WO2021066067A1 - Sliding structure for internal combustion engine - Google Patents

Sliding structure for internal combustion engine Download PDF

Info

Publication number
WO2021066067A1
WO2021066067A1 PCT/JP2020/037294 JP2020037294W WO2021066067A1 WO 2021066067 A1 WO2021066067 A1 WO 2021066067A1 JP 2020037294 W JP2020037294 W JP 2020037294W WO 2021066067 A1 WO2021066067 A1 WO 2021066067A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
piston
less
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2020/037294
Other languages
French (fr)
Japanese (ja)
Inventor
博幸 田森
肇 安藤
一巳 諸井
Original Assignee
日本ピストンリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ピストンリング株式会社 filed Critical 日本ピストンリング株式会社
Priority to CN202080040318.6A priority Critical patent/CN113906208B/en
Priority to JP2021551418A priority patent/JPWO2021066067A1/ja
Publication of WO2021066067A1 publication Critical patent/WO2021066067A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/004Cylinder liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • F16J10/02Cylinders designed to receive moving pistons or plungers
    • F16J10/04Running faces; Liners

Definitions

  • the present invention relates to a sliding structure of an internal combustion engine having a cylinder and a piston.
  • the present invention aims to further improve fuel efficiency and reduce oil consumption of dimple liners.
  • the present invention that achieves the above object is a sliding structure of an internal combustion engine having a cylinder and a piston, wherein the cylinder is the lower surface of the ring groove of the lowest piston ring at the top dead center of the piston in the inner wall surface.
  • a plurality of recesses are formed in the stroke central region that is all or part of the distance from the position to the upper surface position of the ring groove of the uppermost piston ring at the bottom dead center of the piston.
  • a central low roughness region in which the arithmetic average roughness Ra of the contour curve measured by the stylus type surface roughness measuring machine is 0.140 or less is formed. It is a sliding structure of an internal combustion engine.
  • the arithmetic mean height Sa of the contour curved surface of the central low roughness region measured by the non-contact surface roughness measuring machine is 0.20 ⁇ m or less.
  • the protrusion valley depth Svk of the central low roughness region measured by the non-contact type surface roughness measuring machine is 0.41 ⁇ m or less.
  • the height Spk of the protruding peak portion of the central low roughness region measured by the non-contact surface roughness measuring machine is 0.16 ⁇ m or less.
  • the level difference Sk of the core portion in the central low roughness region measured by the non-contact type surface roughness measuring machine is 0.53 ⁇ m or less.
  • the protruding peak height measured by the non-contact type surface roughness measuring machine in the central low roughness region is E (Spk)
  • the protruding valley depth is I.
  • the arithmetic mean roughness Ra of the contour curve of the central low roughness region measured by the stylus type surface roughness measuring machine is 0.120 ⁇ m or less. To do.
  • the central low roughness region is characterized by including the vicinity of the upper end edge and the vicinity of the lower end edge in the process central region.
  • the entire region at the center of the stroke is the central low roughness region.
  • the arithmetic mean roughness Ra of the contour curve measured by the stylus type surface roughness measuring machine in the central low roughness region may be 0.090 ⁇ m or less.
  • the kinematic viscosity (kinematic viscosity) in the central low roughness region is ⁇
  • the relative velocity with the piston is U
  • the contact load with respect to the piston is W
  • the piston is the friction coefficient between them.
  • the minimum value fmin of the friction coefficient f in the central low roughness region is the evaluation parameter A. Is achieved within the range of 0.0003 or less.
  • the minimum value fmin is characterized in that the evaluation parameter A is achieved within a range of 0.0001 or more.
  • the kinematic viscosity (kinematic viscosity) in the central low roughness region is ⁇
  • the relative velocity with the piston is U
  • the contact load with respect to the piston is W
  • the piston is the coefficient of friction between them.
  • the center low is within the range where the evaluation parameter A is 0.0003 or less.
  • the friction coefficient f in the roughness region is 0.07 or less.
  • the kinematic viscosity (kinematic viscosity) in the central low roughness region is ⁇
  • the relative speed with the piston is U
  • the contact load with respect to the piston is W
  • the piston is f
  • the center low is within the range where the evaluation parameter A is 0.0003 or less.
  • the piston and the cylinder in the roughness region are in a fluid-lubricated state.
  • the rotation speed of the internal combustion engine is N (r / min).
  • the mean effective pressure for friction loss (FMEP) between the piston ring and the piston ring in the central low roughness region is T (kPa)
  • the mean effective pressure T for friction loss in the central low roughness region is minimized.
  • the value Tmin is characterized in that the rotation speed N is achieved within the range of 700 or less.
  • the minimum value Tmin may be characterized in that the rotation speed N is achieved within a range of 600 or less.
  • the rotation speed of the internal combustion engine is N (r / min).
  • N mean effective pressure of friction loss between the piston ring and the piston ring in the central low roughness region
  • N number of revolutions N
  • the friction loss mean effective pressure T in the central low roughness region is 14 kPa or less.
  • the rotation speed of the internal combustion engine is N (r / min).
  • the mean effective pressure (FMEP) between the piston ring and the piston ring in the central low roughness region is T (kPa)
  • the rotation speed N is 700 or less.
  • the piston and the cylinder in the central low roughness region are in a fluid lubrication state.
  • the arithmetic mean of the contour curve measured by the stylus type surface roughness measuring machine on the upper side of the inner wall surface above the upper edge of the central region of the stroke is formed, and the upper low roughness region and the central low roughness region may be continuous.
  • a lower low roughness region having an average roughness Ra of 0.140 ⁇ m or less is formed, and the lower low roughness region and the central low roughness region may be continuous.
  • the surface of the central low roughness region may be uncoated.
  • FIG. 1 It is sectional drawing along the axial direction of the cylinder liner applied to the sliding structure of the internal combustion engine which concerns on 1st Embodiment of this invention.
  • FIG. 1 is a side view showing a piston and a piston ring applied to the sliding structure of the internal combustion engine
  • FIG. 1 is a side view showing a piston and a piston ring applied to the sliding structure of the internal combustion engine
  • FIG. 1 is a side view showing a piston and a piston ring applied to the sliding structure of the internal combustion engine
  • FIG. 1 ist Embodiment of this invention.
  • FIG. 1 is sectional drawing along the axial direction of the cylinder liner applied to the sliding structure of the internal combustion engine which concerns on 1st Embodiment of this invention.
  • FIG. 1 is a side view showing a piston and a piston ring applied to the sliding structure of the internal combustion engine
  • FIG. 1 is a partially enlarged cross-sectional view showing the piston and the piston ring
  • C is a top
  • (A) is a cross-sectional view of a two-piece type oil ring
  • (B) is a cross-sectional view of a three-piece type oil ring.
  • (A) is a Strivec diagram for explaining the sliding structure of the internal combustion engine of the first embodiment
  • (B) is a FMEP diagram of the sliding structure.
  • FIG. 1 It is a side view which shows the sliding process of a cylinder liner and a piston ring of the internal combustion engine.
  • (A) and (B) are graphs showing fluctuations in the frictional force between the cylinder liner and the piston ring during one stroke of the internal combustion engine.
  • (A) is a cross-sectional view along the axial direction of the cylinder liner applied to the sliding structure of the internal combustion engine according to the second embodiment of the present invention
  • (B) is the sliding stroke of the cylinder liner and the piston ring.
  • a plurality of recesses 14 are formed on the inner wall surface 12 of the cylinder liner 10 according to the internal combustion engine of the first embodiment.
  • the recess 14 is formed in the stroke central region 20 on the inner wall surface 12.
  • the stroke central region 20 is from the lower surface position of the ring groove of the lowest piston ring at the top dead center T of the piston 30 to the upper surface position of the ring groove of the highest piston ring at the bottom dead center U of the piston 30. Is the maximum, and all or part of the area is the area (here, the case where the entire area is the stroke central region 20 and the recess 14 is formed in the entire area is illustrated).
  • this outer region 25 includes the upper outer region 25A adjacent to the top dead center side of the stroke center region 20 and the lower death of the stroke center region 20. It is composed of a lower outer region 25B adjacent to the point side.
  • the piston 30 reciprocates in the cylinder liner 10 it repeatedly passes through the upper outer region 25A, the stroke center region 20, the lower outer region 25B, the stroke center region 20, and the upper outer region 25A in this order.
  • the boundary between the upper outer region 25A and the stroke central region 20 is defined as the upper boundary 27A
  • the boundary between the lower outer region 25B and the stroke central region 20 is defined as the lower boundary 27B.
  • the recess 14 is arranged on the inner wall surface 12 of the process central region 20 so that at least one recess 14 exists in the cross section of any location in the direction perpendicular to the axis. That is, the recesses 14 are arranged so as to overlap each other in the axial direction. As a result, the outer peripheral surface of the piston ring passing through the stroke central region 20 always faces at least one recess 14. On the other hand, the recess 14 is not formed in the upper outer region 25A and the lower outer region 25B.
  • the shape of the recesses 14 is a square (square or rectangle) arranged diagonally with respect to the axial direction, and as a result, the entire plurality of recesses 14 are arranged in an oblique grid pattern.
  • the lowest point 14b in the axial direction of the recess 14 is the highest in the axial direction of the other recess 14. It is located below the point 14a in the axial direction.
  • the recesses 14 overlap in the axial direction, the recesses 14 are always present in the cross section perpendicular to the axis at every place (for example, arrow A, arrow B, arrow C) in the central region 20 of the stroke. it can.
  • a plurality of recesses 14 having the same area are uniformly arranged in the surface direction (axial direction and circumferential direction).
  • a plurality of recesses 14 having the same area may be arranged non-uniformly in the surface direction.
  • the area occupied by the plurality of recesses 14 in the circumferential band-shaped region 20P at the axial end of the stroke central region 20 is small, and the circumferential band-shaped region at the axial central portion of the stroke central region 20 is small.
  • the area occupied by the plurality of recesses 14 is large.
  • the size and shape of the recess 14 are not particularly limited, but are appropriately selected according to the size and purpose of the cylinder and piston ring.
  • the recess 14 can be formed in a slit shape or a band shape so as to penetrate (or extend) in the cylinder axial direction of the stroke central region 20.
  • the maximum average length J (see FIG. 2A) of the recess 14 in the cylinder axial direction is the cylinder shaft of the piston ring (top ring) located at the highest position of the piston. It is preferably less than or equal to the directional length (width), specifically about 5 to 100% thereof.
  • the average length J of the recesses 14 means the average value of the maximum axial dimensions of the plurality of recesses 14 when there are variations.
  • the maximum average length S of the recess 14 in the cylinder circumferential direction is preferably in the range of 0.1 mm to 15 mm, and preferably in the range of 0.3 mm to 5 mm. If it is smaller than these ranges, the effect of reducing the sliding area by the recess 14 itself may not be sufficiently obtained. On the other hand, if it is larger than these ranges, a part of the piston ring tends to enter the recess, and a problem such as deformation of the piston ring may occur.
