WO2021082613A1 - 一种小量程三维传感器及其测试方法 - Google Patents

一种小量程三维传感器及其测试方法 Download PDF

Info

Publication number
WO2021082613A1
WO2021082613A1 PCT/CN2020/108429 CN2020108429W WO2021082613A1 WO 2021082613 A1 WO2021082613 A1 WO 2021082613A1 CN 2020108429 W CN2020108429 W CN 2020108429W WO 2021082613 A1 WO2021082613 A1 WO 2021082613A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
bridge
gauge
measured
strain gauge
Prior art date
Application number
PCT/CN2020/108429
Other languages
English (en)
French (fr)
Inventor
相立峰
李晨
黄肖飞
Original Assignee
南京神源生智能科技有限公司
南京溧航仿生产业研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京神源生智能科技有限公司, 南京溧航仿生产业研究院有限公司 filed Critical 南京神源生智能科技有限公司
Publication of WO2021082613A1 publication Critical patent/WO2021082613A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/1627Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of strain gauges

Definitions

  • the invention belongs to the field of sensor measurement, and relates to a small-range three-dimensional sensor and a test method thereof. Based on the principle of resistance strain type, the invention is mainly used in a gecko-like robot motion mechanics test system.
  • the typical ones in front are the robotics industry, the grinding industry, various friction and wear testing machines, etc.
  • the common ones are resistance Strain principle, photoelectric principle, capacitive principle, electromagnetic principle, etc., one-dimensional sensor, two-dimensional sensor, three-dimensional sensor, six-dimensional sensor, etc.
  • the measurement accuracy is low, which is manifested in the large coupling between dimensions, generally reaching 10%, or even a little bit up to 30%.
  • the imitation gecko motion mechanics test system is concerned, the measuring range required by itself is small, and the eccentric loading is required during the test process, so the three-dimensional sensor with large coupling cannot be used.
  • the present invention proposes a new type of small-range three-dimensional sensor and measurement method.
  • the three-dimensional sensor has a simple elastic body structure, easy to process, especially in theory, small coupling between dimensions, close to zero, and high measurement accuracy. If the inter-dimensional coupling is large due to errors such as machining errors, patch errors, assembly errors, etc., the four-corner trimming process can be used to reduce the inter-dimensional coupling, so that the inter-dimensional coupling is close to zero.
  • a specific technical solution includes an elastic body, an upper cover plate, a lower cover plate and a circuit board.
  • the circuit board is arranged on the elastic body, and the upper cover plate and the lower cover plate are respectively fixed on both sides of the elastic body;
  • the force table, the outer annular contour body and four strain beam groups the outer annular contour body is sleeved on the outside of the force table, the four strain beam groups are evenly arranged between the force table and the outer annular contour body, one end of the strain beam group Fixed on the outer surface of the force platform, the other end is fixed on the inner surface of the outer ring contour body, the strain beam group includes three "T"-shaped strain beams; the strain gages are pasted on the strain beams, and four strain beam groups
  • the strain gauges inside are connected to form a Wheatstone bridge.
  • the signal wires and power lines of the Wheatstone bridge are connected to the circuit board, and the circuit board is welded with core wires.
  • the novel low-range three-dimensional sensor of the present invention is based on the principle of resistance strain type, in which the elastomer is the core component, and its performance indicators directly affect the various performance indicators of the sensor, especially the design of the strain beam and the selection of materials.
  • a plurality of ear seats for fixing the circuit board are uniformly arranged on the inner surface of the outer annular contour body.
  • strain beams in the four strain beam groups as No. 1 strain beam, No. 2 strain beam, No. 3 strain beam, No. 4 strain beam, No. 5 strain beam, No. 6 strain beam, No. 7 strain beam, No. 8 strain beam, No. 9 strain beam, No. 10 strain beam, No. 11 strain beam and No. 12 strain beam, No. 1 strain beam, No. 4 strain beam and No. 9 strain beam form a strain beam group, No. 5 strain Beam, No. 8 strain beam and No. 12 strain beam form the second strain beam group, No. 2 strain beam, No. 3 strain beam and No. 10 strain beam form the third strain beam group, No. 6 strain beam and No. 7 strain beam
  • the beam and the eleventh strain beam constitute the fourth strain beam group;
  • One end of the No. 9 strain beam, No. 10 strain beam, No. 11 strain beam, and No. 12 strain beam is fixed to the inner surface of the force platform.
  • the other end of the No. 9 strain beam is connected to the No. 1 strain beam and the No. 4 strain beam.
  • the confluence point is fixed
  • the other end of the No. 10 strain beam is fixed to the confluence point of the No. 2 strain beam and the No. 3 strain beam
  • the other end of the No. 11 strain beam is fixed to the confluence point of the No. 6 strain beam and the No. 7 strain beam.
  • the other end of No. 2 strain beam is fixed to the junction of No. 5 strain beam and No. 8 strain beam;
  • Paste strain gauges on the No. 9 strain beam, No. 10 strain beam, No. 11 strain beam and No. 12 strain beam are double-grid strain gauges.
  • Paste R14 and R13 strain gauges on one side of the No. 9 strain beam. Paste R9 strain gauge and R10 strain gauge on the other side of No. 9 strain beam;
  • Paste R23 strain gauge and R24 on one side of No. 12 strain beam Strain gauge, paste R18 strain gauge and R17 strain gauge on the other side of No. 12 strain beam;
  • R1 strain gauges, R2 strain gauges, R3 strain gauges and R4 strain gauges form bridge circuit 1, leading to the first voltage output U01, R5 strain gauges, R6 strain gauges, R7 strain gauges and R8 strain gauges form bridge circuit 2, leading to the first One voltage output U02, R9 strain gauge, R10 strain gauge, R11 strain gauge and R12 strain gauge constitutes bridge circuit 3, leading to the first voltage output U03, R13 strain gauge, R14 strain gauge, R15 strain gauge and R16 strain gauge.
  • Bridge 4 leads to the first voltage output U04, R17 strain gauges, R18 strain gauges, R19 strain gauges and R20 strain gauges form bridge circuit 5, leads to the first voltage output U05, R21 strain gauges, R22 strain gauges, R23 strain gauges The sheet and the R24 strain gauge form the bridge circuit 6, which leads to the first voltage output U06.
  • the test method of the small-range three-dimensional sensor proposed by the present invention includes the following steps:
  • Step 1) Based on the design parameters of the small-range three-dimensional sensor, perform finite element calculation in Ansys. When the small-range three-dimensional sensor is fully loaded in each direction, the output voltage value in each direction is:
  • U Fx is the output voltage of bridge 1 (ie the bridge in the Fx direction) when Fx full-scale forward loading
  • U Fy-Fx is the Fx full-scale forward loading
  • bridge 2 ie Measure the output voltage of the bridge in the Fy direction
  • U Fz-Fx is the Fx full-scale forward load, measure the output voltage of the bridge in the Fz direction (ie, one of the output voltages of bridge 3, bridge 4, bridge 5, and bridge 6)
  • K is the sensitivity coefficient
  • Ui is the bridge excitation voltage
  • ⁇ 1 is the strain measured by the R1 strain gauge
  • ⁇ 2 is the strain measured by the R2 strain gauge
  • ⁇ 3 is the strain measured by the R3 strain gauge.
  • ⁇ 4 is the strain measured by the R4 strain gauge
  • ⁇ 5 is the strain measured by the R5 strain gauge
  • ⁇ 6 is the strain measured by the R6 strain gauge
  • ⁇ 7 is the strain measured by the R7 strain gauge
  • ⁇ 8 is the strain measured by the R8 strain gauge
  • U u03 is the output voltage of bridge 3
  • U u04 is the output voltage of bridge 4
  • U u05 is the output voltage of bridge 5
  • U u06 is the output voltage of bridge 6;
  • U Fy is the output voltage of bridge circuit 2 (that is, the bridge circuit in the direction of Fy) when Fy full-scale is loaded in the forward direction;
  • U Fx-Fy is the Fy full-scale forward load, the bridge circuit 1 (that is, the measurement of Fx The output voltage of the bridge circuit in the direction of Fy;
