WO2021082998A1 - 一种抑菌透气呼吸装置 - Google Patents
一种抑菌透气呼吸装置 Download PDFInfo
- Publication number
- WO2021082998A1 WO2021082998A1 PCT/CN2020/122402 CN2020122402W WO2021082998A1 WO 2021082998 A1 WO2021082998 A1 WO 2021082998A1 CN 2020122402 W CN2020122402 W CN 2020122402W WO 2021082998 A1 WO2021082998 A1 WO 2021082998A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- breathing
- cap
- horizontal
- tube
- electrospinning
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/0027—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
- B01D46/0028—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions provided with antibacterial or antifungal means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/54—Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
- B01D46/543—Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms using membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/54—Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
- B01D46/546—Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms using nano- or microfibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
Definitions
- the invention relates to a breathing device, in particular to a bacteriostatic and breathable breathing device for a secondary water supply pool (tank).
- Secondary water supply facilities refer to the low, medium and high level reservoirs, storage tanks and attached pipelines, valves, pump units, air pressure tanks and other facilities set up to protect the residents' drinking water.
- Most of the existing secondary water supply facilities use high-level pools (tanks) and flat-bottomed tanks with large water storage capacity and most of them are airtight.
- the good air permeability of the secondary water supply pool (tank) is the key to ensuring the safety and health of drinking water quality.
- the tap water is susceptible to a certain degree of pollution.
- the breathing cap of the secondary water supply pool (tank) is poorly sealed or has no cover, which may easily lead to dust and insects.
- the outlet pipe of the secondary water supply pool (tank) is more than ten centimeters away from the bottom of the tank, and a part of the stagnant fire fighting water is stored at the bottom of the tank, thus giving the growth of microorganism Favorable conditions have been created, endangering the safety of drinking water.
- the breathing (venting) device of the conventional secondary water supply pool (tank) is simple in structure, generally in the shape of a chimney, mushroom cap, etc., and 304 stainless steel mesh ⁇ 30 mesh is used inside to prevent dust, insects, organisms, etc. from entering the secondary water supply pool ( Box), the airtightness and gas filtering effect are poor.
- the core filter media in the existing high efficiency air filter (HEPA) and ultra high efficiency air filter (ULPA) are generally ultra-fine glass fiber membranes or melt blown fiber non-woven fabrics, although both can achieve higher filtration efficiency . But during use, the air resistance will rise sharply with the increase of the dust holding capacity, resulting in an increase in energy consumption. In addition, the glass fiber has poor bending resistance and is easy to break during processing and use, which affects the filtration efficiency and may also cause cancer. .
- the purpose of the present invention is to provide a bacteriostatic breathable breathing device to ensure that the secondary water supply pool (tank) has good breathability by using the high-efficiency air permeability of the electrospinning nanofibers. Sex.
- Another object of the present invention is to provide a bacteriostatic and breathable breathing device, which uses the highly effective bacteriostatic properties of the nanofibers with electrospinning function to prevent bacteria from passing through the breathing (venting) device outside and inside the secondary water supply pool (tank). The growth of vegetative organisms is inhibited.
- the present invention provides a bacteriostatic breathable breathing device, comprising a breathing tube (1), one end of the breathing tube (1) is connected to a water tank or a pool, and the other end is connected to a breathing cap (3).
- One or more electrospinning functional nanofiber membranes are fixed inside the cap (3) to form the horizontal or/and slope-shaped breathing holes of the breathing cap (3).
- the breathing tube (1) includes a pipe main body and an inner sleeve (2), the pipe main body is an integral structure, one end of which is connected with a water tank or a pool, and the other end is sleeved with the inner sleeve (2) ,
- the breathing cap (3) and the breathing tube (1) are welded by the inner sleeve (2).
- the breathing tube (1) is designed to be chimney-shaped or mushroom-shaped according to the water volume and position of the pool or water tank.
- the pipe body is composed of a horizontal straight pipe (11), a vertical straight pipe (13) and an elbow pipe (12), and the elbow pipe (12) is located between the horizontal straight pipe (11) and the vertical straight pipe (11).
- the inner sleeve (2) is sleeved in the vertical straight tubes (13).
- an electrospinning functional nanofiber membrane (4) is fixed at a horizontal position inside the body of the breathing cap (3) through a breathing cap accessory to form a horizontal breathing hole of the breathing cap.
