WO2021077449A1 - 复合材料减震降噪抗冲击性能一体化测试仪及测试方法 - Google Patents

复合材料减震降噪抗冲击性能一体化测试仪及测试方法 Download PDF

Info

Publication number
WO2021077449A1
WO2021077449A1 PCT/CN2019/113981 CN2019113981W WO2021077449A1 WO 2021077449 A1 WO2021077449 A1 WO 2021077449A1 CN 2019113981 W CN2019113981 W CN 2019113981W WO 2021077449 A1 WO2021077449 A1 WO 2021077449A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation
box
impact
composite material
projectile
Prior art date
Application number
PCT/CN2019/113981
Other languages
English (en)
French (fr)
Inventor
李晖
王子恒
崔晶
吕海宇
赵亚卿
任旭辉
王文煜
闻邦椿
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2021077449A1 publication Critical patent/WO2021077449A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/317Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis

Definitions

  • the invention relates to the technical field of material testing, in particular to an integrated tester and a test method for composite material shock absorption, noise reduction and impact resistance.
  • Patent CN106768540 A designed a vibration reduction efficiency test platform that can simulate vibrations of different amplitudes and frequencies to debug active vibration reduction devices, but the platform can only test the vibration reduction characteristics of the equipment.
  • Patent CN108593270 A developed a single-degree-of-freedom vibration damping device test platform based on the principle of the hammering method. The platform can test the stiffness and damping ratio of the vibration damping device, but the excitation method is limited to hammering.
  • Patent CN106289824 A designs a device for testing the acoustic radiation characteristics of train wheels in a free state.
  • the device is excited by steel balls with a single excitation method; in addition, the device is in an open environment and cannot effectively reduce the impact of echo.
  • Patent CN 109000877 A developed an impact test system, which can effectively prevent secondary impacts in the experiment.
  • the above patents are limited to a certain aspect of the test materials or equipment, and cannot be comprehensively evaluated.
  • patent CN208506074 U designs a temperature and shock comprehensive test bench, which can comprehensively test the thermal-impact performance of materials.
  • Patent CN107966259 A proposes a device for testing the impact performance of fiber-reinforced composite thin-walled components in a thermal environment.
  • Patent CN108760205 A has developed a self-excited shock-vibration composite test equipment. Although it can perform comprehensive testing of shock-vibration composite mechanical properties, it still needs to be used in conjunction with a vibrating table and cannot achieve portability. Although the above related patents have achieved comprehensive testing in some aspects, the integration is still not high, and it is impossible to carry out research on vibration, noise, and shock characteristics at the same time.
  • test instruments and test methods has severely affected the scientific and technical personnel of my country's military research and development units to objectively evaluate the performance of high-performance composite materials for vibration reduction, noise reduction and impact resistance, and severely restricted the development of my country's new generation of air force and naval weapons and equipment.
  • the present invention provides an integrated tester and test method for the shock absorption, noise reduction and impact resistance of composite materials.
  • Composite material shock absorption, noise reduction and impact resistance integrated tester including reverberation box, anechoic box and upper and lower box support connection platform, high-power tweeter horn and pre-power amplifier and pure post-power amplifier, multiple sets of pressure Electric ceramic and piezoelectric ceramic drive power, projectile centrifugal acceleration ejection device and multiple sets of projectile sensors, retractable support frame, serpentine retractable thin tube, laser displacement sensor, high-speed camera, multiple sound pressure sensors, projectile recovery device and Data acquisition instrument;
  • the bottom of the muffler box is provided with a rectangular opening, and the surrounding and top surface adopts a multi-layer sound-absorbing structure.
  • the inner and outer layers are steel plates, and glass fiber cotton is filled in the middle as a sound-absorbing material, and it is between the outer steel plate and the outer layer. A certain thickness of air layer is reserved; a rectangular door frame is opened in front of the muffler box, and the rectangular door frame is equipped with a sound insulation door;
  • the reverberation box adopts a multi-layer damping structure, with a rectangular opening on the top, and its inner and outer layers are also steel plates, filled with fine sand damping materials in the middle, and a certain thickness of air layer is reserved between the outer steel plate and the mixing plate;
  • the inner walls of the front, rear, left and right sides of the reverberation box are installed with spherical top surfaces of different radii to realize the equal sound energy density in the reverberation box;
  • a rectangular door frame is also set in front of the reverberation box; Rectangular opening, the lower plate of the frame-shaped pressing plate fixture is fixed inside the reverberation box, and the upper plate is floating in order to adapt to plates of different thicknesses, and the four sides of the composite material plate test piece and the corresponding frame-shaped pressing plate fixture need to be punched;
  • the two boxes of the reverberation box and the anechoic box are connected by bolts, and can also be used separately. When they need to be used separately, connect the platform body through the upper and lower box supports to close the box, the reverberation box or the anechoic box, and install Just enter the upper and lower box body support and connection platform;
  • a non-contact laser displacement sensor, multiple microphones and high-speed cameras are arranged on the retractable support frame, and when used in conjunction with a data acquisition instrument, the time domain data of the vibration, noise, sound pressure and impact deformation of the tested composite material are recorded, After data processing, parameters such as dynamic stiffness, sound absorption coefficient, sound insulation coefficient and impact impedance are obtained;
  • the sounding surface of the high-pitched horn is a rectangular plane, and the sounding surface is installed on the bottom surface of the reverberation box to provide a noise excitation signal with sufficient energy, controllable excitation intensity and excitation frequency;
  • the piezoelectric ceramic is used as a vibration exciter. When not in use, each group of piezoelectric ceramics is fixed on the buckle at the front end of the serpentine telescopic tube.
  • the conductive wires of the piezoelectric ceramic are also distributed in the serpentine flexible tube.
  • the serpentine telescopic thin tube can be folded and contracted in the hole channels on the inner wall around the reverberation box.
  • the piezoelectric ceramic can be connected to the output end of the piezoelectric ceramic drive power supply, and with the help of The sealing plug seals the hole channel; when vibration excitation is required, multiple sets of piezoelectric ceramics are pasted on the lower surface of the tested MLFLHL composite material specimen through a high-strength adhesive, and the serpentine retractable thin tube can be fixed on On the inner walls around the reverberation box, try to ensure a uniform sound field inside the reverberation box;
  • the projectile centrifugal acceleration ejection device is a small high-speed rotating device integrated outside the above reverberation box.
  • the centrifugal device and the ejection tube are connected through a metal hose, and the ejection is achieved after centrifugal acceleration, and the composite material board is randomly selected.
  • the projectile sensor is equipped with a sensor inside the projectile sensor, embedded and wireless launching device, and its receiving end is connected with the data acquisition instrument, which is convenient to collect the impact contact force when the projectile sensor impacts; changing the speed of centrifugal acceleration can control the excitation energy of the projectile impact
  • the size of the composite material can cause deformation or penetration impact of the tested composite material; when the impact velocity is small, the projectile sensor falls into the projectile recovery device at the bottom of the lower box; when the impact velocity is large, the composite material is penetrated by the projectile sensor after the impact , The projectile sensor shot into the projectile recovery device on the upper part of the muffler box, and was captured by it;
  • the projectile recovery device is fixed on the upper surface of the muffler box and the lower surface of the reverberation box, and is mainly in the form of a foam made of chemical agents such as polyether polyethanol, foam stabilizer, catalyst, blowing agent, cell opener, etc. Solid, which can recover and protect the projectile sensor emitted by the ejection device.
  • a certain number of hole channels are reserved on the side walls around the sound-absorbing box, and the hole channels are sealed by means of sealing plugs, and sound-absorbing wedges are also installed on the wall of the box.
  • the inner surface of the reverberation box is painted with white enamel.
  • the front of the reverberation box is also provided with a rectangular door frame, the rectangular door frame is equipped with a sound insulation door, and rubber sealing strips are arranged around the rectangular door frame.