  • U Fz-Fy is the full-scale forward load of Fy, and the bridge circuit in the direction of Fz is measured (ie the sum of the output voltages of bridge circuit 3, bridge circuit 4, bridge circuit 5, and bridge circuit 6)
  • K is the sensitivity factor,
  • Ui is the bridge excitation voltage,
  • ⁇ 1 is the strain measured by the R1 strain gauge,
  • ⁇ 2 is the strain measured by the R2 strain gauge, and
  • ⁇ 3 is the strain measured by the R3 strain gauge.
  • ⁇ 4 is the strain measured by the R4 strain gauge
  • ⁇ 5 is the strain measured by the R5 strain gauge
  • ⁇ 6 is the strain measured by the R6 strain gauge
  • ⁇ 7 is the strain measured by the R7 strain gauge.
  • the measured strain, ⁇ 8 is the strain measured by the R8 strain gauge;
  • U u03 is the output voltage of bridge 3
  • U u04 is the output voltage of bridge 4
  • U u05 is the output voltage of bridge 5
  • U u06 is the output voltage of bridge 6;
  • U Fz is the output voltage of the bridge circuit in the Fz direction (ie the sum of the output voltages of bridge circuit 3, bridge circuit 4, bridge circuit 5, and bridge circuit 6) when the Fz full-scale forward load is loaded;
  • U Fx- Fz is the output voltage of Bridge 1 (the bridge in the direction of Fx) when Fz is fully loaded in the forward direction;
  • U Fy-Fy is the output voltage of Bridge 2 (the bridge in the direction of Fy is measured when the Fz is loaded in the forward direction) Output voltage;
  • K is the sensitivity factor
  • Ui is the bridge excitation voltage
  • ⁇ 1 is the strain measured by the strain gauge R1
  • ⁇ 2 is the strain measured by the strain gauge R2
  • ⁇ 3 is the strain measured by the strain gauge R3
  • ⁇ 4 is the strain measured by the R4 strain gauge
  • ⁇ 5 is the strain measured by the R5 strain gauge
  • ⁇ 6 is the strain measured by the R6 strain gauge
  • ⁇ 7 is the strain measured by the R7 strain gauge.
  • Step 2 Coupling calculation between dimensions:
  • Fx coupling is: ;
  • Fz coupling is: ;
  • the test method of the present invention in order to make the coupling between dimensions close to zero, different methods are used for the measurement in the three directions.
  • the lateral direction (Fx and Fy) uses the bending strain measurement method
  • the normal direction (Fz) uses the shear strain measurement method.
  • the method through Ansys finite element calculation, can achieve the goal that the inter-dimensional coupling is close to zero, even when eccentric loading, the inter-dimensional coupling is close to zero.
  • U u03 output voltage of the bridge 3 U u04 is the output voltage of the bridge 4, U u05 output voltage of the bridge 5, U u06 6 of the bridge output voltage, K is the sensitivity factor, U i is Bridge excitation voltage, ⁇ 9 is the strain measured by the R9 strain gauge, ⁇ 10 is the strain measured by the R10 strain gauge, ⁇ 11 is the strain measured by the R11 strain gauge, and ⁇ 12 is the strain measured by the R12 strain gauge. The measured strain, ⁇ 13 is the strain measured by the R13 strain gauge, ⁇ 14 is the strain measured by the R14 strain gauge, ⁇ 15 is the strain measured by the R15 strain gauge, and ⁇ 16 is the strain measured by the R16 strain gauge.
  • the amount of strain measured by the strain gauge ⁇ 17 is the amount of strain measured by the R17 strain gauge, ⁇ 18 is the amount of strain measured by the R18 strain gauge, ⁇ 19 is the amount of strain measured by the R19 strain gauge, and ⁇ 20 is The amount of strain measured by the R20 strain gauge, ⁇ 21 is the amount of strain measured by the R21 strain gauge, ⁇ 22 is the amount of strain measured by the R22 strain gauge, ⁇ 23 is the amount of strain measured by the R23 strain gauge, ⁇ 24 is the amount of strain measured by the R24 strain gauge.
  • the strain can hardly reach the required resolution and accuracy, if it must reach the required strain
  • the thickness of the strain beam is less than 1mm.
  • the elastomer material of the present invention is aluminum, the strain beam less than 1mm is bound to deform during machining. Generally, the processing requirements for aluminum parts require the thickness of the strain beam to be at least 1mm. Therefore, the design Four bridges measure the normal direction (Fz), and finally the measurement results of these four bridges are added in the software to get the normal (Fz) force value (or voltage value). In this way, the method of measuring a specific direction through multiple bridges has scientifically and effectively solved the development of small-range multi-dimensional force sensors.
  • U u01 is the output voltage of bridge 1
  • K is the sensitivity coefficient
  • U i is the excitation voltage of the bridge
  • ⁇ 1 is the strain measured by the R1 strain gauge
  • ⁇ 2 is the strain measured by the R2 strain gauge
  • ⁇ 3 is the amount of strain measured by the R3 strain gauge
  • ⁇ 4 is the amount of strain measured by the R4 strain gauge.
  • U u02 is the output voltage of bridge 2
  • K is the sensitivity coefficient
  • U i is the excitation voltage of the bridge
  • ⁇ 5 is the strain measured by the R5 strain gauge
  • ⁇ 6 is the strain measured by the R6 strain gauge
  • ⁇ 7 is the amount of strain measured by the R7 strain gauge
  • ⁇ 8 is the amount of strain measured by the R8 strain gauge.
  • the Ansys proposed in this test method is a known technology, which is a large-scale general finite element analysis (FEA) software developed by the American company ANSYS.
  • FEA general finite element analysis
  • the beneficial effects of the present invention are: 1.
  • the small-range three-dimensional sensor has the advantages of simple structure, easy processing, high measurement accuracy, and the like. 2.
  • the strain beam is very thin, often less than 1mm, which is difficult to process, especially when the elastic body is aluminum. The strain beam will be deformed carefully.
  • the present invention adopts a measurement method of multiple bridge circuits to measure one direction. The measured values of each bridge circuit are added in the software to obtain the force value (or voltage) of the bridge circuit. Value), this measurement method scientifically and effectively solves the design method of small range or even small range sensors.
  • Fig. 1 is a schematic diagram of the structure of the small-range three-dimensional sensor of the present invention
  • Fig. 2 is a cross-sectional view of Fig. 1
  • Fig. 3 is a schematic diagram of the structure of the elastic body in the small-range three-dimensional sensor
  • Fig. 1 is a schematic diagram of the structure of the small-range three-dimensional sensor of the present invention
  • Fig. 2 is a cross-sectional view of Fig. 1
  • Fig. 3 is a schematic diagram of the structure of the elastic body in the small-range three-dimensional sensor
  • Fig. 3 is a schematic diagram of the structure of the elastic body in the small-range three-dimensional sensor
  • FIG. 4 is a schematic diagram of the distribution of strain beams on the elastic body; Schematic diagram of the distribution of strain gauges pasted on the strain beam of the elastic body (the schematic diagrams of the strain gauges pasted on the strain beam 9, strain beam 10, strain beam 11 and strain beam 12 are added in the figure);
  • Figure 6 is the cross-sectional view of AA in Figure 5; 7 is a cross-sectional view of HH in Figure 5;
  • Figure 8 is a cross-sectional view of DD in Figure 5;
  • Figure 9 is a cross-sectional view of EE in Figure 5;
  • Figure 10 is a cross-sectional view of GG in Figure 5;
  • Figure 11 is a cross-sectional view of BB in Figure 5;
  • Figure 13 is the CC cross-sectional view in Figure 5;
  • Figure 14 is a schematic diagram of R1-R8 strain gauges pasted on a strain beam;
  • Figure 15 is a schematic diagram of R9-R24 strain gauges paste
  • a type includes an elastic body 1, an upper cover plate 2, a lower cover plate 3 and a circuit board 5.
  • the circuit board 5 is arranged on the elastic body 1, and the upper cover plate 2 and the lower cover plate 3 are respectively fixed On both sides of the elastic body 1;
  • the elastic body 1 includes a force bearing platform 6, an outer annular contour body 8 and four strain beam groups 7.
  • the outer annular contour body 8 is sleeved on the outside of the force bearing platform 6, and the four strain beam groups 7 is uniformly arranged between the force bearing platform 6 and the outer annular contour body 8.
  • One end of the strain beam group 7 is fixed on the outer surface of the force bearing platform 6, and the other end is fixed on the inner surface of the outer annular contour body 8.