- a buckle is provided on the inner wall of the body of the breathing cap 3, and the electrospinning functional nanofiber membrane (4) is fixed to the horizontal position inside the body of the breathing cap (3) by a buckle connection. .
- an electrospinning functional nanofiber membrane (5) is obliquely fixed by a breathing cap accessory to form a sloped breathing hole of the breathing cap (3).
- a hinge is provided on the inner wall of the body of the breathing cap (3), and the electrospinning functional nanofiber membrane (5) is obliquely fixed in the breathing cap (3) by means of a quick-connect hinge connection.
- the breathing cap (3) is made of stainless steel as a whole, which includes a middle columnar shape and a semicircular part integrally formed therewith, the horizontal breathing hole is arranged in the middle columnar part, and the slope-shaped breathing hole is arranged in the semicircular part.
- the rest of the breathing device is a hollow structure.
- the antibacterial breathable breathing device of the present invention fixes electrospinning functional nanofiber membranes at different positions inside the breathing cap (3) to form the breathing cap (3) respectively.
- the horizontal or sloping breathing holes are used to use the high-efficiency air permeability of the electrospinning nanofibers to ensure that the secondary water supply pool (tank) has good air permeability.
- the high-efficiency antibacterial properties of the electrospinning nanofibers are used for The growth of fungal organisms from the outside and inside of the secondary water supply pool (tank) through the breathing (ventilation) device is inhibited.
- Figure 1 is a schematic exploded cross-sectional view of a bacteriostatic breathable breathing device of the present invention.
- Electrospinning functional nanofibers as a new type of gas filter material, have attracted widespread attention. Its filtration principle is more complicated. It is generally considered to be the result of the five effects of interception effect, inertia effect, diffusion effect, gravity effect and electrostatic effect. . Electrospinning functional nanofibers have the characteristics of high filtration efficiency, low air resistance and low weight, which will gradually replace traditional fiber materials in dust filtration, indoor air purification, and locomotive air filtration. The invention also applies the electrospinning functional nanofiber material.
- FIG. 1 is a schematic exploded cross-sectional view of a bacteriostatic breathable breathing device of the present invention.
- a bacteriostatic breathable breathing device of the present invention includes: a breathing tube 1, the breathing tube 1 is composed of a pipe main body and an inner sleeve 2, wherein the pipe main body is a stainless steel pipe, and the pipe main body is integrated Shaped structure, which can be designed into a variety of shapes according to the water volume and position of the secondary water supply pool (tank), such as chimney shape, mushroom shape, etc.
- the pipe body is a chimney-shaped structure, which is horizontal and straight.
- the elbow tube 12 is formed between the horizontal straight tube 11 and the vertical straight tube 13, and the inner sleeve 2 is sleeved in the straight tube 13, horizontally.
- the other end of the straight tube 11 is used to communicate with the pool (tank), that is, one end of the breathing tube 1 is connected with the pool (tank), and the other end is connected with a breathing cap 3, and the breathing cap 3 and the breathing tube 1 pass through the inner
- the sleeve 2 is welded to form a welded integral structure.
- the breathing cap 3 is made of stainless steel as a whole, which includes a middle column and a semicircular part integrally formed with it. Electrostatic spinning is fixed at different positions inside the breathing cap 3, respectively.
- the silk functional nanofiber membranes respectively constitute the horizontal or sloped breathing holes of the breathing cap 3.
- an electrospinning functional nanofiber is fixed at the horizontal position (middle columnar part) of the breathing hole inside the breathing cap 3
- the fiber membrane 4 constitutes the horizontal breathing hole of the breathing cap.
- a buckle is provided on the inner wall of the body of the breathing cap 3, and the electrospinning functional nanofiber membrane 4 It is fixed to the horizontal position inside the breathing cap 3 by a snap connection.
- an electrospinning functional nanofiber membrane 5 is obliquely fixed to form the breathing cap 3, in a specific embodiment of the present invention, a hinge is provided on the inner wall (that is, the arc inner wall) of the body of the breathing cap 3, and the electrospinning functional nanofiber membrane 5 is connected by a hinge. It is obliquely fixed inside the breathing cap 3 to achieve a slope-like breathing hole, and the horizontal or slope-like electrospinning functional nanofiber membrane is subject to internal pressure (in special circumstances such as overflow, the internal pressure exceeds 0.1 MPa) It is easy to fall off, not easy to fall off under external pressure, and when replacing the breathing hole, it can be quickly replaced by quick-connect buckle or quick-connect hinge.