  • the noise excitation signal includes white noise random, simple harmonic, and pulse excitation types.
  • the test method of the integrated tester for shock absorption, noise reduction and impact resistance of composite materials includes the following steps:
  • the piezoelectric ceramic drive power is amplified and processed, according to the reverse pressure
  • the principle of electric effect realizes the control of the vibration excitation amplitude and frequency of multiple groups of piezoelectric ceramics, and then produces a multi-point vibration excitation effect on the tested composite material specimen.
  • the excitation signal is turned off and it is in a standby state;
  • the impact excitation test is carried out at different impact excitation positions.
  • the damage area and pit depth of the tested composite material specimen are recorded by a high-speed camera, and the impact impedance is measured by a force sensor and the impact contact is drawn. Force-structure displacement curve, etc.
  • the present invention has the following beneficial technical effects:
  • the present invention can simultaneously meet the integrated test requirements of composite material vibration reduction, noise reduction, and impact resistance.
  • the test indicators are comprehensive, and it has the advantages of high efficiency and mobility. It is convenient for on-site testing and objective evaluation of composite material shock absorption. Noise reduction and impact resistance.
  • the designed retractable support frame can conveniently arrange non-contact laser displacement sensors, microphones and high-speed cameras, which is convenient to record the time-domain data of vibration, noise, sound pressure and impact deformation of the tested composite material after being used with a data acquisition instrument , And obtain parameters such as dynamic stiffness, sound insulation coefficient and impact impedance after data processing.
  • the projectile sensor capture device is also designed.
  • the photoelectric door detects the entry of the projectile sensor and controls the opening and closing of the recovery device door.
  • the foam material in the device has a good stopping effect on the projectile sensor (11), ensuring that the impact experiment is carried out. Timely equipment and personnel are safe, and the projectile sensor is recycled.
  • the upper and lower surfaces of the designed connecting platform are respectively equipped with silencing wedge and spherical reflecting surface. They are installed between the upper and lower boxes to form a silencing box and reverberation box that can be used separately to meet the requirements of general acoustic testing. In order to separate and combine the test, the cost of the instrument is reduced.
  • a certain number of holes are reserved on the side walls of the anechoic box of the present invention to facilitate the connection of power supply lines and signal lines of sensors and related instruments with external data acquisition instruments, power supplies and other equipment.
  • the bottom of the muffler box of the present invention is provided with a rectangular opening, and the surrounding and top surface adopts a multi-layer sound-absorbing structure.
  • the inner and outer layers are steel plates, and glass fiber cotton is filled in the middle as a sound-absorbing material.
  • a certain thickness of air layer is reserved between the steel plates;
  • a rectangular door frame is also opened in front of the muffler box, and the rectangular door frame is equipped with a sound insulation door to facilitate the installation and unloading of the fiber metal with microporous viscoelastic material under test Hybrid laminated material specimens and other composite material plate specimens, while facilitating the installation, arrangement and removal of vibration and acoustic sensors and other experimental equipment.
  • the inner surface of the reverberation box of the present invention is painted with white enamel, which can reduce the internal sound absorption coefficient.
  • the reverberation box adopts a multi-layer damping structure with a rectangular opening on the top.
  • the inner and outer layers are also made of steel plates, and fine sand damping materials are filled in the middle, and a certain thickness of air layer is reserved between the outer steel plate and the outer layer to make the reverberation
  • the box achieves a good sound insulation effect to the outside; in order to improve the sound field diffusion effect in the reverberation box, spherical tops of different radii are installed on the inner walls of the front, rear, left and right sides of the reverberation box to ensure that the sound waves can be different from each other.
  • a rectangular door frame is also set in front of the reverberation box.
  • the door frame is equipped with a sound insulation door and rubber sealing strips are arranged around it.
  • a rectangular opening is left on the top of the reverberation box to facilitate the installation and fixation of the tested MLFLHL composite board specimen.
  • the four sides of the composite material plate test piece and the corresponding frame-shaped plate clamp were punched, and the test was effectively fixed by fixing the four sides and moving the clamp.
  • a non-contact laser displacement sensor, multiple microphones and a high-speed camera are arranged on the retractable support frame of the present invention, which is convenient to record the vibration, noise, sound pressure and impact deformation of the tested composite material after being used in conjunction with the data acquisition instrument.
  • Time domain data, and after data processing, parameters such as dynamic stiffness, sound absorption coefficient, sound insulation coefficient and impact impedance are obtained.
  • Piezoelectric ceramics have the unique advantages of small structure size, light additional mass (for the tested lightweight composite material, the additional mass impact of the vibrator must be minimized), high excitation frequency, and easy realization of multi-point vibration excitation. Therefore, multiple sets of piezoelectric ceramics are used as vibration exciters in the experiment.
  • each group of piezoelectric ceramics is fixed to the buckle at the front end of the serpentine telescopic thin tube (its conductive wires are also distributed in the thin tube), and the serpentine telescopic thin tube can be folded and contracted in the mixed In the hole channel on the inner wall around the sound box (through multiple sets of hole channels, the piezoelectric ceramic can be connected with the output end of the piezoelectric ceramic driving power supply), and the hole channel is sealed by means of a sealing plug.
  • vibration excitation is needed, multiple groups of piezoelectric ceramics are pasted on the lower surface of the tested MLFLHL composite material specimen through a high-strength adhesive, and the serpentine telescopic tube can be fixed on the inner wall of the reverberation box. , So as to ensure the uniform sound field inside the reverberation box as much as possible.
  • vibration and noise excitation are performed on the MLFLHL composite material specimen at the same time, the test results will not be affected by the disorderly distributed wires.
  • the projectile recovery device is fixed on the upper surface of the muffler box and the lower surface of the reverberation box, mainly made of polyether polyethanol, foam stabilizer, catalyst, blowing agent, cell opener and other chemical agents. Shaped solid, which can recover and protect the projectile sensor (11) emitted by the ejection device, and has the characteristics of high strength, large opening degree, and fragile hole wall.
  • Fig. 1 is an external outline diagram of a composite material integrated tester system for shock absorption, noise reduction and impact resistance according to a specific embodiment of the present invention
  • FIG. 2 is a diagram of the perforated channel of a composite material integrated tester system for shock absorption, noise reduction and impact resistance according to a specific embodiment of the present invention
  • FIG. 3 is a diagram of the internal structure of a composite material integrated tester system for shock absorption, noise reduction and impact resistance according to a specific embodiment of the present invention
  • FIG. 4 is a schematic diagram of a perforated clamp in the integrated tester for composite material shock absorption, noise reduction and impact resistance according to a specific embodiment of the present invention
  • Fig. 5 is a schematic diagram of a serpentine telescopic thin tube in an integrated tester for composite material shock absorption, noise reduction and impact resistance according to a specific embodiment of the present invention
  • FIG. 6 is a schematic diagram of a projectile recovery device in an integrated tester for composite material shock absorption, noise reduction and impact resistance according to a specific embodiment of the present invention
  • FIG. 7 is a schematic diagram of a retractable support frame of a composite material integrated tester for shock absorption, noise reduction and impact resistance according to a specific embodiment of the present invention
  • FIG. 8 is a schematic diagram of a foldable protective shelf in an integrated tester for composite material shock absorption, noise reduction and impact resistance according to a specific embodiment of the present invention
  • FIG. 9 is a schematic diagram of the upper and lower boxes supporting and connecting the platform in the composite material shock absorption, noise reduction and impact resistance integrated tester according to a specific embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the connection between the projectile centrifugal accelerated ejection device and the jet pipe in the integrated tester for composite material shock absorption, noise reduction and impact resistance according to a specific embodiment of the present invention.