  • Group 7 includes three "T"-shaped strain beams; strain gauges are attached to the strain beams, and the strain gauges in the four strain beam groups 7 are connected to form a Wheatstone bridge, the signal line and power supply of the Wheatstone bridge The wires are all connected to the circuit board 5, and the circuit board 5 is welded with core wires.
  • a new type of small-range three-dimensional sensor of this embodiment is mainly used in a gecko-like robot kinematics test system.
  • the three-dimensional sensor involved in the present invention is based on the principle of resistance strain, in which the elastic body is the core component, and its performance indicators directly affect It depends on the performance indicators of the sensor, especially the design of the strain beam and the selection of materials.
  • a plurality of ear seats 9 for fixing the circuit board 5 are uniformly arranged on the inner surface of the outer annular contour body 8.
  • the twelve strain beams in the four strain beam groups 7 are defined as No. 1 strain beam 7-1, No. 2 strain beam 7-2, No. 3 strain beam 7-3, and No. 4 strain beam. 7-4, No. 5 strain beam 7-5, No. 6 strain beam 7-6, No. 7 strain beam 7-7, No. 8 strain beam 7-8, No. 9 strain beam 7-9, No. 10 strain beam 7- 10.
  • No. 11 strain beam 7-11 and No. 12 strain beam 7-12, No. 1 strain beam 7-1, No. 4 strain beam 7-4 and No. 9 strain beam 7-9 form a strain beam group 7.
  • No. 5 strain beam 7-5, No. 8 strain beam 7-8 and No. 12 strain beam 7-12 constitute the second strain beam group 7, No. 2 strain beam 7-2, No. 3 strain beam 7-3 and 10
  • No. 7-10 strain beams constitute the third strain beam group 7, and
  • No. 6 strain beams 7-6, No. 7 strain beams 7-7, and No. 11 strain beams 7-11 form the fourth strain beam group 7.
  • one end of No. 9 strain beam 7-9, No. 10 strain beam 7-10, No. 11 strain beam 7-11, and No. 12 strain beam 7-12 are fixed to the inner surface of the force platform 6.
  • the other end of No. 9 strain beam 7-9 is fixed at the junction of No. 1 strain beam 7-1 and No. 4 strain beam 7-4, and the other end of No. 10 strain beam 7-10 is fixed with No. 2 strain beam 7-2 Fix the junction with No. 3 strain beam 7-3, and fix the other end of No. 11 strain beam 7-11 with the junction point of No. 6 strain beam 7-6 and No. 7 strain beam 7-7, No. 12 strain beam
  • the other end of 7-12 is fixed to the junction of No. 5 strain beam 7-5 and No. 8 strain beam 7-8.
  • No. 1 strain beam 7-1, No. 4 strain beam 7-4, No. 5 strain beam 7-5, No. 8 strain beam 7-8, No. 3 strain beam 7-3, No. 2 R1 strain gauge, R4 strain gauge, R5 strain gauge, R8 strain gauge, R3 strain gauge, and R2 strain gauge are attached on one side of No. 7-2, No. 6 7-6 and No. 7 strain beams 7-7, respectively , R6 strain gauge and R7 strain gauge.
  • the model of the strain gauge selected by R1-R8 is: BF350-2.2AA(23)T8, Sensitive grid size: length (L) ⁇ width (W) (mm): 2.2 ⁇ 1.8, base size: length (L) ⁇ width (W) (mm): 5.1 ⁇ 2.4.
  • the strain gauges are double-grid strain gauges.
  • Paste R11 on one side of No. 10 strain beam 7-10 For strain gauges and R12 strain gauges, paste R15 strain gauges and R16 strain gauges on the other side of No. 10 strain beam 7-10; paste R19 strain gauges and R20 strain gauges on one side of No. 11 strain beam 7-11.
  • R9-R24 is a 45° dual-grid strain gauge, which is specially used to measure shear strain.
  • the model of the strain gauge selected for R9-R24 is: BF350-2HA-A(23)N4, Sensitive grid size: length (L) ⁇ width (W) (mm): 2.0 ⁇ 4.4, base size: length (L) ⁇ width (W) (mm): 9 ⁇ 5.6.
  • R1 strain gauges, R2 strain gauges, R3 strain gauges and R4 strain gauges constitute bridge 1, leading to the first voltage output U01, R5 strain gauges, R6 strain gauges, R7 strain gauges and R8 strain gauges.
  • Bridge 2 leads to the first voltage output U02, R9 strain gauges, R10 strain gauges, R11 strain gauges and R12 strain gauges constitute the bridge circuit 3, leads to the first voltage output U03, R13 strain gauges, R14 strain gauges, R15 strain gauges Gages and R16 strain gages form bridge circuit 4, leading to the first voltage output U04, R17 strain gages, R18 strain gages, R19 strain gages and R20 strain gages form bridge circuit 5, leading to the first voltage output U05, R21 strain gages, R22 strain gauges, R23 strain gauges and R24 strain gauges form the bridge circuit 6, which leads to the first voltage output U06.
  • the strain can hardly reach the required resolution and accuracy, if it must reach the required strain
  • the thickness of the strain beam is less than 1mm.
  • the elastomer material of the present invention is aluminum, the strain beam less than 1mm is bound to deform during machining. Generally, the processing requirements for aluminum parts require the thickness of the strain beam to be at least 1mm. Therefore, the design Four bridges measure the normal direction (Fz), and finally the measurement results of these four bridges are added in the software to get the normal (Fz) force value (or voltage value). In this way, the method of measuring a specific direction through multiple bridges has scientifically and effectively solved the development of small-range multi-dimensional force sensors.
  • the test method of small-range three-dimensional sensors includes the following steps:
  • Step 1 Based on the design parameters of the small-range three-dimensional sensor, perform finite element calculation in Ansys. When the small-range three-dimensional sensor is fully loaded in each direction, the output voltage value in each direction is:
  • Step 2 Coupling calculation between dimensions:
  • the lateral Fx and Fy adopt the bending strain measurement method, while the normal Fz adopts the shear strain measurement method.
  • Ansys finite element calculation it can be achieved If the inter-dimensional coupling is close to zero, even when the load is eccentrically loaded, the inter-dimensional coupling is close to zero.
  • the test method of this embodiment is the three-dimensional model of the elastic body of the small-range three-dimensional sensor.
  • the middle is the force-bearing platform (or the loading platform), which is composed of 12 strain beams, and the outer annular contour is used to fix the sensor.
  • the patch diagram is shown in Figure 6- Figure 13, and the principle diagram of the bridge group is shown in Figure 16.
  • the specific measurement principle is:
  • the strain will be difficult to achieve the required resolution and accuracy. If the required strain must be reached, the strain The thickness of the beam is less than 1mm. Because the elastomer material of the present invention is aluminum, the strain beam of less than 1mm is bound to deform during machining. Generally, the processing requirements for aluminum parts require the thickness of the strain beam to be at least 1mm. Therefore, four The bridge circuit measures the normal Fz, and finally the four bridge circuit measurement results are added in the software to obtain the normal Fz force value or voltage value. In this way, the method of measuring a specific direction through multiple bridges has scientifically and effectively solved the development of small-range multi-dimensional force sensors.
  • Example 1 Set up a small-range three-dimensional sensor based on the requirements and test it. As shown in Figure 19, the terminal R of the sensor is pasted on the cylindrical surface of the force platform.
  • Rtxx in the bridge connection diagram is zero temperature compensation, and the compensation standard is in accordance with the "Strain Sensor Patch Specification and Quality Requirements Process Guide” Implementation; 4.
  • the thickness of the protective glue layer does not exceed 1mm, and the total thickness of the compensation wire and glue layer is 2.0mm; 5.
  • the quality inspection of zero point compensation and zero temperature compensation, etc. refer to the "Strain Gauge Sensor Patch Specification and Quality Requirements Process Guide”.
  • Step 1) Based on the design parameters of the small-range three-dimensional sensor, perform finite element calculation in Ansys. When the small-range three-dimensional sensor is fully loaded in each direction, the output voltage value in each direction is:
  • Step 2 Coupling calculation between dimensions:
  • the three-dimensional sensor in this example has high accuracy and small coupling, which is basically close to zero.

