WO2021076887A1 - Cal-t constructs and uses thereof - Google Patents

Cal-t constructs and uses thereof Download PDF

Info

Publication number
WO2021076887A1
WO2021076887A1 PCT/US2020/055980 US2020055980W WO2021076887A1 WO 2021076887 A1 WO2021076887 A1 WO 2021076887A1 US 2020055980 W US2020055980 W US 2020055980W WO 2021076887 A1 WO2021076887 A1 WO 2021076887A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
gliadin
gamma
immunogenic
domain
Prior art date
Application number
PCT/US2020/055980
Other languages
French (fr)
Inventor
Mohammadreza PAKYARI
Curtis Cetrulo
Wilson Wong
Atsushi Okuma
Original Assignee
Trustees Of Boston University
The General Hospital Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trustees Of Boston University, The General Hospital Corporation filed Critical Trustees Of Boston University
Priority to CA3151961A priority Critical patent/CA3151961A1/en
Priority to CN202080087925.8A priority patent/CN115175935A/en
Priority to EP20876353.2A priority patent/EP4093768A4/en
Priority to JP2022522834A priority patent/JP2023500799A/en
Priority to IL291976A priority patent/IL291976A/en
Priority to AU2020366434A priority patent/AU2020366434A1/en
Publication of WO2021076887A1 publication Critical patent/WO2021076887A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/001Preparations to induce tolerance to non-self, e.g. prior to transplantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4621Cellular immunotherapy characterized by the effect or the function of the cells immunosuppressive or immunotolerising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4632T-cell receptors [TCR]; antibody T-cell receptor constructs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/46433Antigens related to auto-immune diseases; Preparations to induce self-tolerance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/46434Antigens related to induction of tolerance to non-self
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/73Fusion polypeptide containing domain for protein-protein interaction containing coiled-coiled motif (leucine zippers)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • C07K2319/81Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor containing a Zn-finger domain for DNA binding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • TECHNICAL FIELD [0003] The technology described herein relates to chimeric antigen ligand (CAL) technology, e.g., for treating of autoimmune and/or T-cell mediated conditions.
  • CAL chimeric antigen ligand
  • BACKGROUND [0004]
  • Current treatments for preventing autoimmunity and transplant rejection involve stringent immunosuppression, which can lead to severe, unwanted side effects including extreme susceptibility to infection, malignant and benign neoplasms, multiple organ and systems failure.
  • T cells recognize their target cells by using receptors on their cell surface which are called T Cell Receptors (TCRs).
  • TCRs have a recognition portion and a signaling portion. When the recognition portion binds to the natural complexes formed in the body in the presence of a diseased cell, the signaling portion is activated, which leads to the T cell engaging in killing activity or recruiting other immune cells to destroy the diseased cell.
  • CAR-T cell therapy is known and seeks to help T cells recognize autoreactive and alloreactive T cells. This is accomplished by genetically altering a T cell so that it expresses a chimeric antigen receptor (CAR).
  • CAR is an altered TCR, in which the natural recognition portion is removed and replaced with a synthetic recognition portion that is designed to more effectively recognize the autoreactive and alloreactive T cells by very specifically detecting the presence of a molecule unique to the autoreactive and alloreactive T cells.
  • CAL chimeric antigen ligands
  • the CALs described herein comprise a TCR recognition domain and a biomolecular interaction domain. The TCR recognition permits the CAL to bind to autoreactive and/or alloreactive T cells in an antigen specific manner.
  • the biomolecular interaction domain permits an immune killer cell (e.g., a NK cell, a T cell, or a dendritic cell) to bind to the CAL, thereby promoting killing of the autoreactive and/or alloreactive T cell by the immune killer cell.
  • the TCR recognition domain of a CAL binds specifically to a TCR, e.g., a TCR expressed on the surface of an autoreactive and/or alloreactive T cell.
  • Exemplary but non-limiting TCR recognition domains include peptide-MHC complexes, e.g., in monomeric, oligomeric, or multimeric form.
  • the TCR recognition domain can comprise natural or synthetic sequences.
  • the biomolecular interaction domain of the CAL permits specific binding of the CAL with a second biomolecule, e.g., a receptor on the immune killer cell.
  • a second biomolecule e.g., a receptor on the immune killer cell.
  • the biomolecular interaction domain of the CAL is recognized by an endogenous receptor on the immune killer cell.
  • the biomolecular interaction domain of the CAL is recognized by an engineered receptor on the immune killer cell.
  • biomolecular interaction domains include FITC (which can be recognized by a FITC CAR-T cell system), a leucine zipper domain, a zinc finger domain, PSD95-Dlg1-zo-1 (PDZ) domains, a streptavidin domain and a streptavidin binding protein (SBP) domain, a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1), a PYL domain and an ABI domain, a chemically-induced pair of interaction domains as described elsewhere herein, a Snap-tag, a Halo tag, a T14-3-3- cdeltaC and/or a C-Terminal peptide of PMA2 (CT52), a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein a Fab domain, and/or an anti-CD3 domain.
  • FITC which can be recognized by a FITC CAR-T cell system
  • CALs described herein can be used in combination with CAR-T systems.
  • Exemplary but non-limiting CAR-T systems suitable for use with the methods and compositions described herein include SUPRA CAR and SPLIT CAR.
  • CAR-T systems are discussed in more detail elsewhere herein and are known in the art.
  • a composition comprising: a) a TCR recognition domain; and one or both of: b) an intracellular signaling domain; and c) a biomolecular interaction domain (e.g., a first-type biomolecular interaction domain).
  • composition comprising: a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and a signaling polypeptide comprising a second-type biomolecular interaction domain and an intracellular signaling domain; wherein the first-type and second-type biomolecular interaction domains bind specifically to each other.
  • composition comprising: a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and a recognition polypeptide comprising a second recognition domain and a third-type biomolecular interaction domain; wherein the first-type and third-type biomolecular interaction domains bind specifically to each other.
  • composition comprising: a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and a signaling polypeptide comprising a second-type biomolecular interaction domain and an intracellular signaling domain; and a recognition polypeptide comprising a second recognition domain and a third-type biomolecular interaction domain; wherein the second-type and third-type biomolecular interaction domains compete for binding to the first-type biomolecular interaction domain.
  • the third-type biomolecular interaction domain and first- type biomolecular interaction domain have a higher affinity for each other than the second- type biomolecular interaction domain and first-type biomolecular interaction domain.
  • described herein is a composition comprising: a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; a signaling polypeptide comprising a second-type biomolecular interaction domain, a fourth-type biomolecular interaction domain, and an intracellular signaling domain; and a recognition polypeptide comprising a second recognition domain and a fifth-type biomolecular interaction domain; wherein the first-type biomolecular interaction domain and the second-type biomolecular interaction domain bind specifically to each other; and wherein the fourth-type biomolecular interaction domain and the fifth-type biomolecular interaction domain bind specifically to each other.
  • the fourth-type biomolecular interaction domain and fifth-type biomolecular interaction domain have a weaker affinity than the second-type biomolecular interaction domain and first-type protein interaction domain.
  • the first polypeptide further comprises a sixth-type biomolecular interaction domain and the recognition polypeptide further comprises a seventh-type biomolecular interaction domain which bind specifically to each other. [0013] In some embodiments of any of the aspects, the first polypeptide comprises the entire TCR recognition domain.
  • the TCR recognition domain comprises at least two separate polypeptide sequences
  • the first polypeptide comprises at least one of the separate polypeptide sequences of the TCR recognition domain
  • the first polypeptide is bound to or complexed with a second or further polypeptide sequences of the TCR recognition domain to form a TCR recognition domain.
  • the TCR recognition domain comprises a non-polypeptide component.
  • the second recognition domain is specific for a target that is not recognized by the TCR recognition domain.
  • the second recognition domain is specific for a target that is found on a healthy and/or non-target cell and not on a diseased and/or target cell.
  • the TCR recognition domain comprises a MHC (Major Histocompatibility Complex); a MHC-peptide complex; featureless peptide MHC; or a MHC-peptide fusion.
  • the peptide is a human or non-human peptide.
  • the peptide is a Minor Histocompatibility Antigen (MiHA).
  • the MHC is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
  • the MHC-peptide complex is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
  • the MHC-peptide fusion is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
  • the MHC is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
  • the MHC-peptide complex is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
  • the MHC-peptide fusion is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
  • the MHC is a MHC class I or a MHC class II.
  • the TCR recognition domain comprises a CD1 domain or a CD1 domain-ligand complex or fusion.
  • the CD1 is CD1d.
  • the biomolecular interaction domains are found on an extracellular portion of the respective polypeptides.
  • biomolecular interaction domain(s) is a BZip (RR) and/or a AZip (EE), or any binding pair of biomolecular interaction domains are collectively a BZip (RR) and a AZip (EE); c. wherein the biomolecular interaction domain(s) is a PSD95-Dlgl-zo-1 (PDZ) domain; d. wherein the biomolecular interaction domain(s) is a streptavidin and/or a streptavidin binding biomolecular (SBP) or any binding pair of biomolecular interaction domains are collectively a streptavidin and a streptavidin binding biomolecular (SBP); e.
  • PDZ PSD95-Dlgl-zo-1
  • biomolecular interaction domain(s) is a FKBP-binding domain of mTOR (FRB) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a FKBP-binding domain of mTOR (FRB) and a FK506 binding biomolecular (FKBP); f.
  • biomolecular interaction domain(s) is a cyclophilin-Fas fusion biomolecular (CyP-Fas) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a cyclophilin-Fas fusion biomolecular (CyP-Fas) and a FK506 binding biomolecular (FKBP); g.
  • biomolecular interaction domain(s) is a calcineurin A (CNA) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a calcineurin A (CNA) and a FK506 binding biomolecular (FKBP); h. wherein the biomolecular interaction domain(s) is a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1) or any binding pair of biomolecular interaction domains are collectively a gibberellin insensitive (GIA) and a gibberellin insensitive dwarf1 (GID1); i.
  • biomolecular interaction domain(s) is a Snap-tag and/or a Halo tag, or any binding pair of biomolecular interaction domains are collectively a Snap-tag and a Halo tag; j. wherein the biomolecular interaction domain(s) is a T14-3-3-cdeltaC and/or a C- Terminal peptides of PMA2 (CT52), or any binding pair of biomolecular interaction domains are collectively a T14-3-3-cdeltaC and a C-Terminal peptides of PMA2 (CT52); k.
  • biomolecular interaction domain(s) is a PYL and/or a ABI, or any binding pair of biomolecular interaction domains are collectively a PYL and a ABI; l. wherein the biomolecular interaction domain(s) is a nucleotide tag and/or a zinc finger domain, or any binding pair of biomolecular interaction domains are collectively a nucleotide tag and a zinc finger domain; m. wherein the biomolecular interaction domain(s) is a nucleotide tag, or any binding pair of biomolecular interaction domains are collectively a pair of nucleotide tags; n.
  • biomolecular interaction domain(s) is a Fluorescein isothiocyanate (FITC) and/or a FITC binding biomolecular or any binding pair of protein interaction domains are collectively a FITC and a FITC binding protein; and/or o.
  • the protein interaction domain(s) is a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein or any binding pair of protein interaction domains are collectively a (R)-Phycoerythrin (R-PE/ PE) and a R-PE/PE binding protein.
  • the nucleotide tag is a DNA tag or dsDNA tag.
  • the intracellular signaling domain comprises or is a signaling domain from one or more proteins selected from the group consisting of: TCR ⁇ , FcR ⁇ , FcR ⁇ , CD3 ⁇ ; CD35; CD3 ⁇ ; CD3C; CD22; CD79a; CD79b; CD66d; CARD11; CD2; CD7; CD27; CD28; CD30; CD40; CD54 (ICAM); CD83; CD134 (OX40); CD137 (4-1BB); CD150 (SLAMF1); CD152 (CTLA4); CD223 (LAG3); CD270 (HVEM); CD273 (PD-L2); CD274 (PD- Ll); CD278 (ICOS); DAP10; LAT; KD2C SLP76; TRIM; and ZAP70.
  • proteins selected from the group consisting of: TCR ⁇ , FcR ⁇ , FcR ⁇ , CD3 ⁇ ; CD35; CD3 ⁇ ; CD3C; CD22; CD79a; CD79b; CD66d; CARD11; CD
  • the TCR recognition domain comprises a MHC allogeneic, autologous, or xenogeneic to the cell. In some embodiments of any of the aspects, the TCR recognition domain comprises a synthetic MHC.
  • the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is allogeneic, autologous, or xenogeneic to the cell. In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is synthetic.
  • the cell is a NK cell, dendritic cell, regulatory T cell, or effector T cell. In some embodiments of any of the aspects, the cell is engineered to express one of more of the polypeptide(s) of the composition. In some embodiments of any of the aspects, the cell is engineered to express the signaling polypeptide of the composition.
  • the cell is further engineered to knockout or knockdown the native MHCI/II. In some embodiments of any of the aspects, the cell is further engineered to knockdown the native MHCI/II expressed on the cell surface.
  • a composition comprising a TCR recognition domain and an intracellular signaling domain but not comprising a biomolecular interaction domain (e.g., a first-type biomolecular interaction domain).
  • a composition comprising a TCR recognition domain and a biomolecular interaction domain (e.g., a first- type biomolecular interaction domain) and but not comprising an intracellular signaling domain.
  • a biomolecular interaction domain e.g., a first- type biomolecular interaction domain
  • an intracellular signaling domain e.g., a first- type biomolecular interaction domain
  • described herein is a method of treating or preventing an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD in a subject in need thereof, the method comprising administering to the subject a composition and/or cell of any of the preceding claims.
  • the TCR recognition domain comprises a MHC allogeneic to the subject.
  • the TCR recognition domain comprises a MHC autologous to the transplant cells. In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC xenogeneic to the transplant cells. In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is allogeneic to the subject. In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is autologous to the transplant cells. In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is autologous to the transplant cells.
  • the transplant is any human or non-human cell, tissue, or organ. In some embodiments of any of the aspects, the transplant is an allogeneic hematopoietic stem cell or solid organ transplantation.
  • the malignant T cell condition is T cell acute lymphoblastic leukemia or T cell lymphoblastic lymphoma.
  • the autoimmune disease is type 1 diabetes, vitiligo, multiple sclerosis, alopecia, celiac disease, pemphigus, rheumatoid arthritis, or scleroderma.
  • the autoimmune disease is thyroiditis, type 1 diabetes mellitus, Hashimoto's thyroiditis, Graves' disease, celiac disease, multiple sclerosis, Guillain-Barre syndrome, Addison's disease, and Raynaud's phenomenon, Goodpasture's disease, arthritis (rheumatoid arthritis such as acute arthritis, chronic rheumatoid arthritis, gout or gouty arthritis, acute gouty arthritis, acute immunological arthritis, chronic inflammatory arthritis, degenerative arthritis, type II collagen-induced arthritis, infectious arthritis, Lyme arthritis (e.g., post treatment Lyme disease syndrome), proliferative arthritis, psoriatic arthritis, Still's disease, vertebral arthritis, and juvenile-onset rheumatoid arthritis, arthritis chronica progrediente, arthritis deformans, polyarthritis chronica primaria, reactive arthritis, and ankylosing spondylitis), palindromic arthritis, inflammatory hyperprolifera, arthritis chronica progredient
  • the T cell mediated immune response is an anti-drug specific response to a biologic, cell therapy, and/or gene therapy.
  • the biologic, cell-therapy, or gene therapy is an adeno-associated virus (AAV) gene therapy, a genome editing agent, or enzyme replacement therapy.
  • AAV adeno-associated virus
  • the disease is type 1 diabetes and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: one or more of SEQ ID NOs: 8-17; HLA-A*0201 and at least one of SEQ ID NOs: 2013-2016 and 2031-2033; or HLA-A*02:01 and at least one of SEQ ID NOs: 20128-2129.
  • the disease is vitiligo and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: SEQ ID NO: 18, 19, and one of 20-22; or comprises HLA-A*0201 and SEQ ID NO: 2018; or HLA-A*0301 and SEQ ID NO: 2019; or comprises HLA-A*2402 and SEQ ID NO: 2020; or HLA-A*0101 and SEQ ID NO: 2021.
  • the method is a method of treating and/or preventing GvHD and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: HLA-A*0101 and at least one of SEQ ID NOs: 2034-2037; or HLA-B*0702 and SEQ ID NO: 2038; or HLA-B*0801 and SEQ ID NO: 2039.
  • the disease is type 1 diabetes and the TCR recognition domain comprises one or more of SEQ ID NOs: 8-17; comprises HLA-A*0201 and at least one of SEQ ID NOs: 2013-2016 and 2031-2033; or comprises HLA-A*02:01 and at least one of SEQ ID NOs: 20128-2129.
  • the disease is vitiligo and the TCR recognition domain comprises SEQ ID NO: 18, 19, and one of 20-22; or comprises HLA- A*0201 and SEQ ID NO: 2018; or comprises HLA-A*0301 and SEQ ID NO: 2019; or comprises HLA-A*2402 and SEQ ID NO: 2020; or comprises HLA-A*0101 and SEQ ID NO: 2021.
  • the method is a method of treating and/or preventing GvHD and the TCR recognition domain comprises HLA-A*0101 and at least one of SEQ ID NOs: 2034-2037; or comprises HLA-B*0702 and SEQ ID NO: 2038; or comprises HLA-B*0801 and SEQ ID NO: 2039.
  • Fig.1 demonstrates that pMHC tetramer + FITC (adaptor) binds to the target cells (OTi) in a dose dependent fashion or manner.
  • I-H2Kb MHC class I tetramer.
  • I-Ab- Control tetramer.
  • Figure discloses SEQ ID NOS 2752-2753, 2750 and 2754, respectively, in order of appearance.
  • Fig.2 depicts expression of activation marker CD69 on OTi cells at different time points (24, 48, 72 hrs.). Binding of Jurkat+ pMHC to OTi cells does not change Jurkat live count (right).
  • Figure discloses SEQ ID NOS 2750, 2750 and 2754, respectively, in order of appearance.
  • Fig.3 depicts the expression of CD69 on Jurkat CAR, e.g., CAL T cells in different time points (24, 48, 72 hrs.).
  • Figure discloses SEQ ID NOS 2750 and 2755, respectively, in order of appearance.
  • Fig.4 depicts the cytotoxicity of Primary human CD8 CAR, e.g., CAL T cells with different concentrations of tetramers (left).
  • Minimal activation of target cells CD69 on CAR, e.g., CAL T cells and target cells
  • I-Ab Ctrl/ H2Kb: MHC-I.
  • Figure discloses SEQ ID NOS 2750, 2754 and 2750, respectively, in order of appearance.
  • Fig.5 demonstrates that the cytotoxicity of human CD8 CAR , e.g., CAL T is highly specific and was not seen with ctrl tetramer (left).
  • Fig.6A depicts a schematic of SUPRA CAR design applied to provide Universal CAL. This design separates the cell targeting molecule module from the killer cell.
  • Fig.6B depicts that SUPRA CARs can be designed with CD3 ⁇ domain uncoupled from the costimulatory domains to provide Universal CAL as described herein.
  • Figs.7A-7D depict key features of the SUPRA CAR systems that can be applied to Universal CAL.
  • Fig.7A demonstrates that zipCAR activation is tunable through modulation of zipFv concentration, zipper affinity, scFv affinity, and zipCAR expression level in human primary CD4 T cells, as demonstrated by IFN-g production.
  • Fig.7B demonstrates that SUPRA CAR system, as applied to Universal CAL,can perform combination antigen detection to form AND gate logic in CD4 T cells.
  • Fig.7C demonstrates that xenograft animal tumor model shows tumor eradication (as demonstrated by luciferase photon flux given by the tumor cells) by the SUPRA CAR T cells.
  • Fig.7D demonstrates that SUPRA CARs as applied to Universal CAL can be used to control different cell types, such as CD4 and CD8 T cells, against two different antigens.
  • CD69 expression (a T cell activation marker) is quantified with flow cytometry for CD4 and CD8 T cells.
  • Fig.8 depicts the timeline of double Hu-PBMC-HSCT-skin graft mouse model generation.
  • Fig.9 depicts a summary of double hu-PBMC-HSCT-skin graft mouse model generation.
  • Fig.10 depicts key features of pMHC multimer + CAR, e.g., CAL T cell system.
  • Fig.11 depicts a table of experimental design.
  • Figure discloses SEQ ID NOS 2750, 2756 and 2754, respectively, in order of appearance.
  • Fig.12 demonstrates verification of FITC-conjugated tetramer mediated activation.
  • Figure discloses SEQ ID NOS 2750 and 2751, respectively, in order of appearance.
  • Fig.13 depicts a time course of FITC-conjugated tetramer mediated activation.
  • Figure discloses SEQ ID NOS 2750, 2751, 2750, 2751, 2750, 2751, 2750 and 2751, respectively, in order of appearance.
  • Fig.14 depicts a graph of Jurkat cell counts.
  • Figure discloses SEQ ID NOS 2750 and 2754, respectively, in order of appearance.
  • Fig.15 depicts tetramer staining.
  • Figure discloses SEQ ID NOS 2750, 2754, 2751, 2756, 2754, 2750 and 2754, from left to right and top to bottom.
  • Fig.16 depicts heatmaps of indicated staining levels.
  • Figure discloses SEQ ID NOS 2751, 2757, 2754, 2750, 2754, 2751, 2754, 2757, 2750, 2754, 2751, 2754, 2757, 2750 and 2754, respectively, in order of appearance.
  • Fig.17 depicts a table of experimental design.
  • Figs.18-20 depict graphs of cytotoxicity levels.
  • Fig.18 discloses SEQ ID NOS 2754, 2750, 2754 and 2750 from left to right.
  • Fig.19 discloses SEQ ID NOS 2754 and 2750, respectively, in order of appearance.
  • Fig.20 discloses SEQ ID NOS 2750, 2754, 2750 and 2754 from left to right.
  • Fig.21 depicts the levels of CD69 on OTi CD8 T cells.
  • Figure discloses SEQ ID NOS 2750, 2754, 2750 and 2754 from left to right.
  • Fig.22 depicts schematics of two embodiments of the technology described herein.
  • Fig.23 depicts a schematic of the FU-CAL embodiments of the technology described herein.
  • Fig.24 depicts a schematic of the CAL-BITE embodiments of the technology described herein.
  • the left panel depicts blinatumomab, which is described in more detail in Weiner et al. The Molecular Basis of Cancer 2015683-694.e3.
  • Fig.25 depicts a schematic of the CAL technology disarming autoreactive T cells.
  • Figs.26A-26B depict schematics of T cells design.
  • MHC can be mouse or human.
  • the MiHA can be ovalbumin (against OTi or OTii) or disparate antigens between donor and recipient.
  • Fig.27 depicts a graph demonstrating that pMHC tetramer + FITC (adaptor) binds to the target cells (OTi) in a dose dependent fashion, while OTii specific tetramer does not.
  • Fig.28A depicts expression of CD69 on OTi cells at different time points (24, 48, 72 hrs.).
  • Fig.28B is a graph demonstrating that binding of Jurkat+ pMHC to OTi cells does not change Jurkat live count.
  • Fig.29 depicts a graph demonstrating that cytotoxicity of pMHC-CAR against 1E6 T cell clone exhibits a dose dependent association.
  • Fig.32 depicts a graph demonstrating cytotoxicity of Primary CD8 CAR T cells against OTi TCR T cells with different concentration of tetramer.
  • DETAILED DESCRIPTION [0059] Aspects of the invention described herein relate to chimeric antigen ligands.
  • chimeric antigen ligand or “CAL” refers to an artificially constructed molecule comprising a TCR recognition domain (e.g. an polypeptide comprising at least one MHC sequence as described herein) and at least one biomolecular interaction domain.
  • the TCR recognition domain is selected to bind to specific populations of T cells that it is desirable to target and/or destroy, e.g., for therapeutic purposes in T-cell mediated diseases.
  • the population of targeted T cells is a population of polyclonal pathogenic T cells.
  • the biomolecular interaction domain is selected to bind to a second cell, e.g., a NK cell, thereby colocalizing the targeted T cell and the second cell and promoting or increasing the inhibition and/or destruction of the targeted T cell.
  • the CAL is selected to have high affinity or avidity for the TCR, e.g., the TCR variable domain.
  • the CALs can be used herein with endogenous cells, e.g., in some embodiments, no engineered cells are administered to the subject. In other embodiments, the CALs can be used with engineered cells, e.g., engineered NK cells.
  • the engineered cells can comprise one or more CARs, e.g, a CAR comprising an extracellular domain with a biomolecular interaction domain that specifically binds with the biomolecular interaction domain of the CAL.
  • CARs chimeric antigen receptors
  • the two separate polypeptides that make up a complete CAR are able to interact and form the complete CAR by way of protein interaction domains. This permits flexible, modular CAR-T therapy which is capable of complex logic computation, providing a more precise and effective approach to immunotherapy.
  • a CAL and/or chimeric antigen receptor having multiple components, and/or a cell or composition comprising a multi-component CAL and/or CAR.
  • Multi-component CALs/CARs are also referred to herein variously as SMART CAL/CAR or SUPRA.
  • traditional “chimeric antigen receptor” or “CAR” refers to an artificially constructed hybrid polypeptide comprising an antigen-binding domain (e.g. an antigen-binding portion of an antibody (e.g. a scFV)) linked to a cell signaling and/or cell activation domain.
  • the cell-signaling domain can be a T-cell signaling domain.
  • the cell activation domain can be a T-cell activation domain.
  • CARs have the ability to redirect the specificity and reactivity of T cells and other immune cells (e.g., NK cells) toward a selected target in a non-MHC-restricted manner, exploiting the antigen-binding properties of monoclonal antibodies.
  • NK cells immune cells
  • the non-MHC-restricted antigen recognition gives T-cells expressing CARs the ability to recognize an antigen independent of antigen processing, thus bypassing a major mechanism of tumor escape.
  • CARs when expressed in T-cells, CARs advantageously do not dimerize with endogenous T-cell receptor (TCR) alpha and beta chains.
  • TCR T-cell receptor
  • the CAR's extracellular binding domain is composed of a single chain variable fragment (scFv) derived from fusing the variable heavy and light regions of a murine or humanized monoclonal antibody.
  • scFvs may be used that are derived from Fabs (instead of from an antibody, e.g., obtained from Fab libraries), in various embodiments, this scFv is fused to a transmembrane domain and then to an intracellular signaling domain.
  • First- generation CARs include those that solely provide CD3zeta signals upon antigen binding
  • “Second- generation” CARs include those that provide both costimulation (e.g. CD28 or CD 137) and activation (CD3Q).
  • “Third-generation” CARs include those that provide multiple costimulation (e.g. CD28 and CD 137) and activation (CO3Q).
  • the CAR is selected to have high affinity or avidity for the antigen. Further discussion of CARs can be found, e.g., in Maus et al. Blood 2014123:2624-35; Reardon et al. Neuro-Oncology 201416:1441-1458; Hoyos et al.
  • multi-component CAL refers to a CAL comprising at least two separate polypeptides, neither of which polypeptides is capable of both ligand recognition and signaling activation on its own.
  • multi-component CAR refers to a CAR comprising at least two separate polypeptides, neither of which polypeptides is capable of both ligand recognition and signaling activation on its own.
  • the at least two separate polypeptides each comprise a protein interaction domain that permits interaction, e.g., binding of the separate polypeptides.
  • one of the at least two separate polypeptides is a transmembrane polypeptide having an intracellular T cell receptor (TCR) signaling domain and a second of the at least two separate polypeptides is an extracellular polypeptide having a ligand-binding domain.
  • TCR T cell receptor
  • a multi-component CAL and/or CAR can comprise two, three, four, five, six, seven, eight, nine, ten or more separate polypeptides.
  • Various aspects provided herein provide a composition comprising multiple components of a multi-component CAL and/or CAR.
  • a composition e.g., a single molecule, comprising a TCR recognition domain; and one or both of: (a) an intracellular signaling domain; and (b) a first-type protein interaction domain.
  • compositions e.g., a single molecule comprising a TCR recognition domain; and a first-type biomolecular (e.g., protein) interaction domain.
  • a multi-component CAL and/or CAR comprising a TCR recognition domain; and one or both of: (a) an intracellular signaling domain; and (b) a first-type protein interaction domain.
  • the composition, e.g, single molecule, comprising a TCR recognition domain; and a first-type biomolecular (e.g., protein) interaction domain does not comprise an antibody, antibody domain, or antibody reagent.
  • compositions comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; wherein the first-type and second-type protein interaction domains bind specifically to each other.
  • a multi-component CAL and/or CAR comprising a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; wherein the first-type and second-type protein interaction domains bind specifically to each other.
  • compositions comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the first-type and third-type protein interaction domains bind specifically to each other.
  • a multi-component CAL and/or CAR comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the first-type and third-type protein interaction domains bind specifically to each other [0070]
  • Another aspect of the embodiments is a composition comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; and (c) a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the second-type and third-type protein interaction domains compete for binding to the first-type protein interaction domain.
  • a multi- component CAL and/or CAR comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; and (c) a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the second-type and third-type protein interaction domains compete for binding to the first- type protein interaction domain.
  • the third-type protein interaction domain and first-type protein interaction domain have a higher affinity for each other than the second-type protein interaction domain and first-type protein interaction domain.
  • Affinity can be measured by one skilled in the art using standard methods, for example, by measuring its equilibrium dissociation constant (K d ).
  • Another aspect of the embodiments is a composition comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; (b) a signaling polypeptide comprising a second-type protein interaction domain, a fourth-type protein interaction domain, and an intracellular signaling domain; and (c) a recognition polypeptide comprising a second recognition domain and a fifth-type protein interaction domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other.
  • a multi-component CAL and/or CAR comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; (b) a signaling polypeptide comprising a second-type protein interaction domain, a fourth- type protein interaction domain, and an intracellular signaling domain; and (c) a recognition polypeptide comprising a second recognition domain and a fifth-type protein interaction domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other.
  • the fourth-type protein interaction domain and fifth-type protein interaction domain have a weaker affinity than the second-type protein interaction domain and first- type protein interaction domain. Affinity can be measured as described above.
  • the first polypeptide further comprises a sixth-type protein interaction domain and the recognition polypeptide further comprises a seventh-type protein interaction domain which bind specifically to each other.
  • the first polypeptide comprises the entire TCR recognition domain.
  • the TCR recognition domain comprises at least two separate polypeptide sequences
  • the first polypeptide comprises at least one of the separate polypeptide sequences of the TCR recognition domain
  • the first polypeptide is bound to or complexed with a second or further polypeptide sequences of the TCR recognition domain to form a TCR recognition domain.
  • a composition described herein can comprise multiple copies or instances of a TCR recognition domain(s), e.g. the TCR recognition domain can be a mulitmer, or oligomer.
  • a composition described herein can comprise multiple copies or instances of a first polypeptide as described herein.
  • the second recognition domain is specific for a target that is not recognized by the TCR recognition domain. In one embodiment, the second recognition domain is specific for a target that is found on a healthy and/or non-target cell and not on a diseased and/or target cell.
  • TCR recognition domain refers to a domain or portion of a polypeptide that can target or bind specifically to a TCR, e.g., a TCR expressed on the surface of T cell.
  • the TCR recognition domain can be a TCR variable region (TCR-VR) recognition domain, i.e.
  • the TCR recognition domain sequence can be autologous, allogeneic, or xenogeneic to a given subject.
  • the TCR recognition domain sequence is a wild-type protein or sequence.
  • the TCR recognition domain sequence is a naturally-occurring variant, e.g., an allele of a wild-type protein or sequence.
  • the TCR recognition domain sequence is modified relative to a wild-type protein, e.g. chemically modified.
  • the TCR recognition domain sequence is a derivative and/or variant of a wild-type sequence.
  • the TCR recognition domain sequence can be a human, or non-human sequence.
  • a TCR recognition domain can comprise a MHC polypeptide, a MHC polypeptide sequence, and/or comprise a portion of a MHC sequence.
  • the MHC and/or MHC sequence can be autologous, allogeneic, or xenogeneic to a given subject.
  • the MHC and/or MHC sequence is a wild-type protein or sequence.
  • the MHC and/or MHC sequence is a naturally-occurring variant, e.g., an allele of MHC.
  • the MHC and/or MHC sequence is modified relative to a wild-type protein, e.g.
  • the MHC and/or MHC sequence is a derivative and/or variant of a wild-type MHC sequence.
  • the MHC and/or MHC sequence can be or comprise a human, or non-human sequence.
  • the TCR recognition domain comprises a MHC (Major Histocompatibility Complex), a MHC-peptide complex, or a MHC-peptide fusion.
  • the TCR recognition domain can comprise a featureless peptide MHC, or a MHC without peptides, or any other molecule that can target or bind specifically to the variable region of the TCR.
  • the MHC which is also referred to as the human leukocyte antigen (HLA)
  • HLA human leukocyte antigen
  • the MHC gene family is divided into three subgroups: MHC class I, MHC class II, and MHC class III.
  • Class I MHC molecules have the ⁇ 2 microglobulin subunit which can only be recognised by CD8 co-receptors.
  • Class II MHC molecules have ⁇ 1 and ⁇ 2 subunits and can be recognized by CD4 co- receptors.
  • MHC molecules chaperone, which type of lymphocytes bind to the given antigen with high affinity, since different lymphocytes express different T-Cell Receptor (TCR) co- receptors.
  • TCR T-Cell Receptor
  • a complete MHC class I complex comprises one MHC class I heavy chain, one peptide ligand sequence, and a beta 2 microglobulin.
  • a TCR recognition domain comprises one MHC class I heavy chain, one peptide ligand sequence, and a beta 2 microglobulin.
  • a complete MHC class II complex comprises an MHC class II alpha chain, MHC class II beta chain, and one peptide ligand sequence.
  • a TCR recognition domain comprises an MHC class II alpha chain, MHC class II beta chain, and one peptide ligand sequence.
  • MHC Major Histocompatibility Complex
  • MHC-peptide complex MHC-peptide complex
  • MHC-peptide fusion featureless peptide MHC
  • MHC-peptide fusion can be selected on the basis of the disease or condition to be treated/prevented.
  • Specific MHCs, peptides, and/or antigens that are associated with the diseases described herein are known in the art and an appropriate MHC, peptide, and/or antigen can be selected by one of ordinary skill in the art.
  • databases of suitable MHC, peptide, and/or antigen sequences are available on the world wide web at iedb.org; immunespace.org; immgen.org; import/org; peptideatlast.org/repository/; uniprot.org; ncbi.nlm.nih.gov/protein/; immunedata.org/index.php; immuneprofiling.org/hipc/; allergenonline.org/databasebrowe.shtml; and itntrialshare.org.
  • TCR recognition domains provides herein are exemplary and non-limiting.
  • One of skill in the art can identify relevant auto-antigenic pMHCs, allogeneic peptide MHCs, and autogenic peptide MHCs in addition to those described herein, e.g., from the art and/or from donor cells. Such identification is within the skill of the ordinary practitioner.
  • the TCR recognition domain can comprise one or more of SEQ ID NOs: 8-17.
  • the TCR recognition domain can comprise SEQ ID NO: 8, 9, and one of 10-17.
  • the TCR recognition domain can comprise sequences with at least 80%, at leat 85%, at least 90%, at least 95%, at least 98% or greater sequence identity to SEQ ID NO: 8, 9, and one of 10-17.
  • the TCR recognition domain can comprise sequences with at least 95% sequence identity to SEQ ID NO: 8, 9, and one of 10-17, and which retain the wild-type activity of SEQ ID NOs: 8, 9, and one of 10-17.
  • SEQ ID NO: 8 HLA-A*0201 (MHC class I heavy chain allele, wildtype, human) MAVMAPRTLVLLLSGALALTQTWAGSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQR MEPRAPWIEQEGPEYWDGETRKVKAHSQTHRVDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRG YHQYAYDGKDYIALKEDLRSWTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQ RTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGTFQKWAAVV VPSGQEQRYTCHVQHEGLPKPLTLRWEPSSQPTIPIVGIIAGLVLFGAVITGAVVAAVMWRRKSSDRK GGSYSQAASSDSAQGSDVSLTACKV [0085] SEQ ID NO: 8 H
  • the TCR recognition domain can comprise SEQ ID NO: 18, 19, and one of 20-22. In some embodiments, the TCR recognition domain can comprise sequences with at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or greater sequence identity to SEQ ID NO: 18, 19, and one of 20-22. In some embodiments, the TCR recognition domain can comprise sequences with at least 95% sequence identity to SEQ ID NO: 18, 19, and one of 20-22, and which retain the wild-type activity of SEQ ID NOs: 18, 19, and one of 20-22.
  • SEQ ID NO: 18 HLA-A*0201 (MHC class I heavy chain allele, wildtype, human, same as previous HLA-A2) MAVMAPRTLVLLLSGALALTQTWAGSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQR MEPRAPWIEQEGPEYWDGETRKVKAHSQTHRVDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRG YHQYAYDGKDYIALKEDLRSWTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQ RTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGTFQKWAAVV VPSGQEQRYTCHVQHEGLPKPLTLRWEPSSQPTIPIVGIIAGLVLFGAVITGAVVAAVMWRRKSSDRK GGSYSQAASSDSAQGSDVSLTACKV
  • the TCR recognition domain can comprise one or more of the following indicated MHC / peptide pairs, e.g., the TCR recognition domain can comprise one of the indicated MHC alleles and the indicated corresponding peptide. In some embodiments, the TCR recognition domain can comprise sequences with at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or greater sequence identity to one of the following indicated MHC / peptide pairs, e.g., one of the indicated MHC alleles and the indicated corresponding peptide.
  • the TCR recognition domain can comprise sequences with at least 95% sequence identity to one of the following indicated MHC / peptide pairs, e.g., one of the indicated MHC alleles and the indicated corresponding peptide, wherein those sequences retain the wild-type activity of the MHC allele and the corresponding peptide .
  • Table 5 Each line of the following Table provides a MHC allele (whose sequence is available in publically-accessible databases, e.g., NCBI), and an antigen sequence. The antigen source and/or the relevant disease are also indicated on some lines. In some examples provided in Table 5, the peptides are antigen mimics and their origin is indicated.
  • the TCR recognition domain can comprise one or more of the peptides provided in Table 6. In some embodiments, the TCR recognition domain can comprise a sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or greater sequence identity to one of the peptides of Table 6. In some embodiments, the TCR recognition domain can comprise a sequences with at least 95% sequence identity to one of peptides of Table 6, wherein that sequence retains the wild-type activity of the peptide of Table 6. [00103] Table 6. The sequences are, in the order presented, SEQ ID NOs:1000-2012.
  • the peptide is a Minor Histocompatibility Antigen (MiHA).
  • MiHAs are known in the art, e.g., in Spierings et al. Tissue Antigens 2014 84:347-360; which is incorporated by reference herein. MiHAs are typically utilized in embodiments relating to transplantation, where it refers to epitopes that are created because of protein sequence variation in polymorphic proteins.
  • Residues of the antigenic peptide that engages the MHC binding groove can loosely be divided into two types: anchor residues, which engage with the MHC molecule and confer stability to the MHC-peptide complex (for example, see residues P2, P3, P5, P6, P7, and P9 in Bowness et al. 1999 Expert Reviews in Molecular Medicine 16:1-10; which is incorporated by reference herein in its entirety), and interfacial residues, which are solvent-exposed and can engage with the cognate T-cell receptor (see, e.g., residues P1, P4, and P8 in Bowness).
  • anchor residues which engage with the MHC molecule and confer stability to the MHC-peptide complex
  • interfacial residues which are solvent-exposed and can engage with the cognate T-cell receptor (see, e.g., residues P1, P4, and P8 in Bowness).
  • a featureless peptide is a peptide in which anchor residues are preserved, while interfacial residues of the peptide are mutated to alanine or glycine residues to prevent TCR binding.
  • a featureless peptide-MHC is therefore a MHC peptide complex in which the presented peptide is a featureless peptide.
  • Featureless peptide MHCs are typically used in embodiments relating to transplantation tolerance. In patients receiving MHC- mismatched solid organ or hematopoietic stem cell transplants, use of a CAL T cell presenting the relevant donor-mismatched featureless peptide-MHC CAL can permit selective depletion of recipient alloreactive T cells targeted towards this mismatched donor HLA allele.
  • the MHC can be a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
  • the units can be provided in series, e.g., in a chain, or provided arrayed in one or more dimensions around a central point or linker, provided conjugated/bound in any geometry to a scaffold molecule, or any combination of the foregoing.
  • TCR recognition domain structures include MHC dimers (Lebowitz et al., 1999 Cellular Immunology 192:175-184), tetramers (Altman et al., 1996 Science 274:94-96), pentamers (proimmune.com/introduction-to-pentamers/), octamers (Guillame et al., 2003 JBC 278:4500-4509), dextramers (Batard et al., 2006 Journal of Immunological Methods 310:136-148), dodecamers (Huang et al., 2016 PNAS 113:E1890-7), lipid vesicles (Mallet-Designe et al., 2003 The Journal of Immunology 170:123-131), and quantum dots (Chattopadhyay et al., 2006 Nature Medicine 12:972- 7).
  • the TCR recognition domain can comprise a CD1 domain (e.g., a CD1d domain), e.g., a sequence comprising an extracellular domain of CD1, (e.g., CD1) .
  • CD1d domain e.g., a sequence comprising an extracellular domain of CD1, (e.g., CD1) .
  • cluster of differentiation 1 family member d” or “CD1d” refers to a cell surface protein that displays lipid antigens to T cells.
  • CD1d The sequences of several CD1d isoforms, and the structure of CD1d are known in the art, see, e.g., the 3 isoforms provided in the NCBI database for CD1d (Gene ID 912), and Bagchi et al., 2018 and Oleinika et al., Nature Communcations 20189:684; which are incorporated by reference herein in their entireties.
  • isoform 1 of CD1d is SEQ ID NO: 5 (NCBI Ref Seq NP_001757.1)
  • isoform 2 of CD1d is SEQ ID NO: 6 (NCBI Ref Seq NP_001306074.1)
  • isoform 3 of CD1d is SEQ ID NO: 7 (NCBI Ref Seq NP_001358690.1).
  • the CD1d domain comprises a sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or greater sequence identity to one of SEQ ID NOs: 5-7.
  • the CD1d domain comprises a sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or greater sequence identity to the extracellular domain of one of SEQ ID NOs: 5-7 (e.g., amino acids 20-301 of SEQ ID NO: 5). In some embodiments, the CD1d domain comprises a sequence with at least at least 95% sequence identity to one of SEQ ID NOs: 5-7 and retains the lipid binding activity of the wild-type reference sequence.
  • the CD1d domain comprises a sequence with at least 95% sequence identity to the extracellular domain of one of SEQ ID NOs: 5-7 (e.g., amino acids 20-301 of SEQ ID NO: 5) and retains the lipid binding activity of the wild-type reference sequence.
  • the CD1 domain further comprises a ligand, e.g., a non-peptide ligand.
  • a TCR recognition domain can comprise sequences or molecules in addition to the, e.g., MHC, pMHC, of CD1 domains and sequences.
  • it can further comprise other polypeptide and/or non-polypeptide components that enable multimerization.
  • Exemplary components that permit multimerization can include biotin (non-polypeptide) and/or streptavidin polypeptide that is used to permit tetramerization.
  • protein interaction domains are found on an extracellular portion of the respective polypeptides.
  • recognition polypeptide refers to an extracellular polypeptide having a ligand-binding domain.
  • the ligand-binding domain can be an antibody reagent.
  • the recognition polypeptide can further comprise a protein interaction domain.
  • signaling polypeptide refers to a transmembrane polypeptide having an intracellular signaling domain, e.g., a T cell receptor (TCR) signaling domain.
  • the signaling polypeptide can further comprise a protein interaction domain.
  • the signaling polypeptide can further comprise an extracellular protein interaction domain.
  • biomolecular interaction domain refers to a domain that permits specific binding of two separate molecules to each other.
  • the molecules can be or can comprise polypeptides. In some embodiments, one or both of the molecules or biomolecular interaction domains can be a non-peptide.
  • biomolecular interaction domains When a pair of biomolecular interaction domains is provided herein, they permit two or more molecules to bind specifically, e.g. one of the biomolecular interaction domains can bind specifically to the second biomolecular interaction domain. In some embodiments, specific binding can occur when two separate biomolecular interaction domains, e.g., of a pair, are present. In some embodiments, specific binding can occur when three or more separate biomolecular interaction domains are present. It is noted that protein interaction domains are a type of biomolecular interaction domains and where one is specified herein, the other may always be substituted.
  • a molecule when referred to as a protein or polypeptide, it comprises a protein, peptide, or polypeptide sequence, but may comprise additional motifs, modifications, or domains of a non-proteinaceous nature.
  • a number of exemplary biomolecular interaction domains, as well as pairs of protein interaction domains are provided elsewhere herein.
  • the biomolecular interaction domains comprise, consist, or consist essentially of proteins or polypeptides.
  • the biomolecular interaction domains comprise, consist, or consist essentially of non-proteinaceous molecules.
  • one of a pair of biomolecular interaction domains can comprise, consist, or consist essentially of proteins or polypeptides and the second of the pair of biomolecular interactions domains can comprise, consist, or consist essentially of a non-proteinaceous molecule (e.g., FITC and anti-FITC).
  • FITC and anti-FITC a non-proteinaceous molecule
  • Exemplary protein interaction domains are known in the art and can be used in embodiments of the aspects described herein.
  • protein interaction domain refers to a domain that permits specific binding of two separate polypeptides to each other. A number of exemplary protein interaction domains, as well as pairs of protein interaction domains are provided elsewhere herein.
  • the protein interaction domains of the polypeptides of a multi-component CAL and/or CAR can bind specifically, e.g. one of the protein interaction domains can bind specifically to a second protein interaction domain of the multi-component CAL and/or CAR.
  • specific binding can occur when two separate protein interaction domains are present.
  • specific binding can occur when three or more separate protein interaction domains are present.
  • Exemplary protein interaction domains are known in the art and can be used in embodiments of the aspects described herein. [00117]
  • the protein interaction domains can be leucine zipper domains.
  • Leucine zipper domains are a type of protein-protein interaction domain commonly found in transcription factors characterized by leucine residues evenly spaced through a ⁇ -helix. Leucine zippers may form heterodimers or homodimers. A number of leucine zipper domains, as well as their ability to bind each other, are known in the art and discussed further, e.g., in Reinke et al. JACS 2010132:6025-31 and Thompson et al. ACS Synth Biol 2012 1:118-129; each of which is incorporated by reference herein in its entirety. In some embodiments, one leucine zipper domain is BZip (RR) and the second leucine zipper domain is AZip (EE).
  • RR BZip
  • EE AZip
  • sequence of a BZip (RR) leucine zipper domain is MDPDLEIRAAFLRQRNTALRTEVAELEQEVQRLENEVSQYETRYGPLGGGK (SEQ ID NO: 3).
  • sequence of a AZip (EE) leucine zipper domain is MDPDLEIEAAFLERENTALETRVAELRQRVQRLRNRVSQYRTRYGPLGGGK (SEQ ID NO: 4).
  • Further exemplary leucine zipper domains are described in Reinke et al. JACS 2010132:6025-31; which is incorporated by reference herein in its entirety.
  • suitable leucine zipper domains can include SYNZIP 1 to SYNZIP 48, and BATF, FOS, ATF4, ATF3, BACH1, JUND, NFE2L3, and HEPTAD. Binding affinities of various combinations of these domains are described, e.g., at Fig.1 of Reinke et al.
  • a suitable pair of leucine zipper domains has a dissociation constant (Kd) of 1000 nM or less.
  • a suitable pair of leucine zipper domains has a dissociation constant (Kd) of 100 nM or less.
  • a suitable pair of leucine zipper domains has a dissociation constant (Kd) of 10 nM or less. In some embodiments, a suitable pair of leucine zipper domains has a dissociation constant (Kd) of 1 nM or less.
  • Further exemplary pairs of protein interaction domains can include a) PSD95-Dlg1-zo-1 (PDZ) domains; b) a streptavidin domain and a streptavidin binding protein (SBP) domain; and c) a PYL domain and an ABI domain.
  • the protein interaction domains can be chemically-induced protein interaction domains, e.g., domains that will only bind specifically in the presence of a third molecule, e.g., a small molecule or drug.
  • Exemplary pairs of chemically-induced protein interaction domains can include: FKBP-binding domain of mTOR (FRB) and FK506 binding protein (FKBP) (binding of which is activated by tacrolimus, everolimus, or a rapalog); cyclophilin-Fas fusion protein (CyP-Fas) and FK506 binding protein (FKBP) (binding of which is activated by FKCsA); calcineurin A (CNA) and FK506 binding protein (FKBP) (binding of which is activated by FK506); gibberellin insensitive (GIA) and gibberellin insensitive dwarf1 (GID1) (binding of which is activated by gibberellin); Snap-tag and Halo tag (binding of which is activated by HaXS); and T14-3-3-cdeltaC and C-Terminal peptides of PMA2 (CT52) (binding of which is activated by fusicoccin).
  • the protein interaction domains can comprise at least one nucleotide tag and at least one zinc finger domain.
  • Zinc finger domains are characterized by the coordination of a zinc ion in order to stabilize their tertiary structure. The particular folds that appear in zinc fingers can vary.
  • a zinc finger domain can be a nucleotide-binding zinc finger domain.
  • a zinc finger domain can be a DNA-binding zinc finger domain.
  • the protein interaction domain of the recognition polypeptide is a nucleotide tag and the extracellular protein interaction domain of the signaling polypeptide is a zinc finger domain.
  • a nucleotide tag can be a DNA tag.
  • a nucleotide tag can be a dsDNA tag comprising the entire recognition sequence for the zinc finger domain being used. Exemplary zinc finger domains and their cognate nucleotide tags are described in the art, e.g. Mali et al. Nature Methods 201310:403-406; which is incorporated by reference herein in its entirety.
  • a zinc finger domain can be sZF15 as described in Mali et al. Nature Methods 201310:403-406.
  • the protein interaction domain(s) is a BZip (RR) and/or a AZip (EE), or any binding pair of protein interaction domains are collectively a BZip (RR) and a AZip (EE).
  • the protein interaction domains can comprise a pair of substantially complementary nucleotide tags, e.g., fully complementary or complementary enough to hybridize specifically. The degree of complementarity necessary may vary depending on the total length of the tags and G/C content of the complementary portions.
  • a nucleotide tag can be a DNA tag.
  • a nucleotide tag can be a DNA tag.
  • a nucleotide tag can be a dsDNA tag.
  • the protein interaction domain(s) is a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1) or any binding pair of protein interaction domains are collectively a gibberellin insensitive (GIA) and a gibberellin insensitive dwarf1 (GID1).
  • the protein interaction domain(s) is a Snap-tag and/or a Halo tag, or any binding pair of protein interaction domains are collectively a Snap-tag and a Halo tag.
  • the protein interaction domain(s) is a T14-3-3-cdeltaC and/or a C- Terminal peptides of PMA2 (CT52), or any binding pair of protein interaction domains are collectively a T14-3-3-cdeltaC and a C-Terminal peptides of PMA2 (CT52).
  • the protein interaction domain(s) is a PYL and/or a ABI, or any binding pair of protein interaction domains are collectively a PYL and a ABI.
  • the biomolecular interaction domain(s) is a Fluorescein isothiocyanate (FITC) and/or a FITC binding protein or any binding pair of biomolecular interaction domains are collectively a FITC and a FITC binding protein.
  • FITC Fluorescein isothiocyanate
  • the biomolecular interaction domain(s) is a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein or any binding pair of biomolecular interaction domains are collectively a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein.
  • the biomolecular domain on the molecule comprising a TCR recognition domain and biomolecular interaction domain i.e. a CAL
  • a subject can be treated as described herein without administration of an engineered cell.
  • the biomolecular domain on the molecule comprising a TCR recognition domain and biomolecular interaction domain binds specifically to a native cell surface molecule on a NK cell.
  • the biomolecular domain on the molecule comprising a TCR recognition domain and biomolecular interaction domain binds specifically to a native cell surface molecule on dendritic cell.
  • Exemplary native cell surface molecules for such embodiments include, but are not limited to CD3.
  • Other suitable cell surface molecules are the CD cell surface proteins.
  • CDs are known in the art and one of ordinary skill can readily select one expressed by the desired cell type(s). For example, see the HCDM database at hcdm.org and the lists available on the world wide web at chemeurope.com/en/encyclopedia/List_of_human_clusters_of_differentiation.html; and docs.abcam.com/pdf/immunology/Guide-to-human-CD-antigens.pdf. Accordingly, exemplary biomolecular interaction domains for such embodiments include but are not limited to an anti-CD3 antibody reagent, or a Fab domain.
  • the multiple-component CALs or CARs described herein will activate in the presence of the target ligand, thereby inducing T cell activity in the vicinity of the target ligand.
  • multiple-component CALs or CARs capable of logic computation, for example, multiple-component CALs or CARs that serve as AND, OR, or NOT logic gates.
  • compositions that comprise components of a multi- component CAL and/or CAR that permits AND gate logic.
  • activation of the multi- component CAL and/or CAR happens only in the presence of two target ligands; recognition of a single target ligand is not sufficient for activation.
  • Such multi-component CALs or CARs can permit greater specificity and reduce off-target effects. Any single ligand that is a good marker for a target cell or tissue may occur elsewhere in a subject, resulting in off-target effects. However, requiring the recognition of two separate marker ligands reduces the odds of off-target activity.
  • a nucleotide tag can be a DNA tag or dsDNA tag.
  • a nucleotide tag can be a DNA tag or dsDNA tag.
  • the compositions comprise components of a multi-component CAL and/or CAR that are NOT logic gate.
  • recognition of a second target ligand by a second recognition polypeptide can prevent interaction (e.g. specific binding) of the signaling polypeptide and first recognition polypeptide.
  • Such embodiments can permit suppression of T cell activity in inappropriate and/or off-target tissues.
  • the second target ligand can be a marker of a tissue that is particularly sensitive to T cell activity, is a known area of off-target activity, and/or shares markers with the desired target tissue.
  • the second target ligand in a NOT gate multi-component CAL and/or CAR, is not a ligand found in the target tissue and/or cells, e.g., in or on a disease T cell.
  • the second target ligand of a NOT logic gate multi-component CAL and/or CAR is found on a healthy and/or non-target cell and not on a diseased and/or target cell.
  • Various 2- and 3-dimensional configurations of such pairs of nucleotide pairs are known in the art.
  • the target ligand recognized by the second recognition polypeptide is found on a healthy and/or non-target cell and not on a diseased and/or target cell.
  • the protein interaction domain of the second recognition polypeptide and the protein interaction domain of the first recognition polypeptide have a greater affinity than the protein interaction domain of the signaling polypeptide and the protein interaction domain of the first recognition polypeptide.
  • the protein interaction domain of the second recognition polypeptide and the protein interaction domain of the signaling polypeptide have a greater affinity than the protein interaction domain of the signaling polypeptide and the protein interaction domain of the first recognition polypeptide.
  • Relative binding affinities can be determined experimentally, e.g., by binding affinity assays known in the art and relative binding affinities are known for a number of combinations of protein interaction domains described herein, see, e.g. Reinke et al. JACS 2010132:6025-31; which is incorporated by reference herein in its entirety.
  • the binding affinity of the recognition polypeptide protein interaction domains can be at least 2x greater than the binding affinity of the first recognition polypeptide protein interaction domain and the signaling polypeptide interaction domain.
  • the binding affinity of the recognition polypeptide protein interaction domains can be at least 5x greater than the binding affinity of the first recognition polypeptide protein interaction domain and the signaling polypeptide interaction domain.
  • the binding affinity of the recognition polypeptide protein interaction domains can be at least 10x greater than the binding affinity of the first recognition polypeptide protein interaction domain and the signaling polypeptide interaction domain.
  • target ligand refers to a molecule in or on a cell which can be bound by a ligand-binding domain. Non-limiting examples of such molecules can include polypeptides, lipids, saccharides, and the like. In some embodiments, the target ligand can be an extracellular molecule. In some embodiments, the target ligand can be a cell surface molecule.
  • the target ligand (e.g. the first and/or second target ligand) can be a ligand expressed in a target tissue.
  • the target ligand can be expressed constitutively in the target tissue and/or cell.
  • the target ligand can be expressed exclusively in the target tissue and/or cell.
  • the target ligand can be expressed at a higher level in the target tissue and/or cell than in other tissues and/or cells.
  • a target ligand in embodiments relating to a multi- component CAL and/or CAR with a single recognition polypeptide or an AND gate multi-component CAL and/or CAR can result in T cell activation (e.g. cell killing activity of the cell comprising the target ligand), the target ligand can be selected to target T cell activity in a desirable and/or therapeutic way, e.g., by targeting a disease cell.
  • a target ligand is a ligand found in/on a diseased and/or target cell.
  • the target ligand specifically bound by a recognition polypeptide that can specifically bind with a signaling polypeptide or is a portion of an AND gate multi-component CAL and/or CAR is a ligand found in/on a diseased and/or target cell.
  • a target ligand specifically bound by a recognition polypeptide that can specifically bind with a signaling polypeptide or is a portion of an AND gate multi-component CAL and/or CAR is a ligand found on a diseased and/or target cell and not on a healthy and/or non-target cell.
  • the diseased cell is an autoreactive or alloreactive T cell.
  • the target ligand specifically bound by a recognition polypeptide that can specifically bind with a signaling polypeptide or is a portion of an AND gate multi-component CAL and/or CAR is found on the surface of a disease cell.
  • a recognition polypeptide that can specifically bind with a signaling polypeptide or is a portion of an AND gate multi-component CAL and/or CAR specifically binds to a target ligand on the surface of a disease cell, e.g. as compared to binding to normal cells.
  • a composition and/or cell described herein can further comprise a second multi-component CAL and/or CAR according to any of the aspects and embodiment described herein for the first multi-component CAL and/or CAR.
  • a second CAL and/or CAR can be designed to bind specifically to (and, e.g., be activated by or inhibited by) different target ligands than those to which the first multi-component CAL and/or CAR specifically binds (and, e.g. is activated by or inhibited by). This can provide increased specificity, reduced off- target effects, and/or reduced effective dosages for the methods described herein.
  • the recognition domain of second multi-component CAL and/or CAR bind specifically to different target ligands than those bound by the recognition domain of the first multi-component CAL and/or CAR.
  • the antibody reagents of second multi-component CAL and/or CAR bind specifically to different target ligands than those bound by the antibody reagents of the first multi-component CAL and/or CAR.
  • the second multi-component CAL and/or CAR can comprise an inhibitory intracellular signaling domain, e.g., T cell receptor (TCR) signaling domain, e.g., one that inhibits engineered cell, e.g., T cell, activity.
  • TCR T cell receptor
  • the second multi-component can therefore be designed to operate in opposition to the first multi-component CAL and/or CAR, e.g. permitting inhibition of T cell activation while the first multi-component CAL and/or CAR permits activation of T cell activity.
  • Inhibitory intracellular TCR signaling domains are known in the art and can include, by way of non-limiting example, PD1; CTLA4; BTLA; KIR; LAG-3; TIM-3; A2aR; LAIR-1; and TGIT.
  • non-active mimetics of an activating TCR can be used.
  • the TCR recognition domain comprises a MHC allogeneic to the cell. In one embodiment, the TCR recognition domain comprises a peptide allogeneic to the cell. In one embodiment, the TCR recognition domain comprises a MHC allogeneic to the target cell. In one embodiment, the TCR recognition domain comprises a peptide allogeneic to the target cell. In one embodiment, the TCR recognition domain comprises a non-self peptide relative to the target cell.
  • the target ligand specifically bound by a recognition polypeptide that can specifically bind with the signaling polypeptide of the second multi-component CAL and/or CAR comprising an inhibitory intracellular signaling domain is a ligand found on a healthy and/or non-target cell.
  • the target ligand specifically bound by a recognition polypeptide that can specifically bind with the signaling polypeptide of the second multi-component CAL and/or CAR comprising an inhibitory intracellular signaling domain is a ligand found on a healthy and/or non-target cell and not on a diseased and/or target cell.
  • the second multi-component CAL and/or CAR comprising an inhibitory intracellular signaling domain can be an OR logic gate according to any of the embodiments described herein and the second target ligand can be a ligand found in/on, or specific to, diseased cells.
  • a ligand-binding domain can comprise or consist essentially of an antibody reagent.
  • the antibody reagent can be an immunoglobulin molecule, a monoclonal antibody, a chimeric antibody, a CDR-grafted antibody, a human antibody, a humanized antibody, a Fab, a Fab', a F(ab')2, a Fv, a disulfide linked Fv, a scFv, a single domain antibody, a diabody, a multispecific antibody, a dual specific antibody, an anti- idiotypic antibody, and/or a bispecific antibody.
  • the intracellular signaling domain can be a T-cell activation domain.
  • the intracellular signaling domain is a signaling domain from a protein selected from the group consisting of: TCR ⁇ , FcR ⁇ , FcR ⁇ , CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD22, CD79a, CD79b, CD66d, CARD11, CD2, CD7, CD27, CD28, CD30, CD40, CD54 (ICAM), CD83, CD134 (OX40), CD137 (4-1BB), CD150 (SLAMF1), CD152 (CTLA4), CD223 (LAG3), CD270 (HVEM), CD273 (PD-L2), CD274 (PD-L1), CD278 (ICOS), DAP10, LAT, NKD2C SLP76, TRIM, and ZAP70.
  • a protein selected from the group consisting of: TCR ⁇ , FcR ⁇ , FcR ⁇ , CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD22, CD79a, CD79b, CD66d, CARD11, CD2, CD7, CD27,
  • the signaling domain can be a paralog or ortholog of any of the foregoing.
  • Multi-Component CAR/CAL Cells [00146] Presented herein are cells that express the compositions or multi-component CARs and/or CALs presented herein.
  • a cell can be any cell, for example, any mammalian cell, e.g., a human cell.
  • the cell is a dendritic cell, regulatory T cell, or effector T cell.
  • the cell is a dendritic cell (CAL DC), a T cell (e.g., effector, regulatory, etc.) (CAL-T); regulatory T cell, effector T cell, natural killer cell (CAL NK), or any other myeloid cell.
  • an engineered cell expressing and/or comprising one or more multi-component CARs/CALs, or a composition comprising the same as described herein, e.g., at least one signaling polypeptide and at least one recognition polypeptide.
  • the cell is a natural killer (NK) cell, dendritic cell, regulatory T cell, effector T cell.
  • NK natural killer
  • Such cells expressing and/or comprising both a signaling polypeptide and at least one recognition polypeptide of a multi- component CAR/CAL are referred to herein as “complete multi-component CAR/CAL” cells.
  • a complete multi-component CAR/CAL cell expresses both a signaling polypeptide (e.g., a CAR) and at least one recognition polypeptide (e.g. a CAL or adaptor as described elsewhere herein) of a multi-component CAL and/or CAR.
  • a complete multi- component CAL and/or CAR cell comprises nucleic acid sequences encoding both a signaling polypeptide and at least one recognition polypeptide of a multi-component CAL and/or CAR.
  • a signaling polypeptide is present on the membrane of a cell.
  • the one or more recognition polypeptides are present in the extracellular space, e.g., the recognition polypeptide(s) can be expressed and secreted by the cell or the cell can be contacted by recognition polypeptides provided from another source (e.g. produced synthetically or by another cell and optionally, purified or processed before the contacting step).
  • the recognition and/or signaling polypeptide can be under the control of an inducible and/or repressible promoter. Such promoters allow the expression of the polypeptide to be increased or decreased as desired and are in contrast to constitutive promoters.
  • constitutive active promoter refers to a promoter of a gene which is expressed at all times within a given cell.
  • exemplary promoters for use in mammalian cells include cytomegalovirus (CMV), Elongation Factor 1a (EF1a), and the like.
  • inducible promoter refers to a promoter of a gene which can be expressed in response to a given signal, for example addition or reduction of an agent.
  • Non-limiting examples of an inducible promoter are promoters that are regulated in a specific tissue type, a promoter regulated by a steroid hormone, by a polypeptide hormone (e.g., by means of a signal transduction pathway), or by a heterologous polypeptide (e.g., the tetracycline- inducible systems, "Tet-On” and "Tet-Off”; see, e.g., Clontech Inc., CA, Gossen and Bujard, Proc. Natl. Acad. Sci. USA 89:5547, 1992, and Paillard, Human Gene Therapy 9:983, 1989; each of which are incorporated by reference herein in its entirety).
  • a heterologous polypeptide e.g., the tetracycline- inducible systems, "Tet-On” and "Tet-Off”; see, e.g., Clontech Inc., CA, Gossen and Bujard, Proc. Natl. Ac
  • expression of the polypeptide can be precisely regulated, for example, by using an inducible regulatory sequence that is sensitive to certain physiological regulators, e.g., circulating glucose levels, or hormones (Docherty et al., 1994, FASEB J.8:20-24).
  • inducible expression systems suitable for the control of expression in cells or in mammals include, for example, regulation by ecdysone, by estrogen, progesterone, tetracycline, chemical inducers of dimerization, and isopropyl-beta-D1 - thiogalactopyranoside (IPTG).
  • IPTG isopropyl-beta-D1 - thiogalactopyranoside
  • the expression of one or more of the recognition or signaling polypeptides can be constitutive. In some embodiments, the expression of one or more of the recognition or signaling polypeptides can be transient. Transient expression can be achieved by, e.g., use of transient and/or inducible expression promoters or by use of transient vectors, e.g. those that do not incorporate into the genome and/or persist in the target cell.
  • transient vectors e.g. those that do not incorporate into the genome and/or persist in the target cell.
  • derivatives of viruses such as the bovine papillomavirus (BPV-1), or Epstein-Barr virus (pHEBo, pREP-derived and p205) can be used for transient expression of nucleic acids in eukaryotic cells.
  • the signaling polypeptide of a multi-component CAL and/or CAR can be constitutively expressed and the recognition polypeptide can be transiently expressed.
  • the recognition polypeptide of a multi-component CAL and/or CAR can be constitutively expressed and the signaling polypeptide can be transiently expressed.
  • the recognition polypeptide of a multi- component CAL can be constitutively expressed and the signaling polypeptide can be provided exogenously. In some embodiments, the recognition polypeptide of a multi- component CAL can be transiently expressed and the signaling polypeptide can be provided exogenously. In some embodiments, the signaling polypeptide of a multi-component CAL and/or CAR can be constitutively expressed and the recognition polypeptide can be provided exogenously. In some embodiments, the signaling polypeptide of a multi-component CAL and/or CAR can be transiently expressed and the recognition polypeptide can be provided exogenously.
  • the CARs and CALs described herein can be produced according to any method known in the art, e.g., recombinant expression or peptide synthesis.
  • Exemplary methods can include, the NIH Tetramer Core Facility’s MHC expression protocols (available on the world wide web at tetramer.yerkes.emory.edu/support/protocols#1); ProImmune’s pentamer protocols (available on the world wide web at proimmune.com/protocols-2/); Immudex’s dextramer protocols (available on the word wide web at immudex.com/resources/protocols/) and the CAR T cell production protocols provided in the “Primary Human T cells Isolation and Culture” and “Lentiviral Transduction of Human T cells” sub-sections in “Method Details” section of Cho et al., 2018 Cell 173:1426-1438; each of which is incorporated by reference herein in its entirety.
  • described herein is a method of killing a target cell, the method comprising contacting the cell with a complete multi-component CAR cell, CAR, and/or CAL according to any of the embodiments described herein.
  • the target cell can be a diseased cell, e.g., an autoreactive or alloreactive T cell.
  • described herein is a method of treating or preventing a disease, e.g., an autoimmune diseases or conditions; T cell mediated inflammation or immune response; transplant rejection, or GvHD, comprising administering a complete multi- component CAR cell, CAR, and/or CAL according to any of the embodiments described herein.
  • described herein is a method of treating or preventing autoimmune diseases or conditions; T cell mediated inflammation or immune response; transplant rejection; or GvHD, comprising administering a complete multi-component CAR cell, CAR, and/or CAL according to any of the embodiments described herein.
  • Another aspect provided herein is a method of preventing and/or treating a malignant T cell condition in a subject in need thereof, the method comprising administering to the subject any of the compositions and/or cells described herein.
  • described herein is a method of treating or preventing a malignant T cell condition in a subject, comprising administering a complete multi- component CAR/CAL, CAR and/or CAL as according to any of the embodiments described herein.
  • described herein is a method of treating or preventing a malignant T cell condition in a subject, comprising administering a complete multi-component CAR cell, CAR, and/or CAL according to any of the embodiments described herein [00153]
  • the complete multi-component CAL and/or CAR cell can be autologous or allogeneic to the subject.
  • the complete multi-component CAL and/or CAR cell can be derived and/or descended from a cell obtained from the subject or a third party and has been modified ex vivo to comprise the at least one multi-component CAL and/or CAR, e.g., genetically engineered to comprise nucleic acid sequences encoding both a signaling polypeptide and at least one recognition polypeptide of a multi-component CAL and/or CAR.
  • the method can further comprise the steps of obtaining a cell from a subject (e.g.
  • the engineered cell is further modified to lack or have reduced expression of the native MHCI/II, e.g., as measured on the cell surface.
  • Methods for engineering a cell to reduce or eliminate the native MHCI/II include, e.g., expression of RNA interference (such as short hairpin RNA, small interfering RNA, double stranded RNA, etc.), expression of an inhibitory oligonucleotide, nuclease-based inhibition (such as CRISPR, TALEN, Meganuclease, etc.), and expression of a KDEL-motif (SEQ ID NO: 2749) containing binding protein capable of restricting MHCI/II to the endoplasmic reticulum.
  • RNA interference such as short hairpin RNA, small interfering RNA, double stranded RNA, etc.
  • an inhibitory oligonucleotide such as CRISPR, TALEN, Meganuclease, etc.
  • KDEL-motif SEQ ID NO: 2749
  • the cell is further engineered to knockout the native MHCI/II.
  • Methods for engineering a cell to knockout the native MHCI/II include, e.g., expression of RNA interference (such as short hairpin RNA, small interfering RNA, double stranded RNA, etc.), expression of an inhibitory oligonucleotide, nuclease-based inhibition (such as CRISPR, TALEN, Meganuclease, etc.).
  • RNA interference such as short hairpin RNA, small interfering RNA, double stranded RNA, etc.
  • an inhibitory oligonucleotide such as CRISPR, TALEN, Meganuclease, etc.
  • nuclease-based inhibition such as CRISPR, TALEN, Meganuclease, etc.
  • described herein is an engineered cell expressing and/or comprising one or more of the compositions according to any of the embodiments described herein. In one aspect, described herein is an engineered cell expressing and/or comprising one or more multi-component CAL and/or CAR signaling polypeptides according to any of the embodiments described herein. In some embodiments, the cell is a dendritic cell, regulatory T cell, or effector T cell. In some embodiments, the cell is a T cell. Such cells expressing and/or comprising a multi-component CAL and/or CAR signaling polypeptide are referred to herein as “partial multi-component CAL” cells or “partial multi-component CAR” cells.
  • the partial multi-component CAL and/or CAR cell does not express, e.g., does not comprise a nucleic acid sequence encoding, a multi- component CAL and/or CAR recognition polypeptide.
  • a partial multi- component CAL and/or CAR cell comprises a nucleic acid sequence encoding at least one multi- component CAL and/or CAR signaling polypeptide.
  • the multi-component CAL and/or CAR signaling polypeptide is present on the membrane of the cell, e.g., is expressed as a transmembrane protein at detectable levels.
  • the signaling polypeptide further comprises a secondary protein interaction domain that specifically binds with the protein interaction domain of the second recognition polypeptide, e.g., the signaling polypeptide is part of an AND gate multi-component CAL and/or CAR as described elsewhere herein.
  • the cell can further comprise a second multi-component CAL and/or CAR signaling polypeptide, e.g., a signaling polypeptide that is part of a second multi-component CAL and/or CAR according to any of the embodiments described herein.
  • the target cell can be a diseased cell, e.g., an autoreactive or alloreactive T cell.
  • the target cell can be a diseased cell, e.g., a cancer cell (e.g., a T cell- or T cell precursor cell- derived neoplasm, hereafter referred to as “T cell neoplasms”.
  • the method can further comprise the steps of obtaining a cell from a subject (e.g. a NK cell, a dendritic cell, regulatory T cell, or effector T cell), altering the cell to comprise a nucleic acid sequence encoding a signaling polypeptide of a multi-component CAL and/or CAR, and then administering the cell to the subject.
  • a pair of protein interaction domains of a multi-component CAL and/or CAR can comprise chemically induced binding domains and the method can further comprise administering a compound that induces binding of the domains.
  • the method when one protein interaction domain is FKBP-binding domain of mTOR (FRB) and a second protein interaction domain is FK506 binding protein (FKBP), the method further comprises administering tacrolimus, a rapalog, or everolimus. In some embodiments, when one protein interaction domain is cyclophilin-Fas fusion protein (CyP-Fas) and a second protein interaction domain is FK506 binding protein (FKBP), the method further comprises administering FKCsA. In some embodiments, when one protein interaction domain is calcineurin A (CNA) and a second protein interaction domain is FK506 binding protein (FKBP), the method further comprises administering FK506.
  • FKBP cyclophilin-Fas fusion protein
  • FKBP FK506 binding protein
  • the method when one protein interaction domain is gibberellin insensitive (GIA) and a second protein interaction domain is gibberellin insensitive dwarf1 (GID1), the method further comprises administering gibberellin. In some embodiments, when one protein interaction domain is Snap-tag and a second protein interaction domain is Halo tag, the method further comprises administering HaXS. In some embodiments, when one protein interaction domain is T14-3-3-cdeltaC and a second protein interaction domain is C-Terminal peptides of PMA2 (CT52), the method further comprises administering fusicoccin. [00159] In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be engineered.
  • a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be transgenic. In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be recombinant. In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be heterologous to a cell. In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be heterologous to a T cell.
  • a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be heterologous to a human T cell. In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be exogenous to a cell. In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be exogenous to a T cell.
  • a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be exogenous to a human T cell.
  • each of the individual embodiments described herein can be combined, e.g., in a single cell.
  • a single cell could comprise a first complete multi-component CAL and/or CAR and a second partial multi-component CAL and/or CAR, wherein each multi-component CAL and/or CAR can be according to any of the embodiments described herein.
  • the methods described herein relate to CAL-immune cell therapies.
  • the methods described herein relate to CAR-immune cell therapies such as CAR-T therapy.
  • Standard CAR-T and related therapies relate to adoptive cell transfer of immune cells (e.g. T cells) expressing a CAR that binds specifically to a targeted cell type (e.g. disease cells, e.g., autoreactive or alloreactive T cells) to treat a subject, e.g., for an autoimmune diseases or conditions; T cell mediated inflammation or immune response; transplant rejection; or GvHD.
  • a targeted cell type e.g. disease cells, e.g., autoreactive or alloreactive T cells
  • the cells administered as part of the therapy can be autologous to the subject. In some embodiments, the cells administered as part of the therapy are not autologous to the subject.
  • the cells are engineered and/or genetically modified to express a multi-component CAL and/or CAR, or portion thereof as described herein.
  • CAR-T therapies can be found, e.g., in Maus et al. Blood 2014123:2624-35; Reardon et al. Neuro- Oncology 2014 16:1441-1458; Hoyos et al. Haematologica 2012 97:1622; Byrd et al. J Clin Oncol 2014 32:3039-47; Maher et al. Cancer Res 2009 69:4559-4562; and Tamada et al. Clin Cancer Res 201218:6436-6445; each of which is incorporated by reference herein in its entirety.
  • the technology described herein relates to a syringe or catheter, including an organ-specific catheter (e.g., renal catheter, biliary catheter, cardiac catheter, etc.), comprising a therapeutically effective amount of a composition described herein.
  • organ-specific catheter e.g., renal catheter, biliary catheter, cardiac catheter, etc.
  • the methods described herein relate to the treatment or prevention of transplant rejection in a subject having a cell, tissue, or organ transplant with one or more compositions, CALs, CARs, or cells as described herein.
  • the methods described herein relate to the treatment or prevention of GvHD in a subject having a cell, tissue, or organ transplant with one or more compositions, CALs, CARs, or cells as described herein.
  • GvHD refers to a disease characterized by the active process of donor cells attacking the recipient’s own cells. GvHD can develop soon after a transplant, e.g., within weeks or months (acute GvHD), or can occur much later after the transplant, e.g., at least 3-6 months later (chronic GvHD). Symptoms of acute GvHD include, but are not limited to, skin rash or blisters, abdominal pain or discomfort, diarrhea, jaundice, and edema.
  • Symptoms of chronic GvHD include, but are not limited to, changes to skin or nail texture, hair loss or thinning, muscle pain or weakness, blurred vision, mouth sores, shortness of breath, persistent cough, abdominal pain or discomfort, and diarrhea.
  • a subject can be identified as having or be at risk of having GvHD by a skilled clinician. Diagnostic tests useful in identifying a subject having GvHD are known in the art and will vary based on the type of transplant the subject has received.
  • the diagnosis of GvHD is made by, for example, physical examination for the signs and symptoms for GvHD known in the art, serologic testing for dysfunction of the liver, gall bladder, kidney, and hematopoietic cells, histologic analysis of biopsies obtained from affected organs, and radiologic imaging of affected organs.
  • the method further comprises administering at least a second therapeutic.
  • the composition, CARs, CALs, or cells described herein are administered in combination with Abatacept (Orencia®) or Belatacept (Nulojix®).
  • Abatacept and Belatacept are fusion proteins composed of the Fc region of the immunoglobulin IgG1 fused to the extracellular domain of CTLA-4.
  • Abatacept is currently approved by the FDA for treatment of rheumatoid arthritis.
  • Belatacept which only differs from Abatacept by two amino acids, is an immunosuppressant intended to prevent rejection following a kidney transplant.
  • the transplant is vascularized composite allograft (VCA).
  • the transplant is any human or non-human cell, tissue, or organ.
  • the transplant is any type of transplants procedures, e.g., any heart transplant, any lung transplant, any liver transplant, any pancreas transplant, any cornea transplant, any trachea transplant, any kidney transplant, any skin transplant, any pancreatic islet cell transplant, any allograft (e.g., a transplantation of allogeneic tissue), any xenograft (e.g., a transplantation of xenogeneic tissue), or any autograft (e.g., a transplantation of tissue).
  • a skilled practitioner will be able to perform a transplant or identify a subject having had a transplant using standard procedural protocols.
  • the methods described herein relate to the treatment or prevention of an autoimmune diseases or conditions, or hypersensitivity reaction I-IV, or immune reaction against foreign therapeutic proteins/molecules, or T cell mediated inflammation or immune response; with compositions, CARs, CALs, or cells as described herein.
  • Subjects having an autoimmune disease can be identified by a physician using current methods of diagnosing an autoimmune disease. Symptoms and/or complications of an autoimmune disease which characterize these conditions and aid in diagnosis are well known in the art and include but are not limited to, fatigue, achy muscles, swelling and redness, low-grade fever, numbness or tingling of the hands or feet, hair loss, and/or skin rash.
  • autoimmune disease examples include, but are not limited to, blood counts, and an antinuclear antibody test (ANA).
  • ANA antinuclear antibody test
  • a family history of autoimmune disease, or having risk factors for autoimmune disease e.g. gender, age, ethnicity, and exposure to environmental agents, such as procainamide, hydralazine, mercury, gold, or silver
  • risk factors for autoimmune disease e.g. gender, age, ethnicity, and exposure to environmental agents, such as procainamide, hydralazine, mercury, gold, or silver
  • autoimmune disease e.g. gender, age, ethnicity, and exposure to environmental agents, such as procainamide, hydralazine, mercury, gold, or silver
  • the term "autoimmune disease”, “autoimmune condition”, or “autoimmune disease or disorder” herein is a disease or disorder arising from and directed against an individual's own tissues or a co-segregate or manifestation thereof or resulting condition therefrom.
  • Auto-immune related diseases and disorders arise from an overactive and/or abnormal immune response of the body against substances (autoantigens) and tissues normally present in the body, otherwise known as self or autologous substance. This dysregulated inflammatory reaction causes an exaggerated response by macrophages, granulocytes, lymphocytes, and/or T-lymphocytes leading to abnormal tissue damage and cell death. Subsequent loss of function is associated with inflammatory tissue damage.
  • Autoantigens as used herein, are endogenous proteins or fragments thereof that are involved in or elicit this pathogenic immune response.
  • Autoantigen can be any substance, or a portion thereof normally found within a mammal that, in an autoimmune disease, becomes the primary (or a primary, or secondary) target of attack by the immune system.
  • the term also includes antigenic substances that induce conditions having the characteristics of an autoimmune disease when administered to mammals.
  • the term includes peptidic subclasses consisting essentially of immunodominant epitopes or immunodominant epitope regions of autoantigens. Immunodominant epitopes or regions in induced autoimmune conditions are fragments of an autoantigen that can be used instead of the entire autoantigen to induce the disease.
  • immunodominant epitopes or regions are fragments of antigens specific to the tissue or organ under autoimmune attack and recognized by a substantial percentage (e.g. a majority though not necessarily an absolute majority) of autoimmune attack T-cells.
  • Autoantigens that are known to be associated with autoimmune disease include myelin proteins with demyelinating diseases, e.g. multiple sclerosis and experimental autoimmune myelitis; collagens and rheumatoid arthritis; insulin, proinsulin, glutamic acid decarboxylase 65 (GAD65); and islet cell antigen (ICA512; ICA12) for insulin dependent diabetes.
  • Th1 type cytokines include interleukin 2 (IL-2), ⁇ -interferon, TNF ⁇ and IL-12.
  • cytokines characterized as Th1 type include interleukin 2 (IL-2), interferon ⁇ , and TNF ⁇ .
  • IL-2 interleukin 2
  • Th1 type include interleukin 2 (IL-2), interferon ⁇ , and TNF ⁇ .
  • IL-2 interleukin 2
  • Th2 type include IL-10, IL-4 and TGF- ⁇ .
  • Th1 and Th2 type T cells may use the identical antigen receptor in response to an immunogen; in the former producing a stimulatory response and, in the latter, a suppressive response.
  • T cell mediated inflammation, or a T cell mediated immune response is inflammation and/or an immune response in which T cells and/or T cell activity contributes to or originates the inflammation/immune response.
  • inflammation refers to the complex biological response to harmful stimuli, such as pathogens, damaged cells, or irritants. Inflammation is a protective attempt by the organism to remove the injurious stimuli as well as initiate the healing process for the tissue.
  • the term “inflammation” includes any cellular process that leads to the production of pro-inflammatory cytokines, inflammation mediators and/or the related downstream cellular events resulting from the actions of the cytokines thus produced, for example, fever, fluid accumulation, swelling, abscess formation, and cell death.
  • Inflammation can include both acute responses (i.e., responses in which the inflammatory processes are active) and chronic responses (i.e., responses marked by slow progression and formation of new connective tissue).
  • Acute and chronic inflammation may be distinguished by the cell types involved. Acute inflammation often involves polymorphonuclear neutrophils; whereas chronic inflammation is normally characterized by a lymphohistiocytic and/or granulomatous response.
  • An inflammatory condition is any disease state characterized by inflammatory tissues (for example, infiltrates of leukocytes such as lymphocytes, neutrophils, macrophages, eosinophils, mast cells, basophils and dendritic cells) or inflammatory processes which provoke or contribute to the abnormal clinical and histological characteristics of the disease state.
  • inflammatory tissues for example, infiltrates of leukocytes such as lymphocytes, neutrophils, macrophages, eosinophils, mast cells, basophils and dendritic cells
  • an “immune response” refers to a response by a cell of the immune system, such as a B cell, T cell (CD4 or CD8), regulatory T cell, antigen-presenting cell, dendritic cell, monocyte, macrophage, NKT cell, NK cell, basophil, eosinophil, or neutrophil, to a stimulus (e.g., to an a disease, an antigen, or healthy cells, e.g., in the case of autoimmunity).
  • a T cell response such as a CD4+ response or a CD8+ response.
  • Such responses by these cells can include, for example, cytotoxicity, proliferation, cytokine or chemokine production, trafficking, or phagocytosis, and can be dependent on the nature of the immune cell undergoing the response.
  • Stimulation of an immune response refers to an induction or increase of the immune response.
  • Suppression of an immune response refers to an elimination or decrease of the immune response.
  • a "cell-mediated immune response” is one mediated by T-cells and/or other white blood cells.
  • a “cell-mediated immune response” is elicited by the presentation of antigenic epitopes in association with Class I or Class II molecules of the major histocompatibility complex (MHC), CD1 or other non-classical MHC-like molecules.
  • MHC major histocompatibility complex
  • CTLs have specificity for peptide antigens that are presented in association with proteins encoded by classical or non-classical MHCs and expressed on the surfaces of cells. CTLs help induce and promote the intracellular destruction of intracellular microbes, or the lysis of cells infected with such microbes.
  • Another aspect of cellular immunity involves an antigen-specific response by helper T-cells. Helper T-cells act to help stimulate the function, and focus the activity of, nonspecific effector cells against cells displaying peptide or other antigens in association with classical or non-classical MHC molecules on their surface.
  • a “cell- mediated immune response” also refers to the production of cytokines, chemokines and other such molecules produced by activated T-cells and/or other white blood cells, including those derived from CD4+ and CD8+ T-cells.
  • the stimulation of a cell-mediated immunological response may be determined by a number of assays, such as by lymphoproliferation (lymphocyte activation) assays, CTL cytotoxic cell assays, by assaying for T-lymphocytes specific for the antigen in a sensitized subject, or by measurement of cytokine production by T cells in response to re-stimulation with antigen.
  • assays are well known in the art. See, e.g., Erickson et al.
  • the T cell mediated immune response is a response to a drug administered to the subject. It is contemplated herein that the present technology can be utilized for depletion of anti-drug specific T cells to prevent immune responses against administered biologics, cell therapies, and/or gene therapies.
  • the methods and compositions described herein can be used to prevent or treat anti-AAV and anti-transgene immune responses for administered adeno- associated virus (AAV) gene therapies, preventing or treating immune to responses to genome editing agents such as CRISPR/Cas9, Transcription activator-like effector nucleases (TALENs), or Zinc Finger Nucleases (ZFNs), and preventing or treating immune responses to enzyme replacement therapies such as recombinant human acid ⁇ -glucosidase (Pompe disease), ⁇ -L-iduronidase (Mucopolysaccharidosis I), and ⁇ -galactosidase (Fabry disease).
  • AAV adeno- associated virus
  • the autoimmune disorder is selected from the group consisting of thyroiditis, type 1 diabetes mellitus, Hashimoto's thyroiditis, Graves' disease, celiac disease, multiple sclerosis, Guillain-Barre syndrome, Addison's disease, and Raynaud's phenomenon, Goodpasture's disease, arthritis (rheumatoid arthritis such as acute arthritis, chronic rheumatoid arthritis, gout or gouty arthritis, acute gouty arthritis, acute immunological arthritis, chronic inflammatory arthritis, degenerative arthritis, type II collagen-induced arthritis, infectious arthritis, Lyme arthritis (e.g., post treatment Lyme disease syndrome), proliferative arthritis, psoriatic arthritis, Still's disease, vertebral arthritis, and juvenile-onset rheumatoid arthritis, arthritis chronica progrediente, arthritis deformans, polyarthritis chronica primaria, reactive arthritis, and ankylosing spondylitis),
  • arthritis rheumatoid arthritis such as
  • the autoimmune disease or condition or T cell mediated inflammation can be neurodegeneration, e.g, Alzheimer’s or Parksinson disease.
  • the autoimmune disease or condition, or T cell mediated inflammation can be type 1 diabetes, rheumatoid arthritis, multiple sclerosis, pemphigus, alopecia, lupus, vitiligo, or chronic fatigue syndrome.
  • malignant T cell condition refers to a condition in which T cells display one or more of uncontrolled growth (i.e., division beyond normal limits), invasion (i.e., intrusion on and destruction of adjacent tissues), and metastasis (i.e., spread to other locations in the body via lymph or blood).
  • Non-limiting examples of malignant T cell conditions include T cell cancers, lymphoma, leukemia, T cell acute lymphoblastic leukemia, and T cell lymphoblastic lymphoma.
  • the compositions and methods described herein can be administered to a subject to treat or prevent an autoimmune diseases or conditions; T cell mediated inflammation or immune response; or transplant rejection.
  • the methods described herein comprise administering an effective amount of compositions, CALs, CARs, or cells described herein to a subject in order to alleviate a symptom of an autoimmune diseases or conditions; T cell mediated inflammation or immune response; or transplant rejection.
  • "alleviating a symptom” is ameliorating any condition or symptom associated with the disease or condition. As compared with an equivalent untreated control, such reduction is by at least 5%, 10%, 20%, 40%, 50%, 60%, 80%, 90%, 95%, 99% or more as measured by any standard technique.
  • a variety of means for administering the compositions described herein to subjects are known to those of skill in the art.
  • compositions contemplated herein may be carried out in any convenient manner, including by aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation. In a preferred embodiment, compositions are administered parenterally.
  • parenteral administration and “administered parenterally” as used herein refers to modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravascular, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intratumoral, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.
  • the compositions contemplated herein are administered to a subject by direct injection into a tumor, lymph node, or site of infection.
  • a pharmaceutical composition comprising the cells, e.g., T cells or CAL cells or CAR cells, described herein may be administered at a dosage of 10 2 to 10 10 cells/kg body weight, preferably 10 5 to 10 6 cells/kg body weight, including all integer values within those ranges.
  • the number of cells will depend upon the ultimate use for which the composition is intended as will the type of cells included therein.
  • the cells are generally in a volume of a liter or less, can be 500 mLs or less, even 250 mLs or 100 mLs or less.
  • the density of the desired cells is typically greater than 10 6 cells/ml and generally is greater than 10 7 cells/ml, generally 10 8 cells/ml or greater.
  • the clinically relevant number of immune cells can be apportioned into multiple infusions that cumulatively equal or exceed 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , or 10 12 cells.
  • lower numbers of cells in the range of 10 6 /kilogram (10 6 -10 11 per patient) may be administered.
  • CAL and/or CAR expressing cell compositions may be administered multiple times at dosages within these ranges.
  • the cells may be allogeneic, syngeneic, xenogeneic, or autologous to the patient undergoing therapy.
  • the treatment may also include administration of mitogens (e.g., PHA) or lymphokines, cytokines, and/or chemokines (e.g., IFN- ⁇ , IL-2, IL-12, TNF-alpha, IL-18, and TNF-beta, GM-CSF, IL-4, IL-13, Flt3- L, RANTES, MIP1 ⁇ , etc.) as described herein to enhance induction of the immune response.
  • mitogens e.g., PHA
  • lymphokines e.g., lymphokines, cytokines, and/or chemokines (e.g., IFN- ⁇ , IL-2, IL-12, TNF-alpha, IL-18, and TNF-beta, GM-CSF, IL-4, IL-13, Flt3- L, RANTES, M
  • the dosage can be from about 1x10 6 cells to about 1x10 7 cells per kg of body weight. In some embodiments, the dosage can be about 1x10 6 cells per kg of body weight. In some embodiments, one dose of cells can be administered. In some embodiments, the dose of cells can be repeated, e.g., once, twice, or more. In some embodiments, the dose of cells can be administered on, e.g., a daily, weekly, or monthly basis. [00187]
  • the dosage ranges for the agent, e.g., a CAL, CAR, cell, or composition described herein depend upon the potency, and encompass amounts large enough to produce the desired effect e.g., prevention of transplant rejection, reduction in inflammation, etc.
  • the dosage should not be so large as to cause unacceptable adverse side effects.
  • the dosage will vary with the age, condition, and sex of the patient and can be determined by one of skill in the art.
  • the dosage can also be adjusted by the individual physician in the event of any complication.
  • the dosage ranges from 0.001 mg/kg body weight to 0.5 mg/kg body weight.
  • the dose range is from 5 ⁇ g/kg body weight to 100 ⁇ g/kg body weight.
  • the dose range can be titrated to maintain serum levels between 1 ⁇ g/mL and 1000 ⁇ g/mL.
  • subjects can be administered a therapeutic amount, such as, e.g., 0.1 mg/kg, 0.5 mg/kg, 1.0 mg/kg, 2.0 mg/kg, 2.5 mg/kg, 5 mg/kg, 10 mg/kg, 15 mg/kg, 20 mg/kg, 25 mg/kg, 30 mg/kg, 40 mg/kg, 50 mg/kg, or more.
  • Administration of the doses recited above can be repeated.
  • the doses are given once a day, or multiple times a day, for example but not limited to three times a day.
  • the doses recited above are administered daily for several weeks or months. The duration of treatment depends upon the subject’s clinical progress and responsiveness to therapy.
  • the dose can be from about 2 mg/kg to about 15 mg/kg. In some embodiments, the dose can be about 2 mg/kg. In some embodiments, the dose can be about 4 mg/kg. In some embodiments, the dose can be about 5 mg/kg. In some embodiments, the dose can be about 6 mg/kg. In some embodiments, the dose can be about 8 mg/kg. In some embodiments, the dose can be about 10 mg/kg. In some embodiments, the dose can be about 15 mg/kg. In some embodiments, the dose can be from about 100 mg/m 2 to about 700 mg/m 2 . In some embodiments, the dose can be about 250 mg/m 2 . In some embodiments, the dose can be about 375 mg/m 2 .
  • the dose can be about 400 mg/m 2 . In some embodiments, the dose can be about 500 mg/m 2 .
  • the dose can be administered intravenously. In some embodiments, the intravenous administration can be an infusion occurring over a period of from about 10 minutes to about 3 hours. In some embodiments, the intravenous administration can be an infusion occurring over a period of from about 30 minutes to about 90 minutes. [00191] In some embodiments the dose can be administered about weekly. In some embodiments, the dose can be administered weekly. In some embodiments, the dose can be administered weekly for from about 12 weeks to about 18 weeks. In some embodiments the dose can be administered about every 2 weeks. In some embodiments the dose can be administered about every 3 weeks.
  • the dose can be from about 2 mg/kg to about 15 mg/kg administered about every 2 weeks. In some embodiments, the dose can be from about 2 mg/kg to about 15 mg/kg administered about every 3 weeks. In some embodiments, the dose can be from about 2 mg/kg to about 15 mg/kg administered intravenously about every 2 weeks. In some embodiments, the dose can be from about 2 mg/kg to about 15 mg/kg administered intravenously about every 3 weeks. In some embodiments, the dose can be from about 200 mg/m2 to about 400 mg/m2 administered intravenously about every week. In some embodiments, the dose can be from about 200 mg/m2 to about 400 mg/m2 administered intravenously about every 2 weeks.
  • the dose can be from about 200 mg/m2 to about 400 mg/m2 administered intravenously about every 3 weeks. In some embodiments, a total of from about 2 to about 10 doses are administered. In some embodiments, a total of 4 doses are administered. In some embodiments, a total of 5 doses are administered. In some embodiments, a total of 6 doses are administered. In some embodiments, a total of 7 doses are administered. In some embodiments, a total of 8 doses are administered. In some embodiments, the administration occurs for a total of from about 4 weeks to about 12 weeks. In some embodiments, the administration occurs for a total of about 6 weeks. In some embodiments, the administration occurs for a total of about 8 weeks.
  • the administration occurs for a total of about 12 weeks.
  • the initial dose can be from about 1.5 to about 2.5 fold greater than subsequent doses.
  • the dose can be from about 1 mg to about 2000 mg.
  • the dose can be about 3 mg.
  • the dose can be about 10 mg.
  • the dose can be about 30 mg.
  • the dose can be about 1000 mg.
  • the dose can be about 2000 mg.
  • the dose can be about 3 mg given by intravenous infusion daily.
  • the dose can be about 10 mg given by intravenous infusion daily.
  • the dose can be about 30 mg given by intravenous infusion three times per week.
  • a therapeutically effective amount is an amount of an agent that is sufficient to produce a statistically significant, measurable change in, or prevent the occurrence of an autoimmune disease or condition; T cell mediated inflammation or immune response; transplant rejection; or GvHD. Such effective amounts can be gauged in clinical trials as well as animal studies.
  • An agent can be administered intravenously by injection or by gradual infusion over time.