  • 1 anechoic box
  • 2 reverberation box
  • 3 rectangular door frame
  • 4 retractable support frame
  • 5 sound pressure sensor
  • 6 laser displacement sensor
  • 7 high-speed camera
  • 8 projectile recovery device
  • 9 the top surface of the ball
  • 10 high-power treble horn
  • 11 projectile sensor
  • 12 jet tube
  • 13 projectile centrifugal acceleration ejection device
  • 14 frame-shaped platen clamp
  • 15 sinake-shaped retractable thin tube
  • 16 suction Plug
  • 17 upper and lower box support and connection platform
  • 18 piezoelectric ceramics.
  • Fig. 1 is an external profile diagram of a composite material vibration reduction, noise reduction and impact resistance integrated tester system according to a specific embodiment of the present invention.
  • Fig. 2 is a composite material vibration reduction, noise reduction and impact resistance integrated tester system according to a specific embodiment of the present invention.
  • Perforated channel diagram Figure 3 is the internal structure diagram of the composite material vibration reduction, noise reduction and impact resistance integrated tester system according to the specific embodiment of the present invention, and
  • Figure 4 is the composite material vibration reduction, noise reduction and impact resistance performance of the specific embodiment of the present invention
  • Figure 5 is a schematic diagram of a serpentine telescopic thin tube in an integrated tester for composite material shock absorption, noise reduction and impact resistance according to a specific embodiment of the present invention.
  • FIG. 6 is a specific implementation of the present invention.
  • FIG. 7 is a schematic diagram of the retractable support frame of the composite material vibration reduction, noise reduction and impact resistance integrated tester according to a specific embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a foldable protective shelf in an integrated tester for composite material shock absorption, noise reduction and impact resistance according to a specific embodiment of the present invention.
  • Fig. 9 is an integrated test of composite material shock absorption, noise reduction and impact resistance performance according to a specific embodiment of the present invention.
  • Figure 10 is a schematic diagram of the connection between the projectile centrifugal accelerated ejection device and the jet pipe in the composite material shock absorption, noise reduction and impact resistance integrated tester according to the specific embodiment of the present invention. Shown:
  • Composite material shock absorption, noise reduction and impact resistance integrated tester including reverberation box 2, muffler box 1, upper and lower box support connection platform 17, high-power tweeter horn 10, pre-power amplifier and pure post-power amplifier , Multiple sets of piezoelectric ceramics 18 and piezoelectric ceramic drive power, projectile centrifugal acceleration ejection device 13 and multiple sets of projectile sensors 11, retractable support frame 4, serpentine retractable thin tube 15, laser displacement sensor 6, high-speed camera 7 , Multiple sound pressure sensors 5, projectile recovery device 8 and data acquisition instrument;
  • the bottom of the muffler box 1 is provided with a rectangular opening, and the surrounding and top surface adopts a multi-layer sound-absorbing structure.
  • the inner and outer layers are steel plates, and glass fiber cotton is filled in the middle as a sound-absorbing material, and is combined with the outer steel plate. A certain thickness of air layer is reserved between the spaces; a rectangular door frame 3 is opened in front of the muffler box, and a sound insulation door is arranged in the rectangular door frame 3;
  • the reverberation box 2 adopts a multi-layer damping structure, with a rectangular opening on the top, and its inner and outer layers are also steel plates, filled with fine sand damping materials in the middle, and a certain thickness of air layer is reserved between the outer steel plates;
  • the inner walls of the front, rear, left and right sides of the reverberation box 2 are equipped with spherical top surfaces 9 of different radii to realize the equal sound energy density in the reverberation box 2;
  • a rectangular door frame 3 is also set in front of the reverberation box 2;
  • the top of the sound box 2 is left with a rectangular opening.
  • the lower plate of the frame-shaped pressing plate fixture 14 is fixed inside the reverberation box 2.
  • the upper plate floats to adapt to plates of different thicknesses, and the four sides of the composite plate test piece and the corresponding frame are required. Hole punching of shape pressing plate fixture;
  • the two boxes of the reverberation box 2 and the muffler box 1 are connected by a bolt group, and can also be used separately. When they need to be used separately, the box body is closed through the upper and lower box supports and the connecting platform 17; the reverberation box 2 or the muffler The sound box 1 can be installed on the upper and lower box support and connection platform 17;
  • a non-contact laser displacement sensor, multiple microphones and high-speed cameras are arranged on the retractable support frame 4, and when used in conjunction with a data acquisition instrument, the time-domain data of the vibration, noise, sound pressure, and impact deformation of the tested composite material are recorded , And obtain parameters such as dynamic stiffness, sound absorption coefficient, sound insulation coefficient and impact impedance after data processing;
  • the sounding surface of the high-pitched horn 10 is a rectangular plane, and the sounding surface is installed on the bottom surface of the reverberation box to provide a noise excitation signal with sufficient energy, controllable excitation intensity and excitation frequency;
  • the piezoelectric ceramic 18 is used as a vibration exciter. When not in use, each group of piezoelectric ceramics is fixed on the buckle at the inner front end of the serpentine telescopic thin tube 15. The conductive wires of the piezoelectric ceramic are also distributed on the snake. The serpentine-shaped retractable thin tube 15 can be folded and contracted in the hole channels on the inner wall around the reverberation box. Through multiple sets of hole channels, the output end of the piezoelectric ceramic and the piezoelectric ceramic driving power can be achieved.
  • the serpentine can be stretched and thin
  • the tube can be fixed on the inner wall of the reverberation box to ensure a uniform sound field inside the reverberation box as much as possible;
  • the projectile centrifugal acceleration ejection device 13 is a small high-speed rotating device integrated outside the above-mentioned reverberation box.
  • the centrifugal device and the ejection tube 12 are connected through a metal hose, and the ejection is realized after centrifugal acceleration, and the composite material board is ejected.
  • the projectile sensor 11 is equipped with a sensor, embedded and wireless launching device, and its receiving end is connected with a data acquisition instrument, which is convenient for collecting the impact contact force of the projectile sensor when it is impacted; changing the speed of centrifugal acceleration can control the ejection impact When the impact speed is small, the projectile sensor 11 falls into the projectile recovery device at the bottom of the lower box; when the impact speed is large, the composite material is projected After the sensor penetrates and impacts, the projectile sensor 11 shoots into the projectile recovery device 8 on the upper part of the muffler box, and is captured by it;
  • the projectile recovery device 8 is fixed on the upper surface of the muffler box and the lower surface of the reverberation box, and is mainly foam made of chemical agents such as polyether polyethanol, foam stabilizer, catalyst, blowing agent, cell opener, etc.
  • the shape solid can recover and protect the projectile sensor 11 emitted by the ejection device.
  • a certain number of holes and channels are reserved on the side walls of the muffler box 1, and the hole channels are sealed by means of the sealing plug 16, and sound-absorbing wedge is also installed on the wall of the box.
  • the inner surface of the reverberation box 2 is painted with white enamel.
  • a rectangular door frame 3 is also provided in the front of the reverberation box, and a sound insulation door is arranged in the rectangular door frame 3, and rubber sealing strips are arranged around it.
  • the noise excitation signal includes white noise random, simple harmonic, and pulse excitation types.
  • the test method of the integrated tester for shock absorption, noise reduction and impact resistance of composite materials includes the following steps:
  • the piezoelectric ceramic drive power is amplified and processed, according to the reverse pressure
  • the principle of electric effect realizes the control of the vibration excitation amplitude and frequency of multiple groups of piezoelectric ceramics, and then produces a multi-point vibration excitation effect on the tested composite material specimen.
  • the excitation signal is turned off and it is in a standby state;
  • the impact excitation test is carried out at different impact excitation positions.
  • the damage area and pit depth of the tested composite material specimen are recorded by a high-speed camera, and the impact impedance is measured by a force sensor and the impact contact is drawn. Force-structure displacement curve, etc.