Abstract

一种小量程三维传感器,包括弹性体(1)、上盖板(2)、下盖板(3)和电路板(5),电路板(5)设置在弹性体(1)上,上盖板(2)和下盖板(3)分别固定在弹性体(1)的两侧;弹性体(1)包括受力台(6)、外环形轮廓体(8)和四个应变梁组(7),外环形轮廓体(8)套设在受力台(6)的外部,四个应变梁组(7)均布设置在受力台(6)和外环形轮廓体(8)之间。小量程三维传感器弹性体(1)具有结构简单,易于加工,测量精度高等优点。一种小量程三维传感器的测试方法,采用了多个桥路测量一个方向的测量方法,将各个桥路的测量值在软件里面相加得到这个桥路的力值(或者电压值),这种测量方法科学有效地解决了小量程甚至微小量程传感器的设计方法。

Description

一种小量程三维传感器及其测试方法 技术领域
本发明属于传感器测量领域,涉及一种小量程三维传感器及其测试方法,基于电阻应变式原理,主要用于仿壁虎机器人运动力学测试系统。
背景技术
随着科学技术快速发展,传感器已经深入到了工业生产的各个领域,面前典型的有机器人行业、打磨行业、各种各样的摩擦磨损试验机、等等,就传感器原理而言,常见的有电阻应变式原理、光电式原理、电容式原理、电磁式原理、等等,有一维传感器、二维传感器、三维传感器、六维传感器、等等。就三维传感器而言,存在测量精度低,具体表现在维间耦合大,一般达到10%,甚至有点达到30%,尤其在小量程的三维传感器中,这么大的耦合会造成测量误差很大,难以用于工业生产。就仿壁虎运动力学测试系统而言,本身需要的量程较小,再加上测试过程中需要偏心加载,因此耦合大的三维传感器不能使用。
技术问题
基于上述分析,本发明提出了一种新型的小量程三维传感器及测量方法,该三维传感器具有弹性体结构简单、易于加工、特别是理论上维间耦合小,接近于零,测量精度高。如果由于如机加工误差、贴片误差、装配误差等等的误差造成的维间耦合较大,能够通过修四角的工艺来降低维间耦合,使得维间耦合接近于零。
技术解决方案
具体的技术方案,一种包括弹性体、上盖板、下盖板和电路板,电路板设置在弹性体上,上盖板和下盖板分别固定在弹性体的两侧;弹性体包括受力台、外环形轮廓体和四个应变梁组,外环形轮廓体套设在受力台的外部,四个应变梁组均布设置在受力台和外环形轮廓体之间,应变梁组的一端固定在受力台的外表面上,另一端固定在外环形轮廓体的内表面上,应变梁组包括三个呈“T”型的应变梁;在应变梁上贴应变片,四个应变梁组内的应变片之间连接组成惠斯通电桥,惠斯通电桥的信号线和电源线都接入电路板,电路板上焊接有芯线。
本发明的一种新型小量程的三维传感器,基于电阻应变式原理,其中弹性体为核心部件,其性能指标直接影响着传感器的各项性能指标,尤其应变梁的设计和材料的选择。
本发明进一步限定的技术方案是:
在外环形轮廓体的内表面上均布设置有多个用于固定电路板的耳座。
定义四个应变梁组内的十二个应变梁分别为一号应变梁、二号应变梁、三号应变梁、四号应变梁、五号应变梁、六号应变梁、七号应变梁、八号应变梁、九号应变梁、十号应变梁、十一号应变梁和十二号应变梁,一号应变梁、四号应变梁和九号应变梁构成一个应变梁组,五号应变梁、八号应变梁和十二号应变梁构成第二个应变梁组,二号应变梁、三号应变梁和十号应变梁构成第三个应变梁组,六号应变梁、七号应变梁和十一号应变梁构成第四个应变梁组;
九号应变梁、十号应变梁、十一号应变梁和十二号应变梁一端都与受力台的内表面固定,九号应变梁的另一端与一号应变梁和四号应变梁的汇合点固定,十号应变梁的另一端与二号应变梁和三号应变梁的汇合点固定,十一号应变梁的另一端与六号应变梁和七号应变梁的汇合点固定,十二号应变梁的另一端与五号应变梁和八号应变梁的汇合点固定;
在一号应变梁、四号应变梁、五号应变梁、八号应变梁、三号应变梁、二号应变梁、六号应变梁和七号应变梁上分别单面粘贴R1应变片、R4应变片、R5应变片、R8应变片、R3应变片、R2应变片、R6应变片和R7应变片;
在九号应变梁、十号应变梁、十一号应变梁和十二号应变梁上正反粘贴应变片,应变片为双栅应变片,在九号应变梁的一面粘贴R14应变片和R13应变片,在九号应变梁的另一面粘贴R9应变片和R10应变片;在十号应变梁的一面粘贴R11应变片和R12应变片,在十号应变梁的另一面粘贴R15应变片和R16应变片;在十一号应变梁的一面粘贴R19应变片和R20应变片,在十一号应变梁的另一面粘贴R21应变片和R22应变片;在十二号应变梁的一面粘贴R23应变片和R24应变片,在十二号应变梁的另一面粘贴R18应变片和R17应变片;
R1应变片、R2应变片、R3应变片和R4应变片构成桥路1,引出第一路电压输出U01,R5应变片、R6应变片、R7应变片和R8应变片构成桥路2,引出第一路电压输出U02,R9应变片、R10应变片、R11应变片和R12应变片构成桥路3,引出第一路电压输出U03,R13应变片、R14应变片、R15应变片和R16应变片构成桥路4,引出第一路电压输出U04,R17应变片、R18应变片、R19应变片和R20应变片构成桥路5,引出第一路电压输出U05,R21应变片、R22应变片、R23应变片和R24应变片构成桥路6,引出第一路电压输出U06。
本发明提出的小量程三维传感器的测试方法,包括如下步骤:
步骤1)基于小量程三维传感器的设计参数,在Ansys中进行有限元计算,小量程三维传感器每个方向满量程加载时,各个方向输出电压值为:
1.1、Fx满量程正向加载时:
Figure 366598dest_path_image001
(1)
其中,下标定义: U Fx 为Fx满量程正向加载时,桥路1(即测量Fx方向的桥路)输出电压; U Fy-Fx 为Fx满量程正向加载时,桥路2(即测量Fy方向的桥路)输出电压; U Fz-Fx 为Fx满量程正向加载时,测量Fz方向的桥路(即桥路3、桥路4、桥路5、桥路6的输出电压之和)输出电压;K为灵敏系数, Ui为桥路激励电压,ε 1为R1应变片所测量到的应变量,ε 2为R2应变片所测量到的应变量,ε 3为R3应变片所测量到的应变量,ε 4为R4应变片所测量到的应变量,ε 5为R5应变片所测量到的应变量,ε 6为R6应变片所测量到的应变量,ε 7为R7应变片所测量到的应变量,ε 8为R8应变片所测量到的应变量; U u03为桥路3的输出电压,U u04为桥路4的输出电压,U u05为桥路5的输出电压,U u06为桥路6的输出电压;
1.2、Fy满量程正向加载时:
Figure 408503dest_path_image002
(2)
下标定义: U Fy 为Fy满量程正向加载时,桥路2(即测量Fy方向的桥路)输出电压; U Fx-Fy 为Fy满量程正向加载时,桥路1(即测量Fx方向的桥路)输出电压; U Fz-Fy 为Fy满量程正向加载时,测量Fz方向的桥路(即桥路3、桥路4、桥路5、桥路6的输出电压之和)输出电压;K为灵敏系数, Ui为桥路激励电压,ε 1为R1应变片所测量到的应变量,ε 2为R2应变片所测量到的应变量,ε 3为R3应变片所测量到的应变量,ε 4为R4应变片所测量到的应变量,ε 5为R5应变片所测量到的应变量,ε 6为R6应变片所测量到的应变量,ε 7为R7应变片所测量到的应变量,ε 8为R8应变片所测量到的应变量; U u03为桥路3的输出电压,U u04为桥路4的输出电压,U u05为桥路5的输出电压,U u06为桥路6的输出电压;
1.3、Fz满量程正向加载时:
Figure 486050dest_path_image003
 (3)
下标定义: U Fz 为Fz满量程正向加载时,测量Fz方向的桥路(即桥路3、桥路4、桥路5、桥路6的输出电压之和)输出电压; U Fx-Fz 为Fz满量程正向加载时,桥路1(即测量Fx方向的桥路)输出电压; U Fy-Fy 为Fz满量程正向加载时,桥路2(即测量Fy方向的桥路)输出电压;K为灵敏系数,Ui为桥路激励电压,ε 1为R1应变片所测量到的应变量,ε 2为R2应变片所测量到的应变量,ε 3为R3应变片所测量到的应变量,ε 4为R4应变片所测量到的应变量,ε 5为R5应变片所测量到的应变量,ε 6为R6应变片所测量到的应变量,ε 7为R7应变片所测量到的应变量,ε 8为R8应变片所测量到的应变量; U u03为桥路3的输出电压,U u04为桥路4的输出电压,U u05为桥路5的输出电压,U u06为桥路6的输出电压;