  • agents useful in the methods and compositions described herein can be administered intravenously, intranasally, by inhalation, intraperitoneally, intramuscularly, subcutaneously, intracavity, and can be delivered by peristaltic means, if desired, or by other means known by those skilled in the art. It is preferred that the compounds used herein are administered orally, intravenously or intramuscularly. Local administration, e.g., directly to the site of an organ or tissue transplant is also specifically contemplated. [00195] Therapeutic compositions containing at least one agent can be conventionally administered in a unit dose, for example.
  • unit dose when used in reference to a therapeutic composition refers to physically discrete units suitable as unitary dosage for the subject, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required physiologically acceptable diluent, i.e., carrier, or vehicle.
  • the compositions are administered in a manner compatible with the dosage formulation, and in a therapeutically effective amount.
  • the quantity to be administered and timing depends on the subject to be treated, capacity of the subject’s system to utilize the active ingredient, and degree of therapeutic effect desired.
  • the partial multi-component CAL and/or CAR cell and a recognition polypeptide can be administered together or separately.
  • each of the compositions can be administered, separately, according to any of the dosages and administration routes/routines described herein.
  • Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner and are particular to each individual. However, suitable dosage ranges for systemic application are disclosed herein and depend on the route of administration.
  • Suitable regimes for administration are also variable but are typified by an initial administration followed by repeated doses at one or more hour intervals by a subsequent injection or other administration.
  • continuous intravenous infusion sufficient to maintain concentrations in the blood in the ranges specified for in vivo therapies are contemplated.
  • the methods further comprise administering a composition, CAL, or CAR, or cell described herein along with one or more additional autoimmune, GvHD, or transplant rejection agents, biologics, drugs, or treatments as part of a combinatorial therapy.
  • Exemplary treatments for transplant rejection or GvHD include but are not limited to, Immunosuppressive drugs, e.g., Cyclosporine (Neoral, Sandimmune, Gengraf, and Restasis), Tacrolimus (Prograf, Protopic, Astagraf XL, and Envarsus XR), Methotrexate (Trexall, Rasuvo, Rheumatrex, and Otrexup (PF)), Sirolimus (Rapamune), Mycophenolic acid (Myfortic and CellCept), Rituximab (Rituxan), etanercept (Enbrel), pentostatin (Nipent), ruxolitinib (Jakafi); Chemotherapies, e.g., Methotrexate (Trexall, Rasuvo, Rheumatrex, and Otrexup (PF)), antithymocyte globulin (Atgam, Thymoglobulin); Steroids, e.g,.,
  • Prednisone (Deltasone, Rayos, and Prednisone Intensol), Methylprednisolone (Medrol, Solu- Medrol, and Depo-Medrol), budesonide (Entocort EC, Uceris); Antifungal, e.g., Posaconazole (Noxafil); Antiviral drugs, e.g., Acyclovir (Zovirax and Sitavig), Valacyclovir (Valtrex); and Antibiotics, e.g., Sulfamethoxazole / Trimethoprim (Bactrim, Sulfatrim, and Bactrim DS); Protease inhibitors, e.g.
  • alpha1-proteinase inhibitor Zemaira
  • extracorporeal photopheresis monoclonal antibodies
  • diaclizumab Zainbryta
  • basiliximab Simulect
  • Brentuximab vedotin Adcetris
  • Alemtuzumab Campath, Lemtrada
  • Tocilizumab Actemra
  • infusion of mesenchymal stromal cells infusion of mesenchymal stromal cells.
  • Exemplary treatments for autoimmune disease include but are not limited to, Insulin, e.g., Insulin glulisine (Apidra and Apidra SoloStar), Insulin detemir (Levemir and Levemir FlexTouch), Insulin aspart (NovoLog, Novolog Flexpen, and Novolog PenFill), Insulin lispro (Humalog and Humalog KwikPen), Insulin, Insulin glargine (Lantus, Lantus Solostar, and Toujeo SoloStar); Dietary supplement, e.g., glucose tablets; and Hormones, e.g., Glucagon (GlucaGen and Glucagon Emergency Kit (human)), antidiabetic agents (Metformin (D-Care DM2, Fortamet, Glucophage, Glucophage XR, Glumetza, Riomet), glucagon-like peptide-1 (GLP-1) receptor agonist (liraglutide (Saxenda) Insulin
  • a treatment is considered “effective treatment,” as the term is used herein, if any one or all of the signs or symptoms of are altered in a beneficial manner or other clinically accepted symptoms are improved, or even ameliorated, e.g., by at least 10% following treatment with an agent as described herein. Efficacy can also be measured by a failure of an individual to worsen as assessed by hospitalization or need for medical interventions (i.e., progression of the disease is halted). Methods of measuring these indicators are known to those of skill in the art and/or described herein. [00202] An effective amount for the treatment of a disease means that amount which, when administered to a mammal in need thereof, is sufficient to result in effective treatment as that term is defined herein, for that disease.
  • Efficacy of an agent can be determined by assessing physical indicators of, for example autoimmune disease (e.g., result of an ANA), T cell mediated inflammation or immune response, malignant T cell condition, transplant rejection (e.g., high fever, tenderness at transplant site, etc.), or GvHD (e.g., redness, pain, or other symptoms at transplant site).
  • Effective amounts, toxicity, and therapeutic efficacy can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population).
  • the dosage can vary depending upon the dosage form employed and the route of administration utilized.
  • the dose ratio between toxic and therapeutic effects is the therapeutic index and can be expressed as the ratio LD50/ED50.
  • Compositions and methods that exhibit large therapeutic indices are preferred.
  • a therapeutically effective dose can be estimated initially from cell culture assays.
  • a dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the active ingredient(s), which achieves a half-maximal inhibition of symptoms) as determined in cell culture, or in an appropriate animal model.
  • Levels in plasma can be measured, for example, by immunoassay, various DNA detection technologies, or high performance liquid chromatography.
  • any particular dosage can be monitored by a suitable bioassay, e.g., assay to assess reaction following transplant, level of inflammation, ANA measurement, among others.
  • the dosage can be determined by a physician and adjusted, as necessary, to suit observed effects of the treatment.
  • Efficacy can also be measured by a failure of an individual to worsen as assessed by hospitalization, or need for medical interventions (i.e., progression of the disease is halted). Methods of measuring these indicators are known to those of skill in the art and/or are described herein.
  • Treatment includes any treatment of a disease in an individual or an animal (some non-limiting examples include a human or an animal) and includes: (1) inhibiting the disease, e.g., preventing a worsening of symptoms (e.g. pain or inflammation); or (2) relieving the severity of the disease, e.g., causing regression of symptoms.
  • An effective amount for the treatment of a disease means that amount which, when administered to a subject in need thereof, is sufficient to result in effective treatment as that term is defined herein, for that disease.
  • Efficacy of an agent can be determined by assessing physical indicators of a condition or desired response, (e.g. a reduction of inflammation, etc.).
  • Efficacy can be assessed in animal models of a condition described herein, for example treatment of autoimmune disease, transplant rejection or GVHD.
  • efficacy of treatment is evidenced when a statistically significant change in a marker is observed, e.g. inflammation.
  • the technology described herein relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a CAL and/or CAR, or a multi-component CAL and/or CAR (or portion thereof, or cell comprising a CAL and/or CAR, or a multi-component CAL and/or CAR) as described herein, and optionally a pharmaceutically acceptable carrier.
  • the active ingredients of the pharmaceutical composition comprise a CAL and/or CAR or a multi-component CAL and/or CAR (or portion thereof, or cell comprising a CAL and/or CAR or a multi-component CAL and/or CAR) as described herein.
  • the active ingredients of the pharmaceutical composition consist essentially of a CAL and/or CAR or a multi-component CAL and/or CAR (or portion thereof, or cell comprising a CAL and/or CAR or a multi-component CAL and/or CAR) as described herein. In some embodiments, the active ingredients of the pharmaceutical composition consist of a CAL and/or CAR or a multi-component CAL and/or CAR (or portion thereof, or cell comprising a multi-component CAL and/or CAR) as described herein. [00205] Pharmaceutically acceptable carriers and diluents include saline, aqueous buffer solutions, solvents and/or dispersion media.
  • Some non-limiting examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, methylcellulose, ethyl cellulose, microcrystalline cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnesium stearate, sodium lauryl sulfate and talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannito
  • the pharmaceutical composition comprising a multi-component CAL and/or CAR (or portion thereof, or cell comprising a multi-component CAL and/or CAR) as described herein can be a parenteral dose form.
  • parenteral dosage forms are preferably sterile or capable of being sterilized prior to administration to a patient.
  • parenteral dosage forms include, but are not limited to, solutions ready for injection, dry products ready to be dissolved or suspended in a pharmaceutically acceptable vehicle for injection, suspensions ready for injection, and emulsions.
  • controlled-release parenteral dosage forms can be prepared for administration of a patient, including, but not limited to, DUROS®-type dosage forms and dose-dumping.
  • Suitable vehicles that can be used to provide parenteral dosage forms of a multi- component CAL and/or CAR (or portion thereof, or cell comprising a multi-component CAL and/or CAR) as disclosed within are well known to those skilled in the art.
  • Examples include, without limitation: sterile water; water for injection USP; saline solution; glucose solution; aqueous vehicles such as but not limited to, sodium chloride injection, Ringer's injection, dextrose Injection, dextrose and sodium chloride injection, and lactated Ringer's injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and propylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
  • aqueous vehicles such as but not limited to, sodium chloride injection, Ringer's injection, dextrose Injection, dextrose and sodium chloride injection, and lactated Ringer's injection
  • water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and propylene
  • compositions can also be formulated to be suitable for oral administration, for example as discrete dosage forms, such as, but not limited to, tablets (including without limitation scored or coated tablets), pills, caplets, capsules, chewable tablets, powder packets, cachets, troches, wafers, aerosol sprays, or liquids, such as but not limited to, syrups, elixirs, solutions or suspensions in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion, or a water-in-oil emulsion.
  • compositions contain a predetermined amount of the pharmaceutically acceptable salt of the disclosed compounds, and may be prepared by methods of pharmacy well known to those skilled in the art. See generally, Remington: The Science and Practice of Pharmacy, 21st Ed., Lippincott, Williams, and Wilkins, Philadelphia PA. (2005).
  • Conventional dosage forms generally provide rapid or immediate drug release from the formulation. Depending on the pharmacology and pharmacokinetics of the drug, use of conventional dosage forms can lead to wide fluctuations in the concentrations of the drug in a patient's blood and other tissues. These fluctuations can impact a number of parameters, such as dose frequency, onset of action, duration of efficacy, maintenance of therapeutic blood levels, toxicity, side effects, and the like.
  • controlled-release formulations can be used to control a drug's onset of action, duration of action, plasma levels within the therapeutic window, and peak blood levels.
  • controlled- or extended-release dosage forms or formulations can be used to ensure that the maximum effectiveness of a drug is achieved while minimizing potential adverse effects and safety concerns, which can occur both from under-dosing a drug (i.e., going below the minimum therapeutic levels) as well as exceeding the toxicity level for the drug.
  • the composition can be administered in a sustained release formulation.
  • Controlled-release pharmaceutical products have a common goal of improving drug therapy over that achieved by their non-controlled release counterparts.
  • the use of an optimally designed controlled-release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the condition in a minimum amount of time.
  • Advantages of controlled-release formulations include: 1) extended activity of the drug; 2) reduced dosage frequency; 3) increased patient compliance; 4) usage of less total drug; 5) reduction in local or systemic side effects; 6) minimization of drug accumulation; 7) reduction in blood level fluctuations; 8) improvement in efficacy of treatment; 9) reduction of potentiation or loss of drug activity; and 10) improvement in speed of control of diseases or conditions.
  • controlled-release formulations are designed to initially release an amount of drug (active ingredient) that promptly produces the desired therapeutic effect, and gradually and continually release other amounts of drug to maintain this level of therapeutic or prophylactic effect over an extended period of time. In order to maintain this constant level of drug in the body, the drug must be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body.
  • Controlled-release of an active ingredient can be stimulated by various conditions including, but not limited to, pH, ionic strength, osmotic pressure, temperature, enzymes, water, and other physiological conditions or compounds.
  • a variety of known controlled- or extended-release dosage forms, formulations, and devices can be adapted for use with the salts and compositions of the disclosure.
  • dosage forms can be used to provide slow or controlled-release of one or more active ingredients using, for example, hydroxypropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems (such as OROS® (Alza Corporation, Mountain View, Calif.
  • CAL-cell therapy seeks to help immune killer cells recognize autoreactive and alloreactive T cells. This is accomplished by genetically altering an immune cell so that it expresses a chimeric antigen ligand (CAL).
  • CAL is an altered ligand, in which the natural recognition portion is removed and replaced with a synthetic recognition portion, (including all synthetic or natural peptide MHC complexes) that is designed to more effectively recognize the autoreactive and alloreactive T cells by very specifically detecting the presence of a T cell receptor unique to the autoreactive and alloreactive T cells.
  • This invention is based, in part, on the finding that an engineered polypeptide presented herein can recognize and bind to the specific T cell receptor on the disease-causing T cells, deleting said T cells, e.g., eliminating or reducing autoimmune diseases or conditions; T cell mediated inflammation or immune response; and cell, tissue, organ transplants and Graft vs. Host Disease (GvHD).
  • the engineered polypeptide is composed of a peptide-major histocompatibility complex (pMHC) (e.g. as a monomer, oligomer, or multimer) as the recognition site for the TCR of an allogeneic or an autoreactive T cell.
  • pMHC peptide-major histocompatibility complex
  • the pMHC is one of the complexes described herein, e.g., see Tables 5 and 6.
  • the engineered polypeptide is composed of a pMHC conjugated to a FITC, PE, or other biomolecular interaction domain described herein.
  • the engineered polypeptide can also be considered as an adaptor molecule (referred to herein as Chimeric Antigen Ligand (CAL)) composed of a TCR recognition domain (e.g., peptide-HLA monomers, oligomers, or multimers) fused to a biomolecular interaction domain.
  • CAL Chimeric Antigen Ligand
  • the CAL technology described herein can target T cell clones in an antigen specific manner and is not dependent on any specific CAR construct to exhibit killing effect.
  • the engineered polypeptide is a CAR composed of a peptide-HLA (e.g., as a monomer, oligomer, or multimer) as the recognition site fused to signaling domains from T cell receptors.
  • a split version of this CAR system in which the CAR is composed of two pieces.
  • the first piece is a universal CAR (also referred to herein as a Uni CAL) with T cell signaling domains as the intracellular portion and a biomolecular interaction domain as the extracellular domain, e.g., that is specific to each disease state.
  • the second piece is an adaptor molecule (referred to herein as Chimeric Antigen Ligand (CAL)) composed of a TCR recognition domain (e.g., peptide-HLA monomers, oligomers, or multimers) fused to the cognate biomolecular interaction domain.
  • CAL Chimeric Antigen Ligand
  • the engineered polypeptide is a CAR composed of a peptide-HLA (e.g., as a monomer, oligomer, or multimer) as the recognition site fused to signaling domains from T cell receptors. Further provided herein is a split version of this CAR system, in which the CAR is composed of two pieces.
  • the first piece is a universal CAR (also referred to herein as a Uni CAL) with T cell signaling domains as the intracellular portion and a biomolecular interaction domain as the extracellular domain, e.g., that is specific to each disease state.
  • the second piece is an adaptor molecule (referred to herein as Chimeric Antigen Ligand (CAL)) composed of a TCR recognition domain (e.g., peptide-HLA monomers, oligomers, or multimers) fused to the cognate biomolecular interaction domain.
  • CAL Chimeric Antigen Ligand
  • protein interaction domains are a type of biomolecular interaction domains and where one is specified herein, the other may always be substituted.
  • one aspect presented herein provides a composition comprising (a) chimeric antigen ligand or a TCR recognition domain; and one or both of (a) an intracellular signaling domain; and (b) a first-type protein interaction domain.
  • compositions comprising (a) a first polypeptide comprising a chimeric antigen ligand or TCR recognition domain and a first-type protein interaction domain; and (b) a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; wherein the first-type and second-type protein interaction domains bind specifically to each other.
  • compositions comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the first-type and third-type protein interaction domains bind specifically to each other.
  • compositions comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; and (c) a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the second-type and third-type protein interaction domains compete for binding to the first-type protein interaction domain.
  • the third-type protein interaction domain and first-type protein interaction domain have a higher affinity for each other than the second-type protein interaction domain and first-type protein interaction domain.
  • compositions comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; (b) a signaling polypeptide comprising a second-type protein interaction domain, a fourth-type protein interaction domain, and an intracellular signaling domain; and (c) a recognition polypeptide comprising a second recognition domain and a fifth-type protein interaction domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other.
  • the fourth-type protein interaction domain and fifth- type protein interaction domain have a weaker affinity than the second-type protein interaction domain and first-type protein interaction domain.
  • the first polypeptide further comprises a sixth-type protein interaction domain and the recognition polypeptide further comprises a seventh-type protein interaction domain which bind specifically to each other.
  • the second recognition domain is specific for a target that is not recognized by the TCR recognition domain.
  • the second recognition domain is specific for a target that is found on a healthy and/or non-target cell and not on a diseased and/or target cell.
  • TCR recognition domains may not comprise a single polypeptide, but rather comprise two or more polypeptides and may additionally even comprise non-polypeptides.
  • a single MHC class II tetramer TCR recognition domain can comprise 4 biotin small molecules and 16 polypeptides (4 peptides, 4 MHC class II alpha chains, 4 MHC class II beta chains, and 4 streptavidin proteins.
  • Other types of TCR recognition domains may additionally comprise other non-polypeptide molecules (e.g., MHC dextramers contain a polysaccharide backbone to which the MHCs are anchored to).
  • a composition described herein can comprise multiple copies or instances of a TCR recognition domain(s), e.g.
  • the TCR recognition domain can be a mulitmer, or oligomer.
  • a composition described herein can comprise multiple copies or instances of a first polypeptide as described herein.
  • the first polypeptide comprises the entire TCR recognition domain.
  • the TCR recognition domain comprises at least two separate polypeptide sequences, the first polypeptide comprises at least one of the separate polypeptide sequences of the TCR recognition domain, and the first polypeptide is bound to or complexed with a second or further polypeptide sequences of the TCR recognition domain to form a TCR recognition domain.
  • the TCR recognition domain comprises a MHC (Major Histocompatibility Complex); a MHC-peptide complex; or a MHC-peptide fusion.
  • the peptide is a human, non-human, or synthetic/engineered peptide.
  • the peptides can further comprise non-proteinaceous motifs, modifications, or domains, e.g., they can comprise glycosylation and/or lipids.
  • the peptide is a Minor Histocompatibility Antigen (MiHA).
  • the MHC is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
  • the protein interaction domains are found on an extracellular portion of the respective polypeptides.
  • the protein interaction domain(s) is a leucine zipper, or any binding pair of protein interaction domains are collectively a pair of leucine zippers;
  • the protein interaction domain(s) is a BZip (RR) and/or a AZip (EE), or any binding pair of protein interaction domains are collectively a BZip (RR) and a AZip (EE);
  • the protein interaction domain(s) is a PSD95-Dlgl-zo-1 (PDZ) domain;
  • the protein interaction domain(s) is a streptavidin and/or a streptavidin binding protein (SBP) or any binding pair of protein interaction domains are collectively a streptavidin and a streptavidin binding protein (SBP);
  • the protein interaction domain(s) is a FKBP-binding domain of mTOR (FRB) and/or a FK506 binding protein (FKBP) or any binding pair
  • the nucleotide tag is a DNA tag or dsDNA tag.
  • the intracellular signaling domain is a signaling domain from a protein selected from the group consisting of: TCR ⁇ , FcR ⁇ , FcR ⁇ , CD3 ⁇ ; CD35; CD3 ⁇ ; CD3C; CD22; CD79a; CD79b; CD66d; CARD11; CD2; CD7; CD27; CD28; CD30; CD40; CD54 (ICAM); CD83; CD134 (OX40); CD137 (4-1BB); CD150 (SLAMF1); CD152 (CTLA4); CD223 (LAG3); CD270 (HVEM); CD273 (PD-L2); CD274 (PD- Ll); CD278 (ICOS); DAP10; LAT; KD2C SLP76; TRIM; and ZAP70.
  • a cell comprising and/or expressing a comprising a composition comprising a TCR recognition domain and an intracellular signaling domain further comprises a TCR signaling-responsive promoter operatively linked to a payload transgene.
  • a TCR signaling-responsive promoter operatively linked to a payload transgene.
  • Such embodiments permit transgene payload expression specifially to and/or in the vicinity of a targeted T cell.
  • Suitable promoters and transgene are known in the art, e.g., those promoters and transgenes used in “TRUCK CAR” technology.
  • An exemplary promoter is a NFAT-sensitive promoter.
  • transgene payloads can include checkpoint inhibitors (e.g., CTLA-4, [Ipilimumab, Tremelimumab] or PD-1 [Nivolumab, Pembrolizumab, Pidilizumab]) or proinflammatory cytokines (e.g., IL-2, IL-12, etc).
  • checkpoint inhibitors e.g., CTLA-4, [Ipilimumab, Tremelimumab] or PD-1 [Nivolumab, Pembrolizumab, Pidilizumab]
  • proinflammatory cytokines e.g., IL-2, IL-12, etc.
  • this will be used for in-situ targeting of a patient’s anticancer T-cells to very specifically and locally deliver activating agents like one or more checkpoint inhibitors (CTLA-4, [Ipilimumab, Tremelimumab] or PD-1 [Nivolumab, Pembrolizumab, Pidilizumab]) and/or proinflammatory cytokines, (e.g. IL-2, IL-12, etc.) that can push them to expansion and effector phenotype.
  • CTL-4 checkpoint inhibitors
  • PD-1 PD-1
  • proinflammatory cytokines e.g. IL-2, IL-12, etc.
  • the cell can be allogeneic, e.g., and engineered once and given as pulse therapy.
  • the cell can be a T cell or any other cell type described herein, e.g., a NK cell.
  • exemplary, non-limiting proinflammatory cytokines include IFNs, IFN- ⁇ , TNF ⁇ , TGF- ⁇ , IL-1 ⁇ , IL-6, IL-4, IL-10, IL-13, IL-2, IL-12, IL-15, and IL-27.
  • a promoter can be said to drive expression or drive transcription of the nucleic acid sequence that it regulates.
  • a composition comprising a TCR recognition domain and an biomolecular interaction domain is a soluble molecule and/or soluble complex.
  • Another aspect provided herein is a cell comprising and/or expressing the composition of any of the compositions described herein.
  • the TCR recognition domain comprises a MHC allogeneic to the cell comprising and/or expressing the composition.
  • the TCR recognition domain comprises a MHC allogeneic to the cell that the TCR originated from.
  • the TCR recognition domain comprises a peptide allogeneic to the cell comprising and/or expressing the composition.
  • the TCR recognition domain comprises a peptide allogeneic to the cell that the TCR originated from.
  • the cell is a dendritic cell (CAL DC), a T cell (e.g., effector, regulatory, etc.,) (CAL-T); regulatory T cell, effector T cell, natural killer cell (CAL NK), or any other myeloid cell.
  • the cell is engineered to express the polypeptide(s) of the composition. In one embodiment of any aspect, the cell is engineered to express the signaling polypeptide of the composition. In one embodiment of any aspect, the cell is further engineered to knockout the native MHCI/II. In one embodiment of any aspect, the cell is further engineered to lack cell surface expression of native MHCI/II.
  • CAR chimeric antigen receptor
  • Another aspect provided herein is a chimeric antigen receptor (CAR) comprising (a) an anti-CD127 and/or anti-CD45RO recognition domain; and (b) an intracellular signaling domain.
  • composition comprising a first polypeptide comprising: (a) an anti-CD127 and/or anti-CD45RO recognition domain; (b) a first-type protein interaction domain; and a second polypeptide comprising (a) a second-type protein interaction domain; and (b) an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other.
  • composition comprising a first polypeptide comprising (a) an anti-CD127 recognition domain; (b) a first-type protein interaction domain; a second polypeptide comprising (a) an anti-CD45RO recognition domain; (b) a fifth-type protein interaction domain; and a third polypeptide comprising (a) a second-type and a fourth-type protein interaction domain; and (b) an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other.
  • Another aspect provided herein is a cell comprising any of the CARs described herein, or any of the compositions described herein.
  • Another aspect provided herein is a method of preventing and/or treating an autoimmune diseases or conditions or T cell mediated inflammation or immune response; or treating or preventing transplant rejection or GvHD in a subject in need thereof, the method comprising administering to the subject any of the compositions and/or cells described herein.
  • Another aspect provided herein is a method of preventing and/or treating a malignant T cell condition in a subject in need thereof, the method comprising administering to the subject any of the compositions and/or cells described herein.
  • the TCR recognition domain comprises a MHC allogeneic to the subject, a MHC autologous to the transplant cells, a peptide allogeneic to the subject, or a peptide autologous to the transplant cells.
  • the transplant is vascularized composite allotransplantation (VCA).
  • VCA vascularized composite allotransplantation
  • the autoimmune disease is type 1 diabetes, multiple sclerosis, rheumatoid arthritis, or scleroderma.
  • One aspect of the embodiments provided herein is a CAR T cell that targets a CD127+/CD45RO+ T cell.
  • the CD127+/CD45RO+ T cell is a CD127+/CD45RO+ memory T cell. In one embodiment, the CD127+/CD45RO+ T cell is an alloreactive CD127+/CD45RO+ T cell. [00252] Accordingly, one aspect herein provides a CAR comprising (a) an anti-CD127 and/or anti-CD45RO recognition domain; and (b) intracellular signaling domain. Further provided herein is a composition comprising (a) an anti-CD127 and/or anti-CD45RO recognition domain; and (b) intracellular signaling domain.
  • composition comprising a first polypeptide comprising: (a) an anti-CD127 and/or anti-CD45RO recognition domain; (b) a first-type protein interaction domain; and a second polypeptide comprising: (c) a second-type protein interaction domain; and (d) an intracellular signaling domain; wherein the first-type protein interaction domain and the second- type protein interaction domain bind specifically to each other.
  • composition comprising a first polypeptide comprising: (a) an anti-CD127 recognition domain; (b) a first-type protein interaction domain; a second polypeptide comprising: (c) an anti-CD45RO recognition domain; (d) a fifth-type protein interaction domain; and a third polypeptide comprising: (e) a second-type and a fourth-type protein interaction domain; and (f) an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other.
  • the anti-CD127 recognition domain recognizes and binds to the sequence of CD127 on a CD127+ cell, e.g., a CD127+/CD45RO+ T cell.
  • CD127 also referred to as Interleukin 7 receptor a (IL7Ra), ILRA, IL7RA, CDW127, or IL-7R-alpha
  • IL7Ra Interleukin 7 receptor a
  • ILRA Interleukin 7 receptor a
  • CDW127 CDW127
  • IL-7R-alpha is a cell surface receptor that has been shown to have a role in V(D)J recombination during lymphocyte development. Defects in CD127 have been associated with severe combined immunodeficiency (SCID).
  • SCID severe combined immunodeficiency
  • CD127 refers to all naturally occurring variants or isoforms of CD127.
  • the CD127 polypeptide sequence is presented in SEQ ID NO: 1.
  • the CD127 polypeptide can be an ortholog, variant, and/or allele of SEQ ID NO: 1.
  • CD45RO also referred to as PTPRC, LCA, LY5, B220, CD45, L-CA, T200, CD45R, and GP180, is to a cell surface signaling molecule that been shown to be an essential regulator of T- and B-cell antigen receptor signaling. Sequences for CD45RO are known for a number of species, e.g., human CD45RO (NCBI Gene ID: 5788), mRNA (NCBI Ref Seq: NM_001267798.2), and polypeptide (NCBI Ref Seq: NP_001254727.1). CD45RO refers to all naturally occurring variants or isoforms of CD45RO.
  • the CD45RO polypeptide sequence is presented in SEQ ID NO: 2.
  • the CD45RO polypeptide can be an ortholog, variant, and/or allele of SEQ ID NO: 2.
  • “reduce,” “reduction” or “decrease” or “inhibit” typically means a decrease by at least 10% as compared to a reference level (e.g. the absence of a given treatment) and can include, for example, a decrease by at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99% , or more.
  • “reduction” or “inhibition” does not encompass a complete inhibition or reduction as compared to a reference level. “Complete inhibition” is a 100% inhibition as compared to a reference level. A decrease can be preferably down to a level accepted as within the range of normal for an individual without a given disorder. [00260] The terms “increased”, “increase”, “enhance”, or “activate” are all used herein to mean an increase by a statically significant amount.
  • the terms “increased”, “increase”, “enhance”, or “activate” can mean an increase of at least 10% as compared to a reference level, for example an increase of at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% increase or any increase between 10-100% as compared to a reference level, or at least about a 2-fold, or at least about a 3-fold, or at least about a 4-fold, or at least about a 5-fold or at least about a 10-fold increase, or any increase between 2-fold and 10-fold or greater as compared to a reference level.
  • a “increase” is a statistically significant increase in such level.
  • a "subject” means a human or animal. Usually the animal is a vertebrate such as a swine, primate, rodent, domestic animal or game animal. Primates include chimpanzees, cynomolgus monkeys, spider monkeys, and macaques, e.g., Rhesus. Rodents include mice, rats, woodchucks, ferrets, rabbits and hamsters.
  • domestic and game animals include cows, horses, pigs, deer, bison, buffalo, feline species, e.g., domestic cat, canine species, e.g., dog, fox, wolf, avian species, e.g., chicken, emu, ostrich, and fish, e.g., trout, catfish and salmon.
  • the subject is a mammal, e.g., a primate, e.g., a human.
  • the terms, “individual,” “patient” and “subject” are used interchangeably herein. [00262]
  • the subject is a mammal.
  • the mammal can be a human, non-human swine, primate, mouse, rat, dog, cat, horse, or cow, but is not limited to these examples. Mammals other than humans can be advantageously used as subjects that represent animal models of autoimmune diseases or conditions; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD.
  • a subject can be male or female.
  • a subject can be one who has been previously diagnosed with or identified as suffering from or having a condition in need of treatment (e.g.
  • an autoimmune disease or condition T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD
  • T cell mediated inflammation or immune response T cell mediated inflammation or immune response
  • malignant T cell condition transplant rejection
  • GvHD GvHD
  • a subject can also be one who has not been previously diagnosed as having an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD or one or more complications related to an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD.
  • a subject can be one who exhibits one or more risk factors for an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD or one or more complications related to an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD or a subject who does not exhibit risk factors.
  • a “subject in need” of treatment for a particular condition can be a subject having that condition, diagnosed as having that condition, or at risk of developing that condition, e.g., an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD.
  • a nucleic acid encoding a CAL, CAR, a multi-component CAL and/or CAR or portion thereof as described herein is comprised by a vector.
  • a nucleic acid sequence encoding a multi-component CAL and/or CAR, or portion thereof as described herein, or any module thereof is operably linked to a vector.
  • vector refers to a nucleic acid construct designed for delivery to a host cell or for transfer between different host cells.
  • a vector can be viral or non-viral.
  • vector encompasses any genetic element that is capable of replication when associated with the proper control elements and that can transfer gene sequences to cells.
  • a vector can include, but is not limited to, a cloning vector, an expression vector, a plasmid, phage, transposon, cosmid, chromosome, virus, virion, etc.
  • expression vector refers to a vector that directs expression of an RNA or polypeptide from sequences linked to transcriptional regulatory sequences on the vector. The sequences expressed will often, but not necessarily, be heterologous to the cell.
  • An expression vector may comprise additional elements, for example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, for example in human cells for expression and in a prokaryotic host for cloning and amplification.
  • expression refers to the cellular processes involved in producing RNA and proteins and as appropriate, secreting proteins, including where applicable, but not limited to, for example, transcription, transcript processing, translation and protein folding, modification and processing.
  • “Expression products” include RNA transcribed from a gene, and polypeptides obtained by translation of mRNA transcribed from a gene.
  • gene means the nucleic acid sequence that is transcribed (DNA) to RNA in vitro or in vivo when operably linked to appropriate regulatory sequences.
  • the gene may or may not include regions preceding and following the coding region, e.g.5′ untranslated (5′UTR) or “leader” sequences and 3′ UTR or “trailer” sequences, as well as intervening sequences (introns) between individual coding segments (exons).
  • the term “viral vector” refers to a nucleic acid vector construct that includes at least one element of viral origin and has the capacity to be packaged into a viral vector particle.
  • the viral vector can contain the nucleic acid encoding a CAL and/or CAR described herein, e.g., a multi-component CAL and/or CAR, or portion thereof as described herein in place of non- essential viral genes.
  • the vector and/or particle may be utilized for the purpose of transferring any nucleic acids into cells either in vitro or in vivo.
  • Numerous forms of viral vectors are known in the art.
  • recombinant vector is meant a vector that includes a heterologous nucleic acid sequence, or “transgene” that is capable of expression in vivo or in the transduced cells. It should be understood that the vectors described herein can, in some embodiments, be combined with other suitable compositions and therapies.
  • the vector is episomal. The use of a suitable episomal vector provides a means of maintaining the nucleotide of interest in the subject in high copy number extra chromosomal DNA thereby eliminating potential effects of chromosomal integration.
  • nucleic acid or “nucleic acid sequence” refers to any molecule, preferably a polymeric molecule, incorporating units of ribonucleic acid, deoxyribonucleic acid or an analog thereof.
  • the nucleic acid can be either single-stranded or double-stranded.
  • a single-stranded nucleic acid can be one nucleic acid strand of a denatured double- stranded DNA. Alternatively, it can be a single-stranded nucleic acid not derived from any double-stranded DNA.
  • the nucleic acid can be DNA.
  • the nucleic acid can be RNA, e.g., single-stranded or double-stranded RNA.
  • Suitable nucleic acid molecules are DNA, including genomic DNA or cDNA.
  • Other suitable nucleic acid molecules are RNA, including mRNA.
  • protein and “polypeptide” are used interchangeably herein to designate a series of amino acid residues, connected to each other by peptide bonds between the alpha-amino and carboxy groups of adjacent residues.
  • protein refers to a polymer of amino acids, including modified amino acids (e.g., phosphorylated, glycated, glycosylated, etc.) and amino acid analogs, regardless of its size or function.
  • modified amino acids e.g., phosphorylated, glycated, glycosylated, etc.
  • amino acid analogs regardless of its size or function.
  • Protein and polypeptide are often used in reference to relatively large polypeptides, whereas the term “peptide” is often used in reference to small polypeptides, but usage of these terms in the art overlaps.
  • protein and “polypeptide” are used interchangeably herein when referring to a gene product and fragments thereof.
  • exemplary polypeptides or proteins include gene products, naturally occurring proteins, homologs, orthologs, paralogs, fragments and other equivalents, variants, fragments, and analogs of the foregoing.
  • an “antibody” refers to IgG, IgM, IgA, IgD or IgE molecules or antigen- specific antibody fragments thereof (including, but not limited to, a Fab, F(ab')2, Fv, disulphide linked Fv, scFv, single domain antibody, closed conformation multispecific antibody, disulphide-linked scfv, diabody), whether derived from any species that naturally produces an antibody, or created by recombinant DNA technology; whether isolated from serum, B-cells, hybridomas, transfectomas, yeast or bacteria.
  • an "antigen” is a molecule that is bound by a binding site on an antibody agent.
  • antigens are bound by antibody ligands and are capable of raising an antibody response in vivo.
  • An antigen can be a polypeptide, protein, nucleic acid or other molecule or portion thereof.
  • the term “antigenic determinant” refers to an epitope on the antigen recognized by an antigen-binding molecule, and more particularly, by the antigen-binding site of said molecule.
  • antibody reagent refers to a polypeptide that includes at least one immunoglobulin variable domain or immunoglobulin variable domain sequence and which specifically binds a given antigen.
  • An antibody reagent can comprise an antibody or a polypeptide comprising an antigen-binding domain of an antibody.
  • an antibody reagent can comprise a monoclonal antibody or a polypeptide comprising an antigen-binding domain of a monoclonal antibody.
  • an antibody can include a heavy (H) chain variable region (abbreviated herein as VH), and a light (L) chain variable region (abbreviated herein as VL).
  • an antibody includes two heavy (H) chain variable regions and two light (L) chain variable regions.
  • antibody reagent encompasses antigen-binding fragments of antibodies (e.g., single chain antibodies, Fab and sFab fragments, F(ab')2, Fd fragments, Fv fragments, scFv, and domain antibodies (dAb) fragments (see, e.g. de Wildt et al., Eur J. Immunol.1996; 26(3):629-39; which is incorporated by reference herein in its entirety)) as well as complete antibodies.
  • An antibody can have the structural features of IgA, IgG, IgE, IgD, IgM (as well as subtypes and combinations thereof).
  • Antibodies can be from any source, including mouse, rabbit, pig, rat, and primate (human and non-human primate) and primatized antibodies. Antibodies also include midibodies, humanized antibodies, chimeric antibodies, and the like. [00274]
  • the VH and VL regions can be further subdivided into regions of hypervariability, termed “complementarity determining regions” ("CDR"), interspersed with regions that are more conserved, termed “framework regions” ("FR").
  • CDR complementarity determining regions
  • FR framework regions
  • Each VH and VL is typically composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
  • FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4 The terms "antigen-binding fragment” or “antigen-binding domain”, which are used interchangeably herein are used to refer to one or more fragments of a full length antibody that retain the ability to specifically bind to a target of interest.
  • binding fragments encompassed within the term "antigen-binding fragment" of a full length antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab')2 fragment, a bivalent fragment including two Fab fragments linked by a disulfide bridge at the hinge region; (iii) an Fd fragment consisting of the VH and CH1 domains; (iv) an Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544- 546; which is incorporated by reference herein in its entirety), which consists of a VH or VL domain; and (vi) an isolated complementarity determining region (CDR) that retains specific antigen-binding functionality.
  • CDR complementarity determining region
  • specific binding refers to a chemical interaction between two molecules, compounds, cells and/or particles wherein the first entity binds to the second, target entity with greater specificity and affinity than it binds to a third entity which is a non-target.
  • specific binding can refer to an affinity of the first entity for the second target entity which is at least 10 times, at least 50 times, at least 100 times, at least 500 times, at least 1000 times or greater than the affinity for the third nontarget entity.
  • a reagent specific for a given target is one that exhibits specific binding for that target under the conditions of the assay being utilized.
  • binding described herein can be preferential binding, e.g., binding between two molecules, compounds, cells and/or particles wherein the first entity binds to the second, target entity with at least 2 times greater specificity and affinity than it binds to a third entity which is a non-target.
  • a recombinant humanized antibody can be further optimized to decrease potential immunogenicity, while maintaining functional activity, for therapy in humans.
  • functional activity means a polypeptide capable of displaying one or more known functional activities associated with a recombinant antibody or antibody reagent thereof as described herein. Such functional activities include, e.g. the ability to bind to a target.
  • the terms “treat,” “treatment,” “treating,” or “amelioration” refer to therapeutic treatments, wherein the object is to reverse, alleviate, ameliorate, inhibit, slow down or stop the progression or severity of a condition associated with a disease or disorder, e.g. autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD.
  • the term “treating” includes reducing or alleviating at least one adverse effect or symptom of a condition, disease or disorder associated with a, e.g. autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD. Treatment is generally “effective” if one or more symptoms or clinical markers are reduced.
  • treatment is “effective” if the progression of a disease is reduced or halted. That is, “treatment” includes not just the improvement of symptoms or markers, but also a cessation of, or at least slowing of, progress or worsening of symptoms compared to what would be expected in the absence of treatment.
  • Beneficial or desired clinical results include, but are not limited to, alleviation of one or more symptom(s), diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, remission (whether partial or total), and/or decreased mortality, whether detectable or undetectable.
  • treatment also includes providing relief from the symptoms or side-effects of the disease (including palliative treatment).
  • pharmaceutical composition refers to the active agent in combination with a pharmaceutically acceptable carrier e.g. a carrier commonly used in the pharmaceutical industry.
  • pharmaceutically acceptable is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
  • administering refers to the placement of an agent, e.g., a CAL, CAR, composition, or cell as disclosed herein into a subject by a method or route which results in at least partial delivery of the agent at a desired site.
  • Pharmaceutical compositions comprising the compounds disclosed herein can be administered by any appropriate route which results in an effective treatment in the subject.
  • Immune checkpoint inhibitors inhibit one or more immune checkpoint proteins. The immune system has multiple inhibitory pathways that are critical for maintaining self-tolerance and modulating immune responses.
  • immune checkpoint protein refers to a protein which, when active, exhibits an inhibitory effect on immune activity, e.g., T cell activity.
  • Exemplary immune checkpoint proteins can include PD-1 (e.g., NCBI Gene ID: 5133); PD-L1 (e.g., NCBI Gene ID: 29126); PD-L2 (e.g., NCBI Gene ID: 80380); TIM-3 (e.g., NCBI Gene ID: 84868); CTLA4 (e.g., NCBI Gene ID: 1493); TIGIT (e.g., NCBI Gene ID: 201633); KIR (e.g., NCBI Gene ID: 3811); LAG3 (e.g., NCBI Gene ID: 3902); DD1- ⁇ (e.g., NCBI Gene ID: 64115); A2AR (e.g., NCBI Gene ID: 135); B7-H3 (e.g., NCBI Gene ID: 80381); B7-H4 (e.g., NCBI Gene ID: 79679); BTLA (e.g., NCBI Gene ID: 151888); IDO (e.g., NCBI Gene ID
  • B7 family ligands include, but are not limited to, B7- 1, B7-2, B7-DC, B7-H1, B7-H2, B7-H3, B7-H4, B7-H5, B7-H6 and B7-H7.
  • Non-limiting examples of immune checkpoint inhibitors can include:MGA271 (B7-H3: MacroGenics); ipilimumab (CTLA-4; Bristol Meyers Squibb); pembrolizumab (PD-1; Merck); nivolumab (PD-1; Bristol Meyers Squibb) ; atezolizumab (PD-L1; Genentech); galiximab (B7.1; Biogen); IMP321 (LAG3: Immuntep); BMS-986016 (LAG3; Bristol Meyers Squibb); SMB-663513 (CD137; Bristol-Meyers Squibb); PF- 05082566 (CD137; Pfizer); IPH2101 (KIR; Innate Pharma); KW-0761 (CCR4; Kyowa Kirin); CDX- 1127 (CD27; CellDex); MEDI-6769 (Ox40;
  • compositions, methods, and respective component(s) thereof are essential to the method or composition, yet open to the inclusion of unspecified elements, whether essential or not.
  • consisting of refers to compositions, methods, and respective components thereof as described herein, which are exclusive of any element not recited in that description of the embodiment.
  • consisting essentially of refers to those elements required for a given embodiment. The term permits the presence of elements that do not materially affect the basic and novel or functional characteristic(s) of that embodiment.
  • a composition comprising: a. a TCR recognition domain; and one or both of: b. an intracellular signaling domain; and c. a first-type protein interaction domain.
  • a composition comprising: a. a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and b.
  • a composition comprising: a. a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and b. a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the first-type and third-type protein interaction domains bind specifically to each other.
  • a composition comprising: a. a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and b.
  • a composition comprising: a. a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; b.
  • a signaling polypeptide comprising a second-type protein interaction domain, a fourth-type protein interaction domain, and an intracellular signaling domain; and c. a recognition polypeptide comprising a second recognition domain and a fifth-type protein interaction domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other. 7. The composition of paragraph 6, wherein the fourth-type protein interaction domain and fifth- type protein interaction domain have a weaker affinity than the second-type protein interaction domain and first-type protein interaction domain. 8.
  • the second recognition domain is specific for a target that is not recognized by the TCR recognition domain.
  • the second recognition domain is specific for a target that is found on a healthy and/or non-target cell and not on a diseased and/or target cell.
  • the TCR recognition domain comprises a MHC (Major Histocompatibility Complex); a MHC-peptide complex; or a MHC- peptide fusion. 12.
  • composition of paragraph 11 wherein the peptide is a human or non-human peptide.
  • MHC Minor Histocompatibility Antigen
  • the protein interaction domains are found on an extracellular portion of the respective polypeptides. 16. The composition of any of the preceding paragraphs, a.
  • protein interaction domain(s) is a leucine zipper, or any binding pair of protein interaction domains are collectively a pair of leucine zippers; b. wherein the protein interaction domain(s) is a BZip (RR) and/or a AZip (EE), or any binding pair of protein interaction domains are collectively a BZip (RR) and a AZip (EE); c. wherein the protein interaction domain(s) is a PSD95-Dlgl-zo-1 (PDZ) domain; d.
  • PDZ PSD95-Dlgl-zo-1
  • the protein interaction domain(s) is a streptavidin and/or a streptavidin binding protein (SBP) or any binding pair of protein interaction domains are collectively a streptavidin and a streptavidin binding protein (SBP); e. wherein the protein interaction domain(s) is a FKBP-binding domain of mTOR (FRB) and/or a FK506 binding protein (FKBP) or any binding pair of protein interaction domains are collectively a FKBP-binding domain of mTOR (FRB) and a FK506 binding protein (FKBP); f.
  • SBP streptavidin binding protein
  • FKBP FK506 binding protein
  • the protein interaction domain(s) is a cyclophilin-Fas fusion protein (CyP- Fas) and/or a FK506 binding protein (FKBP) or any binding pair of protein interaction domains are collectively a cyclophilin-Fas fusion protein (CyP-Fas) and a FK506 binding protein (FKBP);
  • the protein interaction domain(s) is a calcineurinA (CNA) and/or a FK506 binding protein (FKBP) or any binding pair of protein interaction domains are collectively a calcineurinA (CNA) and a FK506 binding protein (FKBP); h.
  • the protein interaction domain(s) is a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1) or any binding pair of protein interaction domains are collectively a gibberellin insensitive (GIA) and a gibberellin insensitive dwarf1 (GID1); i. wherein the protein interaction domain(s) is a Snap-tag and/or a Halo tag, or any binding pair of protein interaction domains are collectively a Snap-tag and a Halo tag; j.
  • protein interaction domain(s) is a T14-3-3-cdeltaC and/or a C-Terminal peptides of PMA2 (CT52), or any binding pair of protein interaction domains are collectively a T14-3-3-cdeltaC and a C-Terminal peptides of PMA2 (CT52); k. wherein the protein interaction domain(s) is a PYL and/or a ABI, or any binding pair of protein interaction domains are collectively a PYL and a ABI; and/or l.
  • protein interaction domain(s) is a nucleotide tag and/or a zinc finger domain, or any binding pair of protein interaction domains are collectively a nucleotide tag and a zinc finger domain. 17.
  • the nucleotide tag is a DNA tag or dsDNA tag. 18.
  • the intracellular signaling domain is a signaling domain from a protein selected from the group consisting of: TCRC; FcRy; FcRp; CD3y; CD35; CD3s; CD3C; CD22; CD79a; CD79b; CD66d; CARD11; CD2; CD7; CD27; CD28; CD30; CD40; CD54 (ICAM); CD83; CD134 (OX40); CD137 (4-1BB); CD150 (SLAMF1); CD152 (CTLA4); CD223 (LAG3); CD270 (HVEM); CD273 (PD-L2); CD274 (PD- Ll); CD278 (ICOS); DAP10; LAT; KD2C SLP76; TRIM; ZAP70; and 41BB.
  • TCRC TCRC
  • FcRy FcRp
  • CD3y CD35
  • CD3s CD3C
  • CD22 CD79a; CD79b
  • CD66d CARD11; CD2; CD7; CD
  • a cell comprising and/or expressing the composition of any of the preceding paragraphs.
  • 20 The cell of paragraph 19, wherein the TCR recognition domain comprises a MHC allogenic to the cell.
  • 21 The cell of paragraph 19, wherein the TCR recognition domain comprises a peptide allogenic to the cell.
  • 22 The cell of any of paragraphs 19-21, wherein the cell is a dendritic cell, regulatory T cell, or effector T cell.
  • 23 The cell of any of paragraphs 19-22, wherein the cell is engineered to express the polypeptide(s) of the composition.
  • 24 The cell of any of paragraphs 19-22, wherein the cell is engineered to express the signaling polypeptide of the composition. 25.
  • a chimeric antigen receptor (CAR) comprising: a. an anti-CD127 and/or anti-CD45RO recognition domain; b. an intracellular signaling domain.
  • a composition comprising: a first polypeptide comprising: a. an anti-CD127 and/or anti-CD45RO recognition domain; b. a first-type protein interaction domain; and a second polypeptide comprising: c. a second-type protein interaction domain; and d. an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other.
  • a composition comprising: a first polypeptide comprising: a. an anti-CD127 recognition domain; b. a first-type protein interaction domain; a second polypeptide comprising: c. an anti-CD45RO recognition domain; d. a fifth-type protein interaction domain; and a third polypeptide comprising: e. a second-type and a fourth-type protein interaction domain; and f. an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other. 29. A cell comprising the CAR or composition of any of paragraphs 26-28. 30.
  • the TCR recognition domain comprises a MHC allogenic to the subject.
  • the TCR recognition domain comprises a MHC autologous to the transplant cells.
  • the TCR recognition domain comprises a peptide allogenic to the subject.
  • the TCR recognition domain comprises a peptide autologous to the transplant cells.
  • the transplant is vascularized composite allotransplantation (VCA). 36.
  • a composition comprising: a. a TCR recognition domain; and one or both of: b. an intracellular signaling domain; and c. a first-type biomolecular interaction domain.
  • a composition comprising: a. a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and b.
  • a composition comprising: a. a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and b. a recognition polypeptide comprising a second recognition domain and a third-type biomolecular interaction domain; wherein the first-type and third-type biomolecular interaction domains bind specifically to each other.
  • a composition comprising: a.
  • a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain
  • a signaling polypeptide comprising a second-type biomolecular interaction domain and an intracellular signaling domain
  • a recognition polypeptide comprising a second recognition domain and a third-type biomolecular interaction domain; wherein the second-type and third-type biomolecular interaction domains compete for binding to the first-type biomolecular interaction domain.
  • a composition comprising: a. a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; b. a signaling polypeptide comprising a second-type biomolecular interaction domain, a fourth-type biomolecular interaction domain, and an intracellular signaling domain; and c. a recognition polypeptide comprising a second recognition domain and a fifth-type biomolecular interaction domain; wherein the first-type biomolecular interaction domain and the second-type biomolecular interaction domain bind specifically to each other; and wherein the fourth-type biomolecular interaction domain and the fifth-type biomolecular interaction domain bind specifically to each other. 7.
  • composition of paragraph 6 wherein the fourth-type biomolecular interaction domain and fifth-type biomolecular interaction domain have a weaker affinity than the second-type biomolecular interaction domain and first-type protein interaction domain.
  • the first polypeptide further comprises a sixth-type biomolecular interaction domain and the recognition polypeptide further comprises a seventh-type biomolecular interaction domain which bind specifically to each other.
  • the first polypeptide comprises the entire TCR recognition domain.
  • composition of any of paragraphs 2-8 wherein the TCR recognition domain comprises at least two separate polypeptide sequences, the first polypeptide comprises at least one of the separate polypeptide sequences of the TCR recognition domain, and the first polypeptide is bound to or complexed with a second or further polypeptide sequences of the TCR recognition domain to form a TCR recognition domain.
  • the TCR recognition domain comprises a non-polypeptide component.
  • the second recognition domain is specific for a target that is not recognized by the TCR recognition domain.
  • TCR recognition domain comprises a MHC (Major Histocompatibility Complex); a MHC-peptide complex; featureless peptide MHC; or a MHC-peptide fusion.
  • MHC Major Histocompatibility Complex
  • MHC-peptide complex featureless peptide MHC
  • MHC-peptide fusion or a MHC-peptide fusion.
  • the peptide is a Minor Histocompatibility Antigen (MiHA). 17.
  • MHC-peptide complex is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
  • MHC-peptide fusion is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
  • composition of any of paragraphs 14-17, wherein the MHC is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
  • MHC-peptide complex is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
  • MHC-peptide fusion is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
  • the composition of any of paragraphs 14-22, wherein the MHC is a MHC class I or a MHC class II. 24.
  • biomolecular interaction domain(s) is a BZip (RR) and/or a AZip (EE), or any binding pair of biomolecular interaction domains are collectively a BZip (RR) and a AZip (EE); c. wherein the biomolecular interaction domain(s) is a PSD95-Dlgl-zo-1 (PDZ) domain; d. wherein the biomolecular interaction domain(s) is a streptavidin and/or a streptavidin binding biomolecular (SBP) or any binding pair of biomolecular interaction domains are collectively a streptavidin and a streptavidin binding biomolecular (SBP); e.
  • PDZ PSD95-Dlgl-zo-1
  • biomolecular interaction domain(s) is a FKBP-binding domain of mTOR (FRB) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a FKBP-binding domain of mTOR (FRB) and a FK506 binding biomolecular (FKBP); f.
  • biomolecular interaction domain(s) is a cyclophilin-Fas fusion biomolecular (CyP-Fas) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a cyclophilin-Fas fusion biomolecular (CyP-Fas) and a FK506 binding biomolecular (FKBP); g.
  • biomolecular interaction domain(s) is a calcineurin A (CNA) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a calcineurin A (CNA) and a FK506 binding biomolecular (FKBP); h. wherein the biomolecular interaction domain(s) is a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1) or any binding pair of biomolecular interaction domains are collectively a gibberellin insensitive (GIA) and a gibberellin insensitive dwarf1 (GID1); i.
  • biomolecular interaction domain(s) is a Snap-tag and/or a Halo tag, or any binding pair of biomolecular interaction domains are collectively a Snap-tag and a Halo tag; j. wherein the biomolecular interaction domain(s) is a T14-3-3-cdeltaC and/or a C- Terminal peptides of PMA2 (CT52), or any binding pair of biomolecular interaction domains are collectively a T14-3-3-cdeltaC and a C-Terminal peptides of PMA2 (CT52); k.
  • biomolecular interaction domain(s) is a PYL and/or a ABI, or any binding pair of biomolecular interaction domains are collectively a PYL and a ABI; l. wherein the biomolecular interaction domain(s) is a nucleotide tag and/or a zinc finger domain, or any binding pair of biomolecular interaction domains are collectively a nucleotide tag and a zinc finger domain; m. wherein the biomolecular interaction domain(s) is a nucleotide tag, or any binding pair of biomolecular interaction domains are collectively a pair of nucleotide tags; n.
  • biomolecular interaction domain(s) is a Fluorescein isothiocyanate (FITC) and/or a FITC binding biomolecular or any binding pair of protein interaction domains are collectively a FITC and a FITC binding protein; and/or o.
  • the protein interaction domain(s) is a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein or any binding pair of protein interaction domains are collectively a (R)-Phycoerythrin (R-PE/ PE) and a R-PE/PE binding protein.
  • the intracellular signaling domain comprises or is a signaling domain from one or more proteins selected from the group consisting of: TCR ⁇ , FcR ⁇ , FcR ⁇ , CD3 ⁇ ; CD35; CD3 ⁇ ; CD3C; CD22; CD79a; CD79b; CD66d; CARD11; CD2; CD7; CD27; CD28; CD30; CD40; CD54 (ICAM); CD83; CD134 (OX40); CD137 (4-1BB); CD150 (SLAMF1); CD152 (CTLA4); CD223 (LAG3); CD270 (HVEM); CD273 (PD-L2); CD274 (PD- Ll); CD278 (ICOS); DAP10; LAT; KD2C SLP76; TRIM; and ZAP70.
  • proteins selected from the group consisting of: TCR ⁇ , FcR ⁇ , FcR ⁇ , CD3 ⁇ ; CD35; CD3 ⁇ ; CD3C; CD22; CD79a; CD79b; CD66d; CARD11; CD
  • a cell comprising and/or expressing the composition of any of the preceding paragraphs.
  • 31. A composition comprising a first polypeptide of any of the preceding paragraphs and a cell expressing or comprising the signaling polypeptide of any of the preceding paragraphs.
  • 32. The cell or composition of any of paragraphs 30-31, wherein the TCR recognition domain comprises a MHC allogeneic, autologous, or xenogeneic to the cell.
  • 33. The cell or composition of any of paragraphs 30-32, wherein the TCR recognition domain comprises a synthetic MHC. 34.
  • a chimeric antigen receptor comprising: a. an anti-CD127 and/or anti-CD45RO recognition domain; b. an intracellular signaling domain.
  • a composition comprising: a first polypeptide comprising: a. an anti-CD127 and/or anti-CD45RO recognition domain; b.
  • a composition comprising: a first polypeptide comprising: a. an anti-CD127 recognition domain; b. a first-type protein interaction domain; a second polypeptide comprising: c. an anti-CD45RO recognition domain; d. a fifth-type protein interaction domain; and a third polypeptide comprising: e. a second-type and a fourth-type protein interaction domain; and f.
  • a cell comprising the CAR or composition of any of paragraphs 41-43.
  • the TCR recognition domain comprises a MHC autologous to the transplant cells.
  • the TCR recognition domain comprises a MHC xenogeneic to the transplant cells.
  • the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is allogeneic to the subject.
  • the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is autologous to the transplant cells.
  • the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is autologous to the transplant cells. 52.
  • autoimmune disease is type 1 diabetes, vitiligo, multiple sclerosis, alopecia, celiac disease, pemphigus, rheumatoid arthritis, or scleroderma. 57.
  • autoimmune disease is thyroiditis, type 1 diabetes mellitus, Hashimoto's thyroiditis, Graves' disease, celiac disease, multiple sclerosis, Guillain-Barre syndrome, Addison's disease, and Raynaud's phenomenon, Goodpasture's disease, arthritis (rheumatoid arthritis such as acute arthritis, chronic rheumatoid arthritis, gout or gouty arthritis, acute gouty arthritis, acute immunological arthritis, chronic inflammatory arthritis, degenerative arthritis, type II collagen-induced arthritis, infectious arthritis, Lyme arthritis (e.g., post treatment Lyme disease syndrome), proliferative arthritis, psoriatic arthritis, Still's disease, vertebral arthritis, and juvenile-onset rheumatoid arthritis, arthritis chronica progrediente, arthritis deformans, polyarthritis chronica primaria, reactive arthritis, and ankylosing spondylitis), palindromic arthritis, inflammatory hyperosis, rheumatoid arthritis
  • T cell mediated immune response is an anti-drug specific response to a biologic, cell therapy, and/or gene therapy.
  • the biologic, cell-therapy, or gene therapy is an adeno- associated virus (AAV) gene therapy, a genome editing agent, or enzyme replacement therapy. 60.
  • AAV adeno- associated virus
  • the disease is type 1 diabetes and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: one or more of SEQ ID NOs: 8-17; HLA-A*0201 and at least one of SEQ ID NOs: 2013-2016 and 2031- 2033; or HLA-A*02:01 and at least one of SEQ ID NOs: 20128-2129. 61.
  • the disease is vitiligo and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: SEQ ID NO: 18, 19, and one of 20-22; or comprises HLA-A*0201 and SEQ ID NO: 2018; or HLA-A*0301 and SEQ ID NO: 2019; or comprises HLA-A*2402 and SEQ ID NO: 2020; or HLA-A*0101 and SEQ ID NO: 2021. 62.
  • the method is a method of treating and/or preventing GvHD and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: HLA-A*0101 and at least one of SEQ ID NOs: 2034-2037; or HLA-B*0702 and SEQ ID NO: 2038; or HLA-B*0801 and SEQ ID NO: 2039. 63.
  • the disease is type 1 diabetes and the TCR recognition domain comprises one or more of SEQ ID NOs: 8-17; comprises HLA-A*0201 and at least one of SEQ ID NOs: 2013-2016 and 2031-2033; or comprises HLA-A*02:01 and at least one of SEQ ID NOs: 20128-2129. 64.
  • the disease is vitiligo and the TCR recognition domain comprises SEQ ID NO: 18, 19, and one of 20-22; or comprises HLA-A*0201 and SEQ ID NO: 2018; or comprises HLA-A*0301 and SEQ ID NO: 2019; or comprises HLA-A*2402 and SEQ ID NO: 2020; or comprises HLA-A*0101 and SEQ ID NO: 2021. 65.
  • a composition comprising: a. a TCR recognition domain; and one or both of: b. an intracellular signaling domain; and c. a biomolecular interaction domain. 2.
  • composition of paragraph 1 comprising a TCR recognition domain and a biomolecular interaction domain. 3.
  • the biomolecular interaction domain of c) is a first- type biomolecular interaction domain and the composition further comprises a signaling polypeptide comprising a second-type biomolecular interaction domain and an intracellular signaling domain; wherein the first-type and second-type biomolecular interaction domains bind specifically to each other.
  • the TCR recognition domain comprises a MHC (Major Histocompatibility Complex); a MHC-peptide complex; a featureless peptide MHC; or a MHC-peptide fusion.
  • the TCR recognition domain comprises a CD1 domain or a CD1 domain-ligand complex or fusion. 7. The composition of paragraph 6, wherein the CD1 is CD1d. 8. The composition of paragraph 1, wherein the TCR recognition domain is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. 9. The composition of paragraph 1, a. wherein the biomolecular interaction domain(s) is a leucine zipper, or any binding pair of biomolecular interaction domains are collectively a pair of leucine zippers; b.
  • biomolecular interaction domain(s) is a BZip (RR) and/or a AZip (EE), or any binding pair of biomolecular interaction domains are collectively a BZip (RR) and a AZip (EE); c. wherein the biomolecular interaction domain(s) is a PSD95-Dlgl-zo-1 (PDZ) domain; d. wherein the biomolecular interaction domain(s) is a streptavidin and/or a streptavidin binding biomolecular (SBP) or any binding pair of biomolecular interaction domains are collectively a streptavidin and a streptavidin binding biomolecular (SBP); e.
  • PDZ PSD95-Dlgl-zo-1
  • biomolecular interaction domain(s) is a FKBP-binding domain of mTOR (FRB) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a FKBP-binding domain of mTOR (FRB) and a FK506 binding biomolecular (FKBP); f.
  • biomolecular interaction domain(s) is a cyclophilin-Fas fusion biomolecular (CyP-Fas) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a cyclophilin-Fas fusion biomolecular (CyP-Fas) and a FK506 binding biomolecular (FKBP); g.
  • biomolecular interaction domain(s) is a calcineurin A (CNA) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a calcineurin A (CNA) and a FK506 binding biomolecular (FKBP); h. wherein the biomolecular interaction domain(s) is a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1) or any binding pair of biomolecular interaction domains are collectively a gibberellin insensitive (GIA) and a gibberellin insensitive dwarf1 (GID1); i.
  • biomolecular interaction domain(s) is a Snap-tag and/or a Halo tag, or any binding pair of biomolecular interaction domains are collectively a Snap-tag and a Halo tag; j. wherein the biomolecular interaction domain(s) is a T14-3-3-cdeltaC and/or a C- Terminal peptides of PMA2 (CT52), or any binding pair of biomolecular interaction domains are collectively a T14-3-3-cdeltaC and a C-Terminal peptides of PMA2 (CT52); k.
  • biomolecular interaction domain(s) is a PYL and/or a ABI, or any binding pair of biomolecular interaction domains are collectively a PYL and a ABI; l. wherein the biomolecular interaction domain(s) is a nucleotide tag and/or a zinc finger domain, or any binding pair of biomolecular interaction domains are collectively a nucleotide tag and a zinc finger domain; m. wherein the biomolecular interaction domain(s) is a nucleotide tag, or any binding pair of biomolecular interaction domains are collectively a pair of nucleotide tags; n.
  • biomolecular interaction domain(s) is a Fluorescein isothiocyanate (FITC) and/or a FITC binding biomolecular or any binding pair of protein interaction domains are collectively a FITC and a FITC binding protein; and/or o.
  • the protein interaction domain(s) is a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein or any binding pair of protein interaction domains are collectively a (R)-Phycoerythrin (R-PE/ PE) and a R-PE/PE binding protein.
  • the nucleotide tag is a DNA tag or dsDNA tag.
  • composition of paragraph 2 further comprising a cell expressing or comprising the signaling polypeptide.
  • TCR recognition domain is allogeneic, autologous, or xenogenic to the cell.
  • TCR recognition domain is synthetic.
  • the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is allogeneic, autologous, or xenogenic to the cell.
  • the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is synthetic.
  • the cell is a NK cell, dendritic cell, regulatory T cell, or effector T cell. 17.
  • composition of paragraph 11 wherein the cell is further engineered to knockdown the native MHCI/II expressed on the cell surface.
  • the transplant is an allogeneic hematopoietic stem cell or solid organ transplantation.
  • the malignant T cell condition is T cell acute lymphoblastic leukemia or T cell lymphoblastic lymphoma. 21.
  • the autoimmune disease is type 1 diabetes, vitiligo, multiple sclerosis, alopecia, celiac disease, pemphigus, rheumatoid arthritis, or scleroderma.
  • the T cell mediated immune response is an anti-drug specific response to a biologic, cell therapy, and/or gene therapy.
  • the biologic, cell-therapy, or gene therapy is an adeno- associated virus (AAV) gene therapy, a genome editing agent, or enzyme replacement therapy.
  • the disease is type 1 diabetes and the TCR recognition domain comprises sequences with at least 95% sequence identity to: one or more of SEQ ID NOs: 8-17; HLA-A*0201 and at least one of SEQ ID NOs: 2013-2016 and 2031-2033; or HLA-A*02:01 and at least one of SEQ ID NOs: 20128-2129. 25.
  • the disease is vitiligo and the TCR recognition domain comprises sequences with at least 95% sequence identity to: SEQ ID NO: 18, 19, and one of 20-22; or HLA-A*0201 and SEQ ID NO: 2018; or HLA-A*0301 and SEQ ID NO: 2019; or comprises HLA-A*2402 and SEQ ID NO: 2020; or HLA-A*0101 and SEQ ID NO: 2021. 26.
  • the method is a method of treating and/or preventing GvHD and the TCR recognition domain comprises sequences with at least 95% sequence identity to: HLA-A*0101 and at least one of SEQ ID NOs: 2034-2037; or HLA-B*0702 and SEQ ID NO: 2038; or HLA-B*0801 and SEQ ID NO: 2039.
  • EXAMPLES Example 1 Auto- and allo-reactive T cells attacking patient's or donor's cells or organs is the major cause of autoimmunity and transplant rejection. Current treatments involve stringent immunosuppressant therapy, which can lead to severe side effects.
  • T cells engineered with a Chimeric antigen ligand can redirect their specificity toward the pathologic T cells.
  • T cells engineered with a Chimeric antigen receptor can redirect their specificity and have already been approved to treat some types of B cell malignancies.
  • engineered regulatory T cell which can inhibit immune reactions in an antigen-dependent manner, is under investigation to expand the application of CAR T cells therapies such as autoimmune disease and transplant rejection.
  • This CAL and/or CAR is a composed of a peptide-HLA (e.g., a monomer or multimer or oligomer thereof) as the recognition domain fused to signaling domains from T cell receptors.
  • a split version of the system can also be generated where the sytem is composed of two pieces.
  • One piece is an universal CAR with T cell signaling domains as the intracellular portion and a biomolecular interaction domain as the extracellular domain.
  • the second piece is an adaptor molecule, e.g, a CAL composed of a peptide-HLA oligomers (or monomer or multimer) fused to the cognate biomolecular interaction domain.
  • DCs Dendritic cells
  • pDCs plasmacytoid DCs
  • DCs are essential mediators of pro- inflammatory or anti-inflammatory (tolerogenic) responses.
  • the subsets of DCs that suppress immune responses are generally known as tolerogenic DCs because of their functions in inducing T cell apoptosis, anergy and regulatory T cells (Tregs).
  • Tregs regulatory T cells
  • a tolerogenic state in DCs can be induced using several pharmacological agents, such as cyclosporine A, rapamycin, dexamethasone, vitamin A, vitamin D or other cytokines and growth factors. Recently, the insertion of exogenous DNA to enhance tol-DC function has been investigated as a therapeutic possibility for treating autoimmune diseases.
  • the effect of these DCs are not specific.
  • Alloreactive immune cells can be suppressed in a specific manner using the methods described herein, e.g., by using a universal UniCAR DC system that presents the donors' pMHC tetra / dextramers (e.g., the CAL) and binds to a genetically engineered DC (K/O MHC I / II but presents donor peptide on the tetra /dextramer), .
  • the pMHC can be provided as a monomer, oligomer, or multimer.
  • Any form of the recipient pMHC (e.g., monomer / oligomer / tetramer / dextramer)+ targeting module (e.g, the CAL) can be used with CAR-DC for the suppression of allo-reactive T- cells in the recipients.
  • a library of identified different alloantigens + correlated or associated with MHC monomers/ oligomers / tetramers / dextramers (e.g. HLA-A2+insulin peptide) and attached to the targeting molecules of the CAL and/or CAR system can be produced.
  • Such a library can be commercially available to be combined with DCs for targeting and destroying the auto reactive T- cells.
  • Cells can be produced that are genetically modified with the specific gene deletion of some genes (IL-12 and NF- ⁇ B, MHC I and MHC II [The targeting module will provide these cells with the donor's MHCs]) and insertion of some other genes (IL-10, TGF- ⁇ , CTLA-4 and SOCS1). These cells can be commercially ready to use and could be combined with the specific donor, pMHC and targeting module chosen from the aforementioned library.
  • Alloreactive memory T cells have been shown to have the key role in the activation of the recipient immune system and rejection of the allograft. They are known to be the main barrier for tolerance induction through mixed chimerism and other strategies.
  • compositions of the invention can be used to decrease or eliminate the need for improved immunosuppressant therapy in the context of transplantation.
  • the engraftment of hematopoietic stem cells can achieve durable mixed chimerism with minimal or no need for toxic preconditioning protocols.
  • donor pMHC monomer/oligomer/tetramer/dextramer; e.g., a CAL
  • CAR T effector for the abrogation of the allo/xeno reactive T-cells in the recipient
  • a library of different Donor MHC monomers/oligomers/tetramers attached to the targeting molecules (e.g., the CALs) of the SUPRA / UNI / universal CAL and/or CAR system can be produced to be commercially available.
  • T cells are critical contributors to autoimmune diseases.
  • Conventional T (Teff or T helper) cell subsets that play a role in B cell activation and differentiation produce various inflammatory cytokines and destroy target cells with direct cytotoxicity.
  • CAR-T cells have been used to destroy autoimmune B and T cells in a fashion similar to the way in which CD19CAR T cells target and destroy leukemia cells.
  • autoreactive memory T and B-cells Targeting autoreactive memory T and B-cells has shown some results. As these methods are nonspecific, they induce some extent of generalized immune suppression and they are not completely effective. The correlation of particular peptide+MHC molecules with certain autoimmune conditions have been expansively studied. By using the available human/animal model pMHC monomer/oligomer/tetra/dextramers and combining them with the SUPRA / UNI / universal CAL and/or CAR technology, we are able to target the autoreactive immune cells in a highly specific manner.
  • any form of auto-antigen on pMHC (monomer/oligomer/tetramer/dextramer) (e.g., the CAL) is used in combination with CAR T effector / Treg to abrogate autoreactive T-cells in the recipient, the need for immunomodulatory drugs would be decreased or eliminated.
  • a library of identified autoantigens and correlated MHC monomer/oligomer/tetra/dextramers e.g.
  • HLA- A2+insulin peptide) attached to the targeting molecules of the SUPRA / UNI / universal CAL and/or CAR system can be produced to be commercially available to be combined with ideal SUPRA or universal CAR T-reg / T effector for targeting and destroying the autoreactive T-cells.
  • Example 5 Although new advances have increased survival after allogeneic hematopoietic stem cell transplantation (HCT), chronic graft-versus-host disease (GvHD) is still the leading cause of late morbidity and mortality after transplant. Current treatment choices are limited in efficacy specifically in steroid-refractory disease, and there is no robust data to help with management decisions.
  • Adoptive T cell therapy refers to the therapeutic use of T cells.
  • T cells genetically engineered to express chimeric antigen receptors (CAR) constitute the most clinically advanced form of ACT approved to date for the treatment of CD19-positive leukemias and lymphomas and have produced remarkable results in the clinic.
  • CAR chimeric antigen receptors
  • the technology described herein permits the opportunity to target diseased cells with specific antigens or receptors very accurately.
  • GvHD universal UNICAR T cells can be designed to find the recipient reactive T cell in the donor T cell populations.
  • the pMHC of the recipients is fused to a Target Module that binds to the UniCAR (e.g, to form a CAL)
  • this system can recognize the TCR repertoires in the donor T/B cell population that can bind to those MHCs.
  • the recipients’ pMHCs are fused to a target module that binds to the universal CAR, this system can recognize and bind to the T cell repertoires in the donor T cell population that can bind to those MHCs.
  • the recipient pMHC (monomer / oligomer / tetramer / dextramer) (e.g., a CAL) is used in combination with CAR T effector / Treg for the abrogation of the recipient reactive T-cells in the donor HSC, these reactive T-cells will be depleted and GvHD would not happen.
  • a library of identified different antigens + correlated human / animal models MHC tetramers / dextramers e.g.
  • HLA-A2+ peptide) attached to the targeting molecules of the SUPRA / UNI CAR system can be produced to be commercially being available to be combined with ideal SUPRA CAR T-reg / T effector for targeting and destroying the reactive T-cells against the recipients.
  • a library of wild type and/or synthetic MHC monomers/oligomers (e.g. HLA-A2+ peptide) attached to the targeting molecules of the universal CAL system can be generated to be mixed with universal CAL T-reg / T effector for targeting and killing the reactive T-cells against the recipients within the donor T cell population.
  • Example 6 Although new advances have increased survival after allogeneic hematopoietic stem cell transplantation (HCT), chronic graft-versus-host disease (GvHD) is still the leading cause of late morbidity and mortality after transplant. Current treatment choices are limited in efficacy specifically in steroid-refractory disease, and there is no robust data to help with management decisions.
  • Adoptive T cell therapy refers to the therapeutic use of T cells. T cells genetically engineered to express chimeric antigen receptors (CAR) constitute the most clinically advanced form of ACT approved to date for the treatment of CD19-positive leukemias and lymphomas and produced remarkable results in clinical. This technology provides the opportunity to target the cells with specific antigens or receptors very accurately.
  • UNICAR T cells can be designed to find the recipient reactive T cell in the donor T cell populations. If the pMHC of the recipients be fused to a Target Module that bind to the UniCAR, this system can recognize the TCR repertoires in the donor T/B cell population that can bind to those MHCs. [00317] If the recipient pMHC (tetramer / dextramer) is used in combination with CAR T effector / Treg for the abrogation of the recipient reactive T-cells in the donor HSC, these cells will be depleted and GvHD would not happen. A library of identified different antigens + correlated human / animal models MHC tetramers / dextramers (e.g.
  • HLA-A2+ peptide) attached to the targeting molecules of the SUPRA / UNI CAR system can be produced to be commercially being available to be combined with ideal SUPRA CAR T-reg / T effector for targeting and destroying the reactive T- cells against the recipients.
  • Example 7 - Engineered Lymphocytes for Prevention of Pediatrics Vascularized Composite Allograft Rejection Engineered [00318] Described herein is the development of a clinically applicable tolerance-inducing regimen for VCA transplantation through the establishment of stable mixed chimerism, augmented by the state-of-the-art CAL and/or CAR T cell adoptive immunotherapy and synthetic biology.
  • Aim 1 It has been shown that CD127+/CD45RO+ memory T cells have a significant role as central, effector and stem cell memory T cells and are known as the most potent constituents of the alloreactive T cell repertoire. These cells have been shown to be the major contributor in chronic rejection of the allograft.
  • a CAL and/or CAR T-effector cell can be generated with scfv against two general markers of memory T cells (CD127+ and CD45RO+). This will be followed by the induction of mixed chimerism protocol in a double humanized mouse model.
  • Aim 2 Due to the diversity of antigen-specific T cells in the context of transplantation, a CAL and/or CAR system is provided that has the flexibility to locate and attack different alloreactive T cells simultaneously. CAL and/or CAR T-eff cells with donor pMHC can target alloreactive T-cells that have TCR against the donor MHCs. We will start with single and double specific antigen-MHC systems.
  • Example 8 Engineered Lymphocytes for Prevention of Pediatrics Vascularized Composite Allograft Rejection
  • VCA vascularized composite allotransplantation
  • VCA represents a unique new treatment option for severe soft tissue defects following burn injury to achieve both psychosocial and functional rehabilitation 3 .
  • the shortcoming is that despite the use of potent immunosuppressive drugs, acute rejection of “foreign” VCA occurs in up to 90% of patients 5 .
  • our immune system has gained the ability to recognize self from nonself cells and attack the “foreigners” by cells such as T Lymphocytes.
  • HLA Human Leukocyte Antigen
  • MHC Major Histocompatibility Complex
  • MiHA Minor Histocompatibility Antigens
  • T-cells are trained to recognize self from non-self MHC / peptides. Each person can present a combination of 12 different MHC class I / II on the surface of his/her cells. (HLA) typing is used to match recipients and donors MHCs for transplants.
  • a close match between a donor’s and a recipient's HLA markers is essential for a successful transplant outcome.
  • a potential donor must match a minimum of 6-8 HLA markers which makes finding an ideal donor very difficult. Even after finding the semi ideal donor these patients will be on immunosuppressants for the rest of their life 8 . While these drugs are generally effective, the sequelae of such chronic immunosuppression are well known, and most recipients continue to develop myriad side effects and complications, including opportunistic infections, multiple organ dysfunction, and malignancies.
  • Transplantation tolerance that allows for the elimination of immunosuppressive drugs, has been the “holy grail” for transplantation medicine since its beginnings 9 .
  • the present approach to achieving stable mixed chimerism is to utilize advanced engineering techniques to generate T cell therapeutics to specifically delete the recipient’s alloreactive memory immune cells that are reactive against the donor bone marrow and tissue cells.
  • CAR chimeric antigen receptor
  • First-generation CARs contained only an extracellular antigen-binding domain, a transmembrane domain, and the signaling domain of CD3z.
  • intracellular costimulatory domains derived from either CD28 / 4-1BB were added to enhance proliferation, persistence, and activity 19 .
  • SUPRA split, universal, and “programmable”
  • mice can be conditioned with intraperitoneal mAb injections including, anti-CD8 and anti-CD40L, anti-CD154, costim. blockade (on day 0 with respect to the BMT). This will be combined with, TBI to be given 6 h before injection of 2.510 5 bone marrow cells (BMC).
  • BMC bone marrow cells
  • a CAL and/or CAR designed to target and destroy alloreactive memory T cells thereby improving the engraftment of hematopoietic stem cells and achieving durable mixed chimerism with minimal or no need for toxic preconditioning protocols.
  • a second approach is to design CAL and/or CARs that specifically bind to alloreactive TCRs on the recipient’s T cells.
  • scFvs single-chain variable fragments
  • we will use peptide-MHC multimers as the ligand recognition domain on the CAL and/or CAR.
  • scFvs single-chain variable fragments
  • a two- component split CAL and/or CAR design composed of universal CAL and/or CAR and an adaptor molecule that bridges the CAL and/or CAR T cells to alloreactive T cells.
  • the universal CAL and/or CAR comprises a scFv targeting FITC fused to TCR signaling domains.
  • the adaptor molecules consist of pMHC tetramer fused to a FITC. The addition of pMHC tetramer will bind to the alloreactive TCR and recruit the universal CAL and/or CAR T cell to kill alloreactive T cells. This design allows us to be able to target many variants of TCR with only one CAL and/or CAR.
  • the donor MHCs will be loaded with donor tissue specific peptides that will be generated by utilizing previously published protocols.
  • Data- Targeting Alloreactive T-cells with peptide-MHC tetramers The following have been addressed by in vitro data: 1. Whether targeting a memory T cell by using CAR T + pMHC multimer is obtainable.
  • the anti-FITC CAR expressed by the Jurkat cells is a CAR and the pMHC multimer is a CAL.
  • A. would the Tetramer efficiently bind to the CAL and/or CAR and target T cells? B.
  • Fig.1 shows tetramers attaching to and staining OTi target T cells in a dose dependent fashion.
  • Nucleotides 1339-1677 CD3 ⁇ . Nucleotides 1678-2388 mCHERRY. gccgccaccATGGCCTTACCAGTGACCGCCTTGCTCCTGCCGCTGGCCTTGCTGCTCCACGCC GCCAGGCCGGCTGCAcaagttcagctcgttgaatccggcggaaaccttgttcaaccggggggttccctccgccttagttgtgccgcat ctggttttacgtttggatcatttttccatgtcatgggtgcggcaggctcccggggggggactcgaatgggttgcgggtcttagcgcccgatcaagcctc actcactatgcagatagcgtaaaggcaggtttacaatctcacgagacaacgcgaagaactcagtctatcttcagatgaactct
  • Residues 1-21 CD8a leading peptide.
  • Residues 22-274 anti-FITC ScFv.
  • Residues 275-284 myc.
  • Residues 289-333 CD8 hinge.
  • Residues 334-401 CD28.
  • Residues 402-443 4-1BB.
  • Residues 444-556 CD3 ⁇ . Residues 557-792 mCHERRY.
  • Primary CD8 anti-FITC CAR T cells can specifically target and kill alloreactive OTi cells.
  • the previous set of experiments with Jurkat +adaptor +OTi target cells confirmed the feasibility of targeting alloreactive T cells by adaptor molecules and showed activation of CAR T cells against the target cells.
  • primary CD8 CAR T killer cells + adaptor molecules can be used not only to identify but also to kill the OTi T cells.
  • the binding between pMHC and target cell was not causing activation of target T cells in contrary to the adaptor (FITC+ pMHC, e.g., the CAL) - CAR T cells binding.
  • pMHC multimers for specifically targeting and destroying allo / autoreactive T cells responsible for graft rejection and autoimmune diseases.
  • Our approach is the first demonstration of utilizing pMHC multimer (e.g, CAL) in combination with CAR T cell technology for specific targeting of alloreactive T cell population.
  • pMHC multimer e.g, CAL
  • CAR T cell technology for specific targeting of alloreactive T cell population.
  • This approach is the most specific strategy for eliminating the destructive role of alloreactive T cells in transplantation.
  • the potential application of this method extends far beyond elimination of immunosuppressants in transplantation rejection and GVHD treatment and could be applicable to many autoimmune conditions including type 1 diabetes, multiple sclerosis, rheumatoid arthritis, scleroderma, and myriad disorders that originate from auto reactive T cells dysfunction.
  • [00348] Provided herein is a novel approach for targeting the memory repertoire with anti CD45RO / CD127 with CAL and/or CAR T cell therapy. Although this strategy might not be as specific as using pMHC multimers, it still conveys a significant novelty. By depleting the memory T cells population there is much less of a need for induction protocols. [00349] Also contemplated herein are individualized peptide libraries based on the differences between the recipient and the donor proteome and immune-peptidome. Hundreds to thousands of MHC-associated peptides can now be identified in a single measurement using optimal biological model systems. As mentioned earlier, studies involving MHC identical grafts indicate that minor histocompatibility antigens may also mediate rejection.
  • HIPP Human Immuno-Peptidome Project
  • the donor multimers MHCs can be generated using commercially available services, unloaded with UV and then loaded with donor tissue specific peptides that will be generated by utilizing previously published protocols. By utilizing these peptides in combination with exchangeable MHC tetramer systems, we can employ these peptides to identify and target donor reactive T cells. [00351] As described herein, selective depletion of memory T cells with CAR-T cell therapy can help in achieving durable mixed chimerism and tolerance which lead to the elimination or decrease in immunosuppressive regimens. Currently this challenge is addressed by administering intense whole- body irradiation with several immunosuppressant combinations for targeting all the immune cell populations.
  • This (SUPRA) CAR is a two-component receptor system comprises a universal receptor (zipCAR) expressed on T cells and a targeting scFv adaptor (zipFv).
  • the zipCAR universal receptor is generated from the fusion of intracellular signaling domains ( Figure 6) and a leucine zipper as the extracellular domain.
  • the zipFv adaptor molecule is generated from the fusion of a cognate leucine zipper and an scFv.
  • the scFv on the zipFv binds to the antigen, while the leucine zipper binds to and activates the zipCAL and/or zipCAR on the T cells.
  • these features can mitigate over-activation and enhance specificity.
  • the SUPRA CAL and/or CAR system can also be designed to perform AND combinatorial logic of antigen recognition.
  • Orthogonal leucine zipper pairs can be used to generate CAL and/or CARs with split signaling domains (e.g., CD3z, CD28, 4-1BB), thus enabling independent and simultaneous control of these pathways (Fig 6B).
  • T cells need both CD3z and costimulatory signaling simultaneously to be fully activated therefore, each CAL and/or CAR can be readily paired with scFvs that target different antigens, thereby enabling two antigen combinatorial and logical antigen sensing.
  • SUPRA CAR T cells can also logically respond to multiple antigens for improved target specificity.
  • orthogonal SUPRA CARs can be used to inducibly regulate multiple signaling pathways or T cell subtypes to increase the breadth of immune responses that can be achieved.
  • zipCAR Receptor Construct Design As described herein, AND logic CAL and/or CAR T are generated by fusing different leucine zippers to the hinge region of the human CD8a chain and transmembrane and cytoplasmic regions of the human CD28, or CD3z signaling endo-domains. All CAL and/or CARs can contain a myc tag to verify surface expression. Besides, these primary T cells will also be fused to mCherry after CD3z chain to visualize expression.
  • zipFv Construct Design The zipFv molecules contain an scFv against CD127 fused to an SYN2 (to stimulate the CD3z SYN1 zipCAR), and an scFv against CD45RO fused to a JUN zipper (to stimulate the costimulatory FOS zipCAR).
  • the scfvs sequences are available and can be constructed rapidly through commercial DNA synthesis 28 .
  • zipCAR transduction Human PBMC are purified using separation kits. are introduced into primary human T cells via retroviral transduction. Expression of zipCARs is quantified via myc and V5-tag immunostaining and flow cytometry. As controls, a zipCAR that contains both CD3z and CD28 (i.e.
  • SYN1-CD28-CD3z can be used.
  • This zipCAR cannot perform logic computation.
  • a CD45RO-SYN2 or CD127-SYN2 zipFv can be added to ensure that zipCARs can kill CD45RO+ or CD127+ cells.
  • These controls will also serve as reference for specificity.
  • [00359] Evaluate the activity and efficacy of anti-CD127+/CD45RO+CAR T cells in vitro [00360] Co-culturing PBMCs with CD127+ /CD45RO+ cells with SUPRA CAR T cells to investigate the specificity of targeting [00361] This experiment examines whether this system specifically kills CD127+ and CD45RO+ double positive T cells amongst a large population of PBMCs.
  • PBMCs are obtained either from known VCA recipients or Mass General Blood Bank Center after being approved by IRB.
  • human CD45RO+ and CD127+ are stained to identify the initial percentage of memory cells in the whole population (CD45RO /CD127 double positive vs double neg).
  • PBMCs are co-cultured with zipCAR expressing CD8+ T cells with zipFvs (anti CD127 and anti CD45RO) with the same condition.
  • zipCAR expressing CD8+ T cells with zipFvs (anti CD127 and anti CD45RO) with the same condition.
  • engineered T cells and zipFvs will be cocultured with the memory T cells at 3 different zipFvs concentrations (5, 25, 50ng/well) to determine the correlation between cell killing and zipFv concentration.
  • T cell activation CD69 expression, IL-2 and IFN-g in the media
  • cytotoxicity against memory T cells no. of remaining live cells
  • the proliferation of T cells will be measured by cell counting. All conditions will be tested at least in triplicate.
  • PBMCs hold an alloreactive population of memory T cells (CD45RO+/ CD127+) and makes this a reliable model for studying their depletion effects on the rejection of the graft.
  • the number of mice used per group in this study is chosen based on the recommendations from previous studies 29 .
  • irradiated NSG (MHC I/II K/O) (3 Gy) mice will be injected with 5 ⁇ 105PBMC cells and human peripheral reconstitution is measured by flow cytometry every other week 30 .
  • NSG MHC I/II K/O mouse model that was generated by using the VCA-recipient PBMCs are used as the foundation for induction of mixed chimerism.
  • NSG Hu-PBMCs are treated with / without (ctrl) anti CD45RO/CD127 CAR T to deplete the memory compartment of their T cells population (Figs.8A, 8B).
  • Fetal CD34+ HSC can be obtained from Advanced Bioscience Resources. Fetal HSCs are utilized to evaluate the generation and establishment of multi-lineage engraftment by using previously published Mixed Chimerism Induction Protocols (MCIP) in mice 23. In short, male mice are treated with anti CD154, anti-CD40, CTLA-4 and receive 3 Gy TBI. Six hours later they receive 2 ⁇ 105CD34+ HSC bone marrow cells. Engraftment is determined by measuring the presence of donor myeloid and lymphoid cells at different time points. Mixed chimerism is defined as at least 5% of leukocytes in each of the lineages being donor derived.
  • MCIP Mixed Chimerism Induction Protocols
  • the aforementioned humanized mouse model (VCA-Recipient PBMCs-CD34 HSC) is utilized as a skin graft model to test the effect of depleting CD45RO / CD127 cells on allograft survival.
  • Fetal skin graft is obtained from Advanced Bioscience Resources from the same CD34+ HSC donor.
  • skin grafts from the HSC donor and another allogeneic source are used to test whether nonspecific depletion of memory T cell repertoire affects the skin grafts survival (Fig.8, 9). Mice are followed until graft rejection or POD 100.
  • CD45RO is the marker that is mainly expressed on the T cells but CD127 is a more common surface marker and can be found on B and dendritic cells.
  • CD45RO+ population can be targeted, which consists of not only central memory T cells but also targets effector T cells as well. This will cause more T cells to be targeted nonspecifically but simultaneously might decrease the chance of immune reaction against the graft.
  • Some of the CAR T effector cells will express memory phenotype such as CD45RO /CD127 after remaining activated for a period of time.
  • Monoclonal anti-donor HLA antibody is used for monitoring of chimerism in the various leukocyte lineages, including CD3+/CD8+, CD3+/CD4+, CD3+/CD8-/CD4- (naive T cells), T-Regs, naive and mature B cells (CD19+/CD78- and CD19- /CD78+).
  • Animals are considered chimeric when at least 5% of WBCs in all of these lineages are donor derived.
  • the systemic immune status of humanized mice is assessed pre-HSC transplantation and at week 4 and week 8 post-transplant by carboxyfluorescein diacetate succinimidyl ester (CFSE) mixed lymphocyte reaction (MLR) proliferation assays.
  • CFSE carboxyfluorescein diacetate succinimidyl ester
  • MLR mixed lymphocyte reaction
  • MLR results are compared before PMBC-HSC transplantation and after study end point.
  • [00374] Determine the efficacy of pMHC-CAR T-effector cells on specific depletion of recipient alloreactive T cells and establishment of Mixed Chimerism.
  • Described herein is a flexible CAL and/or CAR design that can target any alloantigen specific T cells. Due to the diversity of alloantigen-specific T cells in the context of transplantation, the CAL and/or CAR system that has the flexibility to locate and attack different alloreactive T cells simultaneously. CAL and/or CAR T-eff. cells with (donor) pMHC can target alloreactive T-cells.
  • CAL and/or CAR T cell therapy on targeting a double antigen-MHC system (OTi and OTii)
  • pMHC multimer attached to adaptor molecule e.g., the CAL
  • CAR T effector cell is used in the single and double specific antigen-MHC systems.
  • the antigen-specific CAL and/or CAR system can be tested in vitro and in the OTi & ii transgenic mouse model.
  • This model is genetically engineered such that all T cells express receptors that are specific for recognizing chicken ovalbumin peptides (257-264 (OTi) and 329-337 (OTii) in the context of H2Kb (OTi) and I-A b (OTii)).
  • the T cells of these mice models are engineered to express TCRs that specifically recognize pMHC class I / II + Ovalbumin peptides. More importantly, this highly controlled model can be leveraged establish correlation between T cell activities and CAL and/or CAR T cell experimental parameters, such coculture conditions, pMHC affinity, pMHC multimer concentration.
  • MHC multimers are commercially available and can be readily conjugated with FITC labeling to be recognized by the anti FITC CAR T cells.
  • FITC labeling to be recognized by the anti FITC CAR T cells.
  • Minor Histocompatibility Antigens are short immunogenic peptides originating from digested intra / extracellular proteins presented by Major Histocompatibility Complex (human leukocyte antigen). Disparities in minor histocompatibility antigens between individuals who are even MHC matched can induce an immune response after transplantation.
  • sequences of the peptides from the donor-recipient disparity peptide library are generated in practical scale by commercially available services 39 and loaded on peptide-exchangeable MHC multimers (e.g., a CAL) (QuickSwitch MBL international or Biolegend FlexTetramer) to ultimately be bound to CAR T cells and used for targeting alloreactive T cells in the aforementioned in vitro and in vivo models (Fig.8, 9).
  • donor and recipient MHCs associated peptides are isolated independently by immunoaffinity purification using the anti-HLA monoclonal antibodies 36 .
  • Eluted peptides are identified by different LC-MS/MS systems in DIA (Data Independent A) mode.
  • Mass Spectrometry output files are converted, searched, and statistically validated using software tools (NETMHC, SysteMHC).
  • the identified peptides are then clustered (by GibbsCluster v.1) and annotated by length and predicted MHC binding affinity (NetMHC v.4).
  • the final list of high- confidence donor / recipient MHC-associated peptides is compared between the recipient and the donor and the disparate sequences used for building high-quality donor-recipient disparity peptide library, which is employed as a source for generating peptides to be combined with MBL QuickSwitch (or Bio-legend FlexT) MHC tetramer system.
  • PBMC / HSCT mouse model Using the same double humanized PBMC / HSCT mouse model the efficacy of this donor/recipient disparity peptide library + MHCis evaluated for specific targeting of alloreactive memory T cells and skin allograft survival.
  • Hu-PBMC treated with exchanged peptide MHC (e.g., CAL) + CAR T Hu-PBMC treated with exchanged peptide MHC (e.g., CAL) + CAR T.
  • HSCT with fetal HSC is performed and 6 weeks later skin from the same HSC donor is grafted on the back of the mice. Presence of mixed chimerism and graft survival is evaluated using the criteria that was mentioned earlier herein.
  • the immunopeptidome library is novel and has not previously been adapted for the context of transplantation.
  • Host alloreactive memory T cells influence tolerance to kidney allografts in nonhuman primates. Sci. Transl. Med.3, (2011). 18. Lo, D. J. et al. Selective targeting of human alloresponsive CD8+ effector memory T cells based on CD2 expression. Am. J. Transplant.11, 22–33 (2011). 19. Ng, Z. Y., Read, C., Kurtz, J. M. & Cetrulo, C. L. Memory T Cells in Vascularized Composite Allotransplantation. Vasc. Compos. Allotransplantation 2, 75–79 (2015). 20. Tonsho, M. et al.
  • Human memory T cells Generation, compartmentalization and homeostasis. Nature Reviews Immunology vol.1424–35 (2014). 30. Thome, J. J. C. et al. Spatial map of human t cell compartmentalization and maintenance over decades of life. Cell 159, 814–828 (2014). 31. Antibodies directed against cd127. 32. Yong, K. S. M., Her, Z. & Chen, Q. Humanized Mice as Unique Tools for Human-Specific Studies. Archivum Immunologiae et Therapiae Experimentalis (2016) doi:10.1007/s00005-018-0506- x. 33. Xia, J. et al. Modeling Human Leukemia Immunotherapy in Humanized Mice.
  • FITC-conjugated tetramer mediated activation was verified (Fig.12) and followed in a time course (Fig.13).
  • Anti-FITC Jurkat vs OT-I experiments were conducted using 100k cells anti- FITC CAR Jurkat, 100k cells splenocytes from OT-I mouse, and 5 ug/mL to 78 ng/mL FITC- conjugated tetramer (positive, H2Kb-SIINFEKL (SEQ ID NO: 2750); negative, I-Ab-AAHAEINEA (SEQ ID NO: 2751)).
  • Total Jurkat cell counts at 24 hours (Fig.14) and tetramer staining levels (Fig. 15) were also determined.
  • tetramer and CD69 were also determined (Fig.16).
  • This experiment demonstrated that Jurkat cells get activated in a dose dependent fashion up to 1 ug/ml of tetramer and OTi binding and staining is dose dependent. No cytotoxicity effects were seen on the killer cells and no prominent activation was seen on the target cells.
  • Primary T cells – OTi [00402] Experimental design is shown in Fig.17. Human CD8 pMHC-CAR T killing is highly specific and MHC-CAR T cell does not kill bystander CD4 T cells (Fig.18). No cytotoxicity effect was seen on human CD8 pMHC- CAR T (Fig.19).
  • the 1E6 clone mediates ⁇ -cell-specific killing via recognition of a highly distinctive HLA A*0201-presented signal peptide epitope (PPI15-24) that exhibits glucose-dependent presentation on the surface of human ⁇ -cells (9).
  • PPI15-24 highly distinctive HLA A*0201-presented signal peptide epitope
  • the inventors generated and tested a split pMHC- CAR that targets 1E6 T-cells through A*0201+peptides. Effective killing of 1E6 T-cells was observed (Fig.29)
  • Example 11 [00405] CALs comprising ovalbumin MiHA (against OTi or OTii) were constructed (Fig.26).
  • pMHC tetramer + FITC adaptor binds to the target cells (OTi) in a dose dependent fashion, while OTii specific tetramer does not (Fig.27). Binding of Jurkat+ pMHC to OTi cells does not change Jurkat live count (Fig.28B and 30). However, human CD8 CAR T were cytotoxic with high specificity (Fig.31 and 32). Cytotoxicity was not seen with ctrl tetramer. No cytotoxicity was seen on killer CAR T cells or bystander CD4 T Cells after co-culturing with pMHC and splenocytes.