  • the maximum average length R (maximum average depth R) of the recess 14 in the cylinder radial direction is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and preferably in the range of 0.1 ⁇ m to 500 ⁇ m. More preferably, it is set to 0.1 ⁇ m to 50 ⁇ m. If the maximum average length R of the recess 14 in the cylinder radial direction is smaller than these ranges, the effect of reducing the sliding area of the recess 14 itself may not be sufficiently obtained. On the other hand, if it is attempted to be larger than these ranges, processing becomes difficult, and problems such as the need to increase the wall thickness of the cylinder may occur.
  • the average value of the minimum distance H in the cylinder circumferential direction between the recesses 14 adjacent to each other in the circumferential direction at the same position in the axial direction is preferably in the range of 0.05 mm to 15 mm, preferably 0.1 mm to 5
  • the range of 0.0 mm is particularly preferable. If it is smaller than these ranges, the contact area (sliding area) between the piston ring and the cylinder liner may be too small to slide stably. On the other hand, if it is larger than these ranges, the effect of reducing the sliding area of the recess 14 itself may not be sufficiently obtained.
  • the microtexture is a state in which a region V in which a recess is formed and a region Z in which no recess is present do not overlap in the axial direction along the cylinder axial direction of the inner wall surface of the cylinder liner.
  • the theory is that each time the piston ring moves on the inner wall surface, engine oil flows in and out of the recess, and the dynamic pressure thickens the oil film and reduces the frictional force. ..
  • the present invention is also applicable to such a microtexture technique. That is, the present invention reduces the contact area with the piston ring by forming a plurality of recesses (including hairline-shaped and scratch-shaped recesses due to honing processing, etc.) in the central region of the stroke. If it is a structure, it can be effectively applied.
  • the surface roughness (arithmetic mean roughness of the contour curve) measured by a stylus type surface roughness measuring machine (JIS B 0651: 2001) is provided in at least a part of the stroke central region 20.
  • a central low roughness region 22 having a Ra (JIS B 0601: 2013)) of 0.140 ( ⁇ m) or less, and preferably a surface roughness Ra of 0.120 ( ⁇ m) or less is formed.
  • the surface roughness Ra of the surface of the inner peripheral surface 12 that can come into contact with the piston ring 40, that is, the surface of the inner peripheral surface 12 excluding the recess 14, is 0.140 ( ⁇ m).
  • the central low roughness region 22 is formed by the following processing, more preferably 0.120 ( ⁇ m) or less.
  • the surface roughness (arithmetic mean roughness of the contour curve) measured by the stylus type surface roughness measuring machine is displayed as Ra, and is measured by the non-contact type surface roughness measuring machine described later.
  • the three-dimensional surface roughness (arithmetic mean height of contour curved surface (JIS B 0681-2: 2018, ISO 25178-2: 2012)) is displayed as Sa.
  • the central low roughness region 22 is more preferably set to a surface roughness Ra of 0.090 ( ⁇ m) or less, specifically 0.083 ( ⁇ m).
  • a non-contact surface roughness measuring machine using a laser microscope conforming to JIS B 0681-6: 2014 (ISO 25178-6: 2010) (measurement magnification 1080 times, field size 259. Three-dimensional surface roughness value when measured at 4 ⁇ m ⁇ 259.4 ⁇ m, no cutoff, height direction (Z direction) measurement pitch 0.06 ⁇ m) (JIS B 0681-2: 2018, ISO 25178-2: 2012) Is shown below.
  • the depth of the protruding valley is positively reduced to reduce the frictional force during sliding.
  • the conventional cylinder liner in order to secure the holding force of the lubricating oil, it is necessary to increase the depth of the protruding valley portion to some extent, and accordingly, it is difficult to reduce the height of the protruding peak portion, and the sliding There is a limit to the reduction of frictional force inside.
  • the contact surface itself with the piston ring 40 can sufficiently form an oil film even if the holding force of the lubricating oil is small.
  • the value of I / E is set to 2.6 or less in the central low roughness region 22 of the present embodiment. It is preferably set, more preferably 2.4 or less, and even more preferably 2.0 or less.
  • the entire range of the surface that can come into contact with the piston ring 40 in the stroke central region 20 is defined as the central low roughness region 22.
  • the central low roughness region 22 includes the vicinity of the upper end edge and the vicinity of the lower end edge of the process central region 20 in which the recess 14 is formed.
  • an upper low roughness region 23A having a surface roughness Ra of 0.120 ( ⁇ m) or less is formed, and the stroke central region region A lower roughness region 23B is formed for the lower outer region 25B adjacent to the bottom dead center side of 20.
  • the upper low roughness region 23A, the central low roughness region 22, and the lower low roughness region 23B are completely connected in a uniform surface roughness state, and form an integral continuous surface as a whole.
  • the relative speed U of the cylinder liner 10 and the piston 30 decreases in the vicinity of the upper end edge and the vicinity of the lower end edge of the stroke central region 20, it is easy to shift from the fluid lubrication region to the boundary lubrication region. However, due to the presence of the central low roughness region 22, the fluid lubrication region can be predominantly developed. Since the so-called dimple liner technique can exert its effect in the fluid lubrication region, the advantages of the dimple liner technique can be obtained also in the vicinity of the upper end edge and the lower end edge of the process central region 20.
  • the central low roughness region 22 it is also possible to form the central low roughness region 22 by limiting it to the vicinity of the upper end edge and / or the lower end edge of the stroke central region 20, but as in the present embodiment, the stroke central region It is preferable to form the central low roughness region 22 over the entire 20.
  • the boundary lubrication region approaches the center side of the stroke central region 20, but even in that case, fluid lubrication It is possible to expand the range of the area.
  • the central portion low roughness region 22 of the inner wall surface 12 of the cylinder liner 10 is formed by performing honing processing using a honing machine. At this time, it is preferable to use abrasive grains (JIS R 6001-2: 2017, ISO8486-2: 2007) finer than F500 or # 800 for the particle size of the honing grindstone.
  • abrasive grains JIS R 6001-2: 2017, ISO8486-2: 2007
  • the central portion low roughness region 22 is formed by this honing process, it is preferable not to perform a film treatment on the surface thereof.
  • a film treatment for example, when a phosphate film or the like generally used in the manufacturing process of the cylinder liner 10 is applied, the surface texture of the central low roughness region 22 varies depending on the film.
  • FIGS. 4 (A) and 4 (B) show the piston 30 and the piston ring 40 (top ring 50, second ring 60, oil ring 70) installed in the ring groove of the piston 30.
  • the piston ring 40 reciprocates in the cylinder axial direction with the outer peripheral surface 42 facing the inner wall surface 12 of the cylinder liner 10.
  • the top ring 50 eliminates the gap between the piston 30 and the cylinder liner 10 and prevents a phenomenon (blow-by) in which compressed gas escapes from the combustion chamber to the crankcase side.
  • the second ring 60 also has a role of eliminating a gap between the piston 30 and the cylinder liner 10 and a role of scraping off excess engine oil adhering to the inner wall surface 12 of the cylinder liner 10.
  • the oil ring 70 scrapes off excess engine oil attached to the inner wall surface 12 of the cylinder liner 10 to form an appropriate oil film, thereby preventing seizure of the piston 30.
  • the top ring 50 is a single annular member, and has a so-called barrel shape that is convex outward in the radial direction when the outer peripheral surface 52 is viewed in cross section. Specifically, both outer edges of the outer peripheral surface 52 in the cylinder axial direction are inclined toward the outside in the cylinder axial direction in a direction away from the inner wall surface 12.
  • the width f of the outer peripheral surface 52 with respect to the inner wall surface 12 of the cylinder liner 10 is preferably formed to be, for example, 0.3 mm or less.
  • the surface roughness (arithmetic mean roughness Ra of the contour curve (JIS B 0601: 2013)) measured by the stylus type surface roughness measuring machine (JIS B 0651: 2001) of the outer peripheral surface 52 is 0.250. ( ⁇ m) or less is preferable.
  • the second ring 60 is a single annular member, and the vicinity of the outer circumference thereof has a tapered shape in which the diameter increases from the upper end in the cylinder axial direction toward the lower side in the cylinder axial direction. It has become.
  • the outer peripheral surface 62 located at the outermost end of the tapered shape and in contact with the inner wall surface 12 of the cylinder liner 10 has a planar shape in a cross-sectional view.
  • the contact width f of the cylinder liner 10 with respect to the inner wall surface 12 on the outer peripheral surface 62 is preferably formed to be, for example, 0.3 mm or less.
  • the surface roughness (arithmetic mean roughness Ra of the contour curve (JIS B 0601: 2013)) measured by the stylus type surface roughness measuring machine (JIS B 0651: 2001) of the outer peripheral surface 62 is 0.250. ( ⁇ m) or less is preferable.
  • the tension of the top ring 50 and the second ring 60 is set to a relatively low value, and the surface pressure acting on the contact surfaces of the outer peripheral surfaces 52 and 62 is, for example, 0.5 MPa or less, preferably 0.3 MPa. It becomes as follows. As a result, the top ring 50 and the second ring 60 often slide in the fluid lubrication region except for the vicinity of the top dead center and the vicinity of the bottom dead center.
  • the oil ring 70 enlarged and shown in FIG. 5 (A) is a two-piece type, and has a ring body 72 and a coil spring-shaped coil expander 76.
  • the ring body 72 has a pair of annular rails 73, 73 arranged at both ends in the axial direction, and an annular column portion 75 arranged between the pair of rails 73, 73 and connecting them.
  • the cross-sectional shape of the pair of rails 73, 73 and the pillar portion 75 combined is substantially I shape or H shape, and by utilizing this shape, the coil expander 76 is accommodated on the inner peripheral surface side.
  • An inner groove 79 having a semicircular arc shape is formed.
  • the pair of rails 73 and 73 are formed with annular protrusions 74 and 74 that project radially outward with respect to the pillar portion 75, respectively.
  • the outer peripheral surfaces 82, 82 formed at the tip of the annular protrusions 74, 74 come into contact with the inner wall surface 12 of the cylinder liner 10.
  • the coil expander 76 is housed in the inner peripheral groove 79 to press and urge the ring body 72 outward in the radial direction.
  • a plurality of oil return holes 77 are formed in the pillar portion 75 of the ring main body 72 in the circumferential direction.
  • the contact width of each of the pair of outer peripheral surfaces 82 and 82 in FIG. 5A is preferably formed to be 0.02 mm to 0.30 mm, and is set to, for example, 0.15 mm.
  • the surface pressure acting on the contact surface of the outer peripheral surface 82 of the oil ring 70 is, for example, 1.0 MPa to 2.0 MPa, for example, about 1.75 MPa. Therefore, the oil ring 70 often slides in the fluid lubrication region when the engine speed is high, but often slides in the boundary lubrication region when the engine speed decreases.
  • the shape of the radial cross section of the outer peripheral surfaces 82 and 82 is illustrated as a simple trapezoid, but the present invention is not limited to this, and the outer peripheral surface 82 of the upper rail 73 and the outer peripheral surface 82.