步骤2)维间耦合计算:
2.1、Fx满量程正向加载时:Fy耦合为:
Figure 955208dest_path_image004
;Fz耦合为:
Figure 360782dest_path_image005
2.2、Fy满量程正向加载时:Fx耦合为:
Figure 190066dest_path_image006
;Fz耦合为:
Figure 872852dest_path_image007
2.3、Fz满量程正向加载时:Fx耦合为:
Figure 765109dest_path_image008
;Fy耦合为:
Figure 657978dest_path_image009
本发明的测试方法,为了使得维间耦合接近于零,三个方向的测量采用了不同的方法,侧向(Fx和Fy)采用弯曲应变测量方法,而法向(Fz)采用剪切应变测量方法,通过Ansys有限元计算,能够达到维间耦合接近于零的目标,即使偏心加载时,维间耦合也接近于零。
本发明方法的进一步技术方案:
给小量程三维传感器的弹性体内受力台加载Fz,九号应变梁、十号应变梁、十一号应变梁和十二号应变梁的侧面发生剪切应变,组成4个桥路测量Fz,组成桥路3、桥路4、桥路5和桥路6,则;
Figure 41686dest_path_image010
将桥路3、桥路4、桥路5和桥路6相加,得到法向Fz的值,即:
Figure 93825dest_path_image011
(8)
其中,U u03为桥路3的输出电压,U u04为桥路4的输出电压,U u05为桥路5的输出电压,U u06为桥路6的输出电压,K为灵敏系数,U i为桥路激励电压,ε 9为R9应变片所测量到的应变量,ε 10为R10应变片所测量到的应变量,ε 11为R11应变片所测量到的应变量,ε 12为R12应变片所测量到的应变量,ε 13为R13应变片所测量到的应变量,ε14为R14应变片所测量到的应变量,ε 15为R15应变片所测量到的应变量,ε 16为R16应变片所测量到的应变量;ε 17为R17应变片所测量到的应变量,ε 18为R18应变片所测量到的应变量,ε 19为R19应变片所测量到的应变量,ε 20为R20应变片所测量到的应变量,ε 21为R21应变片所测量到的应变量,ε 22为R22应变片所测量到的应变量,ε 23为R23应变片所测量到的应变量,ε 24为R24应变片所测量到的应变量。
由于本发明三维传感器量程较小,采用剪切应变测量法向(Fz)时,如果设计一个电桥测量时,应变量难以达到所需求的分辨率和精度,如果非要达到所需要的应变量,应变梁的厚度小于1mm,由于本发明弹性体材料为铝,小于1mm的应变梁在机加工过程中势必要变形,一般对铝件的加工要求,应变梁的厚度至少1mm,因此,设计了四个桥路测量法向(Fz),最后将这四个桥路测量结果在软件中相加,得到法向(Fz)力值(或者电压值)。这样通过多个桥路测量具体某一个方向的方法,科学有效地解决了小量程多维力传感器的研制。
给小量程三维传感器的弹性体内受力台加载Fx,一号应变梁、二号应变梁、三号应变梁和四号应变梁发生弯曲应变,R1应变片和R4应变片受到拉应变,R2应变片和R3应变片受到压应变,组成桥路1,则:
Figure 170365dest_path_image012
(9)
其中,U u01为桥路1的输出电压,K为灵敏系数,U i为桥路激励电压,ε 1为R1应变片所测量到的应变量,ε 2为R2应变片所测量到的应变量,ε 3为R3应变片所测量到的应变量,ε 4为R4应变片所测量到的应变量。
给小量程三维传感器的弹性体内受力台加载Fy,五号应变梁、六号应变梁、七号应变梁和八号应变梁发生弯曲应变,R5应变片和R8应变片受到拉应变,R6应变片和R7应变片受到压应变,组成桥路2,则:
Figure 409586dest_path_image013
(10)
其中,U u02为桥路2的输出电压,K为灵敏系数,U i为桥路激励电压,ε 5为R5应变片所测量到的应变量,ε 6为R6应变片所测量到的应变量,ε7为R7应变片所测量到的应变量,ε8为R8应变片所测量到的应变量。
本测试方法中提出的Ansys为已知技术,是美国ANSYS公司研制的大型通用有限元分析(FEA)软件。
有益效果
本发明的有益效果是:1、本小量程三维传感器弹性体结构简单,易于加工,测量精度高等等的优点。2、本测试方法,由于本发明的三维传感器量程较小,为了达到足够大的分辨率和精度,应变梁很薄,往往小于1mm,难以加工,特别是对弹性体为铝时,稍有不慎应变梁就会变形,为了解决这样的问题,本发明采用了多个桥路测量一个方向的测量方法,将各个桥路的测量值在软件里面相加得到这个桥路的力值(或者电压值),这种测量方法科学有效地解决了小量程甚至微小量程传感器的设计方法。
附图说明
图1为本发明小量程三维传感器的结构示意图;图2为图1的剖视图;图3为小量程三维传感器内弹性体的结构示意图;图4为弹性体上应变梁的分布示意图;图5为弹性体的应变梁上粘贴应变片的分布示意图(图中增加了应变梁9、应变梁10、应变梁11和应变梁12上粘贴应变片的示意图);图6为图5中A-A剖视图;图7为图5中H-H剖视图;图8为图5中D-D剖视图;图9为图5中E-E剖视图;图10为图5中G-G剖视图;图11为图5中B-B剖视图;图12为图5中F-F剖视图;图13为图5中C-C剖视图;图14为R1-R8应变片粘贴在应变梁上的示意图;图15为R9-R24应变片粘贴在应变梁上的示意图;图16为小量程三维传感器的组桥原理图;图17为弹性体三维模型受Fx、Fy加载力的示意图;图18为弹性体三维模型受Fx、Fz加载力的示意图;图19为举例中小量程三维传感器的弹性体的主视图;图20为举例中小量程三维传感器的组桥原理图。
本发明的实施方式
如图1和2所示,一种包括弹性体1、上盖板2、下盖板3和电路板5,电路板5设置在弹性体1上,上盖板2和下盖板3分别固定在弹性体1的两侧;弹性体1包括受力台6、外环形轮廓体8和四个应变梁组7,外环形轮廓体8套设在受力台6的外部,四个应变梁组7均布设置在受力台6和外环形轮廓体8之间,应变梁组7的一端固定在受力台6的外表面上,另一端固定在外环形轮廓体8的内表面上,应变梁组7包括三个呈“T”型的应变梁;在应变梁上贴应变片,四个应变梁组7内的应变片之间连接组成惠斯通电桥,惠斯通电桥的信号线和电源线都接入电路板5,电路板5上焊接有芯线。
本实施例的一种新型小量程的三维传感器,主要用于仿壁虎机器人运动力学测试系统,本发面所涉及的三维传感器基于电阻应变式原理,其中弹性体为核心部件,其性能指标直接影响着传感器的各项性能指标,尤其应变梁的设计和材料的选择。
在外环形轮廓体8的内表面上均布设置有多个用于固定电路板5的耳座9。
如图4所示,定义四个应变梁组7内的十二个应变梁分别为一号应变梁7-1、二号应变梁7-2、三号应变梁7-3、四号应变梁7-4、五号应变梁7-5、六号应变梁7-6、七号应变梁7-7、八号应变梁7-8、九号应变梁7-9、十号应变梁7-10、十一号应变梁7-11和十二号应变梁7-12,一号应变梁7-1、四号应变梁7-4和九号应变梁7-9构成一个应变梁组7,五号应变梁7-5、八号应变梁7-8和十二号应变梁7-12构成第二个应变梁组7,二号应变梁7-2、三号应变梁7-3和十号应变梁7-10构成第三个应变梁组7,六号应变梁7-6、七号应变梁7-7和十一号应变梁7-11构成第四个应变梁组7。
如图4所示,九号应变梁7-9、十号应变梁7-10、十一号应变梁7-11和十二号应变梁7-12一端都与受力台6的内表面固定,九号应变梁7-9的另一端与一号应变梁7-1和四号应变梁7-4的汇合点固定,十号应变梁7-10的另一端与二号应变梁7-2和三号应变梁7-3的汇合点固定,十一号应变梁7-11的另一端与六号应变梁7-6和七号应变梁7-7的汇合点固定,十二号应变梁7-12的另一端与五号应变梁7-5和八号应变梁7-8的汇合点固定。
如图6-13所示,在一号应变梁7-1、四号应变梁7-4、五号应变梁7-5、八号应变梁7-8、三号应变梁7-3、二号应变梁7-2、六号应变梁7-6和七号应变梁7-7上分别单面粘贴R1应变片、R4应变片、R5应变片、R8应变片、R3应变片、R2应变片、R6应变片和R7应变片。