Abstract

The technology described herein is directed to compositions comprising components of multi-compoent CALs or CARs, e.g., a TCR recognition domain; and one or both of: (a) an intracellular signaling domain; and (b) a first-type protein interaction domain. Further provided herein are methods for treating or preventing an autoimmune disease, a transplant rejection, or graft versus host disease.

Description

CAL-T CONSTRUCTS AND USES THEREOF CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No.62/916,924 filed October 18, 2019, the contents of which are incorporated herein by reference in their entirety. SEQUENCE LISTING [0002] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on October 16, 2020, is named 701586-096030WOPT_SL.txt and is 540,018 bytes in size. TECHNICAL FIELD [0003] The technology described herein relates to chimeric antigen ligand (CAL) technology, e.g., for treating of autoimmune and/or T-cell mediated conditions. BACKGROUND [0004] The major cause of autoimmunity and transplant rejection, e.g., following an organ transplant, is autoreactive and alloreactive T cells attacking the patient's or donor's organ(s), tissue, and/or cells. Current treatments for preventing autoimmunity and transplant rejection involve stringent immunosuppression, which can lead to severe, unwanted side effects including extreme susceptibility to infection, malignant and benign neoplasms, multiple organ and systems failure. In order to prevent autoimmunity and transplant rejection without inducing unwanted side effects, it would be advantageous to delete autoreactive and alloreactive T cells in a patient receiving an organ transplant without needing to additionally administer immunosuppressant medications, or to reduce the doses of the immunosuppressant regime delivered concurrently. This type of therapy, however, has not been successfully demonstrated. [0005] T cells recognize their target cells by using receptors on their cell surface which are called T Cell Receptors (TCRs). TCRs have a recognition portion and a signaling portion. When the recognition portion binds to the natural complexes formed in the body in the presence of a diseased cell, the signaling portion is activated, which leads to the T cell engaging in killing activity or recruiting other immune cells to destroy the diseased cell. The natural complexes are also known as peptide-major histocompatibility complexes (pMHC complexes). CAR-T cell therapy is known and seeks to help T cells recognize autoreactive and alloreactive T cells. This is accomplished by genetically altering a T cell so that it expresses a chimeric antigen receptor (CAR). The CAR is an altered TCR, in which the natural recognition portion is removed and replaced with a synthetic recognition portion that is designed to more effectively recognize the autoreactive and alloreactive T cells by very specifically detecting the presence of a molecule unique to the autoreactive and alloreactive T cells. These CAR-T cells are then given to a patient. Inside the patient, their synthetic CAR molecules will bind to the autoreactive and alloreactive T cells and in the act of that binding, activate the T cell, resulting in the patient’s own immune system attacking the diseased T-cells. SUMMARY [0006] Described herein are methods and compositions relating to chimeric antigen ligands (CAL). The CALs described herein comprise a TCR recognition domain and a biomolecular interaction domain. The TCR recognition permits the CAL to bind to autoreactive and/or alloreactive T cells in an antigen specific manner. The biomolecular interaction domain permits an immune killer cell (e.g., a NK cell, a T cell, or a dendritic cell) to bind to the CAL, thereby promoting killing of the autoreactive and/or alloreactive T cell by the immune killer cell. [0007] The TCR recognition domain of a CAL binds specifically to a TCR, e.g., a TCR expressed on the surface of an autoreactive and/or alloreactive T cell. Exemplary but non-limiting TCR recognition domains include peptide-MHC complexes, e.g., in monomeric, oligomeric, or multimeric form. The TCR recognition domain can comprise natural or synthetic sequences. Specific examples of peptide-MHC complexes that include autoreactive or alloreactive antigens are provided elsewhere herein. [0008] The biomolecular interaction domain of the CAL permits specific binding of the CAL with a second biomolecule, e.g., a receptor on the immune killer cell. In some embodiments, the biomolecular interaction domain of the CAL is recognized by an endogenous receptor on the immune killer cell. In some embodiments, the biomolecular interaction domain of the CAL is recognized by an engineered receptor on the immune killer cell. Exemplary but non-limiting biomolecular interaction domains include FITC (which can be recognized by a FITC CAR-T cell system), a leucine zipper domain, a zinc finger domain, PSD95-Dlg1-zo-1 (PDZ) domains, a streptavidin domain and a streptavidin binding protein (SBP) domain, a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1), a PYL domain and an ABI domain, a chemically-induced pair of interaction domains as described elsewhere herein, a Snap-tag, a Halo tag, a T14-3-3- cdeltaC and/or a C-Terminal peptide of PMA2 (CT52), a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein a Fab domain, and/or an anti-CD3 domain. [0009] As noted, the CALs described herein can be used in combination with CAR-T systems. Exemplary but non-limiting CAR-T systems suitable for use with the methods and compositions described herein include SUPRA CAR and SPLIT CAR. CAR-T systems are discussed in more detail elsewhere herein and are known in the art. [0010] In one aspect of any of the embodiments, described herein is a composition, comprising: a) a TCR recognition domain; and one or both of: b) an intracellular signaling domain; and c) a biomolecular interaction domain (e.g., a first-type biomolecular interaction domain). [0011] In one aspect of any of the embodiments, described herein is a composition comprising: a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and a signaling polypeptide comprising a second-type biomolecular interaction domain and an intracellular signaling domain; wherein the first-type and second-type biomolecular interaction domains bind specifically to each other. In one aspect of any of the embodiments, described herein is a composition comprising: a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and a recognition polypeptide comprising a second recognition domain and a third-type biomolecular interaction domain; wherein the first-type and third-type biomolecular interaction domains bind specifically to each other. In one aspect of any of the embodiments, described herein is a composition comprising: a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and a signaling polypeptide comprising a second-type biomolecular interaction domain and an intracellular signaling domain; and a recognition polypeptide comprising a second recognition domain and a third-type biomolecular interaction domain; wherein the second-type and third-type biomolecular interaction domains compete for binding to the first-type biomolecular interaction domain. In some embodiments of any of the aspects, the third-type biomolecular interaction domain and first- type biomolecular interaction domain have a higher affinity for each other than the second- type biomolecular interaction domain and first-type biomolecular interaction domain. [0012] In one aspect of any of the embodiments, described herein is a composition comprising: a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; a signaling polypeptide comprising a second-type biomolecular interaction domain, a fourth-type biomolecular interaction domain, and an intracellular signaling domain; and a recognition polypeptide comprising a second recognition domain and a fifth-type biomolecular interaction domain; wherein the first-type biomolecular interaction domain and the second-type biomolecular interaction domain bind specifically to each other; and wherein the fourth-type biomolecular interaction domain and the fifth-type biomolecular interaction domain bind specifically to each other. In some embodiments of any of the aspects, the fourth-type biomolecular interaction domain and fifth-type biomolecular interaction domain have a weaker affinity than the second-type biomolecular interaction domain and first-type protein interaction domain. In some embodiments of any of the aspects, the first polypeptide further comprises a sixth-type biomolecular interaction domain and the recognition polypeptide further comprises a seventh-type biomolecular interaction domain which bind specifically to each other. [0013] In some embodiments of any of the aspects, the first polypeptide comprises the entire TCR recognition domain. In some embodiments of any of the aspects, the TCR recognition domain comprises at least two separate polypeptide sequences, the first polypeptide comprises at least one of the separate polypeptide sequences of the TCR recognition domain, and the first polypeptide is bound to or complexed with a second or further polypeptide sequences of the TCR recognition domain to form a TCR recognition domain. In some embodiments of any of the aspects, the TCR recognition domain comprises a non-polypeptide component. [0014] In some embodiments of any of the aspects, the second recognition domain is specific for a target that is not recognized by the TCR recognition domain. In some embodiments of any of the aspects, the second recognition domain is specific for a target that is found on a healthy and/or non-target cell and not on a diseased and/or target cell. [0015] In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC (Major Histocompatibility Complex); a MHC-peptide complex; featureless peptide MHC; or a MHC-peptide fusion. In some embodiments of any of the aspects, the peptide is a human or non-human peptide. In some embodiments of any of the aspects, the peptide is a Minor Histocompatibility Antigen (MiHA). In some embodiments of any of the aspects, the MHC is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. In some embodiments of any of the aspects, the MHC-peptide complex is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. In some embodiments of any of the aspects, the MHC-peptide fusion is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. In some embodiments of any of the aspects, the MHC is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. In some embodiments of any of the aspects, the MHC-peptide complex is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. In some embodiments of any of the aspects, the MHC-peptide fusion is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. In some embodiments of any of the aspects, the MHC is a MHC class I or a MHC class II. [0016] In some embodiments of any of the aspects, the TCR recognition domain comprises a CD1 domain or a CD1 domain-ligand complex or fusion. In some embodiments of any of the aspects, the CD1 is CD1d. [0017] In some embodiments of any of the aspects, the biomolecular interaction domains are found on an extracellular portion of the respective polypeptides. In some embodiments of any of the aspects, a. wherein the biomolecular interaction domain(s) is a leucine zipper, or any binding pair of biomolecular interaction domains are collectively a pair of leucine zippers; b. wherein the biomolecular interaction domain(s) is a BZip (RR) and/or a AZip (EE), or any binding pair of biomolecular interaction domains are collectively a BZip (RR) and a AZip (EE); c. wherein the biomolecular interaction domain(s) is a PSD95-Dlgl-zo-1 (PDZ) domain; d. wherein the biomolecular interaction domain(s) is a streptavidin and/or a streptavidin binding biomolecular (SBP) or any binding pair of biomolecular interaction domains are collectively a streptavidin and a streptavidin binding biomolecular (SBP); e. wherein the biomolecular interaction domain(s) is a FKBP-binding domain of mTOR (FRB) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a FKBP-binding domain of mTOR (FRB) and a FK506 binding biomolecular (FKBP); f. wherein the biomolecular interaction domain(s) is a cyclophilin-Fas fusion biomolecular (CyP-Fas) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a cyclophilin-Fas fusion biomolecular (CyP-Fas) and a FK506 binding biomolecular (FKBP); g. wherein the biomolecular interaction domain(s) is a calcineurin A (CNA) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a calcineurin A (CNA) and a FK506 binding biomolecular (FKBP); h. wherein the biomolecular interaction domain(s) is a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1) or any binding pair of biomolecular interaction domains are collectively a gibberellin insensitive (GIA) and a gibberellin insensitive dwarf1 (GID1); i. wherein the biomolecular interaction domain(s) is a Snap-tag and/or a Halo tag, or any binding pair of biomolecular interaction domains are collectively a Snap-tag and a Halo tag; j. wherein the biomolecular interaction domain(s) is a T14-3-3-cdeltaC and/or a C- Terminal peptides of PMA2 (CT52), or any binding pair of biomolecular interaction domains are collectively a T14-3-3-cdeltaC and a C-Terminal peptides of PMA2 (CT52); k. wherein the biomolecular interaction domain(s) is a PYL and/or a ABI, or any binding pair of biomolecular interaction domains are collectively a PYL and a ABI; l. wherein the biomolecular interaction domain(s) is a nucleotide tag and/or a zinc finger domain, or any binding pair of biomolecular interaction domains are collectively a nucleotide tag and a zinc finger domain; m. wherein the biomolecular interaction domain(s) is a nucleotide tag, or any binding pair of biomolecular interaction domains are collectively a pair of nucleotide tags; n. wherein the biomolecular interaction domain(s) is a Fluorescein isothiocyanate (FITC) and/or a FITC binding biomolecular or any binding pair of protein interaction domains are collectively a FITC and a FITC binding protein; and/or o. wherein the protein interaction domain(s) is a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein or any binding pair of protein interaction domains are collectively a (R)-Phycoerythrin (R-PE/ PE) and a R-PE/PE binding protein. In some embodiments of any of the aspects, the nucleotide tag is a DNA tag or dsDNA tag. [0018] In some embodiments of any of the aspects, the intracellular signaling domain comprises or is a signaling domain from one or more proteins selected from the group consisting of: TCRζ, FcRγ, FcRβ, CD3γ; CD35; CD3ζ; CD3C; CD22; CD79a; CD79b; CD66d; CARD11; CD2; CD7; CD27; CD28; CD30; CD40; CD54 (ICAM); CD83; CD134 (OX40); CD137 (4-1BB); CD150 (SLAMF1); CD152 (CTLA4); CD223 (LAG3); CD270 (HVEM); CD273 (PD-L2); CD274 (PD- Ll); CD278 (ICOS); DAP10; LAT; KD2C SLP76; TRIM; and ZAP70. [0019] In one aspect of any of the embodiments, described herein is a cell comprising and/or expressing a composition described herein. In one aspect of any of the embodiments, described herein is a composition comprising a first polypeptide of any of the preceding claims and a cell expressing or comprising the signaling polypeptide of any of the preceding claims. [0020] In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC allogeneic, autologous, or xenogeneic to the cell. In some embodiments of any of the aspects, the TCR recognition domain comprises a synthetic MHC. In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is allogeneic, autologous, or xenogeneic to the cell. In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is synthetic. [0021] In some embodiments of any of the aspects, the cell is a NK cell, dendritic cell, regulatory T cell, or effector T cell. In some embodiments of any of the aspects, the cell is engineered to express one of more of the polypeptide(s) of the composition. In some embodiments of any of the aspects, the cell is engineered to express the signaling polypeptide of the composition. In some embodiments of any of the aspects, the cell is further engineered to knockout or knockdown the native MHCI/II. In some embodiments of any of the aspects, the cell is further engineered to knockdown the native MHCI/II expressed on the cell surface. [0022] In one aspect of any of the embodiments, described herein is a composition, comprising a TCR recognition domain and an intracellular signaling domain but not comprising a biomolecular interaction domain (e.g., a first-type biomolecular interaction domain). In one aspect of any of the embodiments, described herein is a composition, comprising a TCR recognition domain and a biomolecular interaction domain (e.g., a first- type biomolecular interaction domain) and but not comprising an intracellular signaling domain. [0023] In one aspect of any of the embodiments, described herein is a method of treating or preventing an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD in a subject in need thereof, the method comprising administering to the subject a composition and/or cell of any of the preceding claims. In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC allogeneic to the subject. [0024] In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC autologous to the transplant cells. In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC xenogeneic to the transplant cells. In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is allogeneic to the subject. In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is autologous to the transplant cells. In some embodiments of any of the aspects, the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is autologous to the transplant cells. In some embodiments of any of the aspects, the transplant is any human or non-human cell, tissue, or organ. In some embodiments of any of the aspects, the transplant is an allogeneic hematopoietic stem cell or solid organ transplantation. [0025] In some embodiments of any of the aspects, the malignant T cell condition is T cell acute lymphoblastic leukemia or T cell lymphoblastic lymphoma. [0026] In some embodiments of any of the aspects, the autoimmune disease is type 1 diabetes, vitiligo, multiple sclerosis, alopecia, celiac disease, pemphigus, rheumatoid arthritis, or scleroderma. In some embodiments of any of the aspects, the autoimmune disease is thyroiditis, type 1 diabetes mellitus, Hashimoto's thyroiditis, Graves' disease, celiac disease, multiple sclerosis, Guillain-Barre syndrome, Addison's disease, and Raynaud's phenomenon, Goodpasture's disease, arthritis (rheumatoid arthritis such as acute arthritis, chronic rheumatoid arthritis, gout or gouty arthritis, acute gouty arthritis, acute immunological arthritis, chronic inflammatory arthritis, degenerative arthritis, type II collagen-induced arthritis, infectious arthritis, Lyme arthritis (e.g., post treatment Lyme disease syndrome), proliferative arthritis, psoriatic arthritis, Still's disease, vertebral arthritis, and juvenile-onset rheumatoid arthritis, arthritis chronica progrediente, arthritis deformans, polyarthritis chronica primaria, reactive arthritis, and ankylosing spondylitis), palindromic arthritis, inflammatory hyperproliferative skin diseases, psoriasis such as plaque psoriasis, guttate psoriasis, pustular psoriasis, and psoriasis of the nails, atopy including atopic diseases such as hay fever and Job's syndrome, dermatitis including contact dermatitis, chronic contact dermatitis, exfoliative dermatitis, allergic dermatitis, allergic contact dermatitis, dermatitis herpetiformis, nummular dermatitis, seborrheic dermatitis, non- specific dermatitis, primary irritant contact dermatitis, and atopic dermatitis, x-linked hyper IgM syndrome, allergic intraocular inflammatory diseases, urticaria such as chronic allergic urticaria and chronic idiopathic urticaria, including chronic autoimmune urticaria, myositis, polymyositis/dermatomyositis, juvenile dermatomyositis, toxic epidermal necrolysis, scleroderma (including systemic scleroderma), sclerosis such as systemic sclerosis, multiple sclerosis (MS) such as spino-optical MS, primary progressive MS (PPMS), and relapsing remitting MS (RRMS), progressive systemic sclerosis, atherosclerosis, arteriosclerosis, sclerosis disseminata, ataxic sclerosis, neuromyelitis optica (NMO), inflammatory bowel disease (IBD) (for example, Crohn's disease, autoimmune-mediated gastrointestinal diseases, colitis such as ulcerative colitis, colitis ulcerosa, microscopic colitis, collagenous colitis, colitis polyposa, necrotizing enterocolitis, and transmural colitis, and autoimmune inflammatory bowel disease), bowel inflammation, pyoderma gangrenosum, erythema nodosum, primary sclerosing cholangitis, respiratory distress syndrome, including adult or acute respiratory distress syndrome (ARDS), meningitis, inflammation of all or part of the uvea, iritis, choroiditis, an autoimmune hematological disorder, rheumatoid spondylitis, rheumatoid synovitis, hereditary angioedema, cranial nerve damage as in meningitis, herpes gestationis, pemphigoid gestationis, pruritis scroti, autoimmune premature ovarian failure, sudden hearing loss due to an autoimmune condition, IgE-mediated diseases such as anaphylaxis and allergic and atopic rhinitis, encephalitis such as Rasmussen's encephalitis and limbic and/or brainstem encephalitis, uveitis, such as anterior uveitis, acute anterior uveitis, granulomatous uveitis, nongranulomatous uveitis, phacoantigenic uveitis, posterior uveitis, or autoimmune uveitis, glomerulonephritis (GN) with and without nephrotic syndrome such as chronic or acute glomerulonephritis such as primary GN, immune- mediated GN, membranous GN (membranous nephropathy), idiopathic membranous GN or idiopathic membranous nephropathy, membrano- or membranous proliferative GN (MPGN), including Type I and Type II, and rapidly progressive GN, proliferative nephritis, autoimmune polyglandular endocrine failure, balanitis including balanitis circumscripta plasmacellularis, balanoposthitis, erythema annulare centrifugum, erythema dyschromicum perstans, eythema multiform, granuloma annulare, lichen nitidus, lichen sclerosus et atrophicus, lichen simplex chronicus, lichen spinulosus, lichen planus, lamellar ichthyosis, epidermolytic hyperkeratosis, premalignant keratosis, pyoderma gangrenosum, allergic conditions and responses, allergic reaction, eczema including allergic or atopic eczema, asteatotic eczema, dyshidrotic eczema, and vesicular palmoplantar eczema, asthma such as asthma bronchiale, bronchial asthma, and auto-immune asthma, conditions involving infiltration of T cells and chronic inflammatory responses, immune reactions against foreign antigens such as fetal A-B-O blood groups during pregnancy, chronic pulmonary inflammatory disease, autoimmune myocarditis, leukocyte adhesion deficiency, lupus, including lupus nephritis, lupus cerebritis, pediatric lupus, non-renal lupus, extra-renal lupus, discoid lupus and discoid lupus erythematosus, alopecia lupus, systemic lupus erythematosus (SLE) such as cutaneous SLE or subacute cutaneous SLE, neonatal lupus syndrome (NLE), and lupus erythematosus disseminatus, juvenile onset (Type I) diabetes mellitus, including pediatric insulin-dependent diabetes mellitus (IDDM), adult onset diabetes mellitus (Type II diabetes), autoimmune diabetes, idiopathic diabetes insipidus, diabetic retinopathy, diabetic nephropathy, diabetic large-artery disorder, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T- lymphocytes, sarcoidosis, granulomatosis including lymphomatoid granulomatosis, Wegener's granulomatosis, agranulocytosis, vasculitides, including vasculitis, large-vessel vasculitis (including polymyalgia rheumatica and giant-cell (Takayasu's) arteritis), medium- vessel vasculitis (including Kawasaki's disease and polyarteritis nodosa/periarteritis nodosa), microscopic polyarteritis, immunovasculitis, CNS vasculitis, cutaneous vasculitis, hypersensitivity vasculitis, necrotizing vasculitis such as systemic necrotizing vasculitis, and ANCA-associated vasculitis, such as Churg-Strauss vasculitis or syndrome (CSS) and ANCA-associated small-vessel vasculitis, temporal arteritis, autoimmune aplastic anemia, Coombs positive anemia, Diamond Blackfan anemia, hemolytic anemia or immune hemolytic anemia including autoimmune hemolytic anemia (AIHA), pernicious anemia (anemia perniciosa), Addison's disease, pure red cell anemia or aplasia (PRCA), Factor VIII deficiency, hemophilia A, autoimmune neutropenia, pancytopenia, leukopenia, diseases involving leukocyte diapedesis, CNS inflammatory disorders, multiple organ injury syndrome such as those secondary to septicemia, trauma or hemorrhage, antigen-antibody complex-mediated diseases, anti-glomerular basement membrane disease, anti-phospholipid antibody syndrome, allergic neuritis, Behcet's disease/syndrome, Castleman's syndrome, Goodpasture's syndrome, Reynaud's syndrome, Sjogren's syndrome, Stevens-Johnson syndrome, pemphigoid such as pemphigoid bullous and skin pemphigoid, pemphigus (including pemphigus vulgaris, pemphigus foliaceus, pemphigus mucus-membrane pemphigoid, and pemphigus erythematosus), autoimmune polyendocrinopathies, Reiter's disease or syndrome, an immune complex disorder such as immune complex nephritis, antibody-mediated nephritis, polyneuropathies, chronic neuropathy such as IgM polyneuropathies or IgM-mediated neuropathy, and autoimmune or immune-mediated thrombocytopenia such as idiopathic thrombocytopenic purpura (ITP) including chronic or acute ITP, scleritis such as idiopathic cerato-scleritis, episcleritis, autoimmune disease of the testis and ovary including autoimmune orchitis and oophoritis, primary hypothyroidism, hypoparathyroidism, autoimmune endocrine diseases including thyroiditis such as autoimmune thyroiditis, Hashimoto's disease, chronic thyroiditis (Hashimoto's thyroiditis), or subacute thyroiditis, idiopathic hypothyroidism, Grave's disease, polyglandular syndromes such as autoimmune polyglandular syndromes (or polyglandular endocrinopathy syndromes), paraneoplastic syndromes, including neurologic paraneoplastic syndromes such as Lambert-Eaton myasthenic syndrome or Eaton-Lambert syndrome, stiff-man or stiff- person syndrome, encephalomyelitis such as allergic encephalomyelitis or encephalomyelitis allergica and experimental allergic encephalomyelitis (EAE), myasthenia gravis such as thymoma-associated myasthenia gravis, cerebellar degeneration, neuromyotonia, opsoclonus or opsoclonus myoclonus syndrome (OMS), and sensory neuropathy, multifocal motor neuropathy, Sheehan's syndrome, autoimmune hepatitis, lupoid hepatitis, giant-cell hepatitis, autoimmune chronic active hepatitis, lymphoid interstitial pneumonitis (LIP), bronchiolitis obliterans (non-transplant) vs NSIP, Guillain- Barre syndrome, Berger's disease (IgA nephropathy), idiopathic IgA nephropathy, linear IgA dermatosis, acute febrile neutrophilic dermatosis, subcorneal pustular dermatosis, transient acantholytic dermatosis, cirrhosis such as primary biliary cirrhosis and pneumonocirrhosis, autoimmune enteropathy syndrome, Celiac or Coeliac disease, celiac sprue (gluten enteropathy), refractory sprue, idiopathic sprue, cryoglobulinemia, amylotrophic lateral sclerosis (ALS; Lou Gehrig's disease), coronary artery disease, autoimmune ear disease such as autoimmune inner ear disease (AIED), autoimmune hearing loss, polychondritis such as refractory or relapsed or relapsing polychondritis, pulmonary alveolar proteinosis, Cogan's syndrome/nonsyphilitic interstitial keratitis, Bell's palsy, Sweet's disease/syndrome, rosacea autoimmune, zoster-associated pain, amyloidosis, a non- cancerous lymphocytosis, a primary lymphocytosis, which includes monoclonal B cell lymphocytosis (e.g., benign monoclonal gammopathy and monoclonal gammopathy of undetermined significance, MGUS), peripheral neuropathy, paraneoplastic syndrome, channelopathies including channelopathies of the CNS, autism, inflammatory myopathy, focal or segmental or focal segmental glomerulosclerosis (FSGS), endocrine opthalmopathy, uveoretinitis, chorioretinitis, autoimmune hepatological disorder, fibromyalgia, multiple endocrine failure, Schmidt's syndrome, adrenalitis, gastric atrophy, presenile dementia, demyelinating diseases such as autoimmune demyelinating diseases and chronic inflammatory demyelinating polyneuropathy, Dressler's syndrome, alopecia areata, alopecia totalis, CREST syndrome (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia), male and female autoimmune infertility, e.g., due to anti-spermatozoan antibodies, mixed connective tissue disease, Chagas' disease, rheumatic fever, recurrent abortion, farmer's lung, erythema multiforme, post-cardiotomy syndrome, Cushing's syndrome, bird-fancier's lung, allergic granulomatous angiitis, benign lymphocytic angiitis, Alport's syndrome, alveolitis such as allergic alveolitis and fibrosing alveolitis, interstitial lung disease, transfusion reaction, Sampter's syndrome, Caplan's syndrome, endocarditis, endomyocardial fibrosis, diffuse interstitial pulmonary fibrosis, interstitial lung fibrosis, pulmonary fibrosis, idiopathic pulmonary fibrosis, cystic fibrosis, endophthalmitis, erythema elevatum et diutinum, erythroblastosis fetalis, eosinophilic faciitis, Shulman's syndrome, Felty's syndrome, cyclitis such as chronic cyclitis, heterochronic cyclitis, iridocyclitis (acute or chronic), or Fuch's cyclitis, Henoch-Schonlein purpura, SCID, sepsis, endotoxemia, post-vaccination syndromes, Evan's syndrome, autoimmune gonadal failure, Sydenham's chorea, post-streptococcal nephritis, thromboangitis ubiterans, thyrotoxicosis, tabes dorsalis, chorioiditis, giant-cell polymyalgia, chronic hypersensitivity pneumonitis, keratoconjunctivitis sicca, idiopathic nephritic syndrome, minimal change nephropathy, benign familial and ischemia-reperfusion injury, transplant organ reperfusion, retinal autoimmunity, aphthae, aphthous stomatitis, arteriosclerotic disorders, aspermiogenesis, autoimmune hemolysis, Boeck's disease, enteritis allergica, erythema nodosum leprosum, idiopathic facial paralysis, chronic fatigue syndrome, febris rheumatica, Hamman-Rich's disease, sensoneural hearing loss, ileitis regionalis, leucopenia, transverse myelitis, primary idiopathic myxedema, ophthalmia symphatica, polyradiculitis acuta, pyoderma gangrenosum, acquired spenic atrophy, vitiligo, toxic-shock syndrome, conditions involving infiltration of T cells, leukocyte-adhesion deficiency, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, diseases involving leukocyte diapedesis, multiple organ injury syndrome, antigen-antibody complex-mediated diseases, antiglomerular basement membrane disease, allergic neuritis, autoimmune polyendocrinopathies, oophoritis, primary myxedema, autoimmune atrophic gastritis, rheumatic diseases, mixed connective tissue disease, nephrotic syndrome, insulitis, polyendocrine failure, autoimmune polyglandular syndrome type I, adult-onset idiopathic hypoparathyroidism (AOIH), myocarditis, nephrotic syndrome, primary sclerosing cholangitis, acute or chronic sinusitis, ethmoid, frontal, maxillary, or sphenoid sinusitis, an eosinophil-related disorder such as eosinophilia, pulmonary infiltration eosinophilia, eosinophilia-myalgia syndrome, Loffler's syndrome, chronic eosinophilic pneumonia, tropical pulmonary eosinophilia, granulomas containing eosinophils, seronegative spondyloarthritides, polyendocrine autoimmune disease, sclerosing cholangitis, sclera, episclera, Bruton's syndrome, transient hypogammaglobulinemia of infancy, Wiskott-Aldrich syndrome, ataxia telangiectasia syndrome, angiectasis, autoimmune disorders associated with collagen disease, rheumatism, allergic hypersensitivity disorders, glomerulonephritides, reperfusion injury, ischemic re- perfusion disorder, lymphomatous tracheobronchitis, inflammatory dermatoses, dermatoses with acute inflammatory components, and autoimmune uveoretinitis (AUR). [0027] In some embodiments of any of the aspects, the T cell mediated immune response is an anti-drug specific response to a biologic, cell therapy, and/or gene therapy. In some embodiments of any of the aspects, the biologic, cell-therapy, or gene therapy is an adeno-associated virus (AAV) gene therapy, a genome editing agent, or enzyme replacement therapy. [0028] In some embodiments of any of the aspects, the disease is type 1 diabetes and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: one or more of SEQ ID NOs: 8-17; HLA-A*0201 and at least one of SEQ ID NOs: 2013-2016 and 2031-2033; or HLA-A*02:01 and at least one of SEQ ID NOs: 20128-2129. In some embodiments of any of the aspects, the disease is vitiligo and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: SEQ ID NO: 18, 19, and one of 20-22; or comprises HLA-A*0201 and SEQ ID NO: 2018; or HLA-A*0301 and SEQ ID NO: 2019; or comprises HLA-A*2402 and SEQ ID NO: 2020; or HLA-A*0101 and SEQ ID NO: 2021. In some embodiments of any of the aspects, the method is a method of treating and/or preventing GvHD and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: HLA-A*0101 and at least one of SEQ ID NOs: 2034-2037; or HLA-B*0702 and SEQ ID NO: 2038; or HLA-B*0801 and SEQ ID NO: 2039. In some embodiments of any of the aspects, the disease is type 1 diabetes and the TCR recognition domain comprises one or more of SEQ ID NOs: 8-17; comprises HLA-A*0201 and at least one of SEQ ID NOs: 2013-2016 and 2031-2033; or comprises HLA-A*02:01 and at least one of SEQ ID NOs: 20128-2129. In some embodiments of any of the aspects, the disease is vitiligo and the TCR recognition domain comprises SEQ ID NO: 18, 19, and one of 20-22; or comprises HLA- A*0201 and SEQ ID NO: 2018; or comprises HLA-A*0301 and SEQ ID NO: 2019; or comprises HLA-A*2402 and SEQ ID NO: 2020; or comprises HLA-A*0101 and SEQ ID NO: 2021. In some embodiments of any of the aspects, the method is a method of treating and/or preventing GvHD and the TCR recognition domain comprises HLA-A*0101 and at least one of SEQ ID NOs: 2034-2037; or comprises HLA-B*0702 and SEQ ID NO: 2038; or comprises HLA-B*0801 and SEQ ID NO: 2039. BRIEF DESCRIPTION OF THE DRAWINGS [0029] Fig.1 demonstrates that pMHC tetramer + FITC (adaptor) binds to the target cells (OTi) in a dose dependent fashion or manner. I-H2Kb: MHC class I tetramer. I-Ab- : Control tetramer. Figure discloses SEQ ID NOS 2752-2753, 2750 and 2754, respectively, in order of appearance. [0030] Fig.2 depicts expression of activation marker CD69 on OTi cells at different time points (24, 48, 72 hrs.). Binding of Jurkat+ pMHC to OTi cells does not change Jurkat live count (right). Figure discloses SEQ ID NOS 2750, 2750 and 2754, respectively, in order of appearance. [0031] Fig.3 depicts the expression of CD69 on Jurkat CAR, e.g., CAL T cells in different time points (24, 48, 72 hrs.). Figure discloses SEQ ID NOS 2750 and 2755, respectively, in order of appearance. [0032] Fig.4 depicts the cytotoxicity of Primary human CD8 CAR, , e.g., CAL T cells with different concentrations of tetramers (left). Minimal activation of target cells (CD69 on CAR, e.g., CAL T cells and target cells) after coculturing with OTi cells (figure 2left). I-Ab: Ctrl/ H2Kb: MHC-I. Figure discloses SEQ ID NOS 2750, 2754 and 2750, respectively, in order of appearance. [0033] Fig.5 demonstrates that the cytotoxicity of human CD8 CAR , e.g., CAL T is highly specific and was not seen with ctrl tetramer (left). No cytotoxicity was seen on killer CAR, e.g., CAL T cells or bystander CD4 T Cells after co-culturing with pMHC and splenocytes. Figure discloses SEQ ID NOS 2754, 2750, 2754, 2750, 2754 and 2750, respectively, in order of appearance. [0034] Fig.6A depicts a schematic of SUPRA CAR design applied to provide Universal CAL. This design separates the cell targeting molecule module from the killer cell. Fig.6B depicts that SUPRA CARs can be designed with CD3ζ domain uncoupled from the costimulatory domains to provide Universal CAL as described herein. [0035] Figs.7A-7D depict key features of the SUPRA CAR systems that can be applied to Universal CAL. Fig.7A demonstrates that zipCAR activation is tunable through modulation of zipFv concentration, zipper affinity, scFv affinity, and zipCAR expression level in human primary CD4 T cells, as demonstrated by IFN-g production. Fig.7B demonstrates that SUPRA CAR system, as applied to Universal CAL,can perform combination antigen detection to form AND gate logic in CD4 T cells. Fig.7C demonstrates that xenograft animal tumor model shows tumor eradication (as demonstrated by luciferase photon flux given by the tumor cells) by the SUPRA CAR T cells. Fig.7D demonstrates that SUPRA CARs as applied to Universal CAL can be used to control different cell types, such as CD4 and CD8 T cells, against two different antigens. CD69 expression (a T cell activation marker) is quantified with flow cytometry for CD4 and CD8 T cells. (From Cho, Collins, and Wong, Cell.2018) [0036] Fig.8 depicts the timeline of double Hu-PBMC-HSCT-skin graft mouse model generation. [0037] Fig.9 depicts a summary of double hu-PBMC-HSCT-skin graft mouse model generation. [0038] Fig.10 depicts key features of pMHC multimer + CAR, e.g., CAL T cell system. [0039] Fig.11 depicts a table of experimental design. Figure discloses SEQ ID NOS 2750, 2756 and 2754, respectively, in order of appearance. [0040] Fig.12 demonstrates verification of FITC-conjugated tetramer mediated activation. Figure discloses SEQ ID NOS 2750 and 2751, respectively, in order of appearance. [0041] Fig.13 depicts a time course of FITC-conjugated tetramer mediated activation. Figure discloses SEQ ID NOS 2750, 2751, 2750, 2751, 2750, 2751, 2750 and 2751, respectively, in order of appearance. [0042] Fig.14 depicts a graph of Jurkat cell counts. Figure discloses SEQ ID NOS 2750 and 2754, respectively, in order of appearance. [0043] Fig.15 depicts tetramer staining. Figure discloses SEQ ID NOS 2750, 2754, 2751, 2756, 2754, 2750 and 2754, from left to right and top to bottom. [0044] Fig.16 depicts heatmaps of indicated staining levels. Figure discloses SEQ ID NOS 2751, 2757, 2754, 2750, 2754, 2751, 2754, 2757, 2750, 2754, 2751, 2754, 2757, 2750 and 2754, respectively, in order of appearance. [0045] Fig.17 depicts a table of experimental design. [0046] Figs.18-20 depict graphs of cytotoxicity levels. Fig.18 discloses SEQ ID NOS 2754, 2750, 2754 and 2750 from left to right. Fig.19 discloses SEQ ID NOS 2754 and 2750, respectively, in order of appearance. Fig.20 discloses SEQ ID NOS 2750, 2754, 2750 and 2754 from left to right. [0047] Fig.21 depicts the levels of CD69 on OTi CD8 T cells. Figure discloses SEQ ID NOS 2750, 2754, 2750 and 2754 from left to right. [0048] Fig.22 depicts schematics of two embodiments of the technology described herein. [0049] Fig.23 depicts a schematic of the FU-CAL embodiments of the technology described herein. [0050] Fig.24 depicts a schematic of the CAL-BITE embodiments of the technology described herein. The left panel depicts blinatumomab, which is described in more detail in Weiner et al. The Molecular Basis of Cancer 2015683-694.e3. [0051] Fig.25 depicts a schematic of the CAL technology disarming autoreactive T cells. [0052] Figs.26A-26B depict schematics of T cells design. MHC can be mouse or human. The MiHA can be ovalbumin (against OTi or OTii) or disparate antigens between donor and recipient. [0053] Fig.27 depicts a graph demonstrating that pMHC tetramer + FITC (adaptor) binds to the target cells (OTi) in a dose dependent fashion, while OTii specific tetramer does not. [0054] Fig.28A depicts expression of CD69 on OTi cells at different time points (24, 48, 72 hrs.). Fig.28B is a graph demonstrating that binding of Jurkat+ pMHC to OTi cells does not change Jurkat live count. [0055] Fig.29 depicts a graph demonstrating that cytotoxicity of pMHC-CAR against 1E6 T cell clone exhibits a dose dependent association. [0056] Fig.30 depicts a graph demonstrating that CAR Jurkat T cells activation (as measured by CD69 surface marker) after exposure to target cells (OTi or OTii TCR expressing T cells) and the corresponding tetramer (OTi or OTii specific) (n=4). [0057] Fig.31 depicts graphs demonstrating that cytotoxicity of human CD8 CAR T is highly specific and was not seen with ctrl tetramer. No cytotoxicity was seen on killer CAR T cells or bystander CD4 T Cells after co-culturing with pMHC and splenocytes (n=4). [0058] Fig.32 depicts a graph demonstrating cytotoxicity of Primary CD8 CAR T cells against OTi TCR T cells with different concentration of tetramer. DETAILED DESCRIPTION [0059] Aspects of the invention described herein relate to chimeric antigen ligands. As used herein, “chimeric antigen ligand” or “CAL” refers to an artificially constructed molecule comprising a TCR recognition domain (e.g. an polypeptide comprising at least one MHC sequence as described herein) and at least one biomolecular interaction domain. The TCR recognition domain is selected to bind to specific populations of T cells that it is desirable to target and/or destroy, e.g., for therapeutic purposes in T-cell mediated diseases. In some embodiments, the population of targeted T cells is a population of polyclonal pathogenic T cells. The biomolecular interaction domain is selected to bind to a second cell, e.g., a NK cell, thereby colocalizing the targeted T cell and the second cell and promoting or increasing the inhibition and/or destruction of the targeted T cell. In various embodiments, the CAL is selected to have high affinity or avidity for the TCR, e.g., the TCR variable domain. [0060] The CALs can be used herein with endogenous cells, e.g., in some embodiments, no engineered cells are administered to the subject. In other embodiments, the CALs can be used with engineered cells, e.g., engineered NK cells. In such cases, the engineered cells can comprise one or more CARs, e.g, a CAR comprising an extracellular domain with a biomolecular interaction domain that specifically binds with the biomolecular interaction domain of the CAL. [0061] Accordingly, described herein are chimeric antigen receptors (CARs) in which the recognition and signaling portions of the CAR are separate polypeptides. The two separate polypeptides that make up a complete CAR are able to interact and form the complete CAR by way of protein interaction domains. This permits flexible, modular CAR-T therapy which is capable of complex logic computation, providing a more precise and effective approach to immunotherapy. [0062] In one aspect of any of the embodiments is a CAL and/or chimeric antigen receptor (CAR) having multiple components, and/or a cell or composition comprising a multi-component CAL and/or CAR. Multi-component CALs/CARs are also referred to herein variously as SMART CAL/CAR or SUPRA. [0063] As used herein, traditional “chimeric antigen receptor” or “CAR” refers to an artificially constructed hybrid polypeptide comprising an antigen-binding domain (e.g. an antigen-binding portion of an antibody (e.g. a scFV)) linked to a cell signaling and/or cell activation domain. In some embodiments the cell-signaling domain can be a T-cell signaling domain. In some embodiments, the cell activation domain can be a T-cell activation domain. CARs have the ability to redirect the specificity and reactivity of T cells and other immune cells (e.g., NK cells) toward a selected target in a non-MHC-restricted manner, exploiting the antigen-binding properties of monoclonal antibodies. [0064] The non-MHC-restricted antigen recognition gives T-cells expressing CARs the ability to recognize an antigen independent of antigen processing, thus bypassing a major mechanism of tumor escape. Moreover, when expressed in T-cells, CARs advantageously do not dimerize with endogenous T-cell receptor (TCR) alpha and beta chains. Most commonly, the CAR's extracellular binding domain is composed of a single chain variable fragment (scFv) derived from fusing the variable heavy and light regions of a murine or humanized monoclonal antibody. Alternatively, scFvs may be used that are derived from Fabs (instead of from an antibody, e.g., obtained from Fab libraries), in various embodiments, this scFv is fused to a transmembrane domain and then to an intracellular signaling domain. "First- generation" CARs include those that solely provide CD3zeta signals upon antigen binding, "Second- generation" CARs include those that provide both costimulation (e.g. CD28 or CD 137) and activation (CD3Q). "Third-generation" CARs include those that provide multiple costimulation (e.g. CD28 and CD 137) and activation (CO3Q). In various embodiments, the CAR is selected to have high affinity or avidity for the antigen. Further discussion of CARs can be found, e.g., in Maus et al. Blood 2014123:2624-35; Reardon et al. Neuro-Oncology 201416:1441-1458; Hoyos et al. Haematologica 201297:1622; Byrd et al. J Clin Oncol 201432:3039-47; Maher et al. Cancer Res 200969:4559-4562; and Tamada et al. Clin Cancer Res 201218:6436-6445; each of which is incorporated by reference herein in its entirety. [0065] As used herein, “multi-component CAL” refers to a CAL comprising at least two separate polypeptides, neither of which polypeptides is capable of both ligand recognition and signaling activation on its own. As used herein, “multi-component CAR” refers to a CAR comprising at least two separate polypeptides, neither of which polypeptides is capable of both ligand recognition and signaling activation on its own. In some embodiments, the at least two separate polypeptides each comprise a protein interaction domain that permits interaction, e.g., binding of the separate polypeptides. In some embodiments, one of the at least two separate polypeptides is a transmembrane polypeptide having an intracellular T cell receptor (TCR) signaling domain and a second of the at least two separate polypeptides is an extracellular polypeptide having a ligand-binding domain. In some embodiments, a multi-component CAL and/or CAR can comprise two, three, four, five, six, seven, eight, nine, ten or more separate polypeptides. [0066] Various aspects provided herein provide a composition comprising multiple components of a multi-component CAL and/or CAR. [0067] In one aspect of the embodiments is a composition, e.g., a single molecule, comprising a TCR recognition domain; and one or both of: (a) an intracellular signaling domain; and (b) a first-type protein interaction domain. In one aspect of the embodiments is a composition, e.g., a single molecule comprising a TCR recognition domain; and a first-type biomolecular (e.g., protein) interaction domain. Further provided herein is a multi-component CAL and/or CAR comprising a TCR recognition domain; and one or both of: (a) an intracellular signaling domain; and (b) a first-type protein interaction domain. In some embodiments, the composition, e.g, single molecule, comprising a TCR recognition domain; and a first-type biomolecular (e.g., protein) interaction domain does not comprise an antibody, antibody domain, or antibody reagent. [0068] Another aspect of the embodiments is a composition comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; wherein the first-type and second-type protein interaction domains bind specifically to each other. Further provided herein is a multi-component CAL and/or CAR comprising a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; wherein the first-type and second-type protein interaction domains bind specifically to each other. [0069] Another aspect of the embodiments is a composition comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the first-type and third-type protein interaction domains bind specifically to each other. Further provided herein is a multi-component CAL and/or CAR comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the first-type and third-type protein interaction domains bind specifically to each other [0070] Another aspect of the embodiments is a composition comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; and (c) a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the second-type and third-type protein interaction domains compete for binding to the first-type protein interaction domain. Further provided herein is a multi- component CAL and/or CAR comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; and (c) a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the second-type and third-type protein interaction domains compete for binding to the first- type protein interaction domain. [0071] In various embodiments, the third-type protein interaction domain and first-type protein interaction domain have a higher affinity for each other than the second-type protein interaction domain and first-type protein interaction domain. Affinity can be measured by one skilled in the art using standard methods, for example, by measuring its equilibrium dissociation constant (Kd). [0072] Another aspect of the embodiments is a composition comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; (b) a signaling polypeptide comprising a second-type protein interaction domain, a fourth-type protein interaction domain, and an intracellular signaling domain; and (c) a recognition polypeptide comprising a second recognition domain and a fifth-type protein interaction domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other. Further provided herein is a multi-component CAL and/or CAR comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; (b) a signaling polypeptide comprising a second-type protein interaction domain, a fourth- type protein interaction domain, and an intracellular signaling domain; and (c) a recognition polypeptide comprising a second recognition domain and a fifth-type protein interaction domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other. [0073] In various embodiments, the fourth-type protein interaction domain and fifth-type protein interaction domain have a weaker affinity than the second-type protein interaction domain and first- type protein interaction domain. Affinity can be measured as described above. [0074] In various embodiments, the first polypeptide further comprises a sixth-type protein interaction domain and the recognition polypeptide further comprises a seventh-type protein interaction domain which bind specifically to each other. [0075] In some embodiments, the first polypeptide comprises the entire TCR recognition domain. In some embodiments, the TCR recognition domain comprises at least two separate polypeptide sequences, the first polypeptide comprises at least one of the separate polypeptide sequences of the TCR recognition domain, and the first polypeptide is bound to or complexed with a second or further polypeptide sequences of the TCR recognition domain to form a TCR recognition domain. [0076] In some embodiments, a composition described herein can comprise multiple copies or instances of a TCR recognition domain(s), e.g. the TCR recognition domain can be a mulitmer, or oligomer. In some embodiments, a composition described herein can comprise multiple copies or instances of a first polypeptide as described herein. [0077] In various embodiments, the second recognition domain is specific for a target that is not recognized by the TCR recognition domain. In one embodiment, the second recognition domain is specific for a target that is found on a healthy and/or non-target cell and not on a diseased and/or target cell. [0078] As used herein, “TCR recognition domain” refers to a domain or portion of a polypeptide that can target or bind specifically to a TCR, e.g., a TCR expressed on the surface of T cell. In some embodiments, the TCR recognition domain can be a TCR variable region (TCR-VR) recognition domain, i.e. is can target or bind specifically to the variable region of a TCR, e.g., a TCR expressed on the surface of a T cell. The TCR recognition domain sequence can be autologous, allogeneic, or xenogeneic to a given subject. In some embodiments, the TCR recognition domain sequence is a wild-type protein or sequence. In some embodiments, the TCR recognition domain sequence is a naturally-occurring variant, e.g., an allele of a wild-type protein or sequence. In some embodiments, the TCR recognition domain sequence is modified relative to a wild-type protein, e.g. chemically modified. In some embodiments, the TCR recognition domain sequence is a derivative and/or variant of a wild-type sequence. In some embodiments, the TCR recognition domain sequence can be a human, or non-human sequence. [0079] A TCR recognition domain can comprise a MHC polypeptide, a MHC polypeptide sequence, and/or comprise a portion of a MHC sequence. The MHC and/or MHC sequence can be autologous, allogeneic, or xenogeneic to a given subject. In some embodiments, the MHC and/or MHC sequence is a wild-type protein or sequence. In some embodiments, the MHC and/or MHC sequence is a naturally-occurring variant, e.g., an allele of MHC. In some embodiments, the MHC and/or MHC sequence is modified relative to a wild-type protein, e.g. chemically modified. In some embodiments, the MHC and/or MHC sequence is a derivative and/or variant of a wild-type MHC sequence. In some embodiments, the MHC and/or MHC sequence can be or comprise a human, or non-human sequence. [0080] In one embodiment, the TCR recognition domain comprises a MHC (Major Histocompatibility Complex), a MHC-peptide complex, or a MHC-peptide fusion. In some embodiments, the TCR recognition domain can comprise a featureless peptide MHC, or a MHC without peptides, or any other molecule that can target or bind specifically to the variable region of the TCR. [0081] The MHC, which is also referred to as the human leukocyte antigen (HLA), is comprised of a set of genes that code for cell surface proteins essential for the acquired. e.g., adaptive immune system to recognize foreign molecules in vertebrates, which in turn determines histocompatibility.  The MHC gene family is divided into three subgroups: MHC class I, MHC class II, and MHC class III. Class I MHC molecules have the β2 microglobulin subunit which can only be recognised by CD8 co-receptors. Class II MHC molecules have β1 and β2 subunits and can be recognized by CD4 co- receptors. In this way MHC molecules chaperone, which type of lymphocytes bind to the given antigen with high affinity, since different lymphocytes express different T-Cell Receptor (TCR) co- receptors. Components of the MHC are known in the art and can be readily identified by a skilled person. The MHC is further described in, e.g., Janeway CA Jr, Travers P, Walport M, et al, Immunobiology: The Immune System in Health and Disease, 5th edn (New York: Garland Science, 2001); Vigneron N, Stroobant V, Chapiro J, Ooms A, Degiovanni G, Morel S, et al. (April 2004). "An antigenic peptide produced by peptide splicing in the proteasome". Science.304 (5670): 587–90; and K. Murphy, “Antigen recognition by T cells,” in Janeway's Immunobiology, 8th, Ed., Garland Science, 2012, pp.138-153; which are incorporated herein by reference in their entireties. A complete MHC class I complex comprises one MHC class I heavy chain, one peptide ligand sequence, and a beta 2 microglobulin. In some embodiments, a TCR recognition domain comprises one MHC class I heavy chain, one peptide ligand sequence, and a beta 2 microglobulin. A complete MHC class II complex comprises an MHC class II alpha chain, MHC class II beta chain, and one peptide ligand sequence. In some embodiments, a TCR recognition domain comprises an MHC class II alpha chain, MHC class II beta chain, and one peptide ligand sequence. These three components can either be assembled together as separate sequences (e.g., by intramolecular binding of multiple peptide molecules) or can be expressed as fusion proteins with intervening linker sequences (e.g., see Schmittnaegel et al., 2016; which is incorporated by reference herein in its entirety). [0082] The MHC (Major Histocompatibility Complex), MHC-peptide complex, MHC-peptide fusion, featureless peptide MHC, can be selected on the basis of the disease or condition to be treated/prevented. Specific MHCs, peptides, and/or antigens that are associated with the diseases described herein are known in the art and an appropriate MHC, peptide, and/or antigen can be selected by one of ordinary skill in the art. For example, databases of suitable MHC, peptide, and/or antigen sequences are available on the world wide web at iedb.org; immunespace.org; immgen.org; import/org; peptideatlast.org/repository/; uniprot.org; ncbi.nlm.nih.gov/protein/; immunedata.org/index.php; immuneprofiling.org/hipc/; allergenonline.org/databasebrowe.shtml; and itntrialshare.org. Further examples are also provided in Smatti et al.2019 Viruses 11:762; Beretta- Piccoli et al.2019 J Autoimmu 94:1-6; and Cusick et al.2012 Clinical Reviews in Allergy and Immunology; each of which is incorporated by reference herein in its entirety. The specific examples of TCR recognition domains provides herein are exemplary and non-limiting. One of skill in the art can identify relevant auto-antigenic pMHCs, allogeneic peptide MHCs, and autogenic peptide MHCs in addition to those described herein, e.g., from the art and/or from donor cells. Such identification is within the skill of the ordinary practitioner. [0083] As an illustrative and non-limiting example, for compositions and methods relating to type 1 diabetes, the TCR recognition domain can comprise one or more of SEQ ID NOs: 8-17. In some embodiments, the TCR recognition domain can comprise SEQ ID NO: 8, 9, and one of 10-17. In some embodiments, the TCR recognition domain can comprise sequences with at least 80%, at leat 85%, at least 90%, at least 95%, at least 98% or greater sequence identity to SEQ ID NO: 8, 9, and one of 10-17. In some embodiments, the TCR recognition domain can comprise sequences with at least 95% sequence identity to SEQ ID NO: 8, 9, and one of 10-17, and which retain the wild-type activity of SEQ ID NOs: 8, 9, and one of 10-17. [0084] SEQ ID NO: 8 HLA-A*0201 (MHC class I heavy chain allele, wildtype, human) MAVMAPRTLVLLLSGALALTQTWAGSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQR MEPRAPWIEQEGPEYWDGETRKVKAHSQTHRVDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRG YHQYAYDGKDYIALKEDLRSWTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQ RTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGTFQKWAAVV VPSGQEQRYTCHVQHEGLPKPLTLRWEPSSQPTIPIVGIIAGLVLFGAVITGAVVAAVMWRRKSSDRK GGSYSQAASSDSAQGSDVSLTACKV [0085] SEQ ID NO: 9 Beta-2 microglobulin (wildtype, human) MSRSVALAVLALLSLSGLEGIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHQSDIEVDLLKNGERIEK VEHSDLSFSKDWSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM [0086] SEQ ID NO: 10 Preproinsulin15-24 (wildtype, human) ALWGPDPAAA [0087] SEQ ID NO: 11 Preproinsulin15-24 altered peptide ligand #1 (synthetic, Cole et al., 2016) AQWGPDPAAA [0088] SEQ ID NO: 12 Preproinsulin15-24 altered peptide ligand #2 (synthetic, Cole et al., 2016) RQWGPDPAAV [0089] SEQ ID NO: 13 Preproinsulin15-24 altered peptide ligand #3 (wildtype, Clostridium asparagiforme, Cole et al., 2016) RQFGPDWIVA [0090] SEQ ID NO: 14 Preproinsulin15-24 altered peptide ligand #4 (synthetic, Cole et al., 2016) YQFGPDFPIA [0091] SEQ ID NO: 15 Preproinsulin15-24 altered peptide ligand #5 (synthetic, Cole et al., 2016) RQFGPDFPTI [0092] SEQ ID NO: 16 Preproinsulin15-24 altered peptide ligand #6 (synthetic, Cole et al., 2016) YLGGPDFPTI [0093] SEQ ID NO: 17 Preproinsulin15-24 altered peptide ligand #7 (wildtype, Bacteroides fragilis, Cole et al., 2016) MVWGPDLYV [0094] As a further illustrative example, for compositions and methods relating vitiligo, the TCR recognition domain can comprise one or more of SEQ ID NOs: 18-22. In some embodiments, the TCR recognition domain can comprise SEQ ID NO: 18, 19, and one of 20-22. In some embodiments, the TCR recognition domain can comprise sequences with at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or greater sequence identity to SEQ ID NO: 18, 19, and one of 20-22. In some embodiments, the TCR recognition domain can comprise sequences with at least 95% sequence identity to SEQ ID NO: 18, 19, and one of 20-22, and which retain the wild-type activity of SEQ ID NOs: 18, 19, and one of 20-22. [0095] SEQ ID NO: 18 HLA-A*0201 (MHC class I heavy chain allele, wildtype, human, same as previous HLA-A2) MAVMAPRTLVLLLSGALALTQTWAGSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQR MEPRAPWIEQEGPEYWDGETRKVKAHSQTHRVDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRG YHQYAYDGKDYIALKEDLRSWTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQ RTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGTFQKWAAVV VPSGQEQRYTCHVQHEGLPKPLTLRWEPSSQPTIPIVGIIAGLVLFGAVITGAVVAAVMWRRKSSDRK GGSYSQAASSDSAQGSDVSLTACKV [0096] SEQ ID NO: 19 Beta-2 microglobulin (wildtype, human, same as previous Beta-2 microglobulin) MSRSVALAVLALLSLSGLEGIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHQSDIEVDLLKNGERIEK VEHSDLSFSKDWSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM [0097] SEQ ID NO: 20 MART-126-35 (wildtype, human) ELAGIGILTV [0098] SEQ ID NO: 21 Tyrosinase368-376 (wildtype, human) YMDGTMSQV [0099] SEQ ID NO: 22 gp100209-217 (wildtype, human) ITDQVPFSV [00100] As further illustrative and non-limiting examples, the following pairs of MHC and antigens provided in Table 5 are known in the art. In some embodiments, the TCR recognition domain can comprise one or more of the following indicated MHC / peptide pairs, e.g., the TCR recognition domain can comprise one of the indicated MHC alleles and the indicated corresponding peptide. In some embodiments, the TCR recognition domain can comprise sequences with at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or greater sequence identity to one of the following indicated MHC / peptide pairs, e.g., one of the indicated MHC alleles and the indicated corresponding peptide. In some embodiments, the TCR recognition domain can comprise sequences with at least 95% sequence identity to one of the following indicated MHC / peptide pairs, e.g., one of the indicated MHC alleles and the indicated corresponding peptide, wherein those sequences retain the wild-type activity of the MHC allele and the corresponding peptide . [00101] Table 5: Each line of the following Table provides a MHC allele (whose sequence is available in publically-accessible databases, e.g., NCBI), and an antigen sequence. The antigen source and/or the relevant disease are also indicated on some lines. In some examples provided in Table 5, the peptides are antigen mimics and their origin is indicated.   HLA‐A*0201  VMNILLQYVV (SEQ ID NO: 2013) GAD65    Diabetes  HLA‐A*0201  VMNILLQYVV (SEQ ID NO: 2013) GAD65    Diabetes  HLA‐A*0201  YAYDGKDYIA (SEQ ID NO: 2014) HLA‐A2 Diabetes  HLA‐A*0201  MVWESGCTV (SEQ ID NO: 2015) IA‐2    Diabetes  HLA‐A*0201  VIVMLTPLV (SEQ ID NO: 2016)  IA‐2    Diabetes  HLA‐A*0201  YTCPLCRAPV (SEQ ID NO: 2017) SAA    Autoimmune  HLA‐A*0201  YMDGTMSQV (SEQ ID NO: 2018)  Tyrosinase  Vitiligo  HLA‐A*0301  YMVPFIPLYR (SEQ ID NO: 2019)  Tyrosinase  Vitiligo  HLA‐A*2402  AFLPWHRLF (SEQ ID NO: 2020)  Tyrosinase  Vitiligo  HLA‐A*0101  SSDYVIPIGTY (SEQ ID NO: 2021) Tyrosinase  Vitiligo  HLA‐A*02:01   VLHDDLLEA (SEQ ID NO: 2022)    HA‐1 137‐145  Minor Histocompatibility Antigen   HLA‐A*02:01   RTLDKVLEV (SEQ ID NO: 2023)    miHAg HA‐8  Minor Histocompatibility Antigen  HLA‐A*02:01  FIDSYICQV (SEQ ID NO: 2024)  miHAg H‐Y (human SMCY) 311‐319 Minor  Histocompatibility Antigen  DRB1*04:01   GAGSLQPLALEGSLQKRG A (SEQ ID NO: 2025)     Proinsulin 73‐90  DRB1*04:01   IAFTSEHSHFSLK A (SEQ ID NO: 2026)       GAD65  274‐286  DRB1*15:01   DENPVVHFFKNIVTPRTPP (SEQ ID NO: 2027)     Myelin basic protein  83‐ 101  DRB1*04:01   GIVEQCCTSICSLYQ A (SEQ ID NO: 2028)      Proinsulin 90‐104  DRB1*04:01   NFIRMVISNPAAT A (SEQ ID NO: 2029)       GAD65 555‐567  DRB1*04:01   DVMNILLQYVVKSFDRSTKV (SEQ ID NO: 2030)      GAD65113‐132  HLA‐A*0201  ALWGPDPAAA (SEQ ID NO: 2031)        Insulin  Diabetes         HLA‐A*0201  HLVEALYLV (SEQ ID NO: 2032)        Insulin  Diabetes        HLA‐A*0201  KLQVFLIVL (SEQ ID NO: 2033)        IAPP  Diabetes  HLA‐A*0101  IVDCLTEMY (SEQ ID NO: 2034)        USP9Y  Graft vs Host          HLA‐A*0201  VLHDDLLEA (SEQ ID NO: 2035)        HA‐1  Graft vs Host          HLA‐A*0201  RTLDKVLEV (SEQ ID NO: 2036)        HA‐8  Graft vs Host        HLA‐A*0201  FIDSYICQV (SEQ ID NO: 2037)        H‐Y  Graft vs Host        HLA‐B*0702  SPSVDKARAEL (SEQ ID NO: 2038)        SMCY  Graft vs  Host          HLA‐B*0801  LPHNHTDL (SEQ ID NO: 2039)        TPR‐protein  Graft vs  Host    Antigen Mimicry    HLA‐A*0201  FLDKGTYTL (SEQ ID NO: 2040)    BALF4  EBV          HLA‐A*0201  GLCTLVAML (SEQ ID NO: 2041)    BMLF1  EBV          HLA‐A*0201  TLDYKPLSV (SEQ ID NO: 2042)    BMRF1 EBV          HLA‐A*0201  YVLDHLIVV (SEQ ID NO: 2043)    BRLF1  EBV          HLA‐A*0201  LLDFVRFMGV (SEQ ID NO: 2044)    EBNA 3B  EBV          HLA‐A*0201  YLLEMLWRL (SEQ ID NO: 2045)    LMP‐1  EBV          HLA‐A*0201  YLQQNWWTL (SEQ ID NO: 2046)    LMP‐1  EBV          HLA‐A*0201  CLGGLLTMV (SEQ ID NO: 2047)    LMP‐2A EBV        HLA‐A*0201  FLYALALLL (SEQ ID NO: 2048)    LMP‐2A EBV          HLA‐A*0301  RLRAEAQVK (SEQ ID NO: 2049)    EMNA 3A  EBV          HLA‐A*1101  AVFDRKSDAK (SEQ ID NO: 2050)  EBNA 3B  EBV          HLA‐A*1101  IVTDFSVIK (SEQ ID NO: 2051)    EBNA 3B  EBV          HLA‐A*2402  DYCNVLNKEF (SEQ ID NO: 2052)   BRLF1  EBV          HLA‐A*2402  TYGPVFMCL (SEQ ID NO: 2053)    LMP‐2  EBV          HLA‐A*2902  IACPIVMRY (SEQ ID NO: 2054)    BRLF1  EBV          HLA‐A*6801  IVTDFSVIK (SEQ ID NO: 2051)    EBNA 3B  EBV          HLA‐B*0702  RPQGGSRPEFVKL (SEQ ID NO: 2055)  BMRF1    EBV          HLA‐B*0702  RPPIFIRRL (SEQ ID NO: 2056)    EBNA 3A  EBV          HLA‐B*0702  QPRAPIRPI (SEQ ID NO: 2057)    EBNA 6 EBV          HLA‐B*0801  RAKFKQLL (SEQ ID NO: 2058)    BZLF1  EBV          HLA‐B*0801  FLRGRAYGL (SEQ ID NO: 2059)    EBNA 3A  EBV          HLA‐B*3501  EPLPQGQLTAY (SEQ ID NO: 2060)    BZLF1  EBV          HLA‐B*3501  EPLSQSQITAY (SEQ ID NO: 2061)    BZLF1  EBV          HLA‐B*3501  HPVAEADYFEY (SEQ ID NO: 2062)    EBNA 1 EBV          HLA‐B*3501  HPVGDADYFEY (SEQ ID NO: 2063)  EBNA 1 EBV          HLA‐B*3501  HPVGEADYFEY (SEQ ID NO: 2064)    EBNA 1 EBV          HLA‐B*3501  HPVGQADYFEY (SEQ ID NO: 2065)  EBNA 1 EBV          HLA‐B*3501  YPLHEQHGM (SEQ ID NO: 2066)   EBNA 3A  EBV  HLA‐A*0101  VTEHDTLLY (SEQ ID NO: 2067)  UL44  CMV          HLA‐A*0201  VLEETSVML (SEQ ID NO: 2068)  IE‐1  CMV        HLA‐A*0201  NLVPMVATV (SEQ ID NO: 2069) pp65  CMV          HLA‐A*0301  KLGGALQAK (SEQ ID NO: 2070)  IE‐1  CMV          HLA‐A*2301  QYDPVAALF (SEQ ID NO: 2071)  pp65  CMV          HLA‐A*2402  AYAQKIFKI (SEQ ID NO: 2072)  IE‐1  CMV          HLA‐A*2402  QYDPVAALF (SEQ ID NO: 2071)  pp65  CMV          HLA‐A*2402  VYALPLKML (SEQ ID NO: 2073)  pp65  CMV          HLA‐B*0702  RPHERNGFTVL (SEQ ID NO: 2074)  pp65  CMV          HLA‐B*0702  TPRVTGGGAM (SEQ ID NO: 2075)  pp65  CMV          HLA‐B*0801  ELKRKMIYM (SEQ ID NO: 2076)  IE‐1  CMV        HLA‐B*0801  ELNRKMIYM (SEQ ID NO: 2077)  IE‐1  CMV          HLA‐B*0801  ELRRKMMYM (SEQ ID NO: 2078)  IE‐1  CMV          HLA‐B*0801  QIKVRVDMV (SEQ ID NO: 2079)  IE‐1  CMV          HLA‐B*3501  IPSINVHHY (SEQ ID NO: 2080)  pp65  CMV          HLA‐B*3501  LPLNVGLPIIGVM (SEQ ID NO: 2081)  UL138  CMV                  A*01:01  SADNNNSEY (SEQ ID NO: 2082)  AAV VP1 492‐500  A*01:01  TDLGQNLLY (SEQ ID NO: 2083)  Adenovirus 5 Hexon 886‐894  A*01:01  EADPTGHSY (SEQ ID NO: 2084)  MAGE‐A1 161‐169  A*01:01  EVDPIGHLY (SEQ ID NO: 2085)  MAGE‐A3 168‐176  A*01:01  KSDICTDEY (SEQ ID NO: 2086)  Tyrosinase 243‐251 (244S)  A*01:01  KCDICTDEY (SEQ ID NO: 2087)  Tyrosinase 243‐251  A*01:01  QSLEIISRY (SEQ ID NO: 2088)  Mcl‐1 177‐185  A*01:01  YVDFREYEYY (SEQ ID NO: 2089)  FLT3 ITD  A*01:01  TLDTLTAFY (SEQ ID NO: 2090)  Mesothelin 429‐437  A*01:01  LTDDRLFTCY (SEQ ID NO: 2091)  PLEKHM2  A*01:01  DSDPDSFQDY (SEQ ID NO: 2092)  Tyr A1a 454‐463  A*01:01  EADPIGHLY (SEQ ID NO: 2093)  MAGEA3  A*01:01  EVDPASNTY (SEQ ID NO: 2094)  MAGE‐A4 169‐177  A*01:01  HSTNGVTRIY (SEQ ID NO: 2095) PSMA  A*01:01  ILDTAGREEY (SEQ ID NO: 2096)  N‐ras 55‐64  A*01:01  LVDVMPWLQY (SEQ ID NO: 2097)  Cytochrome P450 240‐249  A*01:01  RSDSGQQARY (SEQ ID NO: 2098)  AIM‐2  A*01:01  VTEPGTAQY (SEQ ID NO: 2099)  Minor antigen HA‐3T (Lbc oncogene 451‐459)  A*01:01  VYDFFVWLHY (SEQ ID NO: 2100)  TRP‐2 181‐190  A*01:01  YSEHPTFTSQY (SEQ ID NO: 2101)  HCMV pp65 363‐373  A*01:01  VTEHDTLLY (SEQ ID NO: 2102)  HCMV pp50 245‐253  A*01:01  FTSDYYQLY (SEQ ID NO: 2103)  SARS‐CoV‐2 ORF3a 207‐215 (confirmed epitope)  A*01:01  TTDPSFLGRY (SEQ ID NO: 2104)  SARS‐CoV‐2 Replicase polyprotein 1ab 1637‐1646   A*01:01  PTDNYITTY (SEQ ID NO: 2105)  SARS‐CoV‐2 Replicase polyprotein 1ab 1621‐1629   A*01:01  LLDTASALY (SEQ ID NO: 2106)  HBV core 30‐38  A*01:01  ATDALMTGY (SEQ ID NO: 2107) HCV NS3 1435‐1443  A*01:01  ATDALMTGF (SEQ ID NO: 2108) HCV NS3 1436‐1444  A*01:01  CTELKLSDY (SEQ ID NO: 2109)  Influenza A (PR8) NP 44‐52  A*01:01  VSDGGPNLY (SEQ ID NO: 2110)  Influenza A PB1 591‐599  A*01:01  IVDCLTEMY (SEQ ID NO: 2111)  DRRFY (1521‐1529))  A*0201 ALCNTDSPL (SEQ ID NO: 2112)  iLR1  A*0201 ALKDVEERV (SEQ ID NO: 2113)  MAGE‐C2 336‐344  A*0201 LLAARAIVAI (SEQ ID NO: 2114)  iLR1 59‐68  A*0201 RLWQELSDI (SEQ ID NO: 2115)  circadian clock protein PASD1 691‐700  A*0201 LLFGLALIEV (SEQ ID NO: 2116)  MAGE‐C2 191‐200  A*0201 FLDPRPLTV (SEQ ID NO: 2117)  CYP190  A*0201 STLCQVEPV (SEQ ID NO: 2118)  MPP11  A*0201 VLQMKEEDV (SEQ ID NO: 2119)  iLR1  A*0201 AIQDLCLAV (SEQ ID NO: 2120)  NPM1  A*0201 QLLIKAVNL (SEQ ID NO: 2121)  MPP11  A*0201 AIQDLCVAV (SEQ ID NO: 2122)  NPM1  A*0201 ALTPVVVTL (SEQ ID NO: 2123)  cyclin‐dependent kinase 4 170‐178  A*02:01  KLQVFLIVL (SEQ ID NO: 2124)  T1D Diabetes human prepro islet amyloid  polypeptide ppIAPP 513  A*02:01  VMNILLQYV (SEQ ID NO: 2125)  GAD65 114‐123  A*02:01  SLSRFSWGA (SEQ ID NO: 2126)  Myelin basic protein 110‐118  A*02:01  HLVEALYLV (SEQ ID NO: 2127)  Insulin B chain 10‐18  A*02:01  LNIDLLWSV (SEQ ID NO: 2128)  T1D Diabetes IGRP 228‐236  A*02:01  VLFGLGFAI (SEQ ID NO: 2129)  T1D Diabetes IGRP 265‐273  A*02:01  ALWGPDPAAA (SEQ ID NO: 2130)  Proinsulin precursor 15‐24  A*02:01  MVWESGCTV (SEQ ID NO: 2131) IA‐2 797‐805  A*02:01  YTCPLCRAPV (SEQ ID NO: 2132) SSA SS‐56 55‐64  A*02:01  VIVMLTPLV (SEQ ID NO: 2133)  IA‐2 805‐813  A*02:01  AITEVECFL (SEQ ID NO: 2134)  VP1 44‐52  A*02:01  FLHCIVFNV (SEQ ID NO: 2135)  large T antigen 410‐418  A*02:01  LLMWEAVTV (SEQ ID NO: 2136) VP1 108‐116  A*02:01  CLLPKMDSV (SEQ ID NO: 2137)  large T antigen 398‐406  A*02:01  FLWGPRALV (SEQ ID NO: 2138)  MAGEA3 271‐279  A*02:01  IMDQVPFSV (SEQ ID NO: 2139)  gp100 (pmel17) 209‐217  A*02:01  YLEPGPVTV (SEQ ID NO: 2140)  gp100 (pmel) 280‐288 (288V)  A*02:01  YLSGADLNL (SEQ ID NO: 2141)  Carcinoembryonic antigen (CEA)‐derived peptide  CAP1‐6D  A*02:01  SLLMWITQC (SEQ ID NO: 2142)  NY‐ESO‐1 157‐165 (9C)  A*02:01  KTWGQYWQV (SEQ ID NO: 2143)  gp100 (pmel17) 154‐162  A*02:01  YLEPGPVTA (SEQ ID NO: 2144)  gp100  A*02:01  YMDGTMSQV (SEQ ID NO: 2145)  Tyrosinase 369‐377 (371D)  A*02:01  YLSGANLNL (SEQ ID NO: 2146)  Carcinogenic Embryonic Antigen (CEA) 571‐579  A*02:01  ELAGIGILTV (SEQ ID NO: 2147)  MelanA / MART 26‐35  A*02:01  ILAKFLHWL (SEQ ID NO: 2148)  Telomerase 540‐548  A*02:01  ALQPGTALL (SEQ ID NO: 2149)  Prostate Stem Cell Antigen (PSCA) 14‐22  A*02:01  VISNDVCAQV (SEQ ID NO: 2150) Prostate Specific Antigen‐1 (PSA‐1) 154‐163  A*02:01  RLVDDFLLV (SEQ ID NO: 2151)  Telomerase Reverse Transcriptase 865‐873  A*02:01  GVLVGVALI (SEQ ID NO: 2152)  Carcinogenic Embryonic Antigen (CEA) 694‐702  A*02:01  VLYRYGSFSV (SEQ ID NO: 2153)  gp100 (pmel17) 476‐485  A*02:01  PLFQVPEPV (SEQ ID NO: 2154)  Alpha‐fetoprotein isoform 1 137‐145  A*02:01  FMNKFIYEI (SEQ ID NO: 2155)  Human alfa fetoprotein 158‐166  A*02:01  GLSPNLNRFL (SEQ ID NO: 2156) Alpha‐fetoprotein isoform 2 167‐176  A*02:01  KVLEYVIKV (SEQ ID NO: 2157)  MAGEA1 278‐286  A*02:01  LLGRNSFEV (SEQ ID NO: 2158)  p53 264‐272  A*02:01  LLLLTVLTV (SEQ ID NO: 2159)  MUC‐1 12‐20  A*02:01  ILHNGAYSL (SEQ ID NO: 2160)  HER‐2/neu 435‐443  A*02:01  RLLQETELV (SEQ ID NO: 2161)  HER‐2/neu 689‐697  A*02:01  KIFGSLAFL (SEQ ID NO: 2162)  HER‐2/neu 369‐377  A*02:01  LLLLDVAPL (SEQ ID NO: 2163)  HSP1A 459‐467  A*02:01  LLDVAPLSL (SEQ ID NO: 2164)  HSP1A 461‐469  A*02:01  HLYQGCQVV (SEQ ID NO: 2165) Receptor tyrosine‐protein kinase erbB‐2 48‐56  A*02:01  HLSTAFARV (SEQ ID NO: 2166)  G250 (renal cell carcinoma) 217‐225  A*02:01  VLQELNVTV (SEQ ID NO: 2167)  Leukocyte Proteinase‐3 (Wegener's autoantigen)  169‐177  A*02:01  KVAELVHFL (SEQ ID NO: 2168)  MAGEA3 112‐120  A*02:01  VLAGVGFFI (SEQ ID NO: 2169)  EPHA2 550‐558  A*02:01  FLYTLLREV (SEQ ID NO: 2170)  STEAP 86‐94  A*02:01  ILLWQPIPV (SEQ ID NO: 2171)  Prostatic Acid Phosphatase‐3 (PAP‐3) 135‐143  A*02:01  RLQEERTCKV (SEQ ID NO: 2172) BIR  A*02:01  QLCPICRAPV (SEQ ID NO: 2173)  Livin/ML‐IAP280 175‐184  A*02:01  VLGEAWRDQV (SEQ ID NO: 2174)  TRAP 45‐54  A*02:01  LLLTVLTVV (SEQ ID NO: 2175)  Tumor Mucin Antigen 13‐21  A*02:01  GLYDGMEHL (SEQ ID NO: 2176) MAGEA‐10 254‐262  A*02:01  SLLMWITQV (SEQ ID NO: 2177)  NY‐ESO‐1 157‐165  A*02:01  LMLGEFLKL (SEQ ID NO: 2178)  Survivin 96‐104  A*02:01  YLFFYRKSV (SEQ ID NO: 2179)  mTERT 572‐580  A*02:01  ELTLGEFLKL (SEQ ID NO: 2180)  survivin 95‐104  A*02:01  FLTPKKLQCV (SEQ ID NO: 2181) Prostate Specific Antigen‐1 (PSA‐1) 141‐150  A*02:01  KLQCVDLHV (SEQ ID NO: 2182)  Prostate Specific Antigen 146‐154  A*02:01  TLAPATEPA (SEQ ID NO: 2183)  Mucin 79‐87  A*02:01  YLQVNSLQTV (SEQ ID NO: 2184) Telomerase Reverse Transcriptase (hTRT) 988‐997  A*02:01  SLGEQQYSV (SEQ ID NO: 2185)  WT1 187‐195  A*02:01  SLEENIVIL (SEQ ID NO: 2186)  RHAMM 275‐283  A*02:01  YMNGTMSQV (SEQ ID NO: 2187)  Tyrosinase 368‐376  A*02:01  ILSLELMKL (SEQ ID NO: 2188)  Receptor for hyaluronic acid‐mediatedmotility  (RHAMM) 165‐173  A*02:01  PLFDFSWLSL (SEQ ID NO: 2189) Bcl‐2 208‐217  A*02:01  LLGATCMFV (SEQ ID NO: 2190)  CyclinD 101‐109  A*02:01  ALYVDSLFFL (SEQ ID NO: 2191)  PRAME PRA 300‐309  A*02:01  GLMEEMSAL (SEQ ID NO: 2192) Human Mena protein (overexpressed in breast  cancer)  A*02:01  TMNGSKSPV (SEQ ID NO: 2193) hMena 502‐510  A*02:01  GVYDGREHTV (SEQ ID NO: 2194)  MAGE‐A4 230‐239  A*02:01  YLNDHLEPWI (SEQ ID NO: 2195) Bcl‐X 173‐182  A*02:01  ALDVYNGLL (SEQ ID NO: 2196)  Prostatic acid phosphatase precursor (PAP) 299‐307  A*02:01  ALFDIESKV (SEQ ID NO: 2197)  PSM P2 (prostate)  A*02:01  SLAMLDLLHV (SEQ ID NO: 2198) Mutant anaplastic lymphoma kinase 1220‐1229  A*02:01  YLNTVQPTCV (SEQ ID NO: 2199) EGF‐R 1138‐1147  A*02:01  KLFGTSGQKT (SEQ ID NO: 2200) EGF‐R‐479 350‐359  A*02:01  RMPEAAPPV (SEQ ID NO: 2201) p53 65‐73  A*02:01  PLTSIISAV (SEQ ID NO: 2202)  Receptor tyrosine‐protein kinase erbB‐2 728‐736  A*02:01  VLAGGFFLL (SEQ ID NO: 2203)  PSMA 27‐38  A*02:01  LLHETDSAV (SEQ ID NO: 2204)  PSMA/PSM‐P1 4‐12  A*02:01  VMAGVGSPYV (SEQ ID NO: 2205)  Receptor tyrosine‐protein kinase erbB‐2  819‐828  A*02:01  VLPLTVAEV (SEQ ID NO: 2206)  Mesothelin 530‐538  A*02:01  SLLFLLFSL (SEQ ID NO: 2207)  Mesothelin 20‐28  A*02:01  QLFEELQEL (SEQ ID NO: 2208)  Heme oxygenase‐1 212‐220  A*02:01  VLDGLDVLL (SEQ ID NO: 2209)  PRAME 100‐108  A*02:01  RLASFYDWPL (SEQ ID NO: 2210) BIR7 90‐99  A*02:01  LIAHNQVRQV (SEQ ID NO: 2211)  HER‐2/neu (85‐94)  A*02:01  ILHDGAYSL (SEQ ID NO: 2212)  HER‐2 434‐443  A*02:01  FVGEFFTDV (SEQ ID NO: 2213)  GPC3 144‐152 (overexpressed in hepatocellular  carcinoma)  A*02:01  LLLIWFRPV (SEQ ID NO: 2214)  BKV Ltag 579‐587  A*02:01  KLQDASAEV (SEQ ID NO: 2215)  HM1.24‐aa 126‐134  A*02:01  SLYSFPEPEA (SEQ ID NO: 2216)  PRAME  A*02:01  SLLQHLIGL (SEQ ID NO: 2217)  PRAME 425‐433  A*02:01  VIFDFLHCI (SEQ ID NO: 2218)  BKV Ltag 406‐414  A*02:01  VLDFAPPGA (SEQ ID NO: 2219)  WT1  A*02:01  TLPGYPPHV (SEQ ID NO: 2220)  PAX‐5 311‐319  A*02:01  YMEHNNVYTV (SEQ ID NO: 2221)  Fibromodulin 250‐259  A*02:01  YLQHNEIQEV (SEQ ID NO: 2222) Fibromodulin 206‐215  A*02:01  SLVDVMPWL (SEQ ID NO: 2223) Cytochrome p450 1B1 239‐248  A*02:01  RLMNDMTAV (SEQ ID NO: 2224)  HSP105 128‐136  A*02:01  RLARLALVL (SEQ ID NO: 2225)  Trophoblast glycoprotein 17‐25  A*02:01  FLTGNQLAV (SEQ ID NO: 2226)  5T4 97‐105  A*02:01  LLLAGLFSL (SEQ ID NO: 2227)  Fibromodulin 7‐15  A*02:01  FLGYLILGV (SEQ ID NO: 2228)  Prostatic Acid Phosphatase‐3 (PAP‐3)  A*02:01  SLFLGILSV (SEQ ID NO: 2229)  CD20 188‐196 (B cell malignancies)  A*02:01  AVLPLLELV (SEQ ID NO: 2230)  MCL‐1 139‐147  A*02:01  SLSEKTVLL (SEQ ID NO: 2231)  CD59 glycoprotein precursor 106‐114  A*02:01  YMCSFLFNL (SEQ ID NO: 2232)  Ewing Tumor EZH2 666‐674  A*02:01  YLISGDSPV (SEQ ID NO: 2233)  CD33 65‐73 (1Y2L)  A*02:01  KASEKIFYV (SEQ ID NO: 2234)  SSX2 41‐49  A*02:01  FLAKLNNTV (SEQ ID NO: 2235)  HCA587 317‐325  A*02:01  GLAPPQHLIRV (SEQ ID NO: 2236)  p53 187‐197  A*02:01  VIMPCSWWV (SEQ ID NO: 2237)  Chondromodulin‐I 319‐327  A*02:01  KVVEFLAML (SEQ ID NO: 2238)  MAGE‐C1 1083‐1091  A*02:01  LTLGEFLKL (SEQ ID NO: 2239)  Survivin‐3A 96‐104  A*02:01  ALPFGFILV (SEQ ID NO: 2240)  IL13R 345‐353  A*02:01  TLADFDPRV (SEQ ID NO: 2241)  EphA2  A*02:01  ALMEQQHYV (SEQ ID NO: 2242) ITGB8 662‐670  A*02:01  CLTSTVQLV (SEQ ID NO: 2243)  HER‐2/neu 789‐797  A*02:01  GLLGASVLGL (SEQ ID NO: 2244) Telomerase Reverse Transcriptase (hTRT) 674‐683  A*02:01  QLLDGFMITL (SEQ ID NO: 2245) PASD1 39‐48  A*02:01  YLVGNVCIL (SEQ ID NO: 2246)  PASD1 168‐176  A*02:01  ALLTSRLRFI (SEQ ID NO: 2247)  Telomerase Reverse Transcriptase (hTRT) 615‐624  A*02:01  RLSSCVPVA (SEQ ID NO: 2248)  TGF beta receptor type‐2 131‐139  A*02:01  FLYDDNQRV (SEQ ID NO: 2249)  Topoisomerase II‐alpha‐b 828‐836  A*02:01  YLIELIDRV (SEQ ID NO: 2250)  TACE 250‐258  A*02:01  FLAEDALNTV (SEQ ID NO: 2251) Epithelial Discoidin Domain Receptor 1 (EDDR1)  867‐876  A*02:01  GLMKYIGEV (SEQ ID NO: 2252)  TRPM8 187‐195  A*02:01  AILALLPAL (SEQ ID NO: 2253)  Prostate Stem Cell Antigen (PSCA) 105‐133  A*02:01  GLQHWVPEL (SEQ ID NO: 2254) BA46 (Lactadherin) 97‐106  A*02:01  GVRGRVEEI (SEQ ID NO: 2255)  BCR‐ABL  A*02:01  ITDQVPFSV (SEQ ID NO: 2256)  gp100 (pmel) 209‐217  A*02:01  KLCPVQLWV (SEQ ID NO: 2257) p53 139‐147  A*02:01  KVAEELVHFL (SEQ ID NO: 2258) MAGEA3 112‐120 (alternative version)  A*02:01  SLPPPGTRV (SEQ ID NO: 2259)  p53 149‐157  A*02:01  YLGSYGFRL (SEQ ID NO: 2260)  p53 103‐111  A*02:01  YLQLVFGIEV (SEQ ID NO: 2261)  MAGEA2 157‐166  A*02:01  TLQDIVYKL (SEQ ID NO: 2262)  BMI1 74‐82  A*02:01  YAIDLPVSV (SEQ ID NO: 2263)  L‐dopachrome tautomerase 488‐496  A*02:01  AMVGAVLTA (SEQ ID NO: 2264) Tyrosinase 482‐190  A*02:01  ATVGIMIGV (SEQ ID NO: 2265)  CEACAM5 687‐695  A*02:01  YVDPVITSI (SEQ ID NO: 2266)  Hepatocyte growth factor receptor 673‐681  A*02:01  GVLLWEIFSL (SEQ ID NO: 2267)  VEGFR1 28‐37  A*02:01  LMAQEALAFL (SEQ ID NO: 2268) CAMEL 2‐11  A*02:01  RVA(PHOSPHO‐S)PTSGV (SEQ ID NO: 2269)Insulin receptor substrate‐2 1097‐1105  A*02:01  RVASPTSGV (SEQ ID NO: 2270)  IRS‐2 1097‐1105  A*02:01  ALNVYNGLL (SEQ ID NO: 2271)  ACPP 299‐307  A*02:01  ALSPVPPVV (SEQ ID NO: 2272)  Bcl‐2 85‐93  A*02:01  ALVCYGPGI (SEQ ID NO: 2273)  FAP alpha 463‐471  A*02:01  ALWPWLLMAT (SEQ ID NO: 2274)  RNF43 11‐20  A*02:01  ALYLMELTM (SEQ ID NO: 2275)  CB9L2  A*02:01  CLPSPSTPV (SEQ ID NO: 2276)  BMI1 271‐279  A*02:01  ELSDSLGPV (SEQ ID NO: 2277)  PASD1 695‐703  A*02:01  FLFLRNFSL (SEQ ID NO: 2278)  TARP(V28L)27‐35  A*02:01  FLPSPLFFFL (SEQ ID NO: 2279)  TARP(P5L) 5‐13  A*02:01  GLFKCGIAV (SEQ ID NO: 2280)  FAP 639‐647  A*02:01  GLIQLVEGV (SEQ ID NO: 2281)  TRAG‐3 4‐12  A*02:01  ILGVLTSLV (SEQ ID NO: 2282)  DLK1 309‐317  A*02:01  LLVPTCVFLV (SEQ ID NO: 2283)  691‐700  A*02:01  MLAVFLPIV (SEQ ID NO: 2284)  STEAP 292‐300 (293L)  A*02:01  NLFETPVEA (SEQ ID NO: 2285)  194‐202  A*02:01  QLGEQCWTV (SEQ ID NO: 2286) PSCA 44‐51 (51A)  A*02:01  RLAEYQAYI (SEQ ID NO: 2287)  SART3 309‐317  A*02:01  SIDWFMVTV (SEQ ID NO: 2288) p31‐39  A*02:01  SILLRDAGLV (SEQ ID NO: 2289)  TRAG‐3 57‐66  A*02:01  SLFEPPPPG (SEQ ID NO: 2290)  PSMA 85‐93  A*02:01  SQADALKYV (SEQ ID NO: 2291)  EZH2 729‐737  A*02:01  WLSLKTLLSL (SEQ ID NO: 2292)  Bcl‐2 214‐223  A*02:01  YLNRHLHTWI (SEQ ID NO: 2293) BCL‐2 180‐189  A*02:01  YLQWIEFSI (SEQ ID NO: 2294)  Prominin1 744‐752  A*02:01  YLYQWLGAPV (SEQ ID NO: 2295)  Osteocalcin 51‐60  A*02:01  KLMSSNSTDL (SEQ ID NO: 2296) HSP105 234‐243  A*02:01  RLQGISPKI (SEQ ID NO: 2297)  SSX2 103‐111  A*02:01  AILALLPALL (SEQ ID NO: 2298)  PSCA  A*02:01  ALIHHNTHL (SEQ ID NO: 2299)  HER2 466‐474  A*02:01  CMHLLLEAV (SEQ ID NO: 2300)  MG50 624‐632  A*02:01  FLIIWQNTM (SEQ ID NO: 2301)  FSP26  A*02:01  FLPWHRLFLL (SEQ ID NO: 2302) Tyrosinase 207‐216  A*02:01  FVWLHYYSV (SEQ ID NO: 2303)  TRP2 185‐193(L)  A*02:01  GLFGDIYLA (SEQ ID NO: 2304)  CSNK1A1 26‐34  A*02:01  GLFGDIYLAI (SEQ ID NO: 2305)  CSNK1A1 26‐35  A*02:01  ILLRDAGLV (SEQ ID NO: 2306)  TRAG‐3L 58‐66  A*02:01  ILLVVVLGV (SEQ ID NO: 2307)  Receptor tyrosine‐protein kinase erbB‐2 707‐715  A*02:01  ILNAMIAKI (SEQ ID NO: 2308)  HAUS3 154‐162  A*02:01  KASEYLQLV (SEQ ID NO: 2309)  MAGEA2 153‐161  A*02:01  KIWEELSVL (SEQ ID NO: 2310)  MAGEA3 220‐228  A*02:01  KLIDRTE(S)L (SEQ ID NO: 2311)  LSP1 325‐333  A*02:01  KLTGDENFTI (SEQ ID NO: 2312)  Tyrosinase precursor 224‐233  A*02:01  LLCYSCKAQV (SEQ ID NO: 2313) PSCA 17‐26  A*02:01  LLLEAVPAV (SEQ ID NO: 2314)  MG50 69‐77  A*02:01  LLNQLQVNL (SEQ ID NO: 2315)  Mucin2 467‐475  A*02:01  LLRDAGLVKM (SEQ ID NO: 2316)  TRAP 59‐68  A*02:01  LLRRYNVAKV (SEQ ID NO: 2317) SOX11 266‐275  A*02:01  LLSHGAVIEV (SEQ ID NO: 2318)  Ankyrin NYBR1 158‐167  A*02:01  LVFGIELMEV (SEQ ID NO: 2319) MAGEA3 160‐169  A*02:01  LVFGIEVVEV (SEQ ID NO: 2320)  MAGEA12 160‐169  A*02:01  MLWGWREHV (SEQ ID NO: 2321)  Mucin2 645‐653  A*02:01  PLQPEQLQV (SEQ ID NO: 2322)  Receptor tyrosine‐protein kinase erbB‐2 437‐445  A*02:01  QLMAFNHLI (SEQ ID NO: 2323)  PAX3/FKHR 135‐143  A*02:01  QLMPYGCLL (SEQ ID NO: 2324)  Receptor tyrosine‐protein kinase erbB‐2 845‐853  A*02:01  RLGPTLMCL (SEQ ID NO: 2325)  MG50 1244‐1252  A*02:01  RLTRFLSRV (SEQ ID NO: 2326)  CyclinD 228‐236  A*02:01  RTF(S)PTYGL (SEQ ID NO: 2327) Desmuslin 426‐434  A*02:01  SILLRDAGL (SEQ ID NO: 2328)  TRAP 57‐65  A*02:01  SLADEAEVYL (SEQ ID NO: 2329) GAS7 Neoepitope  A*02:01  SLDDYNHLV (SEQ ID NO: 2330)  L‐dopachrome tautomerase 288‐296  A*02:01  SLYKFSPFPL (SEQ ID NO: 2331)  O‐linked N‐acetylglucosamine transferase FSP06  A*02:01  SMTR(S)PPRV (SEQ ID NO: 2332)  SFRS2B 241‐249  A*02:01  TLEEITGYL (SEQ ID NO: 2333)  Receptor tyrosine‐protein kinase erbB‐2 448‐456  A*02:01  TLHCDCEIL (SEQ ID NO: 2334)  MG50 210‐218  A*02:01  VLEPPGARDV (SEQ ID NO: 2335) BIR 7 230‐239  A*02:01  VLLALLMAGL (SEQ ID NO: 2336) Prostate stem cell antigen 4‐13  A*02:01  VLSVNVPDV (SEQ ID NO: 2337)  MG50 625‐633  A*02:01  VLVKSPNHV (SEQ ID NO: 2338)  Receptor tyrosine‐protein kinase erbB‐4 890‐898  A*02:01  VMIG(S)PKKV (SEQ ID NO: 2339)  Tensin3 1558‐1566  A*02:01  VVLGVVFGI (SEQ ID NO: 2340)  Receptor tyrosine‐protein kinase erbB‐2 743‐751  A*02:01  WLPKILGEV (SEQ ID NO: 2341)  MG50 1051‐1059  A*02:01  WLQYFPNPV (SEQ ID NO: 2342) Cytochrome P450 246‐254  A*02:01  YLLDLSTNHL (SEQ ID NO: 2343)  Fibromodulin 7‐15  A*02:01  YLWWVNNQSL (SEQ ID NO: 2344)  CEA 176‐185  A*02:01  ALGGHPLLGV (SEQ ID NO: 2345) Dickkopf‐related protein 1 20‐29  A*02:01  ALLAGLVSL (SEQ ID NO: 2346)  FGFR4 676‐684  A*02:01  ALLTYMIAHI (SEQ ID NO: 2347)  Thymidylate synthase 231‐240  A*02:01  ALMDKSLHV (SEQ ID NO: 2348)  MART‐1 56‐64  A*02:01  ALPPPLMLL (SEQ ID NO: 2349)  Heparanase 8‐16  A*02:01  ALSVMGVYV (SEQ ID NO: 2350) MAGEA9 223‐231  A*02:01  ALVEFEDVL (SEQ ID NO: 2351)  hnRNP L 140‐148  A*02:01  ALWPWLLMA (SEQ ID NO: 2352)  RNF43 11‐19  A*02:01  AMLGTHTMEV (SEQ ID NO: 2353)  Melanocyte‐specific secreted glycoprotein  184‐193  A*02:01  AVIGALLAV (SEQ ID NO: 2354)  Melanocyte‐specific secreted glycoprotein 20‐28  A*02:01  CLYGNVEKV (SEQ ID NO: 2355)  hnRNP L 404‐412  A*02:01  DLIFGLNAL (SEQ ID NO: 2356)  Heparanase 185‐193  A*02:01  ELFQDLSQL (SEQ ID NO: 2357)  ETV5 54‐53  A*02:01  FAWERVRGL (SEQ ID NO: 2358) Cyclin‐dependent kinase inhibitor 1 97‐105  A*02:01  FIASNGVKLV (SEQ ID NO: 2359) ACTN4 118‐127 (K5N)  A*02:01  FLALIICNA (SEQ ID NO: 2360)  Tubulin beta 4 283‐291  A*02:01  FLDEFMEGV (SEQ ID NO: 2361)  Malic enzyme 224‐232  A*02:01  RMFPNAPYL (SEQ ID NO: 2362)  WT‐1 126‐134 (Wilms tumor)  A*02:01  RLNMFTPYI (SEQ ID NO: 2363)  Chlamydia trachomatis MOMP 258‐266  A*02:01  NMFTPYIGV (SEQ ID NO: 2364)  MOMP precursor 283‐291  A*02:01  NLVPMVATV (SEQ ID NO: 2365) HCMV pp65 495‐504  A*02:01  VLEETSVML (SEQ ID NO: 2366)  HCMV IE1 316‐324 (UL123)  A*02:01  VLAELVKQI (SEQ ID NO: 2367)  HCMV IE1 81‐89  A*02:01  MLNIPSINV (SEQ ID NO: 2368)  pp65 120‐128  A*02:01  LLLDRLNQL (SEQ ID NO: 2369)  SARS‐CoV Nucleocapsid protein 223‐231 (conserved  in SARS‐CoV‐2)  A*02:01  FIAGLIAIV (SEQ ID NO: 2370)  SARS‐CoV‐2 Spike glycoprotein 1220‐1228  (confirmed epitope)  A*02:01  ALNTLVKQL (SEQ ID NO: 2371)  SARS‐CoV Spike glycoprotein precursor 940‐948  (conserved in SARS‐CoV‐2)  A*02:01  LITGRLQSL (SEQ ID NO: 2372)  SARS‐CoV‐2 Spike glycoprotein 996‐1004 (confirmed  epitope)  A*02:01  NLNESLIDL (SEQ ID NO: 2373)  SARS‐CoV  Spike glycoprotein precursor 1174‐1182 (conserved in SARS‐Cov‐2)  A*02:01  VLNDILSRL (SEQ ID NO: 2374)  SARS‐CoV Spike glycoprotein precursor 958‐966  (conserved in SARS‐Cov‐2)  A*02:01  YLQPRTFLL (SEQ ID NO: 2375)  SARS‐Cov‐2 Spike glycoprotein 269‐277 (confirmed  epitope)  A*02:01  LLYDANYFL (SEQ ID NO: 2376)  SARS‐CoV‐2 ORF3a 139‐147 (confirmed epitope)  A*02:01  RLQSLQTYV (SEQ ID NO: 2377)  SARS‐CoV‐2 Spike glycoprotein 1000‐1008  (confirmed subdominant epitope)  A*02:01  KLWAQCVQL (SEQ ID NO: 2378) SARS‐CoV‐2 ORF1ab 3886‐3894 (confirmed epitope)  A*02:01  TLYAVATTI (SEQ ID NO: 2379)  Dengue NS4b 40‐48  A*02:01  KLAEAIFKL (SEQ ID NO: 2380)  Dengue NS5 563‐571  A*02:01  ILIRTGLLVI (SEQ ID NO: 2381)  Dengue NS2b 97‐106  A*02:01  AIKRGLRTL (SEQ ID NO: 2382)  Dengue NS3 112‐120  A*02:01  LLLGLMILL (SEQ ID NO: 2383)  Dengue NS4a 56‐64  A*02:01  VLLLVTHYA (SEQ ID NO: 2384)  Dengue NS4b 111‐119  A*02:01  GLCTLVAML (SEQ ID NO: 2385)  EBV BMLF‐1 259‐267  A*02:01  CLGGLLTMV (SEQ ID NO: 2386)  EBV LMP‐2 426‐434  A*02:01  YLLEMLWRL (SEQ ID NO: 2387)  EBV LMP‐1 125‐133  A*02:01  YLQQNWWTL (SEQ ID NO: 2388)  EBV LMP1 159‐167  A*02:01  YVLDHLIVV (SEQ ID NO: 2389)  EBV BRLF1 109‐117  A*02:01  FLYALALLL (SEQ ID NO: 2390)  EBV LMP‐2 356‐364  A*02:01  TLDYKPLSV (SEQ ID NO: 2391)  EBV BMRF1 208‐216  A*02:01  LLDFVRFMGV (SEQ ID NO: 2392)  EBV EBNA‐3C 284‐293  A*02:01  FLDKGTYTL (SEQ ID NO: 2393)  EBV BALF‐4 276‐284  A*02:01  FLPSDFFPSV (SEQ ID NO: 2394)  HBV core antigen 18‐27  A*02:01  FLLTRILTI (SEQ ID NO: 2395)  HBV envelope 183‐191  A*02:01  GLSPTVWLSV (SEQ ID NO: 2396) HBV surface antigen 185‐194  A*02:01  WLSLLVPFV (SEQ ID NO: 2397)  HBV surface antigen 172‐181  A*02:01  FLLSLGIHL (SEQ ID NO: 2398)  HBV polymerase 573‐581  A*02:01  FLPSDFFPSI (SEQ ID NO: 2399)  HBV core 18‐27 (subtype ADR4)  A*02:01  VLHKRTLGL (SEQ ID NO: 2400)  HBV X 92‐100  A*02:01  GLSRYVARL (SEQ ID NO: 2401)  HBV Pol 455‐463  A*02:01  YMDDVVLGA (SEQ ID NO: 2402) HBV Polymerase 548‐556  A*02:01  KLHLYSHPI (SEQ ID NO: 2403)  HBV Pol 502‐510  A*02:01  ELMTLATWV (SEQ ID NO: 2404) HBV core protein 64‐72  A*02:01  DLMGYIPAV (SEQ ID NO: 2405)  HCV core 132‐140  A*02:01  CINGVCWTV (SEQ ID NO: 2406) HCV NS3 1073‐1081  A*02:01  YLLPRRGPRL (SEQ ID NO: 2407)  HCV core 35‐44  A*02:01  VLSDFKTWL (SEQ ID NO: 2408)  HCV NS5a 1987‐1995  A*02:01  ALYDVVTKL (SEQ ID NO: 2409)  HCV NS5b 2594‐2602  A*02:01  KLVALGINAV (SEQ ID NO: 2410) HCV NS3 1406‐1415  A*02:01  LLFNILGGWV (SEQ ID NO: 2411) HCV NS4b 1807‐1816  A*02:01  KLSGLGINAV (SEQ ID NO: 2412) HCV NS3 1406‐1415  A*02:01  DLMGYIPLV (SEQ ID NO: 2413)  HCV core 132‐140  A*02:01  CVNGVCWTV (SEQ ID NO: 2414) HCV NS3 1073‐1081  A*02:01  GLQDCTMLV (SEQ ID NO: 2415) HCV NS5B 2727‐2735  A*02:01  SLYNTVATL (SEQ ID NO: 2416)  HIV‐1 gag p17 76‐84  A*02:01  ILKEPVHGV (SEQ ID NO: 2417)  HIV‐1 RT 476‐484  A*02:01  TLNAWVKVV (SEQ ID NO: 2418) HIV‐1 gag p24 19‐27  A*02:01  KLTPLCVTL (SEQ ID NO: 2419)  HIV‐1 env gp120 90‐98  A*02:01  GLADQLIHL (SEQ ID NO: 2420)  HIV‐1 vif 101‐109  A*02:01  LTFGWCFKL (SEQ ID NO: 2421)  HIV‐1 nef 137‐145  A*02:01  FLGKIWPS (SEQ ID NO: 2422)  Gag 433‐440  A*02:01  ALVEMGHHA (SEQ ID NO: 2423) HIV Vpu 66‐74  A*02:01  RTLNAWVKV (SEQ ID NO: 2424) HIV gag 150‐158  A*02:01  NVWATHACV (SEQ ID NO: 2425) HIV env gp 67‐7  A*02:01  SLLNATAIAV (SEQ ID NO: 2426)  HIV env 816‐825  A*02:01  SLFNTVATL (SEQ ID NO: 2427)  HIV gag 77‐85  A*02:01  SLVKHHMYI (SEQ ID NO: 2428)  HIV vif 23‐31  A*02:01  VIYHYVDDL (SEQ ID NO: 2429)  HIV pol  A*02:01  YMLDLQPETT (SEQ ID NO: 2430) HPV 16 E7 11‐20  A*02:01  KLPQLCTEL (SEQ ID NO: 2431)  HPV 16 E6 18‐26  A*02:01  YMLDLQPET (SEQ ID NO: 2432)  HPV 16 E7 11‐19  A*02:01  MLDLQPETT (SEQ ID NO: 2433)  HPV 16 E7 12‐20  A*02:01  VLMIKALEL (SEQ ID NO: 2434)  Non muscle Myosin‐9 741‐749  A*02:01  QLFNHTMFI (SEQ ID NO: 2435)  Non‐muscle Myosin 478‐486  A*02:01  QMARLAWEA (SEQ ID NO: 2436)  1116‐1124  A*02:01  LLFGYPVYV (SEQ ID NO: 2437)  Human T‐cell lymphotropic virus‐1 (HTLV‐1) tax 11‐ 19  A*02:01  AVLDGLLSL (SEQ ID NO: 2438)  HTLV bZIP factor 42‐50  A*02:01  GLLSLEEEL (SEQ ID NO: 2439)  bZIP factor 26‐34  A*02:01  GILGFVFTL (SEQ ID NO: 2440)  Influenza A MP 58‐66  A*02:01  ILGFVFTLTV (SEQ ID NO: 2441)  Influenza A MP 59‐68  A*02:01  KLGEFYNQMM (SEQ ID NO: 2442)  Flu BNP 85‐94 (Influenza B)  A*02:01  SITEVECFL (SEQ ID NO: 2443)  VP1 36‐44  A*02:01  ILMWEAVTL (SEQ ID NO: 2444)  VP1 100‐108  A*02:01  ALPHIIDEV (SEQ ID NO: 2445)  LCMV envelope gp 10‐18  A*02:01  YLVSIFLHL (SEQ ID NO: 2446)  LCMV envelope gp 447‐455  A*02:01  SLNQTVHSL (SEQ ID NO: 2447)  NP 69‐77  A*02:01  YLNKIQNSL (SEQ ID NO: 2448)  Plasmodium falciparum CSP 334‐342  A*02:01  FIDSYICQV (SEQ ID NO: 2449)  miHAg H‐Y (human SMCY) 311‐319  A*02:01  YIGEVLVSV (SEQ ID NO: 2450)  HA‐2  A*02:01  VLHDDLLEA (SEQ ID NO: 2451)  Minor Histocompatibility Antigen HA‐1 137‐145  A*02:01  RTLDKVLEV (SEQ ID NO: 2452)  miHAg HA‐8  A*02:01  NEGATIVE (SEQ ID NO: 2453)  Negative Control  A*02:01  TMFPHIIVDV (SEQ ID NO: 2454) Norovirus VP1 139‐148  A*02:01  LLDVPTAAV (SEQ ID NO: 2455)  Interferon gamma inducible protein (GILT) 30 27‐35  A*02:01  RILGAVAKV (SEQ ID NO: 2456)  Vinculin 822‐830  A*02:01  LMWYELSKI (SEQ ID NO: 2457)  KSHVF‐8 gB.492‐500  A*02:01  ILEDIVLTL (SEQ ID NO: 2458)  Streptococcus pyogenes Cas9 615‐623  A*02:01  KMLKEMGEV (SEQ ID NO: 2459) RSV NP 137‐145  A*02:01  KLIANNTRV (SEQ ID NO: 2460)  Mycobacterium bovis antigen 85‐A 200‐208  A*02:01  GLPVEYLQV (SEQ ID NO: 2461)  Mycobacterium bovis antigen 85‐A 6‐14  A*02:01  GILTVSVAV (SEQ ID NO: 2462)  16 kDa  A*02:01  AMASTEGNV (SEQ ID NO: 2463) ESAT‐6  A*02:01  VLTDGNPPEV (SEQ ID NO: 2464) 19 kDa  A*02:01  KVDDTFYYV (SEQ ID NO: 2465)  Vaccinia virus Host range protein 2 74‐82  A*02:01  ILDDNLYKV (SEQ ID NO: 2466)  Vaccinia virus Copenhagen Protein G5 18‐26  A*02:01  ALWALPHAA (SEQ ID NO: 2467)  IE62 593‐601  A*02:01  RLDDDGNFQL (SEQ ID NO: 2468)  West Nile Virus NY‐99 polyprotein precursor  (1452‐1461)  A*02:01  ATWAENIQV (SEQ ID NO: 2469) West Nile virus NY‐99 polyprotein precursor 3390‐ 3398  A*02:01  YTMDGEYRL (SEQ ID NO: 2470)  West Nile virus NY‐99 polyprotein precursor 2023‐ 2031  A*02:01  SVGGVFTSV (SEQ ID NO: 2471)  WNV envelope gp 430‐438  A*02:01  SLFGQRIEV (SEQ ID NO: 2472)  WNV nonstructural protein 4B 15‐23  A*02:01  LLWNGPMAV (SEQ ID NO: 2473)  NS4B 214‐222  A*03:01  KQSSKALQR (SEQ ID NO: 2474)  bcr‐abl 210 kD fusion protein 21‐29  A*03:01  ALLAVGATK (SEQ ID NO: 2475)  gp100 (pmel17) 17‐25  A*03:01  ATGFKQSSK (SEQ ID NO: 2476)  bcr‐abl 210 kD fusion protein 259‐269  A*03:01  RISTFKNWPK (SEQ ID NO: 2477) Survivin‐3A 18‐27 (27K)  A*03:01  RLGLQVRKNK (SEQ ID NO: 2478) RhoC 176‐185 (177L)  A*03:01  RLLFFAPTR (SEQ ID NO: 2479)  Mcl‐1 95‐103  A*03:01  QVLKKIAQK (SEQ ID NO: 2480)  HMOX1 145‐153  A*03:01  RIAAWMATY (SEQ ID NO: 2481) 165‐173  A*03:01  KLGGALQAK (SEQ ID NO: 2482)  HCMV IE1 184‐192  A*03:01  KTFPPTEPK (SEQ ID NO: 2483)  SARS‐CoV‐2 Nucleocapsid protein 362‐370  (confirmed epitope)  A*03:01  ELERAADVK (SEQ ID NO: 2484)  Dengue NS2b 52‐60  A*03:01  RVSTVQQLTK (SEQ ID NO: 2485) Dengue C 22‐31  A*03:01  RIEPSWADVK (SEQ ID NO: 2486) Dengue NS3 64‐74  A*03:01  RVIDPRRCMK (SEQ ID NO: 2487) Dengue NS3 422‐431  A*03:01  KITAEWLWK (SEQ ID NO: 2488)  Dengue NS5 375‐383  A*03:01  RLRAEAQVK (SEQ ID NO: 2489)  EBV EBNA 3A 603‐611  A*03:01  RVRAYTYSK (SEQ ID NO: 2490)  EBV BRLF1  A*03:01  RVCEKMALY (SEQ ID NO: 2491)  HCV NS5B 2588‐2596  A*03:01  QVPLRPMTYK (SEQ ID NO: 2492)  HIV‐1 nef 73‐82  A*03:01  RLRPGGKKK (SEQ ID NO: 2493)  HIV‐1 gag p17 19‐27  A*03:01  AIFQSSMTK (SEQ ID NO: 2494)  HIV pol 325‐333  A*03:01  KLCLRFLSK (SEQ ID NO: 2495)  HPV 33 E6 64‐72  A*03:01  ILRGSVAHK (SEQ ID NO: 2496)  Influenza A (PR8) NP 265‐274  A*11:01  KTFPPTEPK (SEQ ID NO: 2483)  SARS‐CoV‐2 Nucleocapsid protein 362‐370  (confirmed epitope)  A*11:01  GTSGSPIINR (SEQ ID NO: 2497)  Dengue NS3 serotype 3&4 133‐142  A*11:01  GTSGSPIIDK (SEQ ID NO: 2498)  Dengue NS3 133‐142  A*11:01  GTSGSPIVNR (SEQ ID NO: 2499) NS3 serotype 1 133‐142  A*11:01  GTSGSPIVDR (SEQ ID NO: 2500) Dengue NS3 serotype 2 133‐142  A*11:01  GTSGSPIADK (SEQ ID NO: 2501) Dengue NS3 133‐142  A*11:01  RVSTVQQLTK (SEQ ID NO: 2485) Dengue C 22‐31  A*11:01  RIEPSWADVK (SEQ ID NO: 2486) Dengue NS3 64‐74  A*11:01  RVIDPRRCMK (SEQ ID NO: 2487) Dengue NS3 422‐431  A*11:01  KITAEWLWK (SEQ ID NO: 2488)  Dengue NS5 375‐383  A*11:01  IVTDFSVIK (SEQ ID NO: 2502)  EBV EBNA‐4 416‐424  A*11:01  SSCSSCPLSK (SEQ ID NO: 2503)  EBV LMP‐2 340‐349  A*11:01  ATIGTAMYK (SEQ ID NO: 2504)  EBV BRLF1 134‐142  A*11:01  AVFDRKSDAK (SEQ ID NO: 2505) EBNA3B 399‐408  A*11:01  YVNVNMGLK (SEQ ID NO: 2506) HBV core antigen 88‐96  A*11:01  YVNTNMGLK (SEQ ID NO: 2507) HBV core 88‐96  A*11:01  STLPETTVVRR (SEQ ID NO: 2508)  HBV core 141‐151  A*11:01  AVDLSHFLK (SEQ ID NO: 2509)  HIV nef 84‐92  A*11:01  ACQGVGGPGHK (SEQ ID NO: 2510)  HIV gag p24  A*11:01  NTLEQTVKK (SEQ ID NO: 2511)  HPV 33 E6 86‐94  A*11:01  SIIPSGPLK (SEQ ID NO: 2512)  Influenza A MP 13‐21  A*11:01  RMVLASTTAK (SEQ ID NO: 2513)  Influenza A MP1 178‐187  A*11:01  KSMREEYRK (SEQ ID NO: 2514)  Influenza A MP2 70‐78  A*24:02  TYFSLNNKF (SEQ ID NO: 2515)  Adenovirus 5 Hexon 37‐45  A*24:02  TYACFVSNL (SEQ ID NO: 2516)  Carcinogenic Embryonic Antigen (CEA) 652‐660  A*24:02  AFLPWHRLF (SEQ ID NO: 2517)  Tyrosinase 188‐196  A*24:02  IMPKAGLLI (SEQ ID NO: 2518)  MAGE‐A3  A*24:02  VYFFLPDHL (SEQ ID NO: 2519)  gp100‐intron 4 (170‐178)  A*24:02  EYLQLVFGI (SEQ ID NO: 2520)  MAGEA2 156‐164  A*24:02  TYLPTNASL (SEQ ID NO: 2521)  HER‐2/neu 63‐71  A*24:02  VYGFVRACL (SEQ ID NO: 2522)  Telomerase reverse transcriptase (hTRT) 461‐469  A*24:02  TFPDLESEF (SEQ ID NO: 2523)  MAGEA3 97‐105  A*24:02  DYLQYVLQI (SEQ ID NO: 2524)  MiHA ACC1 15‐23  A*24:02  RYCNLEGPPI (SEQ ID NO: 2525)  Lymphocyte antigen 6 complex locus K (LY6K) 177‐ 186  A*24:02  AYACNTSTL (SEQ ID NO: 2526)  Survivin 80‐88  A*24:02  CYASGWGSI (SEQ ID NO: 2527)  Prostate Specific Antigen‐1 153‐161  A*24:02  DYLNEWGSRF (SEQ ID NO: 2528)  CDH3 807‐816  A*24:02  EYCPGGNLF (SEQ ID NO: 2529)  MELK 87‐95 (93N)  A*24:02  EYYELFVNI (SEQ ID NO: 2530)  DEP DC1 294‐302  A*24:02  GYCTQIGIF (SEQ ID NO: 2531)  HENMT1 221‐229  A*24:02  IYTWIEDHF (SEQ ID NO: 2532)  FOXM1 262‐270  A*24:02  NYQPVWLCL (SEQ ID NO: 2533) RNF43 721‐729 (722Y)  A*24:02  RYNAQCQETI (SEQ ID NO: 2534) Midkine 110‐119  A*24:02  EYRALQLHL (SEQ ID NO: 2535)  CA9 219‐227  A*24:02  SYRNEIAYL (SEQ ID NO: 2536)  TTK protein kinase 551‐559  A*24:02  VYLRVRPLL (SEQ ID NO: 2537)  KIF20A 67‐75  A*24:02  VYYNWQYLL (SEQ ID NO: 2538)  IL13r 146‐154  A*24:02  VYALPLKML (SEQ ID NO: 2539)  HCMV pp65 113‐121  A*24:02  QYDPVAALF (SEQ ID NO: 2540)  HCMV pp65 341‐349  A*24:02  AYAQKIFKI (SEQ ID NO: 2541)  CMV IE‐1 248‐256  A*24:02  QYSDRRWCF (SEQ ID NO: 2542) Dengue NS3 557‐565 (Singapore/S275/1990)  A*24:02  TYGPVFMCL (SEQ ID NO: 2543)  EBV LMP‐2 419‐427  A*24:02  PYLFWLAAI (SEQ ID NO: 2544)  EBV LMP2 131‐139  A*24:02  TYGPVFMSL (SEQ ID NO: 2545)  EBV LMP2 419‐427  A*24:02  EYLVSFGVW (SEQ ID NO: 2546)  HBV core 117‐125  A*24:02  KYTSFPWLL (SEQ ID NO: 2547)  HBV polymerase 756‐764  A*24:02  FFPSIRDLL (SEQ ID NO: 2548)  HBV core protein 23‐31  A*24:02  AYSQQTRGL (SEQ ID NO: 2549)  HCV NS3 1031‐1039  A*24:02  RYPLTFGWCY (SEQ ID NO: 2550) HIV‐1 Nef 134‐143  A*24:02  RYLKDQQLL (SEQ ID NO: 2551)  HIV‐1 gag gp41 67‐75  A*24:02  RYLRDQQLL (SEQ ID NO: 2552)  HIV env  A*24:02  RYPLTFGWCF (SEQ ID NO: 2553) HIV nef 143‐152  A*24:02  RYPLTFGW (SEQ ID NO: 2554)  HIV nef  A*24:02  VYDFAFRDL (SEQ ID NO: 2555)  HPV16 E6  A*24:02  SFHSLHLLF (SEQ ID NO: 2556)  HTLV Tax 301‐309  A*29:02  KEKYIDQEEL (SEQ ID NO: 2557)  HSP90 alpha 280‐288 (Pathologic Conditions)  A*29:02  LYNTVATLY (SEQ ID NO: 2558)  HIV gag 79‐86  A*29:02  SFDPIPIHY (SEQ ID NO: 2559)  HIV env 216‐224  A*29:02  SFNCRGEFFY (SEQ ID NO: 2560) HIV env 382‐391  A*68:01  TVSGNILTIR (SEQ ID NO: 2561)  NY‐ESO‐1 127‐136  B*07:02  VPQYGYLTL (SEQ ID NO: 2562)  AAV2 372‐380  B*07:02  KPYSGTAYNSL (SEQ ID NO: 2563)  Adenovirus Hexon 114‐124  B*07:02  KPYSGTAYNAL (SEQ ID NO: 2564)  Adenovirus Hexon 114‐124  B*07:02  LPLMRKAYL (SEQ ID NO: 2565)  LT antigen 27‐35  B*07:02  LPWHRLFLL (SEQ ID NO: 2566)  Tyrosinase 208‐216  B*07:02  EPR(PHOSPHO‐S)PSHSM (SEQ ID NO: 2567)  Insulin receptor substrate 2  B*07:02  TPNQRQNVC (SEQ ID NO: 2568) P2X5  B*07:02  APRGVRMAV (SEQ ID NO: 2569) LAGE‐1 46‐54  B*07:02  LPVSPRLQL (SEQ ID NO: 2570)  CEACAM 185‐193  B*07:02  TPRVTGGGAM (SEQ ID NO: 2571)  HCMV pp65 417‐426  B*07:02  RPHERNGFTVL (SEQ ID NO: 2572)  HCMV pp65 265‐275  B*07:02  SPRWYFYYL (SEQ ID NO: 2573)  SARS‐CoV‐2 Nucleocapsid protein 105‐113  (confirmed epitope)  B*07:02  APTRVVAAEM (SEQ ID NO: 2574)  Dengue NS3 serotype 2 222‐231  B*07:02  RPPIFIRRL (SEQ ID NO: 2575)  EBV EBNA‐3A 247‐255  B*07:02  RPQGGSRPEFVKL (SEQ ID NO: 2576)  EBV BMRF1 116‐128  B*07:02  QPRAPIRPI (SEQ ID NO: 2577)  EBV EBNA‐3C 881‐889  B*07:02  LPSDFFPSV (SEQ ID NO: 2578)  HBV core 19‐27  B*07:02  GPRLGVRAT (SEQ ID NO: 2579)  HCV core 41‐49  B*07:02  DPRRRSRNL (SEQ ID NO: 2580)  HCV core 111‐119  B*07:02  IPRRIRQGL (SEQ ID NO: 2581)  HIV‐1 env gp120 848‐856  B*07:02  TPGPGVRYPL (SEQ ID NO: 2582) HIV‐1 nef 128‐137  B*07:02  GPGHKARVL (SEQ ID NO: 2583)  HIV gag p24 223‐231  B*07:02  KPTLKEYVL (SEQ ID NO: 2584)  HPV 33 E7 5‐13  B*07:02  LPVSCPEDL (SEQ ID NO: 2585)  bZIP factor 10‐18  B*07:02  QPEWFRNVL (SEQ ID NO: 2586) Influenza A PB1 329‐337  B*07:02  SPIVPSFDM (SEQ ID NO: 2587)  Influenza A NP 473‐481  B*07:02  SPSVDKARAEL (SEQ ID NO: 2588)  MiHAg SMCY 1041‐1051  B*08:01  GFKQSSKAL (SEQ ID NO: 2589)  bcr‐abl 210 kD fusion protein 19‐27  B*08:01  ELRRKMMYM (SEQ ID NO: 2590)  IE1 199‐207  B*08:01  ELKRKMIYM (SEQ ID NO: 2591)  CMV IE‐1 199‐207 (R/L Position 3, M/I Position 7)  B*08:01  RIKQKGIL (SEQ ID NO: 2592)  Dengue NS3 25‐32  B*08:01  LEKTKKDL (SEQ ID NO: 2593)  Dengue NS4a 6‐13  B*08:01  FLRGRAYGL (SEQ ID NO: 2594)  EBV EBNA‐3A 193‐201  B*08:01  RAKFKQLL (SEQ ID NO: 2595)  EBV BZLF‐1 190‐197  B*08:01  QAKWRLQTL (SEQ ID NO: 2596) EBV EBNA3A 158‐166  B*08:01  GLKILQLL (SEQ ID NO: 2597)  HBV external core Ag  B*08:01  HSKKKCDEL (SEQ ID NO: 2598)  HCV NS3 1395‐1403  B*08:01  FLKEKGGL (SEQ ID NO: 2599)  HIV‐1 nef 90‐97  B*08:01  GEIYKRWII (SEQ ID NO: 2600)  HIV‐1 gag p24 261‐269  B*08:01  EIYKRWII (SEQ ID NO: 2601)  HIV p24 gag 128‐135  B*08:01  YLKDQQLL (SEQ ID NO: 2602)  Env 586‐593  B*15:01  CLIPTAMAF (SEQ ID NO: 2603)  Dengue C 107‐115  B*15:01  RLRPGGKKKY (SEQ ID NO: 2604) HIV‐1 p17 20‐29  B*27:05  GRFGLATEK (SEQ ID NO: 2605)  BRAF 594‐601 (600E)  B*27:05  GRFGLATVK (SEQ ID NO: 2606)  BRAF 594‐601 (600V)  B*27:05  RMFPNAPYL (SEQ ID NO: 2362)  WT‐1 126‐134 (Wilms tumor)  B*27:05  ARKLLLDNL (SEQ ID NO: 2607)  PqqC‐like protein 70‐78  B*27:05  NRAKQVIKL (SEQ ID NO: 2608)  Probable ATP‐dependent Clp protease ATP‐binding  subunit 7‐15  B*27:05  QRNAPRITF (SEQ ID NO: 2609)  SARS‐CoV‐2 Nucleocapsid protein 9‐17 (confirmed  epitope)  B*27:05  ARMILMTHF (SEQ ID NO: 2610)  HCV NS5B 2841‐2849  B*27:05  KRWIILGLNK (SEQ ID NO: 2611) HIV‐1 gag p24 265‐274  B*27:05  KRWIIMGLNK (SEQ ID NO: 2612)  HIV‐1 Gag p24 263‐272  B*27:05  GRAFVTIGK (SEQ ID NO: 2613)  HIV‐1 gp100 103‐111  B*27:05  SRYWAIRTR (SEQ ID NO: 2614)  Influenza A NP 383‐391  B*35:01  IPYLDGTFY (SEQ ID NO: 2615)  Adenovirus Hexon  B*35:01  MPFATPMEA (SEQ ID NO: 2616) NY‐ESO‐1 94‐102  B*35:01  IPSINVHHY (SEQ ID NO: 2617)  HCMV pp65 123‐131  B*35:01  TPEGIIPTL (SEQ ID NO: 2618)  Dengue NS3 500‐508  B*35:01  YPLHEQHGM (SEQ ID NO: 2619) EBV EBNA‐3A 458‐466  B*35:01  EPLPQGQLTAY (SEQ ID NO: 2620)  EBV BZLF‐1 54‐64  B*35:01  HPVAEADYFEY (SEQ ID NO: 2621)  EBV EBNA‐1 407‐417(4A)  B*35:01  HPNIEEVAL (SEQ ID NO: 2622)  HCV NS3 1359‐1367  B*35:01  CPNSSIVY (SEQ ID NO: 2623)  HCV E1 207‐214  B*35:01  NPDIVIYQY (SEQ ID NO: 2624)  HIV‐1 RT 330‐338  B*35:01  NPDIVIYQY (SEQ ID NO: 2625)  HIV‐1 HIV‐1 RT 328‐336  B*35:01  VPLDEDFRKY (SEQ ID NO: 2626) HIV‐1 HIV‐1 RT 273‐282  B*40:01  MEVTPSGTWL (SEQ ID NO: 2627)  SARS‐CoV‐2 Nucleocapsid protein 322‐330  (confirmed epitope)  B*40:01  GEARKTFVEL (SEQ ID NO: 2628) Dengue NS3 528‐537  B*40:01  IEDPPFNSL (SEQ ID NO: 2629)  EBV LMP2 200‐208  B*40:01  REISVPAEIL (SEQ ID NO: 2630)  HCV NS5a 2266‐2275  B*40:01  KEKGGLEGL (SEQ ID NO: 2631)  HIV‐1 Nef 92‐100  C*06:02  TRATKMQVI (SEQ ID NO: 2632)  pp65 211‐219  C*06:02  QIKVRVDM (SEQ ID NO: 2633)  IE1 88‐95  C*06:02  TRRFLPQIL (SEQ ID NO: 2634)  NS3 205‐213  C*07:02  CRVLCCYVL (SEQ ID NO: 2635)  IE1 309‐317  E*01:01  VMAPRTLIL (SEQ ID NO: 2636)  HLA‐C leader sequence peptide  E*01:01  VMAPRTLVL (SEQ ID NO: 2637)  HLA‐A leader sequence peptide  A*01:01  SADNNNSEY (SEQ ID NO: 2082)  AAV VP1 492‐500  A*01:01  TDLGQNLLY (SEQ ID NO: 2083)  Adenovirus 5 Hexon 886‐894  A*01:01  EADPTGHSY (SEQ ID NO: 2084)  MAGE‐A1 161‐169  A*01:01  EVDPIGHLY (SEQ ID NO: 2085)  MAGE‐A3 168‐176  A*01:01  KSDICTDEY (SEQ ID NO: 2086)  Tyrosinase 243‐251 (244S)  A*01:01  KCDICTDEY (SEQ ID NO: 2087)  Tyrosinase 243‐251  A*01:01  QSLEIISRY (SEQ ID NO: 2088)  Mcl‐1 177‐185  A*01:01  YVDFREYEYY (SEQ ID NO: 2089)  FLT3 ITD  A*01:01  TLDTLTAFY (SEQ ID NO: 2090)  Mesothelin 429‐437  A*01:01  LTDDRLFTCY (SEQ ID NO: 2091)  PLEKHM2  A*01:01  DSDPDSFQDY (SEQ ID NO: 2092)  Tyr A1a 454‐463  A*01:01  EADPIGHLY (SEQ ID NO: 2093)  MAGEA3  A*01:01  EVDPASNTY (SEQ ID NO: 2094)  MAGE‐A4 169‐177  A*01:01  HSTNGVTRIY (SEQ ID NO: 2095) PSMA  A*01:01  ILDTAGREEY (SEQ ID NO: 2096)  N‐ras 55‐64  A*01:01  LVDVMPWLQY (SEQ ID NO: 2097)  Cytochrome P450 240‐249  A*01:01  RSDSGQQARY (SEQ ID NO: 2098)  AIM‐2  A*01:01  VTEPGTAQY (SEQ ID NO: 2099)  Minor antigen HA‐3T (Lbc oncogene 451‐459)  A*01:01  VYDFFVWLHY (SEQ ID NO: 2100)  TRP‐2 181‐190  A*01:01  YSEHPTFTSQY (SEQ ID NO: 2101)  HCMV pp65 363‐373  A*01:01  VTEHDTLLY (SEQ ID NO: 2102)  HCMV pp50 245‐253  A*01:01  FTSDYYQLY (SEQ ID NO: 2103)  SARS‐CoV‐2 ORF3a 207‐215 (confirmed epitope)  A*01:01  TTDPSFLGRY (SEQ ID NO: 2638)  SARS‐CoV‐2 Replicase polyprotein 1ab 1637‐1646  (confirmed epitope)  A*01:01  PTDNYITTY (SEQ ID NO: 2639)  SARS‐CoV‐2 Replicase polyprotein 1ab 1621‐1629  (confirmed epitope)  A*01:01  LLDTASALY (SEQ ID NO: 2106)  HBV core 30‐38  A*01:01  ATDALMTGY (SEQ ID NO: 2107) HCV NS3 1435‐1443  A*01:01  ATDALMTGF (SEQ ID NO: 2108) HCV NS3 1436‐1444  A*01:01  CTELKLSDY (SEQ ID NO: 2109)  Influenza A (PR8) NP 44‐52  A*01:01  VSDGGPNLY (SEQ ID NO: 2110)  Influenza A PB1 591‐599  A*01:01  IVDCLTEMY (SEQ ID NO: 2111)  DRRFY (1521‐1529))  A*0201 ALCNTDSPL (SEQ ID NO: 2112)  iLR1  A*0201 ALKDVEERV (SEQ ID NO: 2113)  MAGE‐C2 336‐344  A*0201 LLAARAIVAI (SEQ ID NO: 2114)  iLR1 59‐68  A*0201 RLWQELSDI (SEQ ID NO: 2115)  circadian clock protein PASD1 691‐700  A*0201 LLFGLALIEV (SEQ ID NO: 2116)  MAGE‐C2 191‐200  A*0201 FLDPRPLTV (SEQ ID NO: 2117)  CYP190  A*0201 STLCQVEPV (SEQ ID NO: 2118)  MPP11  A*0201 VLQMKEEDV (SEQ ID NO: 2119)  iLR1  A*0201 AIQDLCLAV (SEQ ID NO: 2120)  NPM1  A*0201 QLLIKAVNL (SEQ ID NO: 2121)  MPP11  A*0201 AIQDLCVAV (SEQ ID NO: 2122)  NPM1  A*0201 ALTPVVVTL (SEQ ID NO: 2123)  cyclin‐dependent kinase 4 170‐178  A*02:01  KLQVFLIVL (SEQ ID NO: 2640)  T1D Diabetes human prepro islet amyloid  polypeptide ppIAPP 5‐13  A*02:01  VMNILLQYV (SEQ ID NO: 2125)  GAD65 114‐123  A*02:01  SLSRFSWGA (SEQ ID NO: 2126)  Myelin basic protein 110‐118  A*02:01  HLVEALYLV (SEQ ID NO: 2127)  Insulin B chain 10‐18  A*02:01  LNIDLLWSV (SEQ ID NO: 2128)  T1D Diabetes IGRP 228‐236  A*02:01  VLFGLGFAI (SEQ ID NO: 2129)  T1D Diabetes IGRP 265‐273  A*02:01  ALWGPDPAAA (SEQ ID NO: 2130)  Proinsulin precursor 15‐24  A*02:01  MVWESGCTV (SEQ ID NO: 2131) IA‐2 797‐805  A*02:01  YTCPLCRAPV (SEQ ID NO: 2132) SSA SS‐56 55‐64  A*02:01  VIVMLTPLV (SEQ ID NO: 2133)  IA‐2 805‐813  A*02:01  AITEVECFL (SEQ ID NO: 2134)  VP1 44‐52  A*02:01  FLHCIVFNV (SEQ ID NO: 2135)  large T antigen 410‐418  A*02:01  LLMWEAVTV (SEQ ID NO: 2136) VP1 108‐116  A*02:01  CLLPKMDSV (SEQ ID