  • the corners on the sides facing each other may be cut out in a step shape (so-called step land shape).
  • the surface roughness (arithmetic mean roughness Ra of the contour curve (JIS B 0601: 2013)) measured by the stylus type surface roughness measuring machine (JIS B 0651: 2001) of the outer peripheral surface 82 is 0.450. ( ⁇ m) or less is preferable.
  • the oil ring 70 is not limited to the two-piece type, and may be, for example, the three-piece type oil ring 70 shown in FIG. 5 (B).
  • the oil ring 70 has an annular side rail 73a, 73b separated vertically and a spacer expander 76s arranged between the side rails 73a, 73b.
  • the spacer expander 76s is formed by plastic working a steel material into a corrugated shape that repeats unevenness in the cylinder axial direction. Using this corrugated shape, an upper support surface 78a and a lower support surface 78b are formed, and a pair of side rails 73a and 73b are supported in the axial direction, respectively.
  • the inner peripheral side end of the spacer expander 76s has an ear portion 74 m that is erected in an arch shape toward the outer side in the axial direction. The selvage portion 74m abuts on the inner peripheral surfaces of the side rails 73a and 73b.
  • the spacer expander 76s is incorporated into the ring groove of the piston 30 in a state of contraction in the circumferential direction with the abutment attached. As a result, the restoring force of the spacer expander 76s causes the selvage portion 74m to press and urge the side rails 73a and 73b outward in the radial direction.
  • the contact width f of each of the outer peripheral surfaces 82 and 82 of the side rails 73a and 73b in FIG. 5B is preferably formed to be 0.02 mm to 0.40 mm.
  • the change in the coefficient of friction during general sliding is represented by the Strivec diagram shown in FIG. 6 (A).
  • the friction mode of the solid contact region 110 that slides in direct contact the friction mode of the boundary lubrication region 112 that slides through the oil-based coating, and the fluid lubrication region that slides through the viscous lubricating oil film. It is classified according to the friction mode in 114. Further, between the boundary lubrication region 112 and the fluid lubrication region 114, there is a friction mode of the mixed lubrication region 113 in which both states are mixed.
  • the horizontal axis is a logarithmic representation of "kinematic viscosity (kinematic viscosity) ⁇ " ⁇ "velocity U” / "contact load W”, and the vertical axis is the coefficient of friction (f). ). Therefore, the frictional force can be minimized in the fluid lubrication region 114 or the mixed lubrication region 113, and effective utilization of these regions 114 and 113 is effective for low friction, that is, low fuel consumption.
  • the boundary lubrication region 112 continues to the high-speed region as it is, as shown by the dotted line.
  • the oil is positively flowed into the contact surface of the outer peripheral surface 42 of the piston ring 40 to quickly shift to the fluid lubrication region 114 and realize low friction.
  • a recess 14 is formed in the stroke central region 20 of the cylinder liner 10 to reduce the actual area where oil shear resistance is generated. Efficiently achieve a reduction in frictional force.
  • the Strivec diagram of FIG. 6A shows the dynamic change of the friction coefficient (f) during one stroke of the piston 40.
  • the friction loss mean is used.
  • This friction loss mean effective pressure is the value obtained by dividing the friction work per cycle by the stroke volume.
  • a diagram (FMEP diagram) of this friction loss mean effective pressure is shown in FIG. 6 (B).
  • the horizontal axis is the rotation speed (N)
  • the vertical axis is the friction loss mean effective pressure (kPa). The higher the rotation speed (N), the greater the proportion of the fluid lubrication region 114 in one stroke.
  • the shape of the FMEP diagram of FIG. 6 (B) is relatively similar to the shapes of the fluid lubrication region 114 and the mixed lubrication region 113 of the Strivec diagram of FIG. 6 (A).
  • FIG. 7 shows a friction unit measuring device 500 for measuring the friction mode between the cylinder liner 10 and the piston ring 50 adopted in the first embodiment.
  • the friction unit measuring device 500 measures the friction state between the two by fixing the piston ring 40 side and reciprocating the cylinder liner 10 side up and down. That is, the measurement of this friction state is a friction test (non-combustion friction test) in a state where combustion as an internal combustion engine does not occur.
  • the friction unit measuring device 500 holds a virtual piston 510 in which a piston ring 40 (three of a top ring, a second ring, and an oil ring) is set by a fixed shaft 514 via a load cell 512.
  • the load cell 512 measures the external force (friction force) in the vertical direction acting on the piston ring 40.
  • the cylinder liner 10 is held by the moving sleeve 530 on the outer wall side thereof.
  • the lower end of the moving sleeve 530 is held by the driving piston 540.
  • the driving piston 540 is held by a connecting rod 550 that moves up and down by a crankshaft (not shown).
  • a fixed sleeve 560 is arranged on the outer circumference of the moving sleeve 530.
  • the fixing sleeve 560 is fixed to the base 570.
  • the fixed shaft 514 is fixed to the lid member 562 at the upper end of the fixed sleeve 560.
  • the outer peripheral surface of the moving sleeve 530 and the inner peripheral surface of the fixed sleeve 560 are slidable.
  • a temperature control jacket 565 is provided inside the fixed sleeve 560, and the temperature of the fixed sleeve 560 can be controlled by circulating hot water or cold water in the temperature control jacket 565.
  • the standard of the lubricating oil is set to 10W-30
  • the oil temperature is set to 60 degrees
  • the rotation speed of the crankshaft is changed from 215 rpm to 2154 rpm. ..
  • the height (width) of the top ring 50 was 2.5 mm, the surface roughness Ra of the outer peripheral surface 52 was set to 0.180 ( ⁇ m), and the tension was set to 16.7 N.
  • the height (width) of the second ring 60 was 2.0 mm, the surface roughness Ra of the outer peripheral surface 62 was set to 0.180 ( ⁇ m), and the tension was set to 12.3 N.
  • the oil ring 70 has a height (width) of 3.0 mm, and the surface roughness Ra of the outer peripheral surface 82 is set to 0.330 ( ⁇ m) and the tension is set to 22.6N.
  • the cylinder liner 10-A having the surface roughness Ra of the central low roughness region 22 set to 0.120 ( ⁇ m) and the surface roughness Ra set to 0.083 ( A cylinder liner 10-B set to ⁇ m) was prepared, and the friction mode was measured using the friction unit measuring device 500.
  • FIGS. 8A and 8B also show estimated values for a virtual cylinder liner K (surface roughness Ra0.140 ( ⁇ m)) corresponding to the first embodiment.
  • the arithmetic average roughness Ra is a value measured by a stylus type surface roughness measuring machine (JIS B 0651: 2001), and has an arithmetic average height Sa ( ⁇ m) and a protruding peak height Spk ( ⁇ m).
  • Projection valley depth Svk ( ⁇ m) is values measured using a non-contact surface roughness measuring machine using the laser microscope described above.
  • a recess 14 is formed in the entire stroke central region 20.
  • the fluctuation of the coefficient of friction between the cylinder liner and the piston ring 40 when the piston 30 slides from the top dead center T to the bottom dead center U of the cylinder liner depends on the relative speeds of the two. .. This relative speed is uniquely determined with respect to the engine speed (rpm).
  • the piston 30 descends from the state where the speed of the top dead center T of the cylinder liner 10 is zero, passes through the stroke A, and reaches the maximum speed C on the way. After that, when the bottom dead center U is reached via the process B, the speed becomes zero.
  • the coefficient of friction constantly changes along the Strivec diagram of FIG. 8 (A).
  • the kinematic viscosity (kinematic viscosity) in the central low roughness region 22 is ⁇
  • the relative speed with the piston 30 (piston ring 40) is U
  • the contact load with respect to the piston 30 is W.
  • the coefficient of friction with the piston 30 is defined as f (vertical axis of the graph)
  • the minimum value fmin of the friction coefficient f in the central low roughness region 20 is located within the range where the evaluation parameter A is 0.0003 or less. More preferably, the minimum value fmin of the friction coefficient f is located within the range where the evaluation parameter A is 0.0002 or less. On the other hand, the minimum value fmin of the friction coefficient f in the central low roughness region 20 is located within the range where the evaluation parameter A is 0.0001 or more.
  • the friction coefficient f in the central low roughness region 20 is 0.07 or less in any of the ranges where the evaluation parameter A is 0.0003 or less. Become. Desirably, the friction coefficient f is 0.06 or less.
  • the cylinder liners 10-A and 10-B of the present embodiment have a range in which the friction coefficient is 0.07 or less. , Spreads to the left side of the graph where the evaluation parameter A is 0.0003 or less. This means that even in low-speed sliding, the range of the fluid lubrication region 114 and the mixed lubrication region 113 is widened, and the sliding mode has an extremely low friction coefficient f.
  • the evaluation parameter A when the evaluation parameter A is in the range of 0.0003 to 0.0005, the graph of the cylinder liner X (surface roughness Ra 0.160 ( ⁇ m) / with recesses) and the cylinder liner Y (surface roughness Ra 0.160 ( ⁇ m)) ) / Without recesses), and when the evaluation parameter A is 0.0003 or less, the friction coefficient f of the cylinder liner X (surface roughness Ra0.160 ( ⁇ m) / with recesses) exceeds 0.07. Exceeds the friction coefficient f of the cylinder liner Y (surface roughness Ra 0.160 ( ⁇ m) / no recesses).
  • the recess 14 acts to reduce the friction coefficient f in the range where the evaluation parameter A exceeds 0.0003.
  • the evaluation parameter A is in the range of 0.0003 or less, the recess 14 increases the friction coefficient f.
  • the surface roughness Ra of the central low roughness region 20 is set to 0.120 ( ⁇ m) or less, so that the evaluation parameter A is as low as 0.0003 or less. Even if the actual contact area with the piston ring 40 is small due to the recess 14 in the velocity region, the fluid lubrication region 114 or the mixed lubrication region 113 can be easily maintained. Further, even if the boundary lubrication state is reached, the friction coefficient is kept small because the surface roughness is small.
  • the surface roughness Ra of the inner peripheral surface of the cylinder liner is 0.120 ( ⁇ m) or less, the holding force of the lubricating oil on the contact surface is lowered and it is easy to run out of lubricating oil. Since the recess 14 superposed on the central low roughness region 22 functions as a storage portion for the lubricating oil with respect to the central low roughness region 20, there is also a synergistic effect that the lubricating oil shortage is unlikely to occur in the central low roughness region 20. can get.
  • the friction coefficient f in the range where the evaluation parameter A exceeds 0.0003 (high-speed region) is the cylinder liner X (surface roughness Ra0.160 ( ⁇ m) / with recesses). It is close to or smaller than the coefficient of friction f of. That is, in the cylinder liners 10-A and 10-B, the central low roughness region 20 contributes to the reduction of the friction coefficient f even in the high speed region.
  • the surface roughness Ra of the central low roughness region 20 has the same configuration as the cylinder liner 10-A to 0.140 ( ⁇ m).