如图14所示,本实施例中,R1-R8所选应变片的型号为:BF350-2.2AA(23)T8,  敏感栅尺寸:长(L)×宽(W)(mm):2.2×1.8,  基底尺寸:长(L)×宽(W)(mm):5.1×2.4。
在九号应变梁7-9、十号应变梁7-10、十一号应变梁7-11和十二号应变梁7-12上正反粘贴应变片,应变片为双栅应变片,在九号应变梁7-9的一面粘贴R14应变片和R13应变片,在九号应变梁7-9的另一面粘贴R9应变片和R10应变片;在十号应变梁7-10的一面粘贴R11应变片和R12应变片,在十号应变梁7-10的另一面粘贴R15应变片和R16应变片;在十一号应变梁7-11的一面粘贴R19应变片和R20应变片,在十一号应变梁7-11的另一面粘贴R21应变片和R22应变片;在十二号应变梁7-12的一面粘贴R23应变片和R24应变片,在十二号应变梁7-12的另一面粘贴R18应变片和R17应变片。
如图15所示,R9-R24为45°的双栅应变片,专门用来测量剪切应变,R9-R24所选应变片的型号为:BF350-2HA-A(23)N4,  敏感栅尺寸:长(L)×宽(W)(mm):2.0×4.4,  基底尺寸:长(L)×宽(W)(mm):9×5.6。
如图14和15所示,丝栅定位标b和焊点c图中已经标出,R1-R8以中心线a对称,贴片时注意方向,不能将丝栅与焊点弄反。贴片工艺、加压固化、贴片质量检查等等参照《应变式传感器贴片工艺指导书》。
由于传感器在加工生产过程中,各种各样的误差会造成维间耦合较大,典型的误差有机加工误差、贴片误差、装配误差、等等,这些误差的存在会造成维间耦合大于理论值,现有技术中采用通过修四角的工艺来使得维间耦合接近于零。本实施例具体的方法为:在应变较小的梁的背面用锉刀挫,增大贴片区域的应变量,使得维间耦合减小。
如图16所示,R1应变片、R2应变片、R3应变片和R4应变片构成桥路1,引出第一路电压输出U01,R5应变片、R6应变片、R7应变片和R8应变片构成桥路2,引出第一路电压输出U02,R9应变片、R10应变片、R11应变片和R12应变片构成桥路3,引出第一路电压输出U03,R13应变片、R14应变片、R15应变片和R16应变片构成桥路4,引出第一路电压输出U04,R17应变片、R18应变片、R19应变片和R20应变片构成桥路5,引出第一路电压输出U05,R21应变片、R22应变片、R23应变片和R24应变片构成桥路6,引出第一路电压输出U06。
由于本发明三维传感器量程较小,采用剪切应变测量法向(Fz)时,如果设计一个电桥测量时,应变量难以达到所需求的分辨率和精度,如果非要达到所需要的应变量,应变梁的厚度小于1mm,由于本发明弹性体材料为铝,小于1mm的应变梁在机加工过程中势必要变形,一般对铝件的加工要求,应变梁的厚度至少1mm,因此,设计了四个桥路测量法向(Fz),最后将这四个桥路测量结果在软件中相加,得到法向(Fz)力值(或者电压值)。这样通过多个桥路测量具体某一个方向的方法,科学有效地解决了小量程多维力传感器的研制。
小量程三维传感器的测试方法,包括如下步骤:
步骤1基于小量程三维传感器的设计参数,在Ansys中进行有限元计算,小量程三维传感器每个方向满量程加载时,各个方向输出电压值为:
1.1、Fx满量程正向加载时:见公式(1);1.2、Fy满量程正向加载时:见公式(2);1.3、Fz满量程正向加载时:见公式(3);
步骤2)维间耦合计算:
2.1、Fx满量程正向加载时:Fy耦合、Fz耦合见前文;2.2、Fy满量程正向加载时:Fx耦合、Fz耦合为见前文;2.3、Fz满量程正向加载时:Fx耦合、Fy耦合为见前文。
在仿壁虎机器人运动力学测试系统中需要偏心加载,如果传感器的维间耦合较大,势必影响着测量精度,本实施例法向(Fz)的测量和侧向(Fx和Fy)测量采用不同的方法,理论上能够实现维间耦合接近于零的目标,提高了传感器的测量精度,维间耦合的性能指标远远优于目前市面的三维传感器(目前市面上的三维传感器维间耦合在10%左右,甚至有的大到30%)。
为了使得维间耦合接近于零,三个方向的测量采用了不同的方法,侧向Fx和Fy采用弯曲应变测量方法,而法向Fz采用剪切应变测量方法,通过Ansys有限元计算,能够达到维间耦合接近于零的目标,即使偏心加载时,维间耦合也接近于零。
本实施例测试方法,如图4所示,小量程三维传感器的弹性体的三维模型,中间为受力台(或者加载台),由12根应变梁组成,外环形轮廓体用来固定传感器,贴片图如图6-图13所示,组桥原理图如图16所示,具体测量原理为:
如图17和18所示,给小量程三维传感器的弹性体1内受力台6加载Fz,九号应变梁7-9、十号应变梁7-10、十一号应变梁7-11和十二号应变梁7-12的侧面发生剪切应变,组成4个桥路测量Fz,组成桥路3、桥路4、桥路5和桥路6,则:见公式(4)-(7);
将桥路3、桥路4、桥路5和桥路6相加,得到法向Fz的值,即:见公式(8)。
由于本发明三维传感器量程较小,采用剪切应变测量法向Fz时,如果设计一个电桥测量时,应变量难以达到所需求的分辨率和精度,如果非要达到所需要的应变量,应变梁的厚度小于1mm,由于本发明弹性体材料为铝,小于1mm的应变梁在机加工过程中势必要变形,一般对铝件的加工要求,应变梁的厚度至少1mm,因此,设计了四个桥路测量法向Fz,最后将这四个桥路测量结果在软件中相加,得到法向Fz力值或者电压值。这样通过多个桥路测量具体某一个方向的方法,科学有效地解决了小量程多维力传感器的研制。
加载Fz时,梁9、梁10、梁11和梁12的侧面发生剪切应变,组成4个桥路测量Fz,这样做有两个目的:一是一个桥应变量太小,达不到所需求的精度,如果必须通过一个桥路来实现的话,那么梁9-12会很薄,加工上很难实现,很容易变形,这样通过多个桥路来实现测量某一个方向,既能达到所需求的精度又能降低机机加工难度,保证了机加工不会使得梁变形;二是为了实现结构上解耦,使得维间耦合接近于零。
如图17和18所示,给小量程三维传感器的弹性体1内受力台6加载Fx,一号应变梁7-1、二号应变梁7-2、三号应变梁7-3和四号应变梁7-4发生弯曲应变,R1应变片和R4应变片受到拉应变,R2应变片和R3应变片受到压应变,组成桥路1,则:见公式(9)。
如图17和18所示,给小量程三维传感器的弹性体1内受力台6加载Fy,五号应变梁7-5、六号应变梁7-6、七号应变梁7-7和八号应变梁7-8发生弯曲应变,R5应变片和R8应变片受到拉应变,R6应变片和R7应变片受到压应变,组成桥路2,则:见公式(10)。
举例1:基于要求设置一个小量程三维传感器,并进行测试,如图19所示,传感器的接线端子R粘贴在受力台的圆柱面上。
1.如果传感器不做温度零点补偿,只需要一种接线端子,型号:DTA5-G2;如果做温度零点补偿,还需要DTA3-G1型接线端子,接线端子分布和接线方式如图20所示;2.桥路连接图中的Raxx为零点补偿,补偿标准按照《应变式传感器贴片规范及质量要求工艺指导书》执行,建议补偿丝长度不超过1.5cm,补偿丝应铺开,不可团成球状,操作时不能弄破补偿丝防护漆层,否则会影响稳定性;3.桥路连接图中的Rtxx为零点温度补偿,补偿标准按照《应变式传感器贴片规范及质量要求工艺指导书》执行;4.保护胶层厚度不超过1mm,补偿丝及胶层总厚度2.0mm;5.零点补偿、零点温度补偿质量检查等等参照《应变式传感器贴片规范及质量要求工艺指导书》。
步骤1)基于小量程三维传感器的设计参数,在Ansys中进行有限元计算,小量程三维传感器每个方向满量程加载时,各个方向输出电压值为:
1.1、Fx满量程正向加载时:
Figure 721618dest_path_image014
1.2、Fy满量程正向加载时:
Figure 378996dest_path_image015
1.3、Fz满量程正向加载时:
Figure 610126dest_path_image016
步骤2)维间耦合计算:
2.1、Fx满量程正向加载时:
Figure 87375dest_path_image017
2.2、Fy满量程正向加载时:
Figure 330662dest_path_image018
2.3、Fz满量程正向加载时:
Figure 967179dest_path_image019
如上举例所述,本例的三维传感器精度高,耦合很小,基本上接近于零。

