WO2021068548A1 - 一种超声回波成像方法、系统及超声设备 - Google Patents

一种超声回波成像方法、系统及超声设备 Download PDF

Info

Publication number
WO2021068548A1
WO2021068548A1 PCT/CN2020/096265 CN2020096265W WO2021068548A1 WO 2021068548 A1 WO2021068548 A1 WO 2021068548A1 CN 2020096265 W CN2020096265 W CN 2020096265W WO 2021068548 A1 WO2021068548 A1 WO 2021068548A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
ultrasound
tissue
image
ultrasound image
Prior art date
Application number
PCT/CN2020/096265
Other languages
English (en)
French (fr)
Inventor
张佳民
彭张
冯志飞
李松
杨仲汉
Original Assignee
深圳开立生物医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳开立生物医疗科技股份有限公司 filed Critical 深圳开立生物医疗科技股份有限公司
Publication of WO2021068548A1 publication Critical patent/WO2021068548A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device

Definitions

  • the invention relates to the field of ultrasound imaging, in particular to an ultrasound echo imaging method, system and ultrasound equipment.
  • Ultrasonic probe is a device that transmits ultrasonic excitation signals and receives ultrasonic echo signals.
  • an ultrasonic image characterizing the position information of each tissue in the part scanned by the ultrasonic probe can be obtained.
  • the propagation speed of ultrasound in the part is constant, and the position information of each tissue in the part is determined according to the propagation speed and propagation time of the ultrasound in the part, and then based on The position information of each tissue in the part generates an ultrasound image.
  • the propagation speed of ultrasound in different tissues in the site is actually not the same, resulting in inaccurate position information of each tissue in the determined site, resulting in distortion of the ultrasound image, which cannot accurately reflect the true size of each tissue in the site.
  • the purpose of the present invention is to provide an ultrasonic echo imaging method, system and ultrasonic equipment, which correct the ultrasonic image according to the actual ultrasonic propagation speed, thereby obtaining an ultrasonic image that more accurately characterizes the position information of each tissue in the part, and avoids the distortion of the ultrasonic image. , So that the ultrasound image more accurately reflects the true size of each tissue in the site.
  • an ultrasonic echo imaging method including:
  • ultrasonic images are obtained at a preset fixed sound velocity
  • the ultrasonic image is corrected according to the ultrasonic propagation velocity to obtain a corrected ultrasonic image.
  • the process of determining the multi-layer tissue medium of the part scanned by the ultrasound probe based on the ultrasound image includes:
  • the multi-layer tissue medium corresponding to the target ultrasound image recorded in the preset image template library is used as the multi-layer tissue medium contained in the part scanned by the ultrasound probe.
  • the ultrasonic echo imaging method further includes:
  • the display screen is controlled to display a comparison failure message, so that the operator can adjust the scanning position of the ultrasound probe after receiving the comparison failure message until the comparison is done.
  • the target ultrasound image is controlled to display a comparison failure message, so that the operator can adjust the scanning position of the ultrasound probe after receiving the comparison failure message until the comparison is done.
  • the process of correcting the ultrasonic image according to the ultrasonic propagation velocity to obtain the corrected ultrasonic image includes:
  • the tissue boundary of the ultrasound image under the preset fixed sound velocity is corrected to obtain the corrected ultrasound image.
  • the process of correcting the ultrasonic image according to the ultrasonic propagation velocity to obtain the corrected ultrasonic image includes:
  • the preset medium distance relationship Calculate the depth of the ultrasound emitted by the ultrasound probe to the boundary of each tissue medium; where D k is the depth of the ultrasound emitted by the ultrasound probe to the boundary of the k- th tissue medium, and C i is the ultrasound in the i-th layer of tissue
  • T i is the propagation time of the ultrasonic wave propagating to the boundary of the i-th tissue medium and returning to reception
  • the tissue boundary of the ultrasound image is corrected according to the depth to obtain a corrected ultrasound image.
  • the process of determining the ultrasonic propagation velocity corresponding to each of the multiple layers of tissue media according to the preset media sound velocity correspondence relationship includes:
  • the ultrasonic propagation velocity corresponding to each of the multiple layers of the tissue media is determined according to the media sound velocity relationship table.
  • the ultrasonic echo imaging method further includes:
  • the ultrasound images after the correction of multiple tissue strain cycles are superimposed and compounded in the same phase to obtain the superimposed and compounded ultrasound images.
  • the process of obtaining the tissue strain period of the part scanned by the ultrasonic probe includes:
  • the pixel coordinate value error between the currently obtained ultrasound image and the first ultrasound image is calculated every preset time until it is obtained that the pixel coordinate value error is less than the preset error threshold ’S second ultrasound image;
  • the second time corresponding to the second ultrasound image is different from the first time to obtain the tissue strain period of the part scanned by the ultrasound probe.
  • the process of superimposing and compounding a plurality of tissue strain period-corrected ultrasound images with in-phase images to obtain superimposed and compounded ultrasound images includes:
  • the pixel coordinate values of the multiple in-phase images are averaged, and an ultrasound image is obtained according to the average value.
  • the present invention also provides an ultrasonic echo imaging system, including:
  • the image acquisition module is used to obtain ultrasonic images at a preset fixed sound velocity based on the ultrasonic signals emitted and returned by the ultrasonic probe;
  • a medium determination module configured to determine, based on the ultrasound image, the multi-layer tissue medium of the part scanned by the ultrasound probe;
  • a velocity determination module configured to determine the ultrasonic propagation velocity corresponding to each of the multiple layers of the tissue media according to the preset media sound velocity corresponding relationship
  • the image correction module is used to correct the ultrasonic image according to the ultrasonic propagation speed to obtain a corrected ultrasonic image.
  • the present invention also provides an ultrasonic device, including:
  • Ultrasonic probe used to transmit ultrasonic excitation signal and receive ultrasonic echo signal
  • Memory used to store computer programs
  • the controller connected with the ultrasonic probe is used to implement the steps of any of the above-mentioned ultrasonic echo imaging methods when the computer program is executed.
  • the present invention provides an ultrasonic echo imaging method. After the ultrasonic image is obtained, the multi-layered tissue medium of the part scanned by the ultrasonic probe can be distinguished based on the ultrasonic image, and the actual ultrasonic propagation of the ultrasonic wave in the multi-layered tissue medium can be determined Speed, to correct the ultrasound image according to the actual ultrasound propagation speed, so as to obtain an ultrasound image that more accurately characterizes the location information of each tissue in the site, avoiding the distortion of the ultrasound image, and making the ultrasound image more accurately reflect the true size of each tissue in the site .
  • the present invention also provides an ultrasonic echo imaging system and ultrasonic equipment, which have the same beneficial effects as the above-mentioned ultrasonic echo imaging method.
  • FIG. 1 is a flowchart of an ultrasonic echo imaging method provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of ultrasonic propagation in different tissue media according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of imaging of tissue 1/2/3 in a complete tissue strain cycle according to an embodiment of the present invention
  • Fig. 4 is a schematic structural diagram of an ultrasonic echo imaging system provided by an embodiment of the present invention.
  • the core of the present invention is to provide an ultrasonic echo imaging method, system and ultrasonic equipment, which correct the ultrasonic image according to the actual ultrasonic propagation speed, thereby obtaining an ultrasonic image that more accurately characterizes the position information of each tissue in the part, and avoids the distortion of the ultrasonic image. , So that the ultrasound image more accurately reflects the true size of each tissue in the site.