NO: 2137)  large T antigen 398‐406  A*02:01  FLWGPRALV (SEQ ID NO: 2138)  MAGEA3 271‐279  A*02:01  IMDQVPFSV (SEQ ID NO: 2139)  gp100 (pmel17) 209‐217  A*02:01  YLEPGPVTV (SEQ ID NO: 2140)  gp100 (pmel) 280‐288 (288V)  A*02:01  YLSGADLNL (SEQ ID NO: 2141)  Carcinoembryonic antigen (CEA)‐derived peptide  CAP1‐6D  A*02:01  SLLMWITQC (SEQ ID NO: 2142)  NY‐ESO‐1 157‐165 (9C)  A*02:01  KTWGQYWQV (SEQ ID NO: 2143)  gp100 (pmel17) 154‐162  A*02:01  YLEPGPVTA (SEQ ID NO: 2144)  gp100  A*02:01  YMDGTMSQV (SEQ ID NO: 2145)  Tyrosinase 369‐377 (371D)  A*02:01  YLSGANLNL (SEQ ID NO: 2146)  Carcinogenic Embryonic Antigen (CEA) 571‐579  A*02:01  ELAGIGILTV (SEQ ID NO: 2147)  MelanA / MART 26‐35  A*02:01  ILAKFLHWL (SEQ ID NO: 2148)  Telomerase 540‐548  A*02:01  ALQPGTALL (SEQ ID NO: 2149)  Prostate Stem Cell Antigen (PSCA) 14‐22  A*02:01  VISNDVCAQV (SEQ ID NO: 2150) Prostate Specific Antigen‐1 (PSA‐1) 154‐163  A*02:01  RLVDDFLLV (SEQ ID NO: 2151)  Telomerase Reverse Transcriptase 865‐873  A*02:01  GVLVGVALI (SEQ ID NO: 2152)  Carcinogenic Embryonic Antigen (CEA) 694‐702  A*02:01  VLYRYGSFSV (SEQ ID NO: 2153)  gp100 (pmel17) 476‐485  A*02:01  PLFQVPEPV (SEQ ID NO: 2154)  Alpha‐fetoprotein isoform 1 137‐145  A*02:01  FMNKFIYEI (SEQ ID NO: 2155)  Human alfa fetoprotein 158‐166  A*02:01  GLSPNLNRFL (SEQ ID NO: 2156) Alpha‐fetoprotein isoform 2 167‐176  A*02:01  KVLEYVIKV (SEQ ID NO: 2157)  MAGEA1 278‐286  A*02:01  LLGRNSFEV (SEQ ID NO: 2158)  p53 264‐272  A*02:01  LLLLTVLTV (SEQ ID NO: 2159)  MUC‐1 12‐20  A*02:01  ILHNGAYSL (SEQ ID NO: 2160)  HER‐2/neu 435‐443  A*02:01  RLLQETELV (SEQ ID NO: 2161)  HER‐2/neu 689‐697  A*02:01  KIFGSLAFL (SEQ ID NO: 2162)  HER‐2/neu 369‐377  A*02:01  LLLLDVAPL (SEQ ID NO: 2163)  HSP1A 459‐467  A*02:01  LLDVAPLSL (SEQ ID NO: 2164)  HSP1A 461‐469  A*02:01  HLYQGCQVV (SEQ ID NO: 2165) Receptor tyrosine‐protein kinase erbB‐2 48‐56  A*02:01  HLSTAFARV (SEQ ID NO: 2166)  G250 (renal cell carcinoma) 217‐225  A*02:01  VLQELNVTV (SEQ ID NO: 2167)  Leukocyte Proteinase‐3 (Wegener's autoantigen)  169‐177  A*02:01  KVAELVHFL (SEQ ID NO: 2168)  MAGEA3 112‐120  A*02:01  VLAGVGFFI (SEQ ID NO: 2169)  EPHA2 550‐558  A*02:01  FLYTLLREV (SEQ ID NO: 2170)  STEAP 86‐94  A*02:01  ILLWQPIPV (SEQ ID NO: 2171)  Prostatic Acid Phosphatase‐3 (PAP‐3) 135‐143  A*02:01  RLQEERTCKV (SEQ ID NO: 2172) BIR  A*02:01  QLCPICRAPV (SEQ ID NO: 2173)  Livin/ML‐IAP280 175‐184  A*02:01  VLGEAWRDQV (SEQ ID NO: 2174)  TRAP 45‐54  A*02:01  LLLTVLTVV (SEQ ID NO: 2175)  Tumor Mucin Antigen 13‐21  A*02:01  GLYDGMEHL (SEQ ID NO: 2176) MAGEA‐10 254‐262  A*02:01  SLLMWITQV (SEQ ID NO: 2177)  NY‐ESO‐1 157‐165  A*02:01  LMLGEFLKL (SEQ ID NO: 2178)  Survivin 96‐104  A*02:01  YLFFYRKSV (SEQ ID NO: 2179)  mTERT 572‐580  A*02:01  ELTLGEFLKL (SEQ ID NO: 2180)  survivin 95‐104  A*02:01  FLTPKKLQCV (SEQ ID NO: 2181) Prostate Specific Antigen‐1 (PSA‐1) 141‐150  A*02:01  KLQCVDLHV (SEQ ID NO: 2182)  Prostate Specific Antigen 146‐154  A*02:01  TLAPATEPA (SEQ ID NO: 2183)  Mucin 79‐87  A*02:01  YLQVNSLQTV (SEQ ID NO: 2184) Telomerase Reverse Transcriptase (hTRT) 988‐997  A*02:01  SLGEQQYSV (SEQ ID NO: 2185)  WT1 187‐195  A*02:01  SLEENIVIL (SEQ ID NO: 2186)  RHAMM 275‐283  A*02:01  YMNGTMSQV (SEQ ID NO: 2187)  Tyrosinase 368‐376  A*02:01  ILSLELMKL (SEQ ID NO: 2188)  Receptor for hyaluronic acid‐mediated  motility (RHAMM) 165‐173  A*02:01  PLFDFSWLSL (SEQ ID NO: 2189) Bcl‐2 208‐217  A*02:01  LLGATCMFV (SEQ ID NO: 2190)  CyclinD 101‐109  A*02:01  ALYVDSLFFL (SEQ ID NO: 2191)  PRAME PRA 300‐309  A*02:01  GLMEEMSAL (SEQ ID NO: 2192) Human Mena protein (overexpressed in breast  cancer)  A*02:01  TMNGSKSPV (SEQ ID NO: 2193) hMena 502‐510  A*02:01  GVYDGREHTV (SEQ ID NO: 2194)  MAGE‐A4 230‐239  A*02:01  YLNDHLEPWI (SEQ ID NO: 2195) Bcl‐X 173‐182  A*02:01  ALDVYNGLL (SEQ ID NO: 2196)  Prostatic acid phosphatase precursor (PAP) 299‐307  A*02:01  ALFDIESKV (SEQ ID NO: 2197)  PSM P2 (prostate)  A*02:01  SLAMLDLLHV (SEQ ID NO: 2198) Mutant anaplastic lymphoma kinase 1220‐1229  A*02:01  YLNTVQPTCV (SEQ ID NO: 2199) EGF‐R 1138‐1147  A*02:01  KLFGTSGQKT (SEQ ID NO: 2200) EGF‐R‐479 350‐359  A*02:01  RMPEAAPPV (SEQ ID NO: 2201) p53 65‐73  A*02:01  PLTSIISAV (SEQ ID NO: 2202)  Receptor tyrosine‐protein kinase erbB‐2 728‐736  A*02:01  VLAGGFFLL (SEQ ID NO: 2203)  PSMA 27‐38  A*02:01  LLHETDSAV (SEQ ID NO: 2204)  PSMA/PSM‐P1 4‐12  A*02:01  VMAGVGSPYV (SEQ ID NO: 2205)  Receptor tyrosine‐protein kinase erbB‐2  819‐828  A*02:01  VLPLTVAEV (SEQ ID NO: 2206)  Mesothelin 530‐538  A*02:01  SLLFLLFSL (SEQ ID NO: 2207)  Mesothelin 20‐28  A*02:01  QLFEELQEL (SEQ ID NO: 2208)  Heme oxygenase‐1 212‐220  A*02:01  VLDGLDVLL (SEQ ID NO: 2209)  PRAME 100‐108  A*02:01  RLASFYDWPL (SEQ ID NO: 2210) BIR7 90‐99  A*02:01  LIAHNQVRQV (SEQ ID NO: 2211)  HER‐2/neu (85‐94)  A*02:01  ILHDGAYSL (SEQ ID NO: 2212)  HER‐2 434‐443  A*02:01  FVGEFFTDV (SEQ ID NO: 2213)  GPC3 144‐152 (overexpressed in hepatocellular  carcinoma)  A*02:01  LLLIWFRPV (SEQ ID NO: 2214)  BKV Ltag 579‐587  A*02:01  KLQDASAEV (SEQ ID NO: 2215)  HM1.24‐aa 126‐134  A*02:01  SLYSFPEPEA (SEQ ID NO: 2216)  PRAME  A*02:01  SLLQHLIGL (SEQ ID NO: 2217)  PRAME 425‐433  A*02:01  VIFDFLHCI (SEQ ID NO: 2218)  BKV Ltag 406‐414  A*02:01  VLDFAPPGA (SEQ ID NO: 2219)  WT1  A*02:01  TLPGYPPHV (SEQ ID NO: 2220)  PAX‐5 311‐319  A*02:01  YMEHNNVYTV (SEQ ID NO: 2221)  Fibromodulin 250‐259  A*02:01  YLQHNEIQEV (SEQ ID NO: 2222) Fibromodulin 206‐215  A*02:01  SLVDVMPWL (SEQ ID NO: 2223) Cytochrome p450 1B1 239‐248  A*02:01  RLMNDMTAV (SEQ ID NO: 2224)  HSP105 128‐136  A*02:01  RLARLALVL (SEQ ID NO: 2225)  Trophoblast glycoprotein 17‐25  A*02:01  FLTGNQLAV (SEQ ID NO: 2226)  5T4 97‐105  A*02:01  LLLAGLFSL (SEQ ID NO: 2227)  Fibromodulin 7‐15  A*02:01  FLGYLILGV (SEQ ID NO: 2228)  Prostatic Acid Phosphatase‐3 (PAP‐3)  A*02:01  SLFLGILSV (SEQ ID NO: 2229)  CD20 188‐196 (B cell malignancies)  A*02:01  AVLPLLELV (SEQ ID NO: 2230)  MCL‐1 139‐147  A*02:01  SLSEKTVLL (SEQ ID NO: 2231)  CD59 glycoprotein precursor 106‐114  A*02:01  YMCSFLFNL (SEQ ID NO: 2232)  Ewing Tumor EZH2 666‐674  A*02:01  YLISGDSPV (SEQ ID NO: 2233)  CD33 65‐73 (1Y2L)  A*02:01  KASEKIFYV (SEQ ID NO: 2234)  SSX2 41‐49  A*02:01  FLAKLNNTV (SEQ ID NO: 2235)  HCA587 317‐325  A*02:01  GLAPPQHLIRV (SEQ ID NO: 2236)  p53 187‐197  A*02:01  VIMPCSWWV (SEQ ID NO: 2237)  Chondromodulin‐I 319‐327  A*02:01  KVVEFLAML (SEQ ID NO: 2238)  MAGE‐C1 1083‐1091  A*02:01  LTLGEFLKL (SEQ ID NO: 2239)  Survivin‐3A 96‐104  A*02:01  ALPFGFILV (SEQ ID NO: 2240)  IL13R 345‐353  A*02:01  TLADFDPRV (SEQ ID NO: 2241)  EphA2  A*02:01  ALMEQQHYV (SEQ ID NO: 2242) ITGB8 662‐670  A*02:01  CLTSTVQLV (SEQ ID NO: 2243)  HER‐2/neu 789‐797  A*02:01  GLLGASVLGL (SEQ ID NO: 2244) Telomerase Reverse Transcriptase (hTRT) 674‐683  A*02:01  QLLDGFMITL (SEQ ID NO: 2245) PASD1 39‐48  A*02:01  YLVGNVCIL (SEQ ID NO: 2246)  PASD1 168‐176  A*02:01  ALLTSRLRFI (SEQ ID NO: 2247)  Telomerase Reverse Transcriptase (hTRT) 615‐624  A*02:01  RLSSCVPVA (SEQ ID NO: 2248)  TGF beta receptor type‐2 131‐139  A*02:01  FLYDDNQRV (SEQ ID NO: 2249)  Topoisomerase II‐alpha‐b 828‐836  A*02:01  YLIELIDRV (SEQ ID NO: 2250)  TACE 250‐258  A*02:01  FLAEDALNTV (SEQ ID NO: 2251) Epithelial Discoidin Domain Receptor 1 (EDDR1)  867‐876  A*02:01  GLMKYIGEV (SEQ ID NO: 2252)  TRPM8 187‐195  A*02:01  AILALLPAL (SEQ ID NO: 2253)  Prostate Stem Cell Antigen (PSCA) 105‐133  A*02:01  GLQHWVPEL (SEQ ID NO: 2254) BA46 (Lactadherin) 97‐106  A*02:01  GVRGRVEEI (SEQ ID NO: 2255)  BCR‐ABL  A*02:01  ITDQVPFSV (SEQ ID NO: 2256)  gp100 (pmel) 209‐217  A*02:01  KLCPVQLWV (SEQ ID NO: 2257) p53 139‐147  A*02:01  KVAEELVHFL (SEQ ID NO: 2258) MAGEA3 112‐120 (alternative version)  A*02:01  SLPPPGTRV (SEQ ID NO: 2259)  p53 149‐157  A*02:01  YLGSYGFRL (SEQ ID NO: 2260)  p53 103‐111  A*02:01  YLQLVFGIEV (SEQ ID NO: 2261)  MAGEA2 157‐166  A*02:01  TLQDIVYKL (SEQ ID NO: 2262)  BMI1 74‐82  A*02:01  YAIDLPVSV (SEQ ID NO: 2263)  L‐dopachrome tautomerase 488‐496  A*02:01  AMVGAVLTA (SEQ ID NO: 2264) Tyrosinase 482‐190  A*02:01  ATVGIMIGV (SEQ ID NO: 2265)  CEACAM5 687‐695  A*02:01  YVDPVITSI (SEQ ID NO: 2266)  Hepatocyte growth factor receptor 673‐681  A*02:01  GVLLWEIFSL (SEQ ID NO: 2267)  VEGFR1 28‐37  A*02:01  LMAQEALAFL (SEQ ID NO: 2268) CAMEL 2‐11  A*02:01  RVA(PHOSPHO‐S)PTSGV (SEQ ID NO: 2269)  Insulin receptor substrate‐2 1097‐ 1105  A*02:01  RVASPTSGV (SEQ ID NO: 2270)  IRS‐2 1097‐1105  A*02:01  ALNVYNGLL (SEQ ID NO: 2271)  ACPP 299‐307  A*02:01  ALSPVPPVV (SEQ ID NO: 2272)  Bcl‐2 85‐93  A*02:01  ALVCYGPGI (SEQ ID NO: 2273)  FAP alpha 463‐471  A*02:01  ALWPWLLMAT (SEQ ID NO: 2274)  RNF43 11‐20  A*02:01  ALYLMELTM (SEQ ID NO: 2275)  CB9L2  A*02:01  CLPSPSTPV (SEQ ID NO: 2276)  BMI1 271‐279  A*02:01  ELSDSLGPV (SEQ ID NO: 2277)  PASD1 695‐703  A*02:01  FLFLRNFSL (SEQ ID NO: 2278)  TARP(V28L)27‐35  A*02:01  FLPSPLFFFL (SEQ ID NO: 2279)  TARP(P5L) 5‐13  A*02:01  GLFKCGIAV (SEQ ID NO: 2280)  FAP 639‐647  A*02:01  GLIQLVEGV (SEQ ID NO: 2281)  TRAG‐3 4‐12  A*02:01  ILGVLTSLV (SEQ ID NO: 2282)  DLK1 309‐317  A*02:01  LLVPTCVFLV (SEQ ID NO: 2283)  691‐700  A*02:01  MLAVFLPIV (SEQ ID NO: 2284)  STEAP 292‐300 (293L)  A*02:01  NLFETPVEA (SEQ ID NO: 2285)  194‐202  A*02:01  QLGEQCWTV (SEQ ID NO: 2286) PSCA 44‐51 (51A)  A*02:01  RLAEYQAYI (SEQ ID NO: 2287)  SART3 309‐317  A*02:01  SIDWFMVTV (SEQ ID NO: 2288) p31‐39  A*02:01  SILLRDAGLV (SEQ ID NO: 2289)  TRAG‐3 57‐66  A*02:01  SLFEPPPPG (SEQ ID NO: 2290)  PSMA 85‐93  A*02:01  SQADALKYV (SEQ ID NO: 2291)  EZH2 729‐737  A*02:01  WLSLKTLLSL (SEQ ID NO: 2292)  Bcl‐2 214‐223  A*02:01  YLNRHLHTWI (SEQ ID NO: 2293) BCL‐2 180‐189  A*02:01  YLQWIEFSI (SEQ ID NO: 2294)  Prominin1 744‐752  A*02:01  YLYQWLGAPV (SEQ ID NO: 2295)  Osteocalcin 51‐60  A*02:01  KLMSSNSTDL (SEQ ID NO: 2296) HSP105 234‐243  A*02:01  RLQGISPKI (SEQ ID NO: 2297)  SSX2 103‐111  A*02:01  AILALLPALL (SEQ ID NO: 2298)  PSCA  A*02:01  ALIHHNTHL (SEQ ID NO: 2299)  HER2 466‐474  A*02:01  CMHLLLEAV (SEQ ID NO: 2300)  MG50 624‐632  A*02:01  FLIIWQNTM (SEQ ID NO: 2301)  FSP26  A*02:01  FLPWHRLFLL (SEQ ID NO: 2302) Tyrosinase 207‐216  A*02:01  FVWLHYYSV (SEQ ID NO: 2303)  TRP2 185‐193(L)  A*02:01  GLFGDIYLA (SEQ ID NO: 2304)  CSNK1A1 26‐34  A*02:01  GLFGDIYLAI (SEQ ID NO: 2305)  CSNK1A1 26‐35  A*02:01  ILLRDAGLV (SEQ ID NO: 2306)  TRAG‐3L 58‐66  A*02:01  ILLVVVLGV (SEQ ID NO: 2307)  Receptor tyrosine‐protein kinase erbB‐2 707‐715  A*02:01  ILNAMIAKI (SEQ ID NO: 2308)  HAUS3 154‐162  A*02:01  KASEYLQLV (SEQ ID NO: 2309)  MAGEA2 153‐161  A*02:01  KIWEELSVL (SEQ ID NO: 2310)  MAGEA3 220‐228  A*02:01  KLIDRTE(S)L (SEQ ID NO: 2311)  LSP1 325‐333  A*02:01  KLTGDENFTI (SEQ ID NO: 2312)  Tyrosinase precursor 224‐233  A*02:01  LLCYSCKAQV (SEQ ID NO: 2313) PSCA 17‐26  A*02:01  LLLEAVPAV (SEQ ID NO: 2314)  MG50 69‐77  A*02:01  LLNQLQVNL (SEQ ID NO: 2315)  Mucin2 467‐475  A*02:01  LLRDAGLVKM (SEQ ID NO: 2316)  TRAP 59‐68  A*02:01  LLRRYNVAKV (SEQ ID NO: 2317) SOX11 266‐275  A*02:01  LLSHGAVIEV (SEQ ID NO: 2318)  Ankyrin NYBR1 158‐167  A*02:01  LVFGIELMEV (SEQ ID NO: 2319) MAGEA3 160‐169  A*02:01  LVFGIEVVEV (SEQ ID NO: 2320)  MAGEA12 160‐169  A*02:01  MLWGWREHV (SEQ ID NO: 2321)  Mucin2 645‐653  A*02:01  PLQPEQLQV (SEQ ID NO: 2322)  Receptor tyrosine‐protein kinase erbB‐2 437‐445  A*02:01  QLMAFNHLI (SEQ ID NO: 2323)  PAX3/FKHR 135‐143  A*02:01  QLMPYGCLL (SEQ ID NO: 2324)  Receptor tyrosine‐protein kinase erbB‐2 845‐853  A*02:01  RLGPTLMCL (SEQ ID NO: 2325)  MG50 1244‐1252  A*02:01  RLTRFLSRV (SEQ ID NO: 2326)  CyclinD 228‐236  A*02:01  RTF(S)PTYGL (SEQ ID NO: 2327) Desmuslin 426‐434  A*02:01  SILLRDAGL (SEQ ID NO: 2328)  TRAP 57‐65  A*02:01  SLADEAEVYL (SEQ ID NO: 2329) GAS7 Neoepitope  A*02:01  SLDDYNHLV (SEQ ID NO: 2330)  L‐dopachrome tautomerase 288‐296  A*02:01  SLYKFSPFPL (SEQ ID NO: 2331)  O‐linked N‐acetylglucosamine transferase FSP06  A*02:01  SMTR(S)PPRV (SEQ ID NO: 2332)  SFRS2B 241‐249  A*02:01  TLEEITGYL (SEQ ID NO: 2333)  Receptor tyrosine‐protein kinase erbB‐2 448‐456  A*02:01  TLHCDCEIL (SEQ ID NO: 2334)  MG50 210‐218  A*02:01  VLEPPGARDV (SEQ ID NO: 2335) BIR 7 230‐239  A*02:01  VLLALLMAGL (SEQ ID NO: 2336) Prostate stem cell antigen 4‐13  A*02:01  VLSVNVPDV (SEQ ID NO: 2337)  MG50 625‐633  A*02:01  VLVKSPNHV (SEQ ID NO: 2338)  Receptor tyrosine‐protein kinase erbB‐4 890‐898  A*02:01  VMIG(S)PKKV (SEQ ID NO: 2339)  Tensin3 1558‐1566  A*02:01  VVLGVVFGI (SEQ ID NO: 2340)  Receptor tyrosine‐protein kinase erbB‐2 743‐751  A*02:01  WLPKILGEV (SEQ ID NO: 2341)  MG50 1051‐1059  A*02:01  WLQYFPNPV (SEQ ID NO: 2342) Cytochrome P450 246‐254  A*02:01  YLLDLSTNHL (SEQ ID NO: 2343)  Fibromodulin 7‐15  A*02:01  YLWWVNNQSL (SEQ ID NO: 2344)  CEA 176‐185  A*02:01  ALGGHPLLGV (SEQ ID NO: 2345) Dickkopf‐related protein 1 20‐29  A*02:01  ALLAGLVSL (SEQ ID NO: 2346)  FGFR4 676‐684  A*02:01  ALLTYMIAHI (SEQ ID NO: 2347)  Thymidylate synthase 231‐240  A*02:01  ALMDKSLHV (SEQ ID NO: 2348)  MART‐1 56‐64  A*02:01  ALPPPLMLL (SEQ ID NO: 2349)  Heparanase 8‐16  A*02:01  ALSVMGVYV (SEQ ID NO: 2350) MAGEA9 223‐231  A*02:01  ALVEFEDVL (SEQ ID NO: 2351)  hnRNP L 140‐148  A*02:01  ALWPWLLMA (SEQ ID NO: 2352)  RNF43 11‐19  A*02:01  AMLGTHTMEV (SEQ ID NO: 2353)  Melanocyte‐specific secreted glycoprotein  184‐193  A*02:01  AVIGALLAV (SEQ ID NO: 2354)  Melanocyte‐specific secreted glycoprotein 20‐28  A*02:01  CLYGNVEKV (SEQ ID NO: 2355)  hnRNP L 404‐412  A*02:01  DLIFGLNAL (SEQ ID NO: 2356)  Heparanase 185‐193  A*02:01  ELFQDLSQL (SEQ ID NO: 2357)  ETV5 54‐53  A*02:01  FAWERVRGL (SEQ ID NO: 2358) Cyclin‐dependent kinase inhibitor 1 97‐105  A*02:01  FIASNGVKLV (SEQ ID NO: 2359) ACTN4 118‐127 (K5N)  A*02:01  FLALIICNA (SEQ ID NO: 2360)  Tubulin beta 4 283‐291  A*02:01  FLDEFMEGV (SEQ ID NO: 2361)  Malic enzyme 224‐232  A*02:01  RMFPNAPYL (SEQ ID NO: 2362)  WT‐1 126‐134 (Wilms tumor)  A*02:01  RLNMFTPYI (SEQ ID NO: 2363)  Chlamydia trachomatis MOMP 258‐266  A*02:01  NMFTPYIGV (SEQ ID NO: 2364)  MOMP precursor 283‐291  A*02:01  NLVPMVATV (SEQ ID NO: 2365) HCMV pp65 495‐504  A*02:01  VLEETSVML (SEQ ID NO: 2366)  HCMV IE1 316‐324 (UL123)  A*02:01  VLAELVKQI (SEQ ID NO: 2367)  HCMV IE1 81‐89  A*02:01  MLNIPSINV (SEQ ID NO: 2368)  pp65 120‐128  A*02:01  LLLDRLNQL (SEQ ID NO: 2369)  SARS‐CoV Nucleocapsid protein 223‐231 (conserved  in SARS‐CoV‐2)  A*02:01  FIAGLIAIV (SEQ ID NO: 2370)  SARS‐CoV‐2 Spike glycoprotein 1220‐1228  (confirmed epitope)  A*02:01  ALNTLVKQL (SEQ ID NO: 2371)  SARS‐CoV Spike glycoprotein precursor 940‐948  (conserved in SARS‐CoV‐2)  A*02:01  LITGRLQSL (SEQ ID NO: 2372)  SARS‐CoV‐2 Spike glycoprotein 996‐1004 (confirmed  epitope)  A*02:01  NLNESLIDL (SEQ ID NO: 2373)  SARS‐CoV  Spike glycoprotein precursor 1174‐1182 (conserved in SARS‐Cov‐2)  A*02:01  VLNDILSRL (SEQ ID NO: 2374)  SARS‐CoV Spike glycoprotein precursor 958‐966  (conserved in SARS‐Cov‐2)  A*02:01  YLQPRTFLL (SEQ ID NO: 2375)  SARS‐Cov‐2 Spike glycoprotein 269‐277 (confirmed  epitope)  A*02:01  LLYDANYFL (SEQ ID NO: 2376)  SARS‐CoV‐2 ORF3a 139‐147 (confirmed epitope)  A*02:01  RLQSLQTYV (SEQ ID NO: 2377)  SARS‐CoV‐2 Spike glycoprotein 1000‐1008  (confirmed subdominant epitope)  A*02:01  KLWAQCVQL (SEQ ID NO: 2378) SARS‐CoV‐2 ORF1ab 3886‐3894 (confirmed epitope)  A*02:01  TLYAVATTI (SEQ ID NO: 2379)  Dengue NS4b 40‐48  A*02:01  KLAEAIFKL (SEQ ID NO: 2380)  Dengue NS5 563‐571  A*02:01  ILIRTGLLVI (SEQ ID NO: 2381)  Dengue NS2b 97‐106  A*02:01  AIKRGLRTL (SEQ ID NO: 2382)  Dengue NS3 112‐120  A*02:01  LLLGLMILL (SEQ ID NO: 2383)  Dengue NS4a 56‐64  A*02:01  VLLLVTHYA (SEQ ID NO: 2384)  Dengue NS4b 111‐119  A*02:01  GLCTLVAML (SEQ ID NO: 2385)  EBV BMLF‐1 259‐267  A*02:01  CLGGLLTMV (SEQ ID NO: 2386)  EBV LMP‐2 426‐434  A*02:01  YLLEMLWRL (SEQ ID NO: 2387)  EBV LMP‐1 125‐133  A*02:01  YLQQNWWTL (SEQ ID NO: 2388)  EBV LMP1 159‐167  A*02:01  YVLDHLIVV (SEQ ID NO: 2389)  EBV BRLF1 109‐117  A*02:01  FLYALALLL (SEQ ID NO: 2390)  EBV LMP‐2 356‐364  A*02:01  TLDYKPLSV (SEQ ID NO: 2391)  EBV BMRF1 208‐216  A*02:01  LLDFVRFMGV (SEQ ID NO: 2392)  EBV EBNA‐3C 284‐293  A*02:01  FLDKGTYTL (SEQ ID NO: 2393)  EBV BALF‐4 276‐284  A*02:01  FLPSDFFPSV (SEQ ID NO: 2394)  HBV core antigen 18‐27  A*02:01  FLLTRILTI (SEQ ID NO: 2395)  HBV envelope 183‐191  A*02:01  GLSPTVWLSV (SEQ ID NO: 2396) HBV surface antigen 185‐194  A*02:01  WLSLLVPFV (SEQ ID NO: 2397)  HBV surface antigen 172‐181  A*02:01  FLLSLGIHL (SEQ ID NO: 2398)  HBV polymerase 573‐581  A*02:01  FLPSDFFPSI (SEQ ID NO: 2399)  HBV core 18‐27 (subtype ADR4)  A*02:01  VLHKRTLGL (SEQ ID NO: 2400)  HBV X 92‐100  A*02:01  GLSRYVARL (SEQ ID NO: 2401)  HBV Pol 455‐463  A*02:01  YMDDVVLGA (SEQ ID NO: 2402) HBV Polymerase 548‐556  A*02:01  KLHLYSHPI (SEQ ID NO: 2403)  HBV Pol 502‐510  A*02:01  ELMTLATWV (SEQ ID NO: 2404) HBV core protein 64‐72  A*02:01  DLMGYIPAV (SEQ ID NO: 2405)  HCV core 132‐140  A*02:01  CINGVCWTV (SEQ ID NO: 2406) HCV NS3 1073‐1081  A*02:01  YLLPRRGPRL (SEQ ID NO: 2407)  HCV core 35‐44  A*02:01  VLSDFKTWL (SEQ ID NO: 2408)  HCV NS5a 1987‐1995  A*02:01  ALYDVVTKL (SEQ ID NO: 2409)  HCV NS5b 2594‐2602  A*02:01  KLVALGINAV (SEQ ID NO: 2410) HCV NS3 1406‐1415  A*02:01  LLFNILGGWV (SEQ ID NO: 2411) HCV NS4b 1807‐1816  A*02:01  KLSGLGINAV (SEQ ID NO: 2412) HCV NS3 1406‐1415  A*02:01  DLMGYIPLV (SEQ ID NO: 2413)  HCV core 132‐140  A*02:01  CVNGVCWTV (SEQ ID NO: 2414) HCV NS3 1073‐1081  A*02:01  GLQDCTMLV (SEQ ID NO: 2415) HCV NS5B 2727‐2735  A*02:01  SLYNTVATL (SEQ ID NO: 2416)  HIV‐1 gag p17 76‐84  A*02:01  ILKEPVHGV (SEQ ID NO: 2417)  HIV‐1 RT 476‐484  A*02:01  TLNAWVKVV (SEQ ID NO: 2418) HIV‐1 gag p24 19‐27  A*02:01  KLTPLCVTL (SEQ ID NO: 2419)  HIV‐1 env gp120 90‐98  A*02:01  GLADQLIHL (SEQ ID NO: 2420)  HIV‐1 vif 101‐109  A*02:01  LTFGWCFKL (SEQ ID NO: 2421)  HIV‐1 nef 137‐145  A*02:01  FLGKIWPS (SEQ ID NO: 2422)  Gag 433‐440  A*02:01  ALVEMGHHA (SEQ ID NO: 2423) HIV Vpu 66‐74  A*02:01  RTLNAWVKV (SEQ ID NO: 2424) HIV gag 150‐158  A*02:01  NVWATHACV (SEQ ID NO: 2425) HIV env gp 67‐7  A*02:01  SLLNATAIAV (SEQ ID NO: 2426)  HIV env 816‐825  A*02:01  SLFNTVATL (SEQ ID NO: 2427)  HIV gag 77‐85  A*02:01  SLVKHHMYI (SEQ ID NO: 2428)  HIV vif 23‐31  A*02:01  VIYHYVDDL (SEQ ID NO: 2429)  HIV pol  A*02:01  YMLDLQPETT (SEQ ID NO: 2430) HPV 16 E7 11‐20  A*02:01  KLPQLCTEL (SEQ ID NO: 2431)  HPV 16 E6 18‐26  A*02:01  YMLDLQPET (SEQ ID NO: 2432)  HPV 16 E7 11‐19  A*02:01  MLDLQPETT (SEQ ID NO: 2433)  HPV 16 E7 12‐20  A*02:01  VLMIKALEL (SEQ ID NO: 2434)  Non muscle Myosin‐9 741‐749  A*02:01  QLFNHTMFI (SEQ ID NO: 2435)  Non‐muscle Myosin 478‐486  A*02:01  QMARLAWEA (SEQ ID NO: 2436)  1116‐1124  A*02:01  LLFGYPVYV (SEQ ID NO: 2437)  Human T‐cell lymphotropic virus‐1 (HTLV‐1) tax 11‐ 19  A*02:01  AVLDGLLSL (SEQ ID NO: 2438)  HTLV bZIP factor 42‐50  A*02:01  GLLSLEEEL (SEQ ID NO: 2439)  bZIP factor 26‐34  A*02:01  GILGFVFTL (SEQ ID NO: 2440)  Influenza A MP 58‐66  A*02:01  ILGFVFTLTV (SEQ ID NO: 2441)  Influenza A MP 59‐68  A*02:01  KLGEFYNQMM (SEQ ID NO: 2442)  Flu BNP 85‐94 (Influenza B)  A*02:01  SITEVECFL (SEQ ID NO: 2443)  VP1 36‐44  A*02:01  ILMWEAVTL (SEQ ID NO: 2444)  VP1 100‐108  A*02:01  ALPHIIDEV (SEQ ID NO: 2445)  LCMV envelope gp 10‐18  A*02:01  YLVSIFLHL (SEQ ID NO: 2446)  LCMV envelope gp 447‐455  A*02:01  SLNQTVHSL (SEQ ID NO: 2447)  NP 69‐77  A*02:01  YLNKIQNSL (SEQ ID NO: 2448)  Plasmodium falciparum CSP 334‐342  A*02:01  FIDSYICQV (SEQ ID NO: 2449)  miHAg H‐Y (human SMCY) 311‐319  A*02:01  YIGEVLVSV (SEQ ID NO: 2450)  HA‐2  A*02:01  VLHDDLLEA (SEQ ID NO: 2451)  Minor Histocompatibility Antigen HA‐1 137‐145  A*02:01  RTLDKVLEV (SEQ ID NO: 2452)  miHAg HA‐8  A*02:01  NEGATIVE (SEQ ID NO: 2453)  Negative Control  A*02:01  TMFPHIIVDV (SEQ ID NO: 2454) Norovirus VP1 139‐148  A*02:01  LLDVPTAAV (SEQ ID NO: 2455)  Interferon gamma inducible protein (GILT) 30 27‐35  A*02:01  RILGAVAKV (SEQ ID NO: 2456)  Vinculin 822‐830  A*02:01  LMWYELSKI (SEQ ID NO: 2457)  KSHVF‐8 gB.492‐500  A*02:01  ILEDIVLTL (SEQ ID NO: 2458)  Streptococcus pyogenes Cas9 615‐623  A*02:01  KMLKEMGEV (SEQ ID NO: 2459) RSV NP 137‐145  A*02:01  KLIANNTRV (SEQ ID NO: 2460)  Mycobacterium bovis antigen 85‐A 200‐208  A*02:01  GLPVEYLQV (SEQ ID NO: 2461)  Mycobacterium bovis antigen 85‐A 6‐14  A*02:01  GILTVSVAV (SEQ ID NO: 2462)  16 kDa  A*02:01  AMASTEGNV (SEQ ID NO: 2463) ESAT‐6  A*02:01  VLTDGNPPEV (SEQ ID NO: 2464) 19 kDa  A*02:01  KVDDTFYYV (SEQ ID NO: 2465)  Vaccinia virus Host range protein 2 74‐82  A*02:01  ILDDNLYKV (SEQ ID NO: 2466)  Vaccinia virus Copenhagen Protein G5 18‐26  A*02:01  ALWALPHAA (SEQ ID NO: 2467)  IE62 593‐601  A*02:01  RLDDDGNFQL (SEQ ID NO: 2468)  West Nile Virus NY‐99 polyprotein precursor  (1452‐1461)  A*02:01  ATWAENIQV (SEQ ID NO: 2469) West Nile virus NY‐99 polyprotein precursor 3390‐ 3398  A*02:01  YTMDGEYRL (SEQ ID NO: 2470)  West Nile virus NY‐99 polyprotein precursor 2023‐ 2031  A*02:01  SVGGVFTSV (SEQ ID NO: 2471)  WNV envelope gp 430‐438  A*02:01  SLFGQRIEV (SEQ ID NO: 2472)  WNV nonstructural protein 4B 15‐23  A*02:01  LLWNGPMAV (SEQ ID NO: 2473)  NS4B 214‐222  A*03:01  KQSSKALQR (SEQ ID NO: 2474)  bcr‐abl 210 kD fusion protein 21‐29  A*03:01  ALLAVGATK (SEQ ID NO: 2475)  gp100 (pmel17) 17‐25  A*03:01  ATGFKQSSK (SEQ ID NO: 2476)  bcr‐abl 210 kD fusion protein 259‐269  A*03:01  RISTFKNWPK (SEQ ID NO: 2477) Survivin‐3A 18‐27 (27K)  A*03:01  RLGLQVRKNK (SEQ ID NO: 2478) RhoC 176‐185 (177L)  A*03:01  RLLFFAPTR (SEQ ID NO: 2479)  Mcl‐1 95‐103  A*03:01  QVLKKIAQK (SEQ ID NO: 2480)  HMOX1 145‐153  A*03:01  RIAAWMATY (SEQ ID NO: 2481) 165‐173  A*03:01  KLGGALQAK (SEQ ID NO: 2482)  HCMV IE1 184‐192  A*03:01  KTFPPTEPK (SEQ ID NO: 2483)  SARS‐CoV‐2 Nucleocapsid protein 362‐370  (confirmed epitope)  A*03:01  ELERAADVK (SEQ ID NO: 2484)  Dengue NS2b 52‐60  A*03:01  RVSTVQQLTK (SEQ ID NO: 2485) Dengue C 22‐31  A*03:01  RIEPSWADVK (SEQ ID NO: 2486) Dengue NS3 64‐74  A*03:01  RVIDPRRCMK (SEQ ID NO: 2487) Dengue NS3 422‐431  A*03:01  KITAEWLWK (SEQ ID NO: 2488)  Dengue NS5 375‐383  A*03:01  RLRAEAQVK (SEQ ID NO: 2489)  EBV EBNA 3A 603‐611  A*03:01  RVRAYTYSK (SEQ ID NO: 2490)  EBV BRLF1  A*03:01  RVCEKMALY (SEQ ID NO: 2491)  HCV NS5B 2588‐2596  A*03:01  QVPLRPMTYK (SEQ ID NO: 2492)  HIV‐1 nef 73‐82  A*03:01  RLRPGGKKK (SEQ ID NO: 2493)  HIV‐1 gag p17 19‐27  A*03:01  AIFQSSMTK (SEQ ID NO: 2494)  HIV pol 325‐333  A*03:01  KLCLRFLSK (SEQ ID NO: 2495)  HPV 33 E6 64‐72  A*03:01  ILRGSVAHK (SEQ ID NO: 2496)  Influenza A (PR8) NP 265‐274  A*11:01  KTFPPTEPK (SEQ ID NO: 2483)  SARS‐CoV‐2 Nucleocapsid protein 362‐370  (confirmed epitope)  A*11:01  GTSGSPIINR (SEQ ID NO: 2497)  Dengue NS3 serotype 3&4 133‐142  A*11:01  GTSGSPIIDK (SEQ ID NO: 2498)  Dengue NS3 133‐142  A*11:01  GTSGSPIVNR (SEQ ID NO: 2499) NS3 serotype 1 133‐142  A*11:01  GTSGSPIVDR (SEQ ID NO: 2500) Dengue NS3 serotype 2 133‐142  A*11:01  GTSGSPIADK (SEQ ID NO: 2501) Dengue NS3 133‐142  A*11:01  RVSTVQQLTK (SEQ ID NO: 2485) Dengue C 22‐31  A*11:01  RIEPSWADVK (SEQ ID NO: 2486) Dengue NS3 64‐74  A*11:01  RVIDPRRCMK (SEQ ID NO: 2487) Dengue NS3 422‐431  A*11:01  KITAEWLWK (SEQ ID NO: 2488)  Dengue NS5 375‐383  A*11:01  IVTDFSVIK (SEQ ID NO: 2502)  EBV EBNA‐4 416‐424  A*11:01  SSCSSCPLSK (SEQ ID NO: 2503)  EBV LMP‐2 340‐349  A*11:01  ATIGTAMYK (SEQ ID NO: 2504)  EBV BRLF1 134‐142  A*11:01  AVFDRKSDAK (SEQ ID NO: 2505) EBNA3B 399‐408  A*11:01  YVNVNMGLK (SEQ ID NO: 2506) HBV core antigen 88‐96  A*11:01  YVNTNMGLK (SEQ ID NO: 2507) HBV core 88‐96  A*11:01  STLPETTVVRR (SEQ ID NO: 2508)  HBV core 141‐151  A*11:01  AVDLSHFLK (SEQ ID NO: 2509)  HIV nef 84‐92  A*11:01  ACQGVGGPGHK (SEQ ID NO: 2510)  HIV gag p24  A*11:01  NTLEQTVKK (SEQ ID NO: 2511)  HPV 33 E6 86‐94  A*11:01  SIIPSGPLK (SEQ ID NO: 2512)  Influenza A MP 13‐21  A*11:01  RMVLASTTAK (SEQ ID NO: 2513)  Influenza A MP1 178‐187  A*11:01  KSMREEYRK (SEQ ID NO: 2514)  Influenza A MP2 70‐78  A*24:02  TYFSLNNKF (SEQ ID NO: 2515)  Adenovirus 5 Hexon 37‐45  A*24:02  TYACFVSNL (SEQ ID NO: 2516)  Carcinogenic Embryonic Antigen (CEA) 652‐660  A*24:02  AFLPWHRLF (SEQ ID NO: 2517)  Tyrosinase 188‐196  A*24:02  IMPKAGLLI (SEQ ID NO: 2518)  MAGE‐A3  A*24:02  VYFFLPDHL (SEQ ID NO: 2519)  gp100‐intron 4 (170‐178)  A*24:02  EYLQLVFGI (SEQ ID NO: 2520)  MAGEA2 156‐164  A*24:02  TYLPTNASL (SEQ ID NO: 2521)  HER‐2/neu 63‐71  A*24:02  VYGFVRACL (SEQ ID NO: 2522)  Telomerase reverse transcriptase (hTRT) 461‐469  A*24:02  TFPDLESEF (SEQ ID NO: 2523)  MAGEA3 97‐105  A*24:02  DYLQYVLQI (SEQ ID NO: 2524)  MiHA ACC1 15‐23  A*24:02  RYCNLEGPPI (SEQ ID NO: 2525)  Lymphocyte antigen 6 complex locus K (LY6K) 177‐ 186  A*24:02  AYACNTSTL (SEQ ID NO: 2526)  Survivin 80‐88  A*24:02  CYASGWGSI (SEQ ID NO: 2527)  Prostate Specific Antigen‐1 153‐161  A*24:02  DYLNEWGSRF (SEQ ID NO: 2528)  CDH3 807‐816  A*24:02  EYCPGGNLF (SEQ ID NO: 2529)  MELK 87‐95 (93N)  A*24:02  EYYELFVNI (SEQ ID NO: 2530)  DEP DC1 294‐302  A*24:02  GYCTQIGIF (SEQ ID NO: 2531)  HENMT1 221‐229  A*24:02  IYTWIEDHF (SEQ ID NO: 2532)  FOXM1 262‐270  A*24:02  NYQPVWLCL (SEQ ID NO: 2533) RNF43 721‐729 (722Y)  A*24:02  RYNAQCQETI (SEQ ID NO: 2534) Midkine 110‐119  A*24:02  EYRALQLHL (SEQ ID NO: 2535)  CA9 219‐227  A*24:02  SYRNEIAYL (SEQ ID NO: 2536)  TTK protein kinase 551‐559  A*24:02  VYLRVRPLL (SEQ ID NO: 2537)  KIF20A 67‐75  A*24:02  VYYNWQYLL (SEQ ID NO: 2538)  IL13r 146‐154  A*24:02  VYALPLKML (SEQ ID NO: 2539)  HCMV pp65 113‐121  A*24:02  QYDPVAALF (SEQ ID NO: 2540)  HCMV pp65 341‐349  A*24:02  AYAQKIFKI (SEQ ID NO: 2541)  CMV IE‐1 248‐256  A*24:02  QYSDRRWCF (SEQ ID NO: 2542) Dengue NS3 557‐565 (Singapore/S275/1990)  A*24:02  TYGPVFMCL (SEQ ID NO: 2543)  EBV LMP‐2 419‐427  A*24:02  PYLFWLAAI (SEQ ID NO: 2544)  EBV LMP2 131‐139  A*24:02  TYGPVFMSL (SEQ ID NO: 2545)  EBV LMP2 419‐427  A*24:02  EYLVSFGVW (SEQ ID NO: 2546)  HBV core 117‐125  A*24:02  KYTSFPWLL (SEQ ID NO: 2547)  HBV polymerase 756‐764  A*24:02  FFPSIRDLL (SEQ ID NO: 2548)  HBV core protein 23‐31  A*24:02  AYSQQTRGL (SEQ ID NO: 2549)  HCV NS3 1031‐1039  A*24:02  RYPLTFGWCY (SEQ ID NO: 2550) HIV‐1 Nef 134‐143  A*24:02  RYLKDQQLL (SEQ ID NO: 2551)  HIV‐1 gag gp41 67‐75  A*24:02  RYLRDQQLL (SEQ ID NO: 2552)  HIV env  A*24:02  RYPLTFGWCF (SEQ ID NO: 2553) HIV nef 143‐152  A*24:02  RYPLTFGW (SEQ ID NO: 2554)  HIV nef  A*24:02  VYDFAFRDL (SEQ ID NO: 2555)  HPV16 E6  A*24:02  SFHSLHLLF (SEQ ID NO: 2556)  HTLV Tax 301‐309  A*29:02  KEKYIDQEEL (SEQ ID NO: 2557)  HSP90 alpha 280‐288 (Pathologic Conditions)  A*29:02  LYNTVATLY (SEQ ID NO: 2558)  HIV gag 79‐86  A*29:02  SFDPIPIHY (SEQ ID NO: 2559)  HIV env 216‐224  A*29:02  SFNCRGEFFY (SEQ ID NO: 2560) HIV env 382‐391  A*68:01  TVSGNILTIR (SEQ ID NO: 2561)  NY‐ESO‐1 127‐136  B*07:02  VPQYGYLTL (SEQ ID NO: 2562)  AAV2 372‐380  B*07:02  KPYSGTAYNSL (SEQ ID NO: 2563)  Adenovirus Hexon 114‐124  B*07:02  KPYSGTAYNAL (SEQ ID NO: 2564)  Adenovirus Hexon 114‐124  B*07:02  LPLMRKAYL (SEQ ID NO: 2565)  LT antigen 27‐35  B*07:02  LPWHRLFLL (SEQ ID NO: 2566)  Tyrosinase 208‐216  B*07:02  EPR(PHOSPHO‐S)PSHSM (SEQ ID NO: 2567)  Insulin receptor substrate 2  B*07:02  TPNQRQNVC (SEQ ID NO: 2568) P2X5  B*07:02  APRGVRMAV (SEQ ID NO: 2569) LAGE‐1 46‐54  B*07:02  LPVSPRLQL (SEQ ID NO: 2570)  CEACAM 185‐193  B*07:02  TPRVTGGGAM (SEQ ID NO: 2571)    HCMV pp65 417‐426  B*07:02  RPHERNGFTVL (SEQ ID NO: 2572)    HCMV pp65 265‐275  B*07:02  SPRWYFYYL (SEQ ID NO: 2573)  SARS‐CoV‐2 Nucleocapsid protein 105‐113  (confirmed epitope)  B*07:02  APTRVVAAEM (SEQ ID NO: 2574)  Dengue NS3 serotype 2 222‐231  B*07:02  RPPIFIRRL (SEQ ID NO: 2575)  EBV EBNA‐3A 247‐255  B*07:02  RPQGGSRPEFVKL (SEQ ID NO: 2576)  EBV BMRF1 116‐128  B*07:02  QPRAPIRPI (SEQ ID NO: 2577)  EBV EBNA‐3C 881‐889  B*07:02  LPSDFFPSV (SEQ ID NO: 2578)  HBV core 19‐27  B*07:02  GPRLGVRAT (SEQ ID NO: 2579)  HCV core 41‐49  B*07:02  DPRRRSRNL (SEQ ID NO: 2580)  HCV core 111‐119  B*07:02  IPRRIRQGL (SEQ ID NO: 2581)  HIV‐1 env gp120 848‐856  B*07:02  TPGPGVRYPL (SEQ ID NO: 2582) HIV‐1 nef 128‐137  B*07:02  GPGHKARVL (SEQ ID NO: 2583)  HIV gag p24 223‐231  B*07:02  KPTLKEYVL (SEQ ID NO: 2584)  HPV 33 E7 5‐13  B*07:02  LPVSCPEDL (SEQ ID NO: 2585)  bZIP factor 10‐18  B*07:02  QPEWFRNVL (SEQ ID NO: 2586) Influenza A PB1 329‐337  B*07:02  SPIVPSFDM (SEQ ID NO: 2587)  Influenza A NP 473‐481  B*07:02  SPSVDKARAEL (SEQ ID NO: 2588)  MiHAg SMCY 1041‐1051  B*08:01  GFKQSSKAL (SEQ ID NO: 2589)  bcr‐abl 210 kD fusion protein 19‐27  B*08:01  ELRRKMMYM (SEQ ID NO: 2590)  IE1 199‐207  B*08:01  ELKRKMIYM (SEQ ID NO: 2591)  CMV IE‐1 199‐207 (R/L Position 3, M/I Position 7)  B*08:01  RIKQKGIL (SEQ ID NO: 2592)  Dengue NS3 25‐32  B*08:01  LEKTKKDL (SEQ ID NO: 2593)  Dengue NS4a 6‐13  B*08:01  FLRGRAYGL (SEQ ID NO: 2594)  EBV EBNA‐3A 193‐201  B*08:01  RAKFKQLL (SEQ ID NO: 2595)  EBV BZLF‐1 190‐197  B*08:01  QAKWRLQTL (SEQ ID NO: 2596) EBV EBNA3A 158‐166  B*08:01  GLKILQLL (SEQ ID NO: 2597)  HBV external core Ag  B*08:01  HSKKKCDEL (SEQ ID NO: 2598)  HCV NS3 1395‐1403  B*08:01  FLKEKGGL (SEQ ID NO: 2599)  HIV‐1 nef 90‐97  B*08:01  GEIYKRWII (SEQ ID NO: 2600)  HIV‐1 gag p24 261‐269  B*08:01  EIYKRWII (SEQ ID NO: 2601)  HIV p24 gag 128‐135  B*08:01  YLKDQQLL (SEQ ID NO: 2602)  Env 586‐593  B*15:01  CLIPTAMAF (SEQ ID NO: 2603)  Dengue C 107‐115  B*15:01  RLRPGGKKKY (SEQ ID NO: 2604) HIV‐1 p17 20‐29  B*27:05  GRFGLATEK (SEQ ID NO: 2605)  BRAF 594‐601 (600E)  B*27:05  GRFGLATVK (SEQ ID NO: 2606)  BRAF 594‐601 (600V)  B*27:05  RMFPNAPYL (SEQ ID NO: 2362)  WT‐1 126‐134 (Wilms tumor)  B*27:05  ARKLLLDNL (SEQ ID NO: 2607)  PqqC‐like protein 70‐78  B*27:05  NRAKQVIKL (SEQ ID NO: 2608)  Probable ATP‐dependent Clp protease ATP‐binding  subunit 7‐15  B*27:05  QRNAPRITF (SEQ ID NO: 2609)  SARS‐CoV‐2 Nucleocapsid protein 9‐17 (confirmed  epitope)  B*27:05  ARMILMTHF (SEQ ID NO: 2610)  HCV NS5B 2841‐2849  B*27:05  KRWIILGLNK (SEQ ID NO: 2611) HIV‐1 gag p24 265‐274  B*27:05  KRWIIMGLNK (SEQ ID NO: 2612)  HIV‐1 Gag p24 263‐272  B*27:05  GRAFVTIGK (SEQ ID NO: 2613)  HIV‐1 gp100 103‐111  B*27:05  SRYWAIRTR (SEQ ID NO: 2614)  Influenza A NP 383‐391  B*35:01  IPYLDGTFY (SEQ ID NO: 2615)  Adenovirus Hexon  B*35:01  MPFATPMEA (SEQ ID NO: 2616) NY‐ESO‐1 94‐102  B*35:01  IPSINVHHY (SEQ ID NO: 2617)  HCMV pp65 123‐131  B*35:01  TPEGIIPTL (SEQ ID NO: 2618)  Dengue NS3 500‐508  B*35:01  YPLHEQHGM (SEQ ID NO: 2619) EBV EBNA‐3A 458‐466  B*35:01  EPLPQGQLTAY (SEQ ID NO: 2620)    EBV BZLF‐1 54‐64  B*35:01  HPVAEADYFEY (SEQ ID NO: 2621)    EBV EBNA‐1 407‐417(4A)  B*35:01  HPNIEEVAL (SEQ ID NO: 2622)  HCV NS3 1359‐1367  B*35:01  CPNSSIVY (SEQ ID NO: 2623)  HCV E1 207‐214  B*35:01  NPDIVIYQY (SEQ ID NO: 2624)  HIV‐1 RT 330‐338  B*35:01  NPDIVIYQY (SEQ ID NO: 2625)  HIV‐1 HIV‐1 RT 328‐336  B*35:01  VPLDEDFRKY (SEQ ID NO: 2626) HIV‐1 HIV‐1 RT 273‐282  B*40:01  MEVTPSGTWL (SEQ ID NO: 2627)    SARS‐CoV‐2 Nucleocapsid protein  322‐330 (confirmed epitope)  B*40:01  GEARKTFVEL (SEQ ID NO: 2628) Dengue NS3 528‐537  B*40:01  IEDPPFNSL (SEQ ID NO: 2629)  EBV LMP2 200‐208  B*40:01  REISVPAEIL (SEQ ID NO: 2630)  HCV NS5a 2266‐2275  B*40:01  KEKGGLEGL (SEQ ID NO: 2631)  HIV‐1 Nef 92‐100  C*06:02  TRATKMQVI (SEQ ID NO: 2632)  pp65 211‐219  C*06:02  QIKVRVDM (SEQ ID NO: 2633)  IE1 88‐95  C*06:02  TRRFLPQIL (SEQ ID NO: 2634)  NS3 205‐213  C*07:02  CRVLCCYVL (SEQ ID NO: 2635)  IE1 309‐317  E*01:01  VMAPRTLIL (SEQ ID NO: 2636)  HLA‐C leader sequence peptide  E*01:01  VMAPRTLVL (SEQ ID NO: 2637)  HLA‐A leader sequence peptide        DRB1*01:01  DSVTPMILKAQKGGNL (SEQ ID NO: 2641)  Dog dander Can f 1 33‐48  DRB1*01:01  KCIEWEKAQHGA (SEQ ID NO: 2642)  Mugwort pollen Art v 1 25‐36  DRB1*01:01  LPVVLENARILKNCVDAK (SEQ ID NO: 2643)  Cat dander Fel d 1 53‐70  DRB1*01:01  LRQMRTVTPIRMQGG (SEQ ID NO: 2644)   House dust mite Der p1 96‐110  DRB1*01:01  VAAAPQVKYAVFEAALTKAI (SEQ ID NO: 2645)  Timothy grass Phl p 5 p26  DRB1*01:01  YESYKFIPALEAAVK (SEQ ID NO: 2646)  Grass pollen allergen Phl p 5 196‐210  DRB1*01:01  ETLLRAVESYLLAHS (SEQ ID NO: 2647)  Birch pollen allergen Bet v 1 142‐156  DRB1*01:01  ACYEFLWGPRALVETS (SEQ ID NO: 2648) MAGE‐A3 267‐282  DRB1*01:01  LKEFTVSGNILTIRL (SEQ ID NO: 2649)  NY‐ESO‐1 123‐137  DRB1*01:01  LLEFYLAMPFATPME (SEQ ID NO: 2650)  NY‐ESO‐1 87‐101  DRB1*01:01  KVPIKWMALESILRRRF (SEQ ID NO: 2651)  HER2 883‐899  DRB1*01:01  LPLKMLNIPSINVH (SEQ ID NO: 2652)  CMV pp65 116‐129  DRB1*01:01  GAALQIPFAMQMAYRF (SEQ ID NO: 2653)  SARS‐CoV S protein (873‐888)  (conserved in SARS‐CoV‐2)  DRB1*01:01  MAYRFNGIGVTQNVLY (SEQ ID NO: 2654)  SARS‐CoV S protein (884‐899)  (conserved in SARS‐CoV‐2)  DRB1*01:01  QLIRAAEIRASANLAATK (SEQ ID NO: 2655)  SARS‐CoV S protein (993‐1010)  (conserved in SARS‐CoV‐2)  DRB1*01:01  TVFYNIPPMPL (SEQ ID NO: 2656)  EBV   EBNA2 280‐290  DRB1*01:01  TSLYNLRRGTALA (SEQ ID NO: 2657)  EBV EBNA1 515‐527  DRB1*01:01  QAGFFLLTRILTIPQS (SEQ ID NO: 2658)  HBV envelope 179‐194  DRB1*01:01  PPAYRPPNAPILSTL (SEQ ID NO: 2659)  HBV core 158‐172  DRB1*01:01  LCWGELMTLATWVGVN (SEQ ID NO: 2660)  HBV core 60‐75  DRB1*01:01  TLLFNILGGWVAA (SEQ ID NO: 2661)  HCV polyprotein 1806?1818, NS4b  DRB1*01:01  DYVDRFYKTLRAE (SEQ ID NO: 2662)  HIV‐1 gag 295‐307  DRB1*01:01  KRWIILGLNKIVRMYSPTSI (SEQ ID NO: 2663)  HIV‐1 gag 263‐282  DRB1*01:01  FRDYVDRFYKTLRAEQASQE (SEQ ID NO: 2664)  HIV‐1 gag 293‐312  DRB1*01:01  SGPLKAEIAQRLEDV (SEQ ID NO: 2665)  Influenza A MP 17‐31  DRB1*01:01  PKYVKQNTLKLAT (SEQ ID NO: 2666)  Influenza A HA 307‐319  DRB1*01:01  EYLNKIQNSLSTEWSPCSVT (SEQ ID NO: 2667)  CSP 326‐345  DRB1*01:01  PVSKMRMATPLLMQA (SEQ ID NO: 2668)  CLIP 87‐101  DRB1*01:01  QEIYMQHTYPISA (SEQ ID NO: 2669)  TT 257‐269  DRB1*01:01  GEEYLILSARDVLAV (SEQ ID NO: 2670)  Mtb 10 kDa chaperonin GroES  DRB1*03:01  HTYTIDWTKDAVTWS (SEQ ID NO: 2671) Aspergillus fumigatus Crf1/p41 171‐185  DRB1*03:01  VYYLTRDPTTPLARAA (SEQ ID NO: 2672)  HCV polyprotein 2800‐2815, NS5b  DRB1*03:01  PIVQLQGDSNCLKCFR (SEQ ID NO: 2673) HPV E2 285‐300  DRB1*03:01  MEAIAKRLDACQDQLLELYE (SEQ ID NO: 2674)  HPV E2 1‐20  DRB1*03:01  RQIFGDYKTTIC (SEQ ID NO: 2675)  PLP 98‐109  DRB1*03:01  PVSKMRMATPLLMQA (SEQ ID NO: 2668)    CLIP 87‐101  DRB1*03:01  MAKTIAYDEEARR (SEQ ID NO: 2676)  Mtb groEL 1‐13  DRB1*03:01  KTIAYDEEARR (SEQ ID NO: 2677)  Mtb groEL 3‐13  DRB1*04:01  APYHFDLSGHAFG (SEQ ID NO: 2678)  Rye grass Lol p1 124‐136  DRB1*04:01  ELEKYQQLNSERGVPN (SEQ ID NO: 2679) Cow dander Bos d 2 143‐158  DRB1*04:01  ETLLRAVESYLLAHS (SEQ ID NO: 2680)  Birch pollen allergen Bet v 1 141‐155  DRB1*04:01  VAAAPQVKYAVFEAALTKAI (SEQ ID NO: 2645)  Timothy grass Phl p 5 p26  DRB1*04:01  FHTYTIDWTKDAVTW (SEQ ID NO: 2681) Aspergillus fumigatus Crf1/p41 170‐184  DRB1*04:01  NFIRMVISNPAAT (SEQ ID NO: 2682)  GAD65 555‐567  DRB1*04:01  IAFTSEHSHFSLK (SEQ ID NO: 2683)  GAD65 274‐286  DRB1*04:01  GAGSLQPLALEGSLQKRG (SEQ ID NO: 2684)  Proinsulin 73‐90  DRB1*04:01  GIVEQCCTSICSLYQ (SEQ ID NO: 2685)  Proinsulin 90‐104  DRB1*04:01  ATEG[cit]V[cit]VNSAYQDK (SEQ ID NO: 2686)  Cit aggregan 89‐103  DRB1*04:01  ATIKAEFV[cit]AETPYM (SEQ ID NO: 2687)  Cit CILP 297?311  DRB1*04:01  DVMNILLQYVVKSFDRSTKV (SEQ ID NO: 2030)  GAD65 113‐132  DRB1*04:01  GKLYGI[cit]DV[cit]STRDR (SEQ ID NO: 2688)  Cit CILP 982?996  DRB1*04:01  GVYAT[cit]SSAV[cit]L[cit]SSVPGVR (SEQ ID NO: 2689)  Cit vimentin aa 59‐78  DRB1*04:01  IFDS[cit]GNPTVEVDLF (SEQ ID NO: 2690)  Cit alpha‐enolase 11‐25  DRB1*04:01  KGMAALPRLIAFTSEHSHFS (SEQ ID NO: 2691)  GAD65 265?284  DRB1*04:01  QDFTN[cit]INKLKNS (SEQ ID NO: 2692)  Cit fibrinogen‐alpha 79‐91  DRB1*04:01  WNRQLYPEWTEAQRLD (SEQ ID NO: 2693)  gp100 44‐59  DRB1*04:01  ISPNSVFSQWRVVCDSLEDYD (SEQ ID NO: 2694)  Tyrp1 277‐297  DRB1*04:01  ESEFQAALSRKVAKL (SEQ ID NO: 2695)  MAGE‐A6 102‐116  DRB1*04:01  LTQYFVQENYLEYRQVPG (SEQ ID NO: 2696)  MAGE‐A6 246‐263  DRB1*04:01  YACFVSNLATGRNNS (SEQ ID NO: 2697)  CEA 653‐667  DRB1*04:01  NYTLRVDCTPLMYSL (SEQ ID NO: 2698)  PSMA 459‐473  DRB1*04:01  IYRRRLMKQDFSVPQLPHS (SEQ ID NO: 2699)  gp100 615‐633  DRB1*04:01  ALHIYMDGTMSQVQGSA (SEQ ID NO: 2700)  tyrosinase 365‐381  DRB1*04:01  RNGYRALMDKSLHVGTQCALTRR (SEQ ID NO: 2701)  MART‐1 51‐73  DRB1*04:01  LKEFTVSGNILTIRL (SEQ ID NO: 2649)  NY‐ESO‐1 123‐137  DRB1*04:01  LLEFYLAMPFATPME (SEQ ID NO: 2650)  NY‐ESO‐1 87‐101  DRB1*04:01  KVPIKWMALESILRRRF (SEQ ID NO: 2651)  HER2 883‐899  DRB1*04:01  QALNTLVKQLSSNFGAI (SEQ ID NO: 2702)  SARS‐CoV S protein (939‐ 955)(conserved in SARS‐CoV‐2)  DRB1*04:01  QLIRAAEIRASANLAATK (SEQ ID NO: 2655)  SARS‐CoV S protein (993‐1010)  (conserved in SARS‐CoV‐2)  DRB1*04:01  PYYVVDLSVRGM (SEQ ID NO: 2703)  EBV BHRF1 122‐133  DRB1*04:01  AEGLRALLARSHVER (SEQ ID NO: 2704)  EBV EBNA1 482‐496  DRB1*04:01  GQTYHLIVDTDSLGNPSLSV (SEQ ID NO: 2705)  EBV EBNA2 11‐30  DRB1*04:01  LSFLPSDFFPSVRDL (SEQ ID NO: 2706)  HBV core 45‐59  DRB1*04:01  GYKVLVLNPSVAATL (SEQ ID NO: 2707)  HCV polyprotein 1248‐1262, NS3  DRB1*04:01  SGIQYLAGLSTLPGNPAIASL (SEQ ID NO: 2708)  HCV polyprotein 1770‐1790, NS4b  DRB1*04:01  AFSPEVIPMFSALSEGATPQ (SEQ ID NO: 2709)  HIV‐1 gag 163‐182  DRB1*04:01  FWRGENGRKTRIAYERMCNILKGK (SEQ ID NO: 2710)  Influenza A NP 206‐229  DRB1*04:01  GFVFTLTVPSER (SEQ ID NO: 2711)  Influenza A MP 61‐72  DRB1*04:01  PKYVKQNTLKLAT (SEQ ID NO: 2666)  Influenza A HA 307‐319  DRB1*04:01  EYLNKIQNSLSTEWSPCSVT (SEQ ID NO: 2667)  CSP 326‐345  DRB1*04:01  RTELLKDAIGEGK (SEQ ID NO: 2712)  MOG 97‐109  DRB1*04:01  TWTTCQSIAFPSKTSASIGS (SEQ ID NO: 2713)  PLP 180‐199  DRB1*04:01  PVSKMRMATPLLMQA (SEQ ID NO: 2668)  CLIP 87‐101  DRB1*04:01  SSPKPWIYATSNLAS (SEQ ID NO: 2714)  Rituximab Light chain 41‐55  DRB1*04:02  PKYVKQNTLKLAT (SEQ ID NO: 2666)  Influenza A HA 307‐319  DRB1*04:02  PVSKMRMATPLLMQA (SEQ ID NO: 2668)  CLIP 87‐101  DRB1*04:05  LWWVNNQSLPVSP (SEQ ID NO: 2715)  CEA 321‐333ÿ  DRB1*04:05  PKYVKQNTLKLAT (SEQ ID NO: 2666)  Influenza A HA 307‐319  DRB1*04:05  PVSKMRMATPLLMQA (SEQ ID NO: 2668)  CLIP 87‐101  DRB1*07:01  DRVNFKYSFSVIE (SEQ ID NO: 2716)  Alder pollen Aln g 1 76‐88  DRB1*07:01  VAAAPQVKYAVFEAALTKAI (SEQ ID NO: 2645)  Timothy grass Phl p 5 p26  DRB1*07:01  VGLLKAVESYLLA (SEQ ID NO: 2717)  Alder pollen Aln g 1 142‐154  DRB1*07:01  YYSNVTATRLLSSTNS (SEQ ID NO: 2718)  Pertussis toxin subunit 2 129‐144  DRB1*07:01  EPDVYYTSAFVFPTK (SEQ ID NO: 2719)  CMV pp65 177‐191  DRB1*07:01  PDDYSNTHSTRYVTV (SEQ ID NO: 2720)  CMV gB 215‐229  DRB1*07:01  VPGLYSPCRAFFNKEELL (SEQ ID NO: 2721)  EBV MCP 1264‐1281  DRB1*07:01  PGPLRESIVCYFMVFLQTHI (SEQ ID NO: 2722)  EBV EBNA1 551‐570  DRB1*07:01  VYGGSKTSLYNLRRGTALAI (SEQ ID NO: 2723)  EBV EBNA1 509‐528  DRB1*07:01  PRSPTVFYNIPPMPLPPSQL (SEQ ID NO: 2724)  EBV EBNA2 276‐295  DRB1*07:01  AYCLWMMLLISQAEAALELIT (SEQ ID NO: 2725)  HCV NS2 732‐753  DRB1*07:01  WPLLLLLLALPQRAYAQ (SEQ ID NO: 2726)  HCV   NS2 47‐63  DRB1*07:01  SLTITSLLRRHNWITSCS (SEQ ID NO: 2727)  HCV   NS5a 1957‐1975  DRB1*07:01  TTVRLRAYMNTPGLPVC (SEQ ID NO: 2728)  HCV NS3 1535‐1551  DRB1*07:01  FRDYVDRFYKTLRAEQASQE (SEQ ID NO: 2664)  HIV‐1 gag 293‐312  DRB1*07:01  PKYVKQNTLKLAT (SEQ ID NO: 2666)  Influenza A HA 307‐319  DRB1*07:01  EYLNKIQNSLSTEWSPCSVT (SEQ ID NO: 2667)  CSP 326‐345  DRB1*07:01  PVSKMRMATPLLMQA (SEQ ID NO: 2668)  CLIP 87‐101  DRB1*07:01  WVKQTPGRGLEWIGA (SEQ ID NO: 2729) Rituximab Heavy chain 36‐50  DRB1*07:01  SSPKPWIYATSNLAS (SEQ ID NO: 2714)  Rituximab Light chain 41‐55  DRB1*07:01  EWVAEIRSKSINSAT (SEQ ID NO: 2730)  Infliximab Heavy chain 46‐60  DRB1*09:01  VAAAPQVKYAVFEAALTKAI (SEQ ID NO: 2645)  Timothy grass Phl p 5 p26  DRB1*09:01  LLEFYLAMPFATPME (SEQ ID NO: 2650)  NY‐ESO‐1 87‐101  DRB1*09:01  PVSKMRMATPLLMQA (SEQ ID NO: 2668)  CLIP 87‐101  DRB1*09:01  MTEQQWNFAGIEAAA (SEQ ID NO: 2731)  Mtb ESAT6 1‐15  DRB1*11:01  LEAAFNAEFNEIRRVLLEEN (SEQ ID NO: 2732)  Peanut Ara h 1 321‐340  DRB1*11:01  TSRNNPFYFPSRRFSTRYGN (SEQ ID NO: 2733)  Peanut Ara h 1 169‐188  DRB1*11:01  VVNKGTGNLELVAVRKEQQQ (SEQ ID NO: 2734)  Peanut Ara h 1 457‐476  DRB1*11:01  VAAAPQVKYAVFEAALTKAI (SEQ ID NO: 2645)  Timothy grass Phl p 5 p26  DRB1*11:01  TSYVKVLHHMVKISG (SEQ ID NO: 2735)  MAGE‐A3 281‐295  DRB1*11:01  ENIQRFLPNPAGVQLEDPEF (SEQ ID NO: 2736)  Factor VIII 589?608  DRB1*11:01  FRDYVDRFYKTLRAEQASQE (SEQ ID NO: 2664)  HIV‐1 gag 293‐312  DRB1*11:01  PKYVKQNTLKLAT (SEQ ID NO: 2666)  Influenza A HA 307‐319  DRB1*11:01  PVSKMRMATPLLMQA (SEQ ID NO: 2668)  CLIP 87‐101  DRB1*11:01  VSIDKFRIFCKALNPK (SEQ ID NO: 2737)  TT 1084‐1099  DRB1*11:01  FNNFTVSFWLRVPKVSASHLE (SEQ ID NO: 2738)  TT 947‐967  DRB1*11:01  KFIIKRYTPNNEIDSF (SEQ ID NO: 2739)  TT 1174‐1189  DRB1*11:01  QYIKANSKFIGITEL (SEQ ID NO: 2740)  TT 830‐844  DRB1*11:01  WVKQTPGRGLEWIGA (SEQ ID NO: 2729) Rituximab Heavy chain 36‐50  DRB1*15:01  VAAAPQVKYAVFEAALTKAI (SEQ ID NO: 2645)  Timothy grass Phl p 5 p26  DRB1*15:01  VGLLKAVESYLLA (SEQ ID NO: 2717)  Alder pollen Aln g 1 142‐154  DRB1*15:01  AVNIVGYSNAQGVDY (SEQ ID NO: 2741) House dust mite Der p1 251‐265  DRB1*15:01  ETLLRAVESYLLAHS (SEQ ID NO: 2647)  Birch pollen allergen Bet v 1 142‐156  DRB1*15:01  LRQMRTVTPIRMQGG (SEQ ID NO: 2644) House dust mite Der p1 96‐110  DRB1*15:01  DENPVVHFFKNIVTPRTPP (SEQ ID NO: 2027)  Myelin basic protein 83‐101  DRB1*15:01  MSIYVYALPLKMLNI (SEQ ID NO: 2742)  CMV pp65 109‐123  DRB1*15:01  NFPYLVAYQATVCARA (SEQ ID NO: 2743) HCV polyprotein 1582?1597, NS3  DRB1*15:01  GINAVAYYRGLDVSV (SEQ ID NO: 2744)  HCV polyprotein 1411?1425, NS3  DRB1*15:01  TTVRLRAYMNTPGLPVC (SEQ ID NO: 2728)  HCV NS3 1535‐1551  DRB1*15:01  PVSKMRMATPLLMQA (SEQ ID NO: 2668)  CLIP 87‐101  DRB1*15:01  SSPKPWIYATSNLAS (SEQ ID NO: 2714)  Rituximab Light chain 41‐55  DRB1*15:01  EWVAEIRSKSINSAT (SEQ ID NO: 2730)  Infliximab Heavy chain 46‐60  DRB1*15:01  MHVSFVMAYPEMLAA (SEQ ID NO: 2745)  Mtb PE family protein  DRB1*15:01  MSQIMYNYPAMMAHA (SEQ ID NO: 2746)  Mtb ESAT‐6 like protein     [00102] As further illustrative and non-limiting examples, the following antigens provided in Table 6 are known in the art to be relevant to celiac disease. In some embodiments, the TCR recognition domain can comprise one or more of the peptides provided in Table 6. In some embodiments, the TCR recognition domain can comprise a sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or greater sequence identity to one of the peptides of Table 6. In some embodiments, the TCR recognition domain can comprise a sequences with at least 95% sequence identity to one of peptides of Table 6, wherein that sequence retains the wild-type activity of the peptide of Table 6. [00103] Table 6. The sequences are, in the order presented, SEQ ID NOs:1000-2012.   ID  Type  Description  Toxicity Form  HLADQ Refs  SeqLen Sequence  1  alpha‐gliadin  alpha‐gliadin CT‐1 (p1‐p22 of B 3142)  Toxic  Native  Unknown  41   22  VPVPQLQPQNPSQQQPQEQVPL  2  alpha‐gliadin  alpha‐gliadin peptide CT‐2 (p23‐p53 of B 3142)  Toxic  Native  Unknown   41  31  VQQQQFPGQQQPFPPQQPYPQPQPFPSQQPY  3  alpha‐gliadin  alpha‐gliadin p14 (p1‐p19)  Immunogenic  Native  DQ2  34  19   VRVPVPQLQPQNPSQQQPQ  4  alpha‐gliadin  alpha‐gliadin p15 (p11‐p28)  Immunogenic  Native  DQ2  34  18   QNPSQQQPQEQVPLVQQQ  5  alpha‐gliadin  alpha‐gliadin p209  Immunogenic  Native  DQ2  39,34  20   FPGQQQPFPPQQPYPQPQPF  7  alpha‐gliadin  alpha‐gliadin (p44‐p55)  Immunogenic, Toxic  Native  HLA‐DR 10  12   PQPQPFPSQQPY  8  alpha‐gliadin  Epitope DQ2‐alpha‐I/II/III  Immunogenic  Native  DQ2  62  20   YLQLQPFPQPQLPYPQPQLP  9  alpha‐gliadin  alpha2‐gliadin 1420 (p56‐p70)  Immunogenic  Native  DQ2, DQ8  17   15  YLQLQPFPQPQLPYP  10  alpha‐gliadin  alpha2‐gliadin 33‐mer (p57‐p89)  Immunogenic  Native  DQ2, DQ8  (DQ2/8)  2,25  33  LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF  11  alpha‐gliadin  Deamidated alpha2‐gliadin 33‐mer (p57‐p89)  Immunogenic  Deamidated   DQ2.5  61  33  LQLQPFPQPELPYPQPELPYPQPELPYPQPQPF  12  alpha‐gliadin  alpha‐2 gliadin G8 (p56–p75)  Toxic, Immunogenic  Native  DQ2   51,63  20  LQLQPFPQPQLPYPQPQLPY  13  alpha‐gliadin  alpha‐2 gliadin G9 (p56–p75; E65)  Immunogenic  Deamidated   DQ2  51  20  LQLQPFPQPELPYPQPQLPY  14  alpha‐gliadin  alpha‐9 gliadin G5 (p56–p68)  Immunogenic  Native  DQ2  51  13   LQLQPFPQPQLPY  15  alpha‐gliadin  alpha‐9 gliadin G5 (p56–p68; E65)  Immunogenic  Deamidated   DQ2  51  13  LQLQPFPQPELPY  16  alpha‐gliadin  Wheat peptide W02  Immunogenic  Native  DQ2  62,86  16   QLQPFPQPQLPYPQPQ  17  alpha‐gliadin  Glia‐alpha9 (p57‐p71)  Immunogenic  Native  DQ2  9  15   QLQPFPQPQLPYPQP  18  alpha‐gliadin  Glia‐alpha9 (p57‐p71; T69 and H70)  Immunogenic  Native  DQ2  9   15  QLQPFPQPQLPYTHP  19  alpha‐gliadin  Glia‐alpha9 (p57‐p71; R59)  Immunogenic  Native  DQ2  9  15   QLRPFPQPQLPYPQP  20  alpha‐gliadin  Glia‐alpha9 (p57‐p71; H63 and H70)  Immunogenic  Native  DQ2  9   15  QLQPFPHPQLPYPHP  21  alpha‐gliadin  Glia‐alpha9 (p57‐p71; A63)  Immunogenic  Native  DQ2  9  15   QLQPFPQAQLPYPQP  22  alpha‐gliadin  Glia‐alpha9 (p57‐p70)  Immunogenic  Native  DQ2  8  14   QLQPFPQPQLPYPQ  23  alpha‐gliadin  Glia‐alpha9 (p57‐p70; E65)  Immunogenic  Deamidated  DQ2  8   14  QLQPFPQPELPYPQ  24  alpha‐gliadin  alpha‐9 gliadin (p57‐p68); alpha2/alpha9 gliadin Immunogenic  Native   DQ2  14,23,2,84  12  QLQPFPQPQLPY  25  alpha‐gliadin  alpha‐9 gliadin (p57‐p68; E65); alpha‐I  Immunogenic  Deamidated   DQ2  43,14,8,84  12  QLQPFPQPELPY  26  alpha‐gliadin  alpha‐9 gliadin epitope homolog (p57‐p68; E63 (considered native form of  synthetic))  Immunogenic  Native  DQ2  8  12  QLQPFPEPQLPY  27  alpha‐gliadin  alpha‐9 gliadin epitope homolog (p57‐p68; E63 and E65 (tTG‐treated form))   Immunogenic  Deamidated  DQ2  8  12  QLQPFPEPELPY  28  alpha‐gliadin  alpha‐9 gliadin epitope homolog (p57‐p68; Q64 (considered native form of  synthetic))  Immunogenic  Native  DQ2  8  12  QLQPFPQQQLPY  29  alpha‐gliadin  alpha‐9 gliadin epitope homolog (p57‐p68; Q64 and E63 (tTG‐treated form))   Immunogenic  Deamidated  DQ2  8  12  QLQPFPEQQLPY  30  alpha‐gliadin  alpha‐9 gliadin epitope homolog (p57‐p68; Q64 and E65 (tTG‐treated form))   Immunogenic  Deamidated  DQ2  8  12  QLQPFPQQELPY  31  alpha‐gliadin  alpha‐9 gliadin epitope homolog (p57‐p68; Q64, E63 and E65 (tTG‐treated  form))  Immunogenic  Deamidated  DQ2  8  12  QLQPFPEQELPY  32  alpha‐gliadin  DQ2‐Glia‐alpha1 epitope (p58–p72)  Immunogenic  Native  DQ2  59   15  LQPFPQPQLPYPQPQ  33  alpha‐gliadin  DQ2‐Glia‐alpha1 epitope (p58–p72; E65)  Immunogenic  Deamidated   DQ2  59  15  LQPFPQPELPYPQPQ  34  alpha‐gliadin  DQ2‐Glia‐alpha1 epitope  (p58–p72; S64)  Immunogenic  Native   DQ2  59  15  LQPFPQSQLPYPQPQ  35  alpha‐gliadin  DQ2‐Glia‐alpha1 epitope (p58–p72; S64 and E65)  Immunogenic   Deamidated  DQ2  59  15  LQPFPQSELPYPQPQ  36  alpha‐gliadin  DQ2‐alpha‐I epitope (p58‐p68)  Immunogenic  Native  DQ2  47  11   LQPFPQPQLPY  37  alpha‐gliadin  DQ2‐alpha‐I epitope (p58‐p68; E65 considered Deamidated form)   Immunogenic  Deamidated  DQ2  47  11  LQPFPQPELPY  38  alpha‐gliadin  Glia‐alpha2 (p60‐p76)  Immunogenic  Native  DQ2  8  17   QPFPQPQLPYPQPQLPY  39  alpha‐gliadin  Glia‐alpha2 (p60‐p76; E66)  Immunogenic  Deamidated  DQ2  8   17  QPFPQPELPYPQPQLPY  40  alpha‐gliadin  Glia‐alpha2 (p60‐p76; E73)  Immunogenic  Deamidated  DQ2  8   17  QPFPQPQLPYPQPELPY  41  alpha‐gliadin  Glia‐alpha2 (p60‐p76; E66 and E73)  Immunogenic  Deamidated   DQ2  8  17  QPFPQPELPYPQPELPY  42  alpha‐gliadin  Glia‐alpha2 (p60‐p69)  Immunogenic  Native  DQ2  45  10   QPFPQPQLPY  43  alpha‐gliadin  Glia‐alpha2 (p60‐p69; E66)  Immunogenic  Deamidated  DQ2  45   10  QPFPQPELPY  44  alpha‐gliadin  alpha2‐gliadin 1421 (p61‐p75)  Immunogenic  Native  DQ2, DQ8  17   15  PFPQPQLPYPQPQLP  45  alpha‐gliadin  Glia‐alpha2 (p61‐p71)  Immunogenic  Native  DQ2  59  11   PFPQPQLPYPQ  46  alpha‐gliadin  Glia‐alpha2 (p61‐p71; E66)  Immunogenic  Deamidated  DQ2  59   11  PFPQPELPYPQ  47  alpha‐gliadin  Glia‐alpha2 (p61‐p71; T70 and H71)  Immunogenic  Native  DQ2  59   11  PFPQPQLPYTH  48  alpha‐gliadin  Glia‐alpha2 (p61‐p71; T70, H71 and E66)  Immunogenic  Deamidated   DQ2  59  11  PFPQPELPYTH  49  alpha‐gliadin  Glia‐alpha2 (p61‐p71; H64)  Immunogenic  Native  DQ2  59  11   PFPHPQLPYPQ  50  alpha‐gliadin  Glia‐alpha2 (p61‐p71; H64 and E66)  Immunogenic  Deamidated   DQ2  59  11  PFPHPELPYPQ  53  alpha‐9 gliadin  DQ2.5_glia_alpha‐la  Immunogenic  Native  DQ2.5  14,90,17,23  9   PFPQPQLPY  54  alpha‐9 gliadin  DQ2.5_glia_alpha‐1a  Immunogenic  Deamidated  DQ2.5  14,90,17,23   9  PFPQPELPY  55  alpha‐gliadin  alpha‐2 gliadin 1206 (p62‐p75)  Immunogenic  Native  DQ2  14,1,2  14   PQPQLPYPQPQLPY  56  alpha‐gliadin  alpha‐II/alpha‐III epitope (p62‐p75; E72) Immunogenic  Deamidated   DQ2  14  14  PQPQLPYPQPELPY  57  alpha‐gliadin  alpha‐2 gliadin (p62‐p75; E65)  Immunogenic  Deamidated  DQ2   14,25  14  PQPELPYPQPQLPY  58  alpha‐gliadin  alpha‐2 gliadin (p62‐p75; E65 and E72)  Immunogenic  Deamidated   DQ2  14  14  PQPELPYPQPELPY  59  alpha‐gliadin  G4‐9A gliadin (p62‐p75; E65 and A70)  Immunogenic  Deamidated   DQ2  51  14  PQPELPYPAPQLPY  60  alpha‐gliadin  G4‐11A gliadin (p62‐p75; E65 and A72)  Immunogenic  Deamidated   DQ2  51  14  PQPELPYPQPALPY  61  alpha‐gliadin  G4‐12A gliadin (p62‐p75; E65 and A73)  Immunogenic  Deamidated   DQ2  51  14  PQPELPYPQPQAPY  62  alpha‐gliadin  G4‐13A gliadin (p62‐p75; E65 and A74)  Immunogenic  Deamidated   DQ2  51  14  PQPELPYPQPQLAY  63  alpha‐gliadin  G4‐14A gliadin (p62‐p75; E65 and A70)  Immunogenic  Deamidated   DQ2  51  14  PQPELPYPQPQLPA  64  alpha‐gliadin  alpha‐2 gliadin (p62‐p73)  Immunogenic  Native  DQ2  25,47  12   PQPQLPYPQPQL  65  alpha‐gliadin  alpha‐2 gliadin (p62‐p73; E65)  Immunogenic  Deamidated  DQ2   25,47  12  PQPELPYPQPQL  66  alpha‐gliadin  alpha‐II (p62‐p72)  Immunogenic  Native  DQ2  43  11   PQPQLPYPQPQ  67  alpha‐gliadin  alpha‐II (p62‐p72; E65 and E72)  Immunogenic  Deamidated  DQ2  43   11  PQPELPYPQPE  68  alpha‐2 gliadin  CAUTION 100% match to one fungal protein and many wheat proteins with  multiple epitopes DQ2.5_glia_alpha2  Immunogenic  Native  DQ2.5  14,17,23  9   PQPQLPYPQ  69  alpha‐2 gliadin  DQ2.5_glia alpha2  Immunogenic  Deamidated  DQ2.5  14,17,23   9  PQPELPYPQ  70  alpha‐gliadin  alpha2‐gliadin 1423 (p71‐p85)  Immunogenic  Native  DQ2, DQ8  17   15  QPQLPYPQPQLPYPQ  71  alpha‐gliadin  a‐gliadin (p62‐p84)  Immunogenic  Native  DQ2  62  20   PQLPYPQPQLPYPQPQLPYP  72  alpha‐gliadin  alpha‐III‐gliadin (p62‐p79)  Immunogenic  Native  DQ2  25  12   PQLPYPQPQLPY  73  alpha‐gliadin  alpha‐III‐gliadin (p62‐p79; E76)  Immunogenic  Deamidated  DQ2  25   12  PQLPYPQPELPY  74  alpha‐gliadin  alpha‐I epitope  Immunogenic  Native  DQ2  25  12   LQLPFPQPQLPY  75  alpha‐gliadin  alpha‐I epitope Deamidated form  Immunogenic  Deamidated   DQ2  25  12  LQLPFPQPELPY  76  alpha‐gliadin  Glia‐alpha2 25‐mer (p64–p89)  Immunogenic  Native  DQ2  57  25   PQLPQFLQPQPYPQPQLPYPQPQPF  77  alpha‐gliadin  Glia‐alpha2 25‐mer (p64–p89; E65)  Immunogenic  Deamidated   DQ2  57  25  PELPQFLQPQPYPQPQLPYPQPQPF  78  alpha‐gliadin  Glia‐alpha2 25‐mer (p64–p89; E79)  Immunogenic  Deamidated   DQ2  57  25  PQLPQFLQPQPYPQPELPYPQPQPF  79  alpha‐gliadin  Glia‐alpha2 25‐mer (p64–p89; E65 and E79)  Immunogenic  Deamidated   DQ2  57  25  PELPQFLQPQPYPQPELPYPQPQPF  80  alpha‐gliadin  alpha2‐gliadin 1422 (p66‐p80)  Immunogenic  Native  DQ2  17  15   QLPYPQPQLPYPQPQ  81  alpha‐gliadin  alpha‐III epitope (p66‐p78)  Immunogenic  Native  DQ2  47  13   QLPYPQPQLPYPQ  82  alpha‐gliadin  alpha‐III epitope (p66‐p78; E72) Immunogenic  Deamidated  DQ2  47   13  QLPYPQPELPYPQ  83  alpha‐gliadin  Wheat peptide W01  Immunogenic  Native  DQ2  62  12   LPYPQPQLPYPQ  84  alpha‐3 gliadin  DQ2.5_glia_alpha 1b  Immunogenic  Native  DQ2.5  23  9   PYPQPQLPY  85  alpha‐3 gliadin  DQ2.5_glia_alpha 1b  Immunogenic  Deamidated  DQ2.5  23  9   PYPQPELPY  86  alpha‐gliadin  Glia‐alpha2 18‐mer (p71– p89)  Immunogenic  Native  DQ2  82  18   QPQPYPQPQLPYPQPQPF  87  alpha‐gliadin  Glia‐alpha2 18‐mer (p71– p89; E79)  Immunogenic  Deamidated   DQ2  82,57  18  QPQPYPQPELPYPQPQPF  88  alpha‐gliadin  Wheat peptide W18  Immunogenic  Native  DQ2  62,82  20   PQLPYPQPQLPYPQPQPFRP  89  alpha‐gliadin  Wheat peptide W18  Immunogenic  Deamidated  DQ2  62  20   PQLPYPQPELPYPQPQPFRP  90  alpha‐gliadin  Wheat peptide W18  Immunogenic  Native  DQ2  62  16   YPQPQLPYPQPQPFRP  91  alpha‐gliadin  Wheat peptide W18  Immunogenic  Deamidated  DQ2  62  16   YPQPELPYPQPQPFRP  92  alpha‐gliadin  alpha2‐gliadin 1424 (p76‐p90)  Immunogenic  Native  DQ2  17  15   YPQPQLPYPQPQPFR  93  alpha‐20 gliadin DQ2.5_glia_alpha 3  Immunogenic  Native  DQ2.5  90,8  9   FRPQQPYPQ  94  alpha‐20 gliadin DQ2.5_glia_alpha 3  Immunogenic  Deamidated  DQ2.5  90,8  9   FRPEQPYPQ  95  alpha‐gliadin  Gliadin (p198‐p222)  Immunogenic  Native  DQ8 (DQ2/8, DQ1/8)  3   25  QQPQQQYPSGQGSFQPSQQNPQAQG  96  alpha‐gliadin  alpha‐2 gliadin (p219‐p242) AJ133612  Immunogenic  Native  DQ8  6   24  QQPQQQYPSGQGSFQPSQQNPQAQ  97  alpha‐gliadin  alpha‐2 gliadin (p219‐p242; E229 and E237) AJ133612  Immunogenic   Deamidated  DQ8  6  24  QQPQQQYPSGEGSFQPSQENPQAQ  98  alpha‐gliadin  alpha‐2 gliadin (p219‐p242; E229) AJ133612  Immunogenic  Deamidated   DQ8  6  24  QQPQQQYPSGEGSFQPSQQNPQAQ  99  alpha‐gliadin  alpha‐2 gliadin (p219‐p242; E237) AJ133612  Immunogenic  Deamidated   DQ8  6  24  QQPQQQYPSGQGSFQPSQENPQAQ  100  alpha‐gliadin  alpha‐gliadin (p220‐p239) P18573  Immunogenic  Native  DQ8  54   20  QPQQQYPSGQGSFQPSQQNP  101  alpha‐gliadin  Gda09 (p202–p219) P18573  Immunogenic  Native  DQ8 (DQ2/8,  DQ1/8) 3,4  18  QQYPSGQGSFQPSQQNPQ  102  alpha‐gliadin  Gda09 (p203–p220) P18573 (alpha‐gliadin (alpha‐I))  Immunogenic   Native  DQ8  5  18  QYPSGQGSFQPSQQNPQA  103  alpha‐gliadin  Gda09 (p203–p220; E216) P18573 (alpha‐gliadin (alpha‐I)   Immunogenic  Deamidated  DQ8  5  18  QYPSGEGSFQPSQENPQA  104  alpha‐gliadin  alpha2‐gliadin 1447 (p226‐p240)  Immunogenic  Native  DQ8  17   15  YPSGQGSFQPSQQNP  105  alpha‐gliadin  Gliadin (p205‐p222)  Immunogenic  Native  DQ8 (DQ2/8)  3  18   PSGQGSFQPSQQNPQAQG  106  alpha‐gliadin  Gliadin (p205‐p216) ; alpha2‐gliadin  Immunogenic  Native  DQ8  (DQ2/8)  46,3  12  PSGQGSFQPSQQ  107  alpha‐gliadin  Gliadin (p205‐p215) ; alpha2‐gliadin  Immunogenic  Native  DQ8  (DQ2/8)  46,3  11  PSGQGSFQPSQ  108  alpha‐gliadin  Gda09 (p206–p217) P18573  Immunogenic  Native  DQ8 (DQ2/8)   46,4  12  SGQGSFQPSQQN  109  alpha‐gliadin  Gda09 (p206–p217; E215) P18573  Immunogenic  Deamidated   DQ8 (DQ2/8)  46  12  SGQGSFQPSEQN  110  alpha‐gliadin  Gda09 (p206‐p217; E208) P18573  Immunogenic  Deamidated   DQ8 (DQ2/8)  46,83,4 12  SGEGSFQPSQQN  111  alpha‐gliadin  Gda09 (p206–p217; E216) P18573  Immunogenic  Deamidated   DQ8 (DQ2/8)  46,4  12  SGQGSFQPSQEN  112  alpha‐gliadin  Gda09 (p206–p217; E208 and E216) P18573  Immunogenic  Deamidated   DQ8 (DQ2/8)  3,4  12  SGEGSFQPSQEN  113  alpha‐gliadin  alpha2‐gliadin (p228‐p236)  Immunogenic  Native  DQ8 (DQ2/8)  6   9  GQGSFQPSQ  115  alpha‐2 gliadin  CAUTION 100% identity match to Dicot plant protein and many wheat family  DQ8_glia_alpha 1   DQ8.5_glia_alpha 1  Immunogenic  Native  DQ8 (DQ2/8)  6,90,3  9  QGSFQPSQQ  116  alpha‐2 gliadin  DQ8_glia_alpha 1   DQ8.5_glia_alpha 1  Immunogenic  Deamidated  DQ8 (DQ2/8)  90,17,83  9   EGSFQPSQQ  117  alpha‐2 gliadin  DQ8_glia_alpha 1   DQ8.5_glia_alpha 1  Immunogenic  Deamidated  DQ8 (DQ2/8)  90,17  9   QGSFQPSQE  118  alpha‐2 gliadin  DQ8_glia_alpha 1   DQ8.5_glia_alpha 1  Immunogenic  Deamidated  DQ8 (DQ2/8)  90,17  9  EGSFQPSQE  119  alpha‐gliadin  alpha2‐gliadin 1448 (p231‐p245)  Immunogenic  Native  DQ8  17   15  GSFQPSQQNPQAQGS  120  alpha‐gliadin  alpha2‐gliadin 1450 (p241‐p255)  Immunogenic  Native  DQ8 and  weak DQ2  17  15  QAQGSVQPQQLPQFE  121  alpha‐gliadin  Wheat peptide W02  Immunogenic  Native  DQ2  62  20   MQLQPFPQPQLPYPQPQLPY  122  alpha‐gliadin  Wheat peptide W02  Immunogenic  Deamidated  DQ2  62  20   MQLQPFPQPELPYPQPQLPY  123  alpha‐gliadin  Wheat peptide W02  Immunogenic  Deamidated  DQ2  62  16   QLQPFPQPELPYPQPQ  124  alpha‐gliadin  Wheat peptide W02  Immunogenic  Deamidated  DQ2  62  16   ELQPFPQPELPYPQPQ  125  alpha‐gliadin  Wheat peptide W02  Immunogenic  Native  DQ2  62  12   QPFPQPQLPYPQ  126  alpha‐gliadin  Wheat peptide W02  Immunogenic  Deamidated  DQ2  62  12   QPFPQPELPYPQ  127  gamma‐gliadin  Wheat peptide W01  Immunogenic  Native  DQ2  62  20   PQPFPPQLPYPQPQLPYPQP  128  gamma‐gliadin  Wheat peptide W01  Immunogenic  Deamidated  DQ2  62  20   PQPFPPQLPYPQPELPYPQP  129  gamma‐gliadin  Wheat peptide W01  Immunogenic  Deamidated  DQ2  62  12   LPYPQPELPYPQ  130  alpha‐gliadin  Wheat peptide W34  Immunogenic  Native  DQ2  62  20   VAHAIIMHQQQQQQQEQKQQ  131  alpha‐gliadin  Wheat peptide W34  Immunogenic  Native  DQ2  62  16   VAHAIIMHQQQQQQQE  132  alpha‐gliadin  Analog of alpha‐gliadin (p31‐p49; A31)  Toxic  Native  DQ2  50  19   AGQQQPFPPQQPYPQPQPF  133  alpha‐gliadin  Analog of alpha‐gliadin (p31‐p49; A36)  Toxic  Native  DQ2  50  19   LGQQQAFPPQQPYPQPQPF  134  alpha‐gliadin  alpha20‐gliadin (p91–p106)  Immunogenic  Native  DQ2  8  16   PQPFRPQQPYPQPQPQ  135  alpha‐gliadin  alpha20‐gliadin (p93–106; E97)  Immunogenic  Deamidated  DQ2  8   16  PQPFRPEQPYPQPQPQ  136  alpha‐gliadin  Glia‐alpha20‐gliadin (p93–p106) Immunogenic  Native  DQ2  19  14   PFRPQQPYPQPQPQ  137  alpha‐gliadin  Glia‐alpha20‐gliadin (p93–p106; E97)  Immunogenic  Deamidated   DQ2  19  14  PFRPEQPYPQPQPQ  138  alpha‐gliadin  Glia‐alpha20‐gliadin (p96–106) minimal epitope Immunogenic  Native   DQ2  19  11  PQQPYPQPQPQ  139  alpha‐gliadin  Glia‐alpha20‐gliadin (p96–106; E97) minimal epitope, synthetic   Immunogenic  Deamidated  DQ2  19  11  PEQPYPQPQPQ  140  alpha‐gliadin  alpha‐gliadin(p123‐p132)  Immunogenic  Native  DQ8  64,30  10   QLIPCMDVVL  141  alpha‐gliadin  alpha‐gliadin (p206‐p217)  Toxic  Native  DQ2 (A1 B8 DR3 DQ2 and A  24 B8 DR3 13 DQ2)  35  12  LGQGSFRPSQQN  142  alpha‐gliadin  Peptide XT (1‐55)  Toxic  Native  Unknown  29  55   VRVPVPQLQPQNPSQQQPQEQVPLVQQQQFLGQQQPFPPQQPYPQPQPFPSQQPY  143  alpha‐gliadin  Peptide XT (p1‐p30)  Toxic  Native  Unknown  29  30   VRVPVPQLQPQNPSQQQPQEQVPLVQQQQF  144  alpha‐gliadin  alpha‐gliadin B 3142 (p3‐p55)  Immunogenic, Toxic  Native  Unknown   40  53  VPVPQLQPQNPSQQQPQEQVPLVQQQQFGGQQQPFPPQQPYPQPQPFPSQQPY  146  alpha‐gliadin  alpha‐gliadin p19 (p21‐p40)  Immunogenic  Native  DQ2  34  20   QVPLVQQQQFLGQQQPFPPQ  147  alpha‐gliadin  alpha‐gliadin p134  Immunogenic  Native  DQ2  (alpha1*0501,  ß1*0201)  39  19  QFLGQQQPFPPQQPYPQPQ  148  alpha‐gliadin  alpha‐gliadin p135  Immunogenic  Native  DQ2 (alpha1*0501,  ß1*0201)  39  18  FLGQQQPFPPQQPYPQPQ  149  alpha‐gliadin  Peptide XT (p31‐p55)  Immunogenic, Toxic  Native  Unknown   10,29  25  LGQQQPFPPQQPYPQPQPFPSQQPY  150  alpha‐gliadin  alpha‐gliadin (p31‐p49)  Immunogenic, Toxic  Native  DQ2 (alpha1*0501,  ß1*0201)  39,11,49,34  19  LGQQQPFPPQQPYPQPQPF  151  alpha‐gliadin  alpha‐gliadin p126  Immunogenic  Native  DQ2 (alpha1*0501,  ß1*0201)  10,39,13,15,66,79  17  LGQQQPFPPQQPYPQPQ  152  alpha‐gliadin  alpha‐gliadin (p31‐p43)  Immunogenic, Toxic  Native  HLA‐DR   10,13,15,72,79  13  LGQQQPFPPQQPY  153  alpha‐gliadin  alpha‐gliadin CAB76960 (p253‐p272)  Immunogenic  Native  DQ8  54   20  AMCNVYIPPYCAMAPFGIFG  154  alpha‐gliadin  alpha‐gliadin (proline‐rich domain)  Immunogenic  Native  Unknown   42  16  CPQPFPSQQPYLQLQG  155  alpha‐gliadin  alpha‐gliadin (p5‐p22) (proline‐rich domain)  Immunogenic  Native   Unknown  42  18  CPQLQPQNPSQQQPQEQG  156  alpha‐gliadin  alpha‐gliadin (p51‐p70) Toxic  Native  DQ2  37  20   SQQPYLQLQPFPQPQLPYSQ  157  alpha‐gliadin  Wheat peptide W08  Immunogenic  Native  DQ2  62  20   LQLQPFPQPQLPYSQPQPFR  158  alpha‐gliadin  Wheat peptide W08  Immunogenic  Deamidated  DQ2  62  20   LQLQPFPQPELPYSQPQPFR  159  alpha‐gliadin  Glia‐alpha9 (p57‐p71; S69)  Immunogenic  Native  DQ2  9  15   QLQPFPQPQLPYSQP  160  alpha‐gliadin  DQ2‐Glia‐alpha1 epitope  (p58–p72; S69)  Immunogenic  Native   DQ2  59  15  LQPFPQPQLPYSQPQ  161  alpha‐gliadin  DQ2‐Glia‐alpha1 epitope (p58–p72; S69 and E65)  Immunogenic   Deamidated  DQ2  59  15  LQPFPQPELPYSQPQ  162  alpha‐gliadin  DQ2‐Glia‐alpha1 epitope  (p58–p72; S64 and S69)  Immunogenic   Native  DQ2  59  15  LQPFPQSQLPYSQPQ  163  alpha‐gliadin  DQ2‐Glia‐alpha1 epitope  (p58–p72; S64, S69 and E65)  Immunogenic   Deamidated  DQ2  59  15  LQPFPQSELPYSQPQ  164  alpha‐gliadin  Wheat peptide W08  Immunogenic  Native  DQ2  62  12   QPFPQPQLPYSQ  165  alpha‐gliadin  Wheat peptide W08  Immunogenic  Deamidated  DQ2  62  12   QPFPQPELPYSQ  166  alpha‐gliadin  Glia‐alpha  Immunogenic  Native  DQ2  59  11   PFPQPQLPYSQ  167  alpha‐gliadin  Glia‐alpha in Deamidated form  Immunogenic  Deamidated  DQ2  59   11  PFPQPELPYSQ  168  alpha‐gliadin  alpha‐gliadin (p202‐p220)  Toxic  Native  DQ2  11  19   QQYPLGQGSFRPSQQNPQA  169  alpha‐gliadin  alpha‐gliadin CAB76961 (p251‐p270)  Immunogenic  Native  DQ8  54   20  VYIPPYCTIAPFGIFGTNYR  170  alpha‐gliadin  Wheat peptide W13  Immunogenic  Native  DQ2  62  20   LQLQPFPQPQLPYLQPQPFR  171  alpha‐gliadin  Wheat peptide W13  Immunogenic  Deamidated  DQ2  62  20   LQLQPFPQPELPYLQPQPFR  172  alpha‐gliadin  Glia‐alpha9 (p57‐p71; L69)  Immunogenic  Native  DQ2  9  15   QLQPFPQPQLPYLQP  173  alpha‐gliadin  Wheat peptide W13  Immunogenic  Native  DQ2  62  12   QPFPQPQLPYLQ  174  alpha‐gliadin  Wheat peptide W13  Immunogenic  Deamidated  DQ2  62  12   QPFPQPELPYLQ  175  alpha‐gliadin  alpha‐gliadin 4037  Immunogenic  Native  Unknown  60  17   PPYCTIVPFGIFGTNYR  176  alpha‐gliadin  alpha‐gliadin  Immunogenic  Native  DQ2  62  20   LQLQPFPQPQLPYPQPQPFR  177  alpha‐gliadin  alpha‐Glia (p57–p73)  Immunogenic  Native  DQ2  57  17   QLQPFPQPQLPYPQPQP  178  alpha‐gliadin  alpha‐Glia (p57–p73; E65)  Immunogenic  Deamidated  DQ2  57   17  QLQPFPQPELPYPQPQP  179  alpha‐gliadin  alpha‐Glia (p57–p73; T65 and S73)  Immunogenic  Native  DQ2  57   17  QLQPFPQPTLPYPQPQS  180  alpha‐gliadin  alpha‐gliadin (p57‐p73; S73)  Immunogenic  Native  DQ2  28  17   QLQPFPQPQLPYPQPQS  181  alpha‐gliadin  alpha‐gliadin (p57‐p73; S73 and E65)  Immunogenic  Deamidated   DQ2  28  17  QLQPFPQPELPYPQPQS  182  alpha‐gliadin  Wheat peptide W09  Immunogenic  Native  DQ2  62  20   LQPFPQPQPFLPQLPYPQPQ  183  alpha‐gliadin  alpha‐Glia AG11 (p78 –p95)  Immunogenic  Native  DQ2  57  17   PQPQPFLPQLPYPQPQS  184  alpha‐gliadin  alpha‐Glia AG11 (p78 –p95; E86)  Immunogenic  Deamidated   DQ2  57  17  PQPQPFLPELPYPQPQS  185  alpha‐gliadin  Wheat peptide W09  Immunogenic  Native  DQ2  62  14   QPQPFLPQLPYPQP  186  alpha‐gliadin  Wheat peptide W09  Immunogenic  Deamidated  DQ2  62  14   EPQPFLPELPYPQP  187  alpha‐gliadin  Wheat peptide W09  Immunogenic  Native  DQ2  62  12   PQPFLPQLPYPQ  188  alpha‐gliadin  alpha‐gliadin p211  Immunogenic  Native  DQ2  34  20   FPGQQQQFPPQQPYPQPQPF  189  alpha‐gliadin  alpha‐Glia AG12 (p82–p98)  Immunogenic  Native  DQ2  57  17   PQPQPFPPQLPYPQPQS  190  alpha‐gliadin  alpha‐Glia AG12 (p82–p98; E90) Immunogenic  Deamidated  DQ2  57   17  PQPQPFPPELPYPQPQS  191  omega‐gliadin  Gliadin AAG17702 (p80‐p99)  Immunogenic  Native  DQ8  54  20   PFTQPQQPTPIQPQQPFPQQ  192  omega‐gliadin  Wheat peptide W27  Immunogenic  Native  DQ2  62  11   PFTQPQQPTPI  193  omega‐gliadin  Gliadin AAG17702 (p88‐p107)  Immunogenic  Native  DQ8  54  20   TPIQPQQPFPQQPQQPQQPF  194  omega‐gliadin  Wheat peptide W25  Immunogenic  Native  DQ2  62  11   TPIQPQQPFPQ  195  omega‐gliadin  Wheat peptide W30; Rye peptide R28  Immunogenic  Native  DQ2  62   12  PQQPFPQQPQQP  197  omega‐gliadin  omega‐gliadin  Immunogenic  Native  DQ2  62  20   PQQPQQPQQPFPQPQQPFPW  198  omega‐gliadin  Epitope DQ2‐omega‐I/II Immunogenic  Native  DQ2  62  20   PQQPQQPFPQPQQPFPWQPQ  199  omega‐gliadin  p4‐p18 omega‐gliadin of AAG17702 (p81‐p102)  Immunogenic  Native   DQ2  62  15  PQQPQQPFPQPQQPF  200  omega‐gliadin  p5‐p19 omega‐gliadin of AAG17702 (p81‐p102)  Immunogenic  Native   DQ2  62  15  QQPQQPFPQPQQPFP  201  omega‐gliadin  DQ2‐omega‐1 omega‐Glia (p102–p118)  Immunogenic  Native  DQ2  57   17  QPQQPFPQPQQPFPWQP  202  omega‐gliadin  DQ2‐omega‐1 omega‐Glia (p102–p118; E104)  Immunogenic  Deamidated   DQ2  57  17  QPEQPFPQPQQPFPWQP  203  omega‐gliadin  Wheat peptide W03, W19, B01  Immunogenic  Deamidated  DQ2   62,86  17  QPEQPFPQPEQPFPWQP  204  omega‐gliadin  omega‐Glia 17mer  Immunogenic  Deamidated  DQ2.5  61  17   QPQQPFPQPEQPFPWQP  205  omega‐gliadin  omega‐gliadin AAG17702 substituted by Lysine (p89‐p102; E95 K89)   Immunogenic  Native  DQ2  62  14  KPFPQPEQPFPWQP  206  omega‐gliadin  omega‐gliadin AAG17702 substituted by Lysine (p89‐p102; E95 K90)   Immunogenic  Native  DQ2  62  14  QKFPQPEQPFPWQP  207  omega‐gliadin  omega‐gliadin AAG17702 substituted by Lysine (p89‐p102; E95 K91)   Immunogenic  Native  DQ2  62  14  QPKPQPEQPFPWQP  208  omega‐gliadin  omega‐gliadin AAG17702 substituted by Lysine (p89‐p102; E95 K99)   Immunogenic  Native  DQ2  62  14  QPFPQPEQPFKWQP  209  omega‐gliadin  omega‐gliadin AAG17702 substituted by Lysine (p89‐p102; E95 K100)   Immunogenic  Native  DQ2  62  14  QPFPQPEQPFPKQP  210  omega‐gliadin  omega‐gliadin AAG17702 substituted by Lysine (p89‐p102; E95 K101)   Immunogenic  Native  DQ2  62  14  QPFPQPEQPFPWKP  211  omega‐gliadin  omega‐gliadin AAG17702 substituted by Lysine (p89‐p102; E95 K102)   Immunogenic  Native  DQ2  62  14  QPFPQPEQPFPWQK  212  omega‐gliadin  p6‐p20 omega‐gliadin of AAG17702 (p81‐p102)  Immunogenic  Native   DQ2  62  15  QPQQPFPQPQQPFPW  213  omega‐gliadin  p7‐p21 omega‐gliadin of AAG17702 (p81‐p102)  Immunogenic  Native   DQ2  62  15  PQQPFPQPQQPFPWQ  214  omega‐gliadin  p8‐p22 omega‐gliadin of AAG17702 (p81‐p102), Wheat peptide W3   Immunogenic  Native  DQ2  62  15  QQPFPQPQQPFPWQP  215  omega‐gliadin  Wheat peptide W03  Immunogenic  Deamidated  DQ2  62  15   EQPFPQPEQPFPWQP  216  omega‐gliadin  Wheat peptide W03, W19, Barley peptide B01  Immunogenic  Native   DQ2  62  20  QPFPQPQQPFPWQPQQPFPQ  217  omega‐gliadin  Wheat peptide W03, W19, Barley peptide B01  Immunogenic  Deamidated   DQ2  62  20  QPFPQPEQPFPWQPQQPFPQ  218  omega‐gliadin  Wheat peptide W03, Barley peptide B01  Immunogenic  Native   DQ2  62  12  QPFPQPQQPFPW  219  omega‐gliadin  Wheat peptide W03, Barley peptide B01  Immunogenic  Deamidated   DQ2  62  12  QPFPQPEQPFPW  220  omega‐II gliadin DQ2.5_glia_omega 2  Immunogenic  Deamidated  DQ2.5  88,90,62   9  PQPEQPFPW  221  omega‐II gliadin DQ2.5_glia_omega 2  Immunogenic  Native  DQ2  88,90,62  9   PQPQQPFPW  222  omega‐gliadin  Wheat peptide W19, Barley peptide B19  Immunogenic  Native   DQ2  62  12  PFPWQPQQPFPQ  223  omega‐gliadin  Wheat peptide W19  Immunogenic  Deamidated  DQ2  62  12   PFPWQPEQPFPQ  224  omega‐gliadin  Wheat peptide W30  Immunogenic  Native  DQ2  62  20   PLQPQQPFPQQPQQPFPQPQ  225  omega‐gliadin  omega‐gliadin  Immunogenic  Native  DQ2  62  20   FPQQPQQPFPQPQLPFPQQS  226  omega‐gliadin  Wheat peptide W06  Immunogenic  Native  DQ2  62  20   QQPQQPFPQPQLPFPQQSEQ  227  omega‐gliadin  Wheat peptide W06  Immunogenic  Native  DQ2  62  12   QPFPQPQLPFPQ  228  omega‐gliadin  Gliadin AAG17702 p173‐p192  Immunogenic  Native  DQ8  54  20   QQPFPQQPQQPFPQPQQPIP  229  omega‐gliadin  Wheat peptide W32, Barley peptide B25, Rye peptide R26   Immunogenic  Native  DQ2  62  12  PFPQQPQQPFPQ  230  omega‐gliadin  Wheat peptide W04  Immunogenic  Native  DQ2  62  20   PQQPQQPFPQPQQPIPVQPQ  231  omega‐gliadin  Wheat peptide W04  Immunogenic  Native  DQ2  62  11   PFPQPQQPIPV  232  omega‐gliadin  Gliadin AAG17702 p186‐p205  Immunogenic  Native  DQ8  54  20   QPQQPIPVQPQQSFPQQSQQ  233  omega‐gliadin  Wheat peptide W20  Immunogenic  Native  DQ2  62  20   FPELQQPIPQQPQQPFPLQP  234  omega‐gliadin  Wheat peptide W20  Immunogenic  Native  DQ2  62  12   PIPQQPQQPFPL  235  omega‐gliadin  Gliadin AAG17702 p225‐p244  Immunogenic  Native  DQ8  54  20   PQQPQQPFPLQPQQPFPQQP  236  omega‐gliadin  Wheat peptide W26, Barley peptide B20  Immunogenic  Native   DQ2  62  12  PFPLQPQQPFPQ  237  omega‐gliadin  Gliadin AAG17702 p239‐p258  Immunogenic  Native  DQ8  54  20   PFPQQPQQPFPQQPQQSFPQ  246  omega5‐gliadin/LMW glutenin  Glu‐5 peptide epitope in native form  Immunogenic   Native  DQ2  21  12  QQQQIPQQPQQF  247  omega5‐gliadin/LMW glutenin  Glu‐5 peptide epitope in native form  Immunogenic   Native  DQ2  21  12  QQQQLPQQPQQF  248  omega5‐gliadin/LMW glutenin  Glu‐5 peptide epitope in Deamidated form   Immunogenic  Deamidated  DQ2  21  12  QEQQIPEQPQQF  249  omega5‐gliadin/LMW glutenin  Glu‐5 peptide epitope in Deamidated form   Immunogenic  Deamidated  DQ2  21  12  QEQQLPEQPQQF  252  omega5‐gliadin/LMW glutenin  CAUTION 100% matches with 4 fungal proteins but multiple  epitopes on Triticum Glu‐5 minimal epitope in native form  Immunogenic  Native  DQ2  19   9  QIPQQPQQF  253  omega5‐gliadin/LMW glutenin  Glu‐5 minimal epitope in Deamidated form   Immunogenic  Deamidated  DQ2  19  9  QIPEQPQQF  254  omega5‐gliadin/LMW glutenin  CAUTION 100% match with fungal and parasite proteins,  less with Glu‐5 minimal epitope in native form  Immunogenic  Native  DQ2  19  9   QLPQQPQQF  255  omega5‐gliadin/LMW glutenin  Glu‐5 minimal epitope in Deamidated form   Immunogenic  Deamidated  DQ2  19  9  QLPEQPQQF  256  omega5‐gliadin/LMW glutenin  Glu‐5 minimal epitope in Deamidated form   Immunogenic  Deamidated  DQ2 (DQ2.2 and DQ2.5) 44  9  EIPEQPQQF  257  omega5‐gliadin/LMW glutenin  Glu‐5 minimal epitope in Deamidated form   Immunogenic  Deamidated  DQ2 (DQ2.2 and DQ2.5) 44  9  ELPEQPQQF  258  gamma‐gliadin or LMW glutenin Glu‐5  Immunogenic  Native  DQ2  19  21   QQISQPQIPQQQQIPQQPQQF  259  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQIPQQQQIPQQPQQF  260  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPEIPQQQQIPQQPQQF  261  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPQIPQEQQIPQQPQQF  262  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPQIPQQQEIPQQPQQF  263  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPEIPQQQQIPQQPQQF  264  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQIPQEQQIPQQPQQF  265  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQIPQQQEIPQQPQQF  266  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPEIPQEQQIPQQPQQF  267  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPEIPQQQEIPQQPQQF  268  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPQIPQEQEIPQQPQQF  269  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPEIPQEQQIPQQPQQF  270  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPEIPQQQEIPQQPQQF  271  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQIPQEQEIPQQPQQF  272  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPEIPQEQEIPQQPQQF  273  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPEIPQEQEIPQQPQQF  274  gamma‐gliadin or LMW glutenin Glu‐5  Immunogenic  Native  DQ2  19  21   QQISQPQLPQQQQIPQQPQQF  275  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQLPQQQQIPQQPQQF  276  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPELPQQQQIPQQPQQF  277  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPQLPQEQQIPQQPQQF  278  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPQLPQQQEIPQQPQQF  279  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPELPQQQQIPQQPQQF  280  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQLPQEQQIPQQPQQF  281  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQLPQQQEIPQQPQQF  282  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPELPQEQQIPQQPQQF  283  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPELPQQQEIPQQPQQF  284  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPQLPQEQEIPQQPQQF  285  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPELPQEQQIPQQPQQF  286  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPELPQQQEIPQQPQQF  287  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQLPQEQEIPQQPQQF  288  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPELPQEQEIPQQPQQF  289  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPELPQEQEIPQQPQQF  290  gamma‐gliadin or LMW glutenin Glu‐5  Immunogenic  Native  DQ2  19  21   QQISQPQIPQQQQLPQQPQQF  291  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQIPQQQQLPQQPQQF  292  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPEIPQQQQLPQQPQQF  293  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPQIPQEQQLPQQPQQF  294  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPQIPQQQELPQQPQQF  295  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPEIPQQQQLPQQPQQF  296  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQIPQEQQLPQQPQQF  297  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQIPQQQELPQQPQQF  298  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPEIPQEQQLPQQPQQF  299  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPEIPQQQELPQQPQQF  300  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPQIPQEQELPQQPQQF  301  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPEIPQEQQLPQQPQQF  302  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPEIPQQQELPQQPQQF  303  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQIPQEQELPQQPQQF  304  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPEIPQEQELPQQPQQF  305  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPEIPQEQELPQQPQQF  306  gamma‐gliadin or LMW glutenin Glu‐5  Immunogenic  Native  DQ2  19  21   QQLSQPQIPQQQQIPQQPQQF  307  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQIPQQQQIPQQPQQF  308  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPEIPQQQQIPQQPQQF  309  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPQIPQEQQIPQQPQQF  310  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPQIPQQQEIPQQPQQF  311  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPEIPQQQQIPQQPQQF  312  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQIPQEQQIPQQPQQF  313  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQIPQQQEIPQQPQQF  314  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPEIPQEQQIPQQPQQF  315  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPEIPQQQEIPQQPQQF  316  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPQIPQEQEIPQQPQQF  317  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPEIPQEQQIPQQPQQF  318  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPEIPQQQEIPQQPQQF  319  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQIPQEQEIPQQPQQF  320  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPEIPQEQEIPQQPQQF  321  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPEIPQEQEIPQQPQQF  322  gamma‐gliadin or LMW glutenin Glu‐5  Immunogenic  Native  DQ2  19  21   QQLSQPQLPQQQQIPQQPQQF  323  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQLPQQQQIPQQPQQF  324  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPELPQQQQIPQQPQQF  325  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPQLPQEQQIPQQPQQF  326  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPQLPQQQEIPQQPQQF  327  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPELPQQQQIPQQPQQF  328  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQLPQEQQIPQQPQQF  329  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQLPQQQEIPQQPQQF  330  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPELPQEQQIPQQPQQF  331  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPELPQQQEIPQQPQQF  332  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPQLPQEQEIPQQPQQF  333  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPELPQEQQIPQQPQQF  334  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPELPQQQEIPQQPQQF  335  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQLPQEQEIPQQPQQF  336  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPELPQEQEIPQQPQQF  337  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPELPQEQEIPQQPQQF  338  gamma‐gliadin or LMW glutenin Glu‐5  Immunogenic  Native  DQ2  19  21   QQLSQPQIPQQQQLPQQPQQF  339  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQIPQQQQLPQQPQQF  340  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPEIPQQQQLPQQPQQF  341  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPQIPQEQQLPQQPQQF  342  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPQIPQQQELPQQPQQF  343  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPEIPQQQQLPQQPQQF  344  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQIPQEQQLPQQPQQF  345  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQIPQQQELPQQPQQF  346  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPEIPQEQQLPQQPQQF  347  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPEIPQQQELPQQPQQF  348  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPQIPQEQELPQQPQQF  349  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPEIPQEQQLPQQPQQF  350  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPEIPQQQELPQQPQQF  351  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQIPQEQELPQQPQQF  352  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPEIPQEQELPQQPQQF  353  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPEIPQEQELPQQPQQF  354  gamma‐gliadin or LMW glutenin Glu‐5  Immunogenic  Native  DQ2  19  21   QQISQPQLPQQQQLPQQPQQF  355  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQLPQQQQLPQQPQQF  356  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPELPQQQQLPQQPQQF  357  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPQLPQEQQLPQQPQQF  358  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPQLPQQQELPQQPQQF  359  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPELPQQQQLPQQPQQF  360  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQLPQEQQLPQQPQQF  361  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQLPQQQELPQQPQQF  362  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPELPQEQQLPQQPQQF  363  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPELPQQQELPQQPQQF  364  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPQLPQEQELPQQPQQF  365  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPELPQEQQLPQQPQQF  366  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPELPQQQELPQQPQQF  367  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPQLPQEQELPQQPQQF  368  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQISQPELPQEQELPQQPQQF  369  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QEISQPELPQEQELPQQPQQF  370  gamma‐gliadin or LMW glutenin Glu‐5  Immunogenic  Native  DQ2  19  21   QQLSQPQLPQQQQLPQQPQQF  371  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQLPQQQQLPQQPQQF  372  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPELPQQQQLPQQPQQF  373  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPQLPQEQQLPQQPQQF  374  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPQLPQQQELPQQPQQF  375  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPELPQQQQLPQQPQQF  376  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQLPQEQQLPQQPQQF  377  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQLPQQQELPQQPQQF  378  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPELPQEQQLPQQPQQF  379  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPELPQQQELPQQPQQF  380  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPQLPQEQELPQQPQQF  381  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPELPQEQQLPQQPQQF  382  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPELPQQQELPQQPQQF  383  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPQLPQEQELPQQPQQF  384  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QQLSQPELPQEQELPQQPQQF  385  gamma‐gliadin or LMW glutenin Glu‐5 in Deamidated form  Immunogenic  Deamidated   DQ2  19  21  QELSQPELPQEQELPQQPQQF  386  gamma‐gliadin  gamma‐gliadin P08079  Immunogenic  Native  DQ8  54  20   QQFLQPQQPFPQQPQQPYPQ  387  gamma‐gliadin  gamma‐gliadin P08079  Immunogenic  Native  DQ8  54  17   QQFLQPQQPFPQQPQQP  388  gamma‐gliadin  gamma‐5 gliadin (p59‐p84)  Immunogenic  Native  DQ2  48  26   FLQPQQPFPQQPQQPYPQQPQQPFPQ  389  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E63) Immunogenic  Deamidated  DQ2  48   26  FLQPEQPFPQQPQQPYPQQPQQPFPQ  390  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E68) Immunogenic  Deamidated  DQ2  48   26  FLQPQQPFPEQPQQPYPQQPQQPFPQ  391  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E71) Immunogenic  Deamidated  DQ2  48   26  FLQPQQPFPQQPEQPYPQQPQQPFPQ  392  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E76) Immunogenic  Deamidated  DQ2  48   26  FLQPQQPFPQQPQQPYPEQPQQPFPQ  393  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E79) Immunogenic  Deamidated  DQ2  48   26  FLQPQQPFPQQPQQPYPQQPEQPFPQ  394  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E63 and E68)  Immunogenic  Deamidated   DQ2  48  26  FLQPEQPFPEQPQQPYPQQPQQPFPQ  395  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E63 and E71)  Immunogenic  Deamidated   DQ2  48  26  FLQPEQPFPQQPEQPYPQQPQQPFPQ  396  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E63 and E76)  Immunogenic  Deamidated   DQ2  48  26  FLQPEQPFPQQPQQPYPEQPQQPFPQ  397  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E63 and E79)  Immunogenic  Deamidated   DQ2  48  26  FLQPEQPFPQQPQQPYPQQPEQPFPQ  398  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E68 and E71)  Immunogenic  Deamidated   DQ2  48  26  FLQPQQPFPEQPEQPYPQQPQQPFPQ  399  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E68 and E76)  Immunogenic  Deamidated   DQ2  48  26  FLQPQQPFPEQPQQPYPEQPQQPFPQ  400  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E68 and E79)  Immunogenic  Deamidated   DQ2  48  26  FLQPQQPFPEQPQQPYPQQPEQPFPQ  401  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E71 and E76)  Immunogenic  Deamidated   DQ2  48  26  FLQPQQPFPQQPEQPYPEQPQQPFPQ  402  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E71 and E79)  Immunogenic  Deamidated   DQ2  48  26  FLQPQQPFPQQPEQPYPQQPEQPFPQ  403  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E76 and E79)  Immunogenic  Deamidated   DQ2  48  26  FLQPQQPFPQQPQQPYPEQPEQPFPQ  404  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E63, E68 and E71)  Immunogenic  Deamidated   DQ2  48  26  FLQPEQPFPEQPEQPYPQQPQQPFPQ  405  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E63, E68 and E76)  Immunogenic  Deamidated   DQ2  48  26  FLQPEQPFPEQPQQPYPEQPQQPFPQ  406  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E63, E68 and E79)  Immunogenic  Deamidated   DQ2  48  26  FLQPEQPFPEQPQQPYPQQPEQPFPQ  407  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E68, E71 and E76)  Immunogenic  Deamidated   DQ2  48  26  FLQPQQPFPEQPEQPYPEQPQQPFPQ  408  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E68, E71 and E79)  Immunogenic  Deamidated   DQ2  48  26  FLQPQQPFPEQPEQPYPQQPEQPFPQ  409  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E71, E76 and E79)  Immunogenic  Deamidated   DQ2  48  26  FLQPQQPFPQQPEQPYPEQPEQPFPQ  410  gamma‐gliadin  gamma‐5 gliadin (p59‐p84; E63, E68, E71,E76 and E79)  Immunogenic   Deamidated  DQ2  48  26  FLQPEQPFPEQPEQPYPEQPEQPFPQ  411  gamma‐gliadin  gamma‐5 gliadin (p60‐p79) ; DQ2‐gamma‐V  gamma‐Glia (p78 –p97);  gamma‐3 and gamma‐5 peptide 1317  Immunogenic  Native  DQ2  57,23,48,2  20   LQPQQPFPQQPQQPYPQQPQ  412  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia (p78 –p97; E81)  Immunogenic  Deamidated   DQ2  57,23,2 20  LQPEQPFPQQPQQPYPQQPQ  413  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia (p78 –p97; E86)  Immunogenic  Deamidated   DQ2  57,23,2 20  LQPQQPFPEQPQQPYPQQPQ  414  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia  (p78 –p97; E89)  Immunogenic  Deamidated   DQ2  57,23,2 20  LQPQQPFPQQPEQPYPQQPQ  415  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia  (p78 –p97; E94)  Immunogenic  Deamidated   DQ2  57,23,2 20  LQPQQPFPQQPQQPYPEQPQ  416  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia  (p78 –p97; E81 and E86)  Immunogenic   Deamidated  DQ2  57,23,2 20  LQPEQPFPEQPQQPYPQQPQ  417  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia  (p78 –p97; E81 and E89)  Immunogenic   Deamidated  DQ2  57,23,2 20  LQPEQPFPQQPEQPYPQQPQ  418  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia  (p78 –p97; E81 and E94)  Immunogenic   Deamidated  DQ2  57,23,2 20  LQPEQPFPQQPQQPYPEQPQ  419  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia  (p78 –p97; E86 and E89)  Immunogenic   Deamidated  DQ2  57,23,2 20  LQPQQPFPEQPEQPYPQQPQ  420  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia  (p78 –p97; E86 and E64)  Immunogenic   Deamidated  DQ2  57,23,2 20  LQPQQPFPEQPQQPYPEQPQ  421  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia  (p78 –p97; E89 and E94)  Immunogenic   Deamidated  DQ2  57,23,2 20  LQPQQPFPQQPEQPYPEQPQ  422  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia  (p78 –p97; E81, E86 and E89)   Immunogenic  Deamidated  DQ2  57,23,2 20  LQPEQPFPEQPEQPYPQQPQ  423  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia  (p78 –p97; E81, E86 and E94)   Immunogenic  Deamidated  DQ2  57,23,2 20  LQPEQPFPEQPQQPYPEQPQ  424  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia  (p78 –p97; E86, E89 and E94)   Immunogenic  Deamidated  DQ2  57,23,2 20  LQPQQPFPEQPEQPYPEQPQ  425  gamma‐gliadin  DQ2‐gamma‐V  gamma‐Glia  (p78 –p97; E81, E86, E89 and E94)   Immunogenic  Deamidated  DQ2  57,23,2 20  LQPEQPFPEQPEQPYPEQPQ  426  gamma‐gliadin  gamma3/gamma4  Immunogenic  Native  DQ2  25  17   PQQPFPQQPQQPYPQQP  427  gamma‐gliadin  gamma5 (p62‐p74)  Immunogenic  Native  DQ2  25  13   PQQPFPQQPQQPY  428  gamma‐gliadin  gamma5 (p62‐p74; E68) Immunogenic  Deamidated  DQ2  25  13   PQQPFPEQPQQPY  429  gamma‐gliadin  gamma5 (p62‐p74; E63 and E68)  Immunogenic  Deamidated   DQ2  25  13  PEQPFPEQPQQPY  430  gamma‐gliadin  gamma5 (p62‐p74; E68 and E71)  Immunogenic  Deamidated   DQ2  25  13  PQQPFPEQPEQPY  431  gamma‐gliadin  gamma5 (p62‐p74; E63, E68 and E71)  Immunogenic  Deamidated   DQ2  25  13  PEQPFPEQPEQPY  432  gamma‐gliadin  gamma‐5 gliadin (p62‐p72)  Immunogenic  Native  DQ2  47,48  11   PQQPFPQQPQQ  433  gamma‐gliadin  gamma5‐gliadin (p62‐p72; E68)  Immunogenic  Deamidated  DQ2  47   11  PQQPFPEQPQQ  434  gamma‐gliadin  gamma5 (p62‐p72; E68, E63 and E71)  Immunogenic  Deamidated   DQ2  25  11  PEQPFPEQPEQ  435  gamma‐gliadin  gamma23mer  Immunogenic  Native  DQ2.5  61  23   QQPFPQQPQQPYPQQPQQPFPQP  436  gamma‐gliadin  gamma23mer (in considered Deamidated form) Immunogenic  Deamidated   DQ2.5  61  23  EQPFPEQPEQPYPEQPEQPFPQP  437  gamma‐gliadin  gamma5‐gliadin (p60‐p79)  Immunogenic  Native  DQ2  21  14   QQPFPQQPQQPYPQ  438  gamma‐5 gliadin  DQ2.5_glia_gamma 5  Immunogenic  Native  DQ2.5  25,90,23   9  QQPFPQQPQ  439  gamma‐5 gliadin  DQ2.5_glia_gamma 5  Immunogenic  Deamidated  DQ2.5   25,90,23  9  QQPFPEQPQ  440  gamma‐gliadin  CAUTION 100% match to Archaea protein lower to others and to gamma5  (p63‐p71; E63, E68 and E71)  Immunogenic  Deamidated  DQ2  25  9  EQPFPEQPE  441  gamma‐gliadin  DQ2‐gamma‐III gamma‐Glia (p83–p97)  Immunogenic  Native  DQ2   57,48,23,2  15  PFPQQPQQPYPQQPQ  442  gamma‐gliadin  DQ2‐gamma‐III gamma‐Glia (p83–p97; E86)  Immunogenic  Deamidated   DQ2  57,48,23,2  15  PFPEQPQQPYPQQPQ  443  gamma‐gliadin  DQ2‐gamma‐III gamma‐Glia (p83–p97; E89)  Immunogenic  Deamidated   DQ2  57,48,23,2  15  PFPQQPEQPYPQQPQ  444  gamma‐gliadin  DQ2‐gamma‐III gamma‐Glia (p83–p97; E86 and E89)  Immunogenic   Deamidated  DQ2  57,48,23,2  15  PFPEQPEQPYPQQPQ  445  gamma‐gliadin  Wheat peptide W23  Immunogenic  Native  DQ2  62  12   PFPQQPQQPYPQ  446  gamma‐gliadin  gamma‐gliadin (p66‐p80) AJ416339  Immunogenic  Native  DQ8, DQ2   17  15  FPQQPQQPYPQQPQQ  447  gamma‐gliadin  gamma‐gliadin (p66‐p80; E68) AJ416339  Immunogenic  Deamidated   DQ8  17,83  15  FPEQPQQPYPQQPQQ  448  gamma‐gliadin  gamma‐gliadin (p66‐p80; E71) AJ416339  Immunogenic  Deamidated   DQ2  17  15  FPQQPEQPYPQQPQQ  449  gamma‐gliadin  gamma‐gliadin (p66‐p80; E76) AJ416339  Immunogenic  Deamidated   DQ8, DQ2  17  15  FPQQPQQPYPEQPQQ  450  gamma‐gliadin  gamma‐gliadin (p66‐p80; E71 and 76) AJ416339 Immunogenic  Deamidated   DQ8  17  15  FPEQPQQPYPEQPQQ  451  gamma‐gliadin  gamma5 (p66‐p78)  Immunogenic  Native  DQ2  23  13   FPQQPQQPYPQQP  452  gamma‐gliadin  gamma5 (p66‐p78; E68 and E71)  Immunogenic  Deamidated   DQ2  23  13  FPEQPEQPYPQQP  453  gamma‐gliadin  gamma5 (p66‐p78; E68 and E72)  Immunogenic  Deamidated   DQ2  23  13  FPEQPQEPYPQQP  454  gamma‐gliadin  gamma5 (p66‐p77)  Immunogenic  Native  DQ2  25  12   FPQQPQQPYPQQ  455  gamma‐gliadin  gamma5 (p66‐p77; E71) Immunogenic  Deamidated  DQ2  25  12   FPQQPEQPYPQQ  456  gamma‐gliadin  gamma5 (p66‐p77; E68, E71 and E76)  Immunogenic  Deamidated   DQ2  25  12  FPEQPEQPYPEQ  457  gamma‐gliadin  gamma5 (p67‐p77; E68, E71 and E76)  Immunogenic  Deamidated   DQ2  25  11  PEQPEQPYPEQ  458  gamma‐1 and gamma 5 gliadin  CAUTION 100% matches to many fungal and parasite  proteins as well as DQ2.5_glia_gamma 3   DQ8_glia_gamma 1b  Immunogenic  Native  DQ2.5/DQ8  17,23,78  9   QQPQQPYPQ  459  gamma‐5 gliadin  DQ2.5_glia_gamma 3   DQ8_glia_gamma1b  Immunogenic  Deamidated  DQ2.5/DQ8  25,17,78  9   EQPEQPYPE  460  gamma‐1 gliadin  DQ2.5_glia_gamma 3   DQ8_glia_gamma 1b  Immunogenic  Deamidated  DQ2.5/DQ8  25,17,78  9   EQPQQPYPE  461  gamma‐1 gliadin  DQ2.5_glia_gamma 3   DQ8_glia_gamma 1b  Immunogenic  Deamidated  DQ2.5/DQ8  17,78  9  EQPQQPFPE  462  gamma‐III gliadin  CAUTION 100% identity matches to fungal and lower to other fungal  proteins as DQ2.5_glia_gamma 3   DQ8_glia_gamma 1b  Immunogenic  Deamidated  DQ2.5/DQ8  17,78  9   QQPEQPYPQ  463  gamma‐gliadin  Predicted gamma‐gliadin peptide  Immunogenic  Native  DQ8  (DQ2/8)  22  14  QQPYPQQPQQPFPQ  464  gamma‐gliadin  CAUTION many 100% identity matches to legume and bacterial proteins and  also gamma‐Vib gliadin  Immunogenic  Native  DQ2  25  9  QQPYPQQPQ  465  gamma‐gliadin  CAUTION 100% match to bacterial protein and lower to others and gamma‐ Vib gliadin in Deamidated form  Immunogenic  Deamidated  DQ2  25  9   EQPYPQQPQ  466  gamma‐gliadin  CAUTION 100% identity to bacterial protein and lower to others and  gamma‐Vib gliadin in Deamidated form  Immunogenic  Deamidated  DQ2  25  9   QQPYPEQPQ  467  gamma‐gliadin  gamma‐Vib gliadin in Deamidated form  Immunogenic  Deamidated   DQ2  25  9  EQPYPEQPQ  468  gamma‐gliadin  CAUTION many 100% matches to fish, fungi and other non‐wheat family  proteins also a few to Secalin Glia‐gamma2  Immunogenic  Native  DQ2 (DQ2.2 and DQ2.5) 44   9  PYPQQPQQP  469  gamma‐gliadin  Glia‐gamma2 in Deamidated form  Immunogenic  Deamidated   DQ2 (DQ2.2 and DQ2.5) 44,83  9  PYPEQPQQP  470  gamma‐gliadin  Glia‐gamma2 in Deamidated form  Immunogenic  Deamidated   DQ2 (DQ2.2 and DQ2.5) 44  9  PYPQQPEQP  471  gamma‐gliadin  CAUTION 100% match to bacterial protein and lizard protein lower to grapes  and wheat Glia‐gamma2 in Deamidated form  Immunogenic  Deamidated  DQ2 (DQ2.2 and  DQ2.5)  44  9  PYPEQPEQP  472  gamma‐gliadin  CAUTION 100% 4 matches to Candida 2 to bacteria and many to secalins and  wheat  gamma2‐gliadin Immunogenic  Native  DQ2.5/DQ8  90,17,8 9  QQPQQPFPQ  473  gamma‐2 gliadin  CAUTION 100% match to fungal protein and lower to Candida and to  Gliadin epitope: gamma‐I  Immunogenic  Deamidated  DQ2.5/DQ8  90,17,8 9   EQPQQPFPQ  474  gamma‐2 gliadin  Gliadin epitope: gamma‐VII  Immunogenic  Deamidated   DQ2.5/DQ8  90,17,8 9  QQPEQPFPQ  475  gamma‐2 gliadin  CAUTION 100% match to a bacterial protein / lower to triticum  gammaVII‐gliadin in Deamidated form  Immunogenic  Deamidated  DQ2.5/DQ8  25,90,17   9  EQPEQPFPQ  476  gamma‐gliadin  gamma‐Glia (p105–p118)  Immunogenic  Native  DQ2  57  14   PQQQTLQPQQPAQL  477  gamma‐gliadin  gamma‐Glia (p105–p118; E113) Immunogenic  Deamidated  DQ2  57   14  PQQQTLQPEQPAQL  478  gamma1‐gliadin Wheat peptide W37  Immunogenic  Native  DQ2  62  20   ATANMQVDPSGQVQWPQQQP  479  gamma1‐gliadin Wheat peptide W37  Immunogenic  Native  DQ2  62  12   QVDPSGQVQWPQ  480  gamma1‐gliadin gamma‐gliadin 1370 (p1‐p30) ; gamma‐gliadin M2 M36999 (p11‐p30)  homologous to DQ2‐alpha‐I  Immunogenic  Native  DQ2, DQ8  17,23  20   WPQQQPFPQPQQPFCQQPQR  481  gamma1‐gliadin gamma‐gliadin 1371 (p21‐p40)  Immunogenic  Native  DQ2  17  20   QQPFCQQPQRTIPQPHQTFH  482  gamma1‐gliadin gamma‐gliadin 1372 (p31‐p50)  Immunogenic  Native  DQ2  17  20   TIPQPHQTFHHQPQQTFPQP  483  gamma1‐gliadin gamma‐gliadin 1372 (p41‐p60)  Immunogenic  Native  DQ2, DQ8  17   20  HQPQQTFPQPQQTYPHQPQQ  484  gamma1‐gliadin gamma‐gliadin 1372 (p51‐p70)  Immunogenic  Native  DQ2  17  20   QQTYPHQPQQQFPQTQQPQQ  485  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80) ; gamma‐gliadin M7 M36999 (p61‐p80)  homologous to DQ2‐gamma‐III  Immunogenic  Native  DQ2, DQ8  25,17,23  20   QFPQTQQPQQPFPQPQQTFP  486  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E64) ; gamma‐gliadin M7 M36999 (p61‐p80)  homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25  20   QFPETQQPQQPFPQPQQTFP  487  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E66) ; gamma‐gliadin M7 M36999 (p61‐p80)  homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25  20   QFPQTEQPQQPFPQPQQTFP  488  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E69) ; gamma‐gliadin M7 M36999 (p61‐p80)  homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25  20   QFPQTQQPEQPFPQPQQTFP  489  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E76) ; gamma‐gliadin M7 M36999 (p61‐p80)  homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25  20   QFPQTQQPQQPFPQPEQTFP  490  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E64 and E66) ; gamma‐gliadin M7 M36999  (p61‐p80) homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25  20   QFPETEQPQQPFPQPQQTFP  491  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E64 and E69) ; gamma‐gliadin M7 M36999  (p61‐p80) homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25  20   QFPETQQPEQPFPQPQQTFP  492  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E64 and E76) ; gamma‐gliadin M7 M36999  (p61‐p80) homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25  20   QFPETQQPQQPFPQPEQTFP  493  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E66 and E69) ; gamma‐gliadin M7 M36999  (p61‐p80) homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25  20   QFPQTEQPEQPFPQPQQTFP  494  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E66 and E76) ; gamma‐gliadin M7 M36999  (p61‐p80) homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25  20   QFPQTEQPQQPFPQPEQTFP  495  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E69 and E76) ; gamma‐gliadin M7 M36999  (p61‐p80) homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25  20   QFPQTQQPEQPFPQPEQTFP  496  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E64, E66 and E69) ; gamma‐gliadin M7  M36999 (p61‐p80) homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25   20  QFPETEQPEQPFPQPQQTFP  497  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E64, E66 and E76) ; gamma‐gliadin M7  M36999 (p61‐p80) homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25   20  QFPETEQPQQPFPQPEQTFP  498  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E64, E69 and E76) ; gamma‐gliadin M7  M36999 (p61‐p80) homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25   20  QFPETQQPEQPFPQPEQTFP  499  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E66, E69 and E76) ; gamma‐gliadin M7  M36999 (p61‐p80) homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25   20  QFPQTEQPEQPFPQPEQTFP  500  gamma1‐gliadin gamma‐gliadin 1375 (p61‐p80; E64, E66, E69 and E76) ; gamma‐gliadin M7  M36999 (p61‐p80) homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25   20  QFPETEQPEQPFPQPEQTFP  501  gamma1‐gliadin Wheat peptide W28, W33  Immunogenic  Native  DQ2  62  20   PQQPFPQPQQTFPQQPQLPF  502  gamma1‐gliadin gamma‐gliadin 1376 (p71‐p90); gamma‐gliadin M8 M36999 (71‐80)  homologous to DQ2‐alpha‐I and DQ2‐gamma‐IV Immunogenic  Native  DQ2, DQ8  17,23  20   PFPQPQQTFPQQPQLPFPQQ  503  gamma1‐gliadin Wheat peptide W33  Immunogenic  Native  DQ2  62  11   PFPQPQQTFPQ  504  gamma1‐gliadin Wheat peptide W28  Immunogenic  Native  DQ2  62  12   PQQTFPQQPQLP  505  gamma1‐gliadin Wheat peptide W10  Immunogenic  Native  DQ2  62  20   SQQPQQQFSQPQQQFPQPQQ  506  gamma1‐gliadin DQ2‐y‐IV y‐Glia (p117–p132)  Immunogenic  Native  DQ2  57,23  15   QQFSQPQQQFPQPQQ  507  gamma1‐gliadin DQ2‐y‐IV y‐Glia (p117–p132; E123)  Immunogenic  Deamidated   DQ2  57,23  15  QQFSQPEQQFPQPQQ  508  gamma1‐gliadin DQ2‐y‐IV y‐Glia (p117–p132; E125)  Immunogenic  Deamidated   DQ2  57,23  15  QQFSQPQQEFPQPQQ  509  gamma1‐gliadin DQ2‐y‐IV y‐Glia (p117–p132; E123 and E125)  Immunogenic  Deamidated   DQ2  57,23  15  QQFSQPEQEFPQPQQ  510  gamma1‐gliadin Wheat peptide W10  Immunogenic  Native  DQ2  62  12   QQFSQPQQQFPQ  511  gamma1‐gliadin gamma‐IV (p101‐p113)  Immunogenic  Native  DQ2  23  13   QFSQPQQQFPQPQ  512  gamma1‐gliadin gamma‐gliadin (gamma5 p102‐p113)  Immunogenic  Native  DQ2  23   12  FSQPQQQFPQPQ  513  gamma1‐gliadin gamma5 (p102‐p113; E106)  Immunogenic  Deamidated  DQ2  23   12  FSQPEQQFPQPQ  514  gamma1‐gliadin gamma5 (p102‐p113; E108)  Immunogenic  Deamidated  DQ2  23   12  FSQPQQEFPQPQ  515  gamma1‐gliadin gamma5 (p102‐p113; E106 and E108)  Immunogenic  Deamidated   DQ2  25,23  12  FSQPEQEFPQPQ  516  gamma1‐gliadin gamma5 (p102‐p111)  Immunogenic  Native  DQ2  25  10   FSQPQQQFPQ  517  gamma1‐gliadin gamma5 (p102‐p111; E106)  Immunogenic  Deamidated  DQ2  25   10  FSQPEQQFPQ  518  gamma1‐gliadin gamma5 (p102‐p111; E108)  Immunogenic  Deamidated  DQ2  25   10  FSQPQQEFPQ  519  gamma1‐gliadin gamma5 (p102‐p111; E106 and E108)  Immunogenic  Deamidated   DQ2  25  10  FSQPEQEFPQ  520  gamma1‐gliadin gamma‐IV (p103‐p114)  Immunogenic  Native  DQ2  23  12   SQPQQQFPQPQQ  521  gamma‐5 gliadin  CAUTION 100% match to fungal protein and many wheat proteins  glia‐gamma 4a  Immunogenic  Native  DQ2.5  90,25,23  9  SQPQQQFPQ  522  gamma‐5 gliadin  glia‐gamma 4a  Immunogenic  Deamidated  DQ2.5  90,25,23   9  SQPEQEFPQ  523  gamma1‐gliadin gamma‐gliadin of GDB2_WHEAT (SwissProt P08453 GI:121101) (p140–p150)   Immunogenic  Native  DQ2  24  11  QQPQQSFPQQQ  524  gamma1‐gliadin gamma‐gliadin of GDB2_WHEAT (SwissProt P08453 GI170738) (p141–p150)   Immunogenic  Native  DQ2  24  10  QPQQSFPQQQ  525  gamma1‐gliadin gamma‐gliadin of GDB2_WHEAT (SwissProt P08453 GI170738) (p141–p150;  E148)  Immunogenic  Deamidated  DQ2  24  10  QPQQSFPEQQ  526  gamma‐gliadin  Wheat peptide W07  Immunogenic  Native  DQ2  62  20   WPQQQPFPQPQQPFCQQPQQ  527  gamma‐gliadin  Wheat peptide W07  Immunogenic  Deamidated  DQ2  62  20   WPQQQPFPQPEQPFCQQPQQ  529  gamma‐gliadin  Wheat peptide W07  Immunogenic  Deamidated  DQ2  62  12   QPFPQPEQPFCQ  530  gamma‐gliadin  Predicted gamma‐gliadin  Immunogenic  Native  DQ8 (DQ2/8)  22   14  QFPQTQQPQQPFPQ  531  gamma‐gliadin  gamma‐gliadin M36999 (p63‐p76; E66)  Immunogenic  Synthesised as  Deamidated  DQ8  17  14  PQTEQPQQPFPQPQ  532  gamma‐gliadin  gamma‐gliadin M36999 (p63‐p76; E69)  Immunogenic  Synthesised as  Deamidated  DQ2  17  14  PQTQQPEQPFPQPQ  533  gamma‐gliadin  gamma‐gliadin M36999 (p63‐p76; E66 and E69)  Immunogenic  Synthesised  as Deamidated  DQ2, DQ8  17  14  PQTEQPEQPFPQPQ  534  gamma‐gliadin  gamma‐gliadin 1375 (p61‐p80) ; gamma‐gliadin M7 M36999 (61‐80)  homologous to DQ2‐gamma‐III  Immunogenic  Native  DQ2  25  11  TQQPQQPFPQP  535  gamma‐gliadin  gamma‐gliadin 1375 (p61‐p80; E62 and E65), ; gamma‐gliadin M7 M36999  (61‐80) homologous to DQ2‐gamma‐III  Immunogenic  Deamidated  DQ2  25  11   TEQPEQPFPQP  536  gamma‐gliadin  gamma‐gliadin 1377 (p81‐p100) Immunogenic  Native  DQ2, DQ8  17   20  QQPQLPFPQQPQQPFPQPQQ  537  gamma‐gliadin  gamma‐gliadin (p84‐p97)  Immunogenic  Native  DQ8 (DQ2/8)  22   14  QLPFPQQPQQPFPQ  538  gamma‐gliadin  Glia‐gamma2 (p89‐p102)  Immunogenic  Native  DQ2  20  10   PFPQQPQQPF  539  gamma‐gliadin  Glia‐gamma2 (p89‐p102; E92)  Immunogenic  Deamidated  DQ2  20   10  PFPEQPQQPF  540  gamma‐gliadin  Glia‐gamma2 (p89‐p102; E94)  Immunogenic  Deamidated  DQ2  20   10  PFPQQPEQPF  541  gamma‐gliadin  Glia‐gamma2 (p89‐p102; E92 and E94)  Immunogenic  Deamidated   DQ2  20  10  PFPEQPEQPF  542  gamma‐gliadin  CAUTION 100% match to a fungal protein and many Secalins gamma‐Gliadin  (p90‐p102)  Immunogenic  Native  DQ2  27  9  FPQQPQQPF  543  gamma‐gliadin  gamma‐Gliadin (p90‐p102; E92) Immunogenic  Deamidated  DQ2  27   9  FPEQPQQPF  544  gamma‐gliadin  gamma‐Gliadin (p90‐p102; E96) Immunogenic  Deamidated  DQ2  27   9  FPQQPQEPF  545  gamma‐gliadin  gamma‐Gliadin (p90‐p102; E92 and E96)  Immunogenic  Deamidated   DQ2  27  9  FPEQPQEPF  546  gamma‐gliadin  gamma‐gliadin 1378 (p91‐p110),  ; gamma‐gliadin M10 M36999 (91‐110)  homologous to DQ2‐alpha‐I  Immunogenic  Native  DQ2, DQ8  17,23  20   PQQPFPQPQQPQQPFPQSQQ  547  gamma‐gliadin  Wheat peptide W36  Immunogenic  Native  DQ2  62  20   QQPAQYEVIRSLVLRTLPNM  548  gamma‐gliadin  Wheat peptide W36  Immunogenic  Native  DQ2  62  16   QYEVIRSLVLRTLPNM  549  gamma‐gliadin  Wheat peptide W36  Immunogenic  Deamidated  DQ2  62  15   EYEVIRSLVLRTLPN  550  gamma‐gliadin  Wheat peptide W36  Immunogenic  Native  DQ2  62  15   QYQVIRSLVLRTLPN  551  gamma‐gliadin  gamma‐gliadin AAK84778 (p74‐p93)  Immunogenic  Native  DQ8  54   20  QQQFIQPQQPFPQQPQQTYP  552  gamma‐gliadin  Wheat peptide W14  Immunogenic  Native  DQ2  62  12   QQFIQPQQPFPQ  553  gamma‐gliadin  Predicted gamma‐gliadin  Immunogenic  Native  DQ8 (DQ2/8)  22   14  PFPQTQQPQQPFPQ  554  gamma‐gliadin  gamma‐gliadin 1379 (p101‐p120)  Immunogenic  Native  DQ2, DQ8   17  20  PQQPFPQSQQPQQPFPQPQQ  555  gamma‐gliadin  Predicted gamma‐gliadin  Immunogenic  Native  DQ8 (DQ2/8)  22   14  PFPQSQQPQQPFPQ  556  gamma‐gliadin  Wheat peptide W16  Immunogenic  Native  DQ2  62  20   SQQPQQPFPQPQQQFPQPQQ  557  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130) ; gamma‐gliadin M12 M36999 (111‐130)  homologous to DQ2‐gamma‐IV  Immunogenic  Native  DQ2  25,17,23  20   PQQPFPQPQQQFPQPQQPQQ  558  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E112) ; gamma‐gliadin M12 M36999 (111‐ 130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25  20   PEQPFPQPQQQFPQPQQPQQ  559  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E119) ; gamma‐gliadin M12 M36999 (111‐ 130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25  20   PQQPFPQPEQQFPQPQQPQQ  560  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E121) ; gamma‐gliadin M12 M36999 (111‐ 130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25  20   PQQPFPQPQQEFPQPQQPQQ  561  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E126) ; gamma‐gliadin M12 M36999 (111‐ 130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25  20   PQQPFPQPQQQFPQPEQPQQ  562  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E112 and E119) ; gamma‐gliadin M12  M36999 (111‐130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25   20  PEQPFPQPEQQFPQPQQPQQ  563  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E112 and E121) ; gamma‐gliadin M12  M36999 (111‐130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25   20  PEQPFPQPQQEFPQPQQPQQ  564  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E112 and E126) ; gamma‐gliadin M12  M36999 (111‐130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25   20  PEQPFPQPQQQFPQPEQPQQ  565  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E119 and E121) ; gamma‐gliadin M12  M36999 (111‐130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25   20  PQQPFPQPEQEFPQPQQPQQ  566  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E119 and E126) ; gamma‐gliadin M12  M36999 (111‐130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25   20  PQQPFPQPEQQFPQPEQPQQ  567  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E121 and E126) ; gamma‐gliadin M12  M36999 (111‐130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25   20  PQQPFPQPQQEFPQPEQPQQ  568  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E112, E119 and E121) ; gamma‐gliadin  M12 M36999 (111‐130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25   20  PEQPFPQPEQEFPQPQQPQQ  569  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E112, E119 and E126) ; gamma‐gliadin  M12 M36999 (111‐130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25   20  PEQPFPQPEQQFPQPEQPQQ  570  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E112, E121 and E126) ; gamma‐gliadin  M12 M36999 (111‐130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25   20  PEQPFPQPQQEFPQPEQPQQ  571  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E119, E121 and E126) ; gamma‐gliadin  M12 M36999 (111‐130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25   20  PQQPFPQPEQEFPQPEQPQQ  572  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E112, E119, E121 and E126) ; gamma‐ gliadin M12 M36999 (111‐130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated   DQ2  25  20  PEQPFPQPEQEFPQPEQPQQ  573  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130) ; gamma‐gliadin M12 M36999 (111‐130)  homologous to DQ2‐gamma‐IV  ; W16  Immunogenic  Native  DQ2  62,25  12   FPQPQQQFPQPQ  574  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E115) ; gamma‐gliadin M12 M36999 (111‐ 130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25  12   FPQPEQQFPQPQ  575  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E117) ; gamma‐gliadin M12 M36999 (111‐ 130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25  12   FPQPQQEFPQPQ  576  gamma‐gliadin  gamma‐gliadin 1380 (p111‐p130; E115 and E117) ; gamma‐gliadin M12  M36999 (111‐130) homologous to DQ2‐gamma‐IV  Immunogenic  Deamidated  DQ2  25   12  FPQPEQEFPQPQ  577  gamma‐gliadin  CAUTION 100% matches to 3 fungal and metazoan proteins and wheat glia‐ gamma 4b  Immunogenic  Native  DQ2.5  90,25  9  PQPQQQFPQ  578  gamma‐gliadin  glia‐gamma 4b  Immunogenic  Deamidated  DQ2.5  90,25  9   PQPEQQFPQ  579  gamma‐gliadin  glia gamma 4b  Immunogenic  Deamidated  DQ2.5  90,25  9   PQPQQEFPQ  580  gamma‐gliadin  glia‐gamma 4b  Immunogenic  Deamidated  DQ2.5  90,25  9   PQPEQEFPQ  581  gamma‐gliadin  Wheat peptide W16  Immunogenic  Deamidated  DQ2  62  16   GQQPFPQPEQEFPQPG  582  gamma‐gliadin  Wheat peptide W16  Immunogenic  Deamidated  DQ2  62  13   QPFPQPEQEFPQP  583  gamma‐1 gliadin  glia‐alpha 1, glia‐gamma 1  Immunogenic  Native  DQ2.5/DQ8   8,74,76,24  9  PQQSFPQQQ  584  gamma‐gliadin  glia‐alpha1, glia‐gamma1  Immunogenic  Deamidated  DQ2.5/DQ8   8,74,76,24  9  PQQSFPQQE  585  gamma‐1 gliadin  glia‐alpha 1, glia‐gamma 1  Immunogenic  Deamidated   DQ2.5/DQ8  8,76,24 9  PQQSFPEQE  586  gamma‐1 gliadin  glia‐alpha1, glia‐gamma1  Immunogenic  Deamidated   DQ2.5, DQ8  8,17,76,24  9  PQQSFPEQQ  587  gamma‐gliadin  Glia‐gamma30‐gliadin (p222–p236)  Immunogenic  Native  DQ2  19   15  VQGQGIIQPQQPAQL  588  gamma‐gliadin  Glia‐gamma30‐gliadin (p222–236; E225) Immunogenic  Deamidated   DQ2  19  15  VQGEGIIQPQQPAQL  589  gamma‐gliadin  Glia‐gamma30‐gliadin (p222–236; E231) Immunogenic  Deamidated   DQ2  19  15  VQGQGIIQPEQPAQL  590  gamma‐gliadin  Glia‐gamma30‐gliadin (p222–236; E225 and E231)  Immunogenic   Deamidated  DQ2  19  15  VQGEGIIQPEQPAQL  591  gamma‐gliadin  DQ2‐y ‐II  y‐Glia (p222–p236)  Immunogenic  Native  DQ2  57  15   GQGIIQPQQPAQLIR  592  gamma‐gliadin  DQ2‐y ‐II  y‐Glia (p222–p236; E229)  Immunogenic  Deamidated   DQ2  57  15  GQGIIQPEQPAQLIR  593  gamma‐gliadin  gamma5‐gliadin (p227–p237) ; gamma‐II epitope  Immunogenic   Native  DQ2  25  11  GIIQPQQPAQL  594  gamma‐gliadin  gamma5‐gliadin (p227–237; E232)  Immunogenic  Deamidated   DQ2  25  11  GIIQPEQPAQL  595  gamma‐gliadin  gamma5‐gliadin (p228–237)  Immunogenic  Native  DQ2  47,25  10   IIQPQQPAQL  596  gamma‐gliadin  gamma5‐gliadin (p228–237; E232)  Immunogenic  Deamidated   DQ2  47,25  10  IIQPEQPAQL  597  gamma‐gliadin  gamma‐2 peptide 1306; Glia‐gamma30‐gliadin (p227‐p235) minimal epitope   Immunogenic  Native  DQ2  19,23,2 9  IIQPQQPAQ  598  gamma‐gliadin  gamma‐2 peptide 1306; Glia‐gamma30‐gliadin (p228‐p235; E232) minimal  epitope Immunogenic  Deamidated  DQ2  19  9  IIQPEQPAQ  599  gamma‐5 gliadin  glia‐gamma 2  Immunogenic  Native  DQ2.5  90,8,25 9   IQPQQPAQL  600  gamma‐5 gliadin  glia‐gamma 2  Immunogenic  Deamidated  DQ2.5  90,8,25 9   IQPEQPAQL  601  gamma‐gliadin  gamma‐gliadin 1381 (p121‐p140) ; gamma‐gliadin M13 M36999 (121‐140)  identical to DQ2‐gamma‐I  Immunogenic  Native  DQ2, DQ8  17,23  20   QFPQPQQPQQSFPQQQQPAI  602  gamma‐gliadin  DQ2‐gamma‐I  gamma‐Glia (p139 –p153)  Immunogenic  Native   DQ2  57  15  PQQPQQSFPQQQQPA  603  gamma‐gliadin  DQ2‐gamma‐I  gamma‐Glia (p139 –p153; E147)  Immunogenic  Deamidated   DQ2  57  15  PQQPQQSFPEQQQPA  604  gamma‐gliadin  DQ2‐gamma‐I  gamma‐Glia (p139 –p153; E150)  Immunogenic  Deamidated   DQ2  57  15  PQQPQQSFPQQEQPA  605  gamma‐gliadin  DQ2‐gamma‐I  gamma‐Glia (p139 –p153; E147 and E150)   Immunogenic  Deamidated  DQ2  57  15  PQQPQQSFPEQEQPA  606  gamma‐gliadin  gamma‐gliadin 1382 (p131‐p150)  Immunogenic  Native  DQ8  17   20  SFPQQQQPAIQSFLQQQMNP  607  gamma‐gliadin  gamma‐gliadin 1383 (p141‐p160)  Immunogenic  Native  DQ8  17   20  QSFLQQQMNPCKNFLLQQCN  608  gamma‐gliadin  gamma‐gliadin 1388 (p201‐p220)  Immunogenic  Native  DQ2  17   20  IHSVAHSIIMQQEQQQGVPI  609  gamma‐gliadin  gamma‐gliadin M23 M36999 (221‐240) homologous to DQ2‐gamma‐II   Immunogenic  Native  DQ2  17,23  20  LRPLFQLAQGLGIIQPQQPA  610  gamma‐gliadin  gamma‐gliadin 1391 (p231‐p250) ; gamma‐gliadin M24 M36999 (231‐250)  identical to DQ2‐gamma‐II  Immunogenic  Native  DQ2  17,23  20   LGIIQPQQPAQLEGIRSLVL  611  gamma‐gliadin  Gluten peptide #19  Immunogenic  Native  DQ2 (DQ2.5)  61  18   PHQPQQQVPQPQQPQQPF  612  gamma‐gliadin  Predicted gamma‐gliadin  Immunogenic  Native  DQ8 (DQ2/8)   22,8  14  QQPFPQQPQQPFPQ  613  gamma‐gliadin  Glia‐gamma2  in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  QQPFPEQPEQPFPQ  614  gamma‐gliadin  Glia‐gamma2 in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  QQPFPQQPEQPFPQ  615  gamma‐gliadin  Glia‐gamma2 in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  QQPFPEQPQQPFPQ  616  gamma‐gliadin  gamma‐gliadin P08453 (p94‐p113)  Immunogenic  Deamidated   DQ8  54  20  QTQQPQQPFPQQPQQPFPQT  617  gamma‐gliadin  Predicted gamma‐gliadin  Immunogenic  Native  DQ8 (DQ2/8)  22   14  PFPQLQQPQQPFPQ  618  gamma‐gliadin  gamma‐I gliadin 1206  Immunogenic  Native  DQ2  2  21   YQQLPQPQQPQQSFPQQQRPF  619  gamma‐gliadin  gamma‐type gliadin of GDB2_WHEAT (SwissProt P08453) (p134–p153)   Immunogenic  Deamidated  DQ2  24  20  QQLPQPQQPQQSFPQQQRPF  620  gamma‐gliadin  Glia‐gamma1 epitope  Immunogenic  Native  DQ2  9  17   QPQQPQQSFPQQQRPFI  621  gamma‐gliadin  Glia‐gamma1(p138‐p153)  Immunogenic  Native  DQ2  19  16   QPQQPQQSFPQQQRPF  622  gamma‐gliadin  Glia‐gamma1 (p139–p153)  Immunogenic  Native  DQ2  8  15   PQQPQQSFPQQQRPF  623  gamma‐gliadin  Glia‐gamma1 (p139–p153; E148)  Immunogenic  Deamidated   DQ2  8  15  PQQPQQSFPEQQRPF  624  gamma‐gliadin  Glia‐gamma1 (p139–p153; E140 and E148)  Immunogenic  Deamidated   DQ2  8  15  PEQPQQSFPEQQRPF  625  gamma‐gliadin  Glia‐gamma1 (p139–p153; E148 and E150)  Immunogenic  Deamidated   DQ2  8  15  PQQPQQSFPEQERPF  626  gamma‐gliadin  Glia‐gamma1 (p139–p153; E140, E148 and E150)  Immunogenic   Deamidated  DQ2  8  15  PEQPQQSFPEQERPF  627  gamma‐gliadin  gamma‐I, gamma‐Gliadin (p139–p152)  Immunogenic  Native  DQ2   43,25  14  PQQPQQSFPQQQRP  628  gamma‐gliadin  gamma‐Gliadin (p139–p152;  E140, E148 and E150) E residues in the gliadin  peptides are introduced to mimic the deamidation mediated by tissue transglutaminase.   