Claims (7)

  1. 一种小量程三维传感器,其特征在于:包括弹性体、上盖板、下盖板和电路板,电路板设置在弹性体上,上盖板和下盖板分别固定在弹性体的两侧;弹性体包括受力台、外环形轮廓体和四个应变梁组,外环形轮廓体套设在受力台的外部,四个应变梁组均布设置在受力台和外环形轮廓体之间,应变梁组的一端固定在受力台的外表面上,另一端固定在外环形轮廓体的内表面上,应变梁组包括三个呈“T”型的应变梁;在应变梁上贴应变片,四个应变梁组内的应变片之间连接组成惠斯通电桥,惠斯通电桥的信号线和电源线都接入电路板,电路板上焊接有芯线。
  2. 根据权利要求1所述的小量程三维传感器,其特征在于,在外环形轮廓体的内表面上均布设置有多个用于固定电路板的耳座。
  3. 根据权利要求1所述的刚度测试装置,其特征在于,定义四个应变梁组内的十二个应变梁分别为一号应变梁、二号应变梁、三号应变梁、四号应变梁、五号应变梁、六号应变梁、七号应变梁、八号应变梁、九号应变梁、十号应变梁、十一号应变梁和十二号应变梁,一号应变梁、四号应变梁和九号应变梁构成一个应变梁组,五号应变梁、八号应变梁和十二号应变梁构成第二个应变梁组,二号应变梁、三号应变梁和十号应变梁构成第三个应变梁组,六号应变梁、七号应变梁和十一号应变梁构成第四个应变梁组;九号应变梁、十号应变梁、十一号应变梁和十二号应变梁一端都与受力台的内表面固定,九号应变梁的另一端与一号应变梁和四号应变梁的汇合点固定,十号应变梁的另一端与二号应变梁和三号应变梁的汇合点固定,十一号应变梁的另一端与六号应变梁和七号应变梁的汇合点固定,十二号应变梁的另一端与五号应变梁和八号应变梁的汇合点固定;在一号应变梁、四号应变梁、五号应变梁、八号应变梁、三号应变梁、二号应变梁、六号应变梁和七号应变梁上分别单面粘贴R1应变片、R4应变片、R5应变片、R8应变片、R3应变片、R2应变片、R6应变片和R7应变片;在九号应变梁、十号应变梁、十一号应变梁和十二号应变梁上正反粘贴应变片,应变片为双栅应变片,在九号应变梁的一面粘贴R14应变片和R13应变片,在九号应变梁的另一面粘贴R9应变片和R10应变片;在十号应变梁的一面粘贴R11应变片和R12应变片,在十号应变梁的另一面粘贴R15应变片和R16应变片;在十一号应变梁的一面粘贴R19应变片和R20应变片,在十一号应变梁的另一面粘贴R21应变片和R22应变片;在十二号应变梁的一面粘贴R23应变片和R24应变片,在十二号应变梁的另一面粘贴R18应变片和R17应变片;R1应变片、R2应变片、R3应变片和R4应变片构成桥路1,引出第一路电压输出U01,R5应变片、R6应变片、R7应变片和R8应变片构成桥路2,引出第一路电压输出U02,R9应变片、R10应变片、R11应变片和R12应变片构成桥路3,引出第一路电压输出U03,R13应变片、R14应变片、R15应变片和R16应变片构成桥路4,引出第一路电压输出U04,R17应变片、R18应变片、R19应变片和R20应变片构成桥路5,引出第一路电压输出U05,R21应变片、R22应变片、R23应变片和R24应变片构成桥路6,引出第一路电压输出U06。
  4. 根据权利要求1-3所述小量程三维传感器的测试方法,其特征在于,包括如下步骤:步骤1)基于小量程三维传感器的设计参数,在Ansys中进行有限元计算,小量程三维传感器每个方向满量程加载时,各个方向输出电压值为:
    1.1、Fx满量程正向加载时:
    Figure 520547dest_path_image001
    (1);其中,下标定义: U Fx 为Fx满量程正向加载时,桥路1输出电压; U Fy-Fx 为Fx满量程正向加载时,桥路2输出电压; U Fz-Fx 为Fx满量程正向加载时,测量Fz方向的桥路输出电压;K为灵敏系数, Ui为桥路激励电压,ε 1为R1应变片所测量到的应变量,ε 2为R2应变片所测量到的应变量,ε 3为R3应变片所测量到的应变量,ε 4为R4应变片所测量到的应变量,ε 5为R5应变片所测量到的应变量,ε 6为R6应变片所测量到的应变量,ε 7为R7应变片所测量到的应变量,ε 8为R8应变片所测量到的应变量; U u03为桥路3的输出电压,U u04为桥路4的输出电压,U u05为桥路5的输出电压,U u06为桥路6的输出电压;
    1.2、Fy满量程正向加载时:
    Figure 79835dest_path_image002
    (2);下标定义: U Fy 为Fy满量程正向加载时,桥路2输出电压; U Fx-Fy 为Fy满量程正向加载时,桥路1输出电压; U Fz-Fy 为Fy满量程正向加载时,测量Fz方向的桥路输出电压;K为灵敏系数, Ui为桥路激励电压,ε 1为R1应变片所测量到的应变量,ε 2为R2应变片所测量到的应变量,ε 3为R3应变片所测量到的应变量,ε 4为R4应变片所测量到的应变量,ε 5为R5应变片所测量到的应变量,ε 6为R6应变片所测量到的应变量,ε 7为R7应变片所测量到的应变量,ε 8为R8应变片所测量到的应变量; U u03为桥路3的输出电压,U u04为桥路4的输出电压,U u05为桥路5的输出电压,U u06为桥路6的输出电压;
    1.3、Fz满量程正向加载时:
    Figure 903435dest_path_image003
    (3);下标定义: U Fz 为Fz满量程正向加载时,测量Fz方向的桥路输出电压; U Fx-Fz 为Fz满量程正向加载时,桥路1输出电压; U Fy-Fy 为Fz满量程正向加载时,桥路2输出电压;K为灵敏系数,Ui为桥路激励电压,ε 1为R1应变片所测量到的应变量,ε 2为R2应变片所测量到的应变量,ε 3为R3应变片所测量到的应变量,ε 4为R4应变片所测量到的应变量,ε 5为R5应变片所测量到的应变量,ε 6为R6应变片所测量到的应变量,ε 7为R7应变片所测量到的应变量,ε 8为R8应变片所测量到的应变量; U u03为桥路3的输出电压,U u04为桥路4的输出电压,U u05为桥路5的输出电压,U u06为桥路6的输出电压;步骤2)维间耦合计算:2.1、Fx满量程正向加载时:Fy耦合为:
    Figure 26112dest_path_image004
    ;Fz耦合为:
    Figure 801956dest_path_image005
    ;2.2、Fy满量程正向加载时:Fx耦合为:
    Figure 719097dest_path_image006
    ;Fz耦合为:
    Figure 843042dest_path_image007
    ;2.3、Fz满量程正向加载时:Fx耦合为:
    Figure 769409dest_path_image008
    ;Fy耦合为:
    Figure 583782dest_path_image009
  5. 根据权利要求4所述的测试方法,其特征在于,给小量程三维传感器的弹性体内受力台加载Fz,九号应变梁、十号应变梁、十一号应变梁和十二号应变梁的侧面发生剪切应变,组成4个桥路测量Fz,组成桥路3、桥路4、桥路5和桥路6,则
    Figure 202982dest_path_image010
    ;将桥路3、桥路4、桥路5和桥路6相加,得到法向Fz的值,即:
    Figure 548644dest_path_image011
    其中,U u03为桥路3的输出电压,U u04为桥路4的输出电压,U u05为桥路5的输出电压,U u06为桥路6的输出电压,K为灵敏系数,U i为桥路激励电压,ε 9为R9应变片所测量到的应变量,ε 10为R10应变片所测量到的应变量,ε 11为R11应变片所测量到的应变量,ε 12为R12应变片所测量到的应变量,ε 13为R13应变片所测量到的应变量,ε14为R14应变片所测量到的应变量,ε 15为R15应变片所测量到的应变量,ε 16为R16应变片所测量到的应变量;ε 17为R17应变片所测量到的应变量,ε 18为R18应变片所测量到的应变量,ε 19为R19应变片所测量到的应变量,ε 20为R20应变片所测量到的应变量,ε 21为R21应变片所测量到的应变量,ε 22为R22应变片所测量到的应变量,ε 23为R23应变片所测量到的应变量,ε 24为R24应变片所测量到的应变量。
  6. 根据权利要求4所述的测试方法,其特征在于,给小量程三维传感器的弹性体内受力台加载Fx,一号应变梁、二号应变梁、三号应变梁和四号应变梁发生弯曲应变,R1应变片和R4应变片受到拉应变,R2应变片和R3应变片受到压应变,组成桥路1,则:
    Figure 278702dest_path_image012
    其中,U u01为桥路1的输出电压,K为灵敏系数,U i为桥路激励电压,ε 1为R1应变片所测量到的应变量,ε 2为R2应变片所测量到的应变量,ε 3为R3应变片所测量到的应变量,ε 4为R4应变片所测量到的应变量。
  7. 根据权利要求4所述的测试方法,其特征在于,给小量程三维传感器的弹性体内受力台加载Fy,五号应变梁、六号应变梁、七号应变梁和八号应变梁发生弯曲应变,R5应变片和R8应变片受到拉应变,R6应变片和R7应变片受到压应变,组成桥路2,则:
    Figure 947581dest_path_image013
    ;其中,U u02为桥路2的输出电压,K为灵敏系数,U i为桥路激励电压,ε 5为R5应变片所测量到的应变量,ε 6为R6应变片所测量到的应变量,ε 7为R7应变片所测量到的应变量,ε 8为R8应变片所测量到的应变量。
PCT/CN2020/108429 2019-10-30 2020-08-11 一种小量程三维传感器及其测试方法 WO2021082613A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201921846967.6U CN210603692U (zh) 2019-10-30 2019-10-30 一种小量程三维传感器
CN201921846967.6 2019-10-30