  • FIG. 1 is a flowchart of an ultrasonic echo imaging method according to an embodiment of the present invention.
  • the ultrasonic echo imaging method includes:
  • Step S1 Based on the ultrasonic signals emitted and returned by the ultrasonic probe, an ultrasonic image is obtained at a preset fixed sound velocity.
  • the ultrasonic probe emits an ultrasonic excitation signal (that is, the transmitted signal mentioned in step S1).
  • Ultrasonic signal the ultrasonic excitation signal passes through the multi-layered tissue of the part scanned by the ultrasonic probe, and the ultrasonic echo signal will be reflected back to the ultrasonic probe (the ultrasonic echo signal is the returned ultrasonic signal mentioned in step S1).
  • the signal strength of the ultrasonic echo signal reflected under different tissues is different (for example, the signal strength of the ultrasonic echo signal returned by the bone> the signal strength of the ultrasonic echo signal returned by the blood), which is reflected in the ultrasound-based echo imaging
  • the gray value of the ultrasound image (the stronger the signal intensity of the ultrasound echo signal, the whiter the gray value of the ultrasound image corresponding to the depth point; the weaker the signal intensity of the ultrasound echo signal, the gray value of the ultrasound image corresponding to the depth point The darker).
  • the ultrasonic image also needs to obtain the parameter of the pixel coordinate value (x, y) of the position information of each tissue in the characterizing part, where x represents the signal width of the ultrasonic signal, and y represents the ultrasonic signal.
  • x represents the signal width of the ultrasonic signal
  • y represents the ultrasonic signal.
  • Step S2 Determine the multi-layered tissue medium of the part scanned by the ultrasound probe based on the ultrasound image.
  • this application can distinguish the multi-layered tissue medium of the part scanned by the ultrasound probe based on the ultrasound image.
  • Step S3 Determine the ultrasonic propagation velocity corresponding to each of the multilayer tissue media according to the preset media sound velocity correspondence relationship.
  • the propagation speed of ultrasonic signals in different tissue media is different, so this application sets in advance the one-to-one correspondence between different tissue media and different ultrasonic propagation speeds (referred to as the corresponding relationship between medium sound speeds) to determine The actual ultrasonic propagation velocity corresponding to different tissue media.
  • the present application can determine the actual corresponding ultrasonic propagation velocity of each multi-layer tissue medium according to the corresponding relationship of the sound velocity of the set medium, so as to lay the foundation for the subsequent correction of the ultrasound image .
  • Step S4 Correct the ultrasonic image according to the ultrasonic propagation velocity to obtain a corrected ultrasonic image.
  • the ultrasound image obtained in step S1 is distorted due to the use of fixed sound velocity calculation.
  • the calculation of the fixed sound velocity affects the y value of the pixel coordinate value of the ultrasound image.
  • the reasonable calculation method for the y value of the pixel coordinate value of the ultrasound image is: ultrasound is in a tissue medium A
  • the propagation distance should be calculated using the actual ultrasonic propagation velocity corresponding to the tissue medium A. Therefore, the present application uses the ultrasonic propagation velocity of each of the multilayer tissue media determined in step S3 to correct the ultrasonic image, so as to obtain an ultrasonic image that more accurately characterizes the position information of each tissue in the part.
  • the present invention provides an ultrasonic echo imaging method. After the ultrasonic image is obtained, the multi-layered tissue medium of the part scanned by the ultrasonic probe can be distinguished based on the ultrasonic image, and the actual ultrasonic propagation of the ultrasonic wave in the multi-layered tissue medium can be determined Speed, to correct the ultrasound image according to the actual ultrasound propagation speed, so as to obtain an ultrasound image that more accurately characterizes the location information of each tissue in the site, avoiding the distortion of the ultrasound image, and making the ultrasound image more accurately reflect the true size of each tissue in the site .
  • the process of determining the multi-layer tissue medium of the site scanned by the ultrasound probe based on the ultrasound image includes:
  • the multi-layer tissue medium corresponding to the target ultrasound image recorded in the preset image template library is used as the multi-layer tissue medium contained in the part scanned by the ultrasound probe.
  • this application can set up an image template library in advance, which collects ultrasound images (called standard ultrasound images) obtained during scanning of the ultrasound probe in the longitudinal direction of different sections, and records the ultrasound images corresponding to the standard ultrasound images.
  • the multi-layer tissue medium of the part scanned by the probe (which can be obtained by an experienced doctor analyzing the standard ultrasound image), so as to analyze the ultrasound image obtained in step S1 to obtain the corresponding multi-layer tissue medium of the part scanned by the ultrasound probe .
  • a target ultrasound image that is basically consistent with the ultrasound image obtained in step S1 is found in the preset image template library, it can be considered that the ultrasound image and the target ultrasound image are the process of scanning the ultrasound probe in the longitudinal direction of the same plane.
  • the image obtained in the image can be regarded as the multi-layer tissue medium corresponding to the target ultrasound image, which is consistent with the multi-layer tissue medium of the part scanned by the ultrasound probe corresponding to the ultrasound image.
  • this application sets a similarity threshold in advance.
  • the similarity between the ultrasound image and a standard ultrasound image in the preset image template library is greater than the set similarity threshold
  • the standard ultrasound image is considered to be a target that is basically consistent with the ultrasound image.
  • Ultrasound image Specifically, the present application compares the ultrasound image with each standard ultrasound image in the preset image template library, with the purpose of comparing a target ultrasound image whose similarity with the ultrasound image is greater than the set similarity threshold. After comparing the target ultrasound image, this application uses the multi-layer tissue medium corresponding to the target ultrasound image recorded in the preset image template library as the multi-layer tissue medium contained in the part scanned by the ultrasound probe corresponding to the ultrasound image.
  • the comparison process between the ultrasound image and the standard ultrasound image includes: extracting the shape features of the ultrasound image and the standard ultrasound image, and comparing the shape features of the two to obtain the similarity of the shape features of the two (as ultrasound The similarity between the image and the standard ultrasound image).
  • the ultrasonic echo imaging method further includes:
  • the display screen is controlled to display a comparison failure message so that the operator can adjust the scanning position of the ultrasound probe after receiving the comparison failure message until the target ultrasound image is compared.
  • this application controls the display screen to display the comparison failure message for the operator to view. After receiving the comparison failure message, the operator adjusts the scanning position of the ultrasonic probe, and then waits for a period of time to check the display message.
  • the display screen withdraws the comparison failure message, it means that the target ultrasound image is compared; if the display screen The comparison failure message is still displayed, indicating that the target ultrasound image still cannot be compared, so adjust the scanning position of the ultrasound probe again until the target ultrasound image is compared.
  • the process of correcting the ultrasonic image according to the ultrasonic propagation velocity to obtain the corrected ultrasonic image includes:
  • the tissue boundary of the ultrasound image under the preset fixed sound velocity is corrected to obtain the corrected ultrasound image.
  • the calculated boundary of the multilayer tissue medium is the actual tissue boundary of the ultrasound image. Therefore, this application is based on the actual corresponding ultrasonic propagation velocity of each multilayer tissue medium.