  • the friction coefficient of the set cylinder liner K is estimated and displayed.
  • the friction coefficient of the cylinder liner K is the state of the conventional cylinder liners X and Y having a surface roughness Ra of 0.160 ( ⁇ m) and the cylinder liner 10-A having a surface roughness Ra of 0.120 ( ⁇ m). It can be inferred that it approximates the intermediate value of.
  • the friction coefficient f in the central low roughness region 20 is 0.07 or less, preferably the friction coefficient f is 0, within the range where the evaluation parameter A is 0.0003 or less. It will be .06 or less. Further, in the cylinder liner K, the friction coefficient f in the range where the evaluation parameter A exceeds 0.0003 (high-speed region) is close to the friction coefficient f of the cylinder liner X (surface roughness Ra 0.160 ( ⁇ m) / with recesses). Or less.
  • the mean effective pressure (FMEP) of friction loss between the central low roughness region 22 and the piston ring 40 is defined as T (kPa) (vertical axis), and the rotation speed of the internal combustion engine. Is defined as N (r / min) (horizontal axis).
  • the minimum value Tmin of the average effective pressure T of friction loss in the central low roughness region 20 is located within the range where the rotation speed N is 700 or less. More preferably, the minimum value Tmin of the average effective pressure T of friction loss is located within the range where the rotation speed N is 600 or less.
  • the friction loss mean effective pressure T in the central low roughness region 20 is set to 14 kPa or less in any of the ranges where the rotation speed N is 700 or less. Set to.
  • the friction loss mean effective pressure T is smaller than 14 kPa in the cylinder liners 10-A and 10-B of the present embodiment.
  • the range extends to 700 or less rotation speed N (on the left side of the graph). As a result, even at low rotation speeds, the sliding mode has extremely low friction loss.
  • the recess 14 acts to reduce the friction loss in the range where the rotation speed N exceeds 1000, but the rotation speed When N is in the range of 1000 or less, the recess 14 acts to increase the friction loss.
  • the surface roughness Ra of the central low roughness region 20 is set to 0.120 ( ⁇ m) or less, so that the rotation speed N is 700 or less in the low rotation region. Even so, the friction loss is suppressed by maintaining the fluid lubrication region 114 or the mixed lubrication region 113. Further, even if the boundary lubrication state is reached, the friction loss is suppressed because the surface roughness is small.
  • the cylinder liner X surface roughness Ra 0.160 ( ⁇ m) / with recesses
  • the cylinder liner 10-A about 2.0 kPa
  • the cylinder liner 10 In the case of ⁇ B, a reduction effect of about 4.0 kPa can be obtained.
  • the surface roughness Ra of the inner peripheral surface of the cylinder liner is 0.120 ( ⁇ m) or less, the holding power of the lubricating oil is lowered and the lubricating oil is liable to run short.
  • the friction loss in the high rotation region where the rotation speed N exceeds 700 is close to the friction loss of the cylinder liner X (surface roughness Ra0.160 ( ⁇ m) / with recesses). Or less. That is, in the cylinder liners 10-A and 10-B, the central low roughness region 20 does not adversely affect the friction loss even in the high rotation region.
  • this FMEP diagram is based on the friction test in the non-combustion state. Therefore, in the FMEP of the actual internal combustion engine in which the actual combustion occurs, the FMEP value is higher than this because the combustion pressure acts.
  • the surface roughness Ra of the central low roughness region 20 is set to 0.140 ( ⁇ m) with the same configuration as the cylinder liner 10-A.
  • the FMEP of the cylinder liner K to be made is estimated and displayed.
  • the FMEP diagram of the cylinder liner K is the FMEP diagram of the conventional cylinder liners X and Y having a surface roughness Ra0.160 ( ⁇ m) and the cylinder liner 10-A having a surface roughness Ra0.120 ( ⁇ m). It can be inferred that it approximates the intermediate value of the FMEP diagram.
  • the range in which the mean effective pressure T of friction loss becomes 14 kPa or less extends to 700 or less in rotation speed N (left side of the graph). As a result, even at low rotation speeds, the sliding mode has extremely low friction loss.
  • FIG. 10A shows the fluctuation of the frictional force during the stroke of the cylinder liner X and the cylinder liner 10-B when the rotation speed N becomes 646 (low rotation speed).
  • FIG. 10B shows fluctuations in the frictional force between the cylinder liner X and the cylinder liner 10-B during the stroke when the rotation speed N is 2154 (high rotation speed).
  • the horizontal axis of these graphs is the phase (angle) of the connecting rod. It can be seen that during the low rotation operation of FIG. 10A, there is a large difference in the frictional force between the cylinder liner 10-B and the cylinder liner X.
  • the difference in frictional force is large in the range of 45 to 135 degrees in phase in the process of moving to the top dead center side and in the range of 225 to 315 degrees in the phase of moving to the bottom dead center side. ..
  • the frictional force is significantly reduced over the whole.
  • the cylinder liner X has a sliding mode close to the boundary lubrication region, but the cylinder liner 10-B is presumed to have a sliding mode close to the fluid lubrication region (or mixed lubrication region).
  • the frictional force of the cylinder liner 10-B is generally smaller than the frictional force of the cylinder liner X.
  • both the cylinder liner 10-B and the cylinder liner X are in the fluid lubrication region, and it can be seen that the frictional force of the cylinder liner 10-B is always smaller even in this fluid lubrication region.
  • the frictional forces near the bottom dead center of 0 degrees and 360 degrees, which tend to be the boundary lubrication region, and the phase of 180 degrees, which is the top dead center are significantly reduced.
  • the oil consumption is also suppressed. This is because the absolute amount of the lubricating oil film formed in the central low roughness region 22 is reduced. Even if the absolute amount of the oil film is reduced, the recesses 14 are formed in an overlapping manner, so that the lubrication is not insufficient. That is, in the present embodiment, it is possible to rationally solve both the reduction of oil consumption and the sufficient lubrication effect. According to the simulations of the present inventors, in the case of a diesel engine, it was inferred that the LOC ratio of the cylinder liner 10-B was reduced by about 10% as compared with the cylinder liner X.
  • a plurality of recesses 14 are formed on the inner wall surface 12 of the cylinder liner 10 according to the internal combustion engine of the second embodiment.
  • the recess 14 is formed only in the stroke central region 20 on the inner wall surface 12.
  • This stroke central region 20 is located at the bottom dead center U of the piston 30 from the lower surface position 19A of the ring groove of the lowest piston ring at the top dead center T of the piston 30 (hereinafter, also referred to as the top dead center side edge). It is a part of the entire range (hereinafter, referred to as reference stroke area 19) up to the upper surface position 19B (hereinafter, also referred to as bottom dead center side edge) of the ring groove of the uppermost piston ring.
  • the stroke central region 20 of the present embodiment is located at a position shifted below the top dead center side edge 19A of the reference stroke region 19.
  • a smooth upper smoothing region 130A having no recess is formed in the entire area from the top dead center side edge 19A of the reference stroke region 19 to the top dead center side edge 27A of the stroke central region 20. It is formed.
  • the upper smoothing region 130A is a region through which the piston ring 40 passes.
  • the stroke central region 20 of the present embodiment is located at a position shifted upward from the bottom dead center side edge 19B of the reference stroke region 19.
  • a smooth lower smooth region 130B having no recess in the entire area from the bottom dead center side edge 19B of the reference stroke region 19 to the bottom dead center side edge 27B of the stroke center region 20. Is formed.
  • the lower smoothing region 130B is a region through which the piston ring 40 passes.
  • the edge 27A on the top dead center side of the stroke central region 20 may be referred to as an "upper boundary” which means a boundary line between a place where the recess 14 is formed and a place where the recess 14 is not formed.
  • the edge 27B on the bottom dead center side of the stroke central region 20 may be referred to as a "lower boundary” which means a boundary line between a place where the recess 14 is formed and a place where the recess 14 is not formed.
  • the lower dead center side edge (lower boundary) 27B of the stroke central region 20 may be aligned with the lower dead center side edge 19B of the reference stroke area 19 or may be extended to the lower side. Is also good.
  • the external region 25 includes the upper external region 25A adjacent to the top dead center side of the stroke central region 20 and the stroke central region 20. It is composed of a lower outer region 25B adjacent to the bottom dead center side.
  • the upper smoothing region 130A is included in a part of the upper outer region 25A
  • the lower smoothing region 130B is included in a part of the lower outer region 23B.
  • the surface roughness (arithmetic mean roughness) Ra measured by the stylus type surface roughness measuring machine is 0.140 ( ⁇ m) or less, which is preferable in at least a part of the process central region 20. Is formed with a central low roughness region 22 having a surface roughness Ra of 0.120 ( ⁇ m) or less.
  • the entire process central region 20 is defined as the central low roughness region 22.
  • the central low roughness region 22 includes the vicinity of the upper end edge and the vicinity of the lower end edge of the process central region 20 in which the recess 14 is formed.
  • the surface roughness (arithmetic mean roughness) Ra is 0.140 ( ⁇ m) or less by the stylus type surface roughness measuring machine, which is preferable.
  • An upper low roughness region 23A having a surface roughness Ra of 0.120 ( ⁇ m) or less is formed.
  • the upper low roughness region 23A of the present embodiment is formed to a range beyond the upper smooth region 130A while being superimposed on the upper smooth region 130A.
  • the surface roughness (arithmetic mean roughness) Ra is 0.140 ( ⁇ m) or less, and the surface roughness Ra is preferably 0.
  • a lower low roughness region 23B of .120 ( ⁇ m) or less is formed.
  • the lower low roughness region 23B of the present embodiment is formed to a range beyond the lower smooth region 130B while being superimposed on the lower smooth region 130B.
  • the upper low roughness region 23A, the central low roughness region 22, and the lower low roughness region 23B are completely connected in a uniform surface roughness state, and form an integral continuous plane as a whole.
  • the upper outer region 25A (upper low roughness region 23A), the stroke central region 20 (center low roughness region 22), and the lower outer region 25B (lower low roughness region 25B)
  • the cylinder region 23B), the stroke central region 20 (center low roughness region 22), and the upper outer region 25A (upper low roughness region 23A) are repeatedly passed in this order.
  • the stroke direction distance of the upper smoothing region 130 is preferably set to 30% or more of the total stroke direction distance of the reference stroke region 19. Further, the center point 20M in the stroke direction in the stroke center region 20 is located on the bottom dead center U side of the piston as compared with the center point 19M in the stroke direction in the reference stroke region.
  • the edge (upper boundary) on the top dead center side of the stroke central region 20 is defined.
  • 27A is set to the fastest passing point C or less. In the present embodiment, the edge 27A on the top dead center side and the fastest passing point C are set to coincide with each other.