- the air filtration uses electrospinning functional nanofiber membranes.
- the functional nanofiber membranes must have high-efficiency air and water vapor permeability, where the membrane has a pressure difference of 127Pa (13mm water column)
- the air permeability is 3571 ⁇ 4894 [cm 3 /(cm 2 •s)]
- the (air) permeability of the membrane is 281180.5 ⁇ 385353.6 [ ⁇ m/(Pa •s)]
- the water vapor transmission rate in 24 hours is 3112 ⁇ 3790 g/m 3
- the functional nanofiber membrane must have high antibacterial properties, and its antibacterial (Staphylococcus aureus and Escherichia coli) activity value is greater than 3.
- the breathing device of the present invention is installed on the secondary water supply tank to replace the position of the traditional breathing cap, and it does not directly contact with water when in use.
- One end of the breathing tube 1 is connected to the water tank, and the breathing device Except for the breathing holes (horizontal or sloped breathing holes), the rest of the parts are all hollow structures. Air and water vapor can freely pass through the breathing device.
- the horizontal or sloped breathing holes use electrospinning nanofiber membranes. This function The nanofiber membrane must have high-efficiency air and water vapor permeability on the one hand, and high-efficiency bacteriostasis on the other. In fact, the breathing device of the present invention only needs to pass through one of the horizontal or sloped breathing holes. Two-way autonomous unpowered ventilation (permeable to water vapor and air, and the nanofiber membrane material at the breathing hole can achieve a water vapor and air permeability of 99%).
- the antibacterial breathable breathing device of the present invention fixes electrospinning functional nanofiber membranes at different positions inside the breathing cap (3) to form the level of the breathing cap (3).
- the high-efficiency air permeability of nanofibers with electrospinning function is used to ensure that the secondary water supply pool (tank) has good air permeability.