  • the speed and the propagation time of ultrasound in each layer of tissue media are used to obtain the target tissue boundary of the ultrasound image, that is, the target position where the tissue boundary of the ultrasound image is actually located; then the tissue of the ultrasound image obtained at a fixed sound velocity before is corrected according to the target tissue boundary Boundary, and get the corrected ultrasound image.
  • the propagation time of ultrasound in each layer of tissue media is: the propagation time used to calculate the ultrasound image under the preset fixed sound velocity, that is, the propagation time used to calculate the ultrasound image under the preset fixed sound velocity and the actual The propagation time used to calculate the ultrasound image at the speed of sound is the same.
  • the process of correcting the ultrasonic image according to the ultrasonic propagation velocity to obtain the corrected ultrasonic image includes:
  • the preset medium distance relationship Find the depth of the ultrasound emitted by the ultrasound probe to the boundary of each tissue medium;
  • D k is the depth of the ultrasound emitted by the ultrasound probe to the boundary of the k- th tissue medium
  • C i is the ultrasonic propagation velocity of the ultrasound in the i-th tissue medium
  • T i is the propagation time of ultrasonic waves propagating to the boundary of the i-th tissue medium and returning to reception
  • the tissue boundary of the ultrasound image is corrected according to the depth, and the corrected ultrasound image is obtained.
  • FIG. 2 is a schematic diagram of an ultrasonic wave propagating in different tissue media according to an embodiment of the present invention.
  • this application is based on (Medium distance relation) Obtain the depth of the ultrasound emitted by the ultrasound probe to the boundary of each tissue medium, that is, the y value of the pixel coordinate value of the ultrasound image, so as to realize the correction of the ultrasound image.
  • the process of determining the ultrasonic propagation velocity corresponding to each of the multilayer tissue media according to the preset media sound velocity correspondence relationship includes:
  • the corresponding ultrasonic propagation velocity of the multilayer tissue media is determined.
  • this application can reflect the one-to-one correspondence between different tissue media and different ultrasonic propagation velocities in the form of a table. After determining the multi-layer tissue media, determine the respective ultrasonic propagation velocities of the multi-layer tissue media by looking up the table. .
  • the ultrasonic echo imaging method further includes:
  • the ultrasound images after the correction of multiple tissue strain cycles are superimposed and compounded in the same phase to obtain the superimposed and compounded ultrasound images.
  • the prior art usually adopts continuous time image sequence composite method to improve The spatial resolution of the ultrasound image weakens the noise in the ultrasound image.
  • periodic tissue strain such as the periodic beating of the heart
  • This method of continuous time image sequence compounding will cause the image to be overwhelmed. Fitting, reducing image detail information, resulting in poor ultrasound echo imaging effect.
  • the present application adopts the method of superimposing and compounding the same-phase images of multiple tissue strain cycles to improve the ultrasound echo imaging effect. Specifically, the present application first obtains the tissue strain period of the part scanned by the ultrasound probe, and then obtains in-phase images between multiple ultrasound images corrected for the tissue strain period, and superimposes and composites the multiple in-phase images to obtain a superposition Ultrasound image after composite.
  • This multi-period in-phase image superimposition and compounding method is adapted to the periodic tissue strain law of the part, and does not cover the image detail information, thereby improving the ultrasound echo imaging effect.
  • FIG. 3 is a schematic diagram of imaging of a tissue 1/2/3 in a complete tissue strain cycle provided by an embodiment of the present invention.
  • a tissue image boundary is not clear enough, the tissue image 3 by a period of noise, tissue strain after a period T (at time t i -t T + i-1 time, 1 organization, After the deformation of 2, 3), at the time t T+i , the image boundary of tissue 1 is clearer, and there is no dot noise in the image of tissue 3, so that multi-period in-phase images are superimposed and compounded to achieve a space for enhanced ultrasound images. Resolution and the effect of reducing image noise.
  • the process of obtaining the tissue strain cycle of the part scanned by the ultrasound probe includes:
  • the pixel coordinate value error between the currently obtained ultrasound image and the first ultrasound image is calculated every preset time until the second ultrasound with the pixel coordinate value error less than the preset error threshold is obtained.
  • the second time corresponding to the second ultrasound image is differentiated from the first time to obtain the tissue strain period of the part scanned by the ultrasound probe.
  • this application starts from obtaining the first ultrasound image at the first moment, and every preset time (according to empirical setting, it can be set to obtain the pixel coordinate value error every other frame), the current obtained ultrasound image
  • the pixel coordinate value is different from the pixel coordinate value of the first ultrasound image to obtain the pixel coordinate value error; then the pixel coordinate value error is compared with the preset error threshold.
  • the pixel coordinate value error is not less than the preset error threshold, the current The obtained ultrasound image is inconsistent with the tissue morphology of the corresponding part of the first ultrasound image, indicating that a new tissue strain cycle is not entered at this time; when the pixel coordinate value error is less than the preset error threshold, the current ultrasound image is considered to be the same as the first ultrasound image.
  • the tissue morphology of the corresponding parts of the image is basically the same, indicating that a new tissue strain cycle has begun at this time.
  • the present application calculates the difference between the second time corresponding to the second ultrasound image and the first time, and the difference between the two is the ultrasound probe scan The tissue strain cycle of the site.
  • the process of superimposing and compounding a plurality of tissue strain period-corrected ultrasound images with in-phase images to obtain a superimposed and compounded ultrasound image includes:
  • the pixel coordinate values of multiple in-phase images are averaged, and an ultrasound image is obtained based on the average value.
  • the present application superimposes and composites multiple in-phase images of ultrasound images after the correction of the tissue strain period, specifically, obtaining the average value of the pixel coordinate values of the multiple in-phase images, and then generating an ultrasound image based on the average value. So as to realize the superposition and compounding of multiple in-phase images.
  • FIG. 4 is a schematic structural diagram of an ultrasonic echo imaging system according to an embodiment of the present invention.
  • the ultrasonic echo imaging system includes:
  • the image acquisition module 1 is used to obtain an ultrasonic image at a preset fixed sound velocity based on the ultrasonic signal emitted and returned by the ultrasonic probe;
  • the medium determination module 2 is used to determine the multi-layer tissue medium of the part scanned by the ultrasound probe based on the ultrasound image;
  • the velocity determination module 3 is used to determine the ultrasonic propagation velocity corresponding to each of the multilayer tissue media according to the preset media sound velocity correspondence relationship;
  • the image correction module 4 is used to correct the ultrasonic image according to the ultrasonic propagation speed to obtain the corrected ultrasonic image.
  • the present invention also provides an ultrasonic device, including:
  • Ultrasonic probe used to transmit ultrasonic excitation signal and receive ultrasonic echo signal
  • Memory used to store computer programs
  • the controller connected with the ultrasonic probe is used to implement the steps of any of the above-mentioned ultrasonic echo imaging methods when the computer program is executed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声回波成像方法,在得到超声图像后,可基于超声图像区分出超声波探头扫查的部位的多层组织介质,并确定出超声波在多层组织介质中实际的超声传播速度,以根据实际的超声传播速度修正超声图像,从而得到更准确表征部位中各组织的位置信息的超声图像,避免了超声图像失真,进而使超声图像更准确地反映部位中各组织的真实大小。超声回波成像系统及超声设备,与该超声回波成像方法具有相同的有益效果。