Abstract

复合材料减震降噪抗冲击性能一体化测试仪及测试方法,复合材料减震降噪抗冲击性能一体化测试仪包括混响箱(2)、消声箱(1)及上下箱体支撑连接台体(17)、大功率高音号角(10)及前置功率放大器和纯后级功率放大器、多组压电陶瓷(18)及压电陶瓷驱动电源、弹丸离心加速弹射装置(13)和多组弹丸传感器(11)、可伸缩式支撑框架(4)、蛇形可伸缩细管(15)、激光位移传感器(6)、高速摄像头(7)、多个声压传感器(5)、弹丸回收装置(8)和数据采集仪,可同时满足复合材料减振、降噪、抗冲击性能的一体化测试需求,测试指标全面,且具有高效、可移动的优点,便于在现场进行测试,客观评价复合材料减震降噪抗冲击性能。

Description

复合材料减震降噪抗冲击性能一体化测试仪及测试方法 技术领域
本发明涉及材料测试技术领域,具体涉及一种复合材料减震降噪抗冲击性能一体化测试仪及测试方法。
背景技术
随着我国空军对高性能运输机、超音速战斗机、高速直升机等飞行器的加速列装以及动力装备的升级换代,带来了日益严峻的飞行器舱室振动噪声控制问题。另一方面,对于作战规模和能力不断跃升的水面舰艇和潜艇,随着其威胁目标复杂性的大大增强,如何提高其减振降噪及抗冲击性能,以满足隐蔽性、居住性、安全性的苛刻要求,也日益成为我国海军装备发展中面临的一项亟待解决的问题。由于复合材料具有轻质、高强的结构特征和优异的力学性能,该材料被认为是解决我国空军、海军装备振动、噪声和冲击问题的关键材料。
然而,目前人们对复合材料开展减振降噪抗冲击一体化研究的并不多见,以往针对新材料的实验研究,绝大多数是将其减振性能实验、降噪性能和抗冲击性能实验人为地分开。例如,专利CN106768540 A设计了一种减振效率测试平台,该平台可模拟不同振幅与频率的振动以调试主动减振装置,但是该平台仅可测试设备的减振特性。专利CN108593270 A开发出一种基于锤击法原理的单自由度减振装置测试平台,该平台可测试减振装置的刚度及阻尼比,但是激励方式局限于锤击。专利CN106289824 A设计了一种测试自由状态火车车轮声辐射特性的装置,该装置钢球冲击激励,激励方式较为单一;另外,装置处于开放环境,无法有效降低回声影响。专利CN 109000877 A开发出一种冲击测试系统,该系统可有效防止实验中的二次冲击。以上专利均局限于测试材料或设备的某一方面特性,无法做到综合评价。在综合特性测试方面,专利CN208506074 U设计了一种温度与冲击综合测试台,可综合测试材料的热-冲击性能。专利CN107966259 A提出一种热环境下纤维增强复合薄壁构件的冲击性能试验装置。专利CN108760205 A研制出一种自激式冲击-振动复合试验设备,虽然可以进行冲击-振动复合力学特性综合测试,但是仍需要与振动台配合使用,无法实现便携性。尽管以上相关专利实现了某些方面的综合测试,但是集成度仍然不高,无法同时开展振动、噪声、冲击特性研究。
将减振、降噪、抗冲击性能分开测试,导致测试效率不高,且由于安装边界条件和测试场地的调整,容易造成被测样件固有特性参数的改变,严重影响了测试的准确性。然而,目前市面上已有的测试仪器绝大多只针对材料的某一种性能开展测试,若需要了解材料的减振降噪抗冲击性能,则需要花费大量的人力和物力来搭建实验系统,进而会导致所用的测试系统和测试仪器的体积过于庞大、成本极其高昂,不适用于工程现场使用,也缺乏一套行之有效的测试方法可以高效、快捷、准确地获取复合材料的减振降噪抗冲击性能。上述测试仪器、测试方法的缺失,严重影响了我国军工研发单位科技人员对高性能复合材料减振降噪抗冲击性能的客观评判,严重制约了我国研制新一代空军和海军武器装备的发展步伐。
发明内容
为解决上述技术问题,本发明提供复合材料减震降噪抗冲击性能一体化测试仪及测试方法。
具体技术方案如下:
复合材料减震降噪抗冲击性能一体化测试仪,包括混响箱、消声箱及上下箱体支撑连接台体、大功率高音号角及前置功率放大器和纯后级功率放大器、多组压电陶瓷及压电陶瓷驱动电源、弹丸离心加速弹射装置和多组弹丸传感器、可伸缩式支撑框架、蛇形可伸缩细管、激光位移传感器、高速摄像头、多个声压传感器、弹丸回收装置和数据采集仪;
所述消声箱底部设有矩形开口,四周和顶面均采用多层吸声结构,其内、外层均为钢板,在中间填充玻璃纤维棉作为吸声材料,且与外层钢板之间保留一定厚度的空气层;在消声箱的前面还开有矩形门框,矩形门框中配置有隔声门;
所述混响箱采用多层阻尼结构,顶部设有矩形开口,其内、外层也为钢板,在中间填充细沙阻尼材料,且与外层钢板之间保留一定厚度的空气层;在混响箱前、后、左、右四周内壁上安装不同半径的球顶面,实现混响箱内声能密度处处相等;在混响箱的前面还开设矩形门框;在混响箱的顶部留有矩形开口,框状压板夹具的下板固定在混响箱内部,上板浮动以便适应不同厚度的板材,且需对复合材料板试件的四边及相应的框状压板夹具打孔;
所述混响箱和消声箱两个箱体通过螺栓组进行连接,也可分开使用,需要分开使用时,通过上下箱体支撑连接台体封闭箱体,混响箱或消声箱,装入到上下箱体支撑连接台体上即可;
所述可伸缩式支撑框架上布置非接触式激光位移传感器、多个传声器和高速摄像头,和数据采集仪配合使用后,记录被测复合材料的振动、噪声声压和冲击变形的时域数据,并经过数据处理后获取动刚度、吸声系数、隔声系数和冲击阻抗等参数;
所述高音号角的发声表面为矩形平面,其发声表面被安装在混响箱的底面,用以提供能量充足、激励强度和激励频率可控的噪声激励信号;
所述压电陶瓷作为激振器使用,每组压电陶瓷在不使用时,都被固定在蛇形可伸缩细管内部前端的卡扣上,压电陶瓷的导电线也分布在蛇形可伸缩细管中,蛇形可伸缩细管可折叠收缩于混响箱四周内壁的孔通道中,通过多组孔通道,可实现压电陶瓷与压电陶瓷驱动电源的输出端相连接,并借助密封塞对孔通道进行密封;当需要进行振动激励时,通过高强度粘合剂将多组压电陶瓷粘贴在被测MLFLHL复合材料试件的下表面,蛇形可伸缩细管则可固定在混响箱的四周内壁上,可尽量保证混响箱内部的均匀声场;
所述弹丸离心加速弹射装置是一个小型高速旋转装置,集成在上述的混响箱外面,通过金属软管将离心装置和喷射管连接,通过离心加速后实现弹射,并对复合材料板进行任意点的冲击激励,弹丸传感器内部安装传感器,预埋与无线发射装置,其接收端与数据采集仪相连,便于采集弹丸传感器冲击时的冲击接触力;改变离心加速的转速,可以控制弹射冲击的 激励能量大小,可以造成被测复合材料的变形或贯穿冲击;当冲击速度较小时,弹丸传感器掉落在下箱体的底部的弹丸回收装置中;当冲击速度较大时,复合材料被弹丸传感器贯穿冲击后,弹丸传感器射入消声箱上部的弹丸回收装置,被其捕获;
所述弹丸回收装置固定在消声箱的上表面和混响箱的下表面,主要为由聚醚多乙醇,泡沫稳定剂,催化剂、发泡剂、开孔剂等化学药剂制成的泡沫状固体,可对弹射装置发出的弹丸传感器起到回收保护的作用。
所述消声箱四周侧壁上还预留一定数量的孔通道,借助密封塞对孔通道进行密封,箱壁上还安装有吸声尖劈。
所述混响箱的箱内表面刷有白色磁漆。
所述混响箱的前面还开设矩形门框,矩形门框中配置有隔声门,四周设置有橡胶密封条。
所述噪声激励信号包括白噪声随机、简谐、脉冲多种激励类型。
复合材料减震降噪抗冲击性能一体化测试仪的测试方法,具体包括如下步骤:
(1)将被测的MLFLHL复合材料试件安装放入框状压板夹具中并拧紧螺栓固定;
(2)分别将振动、噪声以及冲击激励的激励源布置到位并调整至待命状态;
通过高强度粘合剂将多组压电陶瓷粘贴在被测复合材料试件的下表面,控制数据采集仪的信号输出通道发出脉冲激励信号,经过压电陶瓷驱动电源放大处理后,根据逆压电效应原理,实现对多组压电陶瓷的振动激励幅度和频率的控制,进而对被测复合材料试件产生多点振动激励效果,在调试完毕后,关闭激励信号,处于待命状态;
控制数据采集仪的第二信号输出通道,发出激励频率范围可控的随机激励信号,在经过前置功率放大器和纯后级功率放大器后,将该信号与高音号角的输入端相连,激发高音号角产生随机噪声激励效果,并经过调试后,达到制定的噪声激励幅度和频率范围,此时,关闭激励信号,处于待命状态;