Immunogenic  Deamidated  DQ2  43,25  14  PEQPQQSFPEQERP  629  gamma‐gliadin  gamma‐gliadin (p139‐p152; E148)  Immunogenic  Deamidated   DQ2  55  14  PQQPQQSFPEQQRP  630  gamma‐gliadin  gamma‐gliadin (p139‐p152; E140 and E148)  Immunogenic  Deamidated   DQ2 (DQ2.2 and DQ2.5) 25  14  PEQPQQSFPEQQRP  631  gamma‐gliadin  P‐3 gamma‐gliadin (p139–p152; K139, E140, E148 and E150)   Immunogenic  Synthesised as Deamidated  DQ2  56  14  KEQPQQSFPEQERP  632  gamma‐gliadin  P‐2 gamma‐gliadin  (p139–p152; K140, E148 and E150)  Immunogenic   Synthesised as Deamidated  DQ2  56  14  PKQPQQSFPEQERP  633  gamma‐gliadin  P‐1 gamma‐gliadin  (p139–p152; K141, E140, E148 and E150)   Immunogenic  Synthesised as Deamidated  DQ2  56  14  PEKPQQSFPEQERP  634  gamma‐gliadin  P1 y‐gliadin(p139–p152; K142, E140, E148 and E150)  Immunogenic   Synthesised as Deamidated  DQ2  56  14  PEQKQQSFPEQERP  635  gamma‐gliadin  P2 y‐gliadin (p139–p152; K143, E140, E148 and E150)  Immunogenic   Synthesised as Deamidated  DQ2  56  14  PEQPKQSFPEQERP  636  gamma‐gliadin  P4 y‐gliadin (p139–p152; K144, E140, E148 and E150)  Immunogenic   Synthesised as Deamidated  DQ2  56  14  PEQPQQKFPEQERP  637  gamma‐gliadin  P9 gamma‐gliadin (p139–p152; E140, E148 and K150)  Immunogenic   Synthesised as Deamidated  DQ2  56  14  PEQPQQSFPEQKRP  638  gamma‐gliadin  P10 gamma‐gliadin (p139–p152; K151, E140, E148 and E150)   Immunogenic  Synthesised as Deamidated  DQ2  56  14  PEQPQQSFPEQEKP  639  gamma‐gliadin  P11 y‐gliadin (p139–p152; K152, E140, E148 and E150)  Immunogenic   Synthesised as Deamidated  DQ2  56  14  PEQPQQSFPEQERK  640  gamma‐gliadin  gamma‐I epitope in native form Immunogenic  Native  DQ2  47  12   QPQQSFPQQQRP  641  gamma‐gliadin  Deamidated form of gamma‐I epitope  Immunogenic  Deamidated   DQ2  47  12  QPQQSFPEQQRP  642  gamma‐gliadin  Glia‐alpha20  Immunogenic  Native  DQ2  9  16   QQSFPQQQRPFIQPSL  643  gamma‐gliadin  gamma‐gliadin AAK84772 (p130‐p149)  Immunogenic  Native  DQ8  54   20  PQPQQPQLPFPQQPQQPFPQ  644  gamma‐gliadin  Predicted gamma‐gliadin  Immunogenic  Native  DQ8 (DQ2/8)  22   14  PFPQPQQPQQPFPQ  645  gamma‐gliadin  gamma‐gliadin AAK84776 (p102‐p121)  Immunogenic  Native  DQ8  54   20  QQPLPQPQQPQQPFPQSQQP  646  gamma‐gliadin  gamma‐gliadin AAK84772 (p121‐p140)  Immunogenic  Native  DQ8  54   20  QPQQPQQPFPQQQQPLIQPY  647  gamma‐gliadin  Wheat peptide W35  Immunogenic  Native  DQ2  62  20   PQQPFPQQPQQQFPQPQQPQ  648  gamma‐gliadin  Wheat peptide W35  Immunogenic  Native  DQ2  62  12   PFPQQPQQQFPQ  649  gamma‐gliadin  Wheat peptide W31  Immunogenic  Native  DQ2  62  20   QPFPQLQQPQQPLPQPQQPQ  650  gamma‐gliadin  Wheat peptide W31  Immunogenic  Native  DQ2  62  12   QPFPQLQQPQQP  651  LMW glutenin  Wheat peptide W15 LMW  Immunogenic  Native  DQ2  62  20   SHIPGLERPWQQQPLPPQQT  652  LMW glutenin  Wheat peptide W15 LMW  Immunogenic  Native  DQ2  62  15   QGLERPWQQQPLPPQ  653  LMW glutenin  Wheat peptide W15 LMW  Immunogenic  Deamidated  DQ2  62   15  EGLERPWQEQPLPPQ  654  LMW glutenin  Wheat peptide W15 LMW  Immunogenic  Native  DQ2  62  12   LERPWQQQPLPP  655  LMW glutenin  Wheat peptide W11  Immunogenic  Deamidated  DQ2  62  16   GQQAFPQPEQTFPHQG  656  LMW glutenin  Wheat peptide W11  Immunogenic  Native  DQ2  62  15   QQAFPQPQQTFPHQP  657  LMW glutenin  Wheat peptide W11  Immunogenic  Deamidated  DQ2  62  15   EQAFPQPEQTFPHQP  658  LMW glutenin  Wheat peptide W11  Immunogenic  Native  DQ2  62  20   QAFPQPQQTFPHQPQQQFPQ  659  LMW glutenin  Wheat peptide W11  Immunogenic  Native  DQ2  62  12   QAFPQPQQTFPH  660  LMW glutenin  Wheat peptide W11  Immunogenic  Deamidated  DQ2  62  12   QAFPQPEQTFPH  661  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60)  Immunogenic  Native   DQ2  19  15  QQPPFSQQQQQPLPQ  662  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E52)  Immunogenic  Deamidated   DQ2  19  15  QQPPFSEQQQQPLPQ  663  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E53)  Immunogenic  Deamidated   DQ2  19  15  QQPPFSQEQQQPLPQ  664  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E55)  Immunogenic  Deamidated   DQ2  19  15  QQPPFSQQQEQPLPQ  665  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E56)  Immunogenic  Deamidated   DQ2  19  15  QQPPFSQQQQEPLPQ  666  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E52 and 53)  Immunogenic   Deamidated  DQ2  19  15  QQPPFSEEQQQPLPQ  667  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E52 and 55)  Immunogenic   Deamidated  DQ2  19  15  QQPPFSEQQEQPLPQ  668  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E52 and 56)  Immunogenic   Deamidated  DQ2  19  15  QQPPFSEQQQEPLPQ  669  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E53 and 55)  Immunogenic   Deamidated  DQ2  19  15  QQPPFSQEQEQPLPQ  670  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E53 and 56)  Immunogenic   Deamidated  DQ2  19  15  QQPPFSQEQQEPLPQ  671  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E55 and 56)  Immunogenic   Deamidated  DQ2  19  15  QQPPFSQQQEEPLPQ  672  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E52, 53 and 55)   Immunogenic  Deamidated  DQ2  19  15  QQPPFSEEQEQPLPQ  673  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E52, 53 and 56)   Immunogenic  Deamidated  DQ2  19  15  QQPPFSEEQQEPLPQ  674  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E53, 55 and 56)   Immunogenic  Deamidated  DQ2  19  15  QQPPFSQEQEEPLPQ  675  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E52, 55 and 56)   Immunogenic  Deamidated  DQ2  19  15  QQPPFSEQQEEPLPQ  676  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p46‐p60; E52, 53, 55 and 56)   Immunogenic  Deamidated  DQ2  19  15  QQPPFSEEQEEPLPQ  693  gamma‐gliadin or LMW glutenin CAUTION 100% matches to 5 microbial proteins and to  wheat proteins Glutenin‐Glt‐17 (p50‐p58)  Immunogenic  Native  DQ2  27  9   FSQQQQQPL  694  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p50‐p58; E52)  Immunogenic  Deamidated   DQ2  27  9  FSEQQQQPL  695  gamma‐gliadin or LMW glutenin CAUTION 100% matches to two Pinus proteins / not wheat  Glutenin‐Glt‐17 (p50‐p58; E53)  Immunogenic  Deamidated  DQ2  27  9   FSQEQQQPL  696  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p50‐p58; E55)  Immunogenic  Deamidated   DQ2  27  9  FSQQQEQPL  697  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p50‐p58; E52 and E53)  Immunogenic   Deamidated  DQ2  27  9  FSEEQQQPL  698  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p50‐p58; E52 and E55)  Immunogenic   Deamidated  DQ2  27  9  FSEQQEQPL  699  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p50‐p58; E53 and E55)  Immunogenic   Deamidated  DQ2  27  9  FSQEQEQPL  700  gamma‐gliadin or LMW glutenin Glutenin‐Glt‐17 (p50‐p58; E52, E53 and E55)   Immunogenic  Deamidated  DQ2  27  9  FSEEQQEPL  701  gamma‐gliadin or LMW glutenin Glutenin‐17 epitope homolog  Immunogenic  Native   DQ2  8,19  15  QQPPFSQQQQPVLPQ  702  gamma‐gliadin or LMW glutenin Glutenin‐17 epitope homolog in Deamidated form   Immunogenic  Deamidated  DQ2  8  15  QQPPFSEQQQPVLPQ  703  gamma‐gliadin or LMW glutenin Glutenin‐17 epitope homolog in Deamidated form   Immunogenic  Deamidated  DQ2  8  15  QQPPFSQQEQPVLPQ  704  gamma‐gliadin or LMW glutenin Glutenin‐17 epitope homolog in Deamidated form   Immunogenic  Deamidated  DQ2  8  15  QQPPFSEQEQPVLPQ  705  gamma‐gliadin or LMW glutenin LMW T cell epitope  Immunogenic  Deamidated   DQ2  62  15  EQPPFSEQEQPVLPQ  706  Glut‐L1 CAUTION 100% match to a fungal protien Hebeloma sp. & many wheat Glt‐17 (Var1)   Immunogenic  Native  DQ2.2  44,90  9  PFSQQQQPV  707  glut‐L1  Glt‐17 (Var1)  Immunogenic  Deamidated  DQ2.2  44,90  9  PFSEQQQPV  708  glut‐L1  Glt‐17 (Var1)  Immunogenic  Deamidated  DQ2.2  44,90  9  PFSQQEQPV  709  glut‐L1  Glt‐17 (Var1)  Immunogenic  Deamidated  DQ2.2  44,90  9  PFSEQEQPV  710  gamma‐gliadin or LMW glutenin Wheat peptide W12  Immunogenic  Native  DQ2  62   20  CKVFLQQQCSPVAMPQRLAR  711  gamma‐gliadin or LMW glutenin Wheat peptide W12  Immunogenic  Native  DQ2  62   16  LQQQCSPVAMPQRLAR  712  gamma‐gliadin or LMW‐glutenin  Wheat peptide W05  Immunogenic  Native   DQ2  62  20  PQQQQPFPQPQQPFSQQPQQ  713  gamma‐gliadin or LMW‐glutenin  Wheat peptide W05  Immunogenic  Deamidated   DQ2  62  20  PQQQQPFPQPEQPFSQQPQQ  714  gamma‐gliadin or LMW‐glutenin  Wheat peptide W05  Immunogenic  Native   DQ2  62  12  QPFPQPQQPFSQ  715  gamma‐gliadin or LMW‐glutenin  Wheat peptide W05  Immunogenic  Deamidated   DQ2  62  12  QPFPQPEQPFSQ  716  gamma‐gliadin or LMW‐glutenin  Wheat peptide W17  Immunogenic  Native   DQ2  62  20  QQPFPQPQQPQLPFPQQPQQ  717  gamma‐gliadin or LMW‐glutenin  Wheat peptide W17  Immunogenic  Native   DQ2  62  15  QPFPQPQQPQLPFPQ  718  gamma‐gliadin or LMW‐glutenin  Wheat peptide W17  Immunogenic  Deamidated   DQ2  62  15  EPFPQPEQPELPFPQ  719  gamma‐gliadin or LMW‐glutenin  Wheat peptide W17  Immunogenic  Native   DQ2  62  12  QPFPQPQQPQLP  720  LMW glutenin  GLT/GLIA homologue peptide 12  Immunogenic  Native  DQ2  19   15  QQPPFSQQQQPPFSQ  721  LMW glutenin  LMW glutenin‐glt‐156 (p40‐p59)  Immunogenic  Native  DQ2  19   20  QQQQPPFSQQQQSPFSQQQQ  722  LMW glutenin  LMW glutenin‐glt‐156 (p40‐p59; E48)  Immunogenic  Deamidated   DQ2  19  20  QQQQPPFSEQQQSPFSQQQQ  723  LMW glutenin  LMW glutenin‐glt‐156 (p40‐p59; E51)  Immunogenic  Deamidated   DQ2  19  20  QQQQPPFSQQQESPFSQQQQ  724  LMW glutenin  LMW glutenin‐glt‐156 (p40‐p59; E48 and E51)  Immunogenic  Deamidated   DQ2  19  20  QQQQPPFSEQQESPFSQQQQ  725  LMW glutenin  Homolog of Deamidated Glt‐156 minimal epitope (p40‐p59)   Immunogenic  Deamidated  DQ2  20  15  QQQQPPFSEEQESPY  726  LMW glutenin  Homolog of Deamidated Glt‐156 minimal epitope (p40‐p59)   Immunogenic  Deamidated  DQ2  20  15  QQQQPPFSEEQESPL  727  LMW glutenin  Deamidated Glt‐156 minimal epitope (p40‐p59)  Immunogenic  Deamidated   DQ2  20  15  QQQQPPFSEEQESPF  728  LMW glutenin  Glt‐156 minimal epitope (p41‐p55)  Immunogenic  Deamidated   DQ2  20  15  QQQPPFSEEQESPFS  729  LMW glutenin  Glt‐156 minimal epitope in considered native form  Immunogenic   Native  DQ2  20  15  QQPPFSQQQQSPFSQ  730  LMW glutenin  Glt‐156 minimal epitope in considered Deamidated form   Immunogenic  Deamidated  DQ2  20  15  QQPPFSEEQESPFSQ  731  LMW glutenin  GLT/GLIA homologue peptide 4  Immunogenic  Native  DQ2  19  12   QQPPFSQQQQSP  732  LMW glutenin  Glt‐156 minimal epitope  Immunogenic  Deamidated  DQ2  20   15  QPPFSEEQESPFSQQ  733  LMW glutenin  LMW glutenin‐glt‐156 (p40‐p59)  Immunogenic  Native  DQ2  16   14  QPPFSQQQQSPFSQ  734  LMW glutenin  Glt‐156 minimal epitope in considered native form  Immunogenic   Native  DQ2  20  15  PPFSQQQQSPFSQQQ  735  LMW glutenin  Glt‐156 minimal epitope in considered Deamidated form   Immunogenic  Deamidated  DQ2  20  15  PPFSEEQESPFSQQQ  736  LMW glutenin  Glt‐156 minimal epitope in considered native form  Immunogenic   Native  DQ2  20  15  PFSQQQQSPFSQQQQ  737  LMW glutenin  Glt‐156 minimal epitope in considered Deamidated form   Immunogenic  Deamidated  DQ2  20  15  PFSEEQESPFSQQQQ  738  LMW glutenin  LMW glutenin‐glt‐156 (p45‐p54) minimal epitope  Immunogenic   Native  DQ2  19,20  10  PFSQQQQSPF  739  LMW glutenin  LMW glutenin‐glt‐156 (p45‐p54; E48) minimal epitope  Immunogenic   Deamidated  DQ2  19,20  10  PFSEQQQSPF  740  LMW glutenin  LMW glutenin‐glt‐156 (p45‐p54; E49) minimal epitope  Immunogenic   Deamidated  DQ2  20  10  PFSQEQQSPF  741  LMW glutenin  LMW glutenin‐glt‐156 (p45‐p54; E51) minimal epitope  Immunogenic   Deamidated  DQ2  19,20  10  PFSQQQESPF  742  LMW glutenin  LMW glutenin‐glt‐156 (p45‐p54; E48 and E51) minimal epitope   Immunogenic  Deamidated  DQ2  19,20  10  PFSEQQESPF  743  LMW glutenin  LMW glutenin‐glt‐156 (p45‐p54; E48 and E49) minimal epitope   Immunogenic  Deamidated  DQ2  20  10  PFSEEQQSPF  745  LMW glutenin  LMW glutenin‐glt‐156 (p45‐p54; E49 and E49) minimal epitope   Immunogenic  Deamidated  DQ2  20  10  PFSQEQESPF  746  LMW glutenin  LMW glutenin‐glt‐156 (p45‐p54; E48, E49 and E51) minimal epitope   Immunogenic  Deamidated  DQ2  20  10  PFSEEQESPF  747  glut‐L2  LMW glutenin‐glt‐156 (p46‐p54)  Immunogenic  Native  DQ2.5  19,90,27   9  FSQQQQSPF  748  glut‐L2  LMW glutenin‐glt‐156 (p46‐p54; E48)  Immunogenic  Deamidated  DQ2.5   19,90,27  9  FSEQQQSPF  749  glut‐L2  LMW glutenin‐glt‐156 (p46‐p54; E51)  Immunogenic  Deamidated  DQ2.5   19,90,27  9  FSQQQESPF  750  glut‐L2  LMW glutenin‐glt‐156 (p46‐p54; E48 and E51)  Immunogenic  Deamidated   DQ2.5  19,90,27  9  FSEQQESPF  751  LMW glutenin  GLT/GLIA homologue peptide 13  Immunogenic  Native  DQ2  19   15  QQPPFSQQQQPQFSQ  752  LMW glutenin  Gluten peptide #25  Immunogenic  Native  DQ2 (DQ2.5)  61  19   SHQQQPFPQQPYPQQPYPS  753  gamma‐gliadin  14‐mer‐2 gamma‐Glia (p173–p186)  Immunogenic  Native  DQ2  57   14  PQQPFPSQQQQPLI  754  gamma‐gliadin  14‐mer‐2 gamma‐Glia (p173–p186) in Deamidated form Immunogenic   Deamidated  DQ2  57  14  PQQPFPSQQEQPLI  755  LMW glutenin  GLT/GLIA homologue peptide 17  Immunogenic  Native  DQ2  19   15  QQPPFSQQQQPILPQ  756  LMW glutenin  Glt‐156 homolog  Immunogenic  Native  DQ2  21  14   QPPFSQQQQPILPQ  757  LMW glutenin  Glt‐156 homolog in Deamidated form  Immunogenic  Deamidated   DQ2  21  14  QPPFSEQEQPILPQ  762  LMW glutenin  GLT/GLIA homologue peptide 16  Immunogenic  Native  DQ2  19   15  QQPPFSQQQQQPILL  763  LMW glutenin  Glt‐156 homolog  Immunogenic  Native  DQ2  21  14   QPPFSQQQQQPILL  764  LMW glutenin  Glt‐156 homolog in Deamidated form  Immunogenic  Deamidated   DQ2  21  14  QPPFSEEQEQPILL  765  HMW glutenin  Wheat peptide W21 HMW  Immunogenic  Native  DQ2  62  20   QGQQGYYPISPQQSGQGQQP  766  HMW glutenin  Wheat peptide W21 HMW  Immunogenic  Native  DQ2  62  16   QGQQGYYPISPQQSGQ  767  HMW glutenin  Wheat peptide W21 HMW  Immunogenic  Deamidated  DQ2  62   16  EGQQGYYPISPQQSGQ  768  HMW glutenin  Naturally occurring glutenins p722‐p736 (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQAGYYPTSPQQSGQ  769  HMW glutenin  Naturally occurring glutenins p722‐p736 (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQQGYYPTSPQQPGQ  770  HMW glutenin  Naturally occurring glutenins p722‐p736 (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQQGYYPISPQQSGQ  771  HMW glutenin  Wheat peptide W29  Immunogenic  Native  DQ2  62  20   GQGQSGYYPTSPQQSGQEAT  772  HMW glutenin  Wheat peptide W29  Immunogenic  Native  DQ2  62  16   GQGQSGYYPTSPQQSG  773  HMW glutenin  Wheat peptide W24 HMW  Immunogenic  Native  DQ2  62  20   PGQGQSGYYPTSPQQSGQKQ  774  HMW glutenin  Wheat peptide W24 HMW  Immunogenic  Native  DQ2  62  16   PGQGQSGYYPTSPQQS  775  HMW glutenin  Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQSGYYPTSPQQSGQ  776  HMW glutenin  Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQQGYYPISPQQLGQ  777  HMW glutenin  Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQLGYYPTSPQQSGQ  778  HMW glutenin  Wheat peptide W22 HMW  Immunogenic  Native  DQ2  62  20   LQPGQGQPGYYPTSPQQIGQ  779  HMW glutenin  Wheat peptide W22 HMW  Immunogenic  Native  DQ2  62  16   QGQPGYYPTSPQQIGQ  780  HMW glutenin  Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQPGYYPTSPQQIGQ  781  HMW‐Glutenin Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQPGYYPTSPQQPGQ  782  HMW‐Glutenin Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQPGYYPTSPQQSGQ  783  HMW‐Glutenin Naturally occurring glutenins p722‐p736 (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQQGYYPTSLQQPGQ  784  HMW‐Glutenin HMW glutenin‐glt04 (p707–p742)  Immunogenic  Native  DQ8  (DQ2/8)  7  36  SGQGQRPGQWLQPGQGQQGYYPTSPQQSGQGQQLGQ  785  HMW‐Glutenin HMW glutenin‐glt04 (p719–p736)  Immunogenic  Native  DQ8  (DQ2/8)  7  18  PGQGQQGYYPTSPQQSGQ  786  HMW‐Glutenin  glt04 (p722‐p736)  Immunogenic  Native  DQ8 (DQ2/8)  7  15   GQQGYYPTSPQQSGQ  787  HMW‐Glutenin  glt04 (p722‐p735)  Immunogenic  Native  DQ8 (DQ2/8)  7  14   GQQGYYPTSPQQSG  788  HMW‐Glutenin  glt04 (p722‐p734)  Immunogenic  Native  DQ8 (DQ2/8)  7  13   GQQGYYPTSPQQS  789  HMW‐Glutenin  glt04 (p723‐p736)  Immunogenic  Native  DQ8 (DQ2/8)  7  14   QQGYYPTSPQQSGQ  790  HMW‐Glutenin  glt04 (p723‐p735)  Immunogenic  Native  DQ8 (DQ2/8)  7  13   QQGYYPTSPQQSG  791  HMW‐Glutenin  glt04 (p723‐p735; E724) Immunogenic  Deamidated  DQ8 (DQ2/8)   7,83  13  QEGYYPTSPQQSG  792  HMW‐Glutenin  glt04 (p723‐p734)  Immunogenic  Native  DQ8 (DQ2/8)  52  12   QQGYYPTSPQQS  793  HMW‐Glutenin  glt04 (p724–p735)  Immunogenic  Native  DQ8 (DQ2/8)  7  12   QGYYPTSPQQSG  794  glut‐H1 HMW glutenin (p724‐p734)  Immunogenic  Native  DQ8, DQ8.5  7,76,27 11   QGYYPTSPQQS  797  HMW‐Glutenin  glt04 (p725‐p735)  Immunogenic  Native  DQ8 (DQ8.5)  7,83  11   GYYPTSPQQSG  798  HMW‐Glutenin Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQQGYYPISPQQPGQ  799  HMW‐Glutenin Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQQGYYPTSPQQSPQ  800  HMW‐Glutenin Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQQGYYPTSPQQLGQ  801  HMW‐Glutenin Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQQGYYPTSPQHPGQ  802  HMW‐Glutenin Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQPGYYPTSPLQSGQ  803  HMW‐Glutenin Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQHGYYPTSPQLSGQ  804  HMW‐Glutenin Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQQGYYPTSPQQPPQ  805  HMW‐Glutenin Naturally occurring glutenins (p722‐p736) (homolog of glt04)   Immunogenic  Native  DQ8 (DQ2/8)  7  15  GQQGYYPTSVQQPGQ  806  Hordein  Barley peptide B04, B17 Immunogenic  Native  DQ2  62  20   QPQQPQPFPQQPVPQQPQPY  807  Hordein  Barley peptide B17  Immunogenic  Native  DQ2  62  16   PQQPQPFPQQPVPQQP  808  Hordein  Barley peptide B04  Immunogenic  Native  DQ2  62  12   PQQPVPQQPQPY  809  Hordein  Barley peptide B05, B08 in native form  Immunogenic  Native  DQ2  62   20  PQPFPQQPIPQQPQPYPQQP  810  Hordein  Barley peptide B05, B08 in Deamidated form  Immunogenic  Deamidated   DQ2  62  20  PQPFPQQPIPEQPQPYPQQP  811  Hordein  Barley peptide B05  Immunogenic  Native  DQ2  62  16   PQPFPQQPIPQQPQPY  812  Hordein  Barley peptide B05  Immunogenic  Deamidated  DQ2  62  16   PQPFPQQPIPEQPQPY  813  Hordein  Barley peptide B06  Immunogenic  Native  DQ2  62  20   QQPQPFSQQPIPQQPQPYPQ  814  Hordein  Barley peptide B06  Immunogenic  Deamidated  DQ2  62  20   QQPQPFSQQPIPEQPQPYPQ  815  Hordein  Barley peptide B06  Immunogenic  Native  DQ2  62  12   SQQPIPQQPQPY  816  Hordein  Barley peptide B06  Immunogenic  Deamidated  DQ2  62  12   SQQPIPEQPQPY  817  Hordein  Barley peptide B18  Immunogenic  Native  DQ2  62  20   QPQPFPQQPIPLQPHQPYTQ  818  Hordein  Barley peptide B18  Immunogenic  Native  DQ2  62  12   QPQPFPQQPIPL  819  Hordein  Barley peptide B13  Immunogenic  Native  DQ2  62  20   PQPYPQQPQPFPQQPPFCQQ  820  Hordein  Barley peptide B13  Immunogenic  Native  DQ2  62  16   PQPYPQQPQPFPQQPP  821  Hordein  Barley peptide B09, B12, B30  Immunogenic  Native  DQ2  62  20   QQPFPQQPFPQQPQPYPQQP  822  Hordein  Barley peptide B09  Immunogenic  Native  DQ2  62  16   QQPFPQQPFPQQPQPY  823  Hordein  Barley peptide B30  Immunogenic  Native  DQ2  62  11   QQPFPQQPFPQ  824  Hordein  Barley peptide B12  Immunogenic  Native  DQ2  62  16   PQQPFPQQPQPYPQQP  825  Hordein  Barley peptide B11  Immunogenic  Native  DQ2  62  20   QPQPYPQQPQPYPQQPFQPQ  826  Hordein  Barley peptide B11  Immunogenic  Native  DQ2  62  12   QPQPYPQQPQPY  827  gamma‐gliadin or LMW glutenin Glu‐21 in considered native form  Immunogenic   Native  DQ2  19  21  QPQPFPQQSEQSQQPFQPQPF  828  Hordein  Barley peptide B03  Immunogenic  Native  DQ2  62  20   QPQQPFPQPQQPIPYQPQQP  829  Hordein  Barley peptide B03  Immunogenic  Deamidated  DQ2  62  16   GQQPFPQPEQPIPYQG  830  Hordein  Barley peptide B03  Immunogenic  Native  DQ2  62  12   QPFPQPQQPIPY  831  Hordein  Barley peptide B03  Immunogenic  Deamidated  DQ2  62  12   QPFPQPEQPIPY  832  Hordein  Barley peptide B02  Immunogenic  Native  DQ2  62  20   WQPQQPFPQPQQPFPLQPQQ  833  Hordein  Barley peptide B02  Immunogenic  Deamidated  DQ2  62  20   WQPQQPFPQPEQPFPLQPQQ  834  Hordein  Barley peptide B02  Immunogenic  Deamidated  DQ2  62  16   GQQPFPQPEQPFPLQG  835  Hordein  Barley peptide B02  Immunogenic  Native  DQ2  62  12   QPFPQPQQPFPL  836  Hordein  Barley peptide B02  Immunogenic  Deamidated  DQ2  62  12   QPFPQPEQPFPL  837  Hordein  Barley peptide B19  Immunogenic  Native  DQ2  62  20   LPRPQQPFPWQPQQPFPQPQ  838  Hordein  Barley peptide B26  Immunogenic  Native  DQ2  62  20   QPQQPFPLQPQQPFPWQPQQ  839  Hordein  Barley peptide B26  Immunogenic  Native  DQ2  62  12   PFPLQPQQPFPW  840  Hordein  Barley peptide B29  Immunogenic  Native  DQ2  62  20   QPQQPFSFSQQPQQPFPLQP  841  Hordein  Barley peptide B29  Immunogenic  Deamidated  DQ2  62  16   GFSFSQQPEQPFPLQG  842  Hordein  Barley peptide B14  Immunogenic  Native  DQ2  62  20   FQQPQQSYPVQPQQPFPQPQ  843  Hordein  Barley peptide B14  Immunogenic  Deamidated  DQ2  62  16   GQSYPVQPEQPFPQPG  844  Hordein  Barley peptide B14  Immunogenic  Native  DQ2  62  12   SYPVQPQQPFPQ  845  Hordein  Barley peptide B14  Immunogenic  Deamidated  DQ2  62  12   SYPVQPEQPFPQ  846  Hordein  Barley peptide B29  Immunogenic  Native  DQ2  62  12   SFSQQPQQPFPL  847  Hordein  Barley peptide B29  Immunogenic  Deamidated  DQ2  62  12   SFSQQPEQPFPL  848  omega‐gliadin  Wheat peptide W19  Immunogenic  Deamidated  DQ2  62  16   GQPFPWQPEQPFPQPG  849  Hordein  Barley peptide B15  Immunogenic  Native  DQ2  62  20   YPQQPQPFPQQPIPQQPQPY  850  Hordein  Barley peptide B15  Immunogenic  Native  DQ2  62  12   QPQPFPQQPIPQ  851  hor‐3  Hor‐I  Immunogenic  Native  DQ2.5  88,62  9  PIPQQPQPY  852  hor‐3  Hor‐I  Immunogenic  Deamidated  DQ2.5  88,62  9  PIPEQPQPY  853  Hordein  Barley peptide B16  Immunogenic  Native  DQ2  62  20   QQQPFPQQPIPQQPQPYPQQ  854  Hordein  Barley peptide B16  Immunogenic  Native  DQ2  62  11   QQPFPQQPIPQ  855  Hordein  Barley peptide B08  Immunogenic  Deamidated  DQ2  62  16   PQQPIPQQPQPYPQQP  856  Hordein  Barley peptide B08  Immunogenic  Deamidated  DQ2  62  16   PQQPIPEQPQPYPQQP  857  Hordein  Barley peptide B08  Immunogenic  Native  DQ2  62,86  16   QPQQPIPQQPQPYPQQ  858  Hordein  Barley peptide B08  Immunogenic  Deamidated  DQ2  62,86  16   EPEQPIPEQPQPYPQQ  859  Hordein  Hordein core epitope in native form  Immunogenic  Native  DQ2  27   9  FPPQQPFPQ  860  Hordein  Hordein core epitope in demainated form  Immunogenic  Deamidated   DQ2  27  9  FPPEQPFPQ  861  Hordein  Barley peptide B21, B25 Immunogenic  Native  DQ2  62  20   PFPQQPQQPFPQPQQPFRQQ  862  Hordein  Barley peptide B21  Immunogenic  Deamidated  DQ2  62  20   PFPQQPQQPFPQPEQPFRQQ  863  Hordein  alpha9‐Hordein in native form  Immunogenic  Native  DQ2  8  14   PQQPFPQPQQPFRQ  864  Hordein  alpha9‐Hordein in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  PQQPFPQPEQPFRQ  865  Hordein  Barley peptide B21  Immunogenic  Native  DQ2  62  13   QQPFPQPQQPFRQ  866  Hordein  Barley peptide B21  Immunogenic  Deamidated  DQ2  62  13   QQPFPQPEQPFRQ  867  hor‐1  Hordein/Secalin Immunogenic  Native  DQ2.5  88,90,8,27,62  9  PFPQPQQPF  868  hor‐1  Hordein/Secalin Immunogenic  Deamidated  DQ2.5  88,90,8,27,62  9   PFPQPEQPF  869  Hordein  Barley peptide B22  Immunogenic  Native  DQ2  62  20   PQQPFQPQQPFPQQTIPQQP  870  Hordein  Barley peptide B22  Immunogenic  Native  DQ2  62  12   QQPFQPQQPFPQ  871  Hordein  Barley peptide B27  Immunogenic  Native  DQ2  62  20   TFPPSQQPNPLQPQQPFPLQ  872  Hordein  Barley peptide B27  Immunogenic  Native  DQ2  62  13   PNPLQPQQPFPLQ  873  Hordein  Barley peptide B23, B24 Immunogenic  Native  DQ2  62  20   NPLQPQQPFPLQPQPPQQPF  874  Hordein  Barley peptide B23  Immunogenic  Native  DQ2  62  16   NPLQPQQPFPLQPQPP  875  Hordein  Barley peptide B24  Immunogenic  Native  DQ2  62  16   PLQPQQPFPLQPQPPQ  876  Hordein  Barley peptide B10  Immunogenic  Native  DQ2  62  20   PQQPQQPFPQPQQPFSWQPQ  877  Hordein  Barley peptide B10  Immunogenic  Deamidated  DQ2  62  20   PQQPQQPFPQPEQPFSWQPQ  878  Hordein  Barley peptide B10  Immunogenic  Native  DQ2  62  12   QPFPQPQQPFSW  879  Hordein  Barley peptide B10  Immunogenic  Deamidated  DQ2  62  12   QPFPQPEQPFSW  880  Hordein  Barley peptide B28  Immunogenic  Native  DQ2  62  20   PQQTIPQQPQQPFPLQPQQP  881  Hordein  Barley peptide B28  Immunogenic  Native  DQ2  62  12   TIPQQPQQPFPL  882  Hordein  Barley peptide B20  Immunogenic  Native  DQ2  62  20   QQPFPLQPQQPFPQPQPFPQ  883  gamma‐gliadin  Wheat peptide W26  Immunogenic  Deamidated  DQ2  62  16   GQPFPLQPEQPFPQPG  884  gamma‐gliadin  Wheat peptide W26  Immunogenic  Deamidated  DQ2  62  12   PFPLQPEQPFPQ  885  gamma‐hordein Barley peptide B07  Immunogenic  Native  DQ2  62  20   QSQQQFPQPQQPFPQQPQQP  886  gamma‐hordein alpha2‐Hordein in native form  Immunogenic  Native  DQ2  8  14   QQFPQPQQPFPQQP  887  gamma‐hordein alpha2‐Hordein in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  QEFPQPQQPFPQQP  888  gamma‐hordein alpha2‐Hordein in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  QQFPQPEQPFPQQP  889  gamma‐hordein alpha2‐Hordein in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  QEFPQPEQPFPQQP  890  gamma‐hordein Barley peptide B07  Immunogenic  Native  DQ2  62  12   QQFPQPQQPFPQ  891  hor‐2  Hordein/Secalin Immunogenic  Native  DQ2.5  90,8,27 9  PQPQQPFPQ  892  hor‐2  Hordein/Secalin Immunogenic  Deamidated  DQ2.5  90,8,27 9   PQPEQPFPQ  893  Secalin  Rye peptide R05  Immunogenic  Deamidated  DQ2  62  16   GQPAPIQPEQPFPQQG  894  Secalin  Rye peptide R05, R26  Immunogenic  Native  DQ2  62  20   PAPIQPQQPFPQQPQQPFPQ  895  Secalin  Rye peptide R05  Immunogenic  Deamidated  DQ2  62  12   PAPIQPEQPFPQ  896  Secalin  Rye peptide R05  Immunogenic  Native  DQ2  62  12   PAPIQPQQPFPQ  897  Secalin  Rye peptide R12  Immunogenic  Native  DQ2  62  20   FPQQPQQPFPQPQQQLPLQP  898  Secalin  Rye peptide R12  Immunogenic  Deamidated  DQ2  62  16   GQQPFPQPEQELPLQG  899  Secalin  Rye peptide R12  Immunogenic  Native  DQ2  62  12   QPFPQPQQQLPL  900  Secalin  Rye peptide R12  Immunogenic  Deamidated  DQ2  62  12   QPFPQPEQELPL  901  Secalin  Rye peptide R29  Immunogenic  Native  DQ2  62  20   PTPIQPQQPFPQRPQQPFPQ  902  Secalin  Rye peptide R29  Immunogenic  Native  DQ2  62  12   PFPQRPQQPFPQ  903  Secalin  gamma1‐Secalin in native form  Immunogenic  Native  DQ2  90,27  9   PQQSFPQQP  904  Secalin  gamma1‐Secalin in Deamidated form  Immunogenic  Deamidated  DQ2   90,27  9  PQQSFPEQP  905  Secalin  Rye peptide R10  Immunogenic  Native  DQ2  62  20   FPLQPQQPFPQQPEQIISQQ  906  Secalin  Rye peptide R10  Immunogenic  Native  DQ2  62  12   PFPQQPEQIISQ  907  Secalin  Rye peptide R25  Immunogenic  Native  DQ2  62  20   FPQQPEQIISQQPQQPFPLQ  908  Secalin  Rye peptide R25  Immunogenic  Native  DQ2  62  15   PEQIISQQPQQPFPL  909  Secalin  Rye peptide R22  Immunogenic  Native  DQ2  62  20   PQQLFPLPQQPFPQPQQPFP  910  Secalin  Rye peptide R22  Immunogenic  Native  DQ2  62  11   LFPLPQQPFPQ  911  Secalin  alpha9‐Secalin in native form  Immunogenic  Native  DQ2  8  14   PQQPFPQPQQPFPQ  912  Secalin  alpha9‐Secalin in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  PEQPFPQPQQPFPQ  913  Secalin  alpha9‐Secalin in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  PQQPFPQPEQPFPQ  914  Secalin  alpha9‐Secalin in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  PEQPFPQPEQPFPQ  915  Secalin  alpha2‐Secalin in native form  Immunogenic  Native  DQ2  8  14   QPFPQPQQPFPQSQ  916  Secalin  alpha2‐Secalin in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  QPFPQPEQPFPQSQ  917  gamma‐secalin  Rye peptide R21  Immunogenic  Native  DQ2  62  20   NMQVGPSGQVEWPQQQPLPQ  918  gamma‐secalin  Rye peptide R21  Immunogenic  Native  DQ2  62  16   GMQVGPSGEVEWPQQG  919  gamma‐secalin  Rye peptide R21  Immunogenic  Native  DQ2  62  12   QVGPSGQVEWPQ  920  gamma‐secalin  Rye peptide R21  Immunogenic  Native  DQ2  62  12   QVGPSGEVEWPQ  921  gamma‐secalin  Rye peptide R13, R28  Immunogenic  Native  DQ2  62  20   SPQPQQPYPQQPFPQQPQQP  922  gamma‐secalin  Rye peptide R13  Immunogenic  Deamidated  DQ2  62  16   GQPEQPYPEQPFPQQG  923  gamma‐secalin  Rye peptide R13  Immunogenic  Native  DQ2  62  12   PQQPYPQQPFPQ  924  gamma‐secalin  Rye peptide R13  Immunogenic  Deamidated  DQ2  62  12   PEQPYPEQPFPQ  925  gamma‐secalin  Rye peptide R23  Immunogenic  Native  DQ2  62  20   PQTQQPQQPFPQPQQPQQLF  926  gamma‐secalin  Rye peptide R23  Immunogenic  Native  DQ2  62  12   PQTQQPQQPFPQ  927  gamma‐secalin  Rye peptide R27  Immunogenic  Native  DQ2  62  20   PQEPQQLFPQSQQPQQPFPQ  928  gamma‐secalin  Rye peptide R27  Immunogenic  Native  DQ2  62  12   PQSQQPQQPFPQ  929  gamma‐secalin  Rye peptide R17  Immunogenic  Native  DQ2  62  20   QTQQSIPQPQQPFPQPQQPF  930  gamma‐secalin  Rye peptide R17  Immunogenic  Native  DQ2  62  12   QSIPQPQQPFPQ  931  gamma‐secalin  Rye peptide R02  Immunogenic  Native  DQ2  62  20   SIPQPQQPFPQPQQPFPQSQ  932  gamma‐secalin  Rye peptide R02  Immunogenic  Deamidated  DQ2  62  20   SIPQPQQPFPQPEQPFPQSQ  933  gamma‐secalin  Rye peptide R02  Immunogenic  Deamidated  DQ2  62  16   GQQPFPQPEQPFPQSG  934  gamma‐secalin  Rye peptide R02  Immunogenic  Deamidated  DQ2  62  13   QPFPQPEQPFPQS  935  gamma‐secalin  Rye peptide R02  Immunogenic  Native  DQ2  62  12   QPFPQPQQPFPQ  936  gamma‐secalin  Rye peptide R02  Immunogenic  Deamidated  DQ2  62  12   QPFPQPEQPFPQ  937  omega‐Secalin  Rye peptide R07  Immunogenic  Native  DQ2  62  20   QYSPYQPQQPFPQPQQPTPI  938  omega‐Secalin  Rye peptide R07  Immunogenic  Deamidated  DQ2  62  16   GQYSPYQPEQPFPQPG  939  omega‐Secalin  Rye peptide R07  Immunogenic  Native  DQ2  62  12   YSPYQPQQPFPQ  940  omega‐Secalin  Rye peptide R07  Immunogenic  Deamidated  DQ2  62  12   YSPYQPEQPFPQ  941  omega‐Secalin  Rye peptide R03  Immunogenic  Deamidated  DQ2  62  16   GQQPFPQPEQPTPIQG  942  omega‐Secalin  Rye peptide R03, R04  Immunogenic  Native  DQ2  62  20   QPFPQPQQPTPIQPQQPFPQ  943  omega‐Secalin  Rye peptide R03  Immunogenic  Deamidated  DQ2  62  12   QPFPQPEQPTPI  944  omega‐Secalin  Rye peptide R03  Immunogenic  Native  DQ2  62  12   QPFPQPQQPTPI  945  omega‐Secalin  Rye peptide R04  Immunogenic  Deamidated  DQ2  62  16   GQPTPIQPEQPFPQQG  946  omega‐Secalin  Rye peptide R04  Immunogenic  Native  DQ2  62  12   PTPIQPQQPFPQ  947  omega‐Secalin  Rye peptide R04  Immunogenic  Deamidated  DQ2  62  12   PTPIQPEQPFPQ  948  omega‐Secalin  Rye peptide R01, R09  Immunogenic  Native  DQ2  62  20   QQLPLQPQQPFPQPQQPIPQ  949  omega‐Secalin  Rye peptide R09  Immunogenic  Native  DQ2  62  12   QLPLQPQQPFPQ  950  omega‐Secalin  Rye peptide R01  Immunogenic  Native  DQ2  62  12   QPFPQPQQPIPQ  951  omega‐Secalin  Sec‐gamma1  Immunogenic  Native  DQ2  8  14   PQQPQQSFPQQPQR  952  omega‐Secalin  Sec‐gamma1 in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  PEQPQQSFPQQPQR  953  omega‐Secalin  Sec‐gamma1 in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  PQQPEQSFPQQPQR  954  omega‐Secalin  Sec‐gamma1 in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  PQQPQQSFPEQPQR  955  omega‐Secalin  Sec‐gamma1 in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  PEQPEQSFPQQPQR  956  omega‐Secalin  Sec‐gamma1 in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  PEQPQQSFPEQPQR  957  omega‐Secalin  Sec‐gamma1 in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  PQQPEQSFPEQPQR  958  omega‐Secalin  Sec‐gamma1 in Deamidated form  Immunogenic  Deamidated   DQ2  8  14  PEQPEQSFPEQPQR  959  omega‐Secalin  Rye peptide R20  Immunogenic  Native  DQ2  62  20   EQIISQQPFPLQPQQPFSQP  960  omega‐Secalin  Rye peptide R20  Immunogenic  Native  DQ2  62  12   PFPLQPQQPFSQ  961  omega‐Secalin  Rye peptide R6  Immunogenic  Deamidated  DQ2  62  16   GQPQQPFPEQPEQIIG  962  omega‐Secalin  Rye peptide R06, R11, R16  Immunogenic  Native  DQ2  62  20   PQQPFPQQPEQIIPQQPQQP  963  omega‐Secalin  Rye peptide R6  Immunogenic  Native  DQ2  62  12   PQQPFPQQPEQI  964  omega‐Secalin  Rye peptide R6  Immunogenic  Deamidated  DQ2  62  12   PQQPFPEQPEQI  965  omega‐Secalin  Rye peptide R11  Immunogenic  Native  DQ2  62  16   QQPFPQQPEQIIPQQP  966  omega‐Secalin  Rye peptide R11  Immunogenic  Deamidated  DQ2  62  16   EQPFPEQPEQIIPQQP  967  omega‐Secalin  Rye peptide R11  Immunogenic  Deamidated  DQ2  62  16   GQPFPQQPEQIIPQQG  968  omega‐Secalin  Rye peptide R11  Immunogenic  Deamidated  DQ2  62  12   PFPQQPEQIIPQ  969  omega‐Secalin  Rye peptide R16  Immunogenic  Native  DQ2  62  12   PEQIIPQQPQQP  970  omega‐Secalin  Rye peptide R08  Immunogenic  Native  DQ2  62  20   SQQPQRPQQPFPQQPQQIIP  971  omega‐Secalin  Rye peptide R08  Immunogenic  Native  DQ2  62  13   RPQQPFPQQPQQI  972  omega‐Secalin  Rye peptide R15  Immunogenic  Native  DQ2  62  20   QPQQIIPQQPQQPFPLQPQQ  973  omega‐Secalin  Rye peptide R15  Immunogenic  Native  DQ2  62  12   IIPQQPQQPFPL  974  omega‐Secalin  Rye peptide R14, R19  Immunogenic  Native  DQ2  62  20   QQPQQPFPLQPQQPVPQQPQ  975  omega‐Secalin  Rye peptide R14  Immunogenic  Native  DQ2  62  16   QQPQQPFPLQPQQPVP  976  omega‐Secalin  Rye peptide R19  Immunogenic  Native  DQ2  62  16   QPFPLQPQQPVPQQPQ  977  omega‐Secalin  Rye peptide R18  Immunogenic  Native  DQ2  62  20   QQPFLLQPQQPFSQPQQPFL  978  omega‐Secalin  Rye peptide R18  Immunogenic  Native  DQ2  62  11   FLLQPQQPFSQ  979  omega‐Secalin  Rye peptide R24  Immunogenic  Native  DQ2  62  20   SPQQPQLPFPQPQQPFVVVV  980  omega‐Secalin  Rye peptide R24  Immunogenic  Deamidated  DQ2  62  20   SPQQPQLPFPQPEQPFVVVV  981  omega‐Secalin  Rye peptide R24  Immunogenic  Native  DQ2  62  12   LPFPQPQQPFVV  982  omega‐Secalin  Rye peptide R24  Immunogenic  Deamidated  DQ2  62  12   LPFPQPEQPFVV  983  gamma‐avenin  Av‐alpha9B in native form  Immunogenic  Native  DQ2  8  14   QYQPYPEQQQPFVQ  984  gamma‐avenin  Av‐alpha9B in Deamidated form Immunogenic  Deamidated  DQ2  8   14  QYQPYPEQEQPFVQ  985  gamma‐avenin  Homolog of oat avenin–derived T cell–stimulatory peptide in Deamidated  form  Immunogenic  Deamidated  DQ2  62  15  EYQPYPEQEQPILQQ  986  gamma‐avenin  Homolog of oat avenin–derived T cell–stimulatory peptide in native form   Immunogenic  Native  DQ2  62  15  QYQPYPQQQQPILQQ  987  ave‐1b  gliadin alpha avenin‐9  Immunogenic  Native  DQ2.5  90,18,8 9  PYPEQQQPF  988  ave‐1b  gliadin alpha avenin‐9  Immunogenic  Deamidated  DQ2.5  90,18,8 9   PYPEQEQPF  989  Avenin  T cell recognized Avenin epitope HPLC fraction 9 Immunogenic  Native  DQ2  18   31  TTTVQYDPSEQYQPYPEQQEPFVQQQPPFVQ  990  Avenin  T cell recognized Avenin epitope HPLC fraction 4 Immunogenic  Native  DQ2  18   22  TTTVQYDPSEQYQPYPEQQEPF  991  Avenin  T cell recognized Avenin epitope HPLC fraction 9 Immunogenic  Native  DQ2  18   28  TTTVQYNPSEQYQPYPEQQEPFVQQQPF  992  Avenin  T cell recognized Avenin epitope HPLC fraction 9 Immunogenic  Native  DQ2  18   27  TTVQYNPSEQYQPYPEQQEPFVQQQPF  993  Avenin  T cell recognized Avenin epitope HPLC fraction 9 Immunogenic  Native  DQ2  18   25  VQYNPSEQYQPYPEQQEPFVQQQPF  994  Avenin  T cell recognized Avenin epitope HPLC fraction 3 Immunogenic  Native  DQ2  18   22  TTTVQYNPSEQYQPYPEQQEPF  995  Avenin  T cell recognized Avenin epitope HPLC fraction 8 Immunogenic  Native  DQ2  18   29  TTTVQYDPSEQYQPYPEQQEPFVQQQQPF  996  Avenin  T cell recognized Avenin epitope HPLC fraction 8 Immunogenic  Native  DQ2  18   30  TTTVQYNPSEQYQPYPEQQEPFVQQQQPFV  997  Avenin  T cell recognized Avenin epitope HPLC fraction 9 Immunogenic  Native  DQ2  18   29  PSEQYQPYPEQQEPFVQQQQPFVQQQQPF  998  Avenin  Avenin 1490 in native form  Immunogenic  Native  DQ2  18  19   SEQYQPYPEQQEPFVQQQQ  999  Avenin  Avenin 1490 in Deamidated form  Immunogenic  Deamidated  DQ2  18   19  SEQYQPYPEQEEPFVQQQQ  1000  Avenin  Av‐alpha9A in native form  Immunogenic  Native  DQ2  8  14   QYQPYPEQQEPFVQ  1001  Avenin  Av‐alpha9A in Deamidated form Immunogenic  Deamidated  DQ2  8  14   QYQPYPEQEEPFVQ  1002  Avenin  Avenin 1505  Immunogenic  Native  DQ2  18  12  YQPYPEQQEPFV  1003  Avenin  Avenin 1504 (deamidated form of Avenin 1505) Immunogenic  Deamidated   DQ2  18  12  YQPYPEQEEPFV  1004  ave‐1  gliadin alpha avenin‐9  Immunogenic  Native  DQ2.5  90,18,8 9  PYPEQQEPF  1005  ave‐1  gliadin alpha avenin‐9  Immunogenic  Deamidated  DQ2.5  90,18,8 9   PYPEQEEPF  1006  Avenin  Av‐gamma2B  Immunogenic  Native  DQ2  8  14   QQPFVQQQQPFVQQ  1007  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  EQPFVQQQQPFVQQ  1008  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  QQPFVEQQQPFVQQ  1009  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  EQPFVEQQQPFVQQ  1010  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  QQPFVQEQQPFVQQ  1011  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  EQPFVQEQQPFVQQ  1012  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  QQPFVEEQQPFVQQ  1013  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  EQPFVEEQQPFVQQ  1014  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  QQPFVQQEQPFVQQ  1015  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  EQPFVQQEQPFVQQ  1016  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  QQPFVEQEQPFVQQ  1017  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  EQPFVEQEQPFVQQ  1018  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  QQPFVQEEQPFVQQ  1019  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  EQPFVQEEQPFVQQ  1020  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  QQPFVEEEQPFVQQ  1021  Avenin  Av‐gamma2B in Deamidated form  Immunogenic  Deamidated  DQ2  8   14  EQPFVEEEQPFVQQ  1022  Avenin  Avenin core epitope in native form  Immunogenic  Native  DQ2  27  9   FVQQQQQPF  1023  Avenin  Avenin core epitope in Deamidated form  Immunogenic  Deamidated   DQ2  27  9  FVQQQEQPF  1024  gamma‐gliadin or LMW glutenin Glu‐21 minimal epitope  in considered native form   Immunogenic  Native  DQ2  19  12  QSEQSQQPFQPQ  1025  glia‐gamma 3, glia‐gamma 1b  gamma gliadin  Immunogenic  Deamidated  DQ2.5 or  DQ8  90,17,23  9  EQPQQPYPQ  1026  glia‐gamma 3, glia‐gamma 1b  gamma gliadin  Immunogenic  Deamidated  DQ2.5 or  DQ8  90,17,23  9  QQPQQPYPE  1027  glia‐gamma 3, glia‐gamma 1b  gamma gliadin  Immunogenic  Deamidated  DQ2.5 or  DQ8  90,78,23  9  EQPEQPYPQ  1028  glia‐gamma 3, glia‐gamma 1b  CAUTION, 100% match to Candida protein / gamma gliadin   Immunogenic  Deamidated  DQ2.5 or DQ8  90,78,23  9  QQPEQPYPE  1029  glia‐gamma 3  gamma 5 gliadin  Immunogenic  Deamidated  DQ2.5  90,78,23   9  SQPEQQFPQ  1030  glia‐gamma 3  gamma 5 gliadin  Immunogenic  Deamidated  DQ2.5  90,78,23   9  SQPQQEFPQ  1031  glia‐gamma 1b, glia‐gamma 4c  gammaVII‐gliadin  Immunogenic  Deamidated   DQ2.5  90,17,25  9  QQPQQPFPE  1032  glia‐gamma 4c, glia‐gamma 1b  gammaVII‐gliadin  Immunogenic  Deamidated   DQ2.5  90,17,25,8  9  QQPEQPFPE  1033  glia‐gamma 4c, glia‐gamma 1b  gammaVII‐gliadin  Immunogenic  Deamidated   DQ2.5  90,17,25  9  EQPEQPFPE  1034  glia‐gamma 4c  gamma gliadin  Immunogenic  Native  DQ2.5  90,62,78,81  9   PQPQQPFCQ  1035  glia‐gamma 4d  gamma gliadin  Immunogenic  Deamidated  DQ2.5  90,62,78,81  9   PQPEQPFCQ  1036  glia‐gamma 4d  gamma gliadin  Immunogenic  Deamidated  DQ2.5  90,62,78,81  9   PQPQQPFCE  1037  glia‐gamma 4d  gamma gliadin  Immunogenic  Deamidated  DQ2.5  90,62,78,81  9   PQPEQPFCE  1038  glia‐gamma 4e  gliadin omega 1 Immunogenic  Native  DQ2.5  90,86  9   PQPQQPFSQ  1039  glia‐gamma 4e  gliadin omega 1 Immunogenic  Deamidated  DQ2.5  90,86  9   PQPEQPFSQ  1040  glia‐omega 3  gliadin omega 3 Immunogenic  Native  DQ2.5  86,90  9  PFPQPQQPI  1041  glia‐omega 3  gliadin omega 3 Immunogenic  Deamidated  DQ2.5  86,90  9   PFPQPEQPI  1042  glia‐omega 4  CAUTION 100% match to 2 Prunus sp. peptides / gliadin omega 4   Immunogenic  Native  DQ2.5  86,90  9  PQPQQPIPV  1043  glia‐omega 4  gliadin omega 4 Immunogenic  Deamidated  DQ2.5  86,90  9   PQPEQPIPV  1044  glia‐omega 5  gliadin omega 5 Immunogenic  Native  DQ2.5  86,90  9   LQPQQPFPQ  1045  glia‐omega 5  gliadin omega 5 Immunogenic  Deamidated  DQ2.5  86,90  9   LQPEQPFPQ  1046  Avenin Q  avenin‐gliadin like  Immunogenic  Native  DQ2 or DQ8  87  14   QQPFMQQQQPFMQP  1047  Avenin Q‐5  avenin‐gliadin like  Immunogenic  Native  DQ2 or DQ8  88  14   QQPFVQQQQQPFVQ  1048  glia‐gamma 1  gamma gliadin 1  Immunogenic  Deamidated  DQ2.5  90,74  9   PEQSFPQQQ  1049  glia‐gamma 1  gamma gliadin  Immunogenic  Deamidated  DQ2.5  90,74  9   PEQSFPQQE  1050  ave‐1 06  Avenin gliadin like  Immunogenic  Native  DQ2.5  88  16   QYQPYPEQQQPILQQQ  1051  ave‐1 06  avenin‐gliadin like  Immunogenic  Deamidated  DQ2.5  88  16   QYQPYPEQEQPILQQQ  1052  ave‐1 04  avenin‐gliadin like  Immunogenic  Native  DQ2.5  88  16   QQYQPYPQQQPFMQPL  1053  ave‐1 04  avenin‐gliadin like  Immunogenic  Deamidated  DQ2.5  88  16   EQYQPYPEQQPFMQPL  CD1D multimer and ligand:    [00104] In one embodiment, the peptide is a human, non-human, or synthetic/engineered peptide. For example, the peptide is a Minor Histocompatibility Antigen (MiHA). [00105] Exemplary MiHAs are known in the art, e.g., in Spierings et al. Tissue Antigens 2014 84:347-360; which is incorporated by reference herein. MiHAs are typically utilized in embodiments relating to transplantation, where it refers to epitopes that are created because of protein sequence variation in polymorphic proteins. [00106] Residues of the antigenic peptide that engages the MHC binding groove can loosely be divided into two types: anchor residues, which engage with the MHC molecule and confer stability to the MHC-peptide complex (for example, see residues P2, P3, P5, P6, P7, and P9 in Bowness et al. 1999 Expert Reviews in Molecular Medicine 16:1-10; which is incorporated by reference herein in its entirety), and interfacial residues, which are solvent-exposed and can engage with the cognate T-cell receptor (see, e.g., residues P1, P4, and P8 in Bowness). A featureless peptide is a peptide in which anchor residues are preserved, while interfacial residues of the peptide are mutated to alanine or glycine residues to prevent TCR binding. A featureless peptide-MHC is therefore a MHC peptide complex in which the presented peptide is a featureless peptide. Featureless peptide MHCs are typically used in embodiments relating to transplantation tolerance. In patients receiving MHC- mismatched solid organ or hematopoietic stem cell transplants, use of a CAL T cell presenting the relevant donor-mismatched featureless peptide-MHC CAL can permit selective depletion of recipient alloreactive T cells targeted towards this mismatched donor HLA allele. [00107] The MHC can be a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. In embodiments where more than one MHC unit is present, e.g., the MHC is oligomeric, the units can be provided in series, e.g., in a chain, or provided arrayed in one or more dimensions around a central point or linker, provided conjugated/bound in any geometry to a scaffold molecule, or any combination of the foregoing. Naturally occurring examples of TCR recognition domain structures in the art include MHC dimers (Lebowitz et al., 1999 Cellular Immunology 192:175-184), tetramers (Altman et al., 1996 Science 274:94-96), pentamers (proimmune.com/introduction-to-pentamers/), octamers (Guillame et al., 2003 JBC 278:4500-4509), dextramers (Batard et al., 2006 Journal of Immunological Methods 310:136-148), dodecamers (Huang et al., 2016 PNAS 113:E1890-7), lipid vesicles (Mallet-Designe et al., 2003 The Journal of Immunology 170:123-131), and quantum dots (Chattopadhyay et al., 2006 Nature Medicine 12:972- 7). Each of the foregoing references is incorporated by reference herein in its entirety. [00108] In some embodiments, the TCR recognition domain can comprise a CD1 domain (e.g., a CD1d domain), e.g., a sequence comprising an extracellular domain of CD1, (e.g., CD1) . As used herein, “cluster of differentiation 1 family member d” or “CD1d” refers to a cell surface protein that displays lipid antigens to T cells. The sequences of several CD1d isoforms, and the structure of CD1d are known in the art, see, e.g., the 3 isoforms provided in the NCBI database for CD1d (Gene ID 912), and Bagchi et al., 2018 and Oleinika et al., Nature Communcations 20189:684; which are incorporated by reference herein in their entireties. For example, isoform 1 of CD1d is SEQ ID NO: 5 (NCBI Ref Seq NP_001757.1), isoform 2 of CD1d is SEQ ID NO: 6 (NCBI Ref Seq NP_001306074.1), and isoform 3 of CD1d is SEQ ID NO: 7 (NCBI Ref Seq NP_001358690.1). In some embodiments, the CD1d domain comprises a sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or greater sequence identity to one of SEQ ID NOs: 5-7. In some embodiments, the CD1d domain comprises a sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or greater sequence identity to the extracellular domain of one of SEQ ID NOs: 5-7 (e.g., amino acids 20-301 of SEQ ID NO: 5). In some embodiments, the CD1d domain comprises a sequence with at least at least 95% sequence identity to one of SEQ ID NOs: 5-7 and retains the lipid binding activity of the wild-type reference sequence. In some embodiments, the CD1d domain comprises a sequence with at least 95% sequence identity to the extracellular domain of one of SEQ ID NOs: 5-7 (e.g., amino acids 20-301 of SEQ ID NO: 5) and retains the lipid binding activity of the wild-type reference sequence. [00109] In some embodiments, the CD1 domain further comprises a ligand, e.g., a non-peptide ligand. Exemplary, non-limiting ligands of CD1 domains include but are not limited to: Protein (Allele) Ligand human CD1a C-glycoside GSL-1 OCH human CD1b C-glycoside GSL-1 OCH human CD1c C-glycoside GSL-1 OCH human CD1d OCH human CD1d PBS-57 [00110] In some embodiments, a TCR recognition domain can comprise sequences or molecules in addition to the, e.g., MHC, pMHC, of CD1 domains and sequences. For example, it can further comprise other polypeptide and/or non-polypeptide components that enable multimerization. Exemplary components that permit multimerization can include biotin (non-polypeptide) and/or streptavidin polypeptide that is used to permit tetramerization. [00111] In various embodiments, protein interaction domains are found on an extracellular portion of the respective polypeptides. [00112] As used herein, “recognition polypeptide” refers to an extracellular polypeptide having a ligand-binding domain. In some embodiments, the ligand-binding domain can be an antibody reagent. In some embodiments, the recognition polypeptide can further comprise a protein interaction domain. [00113] As used herein, “signaling polypeptide” refers to a transmembrane polypeptide having an intracellular signaling domain, e.g., a T cell receptor (TCR) signaling domain. In some embodiments, the signaling polypeptide can further comprise a protein interaction domain. In some embodiments, the signaling polypeptide can further comprise an extracellular protein interaction domain. [00114] As used herein, “biomolecular interaction domain” refers to a domain that permits specific binding of two separate molecules to each other. The molecules can be or can comprise polypeptides. In some embodiments, one or both of the molecules or biomolecular interaction domains can be a non-peptide. When a pair of biomolecular interaction domains is provided herein, they permit two or more molecules to bind specifically, e.g. one of the biomolecular interaction domains can bind specifically to the second biomolecular interaction domain. In some embodiments, specific binding can occur when two separate biomolecular interaction domains, e.g., of a pair, are present. In some embodiments, specific binding can occur when three or more separate biomolecular interaction domains are present. It is noted that protein interaction domains are a type of biomolecular interaction domains and where one is specified herein, the other may always be substituted. [00115] As used herein, when a molecule is referred to as a protein or polypeptide, it comprises a protein, peptide, or polypeptide sequence, but may comprise additional motifs, modifications, or domains of a non-proteinaceous nature. A number of exemplary biomolecular interaction domains, as well as pairs of protein interaction domains are provided elsewhere herein. In some embodiments, the biomolecular interaction domains comprise, consist, or consist essentially of proteins or polypeptides. In some embodiments, the biomolecular interaction domains comprise, consist, or consist essentially of non-proteinaceous molecules. In some embodiments, one of a pair of biomolecular interaction domains can comprise, consist, or consist essentially of proteins or polypeptides and the second of the pair of biomolecular interactions domains can comprise, consist, or consist essentially of a non-proteinaceous molecule (e.g., FITC and anti-FITC). Exemplary protein interaction domains are known in the art and can be used in embodiments of the aspects described herein. [00116] As used herein, “protein interaction domain” refers to a domain that permits specific binding of two separate polypeptides to each other. A number of exemplary protein interaction domains, as well as pairs of protein interaction domains are provided elsewhere herein. In some embodiments, the protein interaction domains of the polypeptides of a multi-component CAL and/or CAR can bind specifically, e.g. one of the protein interaction domains can bind specifically to a second protein interaction domain of the multi-component CAL and/or CAR. In some embodiments, specific binding can occur when two separate protein interaction domains are present. In some embodiments, specific binding can occur when three or more separate protein interaction domains are present. Exemplary protein interaction domains are known in the art and can be used in embodiments of the aspects described herein. [00117] In some embodiments of any of the aspects described herein, the protein interaction domains can be leucine zipper domains. Leucine zipper domains are a type of protein-protein interaction domain commonly found in transcription factors characterized by leucine residues evenly spaced through a α-helix. Leucine zippers may form heterodimers or homodimers. A number of leucine zipper domains, as well as their ability to bind each other, are known in the art and discussed further, e.g., in Reinke et al. JACS 2010132:6025-31 and Thompson et al. ACS Synth Biol 2012 1:118-129; each of which is incorporated by reference herein in its entirety. In some embodiments, one leucine zipper domain is BZip (RR) and the second leucine zipper domain is AZip (EE). In some embodiments, the sequence of a BZip (RR) leucine zipper domain is MDPDLEIRAAFLRQRNTALRTEVAELEQEVQRLENEVSQYETRYGPLGGGK (SEQ ID NO: 3). In some embodiments, the sequence of a AZip (EE) leucine zipper domain is MDPDLEIEAAFLERENTALETRVAELRQRVQRLRNRVSQYRTRYGPLGGGK (SEQ ID NO: 4). Further exemplary leucine zipper domains are described in Reinke et al. JACS 2010132:6025-31; which is incorporated by reference herein in its entirety. For example, suitable leucine zipper domains can include SYNZIP 1 to SYNZIP 48, and BATF, FOS, ATF4, ATF3, BACH1, JUND, NFE2L3, and HEPTAD. Binding affinities of various combinations of these domains are described, e.g., at Fig.1 of Reinke et al. In some embodiments, a suitable pair of leucine zipper domains has a dissociation constant (Kd) of 1000 nM or less. In some embodiments, a suitable pair of leucine zipper domains has a dissociation constant (Kd) of 100 nM or less. In some embodiments, a suitable pair of leucine zipper domains has a dissociation constant (Kd) of 10 nM or less. In some embodiments, a suitable pair of leucine zipper domains has a dissociation constant (Kd) of 1 nM or less. [00118] Further exemplary pairs of protein interaction domains can include a) PSD95-Dlg1-zo-1 (PDZ) domains; b) a streptavidin domain and a streptavidin binding protein (SBP) domain; and c) a PYL domain and an ABI domain. [00119] In some embodiments of any of the aspects described herein, the protein interaction domains can be chemically-induced protein interaction domains, e.g., domains that will only bind specifically in the presence of a third molecule, e.g., a small molecule or drug. Exemplary pairs of chemically-induced protein interaction domains can include: FKBP-binding domain of mTOR (FRB) and FK506 binding protein (FKBP) (binding of which is activated by tacrolimus, everolimus, or a rapalog); cyclophilin-Fas fusion protein (CyP-Fas) and FK506 binding protein (FKBP) (binding of which is activated by FKCsA); calcineurin A (CNA) and FK506 binding protein (FKBP) (binding of which is activated by FK506); gibberellin insensitive (GIA) and gibberellin insensitive dwarf1 (GID1) (binding of which is activated by gibberellin); Snap-tag and Halo tag (binding of which is activated by HaXS); and T14-3-3-cdeltaC and C-Terminal peptides of PMA2 (CT52) (binding of which is activated by fusicoccin). Further description of chemically-induced protein interaction domains can be found in the art, e.g., Miyamoto et al. Nat Chem Biol.2012 Mar 25; 8(5): 465–470 and Belshaw et al. PNAS 199693:4604-4607; each of which is incorporated herein by reference in its entirety. [00120] In some embodiments of any of the aspects described herein, the protein interaction domains can comprise at least one nucleotide tag and at least one zinc finger domain. Zinc finger domains are characterized by the coordination of a zinc ion in order to stabilize their tertiary structure. The particular folds that appear in zinc fingers can vary. In some embodiments, a zinc finger domain can be a nucleotide-binding zinc finger domain. In some embodiments, a zinc finger domain can be a DNA-binding zinc finger domain. In some embodiments, the protein interaction domain of the recognition polypeptide is a nucleotide tag and the extracellular protein interaction domain of the signaling polypeptide is a zinc finger domain. In some embodiments, a nucleotide tag can be a DNA tag. In some embodiments, a nucleotide tag can be a dsDNA tag comprising the entire recognition sequence for the zinc finger domain being used. Exemplary zinc finger domains and their cognate nucleotide tags are described in the art, e.g. Mali et al. Nature Methods 201310:403-406; which is incorporated by reference herein in its entirety. In some embodiments, a zinc finger domain can be sZF15 as described in Mali et al. Nature Methods 201310:403-406. [00121] In one embodiment, the protein interaction domain(s) is a BZip (RR) and/or a AZip (EE), or any binding pair of protein interaction domains are collectively a BZip (RR) and a AZip (EE). [00122] In some embodiments of any of the aspects described herein, the protein interaction domains can comprise a pair of substantially complementary nucleotide tags, e.g., fully complementary or complementary enough to hybridize specifically. The degree of complementarity necessary may vary depending on the total length of the tags and G/C content of the complementary portions. One of skill in the art can readily determine the relevant affinity necessary for tags of a given size and G/C content. In some embodiments, a nucleotide tag can be a DNA tag. [00123] In some embodiments, a nucleotide tag can be a DNA tag. In some embodiments, a nucleotide tag can be a dsDNA tag. [00124] In one embodiment, the protein interaction domain(s) is a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1) or any binding pair of protein interaction domains are collectively a gibberellin insensitive (GIA) and a gibberellin insensitive dwarf1 (GID1). [00125] In one embodiment, the protein interaction domain(s) is a Snap-tag and/or a Halo tag, or any binding pair of protein interaction domains are collectively a Snap-tag and a Halo tag. [00126] In one embodiment, the protein interaction domain(s) is a T14-3-3-cdeltaC and/or a C- Terminal peptides of PMA2 (CT52), or any binding pair of protein interaction domains are collectively a T14-3-3-cdeltaC and a C-Terminal peptides of PMA2 (CT52). [00127] In one embodiment, the protein interaction domain(s) is a PYL and/or a ABI, or any binding pair of protein interaction domains are collectively a PYL and a ABI. [00128] In one embodiment, the biomolecular interaction domain(s) is a Fluorescein isothiocyanate (FITC) and/or a FITC binding protein or any binding pair of biomolecular interaction domains are collectively a FITC and a FITC binding protein. [00129] In one embodiment, the biomolecular interaction domain(s) is a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein or any binding pair of biomolecular interaction domains are collectively a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein. [00130] In some embodiments, the biomolecular domain on the molecule comprising a TCR recognition domain and biomolecular interaction domain (i.e. a CAL) binds specifically to a native cell surface molecule on a NK cell, dendritic cell, or T cell. In such embodiments, a subject can be treated as described herein without administration of an engineered cell. In some embodiments, the biomolecular domain on the molecule comprising a TCR recognition domain and biomolecular interaction domain (i.e. a CAL) binds specifically to a native cell surface molecule on a NK cell. In some embodiments, the biomolecular domain on the molecule comprising a TCR recognition domain and biomolecular interaction domain (i.e. a CAL) binds specifically to a native cell surface molecule on dendritic cell. Exemplary native cell surface molecules for such embodiments include, but are not limited to CD3. Other suitable cell surface molecules are the CD cell surface proteins. CDs are known in the art and one of ordinary skill can readily select one expressed by the desired cell type(s). For example, see the HCDM database at hcdm.org and the lists available on the world wide web at chemeurope.com/en/encyclopedia/List_of_human_clusters_of_differentiation.html; and docs.abcam.com/pdf/immunology/Guide-to-human-CD-antigens.pdf. Accordingly, exemplary biomolecular interaction domains for such embodiments include but are not limited to an anti-CD3 antibody reagent, or a Fab domain. One of skill in the art is aware of other cell surface molecules found, or found exclusively, on the cell surface of the relevant cell type(s), as well as multiple reagents that can bind (e.g., bind specifically) to such cell surface molecules. [00131] In aspects with a single recognition polypeptide and a single signaling polypeptide that are able to bind specifically without a third polypeptide, the multiple-component CALs or CARs described herein will activate in the presence of the target ligand, thereby inducing T cell activity in the vicinity of the target ligand. Further described herein are multiple-component CALs or CARs capable of logic computation, for example, multiple-component CALs or CARs that serve as AND, OR, or NOT logic gates. [00132] In some aspects, described herein are compositions that comprise components of a multi- component CAL and/or CAR that permits AND gate logic. In these aspects, activation of the multi- component CAL and/or CAR happens only in the presence of two target ligands; recognition of a single target ligand is not sufficient for activation. Such multi-component CALs or CARs can permit greater specificity and reduce off-target effects. Any single ligand that is a good marker for a target cell or tissue may occur elsewhere in a subject, resulting in off-target effects. However, requiring the recognition of two separate marker ligands reduces the odds of off-target activity. [00133] In one embodiment, a nucleotide tag can be a DNA tag or dsDNA tag. [00134] Further embodiments of AND logic gate multi-component CALs and CARs are described herein. [00135] In some embodiments of any of the aspects described herein, the compositions comprise components of a multi-component CAL and/or CAR that are NOT logic gate. For example, recognition of a second target ligand by a second recognition polypeptide can prevent interaction (e.g. specific binding) of the signaling polypeptide and first recognition polypeptide. Such embodiments can permit suppression of T cell activity in inappropriate and/or off-target tissues. For example, the second target ligand can be a marker of a tissue that is particularly sensitive to T cell activity, is a known area of off-target activity, and/or shares markers with the desired target tissue. In some embodiments, in a NOT gate multi-component CAL and/or CAR, the second target ligand is not a ligand found in the target tissue and/or cells, e.g., in or on a disease T cell. In some embodiments, the second target ligand of a NOT logic gate multi-component CAL and/or CAR is found on a healthy and/or non-target cell and not on a diseased and/or target cell. Various 2- and 3-dimensional configurations of such pairs of nucleotide pairs are known in the art. [00136] In some embodiments, the target ligand recognized by the second recognition polypeptide is found on a healthy and/or non-target cell and not on a diseased and/or target cell. In some embodiments, the protein interaction domain of the second recognition polypeptide and the protein interaction domain of the first recognition polypeptide have a greater affinity than the protein interaction domain of the signaling polypeptide and the protein interaction domain of the first recognition polypeptide. In some embodiments, the protein interaction domain of the second recognition polypeptide and the protein interaction domain of the signaling polypeptide have a greater affinity than the protein interaction domain of the signaling polypeptide and the protein interaction domain of the first recognition polypeptide. Relative binding affinities can be determined experimentally, e.g., by binding affinity assays known in the art and relative binding affinities are known for a number of combinations of protein interaction domains described herein, see, e.g. Reinke et al. JACS 2010132:6025-31; which is incorporated by reference herein in its entirety. In some embodiments, the binding affinity of the recognition polypeptide protein interaction domains can be at least 2x greater than the binding affinity of the first recognition polypeptide protein interaction domain and the signaling polypeptide interaction domain. In some embodiments, the binding affinity of the recognition polypeptide protein interaction domains can be at least 5x greater than the binding affinity of the first recognition polypeptide protein interaction domain and the signaling polypeptide interaction domain. In some embodiments, the binding affinity of the recognition polypeptide protein interaction domains can be at least 10x greater than the binding affinity of the first recognition polypeptide protein interaction domain and the signaling polypeptide interaction domain. [00137] As used herein, “target ligand” refers to a molecule in or on a cell which can be bound by a ligand-binding domain. Non-limiting examples of such molecules can include polypeptides, lipids, saccharides, and the like. In some embodiments, the target ligand can be an extracellular molecule. In some embodiments, the target ligand can be a cell surface molecule. [00138] In some embodiments, e.g., those relating to a multi-component CAL and/or CAR with a single recognition polypeptide or an AND gate multi-component CAL and/or CAR, the target ligand (e.g. the first and/or second target ligand) can be a ligand expressed in a target tissue. In some embodiments, the target ligand can be expressed constitutively in the target tissue and/or cell. In some embodiments, the target ligand can be expressed exclusively in the target tissue and/or cell. In some embodiments, the target ligand can be expressed at a higher level in the target tissue and/or cell than in other tissues and/or cells. As recognition of a target ligand in embodiments relating to a multi- component CAL and/or CAR with a single recognition polypeptide or an AND gate multi-component CAL and/or CAR can result in T cell activation (e.g. cell killing activity of the cell comprising the target ligand), the target ligand can be selected to target T cell activity in a desirable and/or therapeutic way, e.g., by targeting a disease cell. In some embodiments, a target ligand is a ligand found in/on a diseased and/or target cell. In some embodiments, the target ligand specifically bound by a recognition polypeptide that can specifically bind with a signaling polypeptide or is a portion of an AND gate multi-component CAL and/or CAR is a ligand found in/on a diseased and/or target cell. In some embodiments, a target ligand specifically bound by a recognition polypeptide that can specifically bind with a signaling polypeptide or is a portion of an AND gate multi-component CAL and/or CAR is a ligand found on a diseased and/or target cell and not on a healthy and/or non-target cell. In some embodiments, the diseased cell is an autoreactive or alloreactive T cell. In some embodiments, the target ligand specifically bound by a recognition polypeptide that can specifically bind with a signaling polypeptide or is a portion of an AND gate multi-component CAL and/or CAR is found on the surface of a disease cell. In some embodiments, a recognition polypeptide that can specifically bind with a signaling polypeptide or is a portion of an AND gate multi-component CAL and/or CAR specifically binds to a target ligand on the surface of a disease cell, e.g. as compared to binding to normal cells. [00139] In some embodiments, a composition and/or cell described herein can further comprise a second multi-component CAL and/or CAR according to any of the aspects and embodiment described herein for the first multi-component CAL and/or CAR. By way of non-limiting example, a second CAL and/or CAR can be designed to bind specifically to (and, e.g., be activated by or inhibited by) different target ligands than those to which the first multi-component CAL and/or CAR specifically binds (and, e.g. is activated by or inhibited by). This can provide increased specificity, reduced off- target effects, and/or reduced effective dosages for the methods described herein. In some embodiments, the recognition domain of second multi-component CAL and/or CAR bind specifically to different target ligands than those bound by the recognition domain of the first multi-component CAL and/or CAR. In some embodiments, the antibody reagents of second multi-component CAL and/or CAR bind specifically to different target ligands than those bound by the antibody reagents of the first multi-component CAL and/or CAR. [00140] In some embodiments, the second multi-component CAL and/or CAR can comprise an inhibitory intracellular signaling domain, e.g., T cell receptor (TCR) signaling domain, e.g., one that inhibits engineered cell, e.g., T cell, activity. In such embodiments, the second multi-component can therefore be designed to operate in opposition to the first multi-component CAL and/or CAR, e.g. permitting inhibition of T cell activation while the first multi-component CAL and/or CAR permits activation of T cell activity. Inhibitory intracellular TCR signaling domains are known in the art and can include, by way of non-limiting example, PD1; CTLA4; BTLA; KIR; LAG-3; TIM-3; A2aR; LAIR-1; and TGIT. In one embodiment, non-active mimetics of an activating TCR can be used. [00141] In some embodiments, described herein is a composition comprising a cell, a CAL, and a CAR (e.g., with the CAR comprising either an inhibitory domain or costimulation/activation domain). [00142] In one embodiment, the TCR recognition domain comprises a MHC allogeneic to the cell. In one embodiment, the TCR recognition domain comprises a peptide allogeneic to the cell. In one embodiment, the TCR recognition domain comprises a MHC allogeneic to the target cell. In one embodiment, the TCR recognition domain comprises a peptide allogeneic to the target cell. In one embodiment, the TCR recognition domain comprises a non-self peptide relative to the target cell. [00143] In some embodiments, the target ligand specifically bound by a recognition polypeptide that can specifically bind with the signaling polypeptide of the second multi-component CAL and/or CAR comprising an inhibitory intracellular signaling domain is a ligand found on a healthy and/or non-target cell. In some embodiments, the target ligand specifically bound by a recognition polypeptide that can specifically bind with the signaling polypeptide of the second multi-component CAL and/or CAR comprising an inhibitory intracellular signaling domain is a ligand found on a healthy and/or non-target cell and not on a diseased and/or target cell. In some embodiments, the second multi-component CAL and/or CAR comprising an inhibitory intracellular signaling domain can be an OR logic gate according to any of the embodiments described herein and the second target ligand can be a ligand found in/on, or specific to, diseased cells. [00144] In some embodiments of any of the aspects, a ligand-binding domain can comprise or consist essentially of an antibody reagent. In some embodiments, the antibody reagent can be an immunoglobulin molecule, a monoclonal antibody, a chimeric antibody, a CDR-grafted antibody, a human antibody, a humanized antibody, a Fab, a Fab', a F(ab')2, a Fv, a disulfide linked Fv, a scFv, a single domain antibody, a diabody, a multispecific antibody, a dual specific antibody, an anti- idiotypic antibody, and/or a bispecific antibody. [00145] In some embodiments, the intracellular signaling domain can be a T-cell activation domain. In some embodiments, the intracellular signaling domain is a signaling domain from a protein selected from the group consisting of: TCRζ, FcRγ, FcRβ, CD3γ, CD3δ, CD3ε, CD3ζ, CD22, CD79a, CD79b, CD66d, CARD11, CD2, CD7, CD27, CD28, CD30, CD40, CD54 (ICAM), CD83, CD134 (OX40), CD137 (4-1BB), CD150 (SLAMF1), CD152 (CTLA4), CD223 (LAG3), CD270 (HVEM), CD273 (PD-L2), CD274 (PD-L1), CD278 (ICOS), DAP10, LAT, NKD2C SLP76, TRIM, and ZAP70. In some embodiments, the signaling domain can be a paralog or ortholog of any of the foregoing. Multi-Component CAR/CAL Cells [00146] Presented herein are cells that express the compositions or multi-component CARs and/or CALs presented herein. A cell can be any cell, for example, any mammalian cell, e.g., a human cell. In one embodiment, the cell is a dendritic cell, regulatory T cell, or effector T cell. In one embodiment the cell is a dendritic cell (CAL DC), a T cell (e.g., effector, regulatory, etc.) (CAL-T); regulatory T cell, effector T cell, natural killer cell (CAL NK), or any other myeloid cell. [00147] In one aspect, described herein is an engineered cell expressing and/or comprising one or more multi-component CARs/CALs, or a composition comprising the same as described herein, e.g., at least one signaling polypeptide and at least one recognition polypeptide. In some embodiments, the cell is a natural killer (NK) cell, dendritic cell, regulatory T cell, effector T cell. Such cells expressing and/or comprising both a signaling polypeptide and at least one recognition polypeptide of a multi- component CAR/CAL are referred to herein as “complete multi-component CAR/CAL” cells. In some embodiments, a complete multi-component CAR/CAL cell expresses both a signaling polypeptide (e.g., a CAR) and at least one recognition polypeptide (e.g. a CAL or adaptor as described elsewhere herein) of a multi-component CAL and/or CAR. In some embodiments, a complete multi- component CAL and/or CAR cell comprises nucleic acid sequences encoding both a signaling polypeptide and at least one recognition polypeptide of a multi-component CAL and/or CAR. In some embodiments, a signaling polypeptide is present on the membrane of a cell. In some embodiments, the one or more recognition polypeptides are present in the extracellular space, e.g., the recognition polypeptide(s) can be expressed and secreted by the cell or the cell can be contacted by recognition polypeptides provided from another source (e.g. produced synthetically or by another cell and optionally, purified or processed before the contacting step). [00148] In any of the aspects described herein, e.g., those relating to either a complete or partial multi-component CAL and/or CAR cell, the recognition and/or signaling polypeptide can be under the control of an inducible and/or repressible promoter. Such promoters allow the expression of the polypeptide to be increased or decreased as desired and are in contrast to constitutive promoters. The term "constitutively active promoter" refers to a promoter of a gene which is expressed at all times within a given cell. Exemplary promoters for use in mammalian cells include cytomegalovirus (CMV), Elongation Factor 1a (EF1a), and the like. The term "inducible promoter" refers to a promoter of a gene which can be expressed in response to a given signal, for example addition or reduction of an agent. Non-limiting examples of an inducible promoter are promoters that are regulated in a specific tissue type, a promoter regulated by a steroid hormone, by a polypeptide hormone (e.g., by means of a signal transduction pathway), or by a heterologous polypeptide (e.g., the tetracycline- inducible systems, "Tet-On" and "Tet-Off"; see, e.g., Clontech Inc., CA, Gossen and Bujard, Proc. Natl. Acad. Sci. USA 89:5547, 1992, and Paillard, Human Gene Therapy 9:983, 1989; each of which are incorporated by reference herein in its entirety). In some embodiments, expression of the polypeptide can be precisely regulated, for example, by using an inducible regulatory sequence that is sensitive to certain physiological regulators, e.g., circulating glucose levels, or hormones (Docherty et al., 1994, FASEB J.8:20-24). Such inducible expression systems, suitable for the control of expression in cells or in mammals include, for example, regulation by ecdysone, by estrogen, progesterone, tetracycline, chemical inducers of dimerization, and isopropyl-beta-D1 - thiogalactopyranoside (IPTG). A person skilled in the art would be able to choose the appropriate regulatory/promoter sequence based on the intended use of the polypeptide. [00149] In some embodiments, the expression of one or more of the recognition or signaling polypeptides can be constitutive. In some embodiments, the expression of one or more of the recognition or signaling polypeptides can be transient. Transient expression can be achieved by, e.g., use of transient and/or inducible expression promoters or by use of transient vectors, e.g. those that do not incorporate into the genome and/or persist in the target cell. By way of non-limiting example, derivatives of viruses such as the bovine papillomavirus (BPV-1), or Epstein-Barr virus (pHEBo, pREP-derived and p205) can be used for transient expression of nucleic acids in eukaryotic cells. For other suitable expression systems as well as general recombinant procedures, see Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989) Chapters 16 and 17; which is incorporated by reference herein in its entirety. In some embodiments, the signaling polypeptide of a multi-component CAL and/or CAR can be constitutively expressed and the recognition polypeptide can be transiently expressed. In some embodiments, the recognition polypeptide of a multi-component CAL and/or CAR can be constitutively expressed and the signaling polypeptide can be transiently expressed. In some embodiments, the recognition polypeptide of a multi- component CAL can be constitutively expressed and the signaling polypeptide can be provided exogenously. In some embodiments, the recognition polypeptide of a multi- component CAL can be transiently expressed and the signaling polypeptide can be provided exogenously. In some embodiments, the signaling polypeptide of a multi-component CAL and/or CAR can be constitutively expressed and the recognition polypeptide can be provided exogenously. In some embodiments, the signaling polypeptide of a multi-component CAL and/or CAR can be transiently expressed and the recognition polypeptide can be provided exogenously. [00150] The CARs and CALs described herein can be produced according to any method known in the art, e.g., recombinant expression or peptide synthesis. Exemplary methods can include, the NIH Tetramer Core Facility’s MHC expression protocols (available on the world wide web at tetramer.yerkes.emory.edu/support/protocols#1); ProImmune’s pentamer protocols (available on the world wide web at proimmune.com/protocols-2/); Immudex’s dextramer protocols (available on the word wide web at immudex.com/resources/protocols/) and the CAR T cell production protocols provided in the “Primary Human T cells Isolation and Culture” and “Lentiviral Transduction of Human T cells” sub-sections in “Method Details” section of Cho et al., 2018 Cell 173:1426-1438; each of which is incorporated by reference herein in its entirety. [00151] In one aspect, described herein is a method of killing a target cell, the method comprising contacting the cell with a complete multi-component CAR cell, CAR, and/or CAL according to any of the embodiments described herein. In some embodiments, the target cell can be a diseased cell, e.g., an autoreactive or alloreactive T cell. In one aspect, described herein is a method of treating or preventing a disease, e.g., an autoimmune diseases or conditions; T cell mediated inflammation or immune response; transplant rejection, or GvHD, comprising administering a complete multi- component CAR cell, CAR, and/or CAL according to any of the embodiments described herein. In one aspect, described herein is a method of treating or preventing autoimmune diseases or conditions; T cell mediated inflammation or immune response; transplant rejection; or GvHD, comprising administering a complete multi-component CAR cell, CAR, and/or CAL according to any of the embodiments described herein. [00152] Another aspect provided herein is a method of preventing and/or treating a malignant T cell condition in a subject in need thereof, the method comprising administering to the subject any of the compositions and/or cells described herein. In one aspect, described herein is a method of treating or preventing a malignant T cell condition in a subject, comprising administering a complete multi- component CAR/CAL, CAR and/or CAL as according to any of the embodiments described herein. In one aspect, described herein is a method of treating or preventing a malignant T cell condition in a subject, comprising administering a complete multi-component CAR cell, CAR, and/or CAL according to any of the embodiments described herein [00153] In some embodiments, the complete multi-component CAL and/or CAR cell can be autologous or allogeneic to the subject. In some embodiments, the complete multi-component CAL and/or CAR cell can be derived and/or descended from a cell obtained from the subject or a third party and has been modified ex vivo to comprise the at least one multi-component CAL and/or CAR, e.g., genetically engineered to comprise nucleic acid sequences encoding both a signaling polypeptide and at least one recognition polypeptide of a multi-component CAL and/or CAR. In some embodiments, the method can further comprise the steps of obtaining a cell from a subject (e.g. a dendritic cell, regulatory T cell, or effector T cell), altering the cell to comprise nucleic acid sequences encoding both a signaling polypeptide and at least one recognition polypeptide of a multi-component CAL and/or CAR, and then administering the cell to the subject. [00154] In one embodiment, the engineered cell is further modified to lack or have reduced expression of the native MHCI/II, e.g., as measured on the cell surface. Methods for engineering a cell to reduce or eliminate the native MHCI/II are known in the art and include, e.g., expression of RNA interference (such as short hairpin RNA, small interfering RNA, double stranded RNA, etc.), expression of an inhibitory oligonucleotide, nuclease-based inhibition (such as CRISPR, TALEN, Meganuclease, etc.), and expression of a KDEL-motif (SEQ ID NO: 2749) containing binding protein capable of restricting MHCI/II to the endoplasmic reticulum. One skilled in the art can assess whether knockdown of native MHCI/II is achieved by assessing mRNA or protein levels of MHCI/II via, e.g., PCR-based assays or western blotting, respectively. [00155] In one embodiment, the cell is further engineered to knockout the native MHCI/II. Methods for engineering a cell to knockout the native MHCI/II are known in the art and include, e.g., expression of RNA interference (such as short hairpin RNA, small interfering RNA, double stranded RNA, etc.), expression of an inhibitory oligonucleotide, nuclease-based inhibition (such as CRISPR, TALEN, Meganuclease, etc.). One skilled in the art can assess whether knockout of native MHCI/II is achieved by assessing mRNA or protein levels of MHCI/II via, e.g., PCR-based assays or western blotting, respectively. [00156] In one aspect, described herein is an engineered cell expressing and/or comprising one or more of the compositions according to any of the embodiments described herein. In one aspect, described herein is an engineered cell expressing and/or comprising one or more multi-component CAL and/or CAR signaling polypeptides according to any of the embodiments described herein. In some embodiments, the cell is a dendritic cell, regulatory T cell, or effector T cell. In some embodiments, the cell is a T cell. Such cells expressing and/or comprising a multi-component CAL and/or CAR signaling polypeptide are referred to herein as “partial multi-component CAL” cells or “partial multi-component CAR” cells. In some embodiments, the partial multi-component CAL and/or CAR cell does not express, e.g., does not comprise a nucleic acid sequence encoding, a multi- component CAL and/or CAR recognition polypeptide. In some embodiments, a partial multi- component CAL and/or CAR cell comprises a nucleic acid sequence encoding at least one multi- component CAL and/or CAR signaling polypeptide. In some embodiments, the multi-component CAL and/or CAR signaling polypeptide is present on the membrane of the cell, e.g., is expressed as a transmembrane protein at detectable levels. In some embodiments, the signaling polypeptide further comprises a secondary protein interaction domain that specifically binds with the protein interaction domain of the second recognition polypeptide, e.g., the signaling polypeptide is part of an AND gate multi-component CAL and/or CAR as described elsewhere herein. In some embodiments, the cell can further comprise a second multi-component CAL and/or CAR signaling polypeptide, e.g., a signaling polypeptide that is part of a second multi-component CAL and/or CAR according to any of the embodiments described herein. [00157] In one aspect, described herein is a method of killing a target cell, the method comprising contacting the target cell with a partial multi-component CAL and/or CAR cell according to any of the embodiments described herein and contacting the target cell with at least one recognition polypeptide of the multi-component CAL and/or CAR. In some embodiments, the target cell can be a diseased cell, e.g., an autoreactive or alloreactive T cell. In some embodiments, the target cell can be a diseased cell, e.g., a cancer cell (e.g., a T cell- or T cell precursor cell- derived neoplasm, hereafter referred to as “T cell neoplasms”. In some embodiments, the method can further comprise the steps of obtaining a cell from a subject (e.g. a NK cell, a dendritic cell, regulatory T cell, or effector T cell), altering the cell to comprise a nucleic acid sequence encoding a signaling polypeptide of a multi-component CAL and/or CAR, and then administering the cell to the subject. [00158] In some embodiments of any of the methods described herein, a pair of protein interaction domains of a multi-component CAL and/or CAR can comprise chemically induced binding domains and the method can further comprise administering a compound that induces binding of the domains. In some embodiments, when one protein interaction domain is FKBP-binding domain of mTOR (FRB) and a second protein interaction domain is FK506 binding protein (FKBP), the method further comprises administering tacrolimus, a rapalog, or everolimus. In some embodiments, when one protein interaction domain is cyclophilin-Fas fusion protein (CyP-Fas) and a second protein interaction domain is FK506 binding protein (FKBP), the method further comprises administering FKCsA. In some embodiments, when one protein interaction domain is calcineurin A (CNA) and a second protein interaction domain is FK506 binding protein (FKBP), the method further comprises administering FK506. In some embodiments, when one protein interaction domain is gibberellin insensitive (GIA) and a second protein interaction domain is gibberellin insensitive dwarf1 (GID1), the method further comprises administering gibberellin. In some embodiments, when one protein interaction domain is Snap-tag and a second protein interaction domain is Halo tag, the method further comprises administering HaXS. In some embodiments, when one protein interaction domain is T14-3-3-cdeltaC and a second protein interaction domain is C-Terminal peptides of PMA2 (CT52), the method further comprises administering fusicoccin. [00159] In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be engineered. In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be transgenic. In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be recombinant. In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be heterologous to a cell. In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be heterologous to a T cell. In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be heterologous to a human T cell. In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be exogenous to a cell. In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be exogenous to a T cell. In some embodiments of any of the aspects described herein, a recognition and/or signaling polypeptide of a multi-component CAL and/or CAR can be exogenous to a human T cell. [00160] It is specifically contemplated herein that each of the individual embodiments described herein can be combined, e.g., in a single cell. By way of non-limiting example, a single cell could comprise a first complete multi-component CAL and/or CAR and a second partial multi-component CAL and/or CAR, wherein each multi-component CAL and/or CAR can be according to any of the embodiments described herein. [00161] In some embodiments, the methods described herein relate to CAL-immune cell therapies. In some embodiments, the methods described herein relate to CAR-immune cell therapies such as CAR-T therapy. Standard CAR-T and related therapies relate to adoptive cell transfer of immune cells (e.g. T cells) expressing a CAR that binds specifically to a targeted cell type (e.g. disease cells, e.g., autoreactive or alloreactive T cells) to treat a subject, e.g., for an autoimmune diseases or conditions; T cell mediated inflammation or immune response; transplant rejection; or GvHD. [00162] In some embodiments, the cells administered as part of the therapy can be autologous to the subject. In some embodiments, the cells administered as part of the therapy are not autologous to the subject. In some embodiments, the cells are engineered and/or genetically modified to express a multi-component CAL and/or CAR, or portion thereof as described herein. Further discussion of CAR-T therapies can be found, e.g., in Maus et al. Blood 2014123:2624-35; Reardon et al. Neuro- Oncology 2014 16:1441-1458; Hoyos et al. Haematologica 2012 97:1622; Byrd et al. J Clin Oncol 2014 32:3039-47; Maher et al. Cancer Res 2009 69:4559-4562; and Tamada et al. Clin Cancer Res 201218:6436-6445; each of which is incorporated by reference herein in its entirety. [00163] In some embodiments, the technology described herein relates to a syringe or catheter, including an organ-specific catheter (e.g., renal catheter, biliary catheter, cardiac catheter, etc.), comprising a therapeutically effective amount of a composition described herein. Methods of treatment [00164] In some embodiments, the methods described herein relate to the treatment or prevention of transplant rejection in a subject having a cell, tissue, or organ transplant with one or more compositions, CALs, CARs, or cells as described herein. In another embodiment, the methods described herein relate to the treatment or prevention of GvHD in a subject having a cell, tissue, or organ transplant with one or more compositions, CALs, CARs, or cells as described herein. [00165] As used herein, “GvHD” refers to a disease characterized by the active process of donor cells attacking the recipient’s own cells. GvHD can develop soon after a transplant, e.g., within weeks or months (acute GvHD), or can occur much later after the transplant, e.g., at least 3-6 months later (chronic GvHD). Symptoms of acute GvHD include, but are not limited to, skin rash or blisters, abdominal pain or discomfort, diarrhea, jaundice, and edema. Symptoms of chronic GvHD include, but are not limited to, changes to skin or nail texture, hair loss or thinning, muscle pain or weakness, blurred vision, mouth sores, shortness of breath, persistent cough, abdominal pain or discomfort, and diarrhea. [00166] A subject can be identified as having or be at risk of having GvHD by a skilled clinician. Diagnostic tests useful in identifying a subject having GvHD are known in the art and will vary based on the type of transplant the subject has received. The diagnosis of GvHD is made by, for example, physical examination for the signs and symptoms for GvHD known in the art, serologic testing for dysfunction of the liver, gall bladder, kidney, and hematopoietic cells, histologic analysis of biopsies obtained from affected organs, and radiologic imaging of affected organs. In one embodiment, the method further comprises administering at least a second therapeutic. In one embodiment, the composition, CARs, CALs, or cells described herein are administered in combination with Abatacept (Orencia®) or Belatacept (Nulojix®). Abatacept and Belatacept, developed by Bristol-Meyers Squibb, are fusion proteins composed of the Fc region of the immunoglobulin IgG1 fused to the extracellular domain of CTLA-4. Abatacept is currently approved by the FDA for treatment of rheumatoid arthritis. Belatacept, which only differs from Abatacept by two amino acids, is an immunosuppressant intended to prevent rejection following a kidney transplant. [00167] In one embodiment, the transplant is vascularized composite allograft (VCA). In one embodiment, the transplant is any human or non-human cell, tissue, or organ. In another embodiment, the transplant is any type of transplants procedures, e.g., any heart transplant, any lung transplant, any liver transplant, any pancreas transplant, any cornea transplant, any trachea transplant, any kidney transplant, any skin transplant, any pancreatic islet cell transplant, any allograft (e.g., a transplantation of allogeneic tissue), any xenograft (e.g., a transplantation of xenogeneic tissue), or any autograft (e.g., a transplantation of tissue). A skilled practitioner will be able to perform a transplant or identify a subject having had a transplant using standard procedural protocols. [00168] In some embodiments, the methods described herein relate to the treatment or prevention of an autoimmune diseases or conditions, or hypersensitivity reaction I-IV, or immune reaction against foreign therapeutic proteins/molecules, or T cell mediated inflammation or immune response; with compositions, CARs, CALs, or cells as described herein. Subjects having an autoimmune disease can be identified by a physician using current methods of diagnosing an autoimmune disease. Symptoms and/or complications of an autoimmune disease which characterize these conditions and aid in diagnosis are well known in the art and include but are not limited to, fatigue, achy muscles, swelling and redness, low-grade fever, numbness or tingling of the hands or feet, hair loss, and/or skin rash. Tests that may aid in a diagnosis of, e.g. autoimmune disease include, but are not limited to, blood counts, and an antinuclear antibody test (ANA). A family history of autoimmune disease, or having risk factors for autoimmune disease (e.g. gender, age, ethnicity, and exposure to environmental agents, such as procainamide, hydralazine, mercury, gold, or silver) can also aid in determining if a subject is likely to have autoimmune disease or in making a diagnosis of autoimmune disease. [00169] As used herein, the term "autoimmune disease", “autoimmune condition”, or "autoimmune disease or disorder” herein is a disease or disorder arising from and directed against an individual's own tissues or a co-segregate or manifestation thereof or resulting condition therefrom. [00170] Auto-immune related diseases and disorders arise from an overactive and/or abnormal immune response of the body against substances (autoantigens) and tissues normally present in the body, otherwise known as self or autologous substance. This dysregulated inflammatory reaction causes an exaggerated response by macrophages, granulocytes, lymphocytes, and/or T-lymphocytes leading to abnormal tissue damage and cell death. Subsequent loss of function is associated with inflammatory tissue damage. [00171] Autoantigens, as used herein, are endogenous proteins or fragments thereof that are involved in or elicit this pathogenic immune response. Autoantigen can be any substance, or a portion thereof normally found within a mammal that, in an autoimmune disease, becomes the primary (or a primary, or secondary) target of attack by the immune system. The term also includes antigenic substances that induce conditions having the characteristics of an autoimmune disease when administered to mammals. Additionally, the term includes peptidic subclasses consisting essentially of immunodominant epitopes or immunodominant epitope regions of autoantigens. Immunodominant epitopes or regions in induced autoimmune conditions are fragments of an autoantigen that can be used instead of the entire autoantigen to induce the disease. In humans afflicted with an autoimmune disease, immunodominant epitopes or regions are fragments of antigens specific to the tissue or organ under autoimmune attack and recognized by a substantial percentage (e.g. a majority though not necessarily an absolute majority) of autoimmune attack T-cells. [00172] Autoantigens that are known to be associated with autoimmune disease include myelin proteins with demyelinating diseases, e.g. multiple sclerosis and experimental autoimmune myelitis; collagens and rheumatoid arthritis; insulin, proinsulin, glutamic acid decarboxylase 65 (GAD65); and islet cell antigen (ICA512; ICA12) for insulin dependent diabetes. [00173] A common feature in a number of autoimmune related diseases and inflammatory conditions is the involvement of pro-inflammatory CD4+ T cells. These T cells are responsible for the release of inflammatory, Th1 type cytokines. Cytokines characterized as Th1 type include interleukin 2 (IL-2), γ-interferon, TNF α and IL-12. In some embodiments, cytokines characterized as Th1 type include interleukin 2 (IL-2), interferon γ, and TNFα. Such pro-inflammatory cytokines act to stimulate the immune response, in many cases resulting in the destruction of autologous tissue. Cytokines associated with suppression of T cell response are the Th2 type, and include IL-10, IL-4 and TGF- β. It has been found that Th1 and Th2 type T cells may use the identical antigen receptor in response to an immunogen; in the former producing a stimulatory response and, in the latter, a suppressive response. [00174] T cell mediated inflammation, or a T cell mediated immune response is inflammation and/or an immune response in which T cells and/or T cell activity contributes to or originates the inflammation/immune response. [00175] As used herein, “inflammation" refers to the complex biological response to harmful stimuli, such as pathogens, damaged cells, or irritants. Inflammation is a protective attempt by the organism to remove the injurious stimuli as well as initiate the healing process for the tissue. Accordingly, the term “inflammation" includes any cellular process that leads to the production of pro-inflammatory cytokines, inflammation mediators and/or the related downstream cellular events resulting from the actions of the cytokines thus produced, for example, fever, fluid accumulation, swelling, abscess formation, and cell death. Inflammation can include both acute responses (i.e., responses in which the inflammatory processes are active) and chronic responses (i.e., responses marked by slow progression and formation of new connective tissue). Acute and chronic inflammation may be distinguished by the cell types involved. Acute inflammation often involves polymorphonuclear neutrophils; whereas chronic inflammation is normally characterized by a lymphohistiocytic and/or granulomatous response. An inflammatory condition is any disease state characterized by inflammatory tissues (for example, infiltrates of leukocytes such as lymphocytes, neutrophils, macrophages, eosinophils, mast cells, basophils and dendritic cells) or inflammatory processes which provoke or contribute to the abnormal clinical and histological characteristics of the disease state. [00176] As used herein, an “immune response” refers to a response by a cell of the immune system, such as a B cell, T cell (CD4 or CD8), regulatory T cell, antigen-presenting cell, dendritic cell, monocyte, macrophage, NKT cell, NK cell, basophil, eosinophil, or neutrophil, to a stimulus (e.g., to an a disease, an antigen, or healthy cells, e.g., in the case of autoimmunity). In some embodiments of the aspects described herein, an immune response is a T cell response, such as a CD4+ response or a CD8+ response. Such responses by these cells can include, for example, cytotoxicity, proliferation, cytokine or chemokine production, trafficking, or phagocytosis, and can be dependent on the nature of the immune cell undergoing the response. Stimulation of an immune response refers to an induction or increase of the immune response. Suppression of an immune response refers to an elimination or decrease of the immune response. [00177] A "cell-mediated immune response" is one mediated by T-cells and/or other white blood cells. A "cell-mediated immune response" is elicited by the presentation of antigenic epitopes in association with Class I or Class II molecules of the major histocompatibility complex (MHC), CD1 or other non-classical MHC-like molecules. This activates antigen-specific CD4+ T helper cells or CD8+ cytotoxic lymphocyte cells ("CTLs"). CTLs have specificity for peptide antigens that are presented in association with proteins encoded by classical or non-classical MHCs and expressed on the surfaces of cells. CTLs help induce and promote the intracellular destruction of intracellular microbes, or the lysis of cells infected with such microbes. Another aspect of cellular immunity involves an antigen-specific response by helper T-cells. Helper T-cells act to help stimulate the function, and focus the activity of, nonspecific effector cells against cells displaying peptide or other antigens in association with classical or non-classical MHC molecules on their surface. A "cell- mediated immune response" also refers to the production of cytokines, chemokines and other such molecules produced by activated T-cells and/or other white blood cells, including those derived from CD4+ and CD8+ T-cells. The stimulation of a cell-mediated immunological