Description

一种超声回波成像方法、系统及超声设备
本申请要求于2019年10月11日提交至中国专利局、申请号为201910963470.0、发明名称为“一种超声回波成像方法、系统及超声设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及超声成像领域,特别是涉及一种超声回波成像方法、系统及超声设备。
背景技术
超声波探头是一种发射超声波激励信号和接收超声回波信号的装置。目前,基于超声波探头发射和返回的超声波信号,可得到表征超声波探头扫查的部位中各组织的位置信息的超声图像。现有技术中,在基于超声波信号得到超声图像的过程中,通常假定超声波在部位中的传播速度恒定,并根据超声波在部位中的传播速度和传播时间确定部位中各组织的位置信息,然后基于部位中各组织的位置信息生成超声图像。但是,超声波在部位中不同组织的传播速度实际上并不相同,导致所确定的部位中各组织的位置信息不够准确,从而导致超声图像失真,无法准确反映部位中各组织的真实大小。
因此,如何提供一种解决上述技术问题的方案是本领域的技术人员目前需要解决的问题。
发明内容
本发明的目的是提供一种超声回波成像方法、系统及超声设备,根据实际的超声传播速度修正超声图像,从而得到更准确表征部位中各组织的位置信息的超声图像,避免了超声图像失真,进而使超声图像更准确地反映部位中各组织的真实大小。
为解决上述技术问题,本发明提供了一种超声回波成像方法,包括:
基于超声波探头发射和返回的超声波信号,在预设固定声速下得到超声图像;
基于所述超声图像确定所述超声波探头扫查的部位的多层组织介质;
根据预设介质声速对应关系确定多层所述组织介质各自对应的超声传播速度;
根据所述超声传播速度修正所述超声图像,得到修正后的超声图像。
优选地,所述基于所述超声图像确定所述超声波探头扫查的部位的多层组织介质的过程,包括:
将所述超声图像与预设图像模板库中各标准超声图像进行比对,以比对出与所述超声图像的相似度大于预设相似度阈值的一目标超声图像;
将所述预设图像模板库中记录的目标超声图像对应的多层组织介质,作为所述超声波探头扫查的部位所包含的多层组织介质。
优选地,所述超声回波成像方法还包括:
当无法比对出所述目标超声图像时,控制显示屏显示比对失败信息,以使操作人员在接收到所述比对失败信息后调整所述超声波探头的扫查位置,直至比对出所述目标超声图像。
优选地,所述根据所述超声传播速度修正所述超声图像,得到修正后的超声图像的过程,包括:
获取预设固定声速的超声波在各层组织介质中的传播时间;
根据多层所述组织介质各自对应的超声传播速度和所述传播时间,得到所述超声图像的目标组织边界;
根据所述目标组织边界修正在预设固定声速下的超声图像的组织边界,得到修正后的超声图像。
优选地,所述根据所述超声传播速度修正所述超声图像,得到修正后的超声图像的过程,包括:
根据预设介质距离关系式
Figure PCTCN2020096265-appb-000001
求取所述超声波探头发射的超声波到各所述组织介质边界的深度;其中,D k为所述超声波探头发射的超声波到第k层组织介质边界的深度,C i为超声波在第i层组 织介质的超声传播速度,T i为超声波传播至第i层组织介质边界并返回至接收的传播时间,k为大于1的整数,i=2,3,…,k;
根据所述深度修正所述超声图像的组织边界,得到修正后的超声图像。
优选地,所述根据预设介质声速对应关系确定多层所述组织介质各自对应的超声传播速度的过程,包括:
预先设置表征不同组织介质与不同超声传播速度之间一一对应关系的介质声速关系表;
根据所述介质声速关系表确定多层所述组织介质各自对应的超声传播速度。
优选地,所述超声回波成像方法还包括:
获取所述超声波探头扫查的部位的组织应变周期;
将多个组织应变周期修正后的超声图像进行同相位图像的叠加复合,得到叠加复合后的超声图像。
优选地,所述获取所述超声波探头扫查的部位的组织应变周期的过程,包括:
在第一时刻得到第一超声图像之后,每隔预设时间均求取当前得到的超声图像与所述第一超声图像的像素坐标值误差,直至得到所述像素坐标值误差小于预设误差阈值的第二超声图像;
将所述第二超声图像对应的第二时刻与所述第一时刻作差,得到所述超声波探头扫查的部位的组织应变周期。
优选地,所述将多个组织应变周期修正后的超声图像进行同相位图像的叠加复合,得到叠加复合后的超声图像的过程,包括:
获取多个组织应变周期修正后的超声图像之间的同相位图像;
将多个所述同相位图像的像素坐标值求取平均值,并根据所述平均值得到一超声图像。
为解决上述技术问题,本发明还提供了一种超声回波成像系统,包括:
图像获取模块,用于基于超声波探头发射和返回的超声波信号,在预设固定声速下得到超声图像;
介质确定模块,用于基于所述超声图像确定所述超声波探头扫查的部位的多层组织介质;
速度确定模块,用于根据预设介质声速对应关系确定多层所述组织介质各自对应的超声传播速度;
图像修正模块,用于根据所述超声传播速度修正所述超声图像,得到修正后的超声图像。
为解决上述技术问题,本发明还提供了一种超声设备,包括:
用于发射超声波激励信号和接收超声回波信号的超声波探头;
存储器,用于存储计算机程序;
与所述超声波探头连接的控制器,用于在执行所述计算机程序时实现上述任一种超声回波成像方法的步骤。
本发明提供了一种超声回波成像方法,在得到超声图像后,可基于超声图像区分出超声波探头扫查的部位的多层组织介质,并确定出超声波在多层组织介质中实际的超声传播速度,以根据实际的超声传播速度修正超声图像,从而得到更准确表征部位中各组织的位置信息的超声图像,避免了超声图像失真,进而使超声图像更准确地反映部位中各组织的真实大小。
本发明还提供了一种超声回波成像系统及超声设备,与上述超声回波成像方法具有相同的有益效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种超声回波成像方法的流程图;
图2为本发明实施例提供的一种超声波在不同组织介质中传播的示意图;
图3为本发明实施例提供的一种组织1/2/3在一个完整的组织应变周期内的成像示意图;
图4为本发明实施例提供的一种超声回波成像系统的结构示意图。
具体实施方式
本发明的核心是提供一种超声回波成像方法、系统及超声设备,根据实际的超声传播速度修正超声图像,从而得到更准确表征部位中各组织的位置信息的超声图像,避免了超声图像失真,进而使超声图像更准确地反映部位中各组织的真实大小。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图1,图1为本发明实施例提供的一种超声回波成像方法的流程图。