启动弹丸离心加速弹射装置并调整其达到所需要的旋转速度,保持装置的高速稳定旋转,使弹丸传感器处于待弹射状态;
(3)分别布置位移传感器、多个声压传感器和高速摄像头到关注的测点位置,以便于有效获取被测复合材料试验的振动响应、声压信号以及冲击变形及响应信号,通过数据采集仪的输入通道与上述传感器相连,并实现不同信号的实时记录和保存;
将弹丸回收装置位置至预定弹着点附近,准备接收弹丸传感器;
(4)开展噪声激励,按照激励幅度从小到大,随机频率范围从小到大的原则,在不同的测试参数下开展实验,并通过激光位移传感器、多个声压传感器记录被测复合材料薄板在单独噪声激励下的噪声辐射声压、振动响应性能,并评价其在不同噪声激励测试参数下的减振降噪效果;
(5)开展振动激励,按照激励点数从少到多,激励幅度从小到大,激励频率范围从小到大的原则,在不同的测试参数下开展实验,并通过激光位移传感器、多个声压传感器记录 被测复合材料薄板在单独振动激励下的噪声辐射声压、振动响应性能,并评价其在不同振动激励测试参数下的减振降噪效果;
(6)最后按照先进行噪声激励,再进行振动激励,最后进行冲击激励的顺序进行减振降噪抗冲击一体化测试,在不同的测试参数下开展实验,并通过激光位移传感器、多个声压传感器和高速摄像头记录不同类型的数据,并对关键指标进行计算,全面、准确地评价减振降噪抗冲击性能;
按照激励幅度从小到大,随机频率范围从小到大的原则,按照不同测试参数的随机噪声激励,并利用多个声压传感器测试两个箱体内的噪声声压,最终获得被测复合材料试件的在不同激励幅度、频率范围的吸声系数、隔声系数;
按照激励点数从少到多,激励幅度从小到大,激励频率范围从小到大的原则,控制多组压电陶瓷产生脉冲振动激励,通过激光位移传感器测试;通过对信号进行时域VMD分析处理和频谱分析处理,分别获得对数衰减率、各阶阻尼比、各阶动刚度;
按照冲击激励速度从小到大的顺序,在不同的冲击激励位置开展冲击激励测试,通过高速摄像头录制被测复合材料试件的损伤面积、凹坑深度,并通过力传感器测量冲击阻抗、绘制冲击接触力-结构位移曲线等。
与现有技术相比,本发明具有如下有益技术效果:
(1)本发明可同时满足复合材料减振、降噪、抗冲击性能的一体化测试需求,测试指标全面,且具有高效、可移动的优点,便于在现场进行测试,客观评价复合材料减震降噪抗冲击性能。设计的可伸缩式支撑框架,可方便布置非接触式激光位移传感器、传声器和高速摄像头,便于和数据采集仪配合使用后,记录被测复合材料的振动、噪声声压和冲击变形的时域数据,并经过数据处理后获取动刚度、隔声系数和冲击阻抗等参数。同时,还设计了弹丸传感器捕获装置,由光电门检测弹丸传感器的进入并控制回收装置门的开合,装置中的泡沫材料对弹丸传感器(11)有较好的停止作用,确保在开展冲击实验时的设备与人员安全,并实现弹丸传感器的回收利用。设计的连接台体上、下表面分别安装有消声尖劈与球形反射面,安装在上、下箱体之间形成可单独使用的消声箱、混响箱满足一般声学测试的需求,达到了分开、组合测试两用的目的,降低了仪器的成本。
(2)本发明消声箱四周侧壁上还预留一定数量的孔通道,以方便传感器和相关仪器的供电线、信号线与外部数据采集仪、电源等设备相连接。
(3)本发明消声箱底部设有矩形开口,四周和顶面均采用多层吸声结构,其内、外层均为钢板,在中间填充玻璃纤维棉作为吸声材料,且与外层钢板之间保留一定厚度的空气层;在消声箱的前面还开有矩形门框,矩形门框中配置有隔声门,以方便地安装和卸载被测的带有微孔粘弹性材料的纤维金属混杂层合材料试件以及其他复合材料板试件,同时便于振动、声学传感器以及其他实验设备的安装、布置和取出。
(4)本发明混响箱的箱内表面刷有白色磁漆,可降低其内部的吸声系数。混响箱采用 多层阻尼结构,顶部设有矩形开口,其内、外层也为钢板,在中间填充细沙阻尼材料,且与外层钢板之间保留一定厚度的空气层,以使混响箱对外界达到良好的隔声效果;为了改进混响箱内的声场扩散效果,还在混响箱前、后、左、右四周内壁上安装不同半径的球顶面,尽量保证声波能从不同方向被很好地反射,从而实现混响箱内声能密度处处相等。另外,为了方便安装传感器和试件,也在混响箱的前面还开设矩形门框,门框中配置有隔声门,其四周设置有橡胶密封条。在混响箱的顶部还留有矩形开口,以方便对被测的MLFLHL复合材料板试件进行安装固定。为了防止混响箱内部的声能量从矩形开口的四边泄露到消声箱,还对复合材料板试件的四边及相应的框状压板夹具打孔,通过四边固定和夹具的移动来有效固定测试材料板而不会引起泄露。但相对于被测板试件的有效测试面积,开孔尺寸很小,且通过框状压板上的螺栓可以牢固地将试件固定。因此,可在研究时,忽略开孔尺寸和位置对被测板试件有效测试面积的性能影响。
(5)本发明可伸缩式支撑框架上布置非接触式激光位移传感器、多个传声器和高速摄像头,便于和数据采集仪配合使用后,记录被测复合材料的振动、噪声声压和冲击变形的时域数据,并经过数据处理后获取动刚度、吸声系数、隔声系数和冲击阻抗等参数。
(6)压电陶瓷具有结构尺寸小、附加质量轻(对于被测的轻质复合材料,必须尽可能减少激振器的附加质量影响)、激励频率高的独特优势,且容易实现多点振动激励。因此,在实验中选用了多组压电陶瓷作为激振器使用。每组压电陶瓷在不使用时,都被固定在蛇形可伸缩细管内部前端的卡扣上(其导电线也分布在细管中),蛇形可伸缩细管则可以折叠收缩于混响箱四周内壁的孔通道中(通过多组孔通道,可实现压电陶瓷与压电陶瓷驱动电源的输出端相连接),并借助密封塞对孔通道进行密封。当需要进行振动激励时,则通过高强度粘合剂将多组压电陶瓷粘贴在被测MLFLHL复合材料试件的下表面,蛇形可伸缩细管则可固定在混响箱的四周内壁上,这样可尽量保证混响箱内部的均匀声场。在对MLFLHL复合材料试件同时开展振动、噪声激励时,不会因为杂乱分布的导线,而影响测试效果。
(7)弹丸回收装置固定在消声箱的上表面和混响箱的下表面,主要为由聚醚多乙醇,泡沫稳定剂,催化剂、发泡剂、开孔剂等化学药剂制成的泡沫状固体,可以对弹射装置发出的弹丸传感器(11)起到回收保护的作用,具有高强度、开孔度大、孔壁易碎等特点。
附图说明
图1是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪系统外部轮廓图;
图2是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪系统打孔通道图;
图3是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪系统内部结构图;
图4是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪中已打孔的 夹具示意图;
图5是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪中蛇形可伸缩细管示意图;
图6是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪中弹丸回收装置示意图;
图7是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪可伸缩式支撑框示意图;
图8是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪中可折叠防护架子示意图;
图9是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪中上下箱体支撑连接台体的示意图;
图10是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪中弹丸离心加速弹射装置与喷射管相连接的示意图。
图中,1—消声箱;2—混响箱;3—矩形门框;4—可伸缩支撑框架;5—声压传感器;6—激光位移传感器;7—高速摄像头;8—弹丸回收装置;9—球顶面;10—大功率高音号角;11—弹丸传感器;12—喷射管;13—弹丸离心加速弹射装置;14—框状压板夹具;15—蛇形可伸缩细管;16—密封塞;17—上下箱体支撑连接台体;18—压电陶瓷。
具体实施方式
下面结合实施例和附图对本发明进行详细说明,但本发明的保护范围不受实施例和附图所限。