- the high-efficiency antibacterial property of electrospinning nanofibers is used for secondary The growth of fungal organisms from outside and inside the water supply pool (tank) through the breathing (venting) device is inhibited.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种抑菌透气呼吸装置,包括呼吸管(1),所述呼吸管(1)一端与水箱或水池连通,另一端连接呼吸帽(3),于所述呼吸帽(3)内部固定一片或多片静电纺丝功能纳米纤维膜片,以构成所述呼吸帽(3)的水平状或/和坡度状呼吸孔,本发明通过利用静电纺丝功能纳米纤维的高效透气性,确保二次供水水池具有良好的透气性,同时通过利用静电纺丝功能纳米纤维的高效抑菌性对二次供水水池外来及内部通过呼吸装置的菌类滋生物的生长进行抑制。
Description
本发明涉及一种呼吸装置,特别是涉及一种二次供水水池(箱)的抑菌透气呼吸装置。
二次供水设施是指为了保障居民的生活饮用水而设置的低、中、高位蓄水池、蓄水箱及附属的管道,阀门、水泵机组、气压罐等设施。现有的二次供水设施大多采用高位水池(箱),且为平底水箱,储水量大,大部分密闭,且只有进水和出水两个输水管,仅通过呼吸帽实现水池(箱)与外界进行换(透)气。二次供水水池(箱)良好的透气性是保证饮用水水质的安全与健康的关键。
然而由于二次供水的水池(箱)管理不当或呼吸帽密封不严,使自来水易受到一定程度的污染,如二次供水水池(箱)的呼吸帽密封性差或者无盖,易导致尘、虫等进入水池(箱),造成藻类、微生物、病毒和细菌的滋生,且二次供水水池(箱)的出水管离箱底有十几厘米,箱底保存一部分不流动的消防水,从而给微生物的生长创造了有利条件,危害饮用水安全。此外,有些生物,如麻雀、鸽子等掉进二次供水水池(箱)中淹死,也会引起水质污染。二次供水水池(箱)密封不严给水质带来了很大的破坏,严重的影响了居民的正常用水水质,对居民的身体造成很大的危害。解决好自来水供应的“最后一公里”问题,让市民享受到优质安全的自来水,这就需要解决好二次供水水池(箱)的密封问题。
为解决二次供水水池(箱)的密封问题,高效气体过滤材料的选择及新型二次供水水池(箱)呼吸(透气)装置的开发至关重要。目前常规的二次供水水池(箱)的呼吸(透气)装置结构简单,一般为烟囱、蘑菇帽等形状,内部采用<30目的304不锈钢网以阻挡尘、虫、生物等进入二次供水水池(箱),密封性及气体过滤效果均较差。而现有的高效空气过滤(HEPA)和超高效空气过滤器(ULPA)中的核心过滤介质一般为超细玻璃纤维膜或熔喷纤维非织造布,二者虽然都可达到较高的过滤效率,但在使用过程中空气阻力会随着容尘量的增加而急剧上升,从而导致能耗增加。此外,玻璃纤维的耐折性较差,在加工和使用中容易断裂,影响过滤效率的同时还存在致癌的可能。。
为克服上述现有技术存在的不足,本发明之目的在于提供一种抑菌透气呼吸装置,以通过利用静电纺丝功能纳米纤维的高效透气性,确保二次供水水池(箱)具有良好的透气性。
本发明之另一目的在于提供一种抑菌透气呼吸装置,以通过利用静电纺丝功能纳米纤维的高效抑菌性对二次供水水池(箱)外来及内部通过呼吸(透气)装置的菌类滋生物的生长进行抑制。
为达上述目的,本发明提出一种抑菌透气呼吸装置,包括呼吸管(1),所述呼吸管(1)一端与水箱或水池连通,另一端连接呼吸帽(3),于所述呼吸帽(3)内部固定一片或多片静电纺丝功能纳米纤维膜片,以构成所述呼吸帽(3)的水平状或/和坡度状呼吸孔。
优选地,所述呼吸管(1)包括管道主体以及内套筒(2),所述管道主体为一体成型结构,其一端与水箱或水池连通,另一端套设所述内套筒(2),所述呼吸帽(3)与所述呼吸管(1)通过所述内套筒(2)焊接而成。
优选地,根据水池或水箱的水量、位置,所述呼吸管(1)设计成烟囱状或蘑菇状。
优选地,所述管道主体由水平直形管(11)、垂直直形管(13)以及弯管(12)构成,所述弯管(12)处于所述水平直形管(11)和垂直直形管(13)之间,所述内套筒(2)套设于所述垂直直形管(13)内。
优选地,所述呼吸帽(3)本体内部水平位置通过呼吸帽配件固定一静电纺丝功能纳米纤维膜片(4),以构成所述呼吸帽的水平状呼吸孔。
优选地,于所述呼吸帽3本体的内壁上设置卡扣,所述静电纺丝功能纳米纤维膜片(4)通过卡扣连接的方式固定于所述呼吸帽(3)本体内部的水平位置。
优选地,于所述水平状呼吸孔上方,通过呼吸帽配件倾斜固定一静电纺丝功能纳米纤维膜片(5),以构成所述呼吸帽(3)的坡度状呼吸孔。
优选地,于所述呼吸帽(3)本体的内壁上设置铰链,所述静电纺丝功能纳米纤维膜片(5)通过快接铰链连接的方式倾斜固定于所述呼吸帽(3)内。
优选地,所述呼吸帽(3)整体采用不锈钢材质,其包括中间柱状及与其一体成型的半圆部分,所述水平状呼吸孔设置于中间柱状部分,所述坡度状呼吸孔设置于半圆部分。
优选地,所述呼吸装置除呼吸孔外,其余部位均为中空结构。
与现有技术相比,本发明一种抑菌透气呼吸装置通过在所述呼吸帽(3)内部的不同位置分别固定静电纺丝功能纳米纤维膜片,以分别构成所述呼吸帽(3)的水平状或者坡度状呼吸孔,以利用静电纺丝功能纳米纤维的高效透气性,确保二次供水水池(箱)具有良好的透气性,同时利用静电纺丝功能纳米纤维的高效抑菌性对二次供水水池(箱)外来及内部通过呼吸(透气)装置的菌类滋生物的生长进行抑制。