该超声回波成像方法包括:
步骤S1:基于超声波探头发射和返回的超声波信号,在预设固定声速下得到超声图像。
需要说明的是,本申请的预设是提前设置好的,只需要设置一次,除非根据实际情况需要修改,否则不需要重新设置。
具体地,在超声波探头实时扫查(超声波探头的扫查深度可调节,根据当前需求设定其扫查深度)的过程中,超声波探头发射超声波激励信号(即步骤S1中所提及的发射的超声波信号),超声波激励信号经过超声波探头扫查的部位的多层组织,会反射回来超声回波信号至超声波探头(超声回波信号即步骤S1中所提及的返回的超声波信号)。
在不同的组织下反射回来的超声回波信号的信号强度有所不同(如骨骼返回的超声回波信号的信号强度>血液返回的超声回波信号的信号强度),反映在基于超声回波成像的超声图像的灰度值上(超声回波信号的信号强度越强,超声图像对应深度点的灰度值越白;超声回波信号的信号强 度越弱,超声图像对应深度点的灰度值越黑)。此外,超声图像除了灰度值这一参数外,还需获取表征部位中各组织的位置信息的像素坐标值(x,y)这一参数,其中,x表示超声波信号的信号宽度,y表示超声波信号在部位的各组织中传播的距离。在步骤S1中,假定超声波信号在部位中的传播速度恒定,则超声波信号在部位的各组织中传播的距离y=(超声波探头返回超声波信号的时间-超声波探头发射超声波信号的时间)*预设固定声速/2,从而可得到在预设固定声速下的超声图像。
步骤S2:基于超声图像确定超声波探头扫查的部位的多层组织介质。
具体地,考虑到部位的不同组织反映在超声图像上的灰度值有所不同,可体现出一些形状特征,所以本申请可基于超声图像区分出超声波探头扫查的部位的多层组织介质。
步骤S3:根据预设介质声速对应关系确定多层组织介质各自对应的超声传播速度。
具体地,实际上,超声波信号在不同组织介质中的传播速度有所不同,所以本申请提前设置不同组织介质与不同超声传播速度之间的一一对应关系(简称介质声速对应关系),以确定不同组织介质实际对应的超声传播速度。
基于此,在步骤S2确定超声波探头扫查的部位的多层组织介质之后,本申请可根据所设介质声速对应关系确定多层组织介质各自实际对应的超声传播速度,以为后续修正超声图像打下基础。
步骤S4:根据超声传播速度修正超声图像,得到修正后的超声图像。
具体地,步骤S1得到的超声图像因采用固定声速计算导致超声图像失真。对于超声图像来说,采用固定声速计算影响的是超声图像的像素坐标值的y值,可以理解的是,超声图像的像素坐标值的y值的合理计算方法是:超声波在一组织介质A中传播的距离,应采用组织介质A实际对应的超声传播速度计算。所以,本申请采用步骤S3确定的多层组织介质各自实际对应的超声传播速度修正超声图像,从而得到更准确表征部位中各组织的位置信息的超声图像。
本发明提供了一种超声回波成像方法,在得到超声图像后,可基于超声图像区分出超声波探头扫查的部位的多层组织介质,并确定出超声波在多层组织介质中实际的超声传播速度,以根据实际的超声传播速度修正超声图像,从而得到更准确表征部位中各组织的位置信息的超声图像,避免了超声图像失真,进而使超声图像更准确地反映部位中各组织的真实大小。
在上述实施例的基础上:
作为一种优选地实施例,基于超声图像确定超声波探头扫查的部位的多层组织介质的过程,包括:
将超声图像与预设图像模板库中各标准超声图像进行比对,以比对出与超声图像的相似度大于预设相似度阈值的一目标超声图像;
将预设图像模板库中记录的目标超声图像对应的多层组织介质,作为超声波探头扫查的部位所包含的多层组织介质。
具体地,本申请可提前设置一个图像模板库,其内收集有超声波探头在不同切面纵向方向扫查的过程中得到的超声图像(称为标准超声图像),并记录有标准超声图像对应的超声波探头扫查的部位的多层组织介质(可通过经验丰富的医生分析标准超声图像得出),以便于分析步骤S1得到的超声图像,得到其对应的超声波探头扫查的部位的多层组织介质。
可以理解的是,若在预设图像模板库中找出与步骤S1得到的超声图像基本一致的目标超声图像,可认为超声图像与目标超声图像是超声波探头在同一切面纵向方向扫查的过程中得到的图像,即可认为目标超声图像对应的多层组织介质,与超声图像对应的超声波探头扫查的部位的多层组织介质一致。
基于此,本申请提前设置一个相似度阈值,当超声图像与预设图像模板库中一标准超声图像的相似度大于所设相似度阈值时,认为此标准超声图像为与超声图像基本一致的目标超声图像。具体地,本申请将超声图像与预设图像模板库中各标准超声图像进行比对,目的是比对出与超声图像的相似度大于所设相似度阈值的一目标超声图像。当比对出目标超声图像 后,本申请将预设图像模板库中记录的目标超声图像对应的多层组织介质,作为超声图像对应的超声波探头扫查的部位所包含的多层组织介质。
更具体地,超声图像和标准超声图像的比对过程包括:提取超声图像和标准超声图像的形状特征,并将二者的形状特征进行比对,得到二者的形状特征的相似度(作为超声图像和标准超声图像的相似度)。
作为一种优选地实施例,超声回波成像方法还包括:
当无法比对出目标超声图像时,控制显示屏显示比对失败信息,以使操作人员在接收到比对失败信息后调整超声波探头的扫查位置,直至比对出目标超声图像。
进一步地,考虑到在操作人员操作超声波探头的过程中,可能存在超声波探头放置不规范的情况,导致得到的超声图像与预设图像模板库中的标准超声图像相差较远,最终无法比对出目标超声图像,所以本申请在无法比对出目标超声图像时,控制显示屏显示比对失败信息,供操作人员查看。操作人员在接收到比对失败信息后,调整超声波探头的扫查位置,然后等待一段时间查看显示屏的显示消息,若显示屏撤回比对失败信息,说明比对出目标超声图像;若显示屏仍显示比对失败信息,说明仍无法比对出目标超声图像,则再次调整超声波探头的扫查位置,直至比对出目标超声图像。
作为一种优选地实施例,根据超声传播速度修正超声图像,得到修正后的超声图像的过程,包括:
获取预设固定声速的超声波在各层组织介质中的传播时间;
根据多层组织介质各自对应的超声传播速度和传播时间,得到超声图像的目标组织边界;
根据目标组织边界修正在预设固定声速下的超声图像的组织边界,得到修正后的超声图像。
具体地,考虑到基于多层组织介质各自实际对应的超声传播速度,计算得到的多层组织介质的边界才是超声图像实际的组织边界,所以本申请根据多层组织介质各自实际对应的超声传播速度和超声波在各层组织介质中的传播时间,得到超声图像的目标组织边界,即超声图像的组织边界实 际处于的目标位置;然后根据目标组织边界修正之前在固定声速下得到的超声图像的组织边界,从而得到修正后的超声图像。