图1是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪系统外部轮廓图,图2是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪系统打孔通道图,图3是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪系统内部结构图,图4是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪中已打孔的夹具示意图,图5是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪中蛇形可伸缩细管示意图,图6是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪中弹丸回收装置示意图,图7是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪可伸缩式支撑框示意图,图8是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪中可折叠防护架子示意图,图9是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪中上下箱体支撑连接台体的示意图,图10是本发明具体实施方式的复合材料减震降噪抗冲击性能一体化测试仪中弹丸离心加速弹射装置与喷射管相连接的示意图,如图所示:
复合材料减震降噪抗冲击性能一体化测试仪,包括混响箱2、消声箱1及上下箱体支撑连接台体17、大功率高音号角10及前置功率放大器和纯后级功率放大器、多组压电陶瓷18 及压电陶瓷驱动电源、弹丸离心加速弹射装置13和多组弹丸传感器11、可伸缩式支撑框架4、蛇形可伸缩细管15、激光位移传感器6、高速摄像头7、多个声压传感器5、弹丸回收装置8和数据采集仪;
所述消声箱1底部设有矩形开口,四周和顶面均采用多层吸声结构,其内、外层均为钢板,在中间填充玻璃纤维棉作为吸声材料,且与外层钢板之间保留一定厚度的空气层;在消声箱的前面还开有矩形门框3,矩形门框3中配置有隔声门;
所述混响箱2采用多层阻尼结构,顶部设有矩形开口,其内、外层也为钢板,在中间填充细沙阻尼材料,且与外层钢板之间保留一定厚度的空气层;在混响箱2前、后、左、右四周内壁上安装不同半径的球顶面9,实现混响箱2内声能密度处处相等;在混响箱2的前面还开设矩形门框3;在混响箱2的顶部留有矩形开口,框状压板夹具14的下板固定在混响箱2内部,上板浮动以便适应不同厚度的板材,且需对复合材料板试件的四边及相应的框状压板夹具打孔;
所述混响箱2和消声箱1两个箱体通过螺栓组进行连接,也可分开使用,需要分开使用时,通过上下箱体支撑连接台体17封闭箱体,混响箱2或消声箱1,装入到上下箱体支撑连接台体17上即可;
所述可伸缩式支撑框架4上布置非接触式激光位移传感器、多个传声器和高速摄像头,和数据采集仪配合使用后,记录被测复合材料的振动、噪声声压和冲击变形的时域数据,并经过数据处理后获取动刚度、吸声系数、隔声系数和冲击阻抗等参数;
所述高音号角10的发声表面为矩形平面,其发声表面被安装在混响箱的底面,用以提供能量充足、激励强度和激励频率可控的噪声激励信号;
所述压电陶瓷18作为激振器使用,每组压电陶瓷在不使用时,都被固定在蛇形可伸缩细管15内部前端的卡扣上,压电陶瓷的导电线也分布在蛇形可伸缩细管15中,蛇形可伸缩细管15可折叠收缩于混响箱四周内壁的孔通道中,通过多组孔通道,可实现压电陶瓷与压电陶瓷驱动电源的输出端相连接,并借助密封塞16对孔通道进行密封;当需要进行振动激励时,通过高强度粘合剂将多组压电陶瓷粘贴在被测MLFLHL复合材料试件的下表面,蛇形可伸缩细管则可固定在混响箱的四周内壁上,可尽量保证混响箱内部的均匀声场;
所述弹丸离心加速弹射装置13是一个小型高速旋转装置,集成在上述的混响箱外面,通过金属软管将离心装置和喷射管12连接,通过离心加速后实现弹射,并对复合材料板进行任意点的冲击激励,弹丸传感器11内部安装传感器,预埋与无线发射装置,其接收端与数据采集仪相连,便于采集弹丸传感器冲击时的冲击接触力;改变离心加速的转速,可以控制弹射冲击的激励能量大小,可以造成被测复合材料的变形或贯穿冲击;当冲击速度较小时,弹丸传感器11掉落在下箱体的底部的弹丸回收装置中;当冲击速度较大时,复合材料被弹丸传感器贯穿冲击后,弹丸传感器11射入消声箱上部的弹丸回收装置8,被其捕获;
所述弹丸回收装置8固定在消声箱的上表面和混响箱的下表面,主要为由聚醚多乙醇, 泡沫稳定剂,催化剂、发泡剂、开孔剂等化学药剂制成的泡沫状固体,可对弹射装置发出的弹丸传感器11起到回收保护的作用。
所述消声箱1四周侧壁上还预留一定数量的孔通道,借助密封塞16对孔通道进行密封,箱壁上还安装有吸声尖劈。
所述混响箱2的箱内表面刷有白色磁漆。
所述混响箱的前面还开设矩形门框3,矩形门框3中配置有隔声门,四周设置有橡胶密封条。
所述噪声激励信号包括白噪声随机、简谐、脉冲多种激励类型。
复合材料减震降噪抗冲击性能一体化测试仪的测试方法,具体包括如下步骤:
(1)将被测的MLFLHL复合材料试件安装放入框状压板夹具中并拧紧螺栓固定;
(2)分别将振动、噪声以及冲击激励的激励源布置到位并调整至待命状态;
通过高强度粘合剂将多组压电陶瓷粘贴在被测复合材料试件的下表面,控制数据采集仪的信号输出通道发出脉冲激励信号,经过压电陶瓷驱动电源放大处理后,根据逆压电效应原理,实现对多组压电陶瓷的振动激励幅度和频率的控制,进而对被测复合材料试件产生多点振动激励效果,在调试完毕后,关闭激励信号,处于待命状态;
控制数据采集仪的第二信号输出通道,发出激励频率范围可控的随机激励信号,在经过前置功率放大器和纯后级功率放大器后,将该信号与高音号角的输入端相连,激发高音号角产生随机噪声激励效果,并经过调试后,达到制定的噪声激励幅度和频率范围,此时,关闭激励信号,处于待命状态;
启动弹丸离心加速弹射装置并调整其达到所需要的旋转速度,保持装置的高速稳定旋转,使弹丸传感器处于待弹射状态;
(3)分别布置位移传感器、多个声压传感器和高速摄像头到关注的测点位置,以便于有效获取被测复合材料试验的振动响应、声压信号以及冲击变形及响应信号,通过数据采集仪的输入通道与上述传感器相连,并实现不同信号的实时记录和保存;
将弹丸回收装置位置至预定弹着点附近,准备接收弹丸传感器;
(4)开展噪声激励,按照激励幅度从小到大,随机频率范围从小到大的原则,在不同的测试参数下开展实验,并通过激光位移传感器、多个声压传感器记录被测复合材料薄板在单独噪声激励下的噪声辐射声压、振动响应性能,并评价其在不同噪声激励测试参数下的减振降噪效果;
(5)开展振动激励,按照激励点数从少到多,激励幅度从小到大,激励频率范围从小到大的原则,在不同的测试参数下开展实验,并通过激光位移传感器、多个声压传感器记录被测复合材料薄板在单独振动激励下的噪声辐射声压、振动响应性能,并评价其在不同振动激励测试参数下的减振降噪效果;
(6)最后按照先进行噪声激励,再进行振动激励,最后进行冲击激励的顺序进行减振 降噪抗冲击一体化测试,在不同的测试参数下开展实验,并通过激光位移传感器、多个声压传感器和高速摄像头记录不同类型的数据,并对关键指标进行计算,全面、准确地评价减振降噪抗冲击性能;
按照激励幅度从小到大,随机频率范围从小到大的原则,按照不同测试参数的随机噪声激励,并利用多个声压传感器测试两个箱体内的噪声声压,最终获得被测复合材料试件的在不同激励幅度、频率范围的吸声系数、隔声系数;
按照激励点数从少到多,激励幅度从小到大,激励频率范围从小到大的原则,控制多组压电陶瓷产生脉冲振动激励,通过激光位移传感器测试;通过对信号进行时域VMD分析处理和频谱分析处理,分别获得对数衰减率、各阶阻尼比、各阶动刚度;
按照冲击激励速度从小到大的顺序,在不同的冲击激励位置开展冲击激励测试,通过高速摄像头录制被测复合材料试件的损伤面积、凹坑深度,并通过力传感器测量冲击阻抗、绘制冲击接触力-结构位移曲线等。