  • the central portion low roughness region 22, the upper low roughness region 23A, and the lower low roughness region 23B of the cylinder liner 10 are formed by performing honing processing using a honing machine. At this time, it is preferable to use abrasive grains (JIS R 6001-2: 2017, ISO8486-2: 2007) finer than F500 or # 800 for the particle size of the honing grindstone. After the central low roughness region 22, the upper low roughness region 23A and the lower low roughness region 23B are formed by this honing process, it is preferable not to perform a film treatment on the surface thereof.
  • abrasive grains JIS R 6001-2: 2017, ISO8486-2: 2007
  • the surface texture of the central low roughness region 22, the upper low roughness region 23A and the lower low roughness region 23B becomes a film. This is because it varies depending on the.
  • the upper low roughness region 23A in which the concave portion is not formed is provided on the upper dead center side of the central low roughness region 22 in which the concave portion is superposed.
  • the significance of this upper low roughness region 23A is as follows.
  • the top dead center side of the piston 30 is in a high temperature environment due to the existence of the combustion chamber. Therefore, if a recess is formed on the top dead center side of the cylinder liner 10 and the engine oil is retained in the recess, the engine oil becomes hot and vaporizes, so that the oil consumption increases. Therefore, in the upper low roughness region 23A, the oil consumption is suppressed by not forming the recess.
  • the upper low roughness region 23A is reduced in roughness as in the present embodiment, there is a possibility that lubrication may be insufficient, or the recess 14 formed so as to be superimposed on the central low roughness region 22 adjacent to the lower side may be formed. Since the lubricating oil functions as a storage portion for the lubricating oil and the lubricating oil is positively supplied to the upper low roughness region 23A through the recess 14, a synergistic effect that insufficient lubrication does not easily occur can be obtained.
  • the viscosity of the engine oil also decreases due to the high temperature environment, so that an oil film is difficult to form, but the surface roughness Ra is 0.120 ( ⁇ m) or less due to the upper low roughness region 23A. , Preferably 0.100 ( ⁇ m) or less, so that even a small amount of oil film is positively set as a fluid lubrication region or a mixed lubrication region. Even if the boundary lubrication region is reached, the roughness is low, so that the friction coefficient can be small.
  • the lubricating oil accumulated in the recess 14 formed so as to be superimposed on the central low roughness region 22 can supply the lubricating oil to the upper low roughness region 23A, the lubricating oil shortage in the upper low roughness region 23A is unlikely to occur. There is an advantage.
  • FIG. 11B shows a process in which the piston ring 40 relatively moves the cylinder liner 10 from the top dead center T to the bottom dead center U. While the piston ring 40 moves relative to the upper low roughness region 23A, it becomes stroke lines A and L. Then, when the piston ring 40 passes through the central low roughness region 22, it becomes the stroke line M. After that, while the piston ring 40 is relatively moving toward the bottom dead center side in the lower low roughness region 23B of the cylinder liner 10, the stroke lines N and B are formed.
  • the friction coefficient during low-speed movement can be reduced by the central low roughness region 22 as in the first embodiment. Further, it is possible to reduce the friction loss at low rotation speed. Further, the oil consumption can be suppressed by the upper low roughness region 23A through which the piston ring 40 passes.

Abstract

This sliding structure is for an internal engine having a cylinder and a piston, wherein: the cylinder has a plurality of indentations formed in a stroke center region that covers the whole or part of an inner wall surface of the cylinder between a bottom surface position of the ring groove of the lowermost piston ring at top dead center of the piston and a top surface position of the ring groove of the uppermost piston ring at bottom dead center of the piston; and at least part of the surface of this stroke center region that comes into contact with the piston rings is formed in such a manner as to have a central low-roughness region where a contour curve as measured with a probe-type surface roughness tester has an arithmetic mean roughness Ra of 0.140 µm or lower. Consequently, this configuration achieves higher fuel efficiency in relation to the dimple liner technique.

Description

内燃機関の摺動構造Sliding structure of internal combustion engine
 本発明は、シリンダとピストンを有する内燃機関の摺動構造等に関する。 The present invention relates to a sliding structure of an internal combustion engine having a cylinder and a piston.
 従来、シリンダとピストンを有する内燃機関では、燃費向上やオイル消費量削減の為、シリンダとピストンの摺動抵抗(摩擦力)を小さくする努力がなされている。本出願人は、ピストンリングとシリンダの摩擦力を低減する手法として、いわゆるディンプルライナを開発しており(例えば、特許5155924号公報参照)、シリンダの内壁面の行程中央部領域に複数の凹部を形成すること等によって、運転時の摺動抵抗を小さくしている。 Conventionally, in an internal combustion engine having a cylinder and a piston, efforts have been made to reduce the sliding resistance (friction force) between the cylinder and the piston in order to improve fuel efficiency and reduce oil consumption. The applicant has developed a so-called dimple liner as a method for reducing the frictional force between the piston ring and the cylinder (see, for example, Japanese Patent No. 51559224), and has a plurality of recesses in the central region of the inner wall surface of the cylinder. By forming or the like, the sliding resistance during operation is reduced.
 本出願時点で未公知ではあるが、本発明者らの更なる研究により、このディンプルライナ技術について、更に燃費向上等を実現できる余地が残っていることが明らかとなった。 Although it is not known at the time of this application, further research by the present inventors has revealed that there is still room for further improvement in fuel efficiency of this dimple liner technology.
 本発明は、斯かる実情に鑑み、ディンプルライナに関して更なる燃費向上やオイル消費量削減を実現しようとするものである。 In view of such circumstances, the present invention aims to further improve fuel efficiency and reduce oil consumption of dimple liners.
 上記目的を達成する本発明は、シリンダとピストンを有する内燃機関の摺動構造であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、前記行程中央部領域における前記ピストンリングと接触する面の少なくとも一部には、触針式表面粗さ測定機によって測定される輪郭曲線の算術平均粗さRaが0.140以下となる中央低粗さ領域が形成されることを特徴とする、内燃機関の摺動構造である。 The present invention that achieves the above object is a sliding structure of an internal combustion engine having a cylinder and a piston, wherein the cylinder is the lower surface of the ring groove of the lowest piston ring at the top dead center of the piston in the inner wall surface. A plurality of recesses are formed in the stroke central region that is all or part of the distance from the position to the upper surface position of the ring groove of the uppermost piston ring at the bottom dead center of the piston. In at least a part of the surface in contact with the piston ring in the above, a central low roughness region in which the arithmetic average roughness Ra of the contour curve measured by the stylus type surface roughness measuring machine is 0.140 or less is formed. It is a sliding structure of an internal combustion engine.
 上記内燃機関の摺動構造に関連して、非接触式表面粗さ測定機によって測定される前記中央低粗さ領域の輪郭曲面の算術平均高さSaが0.20μm以下となることを特徴とする。 In relation to the sliding structure of the internal combustion engine, the arithmetic mean height Sa of the contour curved surface of the central low roughness region measured by the non-contact surface roughness measuring machine is 0.20 μm or less. To do.
 上記内燃機関の摺動構造に関連して、非接触式表面粗さ測定機によって測定される前記中央低粗さ領域の突出谷部深さSvkが0.41μm以下となることを特徴とする。 In relation to the sliding structure of the internal combustion engine, the protrusion valley depth Svk of the central low roughness region measured by the non-contact type surface roughness measuring machine is 0.41 μm or less.
 上記内燃機関の摺動構造に関連して、非接触式表面粗さ測定機によって測定される前記中央低粗さ領域の突出山部高さSpkが0.16μm以下となることを特徴とする。 In relation to the sliding structure of the internal combustion engine, the height Spk of the protruding peak portion of the central low roughness region measured by the non-contact surface roughness measuring machine is 0.16 μm or less.
 上記内燃機関の摺動構造に関連して、非接触式表面粗さ測定機によって測定される前記中央低粗さ領域のコア部のレベル差Skが0.53μm以下となることを特徴とする。 In relation to the sliding structure of the internal combustion engine, the level difference Sk of the core portion in the central low roughness region measured by the non-contact type surface roughness measuring machine is 0.53 μm or less.
 上記内燃機関の摺動構造に関連して、前記中央低粗さ領域における前記非接触式表面粗さ測定機によって測定される突出山部高さをE(Spk)、突出谷部深さをI(Svk)とした場合に、I/Eが2.6以下となることを特徴とする。 In relation to the sliding structure of the internal combustion engine, the protruding peak height measured by the non-contact type surface roughness measuring machine in the central low roughness region is E (Spk), and the protruding valley depth is I. When (Svk) is set, the I / E is 2.6 or less.
 上記内燃機関の摺動構造に関連して、触針式表面粗さ測定機によって測定される前記中央低粗さ領域の輪郭曲線の算術平均粗さRaが0.120μm以下となることを特徴とする。 In relation to the sliding structure of the internal combustion engine, the arithmetic mean roughness Ra of the contour curve of the central low roughness region measured by the stylus type surface roughness measuring machine is 0.120 μm or less. To do.
 上記内燃機関の摺動構造に関連して、前記中央低粗さ領域は、前記行程中央部領域における上端縁近傍及び下端縁近傍を含むことを特徴とする。 In relation to the sliding structure of the internal combustion engine, the central low roughness region is characterized by including the vicinity of the upper end edge and the vicinity of the lower end edge in the process central region.
 上記内燃機関の摺動構造に関連して、前記行程中央部領域の全体が、前記中央低粗さ領域となることを特徴とする。 In relation to the sliding structure of the internal combustion engine, the entire region at the center of the stroke is the central low roughness region.
 上記内燃機関の摺動構造に関連して、前記中央低粗さ領域の触針式表面粗さ測定機によって測定される輪郭曲線の算術平均粗さRaが、0.090μm以下としても良い。 In relation to the sliding structure of the internal combustion engine, the arithmetic mean roughness Ra of the contour curve measured by the stylus type surface roughness measuring machine in the central low roughness region may be 0.090 μm or less.
 上記内燃機関の摺動構造に関連して、前記中央低粗さ領域における動粘度(動粘性率)をμ、前記ピストンとの相対速度をU、前記ピストンに対する接触荷重をW、前記ピストンとの間の摩擦係数をfとし、ストライベック線図の評価パラメータをA=μ×U/Wと定義する際に、前記中央低粗さ領域における前記摩擦係数fの極小値fminは、前記評価パラメータAが0.0003以下の範囲内で達成されることを特徴とする。 In relation to the sliding structure of the internal combustion engine, the kinematic viscosity (kinematic viscosity) in the central low roughness region is μ, the relative velocity with the piston is U, the contact load with respect to the piston is W, and the piston. When the friction coefficient between them is f and the evaluation parameter of the Stribeck diagram is defined as A = μ × U / W, the minimum value fmin of the friction coefficient f in the central low roughness region is the evaluation parameter A. Is achieved within the range of 0.0003 or less.
 上記内燃機関の摺動構造に関連して、前記極小値fminは、前記評価パラメータAが0.0001以上の範囲内で達成されることを特徴とする。 In relation to the sliding structure of the internal combustion engine, the minimum value fmin is characterized in that the evaluation parameter A is achieved within a range of 0.0001 or more.