需要说明的是,超声波在各层组织介质中的传播时间为:在预设固定声速下计算超声图像所用到的传播时间,即在预设固定声速下计算超声图像所用到的传播时间和在实际声速下计算超声图像所用到的传播时间相同。
作为一种优选地实施例,根据超声传播速度修正超声图像,得到修正后的超声图像的过程,包括:
根据预设介质距离关系式
Figure PCTCN2020096265-appb-000002
求取超声波探头发射的超声波到各组织介质边界的深度;其中,D k为超声波探头发射的超声波到第k层组织介质边界的深度,C i为超声波在第i层组织介质的超声传播速度,T i为超声波传播至第i层组织介质边界并返回至接收的传播时间,k为大于1的整数,i=2,3,…,k;
根据深度修正超声图像的组织边界,得到修正后的超声图像。
具体地,请参照图2,图2为本发明实施例提供的一种超声波在不同组织介质中传播的示意图。超声波探头发射的超声波到第1层组织介质边界的深度(超声波探头到A 1的距离,A 1为第1层组织介质的下边界,即第1层组织介质和第2层组织介质之间的边界):D 1=(C 1*T 1)/2;超声波探头发射的超声波到第2层组织介质边界的深度(超声波探头到A 2的距离,A 2为第2层组织介质的下边界,即第2层组织介质和第3层组织介质之间的边界):D 2=D 1+C 2*(T 2-T 1)/2;则超声波探头发射的超声波到第k层组织介质边界的深度(超声波探头到A k的距离):
Figure PCTCN2020096265-appb-000003
Figure PCTCN2020096265-appb-000004
基于此,本申请根据
Figure PCTCN2020096265-appb-000005
(介质距离关系式)求取超声波探头发射的超声波到各组织介质边界的深度,即超声图像的像素坐标值的y值,从而实现超声图像的修正。
作为一种优选地实施例,根据预设介质声速对应关系确定多层组织介质各自对应的超声传播速度的过程,包括:
预先设置表征不同组织介质与不同超声传播速度之间一一对应关系的介质声速关系表;
根据介质声速关系表确定多层组织介质各自对应的超声传播速度。
具体地,本申请可以通过表格形式体现不同组织介质与不同超声传播速度之间的一一对应关系,在确定多层组织介质之后,通过查表的方式确定多层组织介质各自对应的超声传播速度。
作为一种优选地实施例,超声回波成像方法还包括:
获取超声波探头扫查的部位的组织应变周期;
将多个组织应变周期修正后的超声图像进行同相位图像的叠加复合,得到叠加复合后的超声图像。
进一步地,考虑到在获取超声图像的过程中,可能会掺杂一些干扰信号,导致超声图像的组织边界不够清晰及超声图像中存在噪声,现有技术中通常采用连续时间图像序列复合的方式提高超声图像的空间分辨力、削弱超声图像中存在的噪声,但是,超声波探头扫查的部位通常存在周期性组织应变(如心脏周期性跳动),这种连续时间图像序列复合的方式会导致图像过拟合,降低图像细节信息,导致超声回波成像效果较差。
基于此,本申请采用多组织应变周期同相位图像叠加复合的方式提升超声回波成像效果。具体地,本申请首先获取超声波探头扫查的部位的组织应变周期,然后获取多个组织应变周期修正后的超声图像之间的同相位图像,并将多个同相位图像进行叠加复合,得到叠加复合后的超声图像。这种多周期同相位图像叠加复合的方式适应于部位的周期性组织应变规律,不会覆盖图像细节信息,从而提升了超声回波成像效果。
请参照图3,图3为本发明实施例提供的一种组织1/2/3在一个完整的组织应变周期内的成像示意图。图3中,在t i时刻,组织1的图像边界不够清晰,组织3的图像中有圆点噪声,经过一个组织应变周期T(在t i时刻—t T+i-1时刻,组织1、2、3发生形变)后,在t T+i时刻,组织1的图像边界较为清晰,组织3的图像中没有圆点噪声,从而通过多周期的同相位图像叠加复合,达到增强超声图像的空间分辨力和降低图像噪声的效果。
作为一种优选地实施例,获取超声波探头扫查的部位的组织应变周期的过程,包括:
在第一时刻得到第一超声图像之后,每隔预设时间均求取当前得到的超声图像与第一超声图像的像素坐标值误差,直至得到像素坐标值误差小于预设误差阈值的第二超声图像;
将第二超声图像对应的第二时刻与第一时刻作差,得到超声波探头扫查的部位的组织应变周期。
具体地,本申请从第一时刻得到第一超声图像开始,每隔预设时间(根据经验设置,可以设置为每隔一帧便求取像素坐标值误差),均将当前得到的超声图像的像素坐标值与第一超声图像的像素坐标值作差,得到像素坐标值误差;然后将像素坐标值误差与预设误差阈值作比较,当像素坐标值误差不小于预设误差阈值时,认为当前得到的超声图像与第一超声图像对应的部位组织形态不一致,说明此时未进入一个新的组织应变周期;当像素坐标值误差小于预设误差阈值时,认为当前得到的超声图像与第一超声图像对应的部位组织形态基本一致,说明此时开始进入一个新的组织应变周期。
基于此,本申请在得到像素坐标值误差小于预设误差阈值的第二超声图像之后,将第二超声图像对应的第二时刻与第一时刻作差,二者差值便是超声波探头扫查的部位的组织应变周期。
作为一种优选地实施例,将多个组织应变周期修正后的超声图像进行同相位图像的叠加复合,得到叠加复合后的超声图像的过程,包括:
获取多个组织应变周期修正后的超声图像之间的同相位图像;
将多个同相位图像的像素坐标值求取平均值,并根据平均值得到一超声图像。
具体地,本申请将多个组织应变周期修正后的超声图像进行同相位图像的叠加复合,具体是求取多个同相位图像的像素坐标值的平均值,然后根据平均值生成一超声图像,从而实现多个同相位图像的叠加复合。
请参照图4,图4为本发明实施例提供的一种超声回波成像系统的结构示意图。
该超声回波成像系统包括:
图像获取模块1,用于基于超声波探头发射和返回的超声波信号,在预设固定声速下得到超声图像;
介质确定模块2,用于基于超声图像确定超声波探头扫查的部位的多层组织介质;
速度确定模块3,用于根据预设介质声速对应关系确定多层组织介质各自对应的超声传播速度;
图像修正模块4,用于根据超声传播速度修正超声图像,得到修正后的超声图像。
本发明提供的超声回波成像系统的介绍请参考上述超声回波成像方法的实施例,本发明在此不再赘述。
本发明还提供了一种超声设备,包括:
用于发射超声波激励信号和接收超声回波信号的超声波探头;
存储器,用于存储计算机程序;
与超声波探头连接的控制器,用于在执行计算机程序时实现上述任一种超声回波成像方法的步骤。
本发明提供的超声设备的介绍请参考上述超声回波成像方法的实施例,本发明在此不再赘述。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