Claims (6)

  1. 复合材料减震降噪抗冲击性能一体化测试仪,其特征在于:包括混响箱(2)、消声箱(1)及上下箱体支撑连接台体(17)、大功率高音号角(10)及前置功率放大器和纯后级功率放大器、多组压电陶瓷(18)及压电陶瓷驱动电源、弹丸离心加速弹射装置(13)和多组弹丸传感器(11)、可伸缩式支撑框架(4)、蛇形可伸缩细管(15)、激光位移传感器(6)、高速摄像头(7)、多个声压传感器(5)、弹丸回收装置(8)和数据采集仪;
    所述消声箱(1)底部设有矩形开口,四周和顶面均采用多层吸声结构,其内、外层均为钢板,在中间填充玻璃纤维棉作为吸声材料,且与外层钢板之间保留一定厚度的空气层;在消声箱的前面还开有矩形门框(3),矩形门框(3)中配置有隔声门;
    所述混响箱(2)采用多层阻尼结构,顶部设有矩形开口,其内、外层也为钢板,在中间填充细沙阻尼材料,且与外层钢板之间保留一定厚度的空气层;在混响箱(2)前、后、左、右四周内壁上安装不同半径的球顶面(9),实现混响箱(2)内声能密度处处相等;在混响箱(2)的前面还开设矩形门框(3);在混响箱(2)的顶部留有矩形开口,框状压板夹具(14)的下板固定在混响箱(2)内部,上板浮动以便适应不同厚度的板材,且需对复合材料板试件的四边及相应的框状压板夹具打孔;
    所述混响箱(2)和消声箱(1)两个箱体通过螺栓组进行连接,也可分开使用,需要分开使用时,通过上下箱体支撑连接台体(17)封闭箱体,混响箱(2)或消声箱(1),装入到上下箱体支撑连接台体(17)上即可;
    所述可伸缩式支撑框架(4)上布置非接触式激光位移传感器、多个传声器和高速摄像头,和数据采集仪配合使用后,记录被测复合材料的振动、噪声声压和冲击变形的时域数据,并经过数据处理后获取动刚度、吸声系数、隔声系数和冲击阻抗等参数;
    所述高音号角(10)的发声表面为矩形平面,其发声表面被安装在混响箱的底面,用以提供能量充足、激励强度和激励频率可控的噪声激励信号;
    所述压电陶瓷(18)作为激振器使用,每组压电陶瓷在不使用时,都被固定在蛇形可伸缩细管(15)内部前端的卡扣上,压电陶瓷的导电线也分布在蛇形可伸缩细管(15)中,蛇形可伸缩细管(15)可折叠收缩于混响箱四周内壁的孔通道中,通过多组孔通道,可实现压电陶瓷与压电陶瓷驱动电源的输出端相连接,并借助密封塞(16)对孔通道进行密封;当需要进行振动激励时,通过高强度粘合剂将多组压电陶瓷粘贴在被测MLFLHL复合材料试件的下表面,蛇形可伸缩细管则可固定在混响箱的四周内壁上,可尽量保证混响箱内部的均匀声场;
    所述弹丸离心加速弹射装置(13)是一个小型高速旋转装置,集成在上述的混响箱外面,通过金属软管将离心装置和喷射管(12)连接,通过离心加速后实现弹射,并对复合材料板进行任意点的冲击激励,弹丸传感器(11)内部安装传感器,预埋有无线发射装置,其接收端与数据采集仪相连,便于采集弹丸传感器冲击时的冲击接触力;改变离心加速的转速,可以控制弹射冲击的激励能量大小,可以造成被测复合材料的变形或贯穿冲击;当冲击速度较小时, 弹丸传感器(11)掉落在下箱体的底部的弹丸回收装置中;当冲击速度较大时,复合材料被弹丸传感器贯穿冲击后,弹丸传感器(11)射入消声箱上部的弹丸回收装置(8),被其捕获;
    所述弹丸回收装置(8)固定在消声箱的上表面和混响箱的下表面,主要为由聚醚多乙醇,泡沫稳定剂,催化剂、发泡剂、开孔剂等化学药剂制成的泡沫状固体,可对弹射装置发出的弹丸传感器(11)起到回收保护的作用。
  2. 根据权利要求1所述的复合材料减震降噪抗冲击性能一体化测试仪,其特征在于:所述消声箱(1)四周侧壁上还预留一定数量的孔通道,借助密封塞(16)对孔通道进行密封,箱壁上还安装有吸声尖劈。
  3. 根据权利要求1所述的复合材料减震降噪抗冲击性能一体化测试仪,其特征在于:所述混响箱(2)的箱内表面刷有白色磁漆。
  4. 根据权利要求1所述的复合材料减震降噪抗冲击性能一体化测试仪,其特征在于:所述混响箱的前面还开设矩形门框(3),矩形门框(3)中配置有隔声门,四周设置有橡胶密封条。
  5. 根据权利要求1所述的复合材料减震降噪抗冲击性能一体化测试仪,其特征在于:所述噪声激励信号包括白噪声随机、简谐、脉冲多种激励类型。
  6. 复合材料减震降噪抗冲击性能一体化测试仪的测试方法,其特征在于,具体包括如下步骤:
    (1)将被测的MLFLHL复合材料试件安装放入框状压板夹具中并拧紧螺栓固定;
    (2)分别将振动、噪声以及冲击激励的激励源布置到位并调整至待命状态;
    通过高强度粘合剂将多组压电陶瓷粘贴在被测复合材料试件的下表面,控制数据采集仪的信号输出通道发出脉冲激励信号,经过压电陶瓷驱动电源放大处理后,根据逆压电效应原理,实现对多组压电陶瓷的振动激励幅度和频率的控制,进而对被测复合材料试件产生多点振动激励效果,在调试完毕后,关闭激励信号,处于待命状态;
    控制数据采集仪的第二信号输出通道,发出激励频率范围可控的随机激励信号,在经过前置功率放大器和纯后级功率放大器后,将该信号与高音号角的输入端相连,激发高音号角产生随机噪声激励效果,并经过调试后,达到制定的噪声激励幅度和频率范围,此时,关闭激励信号,处于待命状态;
    启动弹丸离心加速弹射装置并调整其达到所需要的旋转速度,保持装置的高速稳定旋转,使弹丸传感器处于待弹射状态;
    (3)分别布置位移传感器、多个声压传感器和高速摄像头到关注的测点位置,以便于有效获取被测复合材料试验的振动响应、声压信号以及冲击变形及响应信号,通过数据采集仪的输入通道与上述传感器相连,并实现不同信号的实时记录和保存;
    将弹丸回收装置位置至预定弹着点附近,准备接收弹丸传感器;
    (4)开展噪声激励,按照激励幅度从小到大,随机频率范围从小到大的原则,在不同的测试参数下开展实验,并通过激光位移传感器、多个声压传感器记录被测复合材料薄板在单 独噪声激励下的噪声辐射声压、振动响应性能,并评价其在不同噪声激励测试参数下的减振降噪效果;
    (5)开展振动激励,按照激励点数从少到多,激励幅度从小到大,激励频率范围从小到大的原则,在不同的测试参数下开展实验,并通过激光位移传感器、多个声压传感器记录被测复合材料薄板在单独振动激励下的噪声辐射声压、振动响应性能,并评价其在不同振动激励测试参数下的减振降噪效果;
    (6)最后,按照先进行噪声激励,再进行振动激励,最后进行冲击激励的顺序进行减振降噪抗冲击一体化测试,在不同的测试参数下开展实验,并通过激光位移传感器、多个声压传感器和高速摄像头记录不同类型的数据,并对关键指标进行计算,全面、准确地评价减振降噪抗冲击性能;
    按照激励幅度从小到大,随机频率范围从小到大的原则,按照不同测试参数的随机噪声激励,并利用多个声压传感器测试两个箱体内的噪声声压,最终获得被测复合材料试件的在不同激励幅度、频率范围的吸声系数、隔声系数;
    按照激励点数从少到多,激励幅度从小到大,激励频率范围从小到大的原则,控制多组压电陶瓷产生脉冲振动激励,通过激光位移传感器测试;通过对信号进行时域VMD分析处理和频谱分析处理,分别获得对数衰减率、各阶阻尼比、各阶动刚度;
    按照冲击激励速度从小到大的顺序,在不同的冲击激励位置开展冲击激励测试,通过高速摄像头录制被测复合材料试件的损伤面积、凹坑深度,并通过力传感器测量冲击阻抗、绘制冲击接触力-结构位移曲线等。
PCT/CN2019/113981 2019-10-24 2019-10-29 复合材料减震降噪抗冲击性能一体化测试仪及测试方法 WO2021077449A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911017264 2019-10-24
CN201911017264.7 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021077449A1 true WO2021077449A1 (zh) 2021-04-29