图1为本发明一种抑菌透气呼吸装置的剖面分解示意图。
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。
静电纺丝功能纳米纤维作为一种新型的气体过滤材料已经引起了广泛关注,其过滤原理比较复杂,一般认为是拦截效应、惯性效应、扩散效应、重力效应及静电效应五中效应共同作用的结果。静电纺丝功能纳米纤维因具有高过滤效率、低空气阻力及低克重等特性,将使其逐步替代传统纤维材料应用于粉尘过滤、室内空气净化、机车空气过滤等方面。本发明也应用了该静电纺丝功能纳米纤维材料。
图1为本发明一种抑菌透气呼吸装置的剖面分解示意图。如图1所示,本发明一种抑菌透气呼吸装置,包括:呼吸管1,所述呼吸管1由管道主体以及内套筒2组成,其中管道主体为不锈钢管道,所述管道主体为一体成型结构,其可以根据二次供水水池(箱)的水量、位置设计成多种形状,如烟囱状、蘑菇状等,在本发明具体实施例中,管道主体为烟囱状结构,其由水平直形管11、垂直直形管13以及一段弯管12构成,其中弯管12出于水平直形管11和垂直直形管13之间,内套筒2套设于直形管13内,水平直形管11的另一端用以与水池(箱)连通,即呼吸管1的一端与水池(箱)连通,另一端连接设置呼吸帽3,所述呼吸帽3与所述呼吸管1通过内套筒2焊接而成,为焊接整体结构,所述呼吸帽3整体采用不锈钢材质,其包括中间柱状及与其一体成型的半圆部分,于所述呼吸帽3内部的不同位置,分别固定有静电纺丝功能纳米纤维膜片,以分别构成所述呼吸帽3的水平状或者坡度状呼吸孔,具体地,于所述呼吸帽3内部呼吸孔水平位置(中间柱状部分)固定一静电纺丝功能纳米纤维膜片4,以构成所述呼吸帽的水平状呼吸孔,在本发明具体实施例中,于所述呼吸帽3本体的内壁上设置卡扣,所述静电纺丝功能纳米纤维膜片4通过卡扣连接的方式固定于所述呼吸帽3内部的水平位置,于所述水平状呼吸孔上方(半圆部分),倾斜固定一静电纺丝功能纳米纤维膜片5,以构成所述呼吸帽3的坡度状呼吸孔,在本发明具体实施例中,于所述呼吸帽3本体的内壁(即圆弧内壁)上设置铰链,所述静电纺丝功能纳米纤维膜片5通过铰链连接的方式倾斜固定于所述呼吸帽3内部,以实现坡度状呼吸孔,所述水平状或者坡度状静电纺丝功能纳米纤维膜片受内部压力(溢流等特殊情况下,内部受压超过0.1MPa)易脱落,受外部压力不易脱落,且更换呼吸孔时可通过快接卡扣或者快接铰链实现快速更换。
在本发明中,空气过滤使用静电纺丝功能纳米纤维膜片,该功能纳米纤维膜片一方面须具有高效的空气、水蒸气透过性,其中膜片在127Pa(13mm水柱)压差的(空气)透气量为3571~4894 [cm
3/(cm
2•s)],膜片的(空气)透气度为281180.5~385353.6 [μm/(Pa •s)],24小时水蒸气透过量为3112~3790 g/m
3;另一方面该功能纳米纤维膜片须具有高效抑菌性,其抑菌(金黄色葡萄球菌和大肠杆菌)活性值大于3。
本发明的工作原理如下:将本发明之呼吸装置安装在二次供水水箱上,取代传统呼吸帽的位置即可,使用时不与水直接接触,呼吸管1的一端与水箱连通,该呼吸装置除了呼吸孔(水平状或者坡度状呼吸孔),其余部位均为中空结构,空气和水蒸气能自由通过该呼吸装置,水平状或者坡度状呼吸孔采用静电纺丝功能纳米纤维膜片,该功能纳米纤维膜片一方面须具有高效的空气、水蒸气透过性,另一方面具有高效抑菌性,实际上本发明之呼吸装置只需通过水平状或者坡度状呼吸孔的其中一个即可实现双向自主无动力透气(透水蒸气和空气,呼吸孔处的纳米纤维膜材料的能实现水蒸气和空气的透过率为99%)。
综上所述,本发明一种抑菌透气呼吸装置通过在所述呼吸帽(3)内部的不同位置分别固定静电纺丝功能纳米纤维膜片,以分别构成所述呼吸帽(3)的水平状或者坡度状呼吸孔,以利用静电纺丝功能纳米纤维的高效透气性,确保二次供水水池(箱)具有良好的透气性,同时利用静电纺丝功能纳米纤维的高效抑菌性对二次供水水池(箱)外来及内部通过呼吸(透气)装置的菌类滋生物的生长进行抑制。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行修饰与改变。因此,本发明的权利保护范围,应如权利要求书所列。
所属领域技术人员根据上文的记载容易得知,本发明技术方案适合在工业中制造并在生产、生活中使用,因此本发明具备工业实用性。
Claims (10)
- 一种抑菌透气呼吸装置,包括呼吸管(1),所述呼吸管(1)一端与水箱或水池连通,另一端连接呼吸帽(3),于所述呼吸帽(3)内部固定一片或多片静电纺丝功能纳米纤维膜片,以构成所述呼吸帽(3)的水平状或/和坡度状呼吸孔。
- 如权利要求1所述的一种抑菌透气呼吸装置,其特征在于:所述呼吸管(1)包括管道主体以及内套筒(2),所述管道主体为一体成型结构,其一端与水箱或水池连通,另一端套设所述内套筒(2),所述呼吸帽(3)与所述呼吸管(1)通过所述内套筒(2)焊接而成。
- 如权利要求1所述的一种抑菌透气呼吸装置,其特征在于:根据水池或水箱的水量、位置,所述呼吸管(1)设计成烟囱状或蘑菇状。
