 antibody (0.05 μg), APC-labeled mMR1tet (0.012 μg), PE-Cy7-labeled mouse TCRβ antibody (0.05 μg). It was mixed with μg) and inked for 45 minutes in a dark place at room temperature. Next, 300 μL of BD Lysing solution (BD Bioscience) was added, the mixture was well stirred, and the mixture was allowed to stand at room temperature for 10 minutes. 1 mL of FACS buffer was added, centrifugation was performed, the supernatant was discarded, cells were suspended in 100 μL of FACS buffer, and flow cytometric analysis was performed with MACS Quant (Miltenyi BioTec).
As a result, these mice had tens to hundreds of times more MAIT cells than C57BL / 6 (Fig. 5).
6. Vβ8マウスを用いた抗がん効果
 Vβ8マウスを用いて上記2の抗がん効果(がんのみ移植)を測定した。
 B16F10メラノーマの場合は2 x105 細胞を尾静脈経由で移植し、LLC肺がんの場合は3 x105 細胞を尾静脈経由で移植した。
 その結果、B16F10に対するがん転移抑制能は野生型マウスに比して有意に優れていた。また、LLCがん移植後の生存期間も野生型マウスに比して有意な延長が観察された(図6)。
6. Anti-cancer effect using Vβ8 mice The anti-cancer effect of 2 above (transplantation of cancer only) was measured using Vβ8 mice.
In the case of B16F10 melanoma, 2 x 10 5 cells were transplanted via the tail vein, and in the case of LLC lung cancer, 3 x 10 5 cells were transplanted via the tail vein.
As a result, the ability to suppress cancer metastasis against B16F10 was significantly superior to that of wild-type mice. In addition, a significant prolongation of survival after LLC cancer transplantation was observed compared to wild-type mice (Fig. 6).
 以上の結果からMAIT細胞は抗がん効果(がん抗原特異的ではない)を有すると結論でき、m-reMAIT細胞はがんの細胞治療法として活用でき、マウスのPOC(Proof of Concept)を示すことができた。 From the above results, it can be concluded that MAIT cells have an anticancer effect (not specific to cancer antigens), m-reMAIT cells can be used as a cell therapy method for cancer, and a mouse POC (Proof of Concept) can be used. I was able to show.
7. m-reMAIT細胞を用いた抗がん効果の作用機序
 「4.m-reMAIT細胞を用いた抗がん効果」に記載された方法と同様にLy5.2m-reMAIT細胞(1.0 x106)を野生型マウス(C57BL/6)腹腔内に養子移入し、Ly5.2m-reMAIT細胞移入群(「L7-1」とも記載する)と非移入群にそれぞれCD8細胞をマウスから除去するモノクローナル抗体(anti-CD8)を注入、又は対照として同容量のIgGを注入したマウスにLLC(3.0 x105)を尾静脈経由で移植してマウスの生存期間を測定した。より具体的にはLLC投与5日前に1.0 x106L7-1を投与し、LLC投与前日に200μgのanti-CD8抗体(clone 2.43:Bio X cell)もしくは同量のrat IgG2b isotype control (clone LTF2: Bio X cell) を腹腔内投与した。LLC投与後、7日後、14日後にanti-CD8抗体もしくはcontrol IgGを同量投与して生存期間測定を行なった。
7. Mechanism of action of anticancer effect using m-reMAIT cells Ly5.2 m-reMAIT cells (1.0 x 10 6) similar to the method described in "4. Anticancer effect using m-reMAIT cells" ) Is intraperitoneally transferred into wild-type mice (C57BL / 6), and CD8 cells are removed from the mice in the Ly5.2m-reMAIT cell transfer group (also referred to as "L7-1") and the non-transfer group, respectively. The survival time of mice was measured by transplanting LLC (3.0 x 10 5 ) via the tail vein into mice injected with (anti-CD8) or injected with the same volume of IgG as a control. More specifically, 1.0 x10 6 L7-1 was administered 5 days before LLC administration, and 200 μg of anti-CD8 antibody (clone 2.43: Bio X cell) or the same amount of rat IgG2b isotype control (clone LTF2:) was administered the day before LLC administration. Bio X cell) was administered intraperitoneally. The same amount of anti-CD8 antibody or control IgG was administered 7 days and 14 days after the administration of LLC, and the survival time was measured.