Family

ID=72756866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113981 WO2021077449A1 (zh) 2019-10-24 2019-10-29 复合材料减震降噪抗冲击性能一体化测试仪及测试方法

Country Status (2)

Country Link
CN (1) CN111781076B (zh)
WO (1) WO2021077449A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505158B (zh) * 2021-02-04 2021-05-18 广东博智林机器人有限公司 隔音性能的测试方法及测试装置
CN113074890B (zh) * 2021-03-17 2021-11-23 四川大学 大型空间可展开桁架结构关节铰链连接刚度在轨辨识方法
CN113295355B (zh) * 2021-04-15 2022-09-13 广西电网有限责任公司南宁供电局 一种具有异常振动预警功能的地缆通道监测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034602A (en) * 1976-02-27 1977-07-12 E. I. Du Pont De Nemours And Company Dynamic mechanical analyzer
JP2004361320A (ja) * 2003-06-06 2004-12-24 Ngk Insulators Ltd 振動子の励振方法、物理量の測定方法および物理量測定装置
CN200993649Y (zh) * 2006-12-30 2007-12-19 中国舰船研究设计中心 隔声性能测量装置
CN103528782A (zh) * 2013-10-23 2014-01-22 东北大学 基于压电陶瓷激振器的薄壁结构件振动测试装置及方法
CN108775999A (zh) * 2018-05-31 2018-11-09 苏州致电子制程有限公司 一种抗冲击测试设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004022B (zh) * 2010-11-29 2012-01-25 苏州苏试试验仪器有限公司 一种振动、噪声复合试验设备
JP5926853B2 (ja) * 2012-03-31 2016-05-25 中国▲鉱▼▲業▼大学(北京) 動力学的性能試験システム
CN103115666A (zh) * 2012-07-03 2013-05-22 重庆长安汽车股份有限公司 基于混响室测试评价整车的隔声性能的方法
CN104267104B (zh) * 2014-09-23 2017-01-25 柳州市兴拓工贸有限责任公司 一种汽车阻尼材料减振降噪性能检测方法
CN105466656A (zh) * 2015-11-30 2016-04-06 南京码尔够传动科技有限公司 颗粒碰撞噪声检测分析仪
CN107966259A (zh) * 2017-10-30 2018-04-27 东北大学 纤维增强复合薄壁构件的冲击与热复合试验装置
CN109115494A (zh) * 2018-09-19 2019-01-01 南京航空航天大学 圆柱齿轮副啮合冲击试验台及试验测试方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034602A (en) * 1976-02-27 1977-07-12 E. I. Du Pont De Nemours And Company Dynamic mechanical analyzer
JP2004361320A (ja) * 2003-06-06 2004-12-24 Ngk Insulators Ltd 振動子の励振方法、物理量の測定方法および物理量測定装置
CN200993649Y (zh) * 2006-12-30 2007-12-19 中国舰船研究设计中心 隔声性能测量装置
CN103528782A (zh) * 2013-10-23 2014-01-22 东北大学 基于压电陶瓷激振器的薄壁结构件振动测试装置及方法
CN108775999A (zh) * 2018-05-31 2018-11-09 苏州致电子制程有限公司 一种抗冲击测试设备

Also Published As

Publication number Publication date
CN111781076A (zh) 2020-10-16
CN111781076B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2021077449A1 (zh) 复合材料减震降噪抗冲击性能一体化测试仪及测试方法
CN104715749A (zh) 基于自适应微穿孔板吸声器的声阻抗调节装置及调节方法
CN204666567U (zh) 一种隔音隔震环境试验箱
CN111781272B (zh) 基于混响平面声波激励的复合材料减振降噪测试仪及方法
CN111289619A (zh) 一种材料吸音性能测试装置及测试方法
JPS6055259A (ja) コンポ−ネント検査法
US6119521A (en) Apparatus and method for measuring the acoustic properties of acoustic absorbers
CN105931629A (zh) 一种提高设定低频吸声性能的复合吸声结构
JP5507132B2 (ja) 超低周波音発生装置
Shih et al. Acoustic emission from impact damage in cross-ply composites
Madaras et al. Detection of impact damage on space shuttle structures using acoustic emission
CN112857553A (zh) 耦合薄膜非线性能量阱的声腔的降噪性能实验装置和方法
Hsu et al. Applications of electromagnetic acoustic transducers in the NDE of non-conducting composite materials
CN110671968A (zh) 一种手持式航天器碎片碰撞模拟发射装置及方法
CN113686966B (zh) 一种水声材料去耦特性参数的驻波管测量方法
Jurek et al. Non-contact guided wave excitation in composite plate by the ultrasound transmitter
Moon et al. Acousto-ultrasonic wave propagation in composite laminates
Piana et al. Sound radiation and sound insulation performances of maritime bulkheads
Yang et al. Optimum design of structures of composite materials in response to aerodynamic noise and noise transmission
JP5164779B2 (ja) インパルス音源装置
Doty et al. Development of an acoustic impedance tube testbed for material sample testing
Song et al. An experimental study on elastic wave propagation in a filament-wound composite motor case for acoustic emission during hydroproof testing
Sugimoto et al. 2E1-3 High speed noncontact acoustic inspection method using sound source mounted type UAV for the outer wall inspection
Lee et al. Prediction and measurement of acoustic transmission loss of acoustic window with composite sandwich structure
Navarrete et al. Loss factor determination of composite laminates by the photoacoustic technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950203

Country of ref document: EP

Kind code of ref document: A1