  1. 一种超声回波成像方法,其特征在于,包括:
    基于超声波探头发射和返回的超声波信号,在预设固定声速下得到超声图像;
    基于所述超声图像确定所述超声波探头扫查的部位的多层组织介质;
    根据预设介质声速对应关系确定多层所述组织介质各自对应的超声传播速度;
    根据所述超声传播速度修正所述超声图像,得到修正后的超声图像。
  2. 如权利要求1所述的超声回波成像方法,其特征在于,所述基于所述超声图像确定所述超声波探头扫查的部位的多层组织介质的过程,包括:
    将所述超声图像与预设图像模板库中各标准超声图像进行比对,以比对出与所述超声图像的相似度大于预设相似度阈值的一目标超声图像;
    将所述预设图像模板库中记录的目标超声图像对应的多层组织介质,作为所述超声波探头扫查的部位所包含的多层组织介质。
  3. 如权利要求2所述的超声回波成像方法,其特征在于,所述超声回波成像方法还包括:
    当无法比对出所述目标超声图像时,控制显示屏显示比对失败信息,以使操作人员在接收到所述比对失败信息后调整所述超声波探头的扫查位置,直至比对出所述目标超声图像。
  4. 如权利要求1所述的超声回波成像方法,其特征在于,所述根据所述超声传播速度修正所述超声图像,得到修正后的超声图像的过程,包括:
    获取预设固定声速的超声波在各层组织介质中的传播时间;
    根据多层所述组织介质各自对应的超声传播速度和所述传播时间,得到所述超声图像的目标组织边界;
    根据所述目标组织边界修正在预设固定声速下的超声图像的组织边界,得到修正后的超声图像。
  5. 如权利要求4所述的超声回波成像方法,其特征在于,所述根据所述超声传播速度修正所述超声图像,得到修正后的超声图像的过程,包括:
    根据预设介质距离关系式
    Figure PCTCN2020096265-appb-100001
    求取所述超声波探头发射的超声波到各所述组织介质边界的深度;其中,D k为所述超声波探头发射的超声波到第k层组织介质边界的深度,C i为超声波在第i层组织介质的超声传播速度,T i为超声波传播至第i层组织介质边界并返回至接收的传播时间,k为大于1的整数,i=2,3,…,k;
    根据所述深度修正所述超声图像的组织边界,得到修正后的超声图像。
  6. 如权利要求1所述的超声回波成像方法,其特征在于,所述根据预设介质声速对应关系确定多层所述组织介质各自对应的超声传播速度的过程,包括:
    预先设置表征不同组织介质与不同超声传播速度之间一一对应关系的介质声速关系表;
    根据所述介质声速关系表确定多层所述组织介质各自对应的超声传播速度。
  7. 如权利要求1-6任一项所述的超声回波成像方法,其特征在于,所述超声回波成像方法还包括:
    获取所述超声波探头扫查的部位的组织应变周期;
    将多个组织应变周期修正后的超声图像进行同相位图像的叠加复合,得到叠加复合后的超声图像。
  8. 如权利要求7所述的超声回波成像方法,其特征在于,所述获取所述超声波探头扫查的部位的组织应变周期的过程,包括:
    在第一时刻得到第一超声图像之后,每隔预设时间均求取当前得到的超声图像与所述第一超声图像的像素坐标值误差,直至得到所述像素坐标值误差小于预设误差阈值的第二超声图像;
    将所述第二超声图像对应的第二时刻与所述第一时刻作差,得到所述超声波探头扫查的部位的组织应变周期。
  9. 如权利要求7所述的超声回波成像方法,其特征在于,所述将多个组织应变周期修正后的超声图像进行同相位图像的叠加复合,得到叠加复合后的超声图像的过程,包括:
    获取多个组织应变周期修正后的超声图像之间的同相位图像;
    将多个所述同相位图像的像素坐标值求取平均值,并根据所述平均值得到一超声图像。
  10. 一种超声回波成像系统,其特征在于,包括:
    图像获取模块,用于基于超声波探头发射和返回的超声波信号,在预设固定声速下得到超声图像;
    介质确定模块,用于基于所述超声图像确定所述超声波探头扫查的部位的多层组织介质;
    速度确定模块,用于根据预设介质声速对应关系确定多层所述组织介质各自对应的超声传播速度;
    图像修正模块,用于根据所述超声传播速度修正所述超声图像,得到修正后的超声图像。
  11. 一种超声设备,其特征在于,包括:
    用于发射超声波激励信号和接收超声回波信号的超声波探头;
    存储器,用于存储计算机程序;
    与所述超声波探头连接的控制器,用于在执行所述计算机程序时实现如权利要求1-9任一项所述的超声回波成像方法的步骤。
PCT/CN2020/096265 2019-10-11 2020-06-16 一种超声回波成像方法、系统及超声设备 WO2021068548A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910963470.0 2019-10-11
CN201910963470.0A CN110680398A (zh) 2019-10-11 2019-10-11 一种超声回波成像方法、系统及超声设备