 結果を図8に示す。縦軸はマウスの生存率、横軸は生存日数を表す。各群間の統計計算はLog Rank testを用いて行い、Bonferroni法で多重比較の補正をし、P<0.05 を統計的有意差あり(*)と判定した。図4と同様にreMAIT細胞を養子移入した群では、IgGを注入してもreMAIT細胞を移入しなかった群に比べて生存日数が延長している(L7-1+IgGとIgGの比較)。また、reMAIT細胞を養子移入した群では、anti-CD8を注入してCD8細胞を個体から削除したものでもreMAIT細胞を移入しなかった群に比べて生存日数が延長している(L7-1+anti-CD8とanti-CD8の比較)。よって細胞傷害性T細胞であるCD8 T細胞を含むCD8 細胞は、reMAIT細胞による抗がん効果には関与しないことが示された。 The results are shown in Fig. 8. The vertical axis represents the survival rate of mice, and the horizontal axis represents the number of days of survival. Statistical calculations between each group were performed using the Log Rank test, and multiple comparisons were corrected by the Bonferroni method, and P <0.05 was determined to be statistically significant (*). Similar to FIG. 4, the group in which reMAIT cells were adopted had a longer survival time than the group in which IgG was injected but did not transfer reMAIT cells (comparison between L7-1 + IgG and IgG). In addition, in the group in which reMAIT cells were adopted, the survival time was prolonged even when anti-CD8 was injected and the CD8 cells were deleted from the individual, compared with the group in which reMAIT cells were not transferred (L7-1 +). Comparison of anti-CD8 and anti-CD8). Therefore, it was shown that CD8 cells including CD8 T cells, which are cytotoxic T cells, are not involved in the anticancer effect of reMAIT cells.
 続いて、上記と同様に、Ly5.2m-reMAIT細胞(1.0 x106)を野生型マウス(C57BL/6)腹腔内に養子移入し、Ly5.2m-reMAIT細胞移入群(「L7-1」とも記載する)と非移入群にそれぞれナチュラルキラー(NK)細胞を個体から除去するウサギポリクローナル抗体(rabbit anti-AsialoGM1:富士フィルム anti-AGM1と記載)を注入した上でLLC(3.0 x105)を尾静脈経由で移植してマウスの生存期間を測定した。より具体的にはLLC投与5日前に1.0 x106L7-1を腹腔内投与し、LLC投与前日に50μlのanti-AGM1(rabbit anti-asialoGM1:富士フィルム)を腹腔内投与した。LLC投与後、14日後に同量の抗体を投与して生存期間測定を行なった。 Subsequently, in the same manner as above, Ly5.2m-reMAIT cells (1.0 x 10 6 ) were adopted into the abdominal cavity of wild-type mice (C57BL / 6), and the Ly5.2m-reMAIT cell transfer group (also referred to as "L7-1") was transferred. Inject a rabbit polyclonal antibody (rabbit anti-AsialoGM1: described as Fujifilm anti-AGM1) that removes natural killer (NK) cells from individuals into the (described) and non-implanted groups, respectively, and then add LLC (3.0 x 10 5 ). Rabbits were transplanted via a vein and the survival time was measured. More specifically, 1.0 x10 6 L7-1 was intraperitoneally administered 5 days before LLC administration, and 50 μl of anti-AGM1 (rabbit anti-asialoGM1: Fujifilm) was intraperitoneally administered the day before LLC administration. Fourteen days after the administration of LLC, the same amount of antibody was administered and the survival time was measured.
 結果を図9に示す。縦軸はマウスの生存率、横軸は生存日数を表す。各群間の統計計算はLog Rank testを用いて行い、 Bonferroni法で多重比較の補正をし、P<0.05 を統計的有意差あり(*)と判定した。図4は、reMAIT細胞養子移入によって観察されたマウス生存期間延伸(none/noneのL7-1/noneの比較)は、anti-AGM1の注入によってキャンセルされる(L7-1/noneとL7-1/anti-AGM1の比較)ことがわかる。よって、reMAIT細胞による抗がん効果(生存期間の延伸)はNK細胞を介したものであることが示された。 The results are shown in Fig. 9. The vertical axis represents the survival rate of mice, and the horizontal axis represents the number of days of survival. Statistical calculations between each group were performed using the Log Rank test, and multiple comparisons were corrected by the Bonferroni method, and P <0.05 was determined to be statistically significant (*). Figure 4 shows that the mouse survival extension observed by reMAIT cell adoption (comparison of none / none L7-1 / none) was canceled by injection of anti-AGM1 (L7-1 / none and L7-1). / anti-Comparison of AGM1) Therefore, it was shown that the anticancer effect (extension of survival time) by reMAIT cells is mediated by NK cells.
 配列番号1~6:合成DNA SEQ ID NO: 1 to 6: Synthetic DNA