Publications (1)

Publication Number Publication Date
WO2021082613A1 true WO2021082613A1 (zh) 2021-05-06

Family

ID=70695576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108429 WO2021082613A1 (zh) 2019-10-30 2020-08-11 一种小量程三维传感器及其测试方法

Country Status (2)

Country Link
CN (1) CN210603692U (zh)
WO (1) WO2021082613A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608837A (zh) * 2019-10-30 2019-12-24 南京神源生智能科技有限公司 一种小量程三维传感器及其测试方法
CN210603692U (zh) * 2019-10-30 2020-05-22 南京神源生智能科技有限公司 一种小量程三维传感器
JP7343450B2 (ja) * 2020-06-29 2023-09-12 トヨタ自動車株式会社 力覚センサ
CN112414606A (zh) * 2020-10-26 2021-02-26 珠海格力电器股份有限公司 测力传感器弹性体、测力传感器和具有其的运动控制设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234866A (zh) * 1997-07-15 1999-11-10 Mts系统公司 多轴载荷单元
JP2005249772A (ja) * 2004-08-23 2005-09-15 A & D Co Ltd 回転型分力計測装置
US8776615B2 (en) * 2012-05-01 2014-07-15 Honeywell International Inc. Three-axis low profile load cell and sensing beam
CN107782482A (zh) * 2017-11-17 2018-03-09 中国科学院宁波材料技术与工程研究所 多维力/力矩传感器
CN208704939U (zh) * 2018-08-30 2019-04-05 中国石油大学(华东) 一种内外螺纹式低维间耦合六维力传感器
CN110274714A (zh) * 2019-06-18 2019-09-24 蓝点触控(北京)科技有限公司 一种应用于工业现场的六维力传感器
US10422707B2 (en) * 2016-01-19 2019-09-24 Ati Industrial Automation, Inc. Compact robotic force/torque sensor including strain gages
CN110608837A (zh) * 2019-10-30 2019-12-24 南京神源生智能科技有限公司 一种小量程三维传感器及其测试方法
CN210603692U (zh) * 2019-10-30 2020-05-22 南京神源生智能科技有限公司 一种小量程三维传感器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234866A (zh) * 1997-07-15 1999-11-10 Mts系统公司 多轴载荷单元
JP2005249772A (ja) * 2004-08-23 2005-09-15 A & D Co Ltd 回転型分力計測装置
US8776615B2 (en) * 2012-05-01 2014-07-15 Honeywell International Inc. Three-axis low profile load cell and sensing beam
US10422707B2 (en) * 2016-01-19 2019-09-24 Ati Industrial Automation, Inc. Compact robotic force/torque sensor including strain gages
CN107782482A (zh) * 2017-11-17 2018-03-09 中国科学院宁波材料技术与工程研究所 多维力/力矩传感器
CN208704939U (zh) * 2018-08-30 2019-04-05 中国石油大学(华东) 一种内外螺纹式低维间耦合六维力传感器
CN110274714A (zh) * 2019-06-18 2019-09-24 蓝点触控(北京)科技有限公司 一种应用于工业现场的六维力传感器
CN110608837A (zh) * 2019-10-30 2019-12-24 南京神源生智能科技有限公司 一种小量程三维传感器及其测试方法
CN210603692U (zh) * 2019-10-30 2020-05-22 南京神源生智能科技有限公司 一种小量程三维传感器

Also Published As

Publication number Publication date
CN210603692U (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2021082613A1 (zh) 一种小量程三维传感器及其测试方法
CN110608837A (zh) 一种小量程三维传感器及其测试方法
CN104048791B (zh) 一种低维间耦合的双十字梁型六维力和力矩传感器
CN107782482A (zh) 多维力/力矩传感器
CN103076131B (zh) 用于测量大型机械臂大力与小力矩的六维力与力矩传感器
CN110132477B (zh) 一种六维力传感器的解耦方法及六维力传感器
CN101419102B (zh) 超薄六维力传感器及其测量三维力和三维力矩信息的方法
CN106500902B (zh) 一种具有自解耦功能的应变式多维力传感器
CN102288334B (zh) 一种并联式压电六维大力传感器
CN202153166U (zh) 一种并联式压电六维大力传感器
US9395256B2 (en) Low profile multi-axis load cell
CN103292939B (zh) 轮辐与中心销柱组合式三维力传感器
CN103528746A (zh) 一种十字梁式六维力传感器弹性体
CN105806203B (zh) 一种三维相对位移传感器
CN109100073B (zh) 一种基于应变反演的六维力传感器及其测量方法
CN113607313B (zh) 基于c形梁的层积式光纤光栅六维力-力矩传感器
CN108981987B (zh) 一种小维间耦合弹性梁六维力传感器
Han et al. Design and optimization of a high sensitivity joint torque sensor for robot fingers
CN105092121A (zh) 用于测量刚性管的径向力的方法
CN206683798U (zh) 一种基于Stewart结构的新型六维力传感器
CN203241182U (zh) 轮辐与中心销柱组合式三维力传感器
CN209878197U (zh) 一种基于惠斯通四分之一电桥的六维力传感器
CN110487507A (zh) 一种用于短舱内阻测力试验的五分量应变天平
CN206300744U (zh) 基于压电石英晶片弯曲效应的弯矩测量传感器
CN110823122A (zh) 一种基于光纤光栅与弹性体的弯曲曲率测量装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882574

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20882574

Country of ref document: EP

Kind code of ref document: A1