response may be determined by a number of assays, such as by lymphoproliferation (lymphocyte activation) assays, CTL cytotoxic cell assays, by assaying for T-lymphocytes specific for the antigen in a sensitized subject, or by measurement of cytokine production by T cells in response to re-stimulation with antigen. Such assays are well known in the art. See, e.g., Erickson et al. (1993) J. Immunol.151:4189- 4199; and Doe et al. (1994) Eur. J. Immunol.24:2369-2376. [00178] [00179] In some embodiments, the T cell mediated immune response is a response to a drug administered to the subject. It is contemplated herein that the present technology can be utilized for depletion of anti-drug specific T cells to prevent immune responses against administered biologics, cell therapies, and/or gene therapies. For example, the methods and compositions described herein can be used to prevent or treat anti-AAV and anti-transgene immune responses for administered adeno- associated virus (AAV) gene therapies, preventing or treating immune to responses to genome editing agents such as CRISPR/Cas9, Transcription activator-like effector nucleases (TALENs), or Zinc Finger Nucleases (ZFNs), and preventing or treating immune responses to enzyme replacement therapies such as recombinant human acid α-glucosidase (Pompe disease), α-L-iduronidase (Mucopolysaccharidosis I), and α-galactosidase (Fabry disease). [00180] In one embodiment of any one of the methods described, the autoimmune disorder is selected from the group consisting of thyroiditis, type 1 diabetes mellitus, Hashimoto's thyroiditis, Graves' disease, celiac disease, multiple sclerosis, Guillain-Barre syndrome, Addison's disease, and Raynaud's phenomenon, Goodpasture's disease, arthritis (rheumatoid arthritis such as acute arthritis, chronic rheumatoid arthritis, gout or gouty arthritis, acute gouty arthritis, acute immunological arthritis, chronic inflammatory arthritis, degenerative arthritis, type II collagen-induced arthritis, infectious arthritis, Lyme arthritis (e.g., post treatment Lyme disease syndrome), proliferative arthritis, psoriatic arthritis, Still's disease, vertebral arthritis, and juvenile-onset rheumatoid arthritis, arthritis chronica progrediente, arthritis deformans, polyarthritis chronica primaria, reactive arthritis, and ankylosing spondylitis), palindromic arthritis, inflammatory hyperproliferative skin diseases, psoriasis such as plaque psoriasis, guttate psoriasis, pustular psoriasis, and psoriasis of the nails, atopy including atopic diseases such as hay fever and Job's syndrome, dermatitis including contact dermatitis, chronic contact dermatitis, exfoliative dermatitis, allergic dermatitis, allergic contact dermatitis, dermatitis herpetiformis, nummular dermatitis, seborrheic dermatitis, non-specific dermatitis, primary irritant contact dermatitis, and atopic dermatitis, x-linked hyper IgM syndrome, allergic intraocular inflammatory diseases, urticaria such as chronic allergic urticaria and chronic idiopathic urticaria, including chronic autoimmune urticaria, myositis, polymyositis/dermatomyositis, juvenile dermatomyositis, toxic epidermal necrolysis, scleroderma (including systemic scleroderma), sclerosis such as systemic sclerosis, multiple sclerosis (MS) such as spino-optical MS, primary progressive MS (PPMS), and relapsing remitting MS (RRMS), progressive systemic sclerosis, atherosclerosis, arteriosclerosis, sclerosis disseminata, ataxic sclerosis, neuromyelitis optica (NMO), inflammatory bowel disease (IBD) (for example, Crohn's disease, autoimmune-mediated gastrointestinal diseases, colitis such as ulcerative colitis, colitis ulcerosa, microscopic colitis, collagenous colitis, colitis polyposa, necrotizing enterocolitis, and transmural colitis, and autoimmune inflammatory bowel disease), bowel inflammation, pyoderma gangrenosum, erythema nodosum, primary sclerosing cholangitis, respiratory distress syndrome, including adult or acute respiratory distress syndrome (ARDS), meningitis, inflammation of all or part of the uvea, iritis, choroiditis, an autoimmune hematological disorder, rheumatoid spondylitis, rheumatoid synovitis, hereditary angioedema, cranial nerve damage as in meningitis, herpes gestationis, pemphigoid gestationis, pruritis scroti, autoimmune premature ovarian failure, sudden hearing loss due to an autoimmune condition, IgE-mediated diseases such as anaphylaxis and allergic and atopic rhinitis, encephalitis such as Rasmussen's encephalitis and limbic and/or brainstem encephalitis, uveitis, such as anterior uveitis, acute anterior uveitis, granulomatous uveitis, nongranulomatous uveitis, phacoantigenic uveitis, posterior uveitis, or autoimmune uveitis, glomerulonephritis (GN) with and without nephrotic syndrome such as chronic or acute glomerulonephritis such as primary GN, immune-mediated GN, membranous GN (membranous nephropathy), idiopathic membranous GN or idiopathic membranous nephropathy, membrano- or membranous proliferative GN (MPGN), including Type I and Type II, and rapidly progressive GN, proliferative nephritis, autoimmune polyglandular endocrine failure, balanitis including balanitis circumscripta plasmacellularis, balanoposthitis, erythema annulare centrifugum, erythema dyschromicum perstans, eythema multiform, granuloma annulare, lichen nitidus, lichen sclerosus et atrophicus, lichen simplex chronicus, lichen spinulosus, lichen planus, lamellar ichthyosis, epidermolytic hyperkeratosis, premalignant keratosis, pyoderma gangrenosum, allergic conditions and responses, allergic reaction, eczema including allergic or atopic eczema, asteatotic eczema, dyshidrotic eczema, and vesicular palmoplantar eczema, asthma such as asthma bronchiale, bronchial asthma, and auto-immune asthma, conditions involving infiltration of T cells and chronic inflammatory responses, immune reactions against foreign antigens such as fetal A-B-O blood groups during pregnancy, chronic pulmonary inflammatory disease, autoimmune myocarditis, leukocyte adhesion deficiency, lupus, including lupus nephritis, lupus cerebritis, pediatric lupus, non- renal lupus, extra-renal lupus, discoid lupus and discoid lupus erythematosus, alopecia lupus, systemic lupus erythematosus (SLE) such as cutaneous SLE or subacute cutaneous SLE, neonatal lupus syndrome (NLE), and lupus erythematosus disseminatus, juvenile onset (Type I) diabetes mellitus, including pediatric insulin-dependent diabetes mellitus (IDDM), adult onset diabetes mellitus (Type II diabetes), autoimmune diabetes, idiopathic diabetes insipidus, diabetic retinopathy, diabetic nephropathy, diabetic large-artery disorder, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, sarcoidosis, granulomatosis including lymphomatoid granulomatosis, Wegener's granulomatosis, agranulocytosis, vasculitides, including vasculitis, large-vessel vasculitis (including polymyalgia rheumatica and giant-cell (Takayasu's) arteritis), medium-vessel vasculitis (including Kawasaki's disease and polyarteritis nodosa/periarteritis nodosa), microscopic polyarteritis, immunovasculitis, CNS vasculitis, cutaneous vasculitis, hypersensitivity vasculitis, necrotizing vasculitis such as systemic necrotizing vasculitis, and ANCA- associated vasculitis, such as Churg-Strauss vasculitis or syndrome (CSS) and ANCA-associated small-vessel vasculitis, temporal arteritis, autoimmune aplastic anemia, Coombs positive anemia, Diamond Blackfan anemia, hemolytic anemia or immune hemolytic anemia including autoimmune hemolytic anemia (AIHA), pernicious anemia (anemia perniciosa), Addison's disease, pure red cell anemia or aplasia (PRCA), Factor VIII deficiency, hemophilia A, autoimmune neutropenia, pancytopenia, leukopenia, diseases involving leukocyte diapedesis, CNS inflammatory disorders, multiple organ injury syndrome such as those secondary to septicemia, trauma or hemorrhage, antigen-antibody complex-mediated diseases, anti-glomerular basement membrane disease, anti- phospholipid antibody syndrome, allergic neuritis, Behcet's disease/syndrome, Castleman's syndrome, Goodpasture's syndrome, Reynaud's syndrome, Sjogren's syndrome, Stevens-Johnson syndrome, pemphigoid such as pemphigoid bullous and skin pemphigoid, pemphigus (including pemphigus vulgaris, pemphigus foliaceus, pemphigus mucus-membrane pemphigoid, and pemphigus erythematosus), autoimmune polyendocrinopathies, Reiter's disease or syndrome, an immune complex disorder such as immune complex nephritis, antibody-mediated nephritis, polyneuropathies, chronic neuropathy such as IgM polyneuropathies or IgM-mediated neuropathy, and autoimmune or immune-mediated thrombocytopenia such as idiopathic thrombocytopenic purpura (ITP) including chronic or acute ITP, scleritis such as idiopathic cerato-scleritis, episcleritis, autoimmune disease of the testis and ovary including autoimmune orchitis and oophoritis, primary hypothyroidism, hypoparathyroidism, autoimmune endocrine diseases including thyroiditis such as autoimmune thyroiditis, Hashimoto's disease, chronic thyroiditis (Hashimoto's thyroiditis), or subacute thyroiditis, idiopathic hypothyroidism, Grave's disease, polyglandular syndromes such as autoimmune polyglandular syndromes (or polyglandular endocrinopathy syndromes), paraneoplastic syndromes, including neurologic paraneoplastic syndromes such as Lambert-Eaton myasthenic syndrome or Eaton-Lambert syndrome, stiff-man or stiff-person syndrome, encephalomyelitis such as allergic encephalomyelitis or encephalomyelitis allergica and experimental allergic encephalomyelitis (EAE), myasthenia gravis such as thymoma-associated myasthenia gravis, cerebellar degeneration, neuromyotonia, opsoclonus or opsoclonus myoclonus syndrome (OMS), and sensory neuropathy, multifocal motor neuropathy, Sheehan's syndrome, autoimmune hepatitis, lupoid hepatitis, giant-cell hepatitis, autoimmune chronic active hepatitis, lymphoid interstitial pneumonitis (LIP), bronchiolitis obliterans (non-transplant) vs NSIP, Guillain-Barre syndrome, Berger's disease (IgA nephropathy), idiopathic IgA nephropathy, linear IgA dermatosis, acute febrile neutrophilic dermatosis, subcorneal pustular dermatosis, transient acantholytic dermatosis, cirrhosis such as primary biliary cirrhosis and pneumonocirrhosis, autoimmune enteropathy syndrome, Celiac or Coeliac disease, celiac sprue (gluten enteropathy), refractory sprue, idiopathic sprue, cryoglobulinemia, amylotrophic lateral sclerosis (ALS; Lou Gehrig's disease), coronary artery disease, autoimmune ear disease such as autoimmune inner ear disease (AIED), autoimmune hearing loss, polychondritis such as refractory or relapsed or relapsing polychondritis, pulmonary alveolar proteinosis, Cogan's syndrome/nonsyphilitic interstitial keratitis, Bell's palsy, Sweet's disease/syndrome, rosacea autoimmune, zoster-associated pain, amyloidosis, a non-cancerous lymphocytosis, a primary lymphocytosis, which includes monoclonal B cell lymphocytosis (e.g., benign monoclonal gammopathy and monoclonal gammopathy of undetermined significance, MGUS), peripheral neuropathy, paraneoplastic syndrome, channelopathies including channelopathies of the CNS, autism, inflammatory myopathy, focal or segmental or focal segmental glomerulosclerosis (FSGS), endocrine opthalmopathy, uveoretinitis, chorioretinitis, autoimmune hepatological disorder, fibromyalgia, multiple endocrine failure, Schmidt's syndrome, adrenalitis, gastric atrophy, presenile dementia, demyelinating diseases such as autoimmune demyelinating diseases and chronic inflammatory demyelinating polyneuropathy, Dressler's syndrome, alopecia areata, alopecia totalis, CREST syndrome (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia), male and female autoimmune infertility, e.g., due to anti-spermatozoan antibodies, mixed connective tissue disease, Chagas' disease, rheumatic fever, recurrent abortion, farmer's lung, erythema multiforme, post- cardiotomy syndrome, Cushing's syndrome, bird-fancier's lung, allergic granulomatous angiitis, benign lymphocytic angitis, Alport's syndrome, alveolitis such as allergic alveolitis and fibrosing alveolitis, interstitial lung disease, transfusion reaction, Sampter's syndrome, Caplan's syndrome, endocarditis, endomyocardial fibrosis, diffuse interstitial pulmonary fibrosis, interstitial lung fibrosis, pulmonary fibrosis, idiopathic pulmonary fibrosis, cystic fibrosis, endophthalmitis, erythema elevatum et diutinum, erythroblastosis fetalis, eosinophilic faciitis, Shulman's syndrome, Felty's syndrome, cyclitis such as chronic cyclitis, heterochronic cyclitis, iridocyclitis (acute or chronic), or Fuch's cyclitis, Henoch-Schonlein purpura, SCID, sepsis, endotoxemia, post-vaccination syndromes, Evan's syndrome, autoimmune gonadal failure, Sydenham's chorea, post-streptococcal nephritis, thromboangitis ubiterans, thyrotoxicosis, tabes dorsalis, chorioiditis, giant-cell polymyalgia, chronic hypersensitivity pneumonitis, keratoconjunctivitis sicca, idiopathic nephritic syndrome, minimal change nephropathy, benign familial and ischemia-reperfusion injury, transplant organ reperfusion, retinal autoimmunity, aphthae, aphthous stomatitis, arteriosclerotic disorders, aspermiogenesis, autoimmune hemolysis, Boeck's disease, enteritis allergica, erythema nodosum leprosum, idiopathic facial paralysis, chronic fatigue syndrome, febris rheumatica, Hamman-Rich's disease, sensoneural hearing loss, ileitis regionalis, leucopenia, transverse myelitis, primary idiopathic myxedema, ophthalmia symphatica, polyradiculitis acuta, pyoderma gangrenosum, acquired spenic atrophy, vitiligo, toxic-shock syndrome, conditions involving infiltration of T cells, leukocyte-adhesion deficiency, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, diseases involving leukocyte diapedesis, multiple organ injury syndrome, antigen-antibody complex-mediated diseases, antiglomerular basement membrane disease, allergic neuritis, autoimmune polyendocrinopathies, oophoritis, primary myxedema, autoimmune atrophic gastritis, rheumatic diseases, mixed connective tissue disease, nephrotic syndrome, insulitis, polyendocrine failure, autoimmune polyglandular syndrome type I, adult-onset idiopathic hypoparathyroidism (AOIH), myocarditis, nephrotic syndrome, primary sclerosing cholangitis, acute or chronic sinusitis, ethmoid, frontal, maxillary, or sphenoid sinusitis, an eosinophil-related disorder such as eosinophilia, pulmonary infiltration eosinophilia, eosinophilia-myalgia syndrome, Loffler's syndrome, chronic eosinophilic pneumonia, tropical pulmonary eosinophilia, granulomas containing eosinophils, seronegative spondyloarthritides, polyendocrine autoimmune disease, sclerosing cholangitis, sclera, episclera, Bruton's syndrome, transient hypogammaglobulinemia of infancy, Wiskott-Aldrich syndrome, ataxia telangiectasia syndrome, angiectasis, autoimmune disorders associated with collagen disease, rheumatism, allergic hypersensitivity disorders, glomerulonephritides, reperfusion injury, ischemic re-perfusion disorder, lymphomatous tracheobronchitis, inflammatory dermatoses, dermatoses with acute inflammatory components, and autoimmune uveoretinitis (AUR). In some embodiments, the autoimmune disease or condition or T cell mediated inflammation can be neurodegeneration, e.g, Alzheimer’s or Parksinson disease. [00181] In some embodiments of any of the aspects, the autoimmune disease or condition, or T cell mediated inflammation can be type 1 diabetes, rheumatoid arthritis, multiple sclerosis, pemphigus, alopecia, lupus, vitiligo, or chronic fatigue syndrome. [00182] As used herein, “malignant T cell condition” refers to a condition in which T cells display one or more of uncontrolled growth (i.e., division beyond normal limits), invasion (i.e., intrusion on and destruction of adjacent tissues), and metastasis (i.e., spread to other locations in the body via lymph or blood). Non-limiting examples of malignant T cell conditions include T cell cancers, lymphoma, leukemia, T cell acute lymphoblastic leukemia, and T cell lymphoblastic lymphoma. [00183] The compositions and methods described herein can be administered to a subject to treat or prevent an autoimmune diseases or conditions; T cell mediated inflammation or immune response; or transplant rejection. In some embodiments, the methods described herein comprise administering an effective amount of compositions, CALs, CARs, or cells described herein to a subject in order to alleviate a symptom of an autoimmune diseases or conditions; T cell mediated inflammation or immune response; or transplant rejection. As used herein, "alleviating a symptom” is ameliorating any condition or symptom associated with the disease or condition. As compared with an equivalent untreated control, such reduction is by at least 5%, 10%, 20%, 40%, 50%, 60%, 80%, 90%, 95%, 99% or more as measured by any standard technique. A variety of means for administering the compositions described herein to subjects are known to those of skill in the art. Such methods can include, but are not limited to oral, parenteral, intravenous, intramuscular, subcutaneous, transdermal, airway (aerosol), pulmonary, cutaneous, topical, injection, or intratumoral administration. Administration can be local or systemic. [00184] The administration of the compositions contemplated herein may be carried out in any convenient manner, including by aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation. In a preferred embodiment, compositions are administered parenterally. The phrases “parenteral administration” and “administered parenterally” as used herein refers to modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravascular, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intratumoral, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion. In one embodiment, the compositions contemplated herein are administered to a subject by direct injection into a tumor, lymph node, or site of infection. [00185] It can generally be stated that a pharmaceutical composition comprising the cells, e.g., T cells or CAL cells or CAR cells, described herein may be administered at a dosage of 102 to 1010 cells/kg body weight, preferably 105 to 106 cells/kg body weight, including all integer values within those ranges. The number of cells will depend upon the ultimate use for which the composition is intended as will the type of cells included therein. For uses provided herein, the cells are generally in a volume of a liter or less, can be 500 mLs or less, even 250 mLs or 100 mLs or less. Hence the density of the desired cells is typically greater than 106 cells/ml and generally is greater than 107 cells/ml, generally 108 cells/ml or greater. The clinically relevant number of immune cells can be apportioned into multiple infusions that cumulatively equal or exceed 105, 106, 107, 108, 109, 1010, 1011, or 1012 cells. In some aspects of the present invention, particularly since all the infused cells will be redirected to a particular or specific target antigen, lower numbers of cells, in the range of 106/kilogram (106-1011 per patient) may be administered. CAL and/or CAR expressing cell compositions may be administered multiple times at dosages within these ranges. The cells may be allogeneic, syngeneic, xenogeneic, or autologous to the patient undergoing therapy. If desired, the treatment may also include administration of mitogens (e.g., PHA) or lymphokines, cytokines, and/or chemokines (e.g., IFN-γ, IL-2, IL-12, TNF-alpha, IL-18, and TNF-beta, GM-CSF, IL-4, IL-13, Flt3- L, RANTES, MIP1α, etc.) as described herein to enhance induction of the immune response. [00186] In some embodiments, the dosage can be from about 1x105 cells to about 1x108 cells per kg of body weight. In some embodiments, the dosage can be from about 1x106 cells to about 1x107 cells per kg of body weight. In some embodiments, the dosage can be about 1x106 cells per kg of body weight. In some embodiments, one dose of cells can be administered. In some embodiments, the dose of cells can be repeated, e.g., once, twice, or more. In some embodiments, the dose of cells can be administered on, e.g., a daily, weekly, or monthly basis. [00187] The dosage ranges for the agent, e.g., a CAL, CAR, cell, or composition described herein depend upon the potency, and encompass amounts large enough to produce the desired effect e.g., prevention of transplant rejection, reduction in inflammation, etc. The dosage should not be so large as to cause unacceptable adverse side effects. Generally, the dosage will vary with the age, condition, and sex of the patient and can be determined by one of skill in the art. The dosage can also be adjusted by the individual physician in the event of any complication. In some embodiments, the dosage ranges from 0.001 mg/kg body weight to 0.5 mg/kg body weight. In some embodiments, the dose range is from 5 μg/kg body weight to 100 μg/kg body weight. Alternatively, the dose range can be titrated to maintain serum levels between 1 μg/mL and 1000 μg/mL. For systemic administration, subjects can be administered a therapeutic amount, such as, e.g., 0.1 mg/kg, 0.5 mg/kg, 1.0 mg/kg, 2.0 mg/kg, 2.5 mg/kg, 5 mg/kg, 10 mg/kg, 15 mg/kg, 20 mg/kg, 25 mg/kg, 30 mg/kg, 40 mg/kg, 50 mg/kg, or more. [00188] Administration of the doses recited above can be repeated. In some embodiments, the doses are given once a day, or multiple times a day, for example but not limited to three times a day. In some embodiments, the doses recited above are administered daily for several weeks or months. The duration of treatment depends upon the subject’s clinical progress and responsiveness to therapy. [00189] In some embodiments, the dose can be from about 2 mg/kg to about 15 mg/kg. In some embodiments, the dose can be about 2 mg/kg. In some embodiments, the dose can be about 4 mg/kg. In some embodiments, the dose can be about 5 mg/kg. In some embodiments, the dose can be about 6 mg/kg. In some embodiments, the dose can be about 8 mg/kg. In some embodiments, the dose can be about 10 mg/kg. In some embodiments, the dose can be about 15 mg/kg. In some embodiments, the dose can be from about 100 mg/m2 to about 700 mg/m2. In some embodiments, the dose can be about 250 mg/m2. In some embodiments, the dose can be about 375 mg/m2. In some embodiments, the dose can be about 400 mg/m2. In some embodiments, the dose can be about 500 mg/m2. [00190] In some embodiments, the dose can be administered intravenously. In some embodiments, the intravenous administration can be an infusion occurring over a period of from about 10 minutes to about 3 hours. In some embodiments, the intravenous administration can be an infusion occurring over a period of from about 30 minutes to about 90 minutes. [00191] In some embodiments the dose can be administered about weekly. In some embodiments, the dose can be administered weekly. In some embodiments, the dose can be administered weekly for from about 12 weeks to about 18 weeks. In some embodiments the dose can be administered about every 2 weeks. In some embodiments the dose can be administered about every 3 weeks. In some embodiments, the dose can be from about 2 mg/kg to about 15 mg/kg administered about every 2 weeks. In some embodiments, the dose can be from about 2 mg/kg to about 15 mg/kg administered about every 3 weeks. In some embodiments, the dose can be from about 2 mg/kg to about 15 mg/kg administered intravenously about every 2 weeks. In some embodiments, the dose can be from about 2 mg/kg to about 15 mg/kg administered intravenously about every 3 weeks. In some embodiments, the dose can be from about 200 mg/m2 to about 400 mg/m2 administered intravenously about every week. In some embodiments, the dose can be from about 200 mg/m2 to about 400 mg/m2 administered intravenously about every 2 weeks. In some embodiments, the dose can be from about 200 mg/m2 to about 400 mg/m2 administered intravenously about every 3 weeks. In some embodiments, a total of from about 2 to about 10 doses are administered. In some embodiments, a total of 4 doses are administered. In some embodiments, a total of 5 doses are administered. In some embodiments, a total of 6 doses are administered. In some embodiments, a total of 7 doses are administered. In some embodiments, a total of 8 doses are administered. In some embodiments, the administration occurs for a total of from about 4 weeks to about 12 weeks. In some embodiments, the administration occurs for a total of about 6 weeks. In some embodiments, the administration occurs for a total of about 8 weeks. In some embodiments, the administration occurs for a total of about 12 weeks. In some embodiments, the initial dose can be from about 1.5 to about 2.5 fold greater than subsequent doses. [00192] In some embodiments, the dose can be from about 1 mg to about 2000 mg. In some embodiments, the dose can be about 3 mg. In some embodiments, the dose can be about 10 mg. In some embodiments, the dose can be about 30 mg. In some embodiments, the dose can be about 1000 mg. In some embodiments, the dose can be about 2000 mg. In some embodiments, the dose can be about 3 mg given by intravenous infusion daily. In some embodiments, the dose can be about 10 mg given by intravenous infusion daily. In some embodiments, the dose can be about 30 mg given by intravenous infusion three times per week. [00193] A therapeutically effective amount is an amount of an agent that is sufficient to produce a statistically significant, measurable change in, or prevent the occurrence of an autoimmune disease or condition; T cell mediated inflammation or immune response; transplant rejection; or GvHD. Such effective amounts can be gauged in clinical trials as well as animal studies. [00194] An agent can be administered intravenously by injection or by gradual infusion over time. Given an appropriate formulation for a given route, for example, agents useful in the methods and compositions described herein can be administered intravenously, intranasally, by inhalation, intraperitoneally, intramuscularly, subcutaneously, intracavity, and can be delivered by peristaltic means, if desired, or by other means known by those skilled in the art. It is preferred that the compounds used herein are administered orally, intravenously or intramuscularly. Local administration, e.g., directly to the site of an organ or tissue transplant is also specifically contemplated. [00195] Therapeutic compositions containing at least one agent can be conventionally administered in a unit dose, for example. The term “unit dose” when used in reference to a therapeutic composition refers to physically discrete units suitable as unitary dosage for the subject, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required physiologically acceptable diluent, i.e., carrier, or vehicle. [00196] The compositions are administered in a manner compatible with the dosage formulation, and in a therapeutically effective amount. The quantity to be administered and timing depends on the subject to be treated, capacity of the subject’s system to utilize the active ingredient, and degree of therapeutic effect desired. [00197] In embodiments where the subject is administered a partial multi-component CAL and/or CAR cell and a recognition polypeptide, the partial multi-component CAL and/or CAR cell and a recognition polypeptide can be administered together or separately. In embodiments where the subject is separately administered a partial multi-component CAL and/or CAR cell and a recognition polypeptide each of the compositions can be administered, separately, according to any of the dosages and administration routes/routines described herein. [00198] Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner and are particular to each individual. However, suitable dosage ranges for systemic application are disclosed herein and depend on the route of administration. Suitable regimes for administration are also variable but are typified by an initial administration followed by repeated doses at one or more hour intervals by a subsequent injection or other administration. Alternatively, continuous intravenous infusion sufficient to maintain concentrations in the blood in the ranges specified for in vivo therapies are contemplated. [00199] In some embodiments, the methods further comprise administering a composition, CAL, or CAR, or cell described herein along with one or more additional autoimmune, GvHD, or transplant rejection agents, biologics, drugs, or treatments as part of a combinatorial therapy. Exemplary treatments for transplant rejection or GvHD include but are not limited to, Immunosuppressive drugs, e.g., Cyclosporine (Neoral, Sandimmune, Gengraf, and Restasis), Tacrolimus (Prograf, Protopic, Astagraf XL, and Envarsus XR), Methotrexate (Trexall, Rasuvo, Rheumatrex, and Otrexup (PF)), Sirolimus (Rapamune), Mycophenolic acid (Myfortic and CellCept), Rituximab (Rituxan), etanercept (Enbrel), pentostatin (Nipent), ruxolitinib (Jakafi); Chemotherapies, e.g., Methotrexate (Trexall, Rasuvo, Rheumatrex, and Otrexup (PF)), antithymocyte globulin (Atgam, Thymoglobulin); Steroids, e.g,. Prednisone (Deltasone, Rayos, and Prednisone Intensol), Methylprednisolone (Medrol, Solu- Medrol, and Depo-Medrol), budesonide (Entocort EC, Uceris); Antifungal, e.g., Posaconazole (Noxafil); Antiviral drugs, e.g., Acyclovir (Zovirax and Sitavig), Valacyclovir (Valtrex); and Antibiotics, e.g., Sulfamethoxazole / Trimethoprim (Bactrim, Sulfatrim, and Bactrim DS); Protease inhibitors, e.g. alpha1-proteinase inhibitor (Zemaira); extracorporeal photopheresis; monoclonal antibodies (daclizumab (Zinbryta), basiliximab (Simulect)), Brentuximab vedotin (Adcetris), Alemtuzumab (Campath, Lemtrada), Tocilizumab (Actemra); infusion of mesenchymal stromal cells. [00200] Exemplary treatments for autoimmune disease include but are not limited to, Insulin, e.g., Insulin glulisine (Apidra and Apidra SoloStar), Insulin detemir (Levemir and Levemir FlexTouch), Insulin aspart (NovoLog, Novolog Flexpen, and Novolog PenFill), Insulin lispro (Humalog and Humalog KwikPen), Insulin, Insulin glargine (Lantus, Lantus Solostar, and Toujeo SoloStar); Dietary supplement, e.g., glucose tablets; and Hormones, e.g., Glucagon (GlucaGen and Glucagon Emergency Kit (human)), antidiabetic agents (Metformin (D-Care DM2, Fortamet, Glucophage, Glucophage XR, Glumetza, Riomet), glucagon-like peptide-1 (GLP-1) receptor agonist (liraglutide (Saxenda; Victoza) or semaglutide (Ozempic) or sodium-glucose co-transporter 2 (SGLT2) inhibitor: empagliflozin (Jardiance), canagliflozin (Invokana); sulfonylureas: glipizide (GlipiZIDE XL, Glucotrol, Glucotrol XL); Meglitinide Analogs: repaglinide (Prandin); Thiazolidinedione: pioglitazone (Actos); dipeptidyl peptidase-4 (DPP-4) inhibitors: Sitagliptin (Januvia), Saxagliptin (Onglyza), Linagliptin (Tradjenta), Alogliptin (Nesina) [00201] The efficacy of a given treatment, e.g., for an autoimmune diseases or conditions; T cell mediated inflammation or immune response; transplant rejection; or GvHD, can be determined by the skilled clinician. However, a treatment is considered “effective treatment,” as the term is used herein, if any one or all of the signs or symptoms of are altered in a beneficial manner or other clinically accepted symptoms are improved, or even ameliorated, e.g., by at least 10% following treatment with an agent as described herein. Efficacy can also be measured by a failure of an individual to worsen as assessed by hospitalization or need for medical interventions (i.e., progression of the disease is halted). Methods of measuring these indicators are known to those of skill in the art and/or described herein. [00202] An effective amount for the treatment of a disease means that amount which, when administered to a mammal in need thereof, is sufficient to result in effective treatment as that term is defined herein, for that disease. Efficacy of an agent can be determined by assessing physical indicators of, for example autoimmune disease (e.g., result of an ANA), T cell mediated inflammation or immune response, malignant T cell condition, transplant rejection (e.g., high fever, tenderness at transplant site, etc.), or GvHD (e.g., redness, pain, or other symptoms at transplant site). Effective amounts, toxicity, and therapeutic efficacy can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dosage can vary depending upon the dosage form employed and the route of administration utilized. The dose ratio between toxic and therapeutic effects is the therapeutic index and can be expressed as the ratio LD50/ED50. Compositions and methods that exhibit large therapeutic indices are preferred. A therapeutically effective dose can be estimated initially from cell culture assays. Also, a dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the active ingredient(s), which achieves a half-maximal inhibition of symptoms) as determined in cell culture, or in an appropriate animal model. Levels in plasma can be measured, for example, by immunoassay, various DNA detection technologies, or high performance liquid chromatography. The effects of any particular dosage can be monitored by a suitable bioassay, e.g., assay to assess reaction following transplant, level of inflammation, ANA measurement, among others. The dosage can be determined by a physician and adjusted, as necessary, to suit observed effects of the treatment. [00203] Efficacy can also be measured by a failure of an individual to worsen as assessed by hospitalization, or need for medical interventions (i.e., progression of the disease is halted). Methods of measuring these indicators are known to those of skill in the art and/or are described herein. Treatment includes any treatment of a disease in an individual or an animal (some non-limiting examples include a human or an animal) and includes: (1) inhibiting the disease, e.g., preventing a worsening of symptoms (e.g. pain or inflammation); or (2) relieving the severity of the disease, e.g., causing regression of symptoms. An effective amount for the treatment of a disease means that amount which, when administered to a subject in need thereof, is sufficient to result in effective treatment as that term is defined herein, for that disease. Efficacy of an agent can be determined by assessing physical indicators of a condition or desired response, (e.g. a reduction of inflammation, etc.). It is well within the ability of one skilled in the art to monitor efficacy of administration and/or treatment by measuring any one of such parameters, or any combination of parameters. Efficacy can be assessed in animal models of a condition described herein, for example treatment of autoimmune disease, transplant rejection or GVHD. When using an experimental animal model, efficacy of treatment is evidenced when a statistically significant change in a marker is observed, e.g. inflammation. [00204] In some embodiments, the technology described herein relates to a pharmaceutical composition comprising a CAL and/or CAR, or a multi-component CAL and/or CAR (or portion thereof, or cell comprising a CAL and/or CAR, or a multi-component CAL and/or CAR) as described herein, and optionally a pharmaceutically acceptable carrier. In some embodiments, the active ingredients of the pharmaceutical composition comprise a CAL and/or CAR or a multi-component CAL and/or CAR (or portion thereof, or cell comprising a CAL and/or CAR or a multi-component CAL and/or CAR) as described herein. In some embodiments, the active ingredients of the pharmaceutical composition consist essentially of a CAL and/or CAR or a multi-component CAL and/or CAR (or portion thereof, or cell comprising a CAL and/or CAR or a multi-component CAL and/or CAR) as described herein. In some embodiments, the active ingredients of the pharmaceutical composition consist of a CAL and/or CAR or a multi-component CAL and/or CAR (or portion thereof, or cell comprising a multi-component CAL and/or CAR) as described herein. [00205] Pharmaceutically acceptable carriers and diluents include saline, aqueous buffer solutions, solvents and/or dispersion media. The use of such carriers and diluents is well known in the art. Some non-limiting examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, methylcellulose, ethyl cellulose, microcrystalline cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnesium stearate, sodium lauryl sulfate and talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol (PEG); (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates and/or polyanhydrides; (22) bulking agents, such as polypeptides and amino acids (23) serum component, such as serum albumin, HDL and LDL; (22) C2-C12 alcohols, such as ethanol; and (23) other non- toxic compatible substances employed in pharmaceutical formulations. Wetting agents, coloring agents, release agents, coating agents, sweetening agents, flavoring agents, perfuming agents, preservative and antioxidants can also be present in the formulation. The terms such as "excipient", "carrier", "pharmaceutically acceptable carrier" or the like are used interchangeably herein. In some embodiments, the carrier inhibits the degradation of the active agent as described herein. [00206] In some embodiments, the pharmaceutical composition comprising a multi-component CAL and/or CAR (or portion thereof, or cell comprising a multi-component CAL and/or CAR) as described herein can be a parenteral dose form. Since administration of parenteral dosage forms typically bypasses the patient's natural defenses against contaminants, parenteral dosage forms are preferably sterile or capable of being sterilized prior to administration to a patient. Examples of parenteral dosage forms include, but are not limited to, solutions ready for injection, dry products ready to be dissolved or suspended in a pharmaceutically acceptable vehicle for injection, suspensions ready for injection, and emulsions. In addition, controlled-release parenteral dosage forms can be prepared for administration of a patient, including, but not limited to, DUROS®-type dosage forms and dose-dumping. [00207] Suitable vehicles that can be used to provide parenteral dosage forms of a multi- component CAL and/or CAR (or portion thereof, or cell comprising a multi-component CAL and/or CAR) as disclosed within are well known to those skilled in the art. Examples include, without limitation: sterile water; water for injection USP; saline solution; glucose solution; aqueous vehicles such as but not limited to, sodium chloride injection, Ringer's injection, dextrose Injection, dextrose and sodium chloride injection, and lactated Ringer's injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and propylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate. Compounds that alter or modify the solubility of a pharmaceutically acceptable salt of an active ingredient can also be incorporated into the parenteral dosage forms of the disclosure, including conventional and controlled-release parenteral dosage forms. [00208] Pharmaceutical compositions can also be formulated to be suitable for oral administration, for example as discrete dosage forms, such as, but not limited to, tablets (including without limitation scored or coated tablets), pills, caplets, capsules, chewable tablets, powder packets, cachets, troches, wafers, aerosol sprays, or liquids, such as but not limited to, syrups, elixirs, solutions or suspensions in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion, or a water-in-oil emulsion. Such compositions contain a predetermined amount of the pharmaceutically acceptable salt of the disclosed compounds, and may be prepared by methods of pharmacy well known to those skilled in the art. See generally, Remington: The Science and Practice of Pharmacy, 21st Ed., Lippincott, Williams, and Wilkins, Philadelphia PA. (2005). [00209] Conventional dosage forms generally provide rapid or immediate drug release from the formulation. Depending on the pharmacology and pharmacokinetics of the drug, use of conventional dosage forms can lead to wide fluctuations in the concentrations of the drug in a patient's blood and other tissues. These fluctuations can impact a number of parameters, such as dose frequency, onset of action, duration of efficacy, maintenance of therapeutic blood levels, toxicity, side effects, and the like. Advantageously, controlled-release formulations can be used to control a drug's onset of action, duration of action, plasma levels within the therapeutic window, and peak blood levels. In particular, controlled- or extended-release dosage forms or formulations can be used to ensure that the maximum effectiveness of a drug is achieved while minimizing potential adverse effects and safety concerns, which can occur both from under-dosing a drug (i.e., going below the minimum therapeutic levels) as well as exceeding the toxicity level for the drug. In some embodiments, the composition can be administered in a sustained release formulation. [00210] Controlled-release pharmaceutical products have a common goal of improving drug therapy over that achieved by their non-controlled release counterparts. Ideally, the use of an optimally designed controlled-release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the condition in a minimum amount of time. Advantages of controlled-release formulations include: 1) extended activity of the drug; 2) reduced dosage frequency; 3) increased patient compliance; 4) usage of less total drug; 5) reduction in local or systemic side effects; 6) minimization of drug accumulation; 7) reduction in blood level fluctuations; 8) improvement in efficacy of treatment; 9) reduction of potentiation or loss of drug activity; and 10) improvement in speed of control of diseases or conditions. Kim, Cherng-ju, Controlled Release Dosage Form Design, 2 (Technomic Publishing, Lancaster, Pa.: 2000). [00211] Most controlled-release formulations are designed to initially release an amount of drug (active ingredient) that promptly produces the desired therapeutic effect, and gradually and continually release other amounts of drug to maintain this level of therapeutic or prophylactic effect over an extended period of time. In order to maintain this constant level of drug in the body, the drug must be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body. Controlled-release of an active ingredient can be stimulated by various conditions including, but not limited to, pH, ionic strength, osmotic pressure, temperature, enzymes, water, and other physiological conditions or compounds. [00212] A variety of known controlled- or extended-release dosage forms, formulations, and devices can be adapted for use with the salts and compositions of the disclosure. Examples include, but are not limited to, those described in U.S. Pat. Nos.: 3,845,770; 3,916,899; 3,536,809; 3,598,123; 4,008,719; 5674,533; 5,059,595; 5,591 ,767; 5,120,548; 5,073,543; 5,639,476; 5,354,556; 5,733,566; and 6,365,185 B1; each of which is incorporated herein by reference. These dosage forms can be used to provide slow or controlled-release of one or more active ingredients using, for example, hydroxypropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems (such as OROS® (Alza Corporation, Mountain View, Calif. USA)), or a combination thereof to provide the desired release profile in varying proportions. [00213] Described herein is a therapy called “CAL-cell therapy”, which seeks to help immune killer cells recognize autoreactive and alloreactive T cells. This is accomplished by genetically altering an immune cell so that it expresses a chimeric antigen ligand (CAL). The CAL is an altered ligand, in which the natural recognition portion is removed and replaced with a synthetic recognition portion, (including all synthetic or natural peptide MHC complexes) that is designed to more effectively recognize the autoreactive and alloreactive T cells by very specifically detecting the presence of a T cell receptor unique to the autoreactive and alloreactive T cells. These CAL immune cells are then given to a patient. Inside the patient, their synthetic CAL ligand molecules will bind to the autoreactive and alloreactive T cells and in the act of that binding, activate the killer immune cells, resulting in the engineered CAL-immune cells attacking the pathologic autoreactive and alloreactive T-cells to eliminate or reduce allo- or autoreactive immune response. This has particular applications for autoimmune conditions, cell - , tissue - , organ- transplants, and Graft vs. Host Disease (GvHD). [00214] This invention is based, in part, on the finding that an engineered polypeptide presented herein can recognize and bind to the specific T cell receptor on the disease-causing T cells, deleting said T cells, e.g., eliminating or reducing autoimmune diseases or conditions; T cell mediated inflammation or immune response; and cell, tissue, organ transplants and Graft vs. Host Disease (GvHD).In some embodiments, the engineered polypeptide is composed of a peptide-major histocompatibility complex (pMHC) (e.g. as a monomer, oligomer, or multimer) as the recognition site for the TCR of an allogeneic or an autoreactive T cell. In some embodiments, the pMHC is one of the complexes described herein, e.g., see Tables 5 and 6. [00215] In some embodiments, the engineered polypeptide is composed of a pMHC conjugated to a FITC, PE, or other biomolecular interaction domain described herein. The engineered polypeptide can also be considered as an adaptor molecule (referred to herein as Chimeric Antigen Ligand (CAL)) composed of a TCR recognition domain (e.g., peptide-HLA monomers, oligomers, or multimers) fused to a biomolecular interaction domain. The CAL technology described herein can target T cell clones in an antigen specific manner and is not dependent on any specific CAR construct to exhibit killing effect. [00216] In some embodiments, the engineered polypeptide is a CAR composed of a peptide-HLA (e.g., as a monomer, oligomer, or multimer) as the recognition site fused to signaling domains from T cell receptors. Further provided herein is a split version of this CAR system, in which the CAR is composed of two pieces. The first piece is a universal CAR (also referred to herein as a Uni CAL) with T cell signaling domains as the intracellular portion and a biomolecular interaction domain as the extracellular domain, e.g., that is specific to each disease state. The second piece is an adaptor molecule (referred to herein as Chimeric Antigen Ligand (CAL)) composed of a TCR recognition domain (e.g., peptide-HLA monomers, oligomers, or multimers) fused to the cognate biomolecular interaction domain. [00217] In some embodiments, the engineered polypeptide is a CAR composed of a peptide-HLA (e.g., as a monomer, oligomer, or multimer) as the recognition site fused to signaling domains from T cell receptors. Further provided herein is a split version of this CAR system, in which the CAR is composed of two pieces. The first piece is a universal CAR (also referred to herein as a Uni CAL) with T cell signaling domains as the intracellular portion and a biomolecular interaction domain as the extracellular domain, e.g., that is specific to each disease state. The second piece is an adaptor molecule (referred to herein as Chimeric Antigen Ligand (CAL)) composed of a TCR recognition domain (e.g., peptide-HLA monomers, oligomers, or multimers) fused to the cognate biomolecular interaction domain. It is noted that protein interaction domains are a type of biomolecular interaction domains and where one is specified herein, the other may always be substituted. The CAL technology described herein can target T cells clones in an antigen specific manner and is not dependent on any specific CAR construct to exhibit killing effect. [00218] Accordingly, one aspect presented herein provides a composition comprising (a) chimeric antigen ligand or a TCR recognition domain; and one or both of (a) an intracellular signaling domain; and (b) a first-type protein interaction domain. [00219] Another aspect provided herein provides a composition comprising (a) a first polypeptide comprising a chimeric antigen ligand or TCR recognition domain and a first-type protein interaction domain; and (b) a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; wherein the first-type and second-type protein interaction domains bind specifically to each other. [00220] Another aspect provided herein provides a composition comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the first-type and third-type protein interaction domains bind specifically to each other. [00221] Another aspect provided herein provides a composition comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and (b) a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; and (c) a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the second-type and third-type protein interaction domains compete for binding to the first-type protein interaction domain. [00222] In one embodiment of any aspect, the third-type protein interaction domain and first-type protein interaction domain have a higher affinity for each other than the second-type protein interaction domain and first-type protein interaction domain. [00223] Another aspect provided herein provides a composition comprising (a) a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; (b) a signaling polypeptide comprising a second-type protein interaction domain, a fourth-type protein interaction domain, and an intracellular signaling domain; and (c) a recognition polypeptide comprising a second recognition domain and a fifth-type protein interaction domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other. [00224] In one embodiment of any aspect, the fourth-type protein interaction domain and fifth- type protein interaction domain have a weaker affinity than the second-type protein interaction domain and first-type protein interaction domain. [00225] In one embodiment of any aspect, the first polypeptide further comprises a sixth-type protein interaction domain and the recognition polypeptide further comprises a seventh-type protein interaction domain which bind specifically to each other. [00226] In one embodiment of any aspect, the second recognition domain is specific for a target that is not recognized by the TCR recognition domain. [00227] In one embodiment of any aspect, the second recognition domain is specific for a target that is found on a healthy and/or non-target cell and not on a diseased and/or target cell. [00228] TCR recognition domains may not comprise a single polypeptide, but rather comprise two or more polypeptides and may additionally even comprise non-polypeptides. For example, a single MHC class II tetramer TCR recognition domain can comprise 4 biotin small molecules and 16 polypeptides (4 peptides, 4 MHC class II alpha chains, 4 MHC class II beta chains, and 4 streptavidin proteins. Other types of TCR recognition domains may additionally comprise other non-polypeptide molecules (e.g., MHC dextramers contain a polysaccharide backbone to which the MHCs are anchored to). In some embodiments, a composition described herein can comprise multiple copies or instances of a TCR recognition domain(s), e.g. the TCR recognition domain can be a mulitmer, or oligomer. In some embodiments, a composition described herein can comprise multiple copies or instances of a first polypeptide as described herein. In some embodiments, the first polypeptide comprises the entire TCR recognition domain. In some embodiments, the TCR recognition domain comprises at least two separate polypeptide sequences, the first polypeptide comprises at least one of the separate polypeptide sequences of the TCR recognition domain, and the first polypeptide is bound to or complexed with a second or further polypeptide sequences of the TCR recognition domain to form a TCR recognition domain. [00229] In one embodiment of any aspect, the TCR recognition domain comprises a MHC (Major Histocompatibility Complex); a MHC-peptide complex; or a MHC-peptide fusion. [00230] In one embodiment of any aspect, the peptide is a human, non-human, or synthetic/engineered peptide. The peptides can further comprise non-proteinaceous motifs, modifications, or domains, e.g., they can comprise glycosylation and/or lipids. In one embodiment of any aspect, the peptide is a Minor Histocompatibility Antigen (MiHA). [00231] In one embodiment of any aspect, the MHC is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. [00232] In one embodiment of any aspect, the protein interaction domains are found on an extracellular portion of the respective polypeptides. [00233] In one embodiment of any aspect, (a) the protein interaction domain(s) is a leucine zipper, or any binding pair of protein interaction domains are collectively a pair of leucine zippers; (b) the protein interaction domain(s) is a BZip (RR) and/or a AZip (EE), or any binding pair of protein interaction domains are collectively a BZip (RR) and a AZip (EE); (c) the protein interaction domain(s) is a PSD95-Dlgl-zo-1 (PDZ) domain; (d) the protein interaction domain(s) is a streptavidin and/or a streptavidin binding protein (SBP) or any binding pair of protein interaction domains are collectively a streptavidin and a streptavidin binding protein (SBP); (e) the protein interaction domain(s) is a FKBP-binding domain of mTOR (FRB) and/or a FK506 binding protein (FKBP) or any binding pair of protein interaction domains are collectively a FKBP-binding domain of mTOR (FRB) and a FK506 binding protein (FKBP); (f) the protein interaction domain(s) is a cyclophilin-Fas fusion protein (CyP-Fas) and/or a FK506 binding protein (FKBP) or any binding pair of protein interaction domains are collectively a cyclophilin-Fas fusion protein (CyP-Fas) and a FK506 binding protein (FKBP); (g) the protein interaction domain(s) is a calcineurin A (CNA) and/or a FK506 binding protein (FKBP) or any binding pair of protein interaction domains are collectively a calcineurin A (CNA) and a FK506 binding protein (FKBP); (h) the protein interaction domain(s) is a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1) or any binding pair of protein interaction domains are collectively a gibberellin insensitive (GIA) and a gibberellin insensitive dwarf1 (GID1); (i) the protein interaction domain(s) is a Snap-tag and/or a Halo tag, or any binding pair of protein interaction domains are collectively a Snap-tag and a Halo tag; (j) the protein interaction domain(s) is a T14-3-3-cdeltaC and/or a C-Terminal peptides of PMA2 (CT52), or any binding pair of protein interaction domains are collectively a T14-3-3-cdeltaC and a C-Terminal peptides of PMA2 (CT52); (k) the protein interaction domain(s) is a PYL and/or a ABI, or any binding pair of protein interaction domains are collectively a PYL and a ABI; (l) the protein interaction domain(s) is a nucleotide tag and/or a zinc finger domain, or any binding pair of protein interaction domains are collectively a nucleotide tag and a zinc finger domain; (m) wherein the biomolecular interaction domain(s) is a nucleotide tag, or any binding pair of biomolecular interaction domains are collectively a pair of nucleotide tags;(n) the protein interaction domain(s) is a Fluorescein isothiocyanate (FITC) and/or a FITC binding protein or any binding pair of protein interaction domains are collectively a FITC and a FITC binding protein; and/or (o) the protein interaction domain(s) is a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein or any binding pair of protein interaction domains are collectively a FITC and a FITC binding protein. [00234] In one embodiment of any aspect, the nucleotide tag is a DNA tag or dsDNA tag. [00235] In one embodiment of any aspect, the intracellular signaling domain is a signaling domain from a protein selected from the group consisting of: TCRζ, FcRγ, FcRβ, CD3γ; CD35; CD3ζ; CD3C; CD22; CD79a; CD79b; CD66d; CARD11; CD2; CD7; CD27; CD28; CD30; CD40; CD54 (ICAM); CD83; CD134 (OX40); CD137 (4-1BB); CD150 (SLAMF1); CD152 (CTLA4); CD223 (LAG3); CD270 (HVEM); CD273 (PD-L2); CD274 (PD- Ll); CD278 (ICOS); DAP10; LAT; KD2C SLP76; TRIM; and ZAP70. [00236] In one embodiments of any aspect, a cell comprising and/or expressing a comprising a composition comprising a TCR recognition domain and an intracellular signaling domain further comprises a TCR signaling-responsive promoter operatively linked to a payload transgene. Such embodiments permit transgene payload expression specifially to and/or in the vicinity of a targeted T cell. Suitable promoters and transgene are known in the art, e.g., those promoters and transgenes used in “TRUCK CAR” technology. An exemplary promoter is a NFAT-sensitive promoter. Exemplary transgene payloads can include checkpoint inhibitors (e.g., CTLA-4, [Ipilimumab, Tremelimumab] or PD-1 [Nivolumab, Pembrolizumab, Pidilizumab]) or proinflammatory cytokines (e.g., IL-2, IL-12, etc). In our case this will be used for in-situ targeting of a patient’s anticancer T-cells to very specifically and locally deliver activating agents like one or more checkpoint inhibitors (CTLA-4, [Ipilimumab, Tremelimumab] or PD-1 [Nivolumab, Pembrolizumab, Pidilizumab]) and/or proinflammatory cytokines, (e.g. IL-2, IL-12, etc.) that can push them to expansion and effector phenotype. With this targeted delivery, it is expected to see more efficacy without the systemic side effects caused by checkpoint inhibitors and cytokines administered systemically. Further, combination therapy with multiple different agents is possible with the described technolog as there is minimal systemic side effect due to paracrine delivery. Further description of suitable promoters, payloads, as well as how to make and use TRUCK technology is described, e.g., Peterson et al. Front. Oncol.2019 9:69; Chmielewski et al. Advances in Cell and Gene Therapy 20203:e84; Chimielewski et al. Expert opinion Biol Ther 201515:1145-54; and Chimieleski et al. Immunol Rev 2014257:83-90; each of which is incorporated by reference herein in its entirety. In some embodiments, the cell can be allogeneic, e.g., and engineered once and given as pulse therapy. In some embodiments, the cell can be a T cell or any other cell type described herein, e.g., a NK cell. Exemplary, non-limiting proinflammatory cytokines include IFNs, IFN-γ, TNFα, TGF-β, IL-1β, IL-6, IL-4, IL-10, IL-13, IL-2, IL-12, IL-15, and IL-27. [00237] A promoter can be said to drive expression or drive transcription of the nucleic acid sequence that it regulates. The phrases “operably linked,” “operatively positioned,” “operatively linked,” “under control,” and “under transcriptional control” indicate that a promoter is in a correct functional location and/or orientation in relation to a nucleic acid sequence it regulates to control transcriptional initiation and/or expression of that sequence. [00238] In some embodiments, a composition comprising a TCR recognition domain and an biomolecular interaction domain is a soluble molecule and/or soluble complex. [00239] Another aspect provided herein is a cell comprising and/or expressing the composition of any of the compositions described herein. [00240] In one embodiment of any aspect, the TCR recognition domain comprises a MHC allogeneic to the cell comprising and/or expressing the composition. In one embodiment of any aspect, the TCR recognition domain comprises a MHC allogeneic to the cell that the TCR originated from. [00241] In one embodiment of any aspect, the TCR recognition domain comprises a peptide allogeneic to the cell comprising and/or expressing the composition. In one embodiment of any aspect, the TCR recognition domain comprises a peptide allogeneic to the cell that the TCR originated from. [00242] In one embodiment of any aspect, the cell is a dendritic cell (CAL DC), a T cell (e.g., effector, regulatory, etc.,) (CAL-T); regulatory T cell, effector T cell, natural killer cell (CAL NK), or any other myeloid cell. In one embodiment of any aspect, the cell is engineered to express the polypeptide(s) of the composition. In one embodiment of any aspect, the cell is engineered to express the signaling polypeptide of the composition. In one embodiment of any aspect, the cell is further engineered to knockout the native MHCI/II. In one embodiment of any aspect, the cell is further engineered to lack cell surface expression of native MHCI/II. [00243] Another aspect provided herein is a chimeric antigen receptor (CAR) comprising (a) an anti-CD127 and/or anti-CD45RO recognition domain; and (b) an intracellular signaling domain. [00244] Another aspect provided herein is a composition comprising a first polypeptide comprising: (a) an anti-CD127 and/or anti-CD45RO recognition domain; (b) a first-type protein interaction domain; and a second polypeptide comprising (a) a second-type protein interaction domain; and (b) an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other. [00245] Another aspect provided herein is a composition comprising a first polypeptide comprising (a) an anti-CD127 recognition domain; (b) a first-type protein interaction domain; a second polypeptide comprising (a) an anti-CD45RO recognition domain; (b) a fifth-type protein interaction domain; and a third polypeptide comprising (a) a second-type and a fourth-type protein interaction domain; and (b) an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other. [00246] Another aspect provided herein is a cell comprising any of the CARs described herein, or any of the compositions described herein. [00247] Another aspect provided herein is a method of preventing and/or treating an autoimmune diseases or conditions or T cell mediated inflammation or immune response; or treating or preventing transplant rejection or GvHD in a subject in need thereof, the method comprising administering to the subject any of the compositions and/or cells described herein. Another aspect provided herein is a method of preventing and/or treating a malignant T cell condition in a subject in need thereof, the method comprising administering to the subject any of the compositions and/or cells described herein. [00248] In various embodiments of any aspect, the TCR recognition domain comprises a MHC allogeneic to the subject, a MHC autologous to the transplant cells, a peptide allogeneic to the subject, or a peptide autologous to the transplant cells. [00249] In one embodiment of any aspect, the transplant is vascularized composite allotransplantation (VCA). [00250] In one embodiment of any aspect, the autoimmune disease is type 1 diabetes, multiple sclerosis, rheumatoid arthritis, or scleroderma. [00251] One aspect of the embodiments provided herein is a CAR T cell that targets a CD127+/CD45RO+ T cell. In one embodiment, the CD127+/CD45RO+ T cell is a CD127+/CD45RO+ memory T cell. In one embodiment, the CD127+/CD45RO+ T cell is an alloreactive CD127+/CD45RO+ T cell. [00252] Accordingly, one aspect herein provides a CAR comprising (a) an anti-CD127 and/or anti-CD45RO recognition domain; and (b) intracellular signaling domain. Further provided herein is a composition comprising (a) an anti-CD127 and/or anti-CD45RO recognition domain; and (b) intracellular signaling domain. [00253] Another aspect of the provides a composition comprising a first polypeptide comprising: (a) an anti-CD127 and/or anti-CD45RO recognition domain; (b) a first-type protein interaction domain; and a second polypeptide comprising: (c) a second-type protein interaction domain; and (d) an intracellular signaling domain; wherein the first-type protein interaction domain and the second- type protein interaction domain bind specifically to each other. [00254] Another aspect of the provides a composition comprising a first polypeptide comprising: (a) an anti-CD127 recognition domain; (b) a first-type protein interaction domain; a second polypeptide comprising: (c) an anti-CD45RO recognition domain; (d) a fifth-type protein interaction domain; and a third polypeptide comprising: (e) a second-type and a fourth-type protein interaction domain; and (f) an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other. [00255] In one embodiment, the anti-CD127 recognition domain recognizes and binds to the sequence of CD127 on a CD127+ cell, e.g., a CD127+/CD45RO+ T cell. As used herein, “CD127”, also referred to as Interleukin 7 receptor a (IL7Ra), ILRA, IL7RA, CDW127, or IL-7R-alpha, is a cell surface receptor that has been shown to have a role in V(D)J recombination during lymphocyte development. Defects in CD127 have been associated with severe combined immunodeficiency (SCID). Sequences for CD127 are known for a number of species, e.g., human CD127 (NCBI Gene ID: 3575), mRNA (NCBI Ref Seq: NM_002185.5), and polypeptide (NCBI Ref Seq: NP_002176.2). CD127 refers to all naturally occurring variants or isoforms of CD127. In one embodiment, the CD127 polypeptide sequence is presented in SEQ ID NO: 1. In some embodiments of any of the aspects, the CD127 polypeptide can be an ortholog, variant, and/or allele of SEQ ID NO: 1. 1 MTILGTTFGM VFSLLQVVSG ESGYAQNGDL EDAELDDYSF SCYSQLEVNG SQHSLTCAFE 61 DPDVNITNLE FEICGALVEV KCLNFRKLQE IYFIETKKFL LIGKSNICVK VGEKSLTCKK 121 IDLTTIVKPE APFDLSVVYR EGANDFVVTF NTSHLQKKYV KVLMHDVAYR QEKDENKWTH 181 VNLSSTKLTL LQRKLQPAAM YEIKVRSIPD HYFKGFWSEW SPSYYFRTPE INNSSGEMDP 241 ILLTISILSF FSVALLVILA CVLWKKRIKP IVWPSLPDHK KTLEHLCKKP RKNLNVSFNP 301 ESFLDCQIHR VDDIQARDEV EGFLQDTFPQ QLEESEKQRL GGDVQSPNCP SEDVVITPES 361 FGRDSSLTCL AGNVSACDAP ILSSSRSLDC RESGKNGPHV YQDLLLSLGT TNSTLPPPFS 421 LQSGILTLNP VAQGQPILTS LGSNQEEAYV TMSSFYQNQ (SEQ ID NO: 1) [00256] In one embodiment, the anti-CD45RO recognition domain recognizes and binds to the sequence of CD45RO on a CD45RO+ cell, e.g., a CD127+/CD45RO+ T cell . As used herein, “CD45RO”, also referred to as PTPRC, LCA, LY5, B220, CD45, L-CA, T200, CD45R, and GP180, is to a cell surface signaling molecule that been shown to be an essential regulator of T- and B-cell antigen receptor signaling. Sequences for CD45RO are known for a number of species, e.g., human CD45RO (NCBI Gene ID: 5788), mRNA (NCBI Ref Seq: NM_001267798.2), and polypeptide (NCBI Ref Seq: NP_001254727.1). CD45RO refers to all naturally occurring variants or isoforms of CD45RO. In one embodiment, the CD45RO polypeptide sequence is presented in SEQ ID NO: 2. In some embodiments of any of the aspects, the CD45RO polypeptide can be an ortholog, variant, and/or allele of SEQ ID NO: 2. 1 MTMYLWLKLL AFGFAFLDTE VFVTGQSPTP SPTGHLQAEE QGSQSKSPNL KSREADSSAF 61 SWWPKAREPL TNHWSKSKSP KAEELGV (SEQ ID NO: 2) [00257] For convenience, the meaning of some terms and phrases used in the specification, examples, and appended claims, are provided below. Unless stated otherwise, or implicit from context, the following terms and phrases include the meanings provided below. The definitions are provided to aid in describing particular embodiments, and are not intended to limit the claimed invention, because the scope of the invention is limited only by the claims. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. If there is an apparent discrepancy between the usage of a term in the art and its definition provided herein, the definition provided within the specification shall prevail. [00258] For convenience, certain terms employed herein, in the specification, examples and appended claims are collected here. [00259] The terms “decrease”, “reduced”, “reduction”, or “inhibit” are all used herein to mean a decrease by a statistically significant amount. In some embodiments, “reduce,” “reduction" or “decrease" or “inhibit” typically means a decrease by at least 10% as compared to a reference level (e.g. the absence of a given treatment) and can include, for example, a decrease by at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99% , or more. As used herein, “reduction” or “inhibition” does not encompass a complete inhibition or reduction as compared to a reference level. “Complete inhibition” is a 100% inhibition as compared to a reference level. A decrease can be preferably down to a level accepted as within the range of normal for an individual without a given disorder. [00260] The terms “increased”, “increase”, “enhance”, or “activate” are all used herein to mean an increase by a statically significant amount. In some embodiments, the terms “increased”, “increase”, “enhance”, or “activate” can mean an increase of at least 10% as compared to a reference level, for example an increase of at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% increase or any increase between 10-100% as compared to a reference level, or at least about a 2-fold, or at least about a 3-fold, or at least about a 4-fold, or at least about a 5-fold or at least about a 10-fold increase, or any increase between 2-fold and 10-fold or greater as compared to a reference level. In the context of a marker or symptom, a “increase” is a statistically significant increase in such level. [00261] As used herein, a "subject" means a human or animal. Usually the animal is a vertebrate such as a swine, primate, rodent, domestic animal or game animal. Primates include chimpanzees, cynomolgus monkeys, spider monkeys, and macaques, e.g., Rhesus. Rodents include mice, rats, woodchucks, ferrets, rabbits and hamsters. Domestic and game animals include cows, horses, pigs, deer, bison, buffalo, feline species, e.g., domestic cat, canine species, e.g., dog, fox, wolf, avian species, e.g., chicken, emu, ostrich, and fish, e.g., trout, catfish and salmon. In some embodiments, the subject is a mammal, e.g., a primate, e.g., a human. The terms, “individual,” “patient” and “subject” are used interchangeably herein. [00262] Preferably, the subject is a mammal. The mammal can be a human, non-human swine, primate, mouse, rat, dog, cat, horse, or cow, but is not limited to these examples. Mammals other than humans can be advantageously used as subjects that represent animal models of autoimmune diseases or conditions; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD. A subject can be male or female. [00263] A subject can be one who has been previously diagnosed with or identified as suffering from or having a condition in need of treatment (e.g. an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD) or one or more complications related to such a condition, and optionally, have already undergone treatment for an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD or the one or more complications related to an autoimmune disease, transplant rejection, or GvHD. Alternatively, a subject can also be one who has not been previously diagnosed as having an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD or one or more complications related to an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD. For example, a subject can be one who exhibits one or more risk factors for an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD or one or more complications related to an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD or a subject who does not exhibit risk factors. [00264] A “subject in need” of treatment for a particular condition can be a subject having that condition, diagnosed as having that condition, or at risk of developing that condition, e.g., an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD. [00265] In some embodiments, a nucleic acid encoding a CAL, CAR, a multi-component CAL and/or CAR or portion thereof as described herein is comprised by a vector. In some of the aspects described herein, a nucleic acid sequence encoding a multi-component CAL and/or CAR, or portion thereof as described herein, or any module thereof, is operably linked to a vector. The term “vector”, as used herein, refers to a nucleic acid construct designed for delivery to a host cell or for transfer between different host cells. As used herein, a vector can be viral or non-viral. The term “vector” encompasses any genetic element that is capable of replication when associated with the proper control elements and that can transfer gene sequences to cells. A vector can include, but is not limited to, a cloning vector, an expression vector, a plasmid, phage, transposon, cosmid, chromosome, virus, virion, etc. [00266] As used herein, the term “expression vector” refers to a vector that directs expression of an RNA or polypeptide from sequences linked to transcriptional regulatory sequences on the vector. The sequences expressed will often, but not necessarily, be heterologous to the cell. An expression vector may comprise additional elements, for example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, for example in human cells for expression and in a prokaryotic host for cloning and amplification. The term “expression” refers to the cellular processes involved in producing RNA and proteins and as appropriate, secreting proteins, including where applicable, but not limited to, for example, transcription, transcript processing, translation and protein folding, modification and processing. “Expression products” include RNA transcribed from a gene, and polypeptides obtained by translation of mRNA transcribed from a gene. The term “gene” means the nucleic acid sequence that is transcribed (DNA) to RNA in vitro or in vivo when operably linked to appropriate regulatory sequences. The gene may or may not include regions preceding and following the coding region, e.g.5′ untranslated (5′UTR) or “leader” sequences and 3′ UTR or “trailer” sequences, as well as intervening sequences (introns) between individual coding segments (exons). [00267] As used herein, the term “viral vector” refers to a nucleic acid vector construct that includes at least one element of viral origin and has the capacity to be packaged into a viral vector particle. The viral vector can contain the nucleic acid encoding a CAL and/or CAR described herein, e.g., a multi-component CAL and/or CAR, or portion thereof as described herein in place of non- essential viral genes. The vector and/or particle may be utilized for the purpose of transferring any nucleic acids into cells either in vitro or in vivo. Numerous forms of viral vectors are known in the art. [00268] By “recombinant vector” is meant a vector that includes a heterologous nucleic acid sequence, or “transgene” that is capable of expression in vivo or in the transduced cells. It should be understood that the vectors described herein can, in some embodiments, be combined with other suitable compositions and therapies. In some embodiments, the vector is episomal. The use of a suitable episomal vector provides a means of maintaining the nucleotide of interest in the subject in high copy number extra chromosomal DNA thereby eliminating potential effects of chromosomal integration. [00269] As used herein, the term “nucleic acid” or “nucleic acid sequence” refers to any molecule, preferably a polymeric molecule, incorporating units of ribonucleic acid, deoxyribonucleic acid or an analog thereof. The nucleic acid can be either single-stranded or double-stranded. A single-stranded nucleic acid can be one nucleic acid strand of a denatured double- stranded DNA. Alternatively, it can be a single-stranded nucleic acid not derived from any double-stranded DNA. In one aspect, the nucleic acid can be DNA. In another aspect, the nucleic acid can be RNA, e.g., single-stranded or double-stranded RNA. Suitable nucleic acid molecules are DNA, including genomic DNA or cDNA. Other suitable nucleic acid molecules are RNA, including mRNA. [00270] As used herein, the terms “protein" and “polypeptide" are used interchangeably herein to designate a series of amino acid residues, connected to each other by peptide bonds between the alpha-amino and carboxy groups of adjacent residues. The terms "protein", and "polypeptide" refer to a polymer of amino acids, including modified amino acids (e.g., phosphorylated, glycated, glycosylated, etc.) and amino acid analogs, regardless of its size or function. "Protein" and “polypeptide” are often used in reference to relatively large polypeptides, whereas the term "peptide" is often used in reference to small polypeptides, but usage of these terms in the art overlaps. The terms "protein" and "polypeptide" are used interchangeably herein when referring to a gene product and fragments thereof. Thus, exemplary polypeptides or proteins include gene products, naturally occurring proteins, homologs, orthologs, paralogs, fragments and other equivalents, variants, fragments, and analogs of the foregoing. [00271] As used herein an “antibody” refers to IgG, IgM, IgA, IgD or IgE molecules or antigen- specific antibody fragments thereof (including, but not limited to, a Fab, F(ab')2, Fv, disulphide linked Fv, scFv, single domain antibody, closed conformation multispecific antibody, disulphide-linked scfv, diabody), whether derived from any species that naturally produces an antibody, or created by recombinant DNA technology; whether isolated from serum, B-cells, hybridomas, transfectomas, yeast or bacteria. [00272] As described herein, an "antigen" is a molecule that is bound by a binding site on an antibody agent. Typically, antigens are bound by antibody ligands and are capable of raising an antibody response in vivo. An antigen can be a polypeptide, protein, nucleic acid or other molecule or portion thereof. The term "antigenic determinant" refers to an epitope on the antigen recognized by an antigen-binding molecule, and more particularly, by the antigen-binding site of said molecule. [00273] As used herein, the term “antibody reagent" refers to a polypeptide that includes at least one immunoglobulin variable domain or immunoglobulin variable domain sequence and which specifically binds a given antigen. An antibody reagent can comprise an antibody or a polypeptide comprising an antigen-binding domain of an antibody. In some embodiments, an antibody reagent can comprise a monoclonal antibody or a polypeptide comprising an antigen-binding domain of a monoclonal antibody. For example, an antibody can include a heavy (H) chain variable region (abbreviated herein as VH), and a light (L) chain variable region (abbreviated herein as VL). In another example, an antibody includes two heavy (H) chain variable regions and two light (L) chain variable regions. The term "antibody reagent" encompasses antigen-binding fragments of antibodies (e.g., single chain antibodies, Fab and sFab fragments, F(ab')2, Fd fragments, Fv fragments, scFv, and domain antibodies (dAb) fragments (see, e.g. de Wildt et al., Eur J. Immunol.1996; 26(3):629-39; which is incorporated by reference herein in its entirety)) as well as complete antibodies. An antibody can have the structural features of IgA, IgG, IgE, IgD, IgM (as well as subtypes and combinations thereof). Antibodies can be from any source, including mouse, rabbit, pig, rat, and primate (human and non-human primate) and primatized antibodies. Antibodies also include midibodies, humanized antibodies, chimeric antibodies, and the like. [00274] The VH and VL regions can be further subdivided into regions of hypervariability, termed "complementarity determining regions" ("CDR"), interspersed with regions that are more conserved, termed "framework regions" ("FR"). The extent of the framework region and CDRs has been precisely defined (see, Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No.91- 3242, and Chothia, C. et al. (1987) J. Mol. Biol.196:901-917; which are incorporated by reference herein in their entireties). Each VH and VL is typically composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. [00275] The terms "antigen-binding fragment" or “antigen-binding domain”, which are used interchangeably herein are used to refer to one or more fragments of a full length antibody that retain the ability to specifically bind to a target of interest. Examples of binding fragments encompassed within the term "antigen-binding fragment" of a full length antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab')2 fragment, a bivalent fragment including two Fab fragments linked by a disulfide bridge at the hinge region; (iii) an Fd fragment consisting of the VH and CH1 domains; (iv) an Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544- 546; which is incorporated by reference herein in its entirety), which consists of a VH or VL domain; and (vi) an isolated complementarity determining region (CDR) that retains specific antigen-binding functionality. [00276] As used herein, the term “specific binding” refers to a chemical interaction between two molecules, compounds, cells and/or particles wherein the first entity binds to the second, target entity with greater specificity and affinity than it binds to a third entity which is a non-target. In some embodiments, specific binding can refer to an affinity of the first entity for the second target entity which is at least 10 times, at least 50 times, at least 100 times, at least 500 times, at least 1000 times or greater than the affinity for the third nontarget entity. A reagent specific for a given target is one that exhibits specific binding for that target under the conditions of the assay being utilized. In some embodiments, binding described herein can be preferential binding, e.g., binding between two molecules, compounds, cells and/or particles wherein the first entity binds to the second, target entity with at least 2 times greater specificity and affinity than it binds to a third entity which is a non-target. [00277] Additionally, and as described herein, a recombinant humanized antibody can be further optimized to decrease potential immunogenicity, while maintaining functional activity, for therapy in humans. In this regard, functional activity means a polypeptide capable of displaying one or more known functional activities associated with a recombinant antibody or antibody reagent thereof as described herein. Such functional activities include, e.g. the ability to bind to a target. [00278] As used herein, the terms "treat,” "treatment," "treating,” or “amelioration” refer to therapeutic treatments, wherein the object is to reverse, alleviate, ameliorate, inhibit, slow down or stop the progression or severity of a condition associated with a disease or disorder, e.g. autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD. The term “treating" includes reducing or alleviating at least one adverse effect or symptom of a condition, disease or disorder associated with a, e.g. autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD. Treatment is generally “effective" if one or more symptoms or clinical markers are reduced. Alternatively, treatment is “effective" if the progression of a disease is reduced or halted. That is, “treatment" includes not just the improvement of symptoms or markers, but also a cessation of, or at least slowing of, progress or worsening of symptoms compared to what would be expected in the absence of treatment. Beneficial or desired clinical results include, but are not limited to, alleviation of one or more symptom(s), diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, remission (whether partial or total), and/or decreased mortality, whether detectable or undetectable. The term "treatment" of a disease also includes providing relief from the symptoms or side-effects of the disease (including palliative treatment). [00279] As used herein, the term “pharmaceutical composition” refers to the active agent in combination with a pharmaceutically acceptable carrier e.g. a carrier commonly used in the pharmaceutical industry. The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio. [00280] As used herein, the term "administering," refers to the placement of an agent, e.g., a CAL, CAR, composition, or cell as disclosed herein into a subject by a method or route which results in at least partial delivery of the agent at a desired site. Pharmaceutical compositions comprising the compounds disclosed herein can be administered by any appropriate route which results in an effective treatment in the subject. [00281] Immune checkpoint inhibitors inhibit one or more immune checkpoint proteins. The immune system has multiple inhibitory pathways that are critical for maintaining self-tolerance and modulating immune responses. For example, in T-cells, the amplitude and quality of response is initiated through antigen recognition by the T-cell receptor and is regulated by immune checkpoint proteins that balance co-stimulatory and inhibitory signals. In some embodiments of any of the aspects, a subject or patient is treated with at least one inhibitor of an immune checkpoint protein. As used herein, “immune checkpoint protein” refers to a protein which, when active, exhibits an inhibitory effect on immune activity, e.g., T cell activity. Exemplary immune checkpoint proteins can include PD-1 (e.g., NCBI Gene ID: 5133); PD-L1 (e.g., NCBI Gene ID: 29126); PD-L2 (e.g., NCBI Gene ID: 80380); TIM-3 (e.g., NCBI Gene ID: 84868); CTLA4 (e.g., NCBI Gene ID: 1493); TIGIT (e.g., NCBI Gene ID: 201633); KIR (e.g., NCBI Gene ID: 3811); LAG3 (e.g., NCBI Gene ID: 3902); DD1-α (e.g., NCBI Gene ID: 64115); A2AR (e.g., NCBI Gene ID: 135); B7-H3 (e.g., NCBI Gene ID: 80381); B7-H4 (e.g., NCBI Gene ID: 79679); BTLA (e.g., NCBI Gene ID: 151888); IDO (e.g., NCBI Gene ID: 3620); TDO (e.g., NCBI Gene ID: 6999); HVEM (e.g., NCBI Gene ID: 8764); GAL9 (e.g., NCBI Gene ID: 3965); 2B4 (belongs to the CD2 family of molecules and is expressed on all NK, γδ, and memory CD8+ (αβ) T cells) (e.g., NCBI Gene ID: 51744); CD160 (also referred to as BY55) (e.g., NCBI Gene ID: 11126); and various B-7 family ligands. B7 family ligands include, but are not limited to, B7- 1, B7-2, B7-DC, B7-H1, B7-H2, B7-H3, B7-H4, B7-H5, B7-H6 and B7-H7. [00282] Non-limiting examples of immune checkpoint inhibitors (with checkpoint targets and manufacturers noted in parantheses) can include:MGA271 (B7-H3: MacroGenics); ipilimumab (CTLA-4; Bristol Meyers Squibb); pembrolizumab (PD-1; Merck); nivolumab (PD-1; Bristol Meyers Squibb) ; atezolizumab (PD-L1; Genentech); galiximab (B7.1; Biogen); IMP321 (LAG3: Immuntep); BMS-986016 (LAG3; Bristol Meyers Squibb); SMB-663513 (CD137; Bristol-Meyers Squibb); PF- 05082566 (CD137; Pfizer); IPH2101 (KIR; Innate Pharma); KW-0761 (CCR4; Kyowa Kirin); CDX- 1127 (CD27; CellDex); MEDI-6769 (Ox40; MedImmune); CP-870,893 (CD40; Genentech); tremelimumab (CTLA-4; Medimmune); pidilizumab (PD-1; Medivation); MPDL3280A (PD-L1; Roche); MEDI4736 (PD-L1; AstraZeneca); MSB0010718C (PD-L1; EMD Serono); AUNP12 (PD-1; Aurigene); avelumab (PD-L1; Merck); durvalumab (PD-L1; Medimmune); IMP321, a soluble Ig fusion protein (Brignone et al., 2007, J. Immunol.179:4202-4211); the anti-B7-H3 antibody MGA271 (Loo et al., 2012, Clin. Cancer Res. July 15 (18) 3834); TIM3 (T-cell immunoglobulin domain and mucin domain 3) inhibitors (Fourcade et al., 2010, J. Exp. Med.207:2175-86 and Sakuishi et al., 2010, J. Exp. Med.207:2187-94); anti-CTLA-4 antibodies described in US Patent Nos: 5,811,097; 5,811,097; 5,855,887; 6,051,227; 6,207,157; 6,682,736; 6,984,720; and 7,605,238; tremelimumab, (ticilimumab, CP-675,206); ipilimumab (also known as 10D1, MDX-D010); PD-l and PD-L1 blockers described in US Patent Nos.7,488,802; 7,943,743; 8,008,449; 8,168,757; 8,217,149, and PCT Published Patent Application Nos: WO03042402, WO2008156712, WO2010089411, WO2010036959, WO2011066342, WO2011159877, WO2011082400, and WO2011161699; nivolumab (MDX 1106, BMS 936558, ONO 4538); lambrolizumab (MK-3475 or SCH 900475); CT- 011; AMP-224; and BMS-936559 (MDX- 1105-01). The foregoing references are incorporated by reference herein in their entireties. [00283] The term “statistically significant" or “significantly" refers to statistical significance, e.g., a rejection of the null hypothesis with a p-value of less than 0.05 and generally means a two standard deviation (2SD) or greater difference. [00284] Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein should be understood as modified in all instances by the term “about.” The term “about” when used in connection with percentages can mean ±1%. [00285] As used herein the term "comprising" or "comprises" is used in reference to compositions, methods, and respective component(s) thereof, that are essential to the method or composition, yet open to the inclusion of unspecified elements, whether essential or not. [00286] The term "consisting of" refers to compositions, methods, and respective components thereof as described herein, which are exclusive of any element not recited in that description of the embodiment. [00287] As used herein the term "consisting essentially of" refers to those elements required for a given embodiment. The term permits the presence of elements that do not materially affect the basic and novel or functional characteristic(s) of that embodiment. [00288] The singular terms "a," "an," and "the" include plural referents unless context clearly indicates otherwise. Similarly, the word "or" is intended to include "and" unless the context clearly indicates otherwise. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of this disclosure, suitable methods and materials are described below. The abbreviation, "e.g." is derived from the Latin exempli gratia and is used herein to indicate a non-limiting example. Thus, the abbreviation "e.g." is synonymous with the term "for example." [00289] Unless otherwise defined herein, scientific and technical terms used in connection with the present application shall have the meanings that are commonly understood by those of ordinary skill in the art to which this disclosure belongs. It should be understood that this invention is not limited to the particular methodology, protocols, and reagents, etc., described herein and as such can vary. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the present invention, which is defined solely by the claims. Definitions of common terms in immunology and molecular biology can be found in The Merck Manual of Diagnosis and Therapy, 19th Edition, published by Merck Sharp & Dohme Corp., 2011 (ISBN 978-0-911910-19-3); Robert S. Porter et al. (eds.), The Encyclopedia of Molecular Cell Biology and Molecular Medicine, published by Blackwell Science Ltd., 1999-2012 (ISBN 9783527600908); and Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8); Immunology by Werner Luttmann, published by Elsevier, 2006; Janeway's Immunobiology, Kenneth Murphy, Allan Mowat, Casey Weaver (eds.), Taylor & Francis Limited, 2014 (ISBN 0815345305, 9780815345305); Lewin's Genes XI, published by Jones & Bartlett Publishers, 2014 (ISBN- 1449659055); Michael Richard Green and Joseph Sambrook, Molecular Cloning: A Laboratory Manual, 4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA (2012) (ISBN 1936113414); Davis et al., Basic Methods in Molecular Biology, Elsevier Science Publishing, Inc., New York, USA (2012) (ISBN 044460149X); Laboratory Methods in Enzymology: DNA, Jon Lorsch (ed.) Elsevier, 2013 (ISBN 0124199542); Current Protocols in Molecular Biology (CPMB), Frederick M. Ausubel (ed.), John Wiley and Sons, 2014 (ISBN 047150338X, 9780471503385), Current Protocols in Protein Science (CPPS), John E. Coligan (ed.), John Wiley and Sons, Inc., 2005; and Current Protocols in Immunology (CPI) (John E. Coligan, ADA M Kruisbeek, David H Margulies, Ethan M Shevach, Warren Strobe, (eds.) John Wiley and Sons, Inc., 2003 (ISBN 0471142735, 9780471142737), the contents of which are all incorporated by reference herein in their entireties. [00290] Other terms are defined herein within the description of the various aspects of the invention. [00291] All patents and other publications; including literature references, issued patents, published patent applications, and co-pending patent applications; cited throughout this application are expressly incorporated herein by reference for the purpose of describing and disclosing, for example, the methodologies described in such publications that might be used in connection with the technology described herein. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason. All statements as to the date or representation as to the contents of these documents is based on the information available to the applicants and does not constitute any admission as to the correctness of the dates or contents of these documents. [00292] The description of embodiments of the disclosure is not intended to be exhaustive or to limit the disclosure to the precise form disclosed. While specific embodiments of, and examples for, the disclosure are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while method steps or functions are presented in a given order, alternative embodiments may perform functions in a different order, or functions may be performed substantially concurrently. The teachings of the disclosure provided herein can be applied to other procedures or methods as appropriate. The various embodiments described herein can be combined to provide further embodiments. Aspects of the disclosure can be modified, if necessary, to employ the compositions, functions and concepts of the above references and application to provide yet further embodiments of the disclosure. Moreover, due to biological functional equivalency considerations, some changes can be made in protein structure without affecting the biological or chemical action in kind or amount. These and other changes can be made to the disclosure in light of the detailed description. All such modifications are intended to be included within the scope of the appended claims. [00293] Specific elements of any of the foregoing embodiments can be combined or substituted for elements in other embodiments. Furthermore, while advantages associated with certain embodiments of the disclosure have been described in the context of these embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the disclosure. [00294] All patents and other publications identified in the specification and examples are expressly incorporated herein by reference for all purposes. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason. All statements as to the date or representation as to the contents of these documents is based on the information available to the applicants and does not constitute any admission as to the correctness of the dates or contents of these documents. [00295] Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions, and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention as defined in the claims which follow. Further, to the extent not already indicated, it will be understood by those of ordinary skill in the art that any one of the various embodiments herein described and illustrated can be further modified to incorporate features shown in any of the other embodiments disclosed herein. [00296] Some embodiments of the technology described herein can be defined according to any of the following numbered paragraphs: 1. A composition, comprising: a. a TCR recognition domain; and one or both of: b. an intracellular signaling domain; and c. a first-type protein interaction domain. 2. A composition comprising: a. a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and b. a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; wherein the first-type and second-type protein interaction domains bind specifically to each other. 3. A composition comprising: a. a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and b. a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the first-type and third-type protein interaction domains bind specifically to each other. 4. A composition comprising: a. a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; and b. a signaling polypeptide comprising a second-type protein interaction domain and an intracellular signaling domain; and c. a recognition polypeptide comprising a second recognition domain and a third-type protein interaction domain; wherein the second-type and third-type protein interaction domains compete for binding to the first-type protein interaction domain. 5. The composition of any of paragraphs 3-4, wherein the third-type protein interaction domain and first-type protein interaction domain have a higher affinity for each other than the second- type protein interaction domain and first-type protein interaction domain. 6. A composition comprising: a. a first polypeptide comprising a TCR recognition domain and a first-type protein interaction domain; b. a signaling polypeptide comprising a second-type protein interaction domain, a fourth-type protein interaction domain, and an intracellular signaling domain; and c. a recognition polypeptide comprising a second recognition domain and a fifth-type protein interaction domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other. 7. The composition of paragraph 6, wherein the fourth-type protein interaction domain and fifth- type protein interaction domain have a weaker affinity than the second-type protein interaction domain and first-type protein interaction domain. 8. The composition of any of paragraphs 6-7, wherein the first polypeptide further comprises a sixth-type protein interaction domain and the recognition polypeptide further comprises a seventh-type protein interaction domain which bind specifically to each other. 9. The composition of any of paragraphs 3-8, wherein the second recognition domain is specific for a target that is not recognized by the TCR recognition domain. 10. The composition of any of paragraphs 3-9, wherein the second recognition domain is specific for a target that is found on a healthy and/or non-target cell and not on a diseased and/or target cell. 11. The composition of any of the preceding paragraphs, wherein the TCR recognition domain comprises a MHC (Major Histocompatibility Complex); a MHC-peptide complex; or a MHC- peptide fusion. 12. The composition of paragraph 11, wherein the peptide is a human or non-human peptide. 13. The composition of any of paragraphs 11-12, wherein the peptide is a Minor Histocompatibility Antigen (MiHA). 14. The composition of any of paragraphs 11-13, wherein the MHC is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. 15. The composition of any of the preceding paragraphs, wherein the protein interaction domains are found on an extracellular portion of the respective polypeptides. 16. The composition of any of the preceding paragraphs, a. wherein the protein interaction domain(s) is a leucine zipper, or any binding pair of protein interaction domains are collectively a pair of leucine zippers; b. wherein the protein interaction domain(s) is a BZip (RR) and/or a AZip (EE), or any binding pair of protein interaction domains are collectively a BZip (RR) and a AZip (EE); c. wherein the protein interaction domain(s) is a PSD95-Dlgl-zo-1 (PDZ) domain; d. wherein the protein interaction domain(s) is a streptavidin and/or a streptavidin binding protein (SBP) or any binding pair of protein interaction domains are collectively a streptavidin and a streptavidin binding protein (SBP); e. wherein the protein interaction domain(s) is a FKBP-binding domain of mTOR (FRB) and/or a FK506 binding protein (FKBP) or any binding pair of protein interaction domains are collectively a FKBP-binding domain of mTOR (FRB) and a FK506 binding protein (FKBP); f. wherein the protein interaction domain(s) is a cyclophilin-Fas fusion protein (CyP- Fas) and/or a FK506 binding protein (FKBP) or any binding pair of protein interaction domains are collectively a cyclophilin-Fas fusion protein (CyP-Fas) and a FK506 binding protein (FKBP); g. wherein the protein interaction domain(s) is a calcineurinA (CNA) and/or a FK506 binding protein (FKBP) or any binding pair of protein interaction domains are collectively a calcineurinA (CNA) and a FK506 binding protein (FKBP); h. wherein the protein interaction domain(s) is a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1) or any binding pair of protein interaction domains are collectively a gibberellin insensitive (GIA) and a gibberellin insensitive dwarf1 (GID1); i. wherein the protein interaction domain(s) is a Snap-tag and/or a Halo tag, or any binding pair of protein interaction domains are collectively a Snap-tag and a Halo tag; j. wherein the protein interaction domain(s) is a T14-3-3-cdeltaC and/or a C-Terminal peptides of PMA2 (CT52), or any binding pair of protein interaction domains are collectively a T14-3-3-cdeltaC and a C-Terminal peptides of PMA2 (CT52); k. wherein the protein interaction domain(s) is a PYL and/or a ABI, or any binding pair of protein interaction domains are collectively a PYL and a ABI; and/or l. wherein the protein interaction domain(s) is a nucleotide tag and/or a zinc finger domain, or any binding pair of protein interaction domains are collectively a nucleotide tag and a zinc finger domain. 17. The composition of paragraph 16, wherein the nucleotide tag is a DNA tag or dsDNA tag. 18. The composition of any of the preceding paragraphs, wherein the intracellular signaling domain is a signaling domain from a protein selected from the group consisting of: TCRC; FcRy; FcRp; CD3y; CD35; CD3s; CD3C; CD22; CD79a; CD79b; CD66d; CARD11; CD2; CD7; CD27; CD28; CD30; CD40; CD54 (ICAM); CD83; CD134 (OX40); CD137 (4-1BB); CD150 (SLAMF1); CD152 (CTLA4); CD223 (LAG3); CD270 (HVEM); CD273 (PD-L2); CD274 (PD- Ll); CD278 (ICOS); DAP10; LAT; KD2C SLP76; TRIM; ZAP70; and 41BB. 19. A cell comprising and/or expressing the composition of any of the preceding paragraphs. 20. The cell of paragraph 19, wherein the TCR recognition domain comprises a MHC allogenic to the cell. 21. The cell of paragraph 19, wherein the TCR recognition domain comprises a peptide allogenic to the cell. 22. The cell of any of paragraphs 19-21, wherein the cell is a dendritic cell, regulatory T cell, or effector T cell. 23. The cell of any of paragraphs 19-22, wherein the cell is engineered to express the polypeptide(s) of the composition. 24. The cell of any of paragraphs 19-22, wherein the cell is engineered to express the signaling polypeptide of the composition. 25. The cell of any of paragraphs 19-24, wherein the cell is further engineered to knockout the native MHCI/II. 26. A chimeric antigen receptor (CAR) comprising: a. an anti-CD127 and/or anti-CD45RO recognition domain; b. an intracellular signaling domain. 27. A composition comprising: a first polypeptide comprising: a. an anti-CD127 and/or anti-CD45RO recognition domain; b. a first-type protein interaction domain; and a second polypeptide comprising: c. a second-type protein interaction domain; and d. an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other. 28. A composition comprising: a first polypeptide comprising: a. an anti-CD127 recognition domain; b. a first-type protein interaction domain; a second polypeptide comprising: c. an anti-CD45RO recognition domain; d. a fifth-type protein interaction domain; and a third polypeptide comprising: e. a second-type and a fourth-type protein interaction domain; and f. an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other. 29. A cell comprising the CAR or composition of any of paragraphs 26-28.   30. A method of treating an autoimmune disease or treating or preventing transplant rejection or GVHD in a subject in need thereof, the method comprising administering to the subject a composition and/or cell of any of the preceding paragraphs. 31. The method of paragraph 30, wherein the TCR recognition domain comprises a MHC allogenic to the subject. 32. The method of paragraph 30, wherein the TCR recognition domain comprises a MHC autologous to the transplant cells. 33. The method of paragraph 30, wherein the TCR recognition domain comprises a peptide allogenic to the subject. 34. The method of paragraph 30, wherein the TCR recognition domain comprises a peptide autologous to the transplant cells. 35. The method of any of paragraphs 32 or 34, wherein the transplant is vascularized composite allotransplantation (VCA). 36. The method of any of paragraphs 35, wherein the autoimmune disease is type 1 diabetes, multiple sclerosis, rheumatoid arthritis, or scleroderma.  [00297] Some embodiments of the technology described herein can be defined according to any of the following numbered paragraphs: 1. A composition, comprising: a. a TCR recognition domain; and one or both of: b. an intracellular signaling domain; and c. a first-type biomolecular interaction domain. 2. A composition comprising: a. a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and b. a signaling polypeptide comprising a second-type biomolecular interaction domain and an intracellular signaling domain; wherein the first-type and second-type biomolecular interaction domains bind specifically to each other. 