Claims (12)

  1.  マウス由来MAIT細胞が初期化された人工多能性幹細胞の分化誘導により得られたMAIT様細胞を移入してなる、MAIT細胞富化マウス。 MAIT cell-enriched mouse obtained by transferring MAIT-like cells obtained by inducing differentiation of induced pluripotent stem cells in which mouse-derived MAIT cells have been reprogrammed.
  2.  MAIT様細胞の移入が、腹腔内への又は尾静脈経由による移入である、請求項1に記載のマウス。 The mouse according to claim 1, wherein the transfer of MAIT-like cells is into the abdominal cavity or via the tail vein.
  3.  マウス由来MAIT細胞が初期化された人工多能性幹細胞を胚移入したキメラ胚由来のMAIT細胞富化マウスであって、MAIT細胞特異的にTCR遺伝子が再構成されたゲノム配置をその対立遺伝子に持つ、前記マウス。 A chimeric embryo-derived MAIT cell-enriched mouse in which mouse-derived MAIT cells have been reprogrammed with induced pluripotent stem cells. The mouse to have.
  4.  Vα19遺伝子及びJα33遺伝子が隣接するように再構成された対立遺伝子を有する、請求項3に記載のマウス。 The mouse according to claim 3, which has an allele in which the Vα19 gene and the Jα33 gene are rearranged so as to be adjacent to each other.
  5.  Vβ遺伝子、D遺伝子及びJ遺伝子が隣接するように再構成された対立遺伝子を有する、請求項3に記載のマウス。 The mouse according to claim 3, which has an allele in which the Vβ gene, the D gene and the J gene are rearranged so as to be adjacent to each other.
  6.  Vβ8.2遺伝子、D1遺伝子及びJβ1.2遺伝子が隣接するように再構成された、請求項5に記載のマウス。 The mouse according to claim 5, wherein the Vβ8.2 gene, the D1 gene and the Jβ1.2 gene are reconstituted so as to be adjacent to each other.
  7.  MAIT細胞が肺に由来する、請求項1~6のいずれか1項に記載のマウス。 The mouse according to any one of claims 1 to 6, wherein the MAIT cells are derived from the lung.
  8.  請求項1~7のいずれか1項に記載のマウスからなる、病態解析用又は薬剤スクリーニング用モデルマウス。 A model mouse for pathological analysis or drug screening, which comprises the mouse according to any one of claims 1 to 7.
  9.  病態ががんである請求項8に記載のマウス。 The mouse according to claim 8, which has a pathological condition of cancer.
  10.  請求項1~9のいずれか1項に記載のマウスからMAIT細胞を単離し、単離されたMAIT細胞を野生型マウスに移入することを特徴とする、MAIT細胞富化マウスの製造方法。 A method for producing a MAIT cell-enriched mouse, which comprises isolating MAIT cells from the mouse according to any one of claims 1 to 9 and transferring the isolated MAIT cells into a wild-type mouse.
  11.  請求項1~9のいずれか1項に記載のマウスに候補物質を接触させることを特徴とする、がん転移抑制増強剤のスクリーニング方法。 A method for screening a cancer metastasis inhibitor, which comprises contacting a mouse according to any one of claims 1 to 9 with a candidate substance.
  12.  MAIT細胞が初期化された人工多能性幹細胞の分化誘導により得られたMAIT様細胞を含む、がんの治療及び/又は予防剤。 A cancer therapeutic and / or preventive agent containing MAIT-like cells obtained by inducing differentiation of induced pluripotent stem cells in which MAIT cells have been reprogrammed.
PCT/JP2020/040361 2019-10-29 2020-10-28 Mouse mait-like cells and mouse rich in mait cells WO2021085450A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021510136A JP7050381B2 (en) 2019-10-29 2020-10-28 Mice MAIT-like cells and mice rich in MAIT cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-196603 2019-10-29
JP2019196603 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021085450A1 true WO2021085450A1 (en) 2021-05-06