- 如权利要求3所述的一种抑菌透气呼吸装置,其特征在于:所述管道主体由水平直形管(11)、垂直直形管(13)以及弯管(12)构成,所述弯管(12)处于所述水平直形管(11)和垂直直形管(13)之间,所述内套筒(2)套设于所述垂直直形管(13)内。
- 如权利要求1所述的一种抑菌透气呼吸装置,其特征在于:所述呼吸帽(3)本体内部水平位置通过呼吸帽配件固定一静电纺丝功能纳米纤维膜片(4),以构成所述呼吸帽的水平状呼吸孔。
- 如权利要求5所述的一种抑菌透气呼吸装置,其特征在于:于所述呼吸帽3本体的内壁上设置卡扣,所述静电纺丝功能纳米纤维膜片(4)通过卡扣连接的方式固定于所述呼吸帽(3)本体内部的水平位置。
- 如权利要求1所述的一种抑菌透气呼吸装置,其特征在于:于所述水平状呼吸孔上方,通过呼吸帽配件倾斜固定一静电纺丝功能纳米纤维膜片(5),以构成所述呼吸帽(3)的坡度状呼吸孔。
- 如权利要求7所述的一种抑菌透气呼吸装置,其特征在于:于所述呼吸帽3本体的内壁上设置铰链,所述静电纺丝功能纳米纤维膜片(5)通过快接铰链连接的方式倾斜固定于所述呼吸帽(3)内。
- 如权利要求1所述的一种抑菌透气呼吸装置,其特征在于:所述呼吸帽(3)整体采用不锈钢材质,其包括中间柱状及与其一体成型的半圆部分,所述水平状呼吸孔设置于中间柱状部分,所述坡度状呼吸孔设置于半圆部分。
- 如权利要求1所述的一种抑菌透气呼吸装置,其特征在于:所述呼吸装置除呼吸孔外,其余部位均为中空结构。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911051193.2A CN110898569A (zh) | 2019-10-31 | 2019-10-31 | 一种抑菌透气呼吸装置 |
CN201911051193.2 | 2019-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021082998A1 true WO2021082998A1 (zh) | 2021-05-06 |
Family
ID=69815094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/122402 WO2021082998A1 (zh) | 2019-10-31 | 2020-10-21 | 一种抑菌透气呼吸装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110898569A (zh) |
WO (1) | WO2021082998A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110898569A (zh) * | 2019-10-31 | 2020-03-24 | 上海城市水资源开发利用国家工程中心有限公司 | 一种抑菌透气呼吸装置 |
CN111980113A (zh) * | 2020-09-22 | 2020-11-24 | 上海城市水资源开发利用国家工程中心有限公司 | 水箱溢流装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2526354Y (zh) * | 2002-01-30 | 2002-12-18 | 孙险平 | 无吸程管道给水机组 |
US20050092372A1 (en) * | 2003-10-29 | 2005-05-05 | Wade Rodney G. | Flap valve |
CN202070257U (zh) * | 2011-04-02 | 2011-12-14 | 青岛沃泰水技术设备制造有限公司 | 一种空气过滤吸收器及采用该装置的水箱 |
CN206554170U (zh) * | 2017-01-23 | 2017-10-13 | 杭州西子泵业有限公司 | 一种卫生型供水系统 |
CN108570768A (zh) * | 2018-05-14 | 2018-09-25 | 上海城市水资源开发利用国家工程中心有限公司 | 一种制备复合抑菌纳米纤维膜的方法和装置 |
CN208996131U (zh) * | 2018-09-07 | 2019-06-18 | 北京安洁康生物科技有限公司 | 用于水箱的反恐防投入式呼吸器 |
CN110898569A (zh) * | 2019-10-31 | 2020-03-24 | 上海城市水资源开发利用国家工程中心有限公司 | 一种抑菌透气呼吸装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN208844667U (zh) * | 2018-08-02 | 2019-05-10 | 中国中元国际工程有限公司 | 安全卫生储水装置 |
CN210964392U (zh) * | 2019-10-31 | 2020-07-10 | 上海城市水资源开发利用国家工程中心有限公司 | 一种抑菌透气呼吸装置 |
-
2019