3. A composition comprising: a. a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and b. a recognition polypeptide comprising a second recognition domain and a third-type biomolecular interaction domain; wherein the first-type and third-type biomolecular interaction domains bind specifically to each other. 4. A composition comprising: a. a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and b. a signaling polypeptide comprising a second-type biomolecular interaction domain and an intracellular signaling domain; and c. a recognition polypeptide comprising a second recognition domain and a third-type biomolecular interaction domain; wherein the second-type and third-type biomolecular interaction domains compete for binding to the first-type biomolecular interaction domain. 5. The composition of any of paragraphs 3-4, wherein the third-type biomolecular interaction domain and first-type biomolecular interaction domain have a higher affinity for each other than the second-type biomolecular interaction domain and first-type biomolecular interaction domain. 6. A composition comprising: a. a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; b. a signaling polypeptide comprising a second-type biomolecular interaction domain, a fourth-type biomolecular interaction domain, and an intracellular signaling domain; and c. a recognition polypeptide comprising a second recognition domain and a fifth-type biomolecular interaction domain; wherein the first-type biomolecular interaction domain and the second-type biomolecular interaction domain bind specifically to each other; and wherein the fourth-type biomolecular interaction domain and the fifth-type biomolecular interaction domain bind specifically to each other. 7. The composition of paragraph 6, wherein the fourth-type biomolecular interaction domain and fifth-type biomolecular interaction domain have a weaker affinity than the second-type biomolecular interaction domain and first-type protein interaction domain. 8. The composition of any of paragraphs 6-7, wherein the first polypeptide further comprises a sixth-type biomolecular interaction domain and the recognition polypeptide further comprises a seventh-type biomolecular interaction domain which bind specifically to each other. 9. The composition of any of paragraphs 2-8, wherein the first polypeptide comprises the entire TCR recognition domain. 10. The composition of any of paragraphs 2-8, wherein the TCR recognition domain comprises at least two separate polypeptide sequences, the first polypeptide comprises at least one of the separate polypeptide sequences of the TCR recognition domain, and the first polypeptide is bound to or complexed with a second or further polypeptide sequences of the TCR recognition domain to form a TCR recognition domain. 11. The composition of any of paragraphs 1-10, wherein the TCR recognition domain comprises a non-polypeptide component. 12. The composition of any of paragraphs 3-11, wherein the second recognition domain is specific for a target that is not recognized by the TCR recognition domain. 13. The composition of any of paragraphs 3-12, wherein the second recognition domain is specific for a target that is found on a healthy and/or non-target cell and not on a diseased and/or target cell. 14. The composition of any of the preceding paragraphs, wherein the TCR recognition domain comprises a MHC (Major Histocompatibility Complex); a MHC-peptide complex; featureless peptide MHC; or a MHC-peptide fusion. 15. The composition of paragraph 14, wherein the peptide is a human or non-human peptide. 16. The composition of any of paragraphs 14-15, wherein the peptide is a Minor Histocompatibility Antigen (MiHA). 17. The composition of any of paragraphs 14-16, wherein the MHC is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. 18. The composition of any of paragraphs 14-17, wherein the MHC-peptide complex is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. 19. The composition of any of paragraphs 14-17, wherein the MHC-peptide fusion is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. 20. The composition of any of paragraphs 14-17, wherein the MHC is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. 21. The composition of any of paragraphs 14-17, wherein the MHC-peptide complex is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. 22. The composition of any of paragraphs 14-17, wherein the MHC-peptide fusion is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. 23. The composition of any of paragraphs 14-22, wherein the MHC is a MHC class I or a MHC class II. 24. The composition of any of paragraphs 1-13, wherein the TCR recognition domain comprises a CD1 domain or a CD1 domain-ligand complex or fusion. 25. The composition of paragraph 24, wherein the CD1 is CD1d. 26. The composition of any of the preceding paragraphs, wherein the biomolecular interaction domains are found on an extracellular portion of the respective polypeptides. 27. The composition of any of the preceding paragraphs, a. wherein the biomolecular interaction domain(s) is a leucine zipper, or any binding pair of biomolecular interaction domains are collectively a pair of leucine zippers; b. wherein the biomolecular interaction domain(s) is a BZip (RR) and/or a AZip (EE), or any binding pair of biomolecular interaction domains are collectively a BZip (RR) and a AZip (EE); c. wherein the biomolecular interaction domain(s) is a PSD95-Dlgl-zo-1 (PDZ) domain; d. wherein the biomolecular interaction domain(s) is a streptavidin and/or a streptavidin binding biomolecular (SBP) or any binding pair of biomolecular interaction domains are collectively a streptavidin and a streptavidin binding biomolecular (SBP); e. wherein the biomolecular interaction domain(s) is a FKBP-binding domain of mTOR (FRB) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a FKBP-binding domain of mTOR (FRB) and a FK506 binding biomolecular (FKBP); f. wherein the biomolecular interaction domain(s) is a cyclophilin-Fas fusion biomolecular (CyP-Fas) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a cyclophilin-Fas fusion biomolecular (CyP-Fas) and a FK506 binding biomolecular (FKBP); g. wherein the biomolecular interaction domain(s) is a calcineurin A (CNA) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a calcineurin A (CNA) and a FK506 binding biomolecular (FKBP); h. wherein the biomolecular interaction domain(s) is a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1) or any binding pair of biomolecular interaction domains are collectively a gibberellin insensitive (GIA) and a gibberellin insensitive dwarf1 (GID1); i. wherein the biomolecular interaction domain(s) is a Snap-tag and/or a Halo tag, or any binding pair of biomolecular interaction domains are collectively a Snap-tag and a Halo tag; j. wherein the biomolecular interaction domain(s) is a T14-3-3-cdeltaC and/or a C- Terminal peptides of PMA2 (CT52), or any binding pair of biomolecular interaction domains are collectively a T14-3-3-cdeltaC and a C-Terminal peptides of PMA2 (CT52); k. wherein the biomolecular interaction domain(s) is a PYL and/or a ABI, or any binding pair of biomolecular interaction domains are collectively a PYL and a ABI; l. wherein the biomolecular interaction domain(s) is a nucleotide tag and/or a zinc finger domain, or any binding pair of biomolecular interaction domains are collectively a nucleotide tag and a zinc finger domain; m. wherein the biomolecular interaction domain(s) is a nucleotide tag, or any binding pair of biomolecular interaction domains are collectively a pair of nucleotide tags; n. wherein the biomolecular interaction domain(s) is a Fluorescein isothiocyanate (FITC) and/or a FITC binding biomolecular or any binding pair of protein interaction domains are collectively a FITC and a FITC binding protein; and/or o. wherein the protein interaction domain(s) is a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein or any binding pair of protein interaction domains are collectively a (R)-Phycoerythrin (R-PE/ PE) and a R-PE/PE binding protein. 28. The composition of paragraph 27, wherein the nucleotide tag is a DNA tag or dsDNA tag. 29. The composition of any of the preceding paragraphs, wherein the intracellular signaling domain comprises or is a signaling domain from one or more proteins selected from the group consisting of: TCRζ, FcRγ, FcRβ, CD3γ; CD35; CD3ζ; CD3C; CD22; CD79a; CD79b; CD66d; CARD11; CD2; CD7; CD27; CD28; CD30; CD40; CD54 (ICAM); CD83; CD134 (OX40); CD137 (4-1BB); CD150 (SLAMF1); CD152 (CTLA4); CD223 (LAG3); CD270 (HVEM); CD273 (PD-L2); CD274 (PD- Ll); CD278 (ICOS); DAP10; LAT; KD2C SLP76; TRIM; and ZAP70. 30. A cell comprising and/or expressing the composition of any of the preceding paragraphs. 31. A composition comprising a first polypeptide of any of the preceding paragraphs and a cell expressing or comprising the signaling polypeptide of any of the preceding paragraphs. 32. The cell or composition of any of paragraphs 30-31, wherein the TCR recognition domain comprises a MHC allogeneic, autologous, or xenogeneic to the cell. 33. The cell or composition of any of paragraphs 30-32, wherein the TCR recognition domain comprises a synthetic MHC. 34. The cell or composition of any of paragraphs 30-33, wherein the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is allogeneic, autologous, or xenogeneic to the cell. 35. The cell or composition of any of paragraphs 30-34, wherein the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is synthetic. 36. The cell or composition of any of paragraphs 30-35, wherein the cell is a NK cell, dendritic cell, regulatory T cell, or effector T cell. 37. The cell or composition of any of paragraphs 30-36, wherein the cell is engineered to express one of more of the polypeptide(s) of the composition. 38. The cell or composition of any of paragraphs 30-37, wherein the cell is engineered to express the signaling polypeptide of the composition. 39. The cell or composition of any of paragraphs 30-38, wherein the cell is further engineered to knockout or knockdown the native MHCI/II. 40. The cell or composition of any of paragraphs 30-39, wherein the cell is further engineered to knockdown the native MHCI/II expressed on the cell surface. 41. A chimeric antigen receptor (CAR) comprising: a. an anti-CD127 and/or anti-CD45RO recognition domain; b. an intracellular signaling domain. 42. A composition comprising: a first polypeptide comprising: a. an anti-CD127 and/or anti-CD45RO recognition domain; b. a first-type protein interaction domain; and a second polypeptide comprising: c. a second-type protein interaction domain; and d. an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other. 43. A composition comprising: a first polypeptide comprising: a. an anti-CD127 recognition domain; b. a first-type protein interaction domain; a second polypeptide comprising: c. an anti-CD45RO recognition domain; d. a fifth-type protein interaction domain; and a third polypeptide comprising: e. a second-type and a fourth-type protein interaction domain; and f. an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other. 44. A cell comprising the CAR or composition of any of paragraphs 41-43.   45. A method of treating or preventing an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD in a subject in need thereof, the method comprising administering to the subject a composition and/or cell of any of the preceding paragraphs. 46. The method of paragraph 45, wherein the TCR recognition domain comprises a MHC allogeneic to the subject. 47. The method of paragraph 45, wherein the TCR recognition domain comprises a MHC autologous to the transplant cells. 48. The method of paragraph 45, wherein the TCR recognition domain comprises a MHC xenogeneic to the transplant cells. 49. The method of paragraph 45, wherein the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is allogeneic to the subject. 50. The method of paragraph 45, wherein the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is autologous to the transplant cells. 51. The method of paragraph 45, wherein the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is autologous to the transplant cells. 52. The method of any of paragraphs 45-51, wherein the MHC and/or the peptide is synthetic. 53. The method of any of paragraphs 45-52, wherein the transplant is any human or non-human cell, tissue, or organ. 54. The method of any of paragraphs 45-53, wherein the transplant is an allogeneic hematopoietic stem cell or solid organ transplantation. 55. The method of any of paragraphs 45-52, wherein the malignant T cell condition is T cell acute lymphoblastic leukemia or T cell lymphoblastic lymphoma. 56. The method of any of paragraphs 45-52, wherein the autoimmune disease is type 1 diabetes, vitiligo, multiple sclerosis, alopecia, celiac disease, pemphigus, rheumatoid arthritis, or scleroderma. 57. The method of any of paragraphs 45-52, wherein the autoimmune disease is thyroiditis, type 1 diabetes mellitus, Hashimoto's thyroiditis, Graves' disease, celiac disease, multiple sclerosis, Guillain-Barre syndrome, Addison's disease, and Raynaud's phenomenon, Goodpasture's disease, arthritis (rheumatoid arthritis such as acute arthritis, chronic rheumatoid arthritis, gout or gouty arthritis, acute gouty arthritis, acute immunological arthritis, chronic inflammatory arthritis, degenerative arthritis, type II collagen-induced arthritis, infectious arthritis, Lyme arthritis (e.g., post treatment Lyme disease syndrome), proliferative arthritis, psoriatic arthritis, Still's disease, vertebral arthritis, and juvenile-onset rheumatoid arthritis, arthritis chronica progrediente, arthritis deformans, polyarthritis chronica primaria, reactive arthritis, and ankylosing spondylitis), palindromic arthritis, inflammatory hyperproliferative skin diseases, psoriasis such as plaque psoriasis, guttate psoriasis, pustular psoriasis, and psoriasis of the nails, atopy including atopic diseases such as hay fever and Job's syndrome, dermatitis including contact dermatitis, chronic contact dermatitis, exfoliative dermatitis, allergic dermatitis, allergic contact dermatitis, dermatitis herpetiformis, nummular dermatitis, seborrheic dermatitis, non-specific dermatitis, primary irritant contact dermatitis, and atopic dermatitis, x-linked hyper IgM syndrome, allergic intraocular inflammatory diseases, urticaria such as chronic allergic urticaria and chronic idiopathic urticaria, including chronic autoimmune urticaria, myositis, polymyositis/dermatomyositis, juvenile dermatomyositis, toxic epidermal necrolysis, scleroderma (including systemic scleroderma), sclerosis such as systemic sclerosis, multiple sclerosis (MS) such as spino-optical MS, primary progressive MS (PPMS), and relapsing remitting MS (RRMS), progressive systemic sclerosis, atherosclerosis, arteriosclerosis, sclerosis disseminata, ataxic sclerosis, neuromyelitis optica (NMO), inflammatory bowel disease (IBD) (for example, Crohn's disease, autoimmune-mediated gastrointestinal diseases, colitis such as ulcerative colitis, colitis ulcerosa, microscopic colitis, collagenous colitis, colitis polyposa, necrotizing enterocolitis, and transmural colitis, and autoimmune inflammatory bowel disease), bowel inflammation, pyoderma gangrenosum, erythema nodosum, primary sclerosing cholangitis, respiratory distress syndrome, including adult or acute respiratory distress syndrome (ARDS), meningitis, inflammation of all or part of the uvea, iritis, choroiditis, an autoimmune hematological disorder, rheumatoid spondylitis, rheumatoid synovitis, hereditary angioedema, cranial nerve damage as in meningitis, herpes gestationis, pemphigoid gestationis, pruritis scroti, autoimmune premature ovarian failure, sudden hearing loss due to an autoimmune condition, IgE-mediated diseases such as anaphylaxis and allergic and atopic rhinitis, encephalitis such as Rasmussen's encephalitis and limbic and/or brainstem encephalitis, uveitis, such as anterior uveitis, acute anterior uveitis, granulomatous uveitis, nongranulomatous uveitis, phacoantigenic uveitis, posterior uveitis, or autoimmune uveitis, glomerulonephritis (GN) with and without nephrotic syndrome such as chronic or acute glomerulonephritis such as primary GN, immune-mediated GN, membranous GN (membranous nephropathy), idiopathic membranous GN or idiopathic membranous nephropathy, membrano- or membranous proliferative GN (MPGN), including Type I and Type II, and rapidly progressive GN, proliferative nephritis, autoimmune polyglandular endocrine failure, balanitis including balanitis circumscripta plasmacellularis, balanoposthitis, erythema annulare centrifugum, erythema dyschromicum perstans, eythema multiform, granuloma annulare, lichen nitidus, lichen sclerosus et atrophicus, lichen simplex chronicus, lichen spinulosus, lichen planus, lamellar ichthyosis, epidermolytic hyperkeratosis, premalignant keratosis, pyoderma gangrenosum, allergic conditions and responses, allergic reaction, eczema including allergic or atopic eczema, asteatotic eczema, dyshidrotic eczema, and vesicular palmoplantar eczema, asthma such as asthma bronchiale, bronchial asthma, and auto-immune asthma, conditions involving infiltration of T cells and chronic inflammatory responses, immune reactions against foreign antigens such as fetal A-B-O blood groups during pregnancy, chronic pulmonary inflammatory disease, autoimmune myocarditis, leukocyte adhesion deficiency, lupus, including lupus nephritis, lupus cerebritis, pediatric lupus, non-renal lupus, extra-renal lupus, discoid lupus and discoid lupus erythematosus, alopecia lupus, systemic lupus erythematosus (SLE) such as cutaneous SLE or subacute cutaneous SLE, neonatal lupus syndrome (NLE), and lupus erythematosus disseminatus, juvenile onset (Type I) diabetes mellitus, including pediatric insulin-dependent diabetes mellitus (IDDM), adult onset diabetes mellitus (Type II diabetes), autoimmune diabetes, idiopathic diabetes insipidus, diabetic retinopathy, diabetic nephropathy, diabetic large-artery disorder, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, sarcoidosis, granulomatosis including lymphomatoid granulomatosis, Wegener's granulomatosis, agranulocytosis, vasculitides, including vasculitis, large-vessel vasculitis (including polymyalgia rheumatica and giant-cell (Takayasu's) arteritis), medium-vessel vasculitis (including Kawasaki's disease and polyarteritis nodosa/periarteritis nodosa), microscopic polyarteritis, immunovasculitis, CNS vasculitis, cutaneous vasculitis, hypersensitivity vasculitis, necrotizing vasculitis such as systemic necrotizing vasculitis, and ANCA-associated vasculitis, such as Churg-Strauss vasculitis or syndrome (CSS) and ANCA-associated small-vessel vasculitis, temporal arteritis, autoimmune aplastic anemia, Coombs positive anemia, Diamond Blackfan anemia, hemolytic anemia or immune hemolytic anemia including autoimmune hemolytic anemia (AIHA), pernicious anemia (anemia perniciosa), Addison's disease, pure red cell anemia or aplasia (PRCA), Factor VIII deficiency, hemophilia A, autoimmune neutropenia, pancytopenia, leukopenia, diseases involving leukocyte diapedesis, CNS inflammatory disorders, multiple organ injury syndrome such as those secondary to septicemia, trauma or hemorrhage, antigen- antibody complex-mediated diseases, anti-glomerular basement membrane disease, anti- phospholipid antibody syndrome, allergic neuritis, Behcet's disease/syndrome, Castleman's syndrome, Goodpasture's syndrome, Reynaud's syndrome, Sjogren's syndrome, Stevens- Johnson syndrome, pemphigoid such as pemphigoid bullous and skin pemphigoid, pemphigus (including pemphigus vulgaris, pemphigus foliaceus, pemphigus mucus-membrane pemphigoid, and pemphigus erythematosus), autoimmune polyendocrinopathies, Reiter's disease or syndrome, an immune complex disorder such as immune complex nephritis, antibody-mediated nephritis, polyneuropathies, chronic neuropathy such as IgM polyneuropathies or IgM-mediated neuropathy, and autoimmune or immune-mediated thrombocytopenia such as idiopathic thrombocytopenic purpura (ITP) including chronic or acute ITP, scleritis such as idiopathic cerato-scleritis, episcleritis, autoimmune disease of the testis and ovary including autoimmune orchitis and oophoritis, primary hypothyroidism, hypoparathyroidism, autoimmune endocrine diseases including thyroiditis such as autoimmune thyroiditis, Hashimoto's disease, chronic thyroiditis (Hashimoto's thyroiditis), or subacute thyroiditis, idiopathic hypothyroidism, Grave's disease, polyglandular syndromes such as autoimmune polyglandular syndromes (or polyglandular endocrinopathy syndromes), paraneoplastic syndromes, including neurologic paraneoplastic syndromes such as Lambert- Eaton myasthenic syndrome or Eaton-Lambert syndrome, stiff-man or stiff-person syndrome, encephalomyelitis such as allergic encephalomyelitis or encephalomyelitis allergica and experimental allergic encephalomyelitis (EAE), myasthenia gravis such as thymoma- associated myasthenia gravis, cerebellar degeneration, neuromyotonia, opsoclonus or opsoclonus myoclonus syndrome (OMS), and sensory neuropathy, multifocal motor neuropathy, Sheehan's syndrome, autoimmune hepatitis, lupoid hepatitis, giant-cell hepatitis, autoimmune chronic active hepatitis, lymphoid interstitial pneumonitis (LIP), bronchiolitis obliterans (non-transplant) vs NSIP, Guillain-Barre syndrome, Berger's disease (IgA nephropathy), idiopathic IgA nephropathy, linear IgA dermatosis, acute febrile neutrophilic dermatosis, subcorneal pustular dermatosis, transient acantholytic dermatosis, cirrhosis such as primary biliary cirrhosis and pneumonocirrhosis, autoimmune enteropathy syndrome, Celiac or Coeliac disease, celiac sprue (gluten enteropathy), refractory sprue, idiopathic sprue, cryoglobulinemia, amylotrophic lateral sclerosis (ALS; Lou Gehrig's disease), coronary artery disease, autoimmune ear disease such as autoimmune inner ear disease (AIED), autoimmune hearing loss, polychondritis such as refractory or relapsed or relapsing polychondritis, pulmonary alveolar proteinosis, Cogan's syndrome/nonsyphilitic interstitial keratitis, Bell's palsy, Sweet's disease/syndrome, rosacea autoimmune, zoster-associated pain, amyloidosis, a non-cancerous lymphocytosis, a primary lymphocytosis, which includes monoclonal B cell lymphocytosis (e.g., benign monoclonal gammopathy and monoclonal gammopathy of undetermined significance, MGUS), peripheral neuropathy, paraneoplastic syndrome, channelopathies including channelopathies of the CNS, autism, inflammatory myopathy, focal or segmental or focal segmental glomerulosclerosis (FSGS), endocrine opthalmopathy, uveoretinitis, chorioretinitis, autoimmune hepatological disorder, fibromyalgia, multiple endocrine failure, Schmidt's syndrome, adrenalitis, gastric atrophy, presenile dementia, demyelinating diseases such as autoimmune demyelinating diseases and chronic inflammatory demyelinating polyneuropathy, Dressler's syndrome, alopecia areata, alopecia totalis, CREST syndrome (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia), male and female autoimmune infertility, e.g., due to anti- spermatozoan antibodies, mixed connective tissue disease, Chagas' disease, rheumatic fever, recurrent abortion, farmer's lung, erythema multiforme, post-cardiotomy syndrome, Cushing's syndrome, bird-fancier's lung, allergic granulomatous angiitis, benign lymphocytic angiitis, Alport's syndrome, alveolitis such as allergic alveolitis and fibrosing alveolitis, interstitial lung disease, transfusion reaction, Sampter's syndrome, Caplan's syndrome, endocarditis, endomyocardial fibrosis, diffuse interstitial pulmonary fibrosis, interstitial lung fibrosis, pulmonary fibrosis, idiopathic pulmonary fibrosis, cystic fibrosis, endophthalmitis, erythema elevatum et diutinum, erythroblastosis fetalis, eosinophilic faciitis, Shulman's syndrome, Felty's syndrome, cyclitis such as chronic cyclitis, heterochronic cyclitis, iridocyclitis (acute or chronic), or Fuch's cyclitis, Henoch-Schonlein purpura, SCID, sepsis, endotoxemia, post- vaccination syndromes, Evan's syndrome, autoimmune gonadal failure, Sydenham's chorea, post-streptococcal nephritis, thromboangitis ubiterans, thyrotoxicosis, tabes dorsalis, chorioiditis, giant-cell polymyalgia, chronic hypersensitivity pneumonitis, keratoconjunctivitis sicca, idiopathic nephritic syndrome, minimal change nephropathy, benign familial and ischemia-reperfusion injury, transplant organ reperfusion, retinal autoimmunity, aphthae, aphthous stomatitis, arteriosclerotic disorders, aspermiogenesis, autoimmune hemolysis, Boeck's disease, enteritis allergica, erythema nodosum leprosum, idiopathic facial paralysis, chronic fatigue syndrome, febris rheumatica, Hamman-Rich's disease, sensoneural hearing loss, ileitis regionalis, leucopenia, transverse myelitis, primary idiopathic myxedema, ophthalmia symphatica, polyradiculitis acuta, pyoderma gangrenosum, acquired spenic atrophy, vitiligo, toxic-shock syndrome, conditions involving infiltration of T cells, leukocyte-adhesion deficiency, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, diseases involving leukocyte diapedesis, multiple organ injury syndrome, antigen-antibody complex-mediated diseases, antiglomerular basement membrane disease, allergic neuritis, autoimmune polyendocrinopathies, oophoritis, primary myxedema, autoimmune atrophic gastritis, rheumatic diseases, mixed connective tissue disease, nephrotic syndrome, insulitis, polyendocrine failure, autoimmune polyglandular syndrome type I, adult-onset idiopathic hypoparathyroidism (AOIH), myocarditis, nephrotic syndrome, primary sclerosing cholangitis, acute or chronic sinusitis, ethmoid, frontal, maxillary, or sphenoid sinusitis, an eosinophil-related disorder such as eosinophilia, pulmonary infiltration eosinophilia, eosinophilia-myalgia syndrome, Loffler's syndrome, chronic eosinophilic pneumonia, tropical pulmonary eosinophilia, granulomas containing eosinophils, seronegative spondyloarthritides, polyendocrine autoimmune disease, sclerosing cholangitis, sclera, episclera, Bruton's syndrome, transient hypogammaglobulinemia of infancy, Wiskott-Aldrich syndrome, ataxia telangiectasia syndrome, angiectasis, autoimmune disorders associated with collagen disease, rheumatism, allergic hypersensitivity disorders, glomerulonephritides, reperfusion injury, ischemic re-perfusion disorder, lymphomatous tracheobronchitis, inflammatory dermatoses, dermatoses with acute inflammatory components, and autoimmune uveoretinitis (AUR). 58. The method of any of paragraphs 45-52, wherein the T cell mediated immune response is an anti-drug specific response to a biologic, cell therapy, and/or gene therapy. 59. The method of paragraph 58, wherein the biologic, cell-therapy, or gene therapy is an adeno- associated virus (AAV) gene therapy, a genome editing agent, or enzyme replacement therapy. 60. The method of any of paragraphs 45-52, wherein the disease is type 1 diabetes and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: one or more of SEQ ID NOs: 8-17; HLA-A*0201 and at least one of SEQ ID NOs: 2013-2016 and 2031- 2033; or HLA-A*02:01 and at least one of SEQ ID NOs: 20128-2129. 61. The method of any of paragraphs 45-52, wherein the disease is vitiligo and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: SEQ ID NO: 18, 19, and one of 20-22; or comprises HLA-A*0201 and SEQ ID NO: 2018; or HLA-A*0301 and SEQ ID NO: 2019; or comprises HLA-A*2402 and SEQ ID NO: 2020; or HLA-A*0101 and SEQ ID NO: 2021. 62. The method of any of paragraphs 45-52, wherein the method is a method of treating and/or preventing GvHD and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: HLA-A*0101 and at least one of SEQ ID NOs: 2034-2037; or HLA-B*0702 and SEQ ID NO: 2038; or HLA-B*0801 and SEQ ID NO: 2039. 63. The method of any of paragraphs 45-52, wherein the disease is type 1 diabetes and the TCR recognition domain comprises one or more of SEQ ID NOs: 8-17; comprises HLA-A*0201 and at least one of SEQ ID NOs: 2013-2016 and 2031-2033; or comprises HLA-A*02:01 and at least one of SEQ ID NOs: 20128-2129. 64. The method of any of paragraphs 45-52, wherein the disease is vitiligo and the TCR recognition domain comprises SEQ ID NO: 18, 19, and one of 20-22; or comprises HLA-A*0201 and SEQ ID NO: 2018; or comprises HLA-A*0301 and SEQ ID NO: 2019; or comprises HLA-A*2402 and SEQ ID NO: 2020; or comprises HLA-A*0101 and SEQ ID NO: 2021. 65. The method of any of paragraphs 45-52, wherein the method is a method of treating and/or preventing GvHD and the TCR recognition domain comprises HLA-A*0101 and at least one of SEQ ID NOs: 2034-2037; or comprises HLA-B*0702 and SEQ ID NO: 2038; or comprises HLA-B*0801 and SEQ ID NO: 2039.   [00298] Some embodiments of the technology described herein can be defined according to any of the following numbered paragraphs: 1. A composition, comprising: a. a TCR recognition domain; and one or both of: b. an intracellular signaling domain; and c. a biomolecular interaction domain. 2. The composition of paragraph 1, comprising a TCR recognition domain and a biomolecular interaction domain. 3. The composition of paragraph 1, comprising a TCR recognition domain and an intracellular signaling domain. 4. The composition of paragraph 1, wherein the biomolecular interaction domain of c) is a first- type biomolecular interaction domain and the composition further comprises a signaling polypeptide comprising a second-type biomolecular interaction domain and an intracellular signaling domain; wherein the first-type and second-type biomolecular interaction domains bind specifically to each other. 5. The composition of paragraph 1, wherein the TCR recognition domain comprises a MHC (Major Histocompatibility Complex); a MHC-peptide complex; a featureless peptide MHC; or a MHC-peptide fusion. 6. The composition of paragraph 1, wherein the TCR recognition domain comprises a CD1 domain or a CD1 domain-ligand complex or fusion. 7. The composition of paragraph 6, wherein the CD1 is CD1d. 8. The composition of paragraph 1, wherein the TCR recognition domain is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form. 9. The composition of paragraph 1, a. wherein the biomolecular interaction domain(s) is a leucine zipper, or any binding pair of biomolecular interaction domains are collectively a pair of leucine zippers; b. wherein the biomolecular interaction domain(s) is a BZip (RR) and/or a AZip (EE), or any binding pair of biomolecular interaction domains are collectively a BZip (RR) and a AZip (EE); c. wherein the biomolecular interaction domain(s) is a PSD95-Dlgl-zo-1 (PDZ) domain; d. wherein the biomolecular interaction domain(s) is a streptavidin and/or a streptavidin binding biomolecular (SBP) or any binding pair of biomolecular interaction domains are collectively a streptavidin and a streptavidin binding biomolecular (SBP); e. wherein the biomolecular interaction domain(s) is a FKBP-binding domain of mTOR (FRB) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a FKBP-binding domain of mTOR (FRB) and a FK506 binding biomolecular (FKBP); f. wherein the biomolecular interaction domain(s) is a cyclophilin-Fas fusion biomolecular (CyP-Fas) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a cyclophilin-Fas fusion biomolecular (CyP-Fas) and a FK506 binding biomolecular (FKBP); g. wherein the biomolecular interaction domain(s) is a calcineurin A (CNA) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a calcineurin A (CNA) and a FK506 binding biomolecular (FKBP); h. wherein the biomolecular interaction domain(s) is a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1) or any binding pair of biomolecular interaction domains are collectively a gibberellin insensitive (GIA) and a gibberellin insensitive dwarf1 (GID1); i. wherein the biomolecular interaction domain(s) is a Snap-tag and/or a Halo tag, or any binding pair of biomolecular interaction domains are collectively a Snap-tag and a Halo tag; j. wherein the biomolecular interaction domain(s) is a T14-3-3-cdeltaC and/or a C- Terminal peptides of PMA2 (CT52), or any binding pair of biomolecular interaction domains are collectively a T14-3-3-cdeltaC and a C-Terminal peptides of PMA2 (CT52); k. wherein the biomolecular interaction domain(s) is a PYL and/or a ABI, or any binding pair of biomolecular interaction domains are collectively a PYL and a ABI; l. wherein the biomolecular interaction domain(s) is a nucleotide tag and/or a zinc finger domain, or any binding pair of biomolecular interaction domains are collectively a nucleotide tag and a zinc finger domain; m. wherein the biomolecular interaction domain(s) is a nucleotide tag, or any binding pair of biomolecular interaction domains are collectively a pair of nucleotide tags; n. wherein the biomolecular interaction domain(s) is a Fluorescein isothiocyanate (FITC) and/or a FITC binding biomolecular or any binding pair of protein interaction domains are collectively a FITC and a FITC binding protein; and/or o. wherein the protein interaction domain(s) is a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein or any binding pair of protein interaction domains are collectively a (R)-Phycoerythrin (R-PE/ PE) and a R-PE/PE binding protein. 10. The composition of paragraph 9, wherein the nucleotide tag is a DNA tag or dsDNA tag. 11. The composition of paragraph 2, further comprising a cell expressing or comprising the signaling polypeptide. 12. The composition of paragraph 11, wherein the TCR recognition domain is allogeneic, autologous, or xenogenic to the cell. 13. The composition of paragraph 11, wherein the TCR recognition domain is synthetic. 14. The composition of paragraph 11, wherein the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is allogeneic, autologous, or xenogenic to the cell. 15. The composition of paragraph 11, wherein the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is synthetic. 16. The composition of paragraph 11, wherein the cell is a NK cell, dendritic cell, regulatory T cell, or effector T cell. 17. The composition of paragraph 11, wherein the cell is further engineered to knockdown the native MHCI/II expressed on the cell surface.  18. A method of treating or preventing an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD in a subject in need thereof, the method comprising administering to the subject a composition of paragraph 1. 19. The method of paragraph 18, wherein the transplant is an allogeneic hematopoietic stem cell or solid organ transplantation. 20. The method of paragraph 18, wherein the malignant T cell condition is T cell acute lymphoblastic leukemia or T cell lymphoblastic lymphoma. 21. The method of paragraph 18, wherein the autoimmune disease is type 1 diabetes, vitiligo, multiple sclerosis, alopecia, celiac disease, pemphigus, rheumatoid arthritis, or scleroderma. 22. The method of paragraph 18, wherein the T cell mediated immune response is an anti-drug specific response to a biologic, cell therapy, and/or gene therapy. 23. The method of paragraph 22, wherein the biologic, cell-therapy, or gene therapy is an adeno- associated virus (AAV) gene therapy, a genome editing agent, or enzyme replacement therapy. 24. The method of paragraph 18, wherein the disease is type 1 diabetes and the TCR recognition domain comprises sequences with at least 95% sequence identity to: one or more of SEQ ID NOs: 8-17; HLA-A*0201 and at least one of SEQ ID NOs: 2013-2016 and 2031-2033; or HLA-A*02:01 and at least one of SEQ ID NOs: 20128-2129. 25. The method of paragraph 18, wherein the disease is vitiligo and the TCR recognition domain comprises sequences with at least 95% sequence identity to: SEQ ID NO: 18, 19, and one of 20-22; or HLA-A*0201 and SEQ ID NO: 2018; or HLA-A*0301 and SEQ ID NO: 2019; or comprises HLA-A*2402 and SEQ ID NO: 2020; or HLA-A*0101 and SEQ ID NO: 2021. 26. The method of paragraph 18, wherein the method is a method of treating and/or preventing GvHD and the TCR recognition domain comprises sequences with at least 95% sequence identity to: HLA-A*0101 and at least one of SEQ ID NOs: 2034-2037; or HLA-B*0702 and SEQ ID NO: 2038; or HLA-B*0801 and SEQ ID NO: 2039. EXAMPLES Example 1 [00299] Auto- and allo-reactive T cells attacking patient's or donor's cells or organs is the major cause of autoimmunity and transplant rejection. Current treatments involve stringent immunosuppressant therapy, which can lead to severe side effects. Specifically, depletion of auto and alloreactive T cells prevents autoimmunity and transplant rejection without immunosuppressant modalities. T cells engineered with a Chimeric antigen ligand (CAL) can redirect their specificity toward the pathologic T cells. T cells engineered with a Chimeric antigen receptor (CAR) can redirect their specificity and have already been approved to treat some types of B cell malignancies. Currently, engineered regulatory T cell, which can inhibit immune reactions in an antigen-dependent manner, is under investigation to expand the application of CAR T cells therapies such as autoimmune disease and transplant rejection. [00300] To specifically deplete disease causing T cells, described herein is a CAL and/or CAR that can recognize and bind to the specific T cell receptor on the disease causing T cells. This CAL and/or CAR is a composed of a peptide-HLA (e.g., a monomer or multimer or oligomer thereof) as the recognition domain fused to signaling domains from T cell receptors. A split version of the system can also be generated where the sytem is composed of two pieces. One piece is an universal CAR with T cell signaling domains as the intracellular portion and a biomolecular interaction domain as the extracellular domain. The second piece is an adaptor molecule, e.g, a CAL composed of a peptide-HLA oligomers (or monomer or multimer) fused to the cognate biomolecular interaction domain. [00301] Most CAR T cells therapies for autoimmune disease and transplant rejection uses regulatory T cells and are designed to target the organ to provide organ-specific, e.g., local immunosuppression. In contrast, the present, e.g., CAL, design is targeting the source immune cells inside that patient that are causing the disease. Accordingly, provided herein is a cell-based therapy for autoimmune diseases and transplant rejection. Example 2 [00302] Dendritic cells (DCs) are the interconnection between innate and adaptive immune system and are able to induce protective immune responses following stimulation by a variety of stimuli. Based on their phenotype and function, DCs can be divided into conventional DCs and plasmacytoid DCs (pDCs). Many studies have shown that DCs are essential mediators of pro- inflammatory or anti-inflammatory (tolerogenic) responses. The subsets of DCs that suppress immune responses are generally known as tolerogenic DCs because of their functions in inducing T cell apoptosis, anergy and regulatory T cells (Tregs). [00303] A tolerogenic state in DCs (tol-DC) can be induced using several pharmacological agents, such as cyclosporine A, rapamycin, dexamethasone, vitamin A, vitamin D or other cytokines and growth factors. Recently, the insertion of exogenous DNA to enhance tol-DC function has been investigated as a therapeutic possibility for treating autoimmune diseases. ‘Killer' DCs, obtained by transfection with DNA encoding FasL or TNF-related apoptosis-inducing ligand, efficiently induce T- cell apoptosis and prevent the rejection of heart grafts in animal models. [00304] However, the effect of these DCs are not specific. Overexpression of inhibitory molecules, including IL-10, TGF-β, CTLA-4 and SOCS1, enable tol-DCs to more efficiently induce Tregs which might cause systemic immune suppression. [00305] Alloreactive immune cells can be suppressed in a specific manner using the methods described herein, e.g., by using a universal UniCAR DC system that presents the donors' pMHC tetra / dextramers (e.g., the CAL) and binds to a genetically engineered DC (K/O MHC I / II but presents donor peptide on the tetra /dextramer), . In some embodiments, the pMHC can be provided as a monomer, oligomer, or multimer. [00306] Any form of the recipient pMHC (e.g., monomer / oligomer / tetramer / dextramer)+ targeting module (e.g, the CAL) can be used with CAR-DC for the suppression of allo-reactive T- cells in the recipients. A library of identified different alloantigens + correlated or associated with MHC monomers/ oligomers / tetramers / dextramers (e.g. HLA-A2+insulin peptide) and attached to the targeting molecules of the CAL and/or CAR system can be produced. Such a library can be commercially available to be combined with DCs for targeting and destroying the auto reactive T- cells. [00307] Cells can be produced that are genetically modified with the specific gene deletion of some genes (IL-12 and NF-κB, MHC I and MHC II [The targeting module will provide these cells with the donor's MHCs]) and insertion of some other genes (IL-10, TGF-β, CTLA-4 and SOCS1). These cells can be commercially ready to use and could be combined with the specific donor, pMHC and targeting module chosen from the aforementioned library. Example 3 [00308] Alloreactive memory T cells have been shown to have the key role in the activation of the recipient immune system and rejection of the allograft. They are known to be the main barrier for tolerance induction through mixed chimerism and other strategies. These cells are very resilient and not responsive to the preconditioning protocols and they recover from irradiation and T cell depletion rapidly. By using CAR-T-effector (Conventional, Supra, Universal CAL or CAR) and attaching any form of the donors' pMHC (monomer, oligomer, tetramer or dextramer) (e.g., a CAL) to the system, the resulting compositions of the invention can be used to decrease or eliminate the need for improved immunosuppressant therapy in the context of transplantation. The engraftment of hematopoietic stem cells can achieve durable mixed chimerism with minimal or no need for toxic preconditioning protocols. [00309] If donor pMHC (monomer/oligomer/tetramer/dextramer; e.g., a CAL) is used in combination with CAR T effector for the abrogation of the allo/xeno reactive T-cells in the recipient, the need for immunosuppressants would be decreased or eliminated. A library of different Donor MHC monomers/oligomers/tetramers attached to the targeting molecules (e.g., the CALs) of the SUPRA / UNI / universal CAL and/or CAR system can be produced to be commercially available. A shelf ready library of the most prevalent MHC (+ immunologic wildtype or synthetic peptide molecules that could be used to be combined with the MHC) monomers/oligomers/tetramers could be commercially produced and offered to be used with this system. Example 4 [00310] The involvement of the adaptive immune system in auto-immune diseases has been extensively characterized. T cells are critical contributors to autoimmune diseases.Conventional T (Teff or T helper) cell subsets that play a role in B cell activation and differentiation produce various inflammatory cytokines and destroy target cells with direct cytotoxicity. CAR-T cells have been used to destroy autoimmune B and T cells in a fashion similar to the way in which CD19CAR T cells target and destroy leukemia cells. Targeting autoreactive memory T and B-cells has shown some results. As these methods are nonspecific, they induce some extent of generalized immune suppression and they are not completely effective. The correlation of particular peptide+MHC molecules with certain autoimmune conditions have been expansively studied. By using the available human/animal model pMHC monomer/oligomer/tetra/dextramers and combining them with the SUPRA / UNI / universal CAL and/or CAR technology, we are able to target the autoreactive immune cells in a highly specific manner. [00311] If any form of auto-antigen on pMHC (monomer/oligomer/tetramer/dextramer) (e.g., the CAL) is used in combination with CAR T effector / Treg to abrogate autoreactive T-cells in the recipient, the need for immunomodulatory drugs would be decreased or eliminated. A library of identified autoantigens and correlated MHC monomer/oligomer/tetra/dextramers (e.g. HLA- A2+insulin peptide) attached to the targeting molecules of the SUPRA / UNI / universal CAL and/or CAR system can be produced to be commercially available to be combined with ideal SUPRA or universal CAR T-reg / T effector for targeting and destroying the autoreactive T-cells. Example 5 [00312] Although new advances have increased survival after allogeneic hematopoietic stem cell transplantation (HCT), chronic graft-versus-host disease (GvHD) is still the leading cause of late morbidity and mortality after transplant. Current treatment choices are limited in efficacy specifically in steroid-refractory disease, and there is no robust data to help with management decisions. [00313] Adoptive T cell therapy (ACT) refers to the therapeutic use of T cells. T cells genetically engineered to express chimeric antigen receptors (CAR) constitute the most clinically advanced form of ACT approved to date for the treatment of CD19-positive leukemias and lymphomas and have produced remarkable results in the clinic. The technology described herein permits the opportunity to target diseased cells with specific antigens or receptors very accurately. In the context of GvHD, universal UNICAR T cells can be designed to find the recipient reactive T cell in the donor T cell populations. If the pMHC of the recipients is fused to a Target Module that binds to the UniCAR (e.g, to form a CAL), this system can recognize the TCR repertoires in the donor T/B cell population that can bind to those MHCs. If the recipients’ pMHCs are fused to a target module that binds to the universal CAR, this system can recognize and bind to the T cell repertoires in the donor T cell population that can bind to those MHCs. [00314] If the recipient pMHC (monomer / oligomer / tetramer / dextramer) (e.g., a CAL) is used in combination with CAR T effector / Treg for the abrogation of the recipient reactive T-cells in the donor HSC, these reactive T-cells will be depleted and GvHD would not happen. A library of identified different antigens + correlated human / animal models MHC tetramers / dextramers (e.g. HLA-A2+ peptide) attached to the targeting molecules of the SUPRA / UNI CAR system can be produced to be commercially being available to be combined with ideal SUPRA CAR T-reg / T effector for targeting and destroying the reactive T-cells against the recipients. A library of wild type and/or synthetic MHC monomers/oligomers (e.g. HLA-A2+ peptide) attached to the targeting molecules of the universal CAL system can be generated to be mixed with universal CAL T-reg / T effector for targeting and killing the reactive T-cells against the recipients within the donor T cell population. Example 6 [00315] Although new advances have increased survival after allogeneic hematopoietic stem cell transplantation (HCT), chronic graft-versus-host disease (GvHD) is still the leading cause of late morbidity and mortality after transplant. Current treatment choices are limited in efficacy specifically in steroid-refractory disease, and there is no robust data to help with management decisions. [00316] Adoptive T cell therapy (ACT) refers to the therapeutic use of T cells. T cells genetically engineered to express chimeric antigen receptors (CAR) constitute the most clinically advanced form of ACT approved to date for the treatment of CD19-positive leukemias and lymphomas and produced remarkable results in clinical. This technology provides the opportunity to target the cells with specific antigens or receptors very accurately. In the context of GvHD, UNICAR T cells can be designed to find the recipient reactive T cell in the donor T cell populations. If the pMHC of the recipients be fused to a Target Module that bind to the UniCAR, this system can recognize the TCR repertoires in the donor T/B cell population that can bind to those MHCs. [00317] If the recipient pMHC (tetramer / dextramer) is used in combination with CAR T effector / Treg for the abrogation of the recipient reactive T-cells in the donor HSC, these cells will be depleted and GvHD would not happen. A library of identified different antigens + correlated human / animal models MHC tetramers / dextramers (e.g. HLA-A2+ peptide) attached to the targeting molecules of the SUPRA / UNI CAR system can be produced to be commercially being available to be combined with ideal SUPRA CAR T-reg / T effector for targeting and destroying the reactive T- cells against the recipients. Example 7 - Engineered Lymphocytes for Prevention of Pediatrics Vascularized Composite Allograft Rejection Engineered [00318] Described herein is the development of a clinically applicable tolerance-inducing regimen for VCA transplantation through the establishment of stable mixed chimerism, augmented by the state-of-the-art CAL and/or CAR T cell adoptive immunotherapy and synthetic biology. [00319] Mixed chimerism in animal models and human allograft recipients have only shown to be transient, suggesting that tolerance here relies on the peripheral inactivation of donor-specific T cell. The difficulty in achieving durable mixed chimerism and long-term graft acceptance is the presence of high levels of alloreactive memory T cells that are known to hinder tolerance induction in sensitized rodents, NHPs, and human. The present approach to achieving stable mixed chimerism is to utilize advanced engineering techniques to generate CAL and/or CAR T cell therapeutics to specifically delete the recipient’s alloreactive memory immune cells that are reactive against the donor bone marrow and tissue cells to help with engraftment of HSCT and stable mixed chimerism. Selective depletion of memory T lymphocytes with CAL and/or CAR-T cell therapy can help to achieve durable mixed chimerism and tolerance which eventually leads to an immunosuppressant free regimen. Currently this challenge is addressed by administering several immunosuppressant combinations in combination with intense whole-body irradiation which result in depletion of all the immune cells as a consequence of nonspecific targeting. This shotgun approach imposes a severe immune compromised state to the recipients which subsequently brings myriads of consequences including opportunistic infections and malignancies. The technology herein can delete specifically memory T cells (Aim 1) or only alloreactive memory T cells (Aim 2): [00320] Aim 1: It has been shown that CD127+/CD45RO+ memory T cells have a significant role as central, effector and stem cell memory T cells and are known as the most potent constituents of the alloreactive T cell repertoire. These cells have been shown to be the major contributor in chronic rejection of the allograft. To address the challenge of memory T cells a CAL and/or CAR T-effector cell can be generated with scfv against two general markers of memory T cells (CD127+ and CD45RO+). This will be followed by the induction of mixed chimerism protocol in a double humanized mouse model. The results from this aim will show depletion of memory T-cells increases the efficacy of mixed chimerism protocol by improving the engraftment of hematopoietic stem cells hence helping to eliminate or decrease the need for immunosuppressant in mixed chimerism induction protocols. [00321] Aim 2: Due to the diversity of antigen-specific T cells in the context of transplantation, a CAL and/or CAR system is provided that has the flexibility to locate and attack different alloreactive T cells simultaneously. CAL and/or CAR T-eff cells with donor pMHC can target alloreactive T-cells that have TCR against the donor MHCs. We will start with single and double specific antigen-MHC systems. Then, we will utilize a peptide library that is generated from the donor’s allograft peptidome to be loaded on commercially-available, exchangeable peptide-MHC multimers. The combination of these pMHCs and CAL and/or CAR T cells will be used to target and destroy alloreactive T cells of the recipients. This development provides a flexible CAL and/or CAR design that can target antigen specific alloreactive T cells. [00322] Described herein is the investigation of a novel adaptive immune cell therapy strategy, making use of the CAL and/or CAR T-cell technology, for VCA tolerance induction. Example 8 - Engineered Lymphocytes for Prevention of Pediatrics Vascularized Composite Allograft Rejection [00323] Significance: There are nearly 2 million people living with limb loss in the US, where over 185,000 amputations occur each year, most of which are sustained by victims of burn injuries, traffic accidents, and medical conditions1.112600 children with amputations were treated in US emergency departments alone from 1990 to 2002. Children are frequently the victims of severe burns with limb loss2 and they will suffer from its consequences for the rest of their lives. Over the last decade, vascularized composite allotransplantation (VCA), the transplantation of limbs and face from a deceased donor, has become a good alternative for the reconstruction of devastating injuries of these specialized tissues. VCA represents a unique new treatment option for severe soft tissue defects following burn injury to achieve both psychosocial and functional rehabilitation3. The world’s first pediatric bilateral hand transplant was successfully performed between an unrelated donor-recipient pair in 20164. The shortcoming is that despite the use of potent immunosuppressive drugs, acute rejection of “foreign” VCA occurs in up to 90% of patients5. Increased doses of immunosuppression, with numerous life-threatening complications, is the current approach to prevent loss of the VCA5. [00324] During the course of evolution, our immune system has gained the ability to recognize self from nonself cells and attack the “foreigners” by cells such as T Lymphocytes. The Human Leukocyte Antigen (HLA) system (Major Histocompatibility Complex [MHC] in human) comprises cell surface molecules specialized to present antigenic peptides to the T-cell67. These peptides are known as Minor Histocompatibility Antigens (MiHA). MiHA sequences can differ among individuals and many of these differences can be recognized by T cells, hence causing the initiation of the rejection process. T-cells are trained to recognize self from non-self MHC / peptides. Each person can present a combination of 12 different MHC class I / II on the surface of his/her cells. (HLA) typing is used to match recipients and donors MHCs for transplants. A close match between a donor’s and a recipient's HLA markers is essential for a successful transplant outcome. A potential donor must match a minimum of 6-8 HLA markers which makes finding an ideal donor very difficult. Even after finding the semi ideal donor these patients will be on immunosuppressants for the rest of their life8. While these drugs are generally effective, the sequelae of such chronic immunosuppression are well known, and most recipients continue to develop myriad side effects and complications, including opportunistic infections, multiple organ dysfunction, and malignancies. [00325] Transplantation tolerance that allows for the elimination of immunosuppressive drugs, has been the “holy grail” for transplantation medicine since its beginnings9. Developing a reproducible, safe tolerance induction protocol would expand VCA use in burn patients as well as in congenital anomalies as demonstrated by the successful transplantation of the arm and hand6 and the lower extremity10. The extension into other organ transplants is also a clear direction to broaden the significance. The overall goal of this research is to enable the clinically applicable tolerance-inducing regimen for VCA transplantation through the establishment of stable mixed chimerism, augmented by the state-of-the-art adoptive immunotherapy and synthetic biology. [00326] Tolerance can be induced through the development of a mixed chimerism protocol for VCA transplants in partially mismatched subjects8,11. Mixed chimerism is the use of a donor hematopoietic stem cell transplant (HSCT) along with a VCA to induce a hybrid immune system in the recipient that recognizes the donor VCA as “self” and therefore does not reject it. Mixed chimerism in nonhuman primates (NHPs) and human allograft recipients has only shown to be transient, suggesting that tolerance here relies on the peripheral inactivation of donor-specific T cell. The difficulty in achieving durable mixed chimerism and long-term graft acceptance is the presence of high levels of alloreactive memory T cells that are known to hinder tolerance induction in both sensitized rodents 12, 13and NHPs14,15. The present approach to achieving stable mixed chimerism is to utilize advanced engineering techniques to generate T cell therapeutics to specifically delete the recipient’s alloreactive memory immune cells that are reactive against the donor bone marrow and tissue cells. [00327] Cellular Immunotherapy [00328] Recently, T cells that are genetically engineered to express chimeric antigen receptor (CAR) produced remarkable results for the treatment of CD19-positive leukemias and lymphomas, leading to complete remissions in pediatric patients 16,17 and evidencing that immune cells can be targeted and eliminated by CAR T cell technology. Thus far, CAR T therapeutics have led to two FDA-approved therapies—the two medication were licensed by Novartis and Gilead in the value 9 and 12 billion dollars18. First-generation CARs contained only an extracellular antigen-binding domain, a transmembrane domain, and the signaling domain of CD3z. In later generation CARs, intracellular costimulatory domains, derived from either CD28 / 4-1BB were added to enhance proliferation, persistence, and activity 19. Recently, to expand the capability of CAR T cells, we introduced a split, universal, and “programmable” (SUPRA) CAR system that simultaneously encompasses multiple critical features 20. This system has the ability to switch targets without reengineering the T cells, finely tune T cell activation strength, and sense and respond to multiple antigens. These features make the split CAR-T technology uniquely suitable for targeting alloreactive T-cells in recipients and enhancing transplantation tolerance. [00329] Mixed Chimerism and Tolerance induction in VCA [00330] Large animal models of Mixed Chimerism: Our laboratory achieved transient mixed chimerism in two-haplotype full-mismatch MGH miniature swine after musculocutaneous VCA and nonmyeloablative recipient conditioning (total body irradiation (TBI) and transient T-cell depletion) concomitant to bone marrow transplantation (BMT)21. While the immunomodulatory effect of BMT was demonstrated through in vitro unresponsiveness to the donor, the chimerism levels fell rapidly following cessation of immunosuppression with resulting VCA rejection and loss. This was the first experimental VCA study to demonstrate that transient chimerism alone is neither sufficient for achieving transplant tolerance nor prolonging VCA survival. [00331] Recently, in order to progress towards clinical translation, the previous Mixed Chimerism Induction Protocols (MCIP) in miniature swine were modified to remove T-cell depletion completely in exchange for a higher dose, TBI and TI commencing two days prior to surgery. Following osteomyocutaneous VCA, a peri-operative course of co-stimulatory blockade was given (on POD0, 2, 4 and 6) in addition to a 30-day regimen of tacrolimus (target levels: 10-15 ng/mL) before gradual taper to discontinuation on POD 4522. With this MCIP, we were indeed able to achieve stable mixed chimerism (n=2) following donor BMT without the development of split tolerance in MHC class I mismatched/class II matched recipients and have successfully withdrawn all immunosuppression for >100 days. Building on these results, the next iteration towards clinical translation of these studies is to decrease the toxicity of current protocol to be able to extend it for achieving stable mixed chimerism across full MHC-mismatch barriers - which can utilize immunomodulatory strategies such as CAL and/or CAR T cell therapy for depletion of alloreactive memory T cells that may eventually result in elimination or decrease in the immunosuppressive regimen for VCA transplantation. [00332] Small animal models of Mixed Chimerism: The principles that underlie tolerance induction through mixed chimerism induction protocol are the same for all species. Briefly, mice can be conditioned with intraperitoneal mAb injections including, anti-CD8 and anti-CD40L, anti-CD154, costim. blockade (on day 0 with respect to the BMT). This will be combined with, TBI to be given 6 h before injection of 2.5105bone marrow cells (BMC). The compositions and methods described herein can be used for improving mixed chimerism induction protocol in mice models. [00333] Described herein is a CAL and/or CAR designed to target and destroy alloreactive memory T cells thereby improving the engraftment of hematopoietic stem cells and achieving durable mixed chimerism with minimal or no need for toxic preconditioning protocols. To test this multi- pronged approach, we will first evaluate two different strategies of targeting alloreactive memory T cells. The first approach is to design a CAL and/or CAR system that will specifically attack memory T cells through surface markers that uniquely identify this cell population regardless of their TCR specificity. This approach will spare the other immune cells, and, thus retain a healthy immune system. [00334] A second approach is to design CAL and/or CARs that specifically bind to alloreactive TCRs on the recipient’s T cells. To do so, instead of using a single-chain variable fragments (scFvs) that is in all classical CAR T cells, we will use peptide-MHC multimers as the ligand recognition domain on the CAL and/or CAR. However, due to a large number of unique alloreactive TCR, many different CAL and/or CAR/pMHCs are needed. This poses a challenge in designing and introducing these CAL and/or CARs into T cells. To circumvent this challenge, we propose to use a two- component split CAL and/or CAR design composed of universal CAL and/or CAR and an adaptor molecule that bridges the CAL and/or CAR T cells to alloreactive T cells. The universal CAL and/or CAR comprises a scFv targeting FITC fused to TCR signaling domains. The adaptor molecules consist of pMHC tetramer fused to a FITC. The addition of pMHC tetramer will bind to the alloreactive TCR and recruit the universal CAL and/or CAR T cell to kill alloreactive T cells. This design allows us to be able to target many variants of TCR with only one CAL and/or CAR. Next, the donor MHCs will be loaded with donor tissue specific peptides that will be generated by utilizing previously published protocols. We can first design CAL and/or CARs to target mouse MHC in a humanized / skin graft mouse model. [00335] Data- Targeting Alloreactive T-cells with peptide-MHC tetramers The following have been addressed by in vitro data: 1. Whether targeting a memory T cell by using CAR T + pMHC multimer is obtainable. In this embodiment, the anti-FITC CAR expressed by the Jurkat cells is a CAR and the pMHC multimer is a CAL. A. Would the Tetramer efficiently bind to the CAL and/or CAR and target T cells? B. Would the Jurkat CAL and/or CAR T cells get activated by attaching to the adaptor + Target C. Would the Target OT I cells get activated and try to kill the Killer Target T cells? 2. Whether killing a memory T cell with primary CD8 T cell + pMHC multimer would be feasible? [00336] 1. Peptide-MHCs Tetramers activate Jurkat Cells but not the Target Cells [00337] We used anti-FITC CAR Jurkat cells. These cells are an immortalized line of T lymphocyte cells that are used to study activation, signaling, and expression of various chemokine receptors of T cells. Jurkat cells cannot act as a killer cell but will respond to and get activated by the ligands in the same way as actual T cells. Fig.1 shows tetramers attaching to and staining OTi target T cells in a dose dependent fashion. [00338] The anti-FTC CAR Jurkat cells used in these experiments comprise the following nucleotide sequence and express the following polypeptide sequence. [00339] SEQ ID NO: 2747. DNA sequence of anti-FITC CAR. Nucleotides 1-9 = Kozak sequence. Nucleotides 10-78 = CD8a leading peptide. Nucleotides 79-831 = anti-FITC ScFv. Nucleotides 832-861 = myc. Nucleotides 874-1008 = CD8 hinge. Nucleotides 1009-1211 = CD28. Nucleotides 1212-1338 = 4-1BB. Nucleotides 1339-1677 = CD3ζ. Nucleotides 1678-2388 mCHERRY. gccgccaccATGGCCTTACCAGTGACCGCCTTGCTCCTGCCGCTGGCCTTGCTGCTCCACGCC GCCAGGCCGGCTGCAcaagttcagctcgttgaatccggcggaaaccttgttcaaccggggggttccctccgccttagttgtgccgcat ctggttttacgtttggatcattttccatgtcatgggtgcggcaggctcccggggggggactcgaatgggttgcgggtcttagcgcccgatcaagcctc actcactatgcagatagcgtaaaaggcaggtttacaatctcacgagacaacgcgaagaactcagtctatcttcagatgaactctctccgagtcgagg atacggctgtctattattgtgcacgccgctcctacgattcctcaggctacgccgggcacttttattcatacatggatgtctggggccagggaaccttgg taactgtgtctggaggaggtggatcagggggtggcggaagtggcggaggtggatcctccgtcttgacccagccctcctcagtcagtgctgcccct ggccaaaaggttacaatatcatgttcaggtagtacgtcaaacataggcaacaactacgtgagttggtaccagcaacatcctggcaaagcacctaagt tgatgatctatgatgtcagtaagcggccatctggggtacccgaccgattctcaggctcaaagagcggaaactccgcgtccctcgacataagtggcct ccaatccgaggacgaggccgactactactgtgctgcttgggacgactctctctcagagtttttgtttgggaccggtacaaaactgactgttcttgggG AACAAAAACTCATCTCAGAAGAAGATCTGAATGGGGCCGCAACCACGACGCCAGCGCCG CGACCACCAACACCGGCGCCCACCATCGCGTTGCAGCCCCTGTCCCTGCGCCCAGAGGC GTGCCGGCCAGCGGCGGGGGGCGCAGTGCACACGAGGGGGCTGGACTTCGCCTGTGATT TTTGGGTGCTGGTGGTGGTTGGTGGAGTCCTGGCTTGCTATAGCTTGCTAGTAACAGTGG CCTTTATTATTTTCTGGGTGAGGAGTAAGAGGAGCAGGCTCCTGCACAGTGACTACATGA ACATGACTCCCCGCCGCCCCGGGCCCACCCGCAAGCATTACCAGCCCTATGCCCCACCAC GCGACTTCGCAGCCTATCGCTCCAAACGGGGCAGAAAGAAACTCCTGTATATATTCAAA CAACCATTTATGAGACCAGTACAAACTACTCAAGAGGAAGATGGCTGTAGCTGCCGATT TCCAGAAGAAGAAGAAGGAGGATGTGAACTGAGAGTGAAGTTCAGCAGGAGCGCAGAC GCCCCCGCGTACAAGCAGGGCCAGAACCAGCTCTATAACGAGCTCAATCTAGGACGAAG AGAGGAGTACGATGTTTTGGACAAGAGACGTGGCCGGGACCCTGAGATGGGGGGAAAG CCGAGAAGGAAGAACCCTCAGGAAGGCCTGTACAATGAACTGCAGAAAGATAAGATGG CGGAGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGGGCACGA TGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTTCACATGCA GGCCCTGCCCCCTCGCGGCatgGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAA GGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGA TCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGT GACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGG CTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCC CGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGA CCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACC AACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTC CGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAG CTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCC CGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACG AGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGC ATGGACGAGCTGTACAAGtaa [00340] SEQ ID NO: 2748. Peptide sequence of anti-FITC CAR. Residues 1-21 = CD8a leading peptide. Residues 22-274 = anti-FITC ScFv. Residues 275-284 = myc. Residues 289-333 = CD8 hinge. Residues 334-401 = CD28. Residues 402-443 = 4-1BB. Residues 444-556 = CD3ζ. Residues 557-792 mCHERRY. MALPVTALLLPLALLLHAARPAAQVQLVESGGNLVQPGGSLRLSCAASGFTFGSFSMSWVR QAPGGGLEWVAGLSARSSLTHYADSVKGRFTISRDNAKNSVYLQMNSLRVEDTAVYYCAR RSYDSSGYAGHFYSYMDVWGQGTLVTVSGGGGSGGGGSGGGGSSVLTQPSSVSAAPGQKV TISCSGSTSNIGNNYVSWYQQHPGKAPKLMIYDVSKRPSGVPDRFSGSKSGNSASLDISGLQS EDEADYYCAAWDDSLSEFLFGTGTKLTVLGEQKLISEEDLNGAATTTPAPRPPTPAPTIALQP LSLRPEACRPAAGGAVHTRGLDFACDFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLH SDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSKRGRKKLLYIFKQPFMRPVQTTQEEDGCS CRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGK PRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQ ALPPRGMVSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTK GGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDS SLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGH YDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK [00341] Next, we showed that binding of adaptors to the OTi target T cells would not activate them. To evaluate that, we looked at CD69 expression which is a general activation marker for T cells. Interestingly, although adaptor binds to and stains target T cells (Fig.1) it did not cause activation of OTi target T cells (Fig.2). [00342] B. Subsequently, we studied the activation of Jurkat CAR T cells after binding to the adaptors. As shown in Fig.3, binding of adaptor to the Jurkat T cells causes high expression of CD69 at all measured time points. [00343] This activating binding of Jurkat cells - pMHC is in contrary to the binding of OTi (target) - adaptor (Fig.2). The best explanation for this interesting finding may lie behind the fact that FITC / anti-FITC binding between Jurkat - pMHC is much stronger than OT I - pMHC as the first one is a high affinity antigen-antibody binding and the second one is a weaker TCR-pMHC binding. This difference in the strength of binding between CAR - adaptor and Target - adaptor makes this novel approach an ideal setting for the purpose of targeting memory T cells. [00344] C. We also looked at the Jurkat cells count after 24 hrs. as an indicator of their condition and whether this activation would cause any cell death indicated by a decrease in their numbers (Fig. 2). [00345] 2. Primary CD8 anti-FITC CAR T cells can specifically target and kill alloreactive OTi cells. [00346] The previous set of experiments with Jurkat +adaptor +OTi target cells confirmed the feasibility of targeting alloreactive T cells by adaptor molecules and showed activation of CAR T cells against the target cells. Next, we wanted to study whether primary CD8 CAR T killer cells + adaptor molecules can be used not only to identify but also to kill the OTi T cells. As shown in the previous set of experiments the binding between pMHC and target cell was not causing activation of target T cells in contrary to the adaptor (FITC+ pMHC, e.g., the CAL) - CAR T cells binding. Hence, we used human primary CD8 T cells to see whether the strength of CART +adaptor (e.g, CAL) +target is enough to initiate and accomplish the killing process. Different concentrations of adaptor+CD8 CAR T were co-cultured with OTi T cell to see the activation and cytotoxicity of each T cell type. As shown in Figs.4 and 5, CD8 CAR T cells cytotoxicity on OTi cells is dependent on the adaptor (e.g., CAL) concentration and was over to 50% with the maximum dose that we used. Additionally, this cytotoxicity is highly specific. (Fig.5) Human CD8 anti-FITC CAR T cells were used here. Similar validations can be conducted with mouse anti-FITC CARs in both in vivo and in vitro experiments. [00347] Described herein is a novel method to use pMHC multimers for specifically targeting and destroying allo / autoreactive T cells responsible for graft rejection and autoimmune diseases. Our approach is the first demonstration of utilizing pMHC multimer (e.g, CAL) in combination with CAR T cell technology for specific targeting of alloreactive T cell population. We believe this approach is the most specific strategy for eliminating the destructive role of alloreactive T cells in transplantation. The potential application of this method extends far beyond elimination of immunosuppressants in transplantation rejection and GVHD treatment and could be applicable to many autoimmune conditions including type 1 diabetes, multiple sclerosis, rheumatoid arthritis, scleroderma, and myriad disorders that originate from auto reactive T cells dysfunction. [00348] Provided herein is a novel approach for targeting the memory repertoire with anti CD45RO / CD127 with CAL and/or CAR T cell therapy. Although this strategy might not be as specific as using pMHC multimers, it still conveys a significant novelty. By depleting the memory T cells population there is much less of a need for induction protocols. [00349] Also contemplated herein are individualized peptide libraries based on the differences between the recipient and the donor proteome and immune-peptidome. Hundreds to thousands of MHC-associated peptides can now be identified in a single measurement using optimal biological model systems. As mentioned earlier, studies involving MHC identical grafts indicate that minor histocompatibility antigens may also mediate rejection. Human Immuno-Peptidome Project (HIPP) is an international project that was created to accelerate research toward robust and comprehensive analysis of immunopeptidome. HIPP has published the technical guidelines that represent the information required to sufficiently conduct and interpret all of the immunopeptidomics experiments. These nonhomogeneous peptides can potentially initiate rejection through activating alloreactive T cells. [00350] By utilizing these peptides in combination with exchangeable MHC tetramer systems, we can employ these peptides to identify and target donor reactive T cells. The default peptide on exchangeable peptide MHC systems can be removed by UV light exposure and replaced by any desired peptide. The donor multimers MHCs can be generated using commercially available services, unloaded with UV and then loaded with donor tissue specific peptides that will be generated by utilizing previously published protocols. By utilizing these peptides in combination with exchangeable MHC tetramer systems, we can employ these peptides to identify and target donor reactive T cells. [00351] As described herein, selective depletion of memory T cells with CAR-T cell therapy can help in achieving durable mixed chimerism and tolerance which lead to the elimination or decrease in immunosuppressive regimens. Currently this challenge is addressed by administering intense whole- body irradiation with several immunosuppressant combinations for targeting all the immune cell populations. This shotgun approach results in severe immune compromised state in the recipient which subsequently brings myriads of side effects and complications, including opportunistic infections, reno-vascular dysfunction, and malignancies. [00352] Memory T cells (CD127+/CD45RO+) are known to be the main contributor in rejecting allografts 2425. Hence, their depletion is expected to help engraftment of HSC and increase the survival of allografts. To investigate this hypothesis, we will generate CAL and/or CAR T-effector cell with scfv against a general marker of memory T cells (CD127+and CD45RO+). This will be followed by induction of mixed chimerism protocol in a humanized mice model. The engraftment and stability of mixed chimerism will be followed by the presence of donor lymphoid and myeloid cells in the recipient blood stream until the study endpoints. [00353] Activity 1.1 Generation and evaluation of AND logic CAL and/or CAR T cells to only target cells co-expressing both CD127+ and CD45RO+. Since no single surface marker can uniquely specify memory T cells, we will need to target a combination of CD markers to ensure specificity. We chose CD127 and CD45RO because they have proven to uniquely identify memory T cells 2627. To accomplish this combinatorial targeting, we will leverage an advance CAR system called SUPRA. This (SUPRA) CAR is a two-component receptor system comprises a universal receptor (zipCAR) expressed on T cells and a targeting scFv adaptor (zipFv). The zipCAR universal receptor is generated from the fusion of intracellular signaling domains (Figure 6) and a leucine zipper as the extracellular domain. The zipFv adaptor molecule is generated from the fusion of a cognate leucine zipper and an scFv. The scFv on the zipFv binds to the antigen, while the leucine zipper binds to and activates the zipCAL and/or zipCAR on the T cells. For transplantation immunotherapy, these features can mitigate over-activation and enhance specificity. [00354] The SUPRA CAL and/or CAR system can also be designed to perform AND combinatorial logic of antigen recognition. Orthogonal leucine zipper pairs can be used to generate CAL and/or CARs with split signaling domains (e.g., CD3z, CD28, 4-1BB), thus enabling independent and simultaneous control of these pathways (Fig 6B). T cells need both CD3z and costimulatory signaling simultaneously to be fully activated therefore, each CAL and/or CAR can be readily paired with scFvs that target different antigens, thereby enabling two antigen combinatorial and logical antigen sensing. [00355] Using the SUPRA system in human primary T cells, we have demonstrated that the activity of SUPRA CARs can be finely regulated via multiple mechanisms to limit over-activation (Fig.7). SUPRA CAR T cells can also logically respond to multiple antigens for improved target specificity. Furthermore, orthogonal SUPRA CARs can be used to inducibly regulate multiple signaling pathways or T cell subtypes to increase the breadth of immune responses that can be achieved. A summary of the SUPRA CAL and/or CAR T cell features used for this project can be found in Figs.6A-6B, 7A-7D. [00356] zipCAR Receptor Construct Design: As described herein, AND logic CAL and/or CAR T are generated by fusing different leucine zippers to the hinge region of the human CD8a chain and transmembrane and cytoplasmic regions of the human CD28, or CD3z signaling endo-domains. All CAL and/or CARs can contain a myc tag to verify surface expression. Besides, these primary T cells will also be fused to mCherry after CD3z chain to visualize expression. [00357] zipFv Construct Design: The zipFv molecules contain an scFv against CD127 fused to an SYN2 (to stimulate the CD3z SYN1 zipCAR), and an scFv against CD45RO fused to a JUN zipper (to stimulate the costimulatory FOS zipCAR). The scfvs sequences are available and can be constructed rapidly through commercial DNA synthesis28. [00358] zipCAR transduction: Human PBMC are purified using separation kits. are introduced into primary human T cells via retroviral transduction. Expression of zipCARs is quantified via myc and V5-tag immunostaining and flow cytometry. As controls, a zipCAR that contains both CD3z and CD28 (i.e. SYN1-CD28-CD3z) can be used. This zipCAR cannot perform logic computation. A CD45RO-SYN2 or CD127-SYN2 zipFv can be added to ensure that zipCARs can kill CD45RO+ or CD127+ cells. These controls will also serve as reference for specificity. [00359] Evaluate the activity and efficacy of anti-CD127+/CD45RO+CAR T cells in vitro [00360] Co-culturing PBMCs with CD127+ /CD45RO+ cells with SUPRA CAR T cells to investigate the specificity of targeting [00361] This experiment examines whether this system specifically kills CD127+ and CD45RO+ double positive T cells amongst a large population of PBMCs. PBMCs are obtained either from known VCA recipients or Mass General Blood Bank Center after being approved by IRB. First, human CD45RO+ and CD127+ are stained to identify the initial percentage of memory cells in the whole population (CD45RO /CD127 double positive vs double neg). Next, PBMCs are co-cultured with zipCAR expressing CD8+ T cells with zipFvs (anti CD127 and anti CD45RO) with the same condition. At the study time points (24, 48, 72hrs) significant changes in the ratio of CD45RO/CD127 +/+ to -/- will be considered as an indicator of whether SUPRA CARs were efficient in targeting specific T cells rather than non-specific cytotoxic effects. Additionally, engineered T cells and zipFvs will be cocultured with the memory T cells at 3 different zipFvs concentrations (5, 25, 50ng/well) to determine the correlation between cell killing and zipFv concentration. T cell activation (CD69 expression, IL-2 and IFN-g in the media) and cytotoxicity against memory T cells (no. of remaining live cells) will also be measured. The proliferation of T cells will be measured by cell counting. All conditions will be tested at least in triplicate. [00362] Table 1 – outline of experiments
Figure imgf000179_0001
[00363] To evaluate and characterize the effect of memory T cells on the HSCT engraftment. [00364] Generation of a humanized mouse model with the VCA-recipients PBMCs [00365] To examine the effect of CD45RO / CD127 targeting with CAR T cells on the graft take and mixed chimerism sustainability, a humanized mouse model is generated by utilizing the PMBCs of VCA-recipients (Figs.8A, 8B). The humanized PBMC model has the fastest engraftment rate using adult PBMCs and enables studies that require a strong memory T cell function. VCA recipients’ PBMCs hold an alloreactive population of memory T cells (CD45RO+/ CD127+) and makes this a reliable model for studying their depletion effects on the rejection of the graft. The number of mice used per group in this study is chosen based on the recommendations from previous studies 29. In brief, irradiated NSG (MHC I/II K/O) (3 Gy) mice will be injected with 5 × 105PBMC cells and human peripheral reconstitution is measured by flow cytometry every other week 30. [00366] Testing the effects of memory T cells depletion on mixed chimerism establishment cells in a skin graft humanized mouse model : The NSG (MHC I/II K/O) mouse model that was generated by using the VCA-recipient PBMCs are used as the foundation for induction of mixed chimerism. The presence of memory T cells in the human PBMCs of this model imitates the challenges for induction of mixed chimerism in human subjects. NSG Hu-PBMCs are treated with / without (ctrl) anti CD45RO/CD127 CAR T to deplete the memory compartment of their T cells population (Figs.8A, 8B). [00367] Fetal CD34+ HSC (and skin tissue) can be obtained from Advanced Bioscience Resources. Fetal HSCs are utilized to evaluate the generation and establishment of multi-lineage engraftment by using previously published Mixed Chimerism Induction Protocols (MCIP) in mice 23. In short, male mice are treated with anti CD154, anti-CD40, CTLA-4 and receive 3 Gy TBI. Six hours later they receive 2 × 105CD34+ HSC bone marrow cells. Engraftment is determined by measuring the presence of donor myeloid and lymphoid cells at different time points. Mixed chimerism is defined as at least 5% of leukocytes in each of the lineages being donor derived. Less than 5% or loss of multi-lineage status is considered as failure of chimerism. [00368] Next, the aforementioned humanized mouse model (VCA-Recipient PBMCs-CD34 HSC) is utilized as a skin graft model to test the effect of depleting CD45RO / CD127 cells on allograft survival. Fetal skin graft is obtained from Advanced Bioscience Resources from the same CD34+ HSC donor. At week 10 post PBMC injection, skin grafts from the HSC donor and another allogeneic source are used to test whether nonspecific depletion of memory T cell repertoire affects the skin grafts survival (Fig.8, 9). Mice are followed until graft rejection or POD 100. [00369] Skin grafting will be conducted using previously published protocols 31. In short, 2 pieces of tail skin from the donor are transplanted on the back of one recipient. Following dressing removal (POD7), mice and their skin grafts are evaluated daily. Graft failure is determined by the physical appearance of the graft; including color, texture, and contour. Histology is also performed to provide supportive data regarding the clinical signs of graft rejection or engraftment. Grafts with more than 50% shrinkage in size or change in color and flexibility (dark and firm grafts) are considered as failed. Skin graft are followed for 100 days. [00370] Table 2 – outline of experiments
Figure imgf000180_0001
[00371] Off-target toxicity occurs when T cells are not able to distinguish normal cells from target cells. In this case CD45RO is the marker that is mainly expressed on the T cells but CD127 is a more common surface marker and can be found on B and dendritic cells. Even though the “Combinatorial AND Logic” CAR system that is described herein has shown to be highly specific, there is a chance for off-target effects in this system. As an alternative approach, all of the CD45RO+ population can be targeted, which consists of not only central memory T cells but also targets effector T cells as well. This will cause more T cells to be targeted nonspecifically but simultaneously might decrease the chance of immune reaction against the graft. [00372] Some of the CAR T effector cells will express memory phenotype such as CD45RO /CD127 after remaining activated for a period of time. This means that CAR T cells might attack each other after changing phenotype. Long activation of CAR T cells within the patient's body has always been a matter of concern. This hypothetical situation can be considered as a safety step as CAR T cell will clear out themselves after completing their task which is destroying memory T cells. On the other hand, if turns out to be true, this self-eliminatory phenomenon might increase the number of CAR T cells that are needed to effectively treat the patients. [00373] Benchmark for success: Blood drawn from the vain tail (40ul) is used every other week for the assessment of peripheral blood chimerism. Monoclonal anti-donor HLA antibody is used for monitoring of chimerism in the various leukocyte lineages, including CD3+/CD8+, CD3+/CD4+, CD3+/CD8-/CD4- (naive T cells), T-Regs, naive and mature B cells (CD19+/CD78- and CD19- /CD78+). Animals are considered chimeric when at least 5% of WBCs in all of these lineages are donor derived. Additionally, the systemic immune status of humanized mice is assessed pre-HSC transplantation and at week 4 and week 8 post-transplant by carboxyfluorescein diacetate succinimidyl ester (CFSE) mixed lymphocyte reaction (MLR) proliferation assays. MLR results are compared before PMBC-HSC transplantation and after study end point. [00374] Determine the efficacy of pMHC-CAR T-effector cells on specific depletion of recipient alloreactive T cells and establishment of Mixed Chimerism. [00375] Described herein is a flexible CAL and/or CAR design that can target any alloantigen specific T cells. Due to the diversity of alloantigen-specific T cells in the context of transplantation, the CAL and/or CAR system that has the flexibility to locate and attack different alloreactive T cells simultaneously. CAL and/or CAR T-eff. cells with (donor) pMHC can target alloreactive T-cells. [00376] The effect of CAL and/or CAR T cell therapy on targeting a double antigen-MHC system (OTi and OTii) [00377] In short, pMHC multimer attached to adaptor molecule (e.g., the CAL) + CAR T effector cell is used in the single and double specific antigen-MHC systems. The antigen-specific CAL and/or CAR system can be tested in vitro and in the OTi & ii transgenic mouse model. This model is genetically engineered such that all T cells express receptors that are specific for recognizing chicken ovalbumin peptides (257-264 (OTi) and 329-337 (OTii) in the context of H2Kb (OTi) and I-A b (OTii)). The T cells of these mice models are engineered to express TCRs that specifically recognize pMHC class I / II + Ovalbumin peptides. More importantly, this highly controlled model can be leveraged establish correlation between T cell activities and CAL and/or CAR T cell experimental parameters, such coculture conditions, pMHC affinity, pMHC multimer concentration. [00378] Design, build, and test anti-FITC CAR/pMHC (e.g., the CAL) system in vitro against antigen specific T cells. [00379] As mentioned above, older generations of CAR T cells needed to be genetically redesigned to be able to recognize new or multiple targets. To overcome this challenge, mouse split universal CD8 CAR is generated as described herein. For generating mouse FITC-CAR similar steps that were described previously for human anti-FITC CAR can be utilized 20.To evaluate the efficacy of C67BL/6 mouse anti-FITC CAR T cells efficacy, the experiments that are conducted and mentioned in the section above with human CAR T cells (Fig.1-5) are repeated with mouse CAR T cells. [00380] Table 3 – outline of experiments
Figure imgf000182_0001
[00381] Evaluate the efficacy of CAR T-eff. + FITC-pMHC tetramers (e.g. a CAL) for targeting alloreactive T-cells in the OTi and OTii transgenic mice. [00382] Ovalbumin-pMHC-CAR T-cells effective in recognizing and destroying OTi and OTii T cells a mixture of the OTi and OTii T-cells are transferred to the wild type mice (B6) recipients. The read out of this experiment is the cell count of OTi & ii before and after CAL and/or CAR T cell therapy. The results show the effect of the CAR T-eff cells with the Ovalbumin peptide + MHC tetramer (e.g., the CAL) is successful in targeting the specific clone of OTi & ii cells. [00383] Establish the potency of multiple peptide / multiple MHC (e.g., CAL) - CAR T cell therapy for targeting alloreactive T cell repertoire on mixed chimerism and skin graft survival. [00384] The most significant barrier against graft take is full mismatch across MHCs of donors and recipients32. This challenge is addressed herein by using MHC (e.g., CAL) + CAR T cells to target alloreactive T cells. These MHC multimers are commercially available and can be readily conjugated with FITC labeling to be recognized by the anti FITC CAR T cells. Alternatively, there are many other available options for split universal CAL and/or CAR technology including leucine zippers which provide the option of tuning the affinity of the binding between adaptor (e.g., CAL) and CAR. On the other hand, Minor Histocompatibility Antigens (MiHA) are short immunogenic peptides originating from digested intra / extracellular proteins presented by Major Histocompatibility Complex (human leukocyte antigen). Disparities in minor histocompatibility antigens between individuals who are even MHC matched can induce an immune response after transplantation. These differences have shown to impede tolerance induction through mixed chimerism 33. [00385] Generating a donor-recipient disparities peptide library for evaluating the efficacy of targeting alloreactive T cells in a humanized mouse model. [00386] The role of the default peptides on these exchangeable-peptide MHC systems can be switched with the desired peptides (from the donor) using UV light 34,35. The large collection of peptides associated with human leukocyte antigens (HLA) is referred to as the human immunopeptidome. The desired peptides for this study will are generated by the previously established protocols for immune-peptidome library generation 36,37,38. [00387] Generating tissue-specific immune peptide library from the donor and recipient. [00388] Utilizing previously established protocols we can extract and identify the immunopeptidome of the donor and the recipient. We then identify the peptide sequences that are distinctively different between the donor and the recipient using software tools (below). These disparities in the donors’ and the recipients’ immune-peptide sequences have the potential to mediate immune rejection. The sequences of the peptides from the donor-recipient disparity peptide library are generated in practical scale by commercially available services39and loaded on peptide-exchangeable MHC multimers (e.g., a CAL) (QuickSwitch MBL international or Biolegend FlexTetramer) to ultimately be bound to CAR T cells and used for targeting alloreactive T cells in the aforementioned in vitro and in vivo models (Fig.8, 9). In brief, donor and recipient MHCs associated peptides are isolated independently by immunoaffinity purification using the anti-HLA monoclonal antibodies 36. Eluted peptides are identified by different LC-MS/MS systems in DIA (Data Independent A) mode. Mass Spectrometry output files are converted, searched, and statistically validated using software tools (NETMHC, SysteMHC). The identified peptides are then clustered (by GibbsCluster v.1) and annotated by length and predicted MHC binding affinity (NetMHC v.4). The final list of high- confidence donor / recipient MHC-associated peptides is compared between the recipient and the donor and the disparate sequences used for building high-quality donor-recipient disparity peptide library, which is employed as a source for generating peptides to be combined with MBL QuickSwitch (or Bio-legend FlexT) MHC tetramer system. [00389] Table 4 – outline of experiments
Figure imgf000183_0001
[00390] Evaluating the efficacy of targeting alloreactive T cells in the multiple antigen / MHC setting on mixed chimerism establishment in a skin graft humanized mouse model. [00391] In the actual context of allotransplantation, both MHC mismatch and MiHA will be a potential source of immune response and rejection. This experiment addresses the question of whether combing the donor-recipient disparate peptide sequences with exchangeable-peptide MHC system (e.g., a CAL) can be used in combination with split CAR T cells to target alloreactive T cells. [00392] Prior to initiating this experiment, human fetal HSC + skin graft from the same donor is obtained from Advanced Bioscience Resources (CA, US). HLA typing of the donor cells is done and used for generating donor (FITC+ exchangeable-peptide) MHC multimer. Peptides that are used with these multimer are generated based on the results of the work described above herein. Briefly, the exchangeable-peptide MHC (e.g., the CAL) is exposed to UV for the dissociation of their default UV- labile peptide. The disparity peptide library provides the desired peptides to replace the default peptide of this system. Using the same double humanized PBMC / HSCT mouse model the efficacy of this donor/recipient disparity peptide library + MHCis evaluated for specific targeting of alloreactive memory T cells and skin allograft survival. As shown in Figs.8A-8B, Hu-PBMC treated with exchanged peptide MHC (e.g., CAL) + CAR T. Subsequently, HSCT with fetal HSC is performed and 6 weeks later skin from the same HSC donor is grafted on the back of the mice. Presence of mixed chimerism and graft survival is evaluated using the criteria that was mentioned earlier herein. [00393] The immunopeptidome library is novel and has not previously been adapted for the context of transplantation. As an alternative to immunopeptidome mapping and disparity library generation, we can apply whole-peptidome (donor-recipient) disparity library, a well-known method. [00394] Specificity and killing efficiency of CAL and/or CAR T cells, and chimerism levels can be studied in vitro and in vivo. Peripheral mechanisms of rejection or regulation can be assessed with serial mixed lymphocyte reaction (MLR) assays, at experimental endpoint. For our in vivo studies, our standard clinical definition of tolerance in rodents, which will serve as a benchmark, is rejection and immunosuppression-free survival for 100 days post-HSCT will serve as a benchmark. Skin grafts are assessed as mentioned earlier, based on the color, texture and size of shrinkage. [00395] Impact: Described herein is a novel adaptive immune cell therapy strategy, making use of the CAL and/or CAR T-cell technology, for VCA tolerance induction. Musculoskeletal extremity injuries, including traumatic amputations are frequently seen in the pediatric burn and trauma population. These patients often struggle with severe functional and psychosocial challenges and decreased quality and quantity of life. In turn, the bottleneck to wide application of VCA, with its obvious benefits, would be lifted and effect a paradigm shift in the current management of devastating pediatric burns, which often result in severe disfigurement and amputations. Additionally, successful results enable VCA to be performed for trauma or congenital defects. [00396] References 1. Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G. & Brookmeyer, R. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 89, 422–429 (2008). 2. Hostetler, S. G., Schwartz, L., Shields, B. J., Xiang, H. & Smith, G. A. Characteristics of pediatric traumatic amputations treated in hospital emergency departments: United States, 1990-2002. Pediatrics 116, (2005). 3. Brandacher, G., Lee, W. P. A. & Schneeberger, S. Minimizing immunosuppression in hand transplantation. Expert Review of Clinical Immunology vol.8673–684 (2012). 4. Sachs, D. H., Kawai, T. & Sykes, M. Induction of tolerance through mixed chimerism. Cold Spring Harb. Perspect. Med.4, 1–19 (2014). 5. Spitzer, T. R. et al. Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: The induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 68, 480–484 (1999). 6. Ahmad, S. & Bromberg, J. S. Current status of the microbiome in renal transplantation. Current Opinion in Nephrology and Hypertension vol.25570–576 (2016). 7. Lellouch, A. G. et al. Abstract 68. Plast. Reconstr. Surg. - Glob. Open 7, 48–49 (2019). 8. Leonard, D. A. et al. Vascularized composite allograft tolerance across MHC barriers in a large animal model. Am. J. Transplant.14, 343–355 (2014). 9. Lakkis, F. G. & Sayegh, M. H. Memory T cells: A hurdle to immunologic tolerance. Journal of the American Society of Nephrology vol.142402–2410 (2003). 10. Mendenhall, S. D. et al. Prevalence and distribution of potential vascularized composite allotransplant donors, implications for optimizing the donor-recipient match. Plast. Reconstr. Surg. - Glob. Open 6, (2018). 11. Yiǧiter, K. et al. Demography and function of children with limb loss. Prosthet. Orthot. Int.29, 131–138 (2005). 12. Özalp, B. & Calavul, A. Amputations in burn patients with a special emphasis on pediatric patients. Erciyes Med. J.39, 7–11 (2017). 13. Jang, K. U., Joo, S. Y., Jo, J. H. & Hoon Seo, C. Burn and Amputations: A Retrospective Analysis 379 Amputation out of 19,958 Burns in 10-year. Int. J. Phys. Med. Rehabil.06, (2018). 14. Benichou, G., Gonzalez, B., Marino, J., Ayasoufi, K. & Valujskikh, A. Role of memory T cells in allograft rejection and tolerance. Front. Immunol.8, (2017). 15. Levesque, V. et al. B-cell-dependent memory T cells impede nonmyeloablative mixed chimerism induction in presensitized mice. Am. J. Transplant. (2011) doi:10.1111/j.1600-6143.2011.03683.x. 16. Valujskikh, A. The challenge of inhibiting alloreactive T-cell memory. American Journal of Transplantation vol.6647–651 (2006). 17. Nadazdin, O. et al. Host alloreactive memory T cells influence tolerance to kidney allografts in nonhuman primates. Sci. Transl. Med.3, (2011). 18. Lo, D. J. et al. Selective targeting of human alloresponsive CD8+ effector memory T cells based on CD2 expression. Am. J. Transplant.11, 22–33 (2011). 19. Ng, Z. Y., Read, C., Kurtz, J. M. & Cetrulo, C. L. Memory T Cells in Vascularized Composite Allotransplantation. Vasc. Compos. Allotransplantation 2, 75–79 (2015). 20. Tonsho, M. et al. Tolerance of Lung Allografts Achieved in Nonhuman Primates via Mixed Hematopoietic Chimerism. Am. J. Transplant. (2015) doi:10.1111/ajt.13274. 21. Hofmann, K., Clauder, A. K. & Manz, R. A. Targeting B cells and plasma cells in autoimmune diseases. Frontiers in Immunology (2018) doi:10.3389/fimmu.2018.00835. 22. Ehlers, M. R. & Rigby, M. R. Targeting Memory T Cells in Type 1 Diabetes. Current Diabetes Reports (2015) doi:10.1007/s11892-015-0659-5. 23. Rezvani, K., Rouce, R., Liu, E. & Shpall, E. Engineering Natural Killer Cells for Cancer Immunotherapy. Molecular Therapy (2017) doi:10.1016/j.ymthe.2017.06.012. 24. Fesnak, A. D., June, C. H. & Levine, B. L. Engineered T cells: The promise and challenges of cancer immunotherapy. Nature Reviews Cancer vol.16566–581 (2016). 25. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science vol.3591361–1365 (2018). 26. Cho, J. H., Collins, J. J. & Wong, W. W. Universal Chimeric Antigen Receptors for Multiplexed and Logical Control of T Cell Responses. Cell 173, 1426-1438.e11 (2018). 27. Yang, J. et al. Allograft rejection mediated by memory T cells is resistant to regulation. Proc. Natl. Acad. Sci. U. S. A.104, 19954–19959 (2007). 28. Levesque, V. et al. B-cell-dependent memory T cells impede nonmyeloablative mixed chimerism induction in presensitized mice. Am. J. Transplant.11, 2322–2331 (2011). 29. Farber, D. L., Yudanin, N. A. & Restifo, N. P. Human memory T cells: Generation, compartmentalization and homeostasis. Nature Reviews Immunology vol.1424–35 (2014). 30. Thome, J. J. C. et al. Spatial map of human t cell compartmentalization and maintenance over decades of life. Cell 159, 814–828 (2014). 31. Antibodies directed against cd127. 32. Yong, K. S. M., Her, Z. & Chen, Q. Humanized Mice as Unique Tools for Human-Specific Studies. Archivum Immunologiae et Therapiae Experimentalis (2018) doi:10.1007/s00005-018-0506- x. 33. Xia, J. et al. Modeling Human Leukemia Immunotherapy in Humanized Mice. EBioMedicine 10, 101–108 (2016). 34. Pakyari, M. et al. A new method for skin grafting in murine model. Wound Repair Regen.24, 695–704 (2016). 35. Murray, A. G. et al. Human T-cell-mediated destruction of allogeneic dermal microvessels in a severe combined immunodeficient mouse. Proc. Natl. Acad. Sci. U. S. A. (1994) doi:10.1073/pnas.91.19.9146. 36. Morris, H. et al. Tracking donor-reactive T cells: Evidence for clonal deletion in tolerant kidney transplant patients. Sci. Transl. Med. (2015) doi:10.1126/scitranslmed.3010760. 37. Birnbaum, M. E. et al. Deconstructing the peptide-MHC specificity of t cell recognition. Cell (2014) doi:10.1016/j.cell.2014.03.047. 38. Gee, M. H. et al. Antigen Identification for Orphan T Cell Receptors Expressed on Tumor- Infiltrating Lymphocytes. Cell (2018) doi:10.1016/j.cell.2017.11.043. 39. Ledsgaard, L., Kilstrup, M., Karatt-Vellatt, A., McCafferty, J. & Laustsen, A. H. Basics of antibody phage display technology. Toxins (2018) doi:10.3390/toxins10060236. 40. Luimstra, J. J. et al. A flexible MHC class I multimer loading system for large-scale detection of antigen-specific T cells. J. Exp. Med.215, 1493–1504 (2018). 41. Cherf, G. M. & Cochran, J. R. Applications of yeast surface display for protein engineering. Methods Mol. Biol. (2015) doi:10.1007/978-1-4939-2748-7_8. Example 9 [00397] Jurkat + pMHC – OTi [00398] Described herein is the investigation of whether killer CAR T cells activation by binding to the adaptor (pMHC, e.g, a CAL)) + Target. The experimental design is depicted in Fig.11. [00399] FITC-conjugated tetramer mediated activation was verified (Fig.12) and followed in a time course (Fig.13). Anti-FITC Jurkat vs OT-I experiments were conducted using 100k cells anti- FITC CAR Jurkat, 100k cells splenocytes from OT-I mouse, and 5 ug/mL to 78 ng/mL FITC- conjugated tetramer (positive, H2Kb-SIINFEKL (SEQ ID NO: 2750); negative, I-Ab-AAHAEINEA (SEQ ID NO: 2751)). Total Jurkat cell counts at 24 hours (Fig.14) and tetramer staining levels (Fig. 15) were also determined. The levels of tetramer and CD69 were also determined (Fig.16). [00400] This experiment demonstrated that Jurkat cells get activated in a dose dependent fashion up to 1 ug/ml of tetramer and OTi binding and staining is dose dependent. No cytotoxicity effects were seen on the killer cells and no prominent activation was seen on the target cells. [00401] Primary T cells – OTi [00402] Experimental design is shown in Fig.17. Human CD8 pMHC-CAR T killing is highly specific and MHC-CAR T cell does not kill bystander CD4 T cells (Fig.18). No cytotoxicity effect was seen on human CD8 pMHC- CAR T (Fig.19). Cytotoxicity against CAR T cells was long-lived (Fig.20) and levels of CD69 on OTi CD8 T cells was followed (Fig.21). [00403] This experiment demonstrated activation of target cells with no significant cytotoxicity on the killer cells. It is possible that Killer Cells activation might be suboptimal under these conditions and use of primary T cells could include fresh, syngeneic cells for improved activation. Example 10 [00404] 1E6 T cell clone is a well-established CD8+ specific for the major β-cell autoantigen, preproinsulin (PPI). The 1E6 clone mediates β-cell-specific killing via recognition of a highly distinctive HLA A*0201-presented signal peptide epitope (PPI15-24) that exhibits glucose-dependent presentation on the surface of human β-cells (9). The inventors generated and tested a split pMHC- CAR that targets 1E6 T-cells through A*0201+peptides. Effective killing of 1E6 T-cells was observed (Fig.29) Example 11 [00405] CALs comprising ovalbumin MiHA (against OTi or OTii) were constructed (Fig.26). pMHC tetramer + FITC (adaptor) binds to the target cells (OTi) in a dose dependent fashion, while OTii specific tetramer does not (Fig.27). Binding of Jurkat+ pMHC to OTi cells does not change Jurkat live count (Fig.28B and 30). However, human CD8 CAR T were cytotoxic with high specificity (Fig.31 and 32). Cytotoxicity was not seen with ctrl tetramer. No cytotoxicity was seen on killer CAR T cells or bystander CD4 T Cells after co-culturing with pMHC and splenocytes.