Family

ID=75714600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040361 WO2021085450A1 (en) 2019-10-29 2020-10-28 Mouse mait-like cells and mouse rich in mait cells

Country Status (2)

Country Link
JP (1) JP7050381B2 (en)
WO (1) WO2021085450A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069672A1 (en) * 2012-10-30 2014-05-08 第一三共株式会社 Mait-like cells and method for manufacturing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069672A1 (en) * 2012-10-30 2014-05-08 第一三共株式会社 Mait-like cells and method for manufacturing same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHIBA ASAKO, CHIBA ASAKO, TAJIMA RYOHSUKE, TOMI CHIHARU, MIYAZAKI YUSEI, YAMAMURA TAKASHI, MIYAKE SACHIKO: "Mucosal-associated invariant T cells promote inflammation and exacerbate disease in murine models of arthritis", ARTHRITIS & RHEUMATISM, WILEY INTERSCIENCE, US, vol. 64, no. 1, 1 January 2012 (2012-01-01), US , pages 153 - 161, XP055932063, ISSN: 0004-3591, DOI: 10.1002/art.33314 *
NAKAO, H.: "Reprogramming of MAIT Cells to Pluripotency and Redifferentiation.", METHODS IN MOLECULAR BIOLOGY, vol. 2098, 3 December 2019 (2019-12-03), pages 237 - 257, XP055932061, DOI: 10.1007/978-1-0716-0207-2_16 *
WAKAO, H. ET AL.: "Expansion of Functional Human Mucosal-Associated Invariant T Cells via Reprogramming to Pluripotency and Redifferentiation.", CELL STEM CELL, vol. 12, no. 5, pages 546 - 558, XP055243716, DOI: 10.1016/j.stem. 2013.03.00 1 *
WAKAO, HIROSHI ET AL.: "Emerging and Re-emerging Infectious Diseases IV. Special Lecture, Prevention and treatment for intractable infectious diseases through the iPS C-based technology : status quo and perspective", JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 74, no. 12, 1 December 2016 (2016-12-01), pages 2064 - 2069 *

Also Published As

Publication number Publication date
JP7050381B2 (en) 2022-04-08
JPWO2021085450A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US11555207B2 (en) CRISPR/Cas9 complex for introducing a functional polypeptide into cells of blood cell lineage
CN108368520B (en) Genome engineering of pluripotent cells
US11643668B2 (en) CRISPR/Cas9 complex for genomic editing
Leitch et al. Rebuilding pluripotency from primordial germ cells
Sadeqi Nezhad et al. Induced pluripotent stem cells (iPSCs) provide a potentially unlimited T cell source for CAR-T cell development and off-the-shelf products
EP2915880B1 (en) Mait-like cells and method for manufacturing same
US20200270581A1 (en) Cellular reprogramming using temporal and transient plasmid vector expression system
WO2011007176A1 (en) Cells, compositions and methods
JP6320473B2 (en) Immunotherapy using allo NKT cells and cells for which the α chain region of the T cell antigen receptor (TCR) gene is reconstituted into uniform Vα-Jα and banking of the cell-derived NKT cells
JP6884967B2 (en) Human myeloid blood cells and method for producing the cells
Guo et al. Generation and clinical potential of functional T lymphocytes from gene-edited pluripotent stem cells
JP7050381B2 (en) Mice MAIT-like cells and mice rich in MAIT cells
CN117480249A (en) Stem cells comprising unrearranged T Cell Receptor (TCR) loci and methods of use thereof
Eminli et al. Differentiation stage determines reprogramming potential of hematopoietic cells into iPS cells
US20240117380A1 (en) Crispr/cas9 complex for genomic editing
Nezhad Induced Pluripotent Stem Cells Provide an Unlimited T-cell Source for CAR-T cell Development and A Potential Source for Off-the-shelf Products
Porras Deriving induced pluripotent stem cells from acute myeloid leukemia patients towards applications of autologous therapies and disease modeling
CN116479041A (en) Gene construct and method for producing multi-lineage hematopoietic stem/progenitor cells
EA046022B1 (en) ANTIGENSPECIFIC IMMUNE EFFECTOR CELLS
Jones et al. Harry G. Leitch, Jennifer Nichols, Peter Humphreys, Carla Mulas, Graziano Martello, Caroline Lee, 2

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021510136

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880877

Country of ref document: EP

Kind code of ref document: A1