 上記内燃機関の摺動構造に関連して、前記中央低粗さ領域における動粘度(動粘性率)をμ、前記ピストンとの相対速度をU、前記ピストンに対する接触荷重をW、前記ピストンとの間の摩擦係数をfとし、ストライベック線図の評価パラメータをA=μ×U/Wと定義する際に、前記評価パラメータAが0.0003以下となる範囲内のいずれかで、前記中央低粗さ領域における前記摩擦係数fが0.07以下となることを特徴とする。 In relation to the sliding structure of the internal combustion engine, the kinematic viscosity (kinematic viscosity) in the central low roughness region is μ, the relative velocity with the piston is U, the contact load with respect to the piston is W, and the piston. When the coefficient of friction between them is f and the evaluation parameter of the Stribeck diagram is defined as A = μ × U / W, the center low is within the range where the evaluation parameter A is 0.0003 or less. The friction coefficient f in the roughness region is 0.07 or less.
 上記内燃機関の摺動構造に関連して、前記中央低粗さ領域における動粘度(動粘性率)をμ、前記ピストンとの相対速度をU、前記ピストンに対する接触荷重をW、前記ピストンとの間の摩擦係数をfとし、ストライベック線図の評価パラメータをA=μ×U/Wと定義する際に、前記評価パラメータAが0.0003以下となる範囲内のいずれかで、前記中央低粗さ領域における前記ピストンと前記シリンダが流体潤滑状態となることを特徴とする。 In relation to the sliding structure of the internal combustion engine, the kinematic viscosity (kinematic viscosity) in the central low roughness region is μ, the relative speed with the piston is U, the contact load with respect to the piston is W, and the piston. When the coefficient of friction between them is f and the evaluation parameter of the strikebeck diagram is defined as A = μ × U / W, the center low is within the range where the evaluation parameter A is 0.0003 or less. The piston and the cylinder in the roughness region are in a fluid-lubricated state.
 上記内燃機関の摺動構造に関連して、前記ピストンリングに相当するトップリング、セカンドリングおよびオイルリングを用いた非燃焼状態の摩擦試験において、前記内燃機関の回転数をN(r/min)とし、前記中央低粗さ領域における前記ピストンリングとの間の摩擦損失平均有効圧力(FMEP)をT(kPa)とする際に、前記中央低粗さ領域における前記摩擦損失平均有効圧Tの極小値Tminは、前記回転数Nが700以下の範囲内で達成されることを特徴とする。 In a friction test in a non-combustible state using a top ring, a second ring and an oil ring corresponding to the piston ring in relation to the sliding structure of the internal combustion engine, the rotation speed of the internal combustion engine is N (r / min). When the mean effective pressure for friction loss (FMEP) between the piston ring and the piston ring in the central low roughness region is T (kPa), the mean effective pressure T for friction loss in the central low roughness region is minimized. The value Tmin is characterized in that the rotation speed N is achieved within the range of 700 or less.
 上記内燃機関の摺動構造に関連して、前記極小値Tminは、前記回転数Nが600以下の範囲内で達成されることを特徴としても良い。 In relation to the sliding structure of the internal combustion engine, the minimum value Tmin may be characterized in that the rotation speed N is achieved within a range of 600 or less.
 上記内燃機関の摺動構造に関連して、前記ピストンリングに相当するトップリング、セカンドリングおよびオイルリングを用いた非燃焼状態の摩擦試験において、前記内燃機関の回転数をN(r/min)とし、前記中央低粗さ領域における前記ピストンリングとの間の摩擦損失平均有効圧力(FMEP)をT(kPa)とする際に、前記回転数Nが700以下となる範囲内のいずれかで、前記中央低粗さ領域における前記摩擦損失平均有効圧力Tが14kPa以下となることを特徴とする。 In a friction test in a non-combustible state using a top ring, a second ring and an oil ring corresponding to the piston ring in relation to the sliding structure of the internal combustion engine, the rotation speed of the internal combustion engine is N (r / min). When the mean effective pressure (FMEP) of friction loss between the piston ring and the piston ring in the central low roughness region is T (kPa), the number of revolutions N is 700 or less. The friction loss mean effective pressure T in the central low roughness region is 14 kPa or less.
 上記内燃機関の摺動構造に関連して、前記ピストンリングに相当するトップリング、セカンドリングおよびオイルリングを用いた非燃焼状態の摩擦試験において、前記内燃機関の回転数をN(r/min)とし、前記中央低粗さ領域における前記ピストンリングとの間の摩擦損失平均有効圧力(FMEP)をT(kPa)とする際に、前記回転数Nが700以下となる範囲内のいずれかで、前記中央低粗さ領域における前記ピストンと前記シリンダが流体潤滑状態となることを特徴とする。 In a friction test in a non-combustible state using a top ring, a second ring and an oil ring corresponding to the piston ring in relation to the sliding structure of the internal combustion engine, the rotation speed of the internal combustion engine is N (r / min). When the mean effective pressure (FMEP) between the piston ring and the piston ring in the central low roughness region is T (kPa), the rotation speed N is 700 or less. The piston and the cylinder in the central low roughness region are in a fluid lubrication state.
 上記内燃機関の摺動構造に関連して、前記内壁面のうち、前記行程中央部領域の上側端縁よりも上方側に、触針式表面粗さ測定機によって測定される輪郭曲線の算術平均粗さRaが0.140μm以下となる上側低粗さ領域が形成され、前記上側低粗さ領域と前記中央低粗さ領域が連続する事を特徴としても良い。 In relation to the sliding structure of the internal combustion engine, the arithmetic mean of the contour curve measured by the stylus type surface roughness measuring machine on the upper side of the inner wall surface above the upper edge of the central region of the stroke. An upper low roughness region having a roughness Ra of 0.140 μm or less is formed, and the upper low roughness region and the central low roughness region may be continuous.
 上記内燃機関の摺動構造に関連して、前記内壁面のうち、前記行程中央部領域の下側端縁よりも下方側に、触針式表面粗さ測定機によって測定される輪郭曲線の算術平均粗さRaが0.140μm以下となる下側低粗さ領域が形成され、前記下側低粗さ領域と前記中央低粗さ領域が連続する事を特徴としても良い。 Arithmetic of contour curve measured by a stylus type surface roughness measuring machine on the inner wall surface below the lower edge of the stroke central region in relation to the sliding structure of the internal combustion engine. A lower low roughness region having an average roughness Ra of 0.140 μm or less is formed, and the lower low roughness region and the central low roughness region may be continuous.
 上記内燃機関の摺動構造に関連して、前記中央低粗さ領域の表面が未皮膜状態であることを特徴としても良い。 In relation to the sliding structure of the internal combustion engine, the surface of the central low roughness region may be uncoated.
 本発明によれば、燃費を向上させ、または、オイル消費量を削減させるという優れた効果を奏し得る。 According to the present invention, it is possible to achieve an excellent effect of improving fuel efficiency or reducing oil consumption.
本発明の第一実施形態に係る内燃機関の摺動構造に適用されるシリンダライナの軸方向に沿う断面図である。It is sectional drawing along the axial direction of the cylinder liner applied to the sliding structure of the internal combustion engine which concerns on 1st Embodiment of this invention. (A)及び(B)は同シリンダライナの内周壁を周方向に展開した状態を示す展開図である。(A) and (B) are development views showing a state in which the inner peripheral wall of the cylinder liner is expanded in the circumferential direction. 同シリンダライナの内周壁の軸直角方向の断面図である。It is sectional drawing in the direction perpendicular to the axis of the inner peripheral wall of the cylinder liner. (A)は同内燃機関の摺動構造に適用されるピストン及びピストンリングを示す側面図であり、(B)は同ピストン及びピストンリングを示す部分拡大断面図であり、(C)はトップリングの部分拡大断面図であり、(D)はセカンドリングの部分拡大断面図である。(A) is a side view showing a piston and a piston ring applied to the sliding structure of the internal combustion engine, (B) is a partially enlarged cross-sectional view showing the piston and the piston ring, and (C) is a top ring. It is a partially enlarged cross-sectional view of, and (D) is a partially enlarged cross-sectional view of a second ring. (A)は2ピースタイプのオイルリングの断面図であり、(B)は3ピースタイプのオイルリングの断面図である。(A) is a cross-sectional view of a two-piece type oil ring, and (B) is a cross-sectional view of a three-piece type oil ring. 一般的な内燃機関の摺動に関する(A)ストライベック線図、(B)FMEP線図である。It is (A) Strivec diagram and (B) FMEP diagram concerning the sliding of a general internal combustion engine. 一般的な内燃機関の摺動状態を測定する摩擦単体測定装置を示す断面図である。It is sectional drawing which shows the friction unit measuring apparatus which measures the sliding state of a general internal combustion engine. (A)は第一実施形態の内燃機関の摺動構造を説明するためのストライベック線図であり、(B)は同摺動構造のFMEP線図である。(A) is a Strivec diagram for explaining the sliding structure of the internal combustion engine of the first embodiment, and (B) is a FMEP diagram of the sliding structure. 同内燃機関のシリンダライナとピストンリングの摺動行程を示す側面図である。It is a side view which shows the sliding process of a cylinder liner and a piston ring of the internal combustion engine. (A)及び(B)は、同内燃機関の1ストローク中におけるシリンダライナとピストンリング摩擦力の変動を示すグラフ図である。(A) and (B) are graphs showing fluctuations in the frictional force between the cylinder liner and the piston ring during one stroke of the internal combustion engine. (A)は、本発明の第二実施形態に係る内燃機関の摺動構造に適用されるシリンダライナの軸方向に沿う断面図であり、(B)は同シリンダライナとピストンリングの摺動行程を示す側面図である。(A) is a cross-sectional view along the axial direction of the cylinder liner applied to the sliding structure of the internal combustion engine according to the second embodiment of the present invention, and (B) is the sliding stroke of the cylinder liner and the piston ring. It is a side view which shows. マイクロテクスチャ技術が適用されるシリンダライナの例を示すシリンダライナの軸方向に沿う断面図である。It is sectional drawing along the axial direction of the cylinder liner which shows the example of the cylinder liner to which the microtexture technique is applied.
 以下、本発明の実施の形態に関して添付図面を参照して説明する。まず、本発明の第一実施形態に係る内燃機関の摺動構造について詳細に説明する。なお、本第一実施形態では、内燃機関がディーゼルエンジンとなる場合を例示するが、本発明はこれに限定されず、ガソリンエンジン等の他の種類の内燃機関に適用可能である。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. First, the sliding structure of the internal combustion engine according to the first embodiment of the present invention will be described in detail. In the first embodiment, the case where the internal combustion engine is a diesel engine is illustrated, but the present invention is not limited to this, and can be applied to other types of internal combustion engines such as a gasoline engine.