- 2019-10-31 CN CN201911051193.2A patent/CN110898569A/zh active Pending
-
2020
- 2020-10-21 WO PCT/CN2020/122402 patent/WO2021082998A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2526354Y (zh) * | 2002-01-30 | 2002-12-18 | 孙险平 | 无吸程管道给水机组 |
US20050092372A1 (en) * | 2003-10-29 | 2005-05-05 | Wade Rodney G. | Flap valve |
CN202070257U (zh) * | 2011-04-02 | 2011-12-14 | 青岛沃泰水技术设备制造有限公司 | 一种空气过滤吸收器及采用该装置的水箱 |
CN206554170U (zh) * | 2017-01-23 | 2017-10-13 | 杭州西子泵业有限公司 | 一种卫生型供水系统 |
CN108570768A (zh) * | 2018-05-14 | 2018-09-25 | 上海城市水资源开发利用国家工程中心有限公司 | 一种制备复合抑菌纳米纤维膜的方法和装置 |
CN208996131U (zh) * | 2018-09-07 | 2019-06-18 | 北京安洁康生物科技有限公司 | 用于水箱的反恐防投入式呼吸器 |
CN110898569A (zh) * | 2019-10-31 | 2020-03-24 | 上海城市水资源开发利用国家工程中心有限公司 | 一种抑菌透气呼吸装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110898569A (zh) | 2020-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2259556B1 (es) | Mejoras introducidas en la patente de invencion n. 200400749. por "proceso de fabricacion y filtro de tejido no tejido y/o de laminas o estructuras inyectadas filtrantes obtenidos por dicho proceso para la filtracion y eliminacion de la legionella pneumofila. | |
WO2021082998A1 (zh) | 一种抑菌透气呼吸装置 | |
CN204574291U (zh) | 室内空气净化器 | |
CN104019499B (zh) | 具有增湿和杀菌性能的空气净化器 | |
CN210964392U (zh) | 一种抑菌透气呼吸装置 | |
CN204073860U (zh) | 一种无泡曝气膜过滤组件及其水处理系统 | |
CN105903054A (zh) | 一种空气吸收消毒装置 | |
CN106915855B (zh) | 一种医院消毒供应中心智能监控净水机 | |
CN107655082A (zh) | 一种带新风功能吊顶式空气净化器 | |
CN208071505U (zh) | 矿泉水消毒净化系统 | |
CN207569995U (zh) | 一种带新风功能吊顶式空气净化器 | |
CN204838109U (zh) | 空气过滤装置 | |
CN105214124B (zh) | 医疗吸引系统净化排放装置 | |
CN204342555U (zh) | 一种新型便携式饮水吸管 | |
CN203852436U (zh) | 一种内镜长期存储装置 | |
CN106075758A (zh) | 可穿戴空气净化装备 | |
CN203750051U (zh) | 一种加湿并净化空气的呼吸设备 | |
CN207006374U (zh) | 一种高效环保的雾霾净化设备 | |
CN207195824U (zh) | 一种水龙头出水口卫生防护装置 | |
CN205517093U (zh) | 一种100级无尘车间的气体循环系统 | |
CN206488391U (zh) | 一种室外空气过滤环保装置 | |
CN205127602U (zh) | 一种压缩空气复合滤芯 | |
CN206131240U (zh) | 一种中央空调净化装置 | |
CN205337710U (zh) | 磁性远红外负离子新型防雾霾口罩 | |
CN205461639U (zh) | 空气净化器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20882510 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20882510 Country of ref document: EP Kind code of ref document: A1 |