Claims

What is claimed herein is: 1. A composition, comprising: a. a TCR recognition domain; and one or both of: b. an intracellular signaling domain; and c. a first-type biomolecular interaction domain.
2. A composition comprising: a. a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and b. a signaling polypeptide comprising a second-type biomolecular interaction domain and an intracellular signaling domain; wherein the first-type and second-type biomolecular interaction domains bind specifically to each other.
3. A composition comprising: a. a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and b. a recognition polypeptide comprising a second recognition domain and a third-type biomolecular interaction domain; wherein the first-type and third-type biomolecular interaction domains bind specifically to each other.
4. A composition comprising: a. a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; and b. a signaling polypeptide comprising a second-type biomolecular interaction domain and an intracellular signaling domain; and c. a recognition polypeptide comprising a second recognition domain and a third-type biomolecular interaction domain; wherein the second-type and third-type biomolecular interaction domains compete for binding to the first-type biomolecular interaction domain.
5. The composition of any of claims 3-4, wherein the third-type biomolecular interaction domain and first-type biomolecular interaction domain have a higher affinity for each other than the second-type biomolecular interaction domain and first-type biomolecular interaction domain.
6. A composition comprising: a. a first polypeptide comprising at least a portion of a TCR recognition domain and a first-type biomolecular interaction domain; b. a signaling polypeptide comprising a second-type biomolecular interaction domain, a fourth-type biomolecular interaction domain, and an intracellular signaling domain; and c. a recognition polypeptide comprising a second recognition domain and a fifth-type biomolecular interaction domain; wherein the first-type biomolecular interaction domain and the second-type biomolecular interaction domain bind specifically to each other; and wherein the fourth-type biomolecular interaction domain and the fifth-type biomolecular interaction domain bind specifically to each other.
7. The composition of claim 6, wherein the fourth-type biomolecular interaction domain and fifth-type biomolecular interaction domain have a weaker affinity than the second-type biomolecular interaction domain and first-type protein interaction domain.
8. The composition of any of claims 6-7, wherein the first polypeptide further comprises a sixth- type biomolecular interaction domain and the recognition polypeptide further comprises a seventh-type biomolecular interaction domain which bind specifically to each other.
9. The composition of any of claims 2-8, wherein the first polypeptide comprises the entire TCR recognition domain.
10. The composition of any of claims 2-8, wherein the TCR recognition domain comprises at least two separate polypeptide sequences, the first polypeptide comprises at least one of the separate polypeptide sequences of the TCR recognition domain, and the first polypeptide is bound to or complexed with a second or further polypeptide sequences of the TCR recognition domain to form a TCR recognition domain.
11. The composition of any of claims 1-10, wherein the TCR recognition domain comprises a non-polypeptide component.
12. The composition of any of claims 3-11, wherein the second recognition domain is specific for a target that is not recognized by the TCR recognition domain.
13. The composition of any of claims 3-12, wherein the second recognition domain is specific for a target that is found on a healthy and/or non-target cell and not on a diseased and/or target cell.
14. The composition of any of the preceding claims, wherein the TCR recognition domain comprises a MHC (Major Histocompatibility Complex); a MHC-peptide complex; featureless peptide MHC; or a MHC-peptide fusion.
15. The composition of claim 14, wherein the peptide is a human or non-human peptide.
16. The composition of any of claims 14-15, wherein the peptide is a Minor Histocompatibility Antigen (MiHA).
17. The composition of any of claims 14-16, wherein the MHC is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
18. The composition of any of claims 14-17, wherein the MHC-peptide complex is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
19. The composition of any of claims 14-17, wherein the MHC-peptide fusion is a monomer, dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
20. The composition of any of claims 14-17, wherein the MHC is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
21. The composition of any of claims 14-17, wherein the MHC-peptide complex is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
22. The composition of any of claims 14-17, wherein the MHC-peptide fusion is a dimer, trimer, tetramer, pentamer, dextramer or other oligomer form.
23. The composition of any of claims 14-22, wherein the MHC is a MHC class I or a MHC class II.
24. The composition of any of claims 1-13, wherein the TCR recognition domain comprises a CD1 domain or a CD1 domain-ligand complex or fusion.
25. The composition of claim 24, wherein the CD1 is CD1d.
26. The composition of any of the preceding claims, wherein the biomolecular interaction domains are found on an extracellular portion of the respective polypeptides.
27. The composition of any of the preceding claims, a. wherein the biomolecular interaction domain(s) is a leucine zipper, or any binding pair of biomolecular interaction domains are collectively a pair of leucine zippers; b. wherein the biomolecular interaction domain(s) is a BZip (RR) and/or a AZip (EE), or any binding pair of biomolecular interaction domains are collectively a BZip (RR) and a AZip (EE); c. wherein the biomolecular interaction domain(s) is a PSD95-Dlgl-zo-1 (PDZ) domain; d. wherein the biomolecular interaction domain(s) is a streptavidin and/or a streptavidin binding biomolecular (SBP) or any binding pair of biomolecular interaction domains are collectively a streptavidin and a streptavidin binding biomolecular (SBP); e. wherein the biomolecular interaction domain(s) is a FKBP-binding domain of mTOR (FRB) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a FKBP-binding domain of mTOR (FRB) and a FK506 binding biomolecular (FKBP); f. wherein the biomolecular interaction domain(s) is a cyclophilin-Fas fusion biomolecular (CyP-Fas) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a cyclophilin-Fas fusion biomolecular (CyP-Fas) and a FK506 binding biomolecular (FKBP); g. wherein the biomolecular interaction domain(s) is a calcineurin A (CNA) and/or a FK506 binding biomolecular (FKBP) or any binding pair of biomolecular interaction domains are collectively a calcineurin A (CNA) and a FK506 binding biomolecular (FKBP); h. wherein the biomolecular interaction domain(s) is a gibberellin insensitive (GIA) and/or a gibberellin insensitive dwarf1 (GID1) or any binding pair of biomolecular interaction domains are collectively a gibberellin insensitive (GIA) and a gibberellin insensitive dwarf1 (GID1); i. wherein the biomolecular interaction domain(s) is a Snap-tag and/or a Halo tag, or any binding pair of biomolecular interaction domains are collectively a Snap-tag and a Halo tag; j. wherein the biomolecular interaction domain(s) is a T14-3-3-cdeltaC and/or a C- Terminal peptides of PMA2 (CT52), or any binding pair of biomolecular interaction domains are collectively a T14-3-3-cdeltaC and a C-Terminal peptides of PMA2 (CT52); k. wherein the biomolecular interaction domain(s) is a PYL and/or a ABI, or any binding pair of biomolecular interaction domains are collectively a PYL and a ABI; l. wherein the biomolecular interaction domain(s) is a nucleotide tag and/or a zinc finger domain, or any binding pair of biomolecular interaction domains are collectively a nucleotide tag and a zinc finger domain; m. wherein the biomolecular interaction domain(s) is a nucleotide tag, or any binding pair of biomolecular interaction domains are collectively a pair of nucleotide tags; n. wherein the biomolecular interaction domain(s) is a Fluorescein isothiocyanate (FITC) and/or a FITC binding biomolecular or any binding pair of protein interaction domains are collectively a FITC and a FITC binding protein; and/or o. wherein the protein interaction domain(s) is a (R)-Phycoerythrin (R-PE/ PE) and/or a R-PE/PE binding protein or any binding pair of protein interaction domains are collectively a (R)-Phycoerythrin (R-PE/ PE) and a R-PE/PE binding protein.
28. The composition of claim 27, wherein the nucleotide tag is a DNA tag or dsDNA tag.
29. The composition of any of the preceding claims, wherein the intracellular signaling domain comprises or is a signaling domain from one or more proteins selected from the group consisting of: TCRζ, FcRγ, FcRβ, CD3γ; CD35; CD3ζ; CD3C; CD22; CD79a; CD79b; CD66d; CARD11; CD2; CD7; CD27; CD28; CD30; CD40; CD54 (ICAM); CD83; CD134 (OX40); CD137 (4-1BB); CD150 (SLAMF1); CD152 (CTLA4); CD223 (LAG3); CD270 (HVEM); CD273 (PD-L2); CD274 (PD- Ll); CD278 (ICOS); DAP10; LAT; KD2C SLP76; TRIM; and ZAP70.
30. A cell comprising and/or expressing the composition of any of the preceding claims.
31. A composition comprising a first polypeptide of any of the preceding claims and a cell expressing or comprising the signaling polypeptide of any of the preceding claims.
32. The cell or composition of any of claims 30-31, wherein the TCR recognition domain comprises a MHC allogeneic, autologous, or xenogeneic to the cell.
33. The cell or composition of any of claims 30-32, wherein the TCR recognition domain comprises a synthetic MHC.
34. The cell or composition of any of claims 30-33, wherein the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is allogeneic, autologous, or xenogeneic to the cell.
35. The cell or composition of any of claims 30-34, wherein the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is synthetic.
36. The cell or composition of any of claims 30-35, wherein the cell is a NK cell, dendritic cell, regulatory T cell, or effector T cell.
37. The cell or composition of any of claims 30-36, wherein the cell is engineered to express one of more of the polypeptide(s) of the composition.
38. The cell or composition of any of claims 30-37, wherein the cell is engineered to express the signaling polypeptide of the composition.
39. The cell or composition of any of claims 30-38, wherein the cell is further engineered to knockout or knockdown the native MHCI/II.
40. The cell or composition of any of claims 30-39, wherein the cell is further engineered to knockdown the native MHCI/II expressed on the cell surface.
41. A chimeric antigen receptor (CAR) comprising: a. an anti-CD127 and/or anti-CD45RO recognition domain; b. an intracellular signaling domain.
42. A composition comprising: a first polypeptide comprising: a. an anti-CD127 and/or anti-CD45RO recognition domain; b. a first-type protein interaction domain; and a second polypeptide comprising: c. a second-type protein interaction domain; and d. an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other.
43. A composition comprising: a first polypeptide comprising: a. an anti-CD127 recognition domain; b. a first-type protein interaction domain; a second polypeptide comprising: c. an anti-CD45RO recognition domain; d. a fifth-type protein interaction domain; and a third polypeptide comprising: e. a second-type and a fourth-type protein interaction domain; and f. an intracellular signaling domain; wherein the first-type protein interaction domain and the second-type protein interaction domain bind specifically to each other; and wherein the fourth-type protein interaction domain and the fifth-type protein interaction domain bind specifically to each other.
44. A cell comprising the CAR or composition of any of claims 41-43.
45. A method of treating or preventing an autoimmune disease or condition; T cell mediated inflammation or immune response; malignant T cell condition; transplant rejection; or GvHD in a subject in need thereof, the method comprising administering to the subject a composition and/or cell of any of the preceding claims.
46. The method of claim 45, wherein the TCR recognition domain comprises a MHC allogeneic to the subject.
47. The method of claim 45, wherein the TCR recognition domain comprises a MHC autologous to the transplant cells.
48. The method of claim 45, wherein the TCR recognition domain comprises a MHC xenogeneic to the transplant cells.
49. The method of claim 45, wherein the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is allogeneic to the subject.
50. The method of claim 45, wherein the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is autologous to the transplant cells.
51. The method of claim 45, wherein the TCR recognition domain comprises a MHC and a peptide, wherein the peptide is autologous to the transplant cells.
52. The method of any of claims 45-51, wherein the MHC and/or the peptide is synthetic.
53. The method of any of claims 45-52, wherein the transplant is any human or non-human cell, tissue, or organ.
54. The method of any of claims 45-53, wherein the transplant is an allogeneic hematopoietic stem cell or solid organ transplantation.
55. The method of any of claims 45-52, wherein the malignant T cell condition is T cell acute lymphoblastic leukemia or T cell lymphoblastic lymphoma.
56. The method of any of claims 45-52, wherein the autoimmune disease is type 1 diabetes, vitiligo, multiple sclerosis, alopecia, celiac disease, pemphigus, rheumatoid arthritis, or scleroderma.
57. The method of any of claims 45-52, wherein the autoimmune disease is thyroiditis, type 1 diabetes mellitus, Hashimoto's thyroiditis, Graves' disease, celiac disease, multiple sclerosis, Guillain-Barre syndrome, Addison's disease, and Raynaud's phenomenon, Goodpasture's disease, arthritis (rheumatoid arthritis such as acute arthritis, chronic rheumatoid arthritis, gout or gouty arthritis, acute gouty arthritis, acute immunological arthritis, chronic inflammatory arthritis, degenerative arthritis, type II collagen-induced arthritis, infectious arthritis, Lyme arthritis (e.g., post treatment Lyme disease syndrome), proliferative arthritis, psoriatic arthritis, Still's disease, vertebral arthritis, and juvenile-onset rheumatoid arthritis, arthritis chronica progrediente, arthritis deformans, polyarthritis chronica primaria, reactive arthritis, and ankylosing spondylitis), palindromic arthritis, inflammatory hyperproliferative skin diseases, psoriasis such as plaque psoriasis, guttate psoriasis, pustular psoriasis, and psoriasis of the nails, atopy including atopic diseases such as hay fever and Job's syndrome, dermatitis including contact dermatitis, chronic contact dermatitis, exfoliative dermatitis, allergic dermatitis, allergic contact dermatitis, dermatitis herpetiformis, nummular dermatitis, seborrheic dermatitis, non-specific dermatitis, primary irritant contact dermatitis, and atopic dermatitis, x-linked hyper IgM syndrome, allergic intraocular inflammatory diseases, urticaria such as chronic allergic urticaria and chronic idiopathic urticaria, including chronic autoimmune urticaria, myositis, polymyositis/dermatomyositis, juvenile dermatomyositis, toxic epidermal necrolysis, scleroderma (including systemic scleroderma), sclerosis such as systemic sclerosis, multiple sclerosis (MS) such as spino-optical MS, primary progressive MS (PPMS), and relapsing remitting MS (RRMS), progressive systemic sclerosis, atherosclerosis, arteriosclerosis, sclerosis disseminata, ataxic sclerosis, neuromyelitis optica (NMO), inflammatory bowel disease (IBD) (for example, Crohn's disease, autoimmune-mediated gastrointestinal diseases, colitis such as ulcerative colitis, colitis ulcerosa, microscopic colitis, collagenous colitis, colitis polyposa, necrotizing enterocolitis, and transmural colitis, and autoimmune inflammatory bowel disease), bowel inflammation, pyoderma gangrenosum, erythema nodosum, primary sclerosing cholangitis, respiratory distress syndrome, including adult or acute respiratory distress syndrome (ARDS), meningitis, inflammation of all or part of the uvea, iritis, choroiditis, an autoimmune hematological disorder, rheumatoid spondylitis, rheumatoid synovitis, hereditary angioedema, cranial nerve damage as in meningitis, herpes gestationis, pemphigoid gestationis, pruritis scroti, autoimmune premature ovarian failure, sudden hearing loss due to an autoimmune condition, IgE-mediated diseases such as anaphylaxis and allergic and atopic rhinitis, encephalitis such as Rasmussen's encephalitis and limbic and/or brainstem encephalitis, uveitis, such as anterior uveitis, acute anterior uveitis, granulomatous uveitis, nongranulomatous uveitis, phacoantigenic uveitis, posterior uveitis, or autoimmune uveitis, glomerulonephritis (GN) with and without nephrotic syndrome such as chronic or acute glomerulonephritis such as primary GN, immune-mediated GN, membranous GN (membranous nephropathy), idiopathic membranous GN or idiopathic membranous nephropathy, membrano- or membranous proliferative GN (MPGN), including Type I and Type II, and rapidly progressive GN, proliferative nephritis, autoimmune polyglandular endocrine failure, balanitis including balanitis circumscripta plasmacellularis, balanoposthitis, erythema annulare centrifugum, erythema dyschromicum perstans, eythema multiform, granuloma annulare, lichen nitidus, lichen sclerosus et atrophicus, lichen simplex chronicus, lichen spinulosus, lichen planus, lamellar ichthyosis, epidermolytic hyperkeratosis, premalignant keratosis, pyoderma gangrenosum, allergic conditions and responses, allergic reaction, eczema including allergic or atopic eczema, asteatotic eczema, dyshidrotic eczema, and vesicular palmoplantar eczema, asthma such as asthma bronchiale, bronchial asthma, and auto-immune asthma, conditions involving infiltration of T cells and chronic inflammatory responses, immune reactions against foreign antigens such as fetal A-B-O blood groups during pregnancy, chronic pulmonary inflammatory disease, autoimmune myocarditis, leukocyte adhesion deficiency, lupus, including lupus nephritis, lupus cerebritis, pediatric lupus, non-renal lupus, extra-renal lupus, discoid lupus and discoid lupus erythematosus, alopecia lupus, systemic lupus erythematosus (SLE) such as cutaneous SLE or subacute cutaneous SLE, neonatal lupus syndrome (NLE), and lupus erythematosus disseminatus, juvenile onset (Type I) diabetes mellitus, including pediatric insulin-dependent diabetes mellitus (IDDM), adult onset diabetes mellitus (Type II diabetes), autoimmune diabetes, idiopathic diabetes insipidus, diabetic retinopathy, diabetic nephropathy, diabetic large-artery disorder, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, sarcoidosis, granulomatosis including lymphomatoid granulomatosis, Wegener's granulomatosis, agranulocytosis, vasculitides, including vasculitis, large-vessel vasculitis (including polymyalgia rheumatica and giant-cell (Takayasu's) arteritis), medium-vessel vasculitis (including Kawasaki's disease and polyarteritis nodosa/periarteritis nodosa), microscopic polyarteritis, immunovasculitis, CNS vasculitis, cutaneous vasculitis, hypersensitivity vasculitis, necrotizing vasculitis such as systemic necrotizing vasculitis, and ANCA-associated vasculitis, such as Churg-Strauss vasculitis or syndrome (CSS) and ANCA-associated small-vessel vasculitis, temporal arteritis, autoimmune aplastic anemia, Coombs positive anemia, Diamond Blackfan anemia, hemolytic anemia or immune hemolytic anemia including autoimmune hemolytic anemia (AIHA), pernicious anemia (anemia perniciosa), Addison's disease, pure red cell anemia or aplasia (PRCA), Factor VIII deficiency, hemophilia A, autoimmune neutropenia, pancytopenia, leukopenia, diseases involving leukocyte diapedesis, CNS inflammatory disorders, multiple organ injury syndrome such as those secondary to septicemia, trauma or hemorrhage, antigen- antibody complex-mediated diseases, anti-glomerular basement membrane disease, anti- phospholipid antibody syndrome, allergic neuritis, Behcet's disease/syndrome, Castleman's syndrome, Goodpasture's syndrome, Reynaud's syndrome, Sjogren's syndrome, Stevens- Johnson syndrome, pemphigoid such as pemphigoid bullous and skin pemphigoid, pemphigus (including pemphigus vulgaris, pemphigus foliaceus, pemphigus mucus-membrane pemphigoid, and pemphigus erythematosus), autoimmune polyendocrinopathies, Reiter's disease or syndrome, an immune complex disorder such as immune complex nephritis, antibody-mediated nephritis, polyneuropathies, chronic neuropathy such as IgM polyneuropathies or IgM-mediated neuropathy, and autoimmune or immune-mediated thrombocytopenia such as idiopathic thrombocytopenic purpura (ITP) including chronic or acute ITP, scleritis such as idiopathic cerato-scleritis, episcleritis, autoimmune disease of the testis and ovary including autoimmune orchitis and oophoritis, primary hypothyroidism, hypoparathyroidism, autoimmune endocrine diseases including thyroiditis such as autoimmune thyroiditis, Hashimoto's disease, chronic thyroiditis (Hashimoto's thyroiditis), or subacute thyroiditis, idiopathic hypothyroidism, Grave's disease, polyglandular syndromes such as autoimmune polyglandular syndromes (or polyglandular endocrinopathy syndromes), paraneoplastic syndromes, including neurologic paraneoplastic syndromes such as Lambert- Eaton myasthenic syndrome or Eaton-Lambert syndrome, stiff-man or stiff-person syndrome, encephalomyelitis such as allergic encephalomyelitis or encephalomyelitis allergica and experimental allergic encephalomyelitis (EAE), myasthenia gravis such as thymoma- associated myasthenia gravis, cerebellar degeneration, neuromyotonia, opsoclonus or opsoclonus myoclonus syndrome (OMS), and sensory neuropathy, multifocal motor neuropathy, Sheehan's syndrome, autoimmune hepatitis, lupoid hepatitis, giant-cell hepatitis, autoimmune chronic active hepatitis, lymphoid interstitial pneumonitis (LIP), bronchiolitis obliterans (non-transplant) vs NSIP, Guillain-Barre syndrome, Berger's disease (IgA nephropathy), idiopathic IgA nephropathy, linear IgA dermatosis, acute febrile neutrophilic dermatosis, subcorneal pustular dermatosis, transient acantholytic dermatosis, cirrhosis such as primary biliary cirrhosis and pneumonocirrhosis, autoimmune enteropathy syndrome, Celiac or Coeliac disease, celiac sprue (gluten enteropathy), refractory sprue, idiopathic sprue, cryoglobulinemia, amylotrophic lateral sclerosis (ALS; Lou Gehrig's disease), coronary artery disease, autoimmune ear disease such as autoimmune inner ear disease (AIED), autoimmune hearing loss, polychondritis such as refractory or relapsed or relapsing polychondritis, pulmonary alveolar proteinosis, Cogan's syndrome/nonsyphilitic interstitial keratitis, Bell's palsy, Sweet's disease/syndrome, rosacea autoimmune, zoster-associated pain, amyloidosis, a non-cancerous lymphocytosis, a primary lymphocytosis, which includes monoclonal B cell lymphocytosis (e.g., benign monoclonal gammopathy and monoclonal gammopathy of undetermined significance, MGUS), peripheral neuropathy, paraneoplastic syndrome, channelopathies including channelopathies of the CNS, autism, inflammatory myopathy, focal or segmental or focal segmental glomerulosclerosis (FSGS), endocrine opthalmopathy, uveoretinitis, chorioretinitis, autoimmune hepatological disorder, fibromyalgia, multiple endocrine failure, Schmidt's syndrome, adrenalitis, gastric atrophy, presenile dementia, demyelinating diseases such as autoimmune demyelinating diseases and chronic inflammatory demyelinating polyneuropathy, Dressler's syndrome, alopecia areata, alopecia totalis, CREST syndrome (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia), male and female autoimmune infertility, e.g., due to anti- spermatozoan antibodies, mixed connective tissue disease, Chagas' disease, rheumatic fever, recurrent abortion, farmer's lung, erythema multiforme, post-cardiotomy syndrome, Cushing's syndrome, bird-fancier's lung, allergic granulomatous angiitis, benign lymphocytic angiitis, Alport's syndrome, alveolitis such as allergic alveolitis and fibrosing alveolitis, interstitial lung disease, transfusion reaction, Sampter's syndrome, Caplan's syndrome, endocarditis, endomyocardial fibrosis, diffuse interstitial pulmonary fibrosis, interstitial lung fibrosis, pulmonary fibrosis, idiopathic pulmonary fibrosis, cystic fibrosis, endophthalmitis, erythema elevatum et diutinum, erythroblastosis fetalis, eosinophilic faciitis, Shulman's syndrome, Felty's syndrome, cyclitis such as chronic cyclitis, heterochronic cyclitis, iridocyclitis (acute or chronic), or Fuch's cyclitis, Henoch-Schonlein purpura, SCID, sepsis, endotoxemia, post- vaccination syndromes, Evan's syndrome, autoimmune gonadal failure, Sydenham's chorea, post-streptococcal nephritis, thromboangitis ubiterans, thyrotoxicosis, tabes dorsalis, chorioiditis, giant-cell polymyalgia, chronic hypersensitivity pneumonitis, keratoconjunctivitis sicca, idiopathic nephritic syndrome, minimal change nephropathy, benign familial and ischemia-reperfusion injury, transplant organ reperfusion, retinal autoimmunity, aphthae, aphthous stomatitis, arteriosclerotic disorders, aspermiogenesis, autoimmune hemolysis, Boeck's disease, enteritis allergica, erythema nodosum leprosum, idiopathic facial paralysis, chronic fatigue syndrome, febris rheumatica, Hamman-Rich's disease, sensoneural hearing loss, ileitis regionalis, leucopenia, transverse myelitis, primary idiopathic myxedema, ophthalmia symphatica, polyradiculitis acuta, pyoderma gangrenosum, acquired spenic atrophy, vitiligo, toxic-shock syndrome, conditions involving infiltration of T cells, leukocyte-adhesion deficiency, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, diseases involving leukocyte diapedesis, multiple organ injury syndrome, antigen-antibody complex-mediated diseases, antiglomerular basement membrane disease, allergic neuritis, autoimmune polyendocrinopathies, oophoritis, primary myxedema, autoimmune atrophic gastritis, rheumatic diseases, mixed connective tissue disease, nephrotic syndrome, insulitis, polyendocrine failure, autoimmune polyglandular syndrome type I, adult-onset idiopathic hypoparathyroidism (AOIH), myocarditis, nephrotic syndrome, primary sclerosing cholangitis, acute or chronic sinusitis, ethmoid, frontal, maxillary, or sphenoid sinusitis, an eosinophil-related disorder such as eosinophilia, pulmonary infiltration eosinophilia, eosinophilia-myalgia syndrome, Loffler's syndrome, chronic eosinophilic pneumonia, tropical pulmonary eosinophilia, granulomas containing eosinophils, seronegative spondyloarthritides, polyendocrine autoimmune disease, sclerosing cholangitis, sclera, episclera, Bruton's syndrome, transient hypogammaglobulinemia of infancy, Wiskott-Aldrich syndrome, ataxia telangiectasia syndrome, angiectasis, autoimmune disorders associated with collagen disease, rheumatism, allergic hypersensitivity disorders, glomerulonephritides, reperfusion injury, ischemic re-perfusion disorder, lymphomatous tracheobronchitis, inflammatory dermatoses, dermatoses with acute inflammatory components, and autoimmune uveoretinitis (AUR).
58. The method of any of claims 45-52, wherein the T cell mediated immune response is an anti-drug specific response to a biologic, cell therapy, and/or gene therapy.
59. The method of claim 58, wherein the biologic, cell-therapy, or gene therapy is an adeno-associated virus (AAV) gene therapy, a genome editing agent, or enzyme replacement therapy.
60. The method of any of claims 45-52, wherein the disease is type 1 diabetes and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: one or more of SEQ ID NOs: 8-17; HLA-A*0201 and at least one of SEQ ID NOs: 2013-2016 and 2031-2033; or HLA-A*02:01 and at least one of SEQ ID NOs: 20128-2129.
61. The method of any of claims 45-52, wherein the disease is vitiligo and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: SEQ ID NO: 18, 19, and one of 20-22; or comprises HLA-A*0201 and SEQ ID NO: 2018; or HLA-A*0301 and SEQ ID NO: 2019; or comprises HLA-A*2402 and SEQ ID NO: 2020; or HLA-A*0101 and SEQ ID NO: 2021.
62. The method of any of claims 45-52, wherein the method is a method of treating and/or preventing GvHD and the TCR recognition domain comprises sequences with at least 80% or at least 95% sequence identity to: HLA-A*0101 and at least one of SEQ ID NOs: 2034-2037; or HLA-B*0702 and SEQ ID NO: 2038; or HLA-B*0801 and SEQ ID NO: 2039.
63. The method of any of claims 45-52, wherein the disease is type 1 diabetes and the TCR recognition domain comprises one or more of SEQ ID NOs: 8-17; comprises HLA-A*0201 and at least one of SEQ ID NOs: 2013-2016 and 2031-2033; or comprises HLA-A*02:01 and at least one of SEQ ID NOs: 20128-2129.
64. The method of any of claims 45-52, wherein the disease is vitiligo and the TCR recognition domain comprises SEQ ID NO: 18, 19, and one of 20-22; or comprises HLA-A*0201 and SEQ ID NO: 2018; or comprises HLA-A*0301 and SEQ ID NO: 2019; or comprises HLA-A*2402 and SEQ ID NO: 2020; or comprises HLA-A*0101 and SEQ ID NO: 2021.
65. The method of any of claims 45-52, wherein the method is a method of treating and/or preventing GvHD and the TCR recognition domain comprises HLA-A*0101 and at least one of SEQ ID NOs: 2034-2037; or comprises HLA-B*0702 and SEQ ID NO: 2038; or comprises HLA-B*0801 and SEQ ID NO: 2039.
PCT/US2020/055980 2019-10-18 2020-10-16 Cal-t constructs and uses thereof WO2021076887A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3151961A CA3151961A1 (en) 2019-10-18 2020-10-16 Cal-t constructs and uses thereof
CN202080087925.8A CN115175935A (en) 2019-10-18 2020-10-16 CAL-T constructs and uses thereof
EP20876353.2A EP4093768A4 (en) 2019-10-18 2020-10-16 Cal-t constructs and uses thereof
JP2022522834A JP2023500799A (en) 2019-10-18 2020-10-16 CAL-T constructs and their uses
IL291976A IL291976A (en) 2019-10-18 2020-10-16 Cal-t constructs and uses thereof
AU2020366434A AU2020366434A1 (en) 2019-10-18 2020-10-16 CAL-T constructs and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962916924P 2019-10-18 2019-10-18
US62/916,924 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021076887A1 true WO2021076887A1 (en) 2021-04-22

Family

ID=75492397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2020/055980 WO2021076887A1 (en) 2019-10-18 2020-10-16 Cal-t constructs and uses thereof

Country Status (8)

Country Link
US (2) US11723950B2 (en)
EP (1) EP4093768A4 (en)
JP (1) JP2023500799A (en)
CN (1) CN115175935A (en)
AU (1) AU2020366434A1 (en)
CA (1) CA3151961A1 (en)
IL (1) IL291976A (en)
WO (1) WO2021076887A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021222227A1 (en) * 2020-04-27 2021-11-04 Memorial Sloan-Kettering Cancer Center Chimeric antigen receptors targeting cd127 and use thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11539518B2 (en) * 2017-05-17 2022-12-27 Apple Inc. Time-based encryption key derivation
US11475787B2 (en) * 2017-10-20 2022-10-18 Utah Valley University Nanotechnology fabrication in a virtual reality environment
US11763503B2 (en) * 2019-02-25 2023-09-19 Life Impact Solutions Media alteration based on variable geolocation metadata
GB202113858D0 (en) * 2021-09-28 2021-11-10 Nextera As Peptides
CN115960253A (en) * 2022-08-30 2023-04-14 暨南大学 Tumor T cell epitope peptide, pMHC, preparation and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018204717A1 (en) * 2017-05-03 2018-11-08 Harpoon Therapeutics, Inc. Compositions and methods for adoptive cell therapies
US20180346541A1 (en) * 2015-11-23 2018-12-06 Trustees Of Boston University Methods and compositions relating to chimeric antigen receptors
WO2019099440A1 (en) * 2017-11-14 2019-05-23 Arcellx, Inc. Multifunctional immune cell therapies

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233125B2 (en) * 2010-12-14 2016-01-12 University Of Maryland, Baltimore Universal anti-tag chimeric antigen receptor-expressing T cells and methods of treating cancer
BR112014029417B1 (en) 2012-05-25 2023-03-07 Cellectis EX VIVO METHOD FOR THE PREPARATION OF T CELLS FOR IMMUNOTHERAPY
CA2883502C (en) 2012-09-04 2021-05-04 Cellectis Multi-chain chimeric antigen receptor and uses thereof
EP3151854B1 (en) 2014-06-06 2020-02-26 Memorial Sloan Kettering Cancer Center Mesothelin-targeted chimeric antigen receptors and uses thereof
SG11201706774WA (en) 2015-02-27 2017-09-28 Icell Gene Therapeutics Llc Chimeric antigen receptors (cars) targeting hematologic malignancies, compositions and methods of use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180346541A1 (en) * 2015-11-23 2018-12-06 Trustees Of Boston University Methods and compositions relating to chimeric antigen receptors
WO2018204717A1 (en) * 2017-05-03 2018-11-08 Harpoon Therapeutics, Inc. Compositions and methods for adoptive cell therapies
WO2019099440A1 (en) * 2017-11-14 2019-05-23 Arcellx, Inc. Multifunctional immune cell therapies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4093768A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021222227A1 (en) * 2020-04-27 2021-11-04 Memorial Sloan-Kettering Cancer Center Chimeric antigen receptors targeting cd127 and use thereof

Also Published As

Publication number Publication date
CN115175935A (en) 2022-10-11
EP4093768A1 (en) 2022-11-30
IL291976A (en) 2022-06-01
US20210113653A1 (en) 2021-04-22
US11723950B2 (en) 2023-08-15
US20230321183A1 (en) 2023-10-12
CA3151961A1 (en) 2021-04-22
AU2020366434A1 (en) 2022-03-17
EP4093768A4 (en) 2023-11-15
JP2023500799A (en) 2023-01-11

Similar Documents

Publication Publication Date Title
US20230321183A1 (en) Cal-t constructs and uses thereof
US11596654B2 (en) Human leukocyte antigen restricted gamma delta T cell receptors and methods of use thereof
JP7281774B2 (en) ANTI-HLA-A2 ANTIBODY AND METHOD OF USE THEREOF
US10751373B2 (en) PD-L1 expressing hematopoietic stem cells and uses
AU2016386923B2 (en) Therapeutic use of inhibitors of T cell activation or stimulation
KR20170037626A (en) Treatment of cancer using humanized anti-bcma chimeric antigen receptor
JP5980508B2 (en) Treatment methods for autoimmune disorders
Chen et al. Mechanistic basis of immunotherapies for type 1 diabetes mellitus
JP2020532304A (en) T cell receptors that bind to hybrid leukemia (MLL) -specific phosphopeptides and how to use them
US20240139242A1 (en) Cal-t constructs and uses thereof
WO2020018708A1 (en) Compositions and methods for treatment of t cell malignancies
US20240052006A1 (en) Anti-inflammatory cytokines and methods of use
WO2018236986A1 (en) Engineered t-cell receptors and methods of their use
US20220389092A1 (en) Methods and compositions involving chimeric binding polypeptides
RU2782276C2 (en) Anti-hla-a2 antibodies and their application methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020366434

Country of ref document: AU

Date of ref document: 20201016

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3151961

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022522834

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17769495

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020876353

Country of ref document: EP

Effective date: 20220518