 <シリンダライナ> <Cylinder liner>
 図1に示すように、第一実施形態の内燃機関に係るシリンダライナ10の内壁面12には、複数の凹部14が形成される。凹部14は、内壁面12における行程中央部領域20に形成される。この行程中央部領域20とは、ピストン30の上死点Tにおける最下位のピストンリングのリング溝の下面位置から、ピストン30の下死点Uおける最上位のピストンリングのリング溝の上面位置までの範囲を最大とし、その内の全部または一部領域となる(ここでは全部の範囲が行程中央部領域20となり、その全体に凹部14が形成される場合を例示する)。行程中央部領域20の外側の領域を外部領域25と定義すると、この外部領域25は、行程中央部領域20の上死点側に隣接する上側外部領域25Aと、行程中央部領域20の下死点側に隣接する下側外部領域25Bから構成される。ピストン30がシリンダライナ10内を往復運動する際、上側外部領域25A、行程中央部領域20、下側外部領域25B、行程中央部領域20、上側外部領域25Aをこの順に繰り返し通過する。なお、上側外部領域25Aと行程中央部領域20の境界を上側境界27A、下側外部領域25Bと行程中央部領域20の境界を下側境界27Bと定義する。 As shown in FIG. 1, a plurality of recesses 14 are formed on the inner wall surface 12 of the cylinder liner 10 according to the internal combustion engine of the first embodiment. The recess 14 is formed in the stroke central region 20 on the inner wall surface 12. The stroke central region 20 is from the lower surface position of the ring groove of the lowest piston ring at the top dead center T of the piston 30 to the upper surface position of the ring groove of the highest piston ring at the bottom dead center U of the piston 30. Is the maximum, and all or part of the area is the area (here, the case where the entire area is the stroke central region 20 and the recess 14 is formed in the entire area is illustrated). If the region outside the stroke center region 20 is defined as the outer region 25, this outer region 25 includes the upper outer region 25A adjacent to the top dead center side of the stroke center region 20 and the lower death of the stroke center region 20. It is composed of a lower outer region 25B adjacent to the point side. When the piston 30 reciprocates in the cylinder liner 10, it repeatedly passes through the upper outer region 25A, the stroke center region 20, the lower outer region 25B, the stroke center region 20, and the upper outer region 25A in this order. The boundary between the upper outer region 25A and the stroke central region 20 is defined as the upper boundary 27A, and the boundary between the lower outer region 25B and the stroke central region 20 is defined as the lower boundary 27B.
 勿論、行程中央部領域20を超えて、複数の凹部14を形成することも可能であるが、オイル消費量(LOC)の観点では、行程中央部領域20の内部に限定的に凹部14を形成することが好ましい。 Of course, it is possible to form a plurality of recesses 14 beyond the stroke central region 20, but from the viewpoint of oil consumption (LOC), the recesses 14 are limitedly formed inside the stroke central region 20. It is preferable to do so.
 <シリンダライナに形成されるディンプル> <Dimples formed on the cylinder liner>
 凹部14は、行程中央部領域20の内壁面12において、どの場所の軸直角方向の断面をとっても、少なくとも一つの凹部14がその断面に存在するように配置される。即ち、凹部14は、軸方向に重なり合うように配置される。この結果、行程中央部領域20を通過するピストンリングの外周面は、常に、少なくとも1つの凹部14と対向している。一方、上側外部領域25Aと下側外部領域25Bには凹部14が形成されない。 The recess 14 is arranged on the inner wall surface 12 of the process central region 20 so that at least one recess 14 exists in the cross section of any location in the direction perpendicular to the axis. That is, the recesses 14 are arranged so as to overlap each other in the axial direction. As a result, the outer peripheral surface of the piston ring passing through the stroke central region 20 always faces at least one recess 14. On the other hand, the recess 14 is not formed in the upper outer region 25A and the lower outer region 25B.
 凹部14の形状は、軸方向に対して斜めに配置される方形(正方形又は長方形)となっており、結果として、複数の凹部14全体が斜め格子状に配置される。このようにすると、図2(A)の展開図に示すように、ある特定の凹部14に着目する場合、その凹部14の軸方向の最下点14bが、他の凹部14の軸方向の最上点14aよりも軸方向下側に位置する。このように、複数の凹部14が軸方向に重なり合うので、行程中央部領域20におけるあらゆる場所(例えば、矢視A、矢視B、矢視C)の軸直角方向断面において、凹部14が常に存在できる。ここでは、行程中央部領域20において、同じ面積となる複数の凹部14が、面方向(軸方向及び周方向)に均一に配置されている。 The shape of the recesses 14 is a square (square or rectangle) arranged diagonally with respect to the axial direction, and as a result, the entire plurality of recesses 14 are arranged in an oblique grid pattern. In this way, as shown in the developed view of FIG. 2A, when focusing on a specific recess 14, the lowest point 14b in the axial direction of the recess 14 is the highest in the axial direction of the other recess 14. It is located below the point 14a in the axial direction. In this way, since the plurality of recesses 14 overlap in the axial direction, the recesses 14 are always present in the cross section perpendicular to the axis at every place (for example, arrow A, arrow B, arrow C) in the central region 20 of the stroke. it can. Here, in the stroke central region 20, a plurality of recesses 14 having the same area are uniformly arranged in the surface direction (axial direction and circumferential direction).
 なお、図2(B)の展開図に示すように、同一面積となる複数の凹部14が、面方向に不均一に配置されていても良い。ここでは行程中央部領域20の軸方向端部における周方向の帯状領域20Pは、複数の凹部14が占める面積が小さくなっており、行程中央部領域20の軸方向中央部における周方向の帯状領域20Qは、複数の凹部14が占める面積が大きくなっている。 As shown in the developed view of FIG. 2B, a plurality of recesses 14 having the same area may be arranged non-uniformly in the surface direction. Here, the area occupied by the plurality of recesses 14 in the circumferential band-shaped region 20P at the axial end of the stroke central region 20 is small, and the circumferential band-shaped region at the axial central portion of the stroke central region 20 is small. In 20Q, the area occupied by the plurality of recesses 14 is large.
 凹部14の寸法や形状は特に限定されないが、シリンダやピストンリングの寸法や目的に応じて適宜選択される。例えば、凹部14は、行程中央部領域20のシリンダ軸方向に貫く(又は延びる)ようにスリット状又は帯状に形成されることができる。一方、シリンダの気密性の観点に鑑みると、凹部14のシリンダ軸方向の最大平均長さJ(図2(A)参照)を、ピストンの最も上位に位置するピストンリング(トップリング)のシリンダ軸方向長さ(幅)以下、具体的にはその5~100%程度とすることが好ましい。凹部14の平均長さJとは、複数の凹部14の軸方向の最大寸法にバラつきがある場合はその平均値を意味する。 The size and shape of the recess 14 are not particularly limited, but are appropriately selected according to the size and purpose of the cylinder and piston ring. For example, the recess 14 can be formed in a slit shape or a band shape so as to penetrate (or extend) in the cylinder axial direction of the stroke central region 20. On the other hand, from the viewpoint of cylinder airtightness, the maximum average length J (see FIG. 2A) of the recess 14 in the cylinder axial direction is the cylinder shaft of the piston ring (top ring) located at the highest position of the piston. It is preferably less than or equal to the directional length (width), specifically about 5 to 100% thereof. The average length J of the recesses 14 means the average value of the maximum axial dimensions of the plurality of recesses 14 when there are variations.
 凹部14のシリンダ周方向の最大平均長さSは、0.1mm~15mmの範囲内が好ましく、0.3mm~5mmの範囲内が望ましい。これらの範囲より小さくなると、凹部14自体による摺動面積低減効果が十分に得られない場合がある。一方、これらの範囲より大きくなると、ピストンリングの一部が凹部内に入り込みやすくなり、ピストンリングが変形する等の不具合が発生する場合がある。 The maximum average length S of the recess 14 in the cylinder circumferential direction is preferably in the range of 0.1 mm to 15 mm, and preferably in the range of 0.3 mm to 5 mm. If it is smaller than these ranges, the effect of reducing the sliding area by the recess 14 itself may not be sufficiently obtained. On the other hand, if it is larger than these ranges, a part of the piston ring tends to enter the recess, and a problem such as deformation of the piston ring may occur.
 図3に示すように、凹部14のシリンダ径方向の最大平均長さR(最大平均深さR)は、0.1μm~1000μmの範囲内が好ましく、0.1μm~500μmの範囲内が望ましい。より望ましくは0.1μm~50μmに設定する。凹部14のシリンダ径方向の最大平均長さRが、これらの範囲より小さくなると、凹部14自体の摺動面積低減効果が十分に得られない場合がある。一方、これらの範囲より大きくしようとすると、加工が困難となり、また、シリンダの肉厚を厚くする必要がある等の不具合が生じ得る。 As shown in FIG. 3, the maximum average length R (maximum average depth R) of the recess 14 in the cylinder radial direction is preferably in the range of 0.1 μm to 1000 μm, and preferably in the range of 0.1 μm to 500 μm. More preferably, it is set to 0.1 μm to 50 μm. If the maximum average length R of the recess 14 in the cylinder radial direction is smaller than these ranges, the effect of reducing the sliding area of the recess 14 itself may not be sufficiently obtained. On the other hand, if it is attempted to be larger than these ranges, processing becomes difficult, and problems such as the need to increase the wall thickness of the cylinder may occur.
 図2に戻って、軸方向に同位置で周方向に隣り合う凹部14間のシリンダ周方向の最小の間隔Hの平均値は、0.05mm~15mmの範囲内が好ましく、0.1mm~5.0mmの範囲内が特に好ましい。これらの範囲より小さくなると、ピストンリングとシリンダライナの接触面積(摺動面積)が小さすぎて、安定して摺動できない可能性が有る。一方、これらの範囲より大きいと、凹部14自体の摺動面積低減効果が十分に得られない場合がある。 Returning to FIG. 2, the average value of the minimum distance H in the cylinder circumferential direction between the recesses 14 adjacent to each other in the circumferential direction at the same position in the axial direction is preferably in the range of 0.05 mm to 15 mm, preferably 0.1 mm to 5 The range of 0.0 mm is particularly preferable. If it is smaller than these ranges, the contact area (sliding area) between the piston ring and the cylinder liner may be too small to slide stably. On the other hand, if it is larger than these ranges, the effect of reducing the sliding area of the recess 14 itself may not be sufficiently obtained.