Publications (1)

Publication Number Publication Date
WO2021068548A1 true WO2021068548A1 (zh) 2021-04-15

Family

ID=69112095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096265 WO2021068548A1 (zh) 2019-10-11 2020-06-16 一种超声回波成像方法、系统及超声设备

Country Status (2)

Country Link
CN (1) CN110680398A (zh)
WO (1) WO2021068548A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110680398A (zh) * 2019-10-11 2020-01-14 深圳开立生物医疗科技股份有限公司 一种超声回波成像方法、系统及超声设备
WO2021164006A1 (zh) * 2020-02-21 2021-08-26 华为技术有限公司 一种车辆行驶速度、加速度的测量方法、装置及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040006272A1 (en) * 2002-07-08 2004-01-08 Insightec - Image Guided Treatment, Ltd. Tissue inhomogeneity correction in ultrasound imaging
CN102695457A (zh) * 2010-02-10 2012-09-26 松下电器产业株式会社 超声波诊断装置及测量内中膜的厚度的方法
US20130178740A1 (en) * 2012-01-05 2013-07-11 Samsung Medison Co., Ltd. Method and apparatus for providing ultrasound image
CN104188684A (zh) * 2014-09-15 2014-12-10 声泰特(成都)科技有限公司 一种自适应医疗超声成像声速优化和信号修正方法及系统
CN107328870A (zh) * 2017-07-25 2017-11-07 天津大学 超声波波形对应关系判别及叠加方法
CN108209970A (zh) * 2016-12-09 2018-06-29 通用电气公司 基于超声成像中组织类型的自动检测的可变声速波束成形
CN110680398A (zh) * 2019-10-11 2020-01-14 深圳开立生物医疗科技股份有限公司 一种超声回波成像方法、系统及超声设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8088067B2 (en) * 2002-12-23 2012-01-03 Insightec Ltd. Tissue aberration corrections in ultrasound therapy
EP2494925A1 (en) * 2011-03-03 2012-09-05 Koninklijke Philips Electronics N.V. Calculating the speed of ultrasound in at least two tissue types
JP5946427B2 (ja) * 2012-09-28 2016-07-06 富士フイルム株式会社 超音波検査装置、超音波検査方法、プログラム及び記録媒体
KR102207919B1 (ko) * 2013-06-18 2021-01-26 삼성전자주식회사 초음파를 생성하는 방법, 장치 및 시스템
WO2017020126A1 (en) * 2015-07-31 2017-02-09 Endra, Inc. A method and system for correcting fat-induced aberrations
US10739316B2 (en) * 2017-12-11 2020-08-11 Insightec, Ltd. Phased array calibration for geometry and aberration correction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040006272A1 (en) * 2002-07-08 2004-01-08 Insightec - Image Guided Treatment, Ltd. Tissue inhomogeneity correction in ultrasound imaging
CN102695457A (zh) * 2010-02-10 2012-09-26 松下电器产业株式会社 超声波诊断装置及测量内中膜的厚度的方法
US20130178740A1 (en) * 2012-01-05 2013-07-11 Samsung Medison Co., Ltd. Method and apparatus for providing ultrasound image
CN104188684A (zh) * 2014-09-15 2014-12-10 声泰特(成都)科技有限公司 一种自适应医疗超声成像声速优化和信号修正方法及系统
CN108209970A (zh) * 2016-12-09 2018-06-29 通用电气公司 基于超声成像中组织类型的自动检测的可变声速波束成形
CN107328870A (zh) * 2017-07-25 2017-11-07 天津大学 超声波波形对应关系判别及叠加方法
CN110680398A (zh) * 2019-10-11 2020-01-14 深圳开立生物医疗科技股份有限公司 一种超声回波成像方法、系统及超声设备

Also Published As

Publication number Publication date
CN110680398A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
US12036067B2 (en) Ultrasound diagnostic system, ultrasound image generation apparatus, and ultrasound image generation method
KR100908252B1 (ko) 영상 처리 시스템 및 방법
JP4891038B2 (ja) 映像処理システム及び方法
US7985182B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image acquiring method
WO2021068548A1 (zh) 一种超声回波成像方法、系统及超声设备
JP4903271B2 (ja) 超音波撮像システム
JP5461845B2 (ja) 超音波診断装置及び超音波診断装置の制御プログラム
US9320490B2 (en) Ultrasound diagnostic apparatus and control method thereof
EP1882450B1 (en) Ultrasonographic device and image processing method thereof
JP2001120549A (ja) 超音波診断装置
JP2007513726A (ja) 浸透、解像度及びフレームレートの自動制御を有する超音波画像診断システム
JP6309340B2 (ja) 超音波診断装置及び超音波イメージングプログラム
US9052268B2 (en) Ultrasound diagnostic apparatus and method of producing ultrasound image
US8663114B2 (en) Ultrasonic diagnostic apparatus and storage medium
US7852334B2 (en) Ultrasonic imaging apparatus, an image-processing apparatus, and an ultrasonic image-processing method
JP2014054362A (ja) 超音波診断装置、画像処理装置及びプログラム
CN106618632A (zh) 自动优化的超声成像系统及方法
KR101183003B1 (ko) 마스크에 기초하여 초음파 공간 합성 영상을 제공하는 초음파 시스템 및 방법
JP6402241B2 (ja) 音響波画像生成装置および方法
KR101652728B1 (ko) 초음파 영상 화질 개선 방법 및 이를 이용한 초음파 영상 장치
JP4383732B2 (ja) 超音波画像生成装置
JP2007236681A (ja) 医用画像診断装置及び医用画像診断装置の制御プログラム
JP2007301086A (ja) 超音波診断装置
KR101652725B1 (ko) 초음파 영상 화질 개선 방법 및 이를 이용한 초음파 영상 장치
TWI539178B (zh) 利用散射子分布統計量分析超音波回音信號之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873641

Country of ref document: EP

Kind code of ref document: A1