 ちなみに、複数の凹部が軸方向に重なるように配置するディンプルライナと異なるが、同種の凹部を形成するものとしてマイクロテクスチャ技術が存在するので、これについて簡単に説明する。マイクロテクスチャとは、図12に示すように、シリンダライナの内壁面のシリンダ軸方向に沿って、凹部が形成される領域Vと、凹部が全く存在しない領域Zとが、軸方向に重ならない状態で交互に繰り返されるようにし、ピストンリングがこの内壁面を移動する度に、凹部に対してエンジンオイルの流入・流出を生じさせ、その動圧によって油膜を厚くして摩擦力を下げる理論である。本発明は、このようなマイクロテクスチャ技術にも適用可能である。即ち、本発明は、行程中央部領域に複数の凹部(これには、ホーニング加工等によるヘアライン状・キズ状の凹部も含まれる)が形成されることで、ピストンリングとの接触面積を小さくする構造であれば、有効に適用可能である。 By the way, although it is different from the dimple liner in which a plurality of recesses are arranged so as to overlap in the axial direction, there is a microtexture technology for forming the same kind of recesses, so this will be briefly explained. As shown in FIG. 12, the microtexture is a state in which a region V in which a recess is formed and a region Z in which no recess is present do not overlap in the axial direction along the cylinder axial direction of the inner wall surface of the cylinder liner. The theory is that each time the piston ring moves on the inner wall surface, engine oil flows in and out of the recess, and the dynamic pressure thickens the oil film and reduces the frictional force. .. The present invention is also applicable to such a microtexture technique. That is, the present invention reduces the contact area with the piston ring by forming a plurality of recesses (including hairline-shaped and scratch-shaped recesses due to honing processing, etc.) in the central region of the stroke. If it is a structure, it can be effectively applied.
 <シリンダライナに形成される中央低粗さ領域> <Central low roughness area formed on the cylinder liner>
 シリンダライナ10の内壁面12には、行程中央部領域20の少なくとも一部において、触針式表面粗さ測定機(JIS B 0651:2001)によって測定される表面粗さ(輪郭曲線の算術平均粗さRa(JIS B 0601:2013))が0.140(μm)以下となり、好ましくは、表面粗さRaが0.120(μm)以下となる中央低粗さ領域22が形成される。具体的には、内周面12におけるピストンリング40と接触し得る面、即ち、内周面12における凹部14を除いた面の少なくとも一部の範囲の表面粗さRaを0.140(μm)以下に加工し、より好ましくは0.120(μm)以下に加工することで、中央低粗さ領域22を形成する。なお、本実施形態では、触針式表面粗さ測定機で測定される表面粗さ(輪郭曲線の算術平均粗さ)をRaと表示し、後述する非接触式表面粗さ測定機で測定される三次元表面粗さ(輪郭曲面の算術平均高さ(JIS B 0681-2:2018、ISO 25178-2:2012))をSaと表示する。 On the inner wall surface 12 of the cylinder liner 10, the surface roughness (arithmetic mean roughness of the contour curve) measured by a stylus type surface roughness measuring machine (JIS B 0651: 2001) is provided in at least a part of the stroke central region 20. A central low roughness region 22 having a Ra (JIS B 0601: 2013)) of 0.140 (μm) or less, and preferably a surface roughness Ra of 0.120 (μm) or less is formed. Specifically, the surface roughness Ra of the surface of the inner peripheral surface 12 that can come into contact with the piston ring 40, that is, the surface of the inner peripheral surface 12 excluding the recess 14, is 0.140 (μm). The central low roughness region 22 is formed by the following processing, more preferably 0.120 (μm) or less. In this embodiment, the surface roughness (arithmetic mean roughness of the contour curve) measured by the stylus type surface roughness measuring machine is displayed as Ra, and is measured by the non-contact type surface roughness measuring machine described later. The three-dimensional surface roughness (arithmetic mean height of contour curved surface (JIS B 0681-2: 2018, ISO 25178-2: 2012)) is displayed as Sa.
 中央低粗さ領域22は、より望ましくは、表面粗さRaが0.090(μm)以下に設定され、具体的に0.083(μm)に設定される。 The central low roughness region 22 is more preferably set to a surface roughness Ra of 0.090 (μm) or less, specifically 0.083 (μm).
 この中央低粗さ領域22について、JIS B 0681-6:2014(ISO 25178-6:2010)に準じたレーザー顕微鏡を利用した非接触式表面粗さ測定機(測定倍率1080倍、視野サイズ259.4μm×259.4μm、カットオフ無し、高さ方向(Z方向)測定ピッチ0.06μm)で測定した場合の三次元表面粗さ値(JIS B 0681-2:2018、ISO 25178-2:2012)を以下に示す。
算術平均高さSa(μm):0.192以下、好ましくは0.163以下、更に望ましくは0.120以下(具体的には0.110に設定される)。
突出山部高さSpk(μm):0.159以下、好ましくは0.144以下、更に望ましくは0.121以下(具体的には0.116に設定される)。
コア部レベル差Sk(μm):0.521以下、好ましくは0.449以下、更に望ましくは0.340以下(具体的には0.315に設定される)。
突出谷部深さSvk(μm):0.409以下、好ましくは0.342以下、更に望ましくは0.241以下(具体的には0.218に設定される)。
Regarding this central low roughness region 22, a non-contact surface roughness measuring machine using a laser microscope conforming to JIS B 0681-6: 2014 (ISO 25178-6: 2010) (measurement magnification 1080 times, field size 259. Three-dimensional surface roughness value when measured at 4 μm × 259.4 μm, no cutoff, height direction (Z direction) measurement pitch 0.06 μm) (JIS B 0681-2: 2018, ISO 25178-2: 2012) Is shown below.
Arithmetic mean height Sa (μm): 0.192 or less, preferably 0.163 or less, more preferably 0.120 or less (specifically set to 0.110).
Overhang height Spk (μm): 0.159 or less, preferably 0.144 or less, more preferably 0.121 or less (specifically set to 0.116).
Core level difference Sk (μm): 0.521 or less, preferably 0.449 or less, more preferably 0.340 or less (specifically, set to 0.315).
Overhang valley depth Svk (μm): 0.409 or less, preferably 0.342 or less, more preferably 0.241 or less (specifically set to 0.218).
 とりわけ、本実施形態では、突出山部高さを小さくするだけでなく、突出谷部深さも積極的に小さくすることで、摺動中の摩擦力の低減を実現する。ちなみに、従来のシリンダライナでは、潤滑油の保持力を確保するために、突出谷部深さをある程度大きくする必要があり、それ伴って、突出山部高さを小さくすることが難しく、摺動中の摩擦力の低減に限界がある。一方、本実施形態では、隣接する凹部14に潤滑油が十分に保持されることから、ピストンリング40との接触表面自体は、潤滑油の保持力が小さくても、十分に油膜を形成できる。この趣旨の下、上記突出山部高さをE、上記突出谷部深さをIとした場合に、本実施形態の中央低粗さ領域22では、I/Eの値を2.6以下に設定することが好ましく、より好ましくは、2.4以下、更に望ましくは2.0以下とする。 In particular, in the present embodiment, not only the height of the protruding ridge is reduced, but also the depth of the protruding valley is positively reduced to reduce the frictional force during sliding. By the way, in the conventional cylinder liner, in order to secure the holding force of the lubricating oil, it is necessary to increase the depth of the protruding valley portion to some extent, and accordingly, it is difficult to reduce the height of the protruding peak portion, and the sliding There is a limit to the reduction of frictional force inside. On the other hand, in the present embodiment, since the lubricating oil is sufficiently held in the adjacent recess 14, the contact surface itself with the piston ring 40 can sufficiently form an oil film even if the holding force of the lubricating oil is small. To this effect, when the height of the protruding peak is E and the depth of the protruding valley is I, the value of I / E is set to 2.6 or less in the central low roughness region 22 of the present embodiment. It is preferably set, more preferably 2.4 or less, and even more preferably 2.0 or less.
 また、本実施形態では、行程中央部領域20におけるピストンリング40と接触し得る面の全部の範囲を中央低粗さ領域22としている。結果として、中央低粗さ領域22は、凹部14が形成される行程中央部領域20の上端縁近傍及び下端縁近傍を含む。更に、行程中央部領域20の上死点側に隣接する上側外部領域25Aには、表面粗さRaが0.120(μm)以下となる上側低粗さ領域23Aが形成され、行程中央部領域20の下死点側に隣接する下側外部領域25Bについは、下側低粗さ領域23Bが形成される。上側低粗さ領域23Aと、中央低粗さ領域22と、下側低粗さ領域23Bは、均一な表面粗さ状態で完全に連なっており、全体として一体的な連続表面となっている。 Further, in the present embodiment, the entire range of the surface that can come into contact with the piston ring 40 in the stroke central region 20 is defined as the central low roughness region 22. As a result, the central low roughness region 22 includes the vicinity of the upper end edge and the vicinity of the lower end edge of the process central region 20 in which the recess 14 is formed. Further, in the upper outer region 25A adjacent to the top dead center side of the stroke central region 20, an upper low roughness region 23A having a surface roughness Ra of 0.120 (μm) or less is formed, and the stroke central region region A lower roughness region 23B is formed for the lower outer region 25B adjacent to the bottom dead center side of 20. The upper low roughness region 23A, the central low roughness region 22, and the lower low roughness region 23B are completely connected in a uniform surface roughness state, and form an integral continuous surface as a whole.
 行程中央部領域20の上端縁近傍及び下端縁近傍は、シリンダライナ10とピストン30の相対速度Uが低下することから、流体潤滑領域から境界潤滑領域に移行しやすい。しかし、この中央低粗さ領域22の存在によって、流体潤滑領域を優位に発現させることができる。いわゆるディンプルライナ技術は、流体潤滑領域でその効果を発揮し得ることから、行程中央部領域20の上端縁近傍及び下端縁近傍においても、ディンプルライナ技術の利点が得られる。なお、中央低粗さ領域22を、行程中央部領域20の上端縁近傍及び/又は下端縁近傍に限定して、形成することも可能であるが、本実施形態のように、行程中央部領域20の全体に中央低粗さ領域22を形成することが好ましい。シリンダライナ10とピストン30の相対速度Uがより低速度となった場合、行程中央部領域20の中央側にも境界潤滑領域が迫ってくることになるが、その場合であっても、流体潤滑領域の範囲を広げることが可能となる。 Since the relative speed U of the cylinder liner 10 and the piston 30 decreases in the vicinity of the upper end edge and the vicinity of the lower end edge of the stroke central region 20, it is easy to shift from the fluid lubrication region to the boundary lubrication region. However, due to the presence of the central low roughness region 22, the fluid lubrication region can be predominantly developed. Since the so-called dimple liner technique can exert its effect in the fluid lubrication region, the advantages of the dimple liner technique can be obtained also in the vicinity of the upper end edge and the lower end edge of the process central region 20. It is also possible to form the central low roughness region 22 by limiting it to the vicinity of the upper end edge and / or the lower end edge of the stroke central region 20, but as in the present embodiment, the stroke central region It is preferable to form the central low roughness region 22 over the entire 20. When the relative speed U of the cylinder liner 10 and the piston 30 becomes lower, the boundary lubrication region approaches the center side of the stroke central region 20, but even in that case, fluid lubrication It is possible to expand the range of the area.
 シリンダライナ10の内壁面12の中央部低粗さ領域22は、ホーニング盤を用いてホーニング加工を行うことで形成される。この際のホーニング砥石の粒度は、例えばF500又は#800よりも細かい砥粒(JIS R 6001-2:2017,ISO8486-2:2007)を使用することが好ましい。 The central portion low roughness region 22 of the inner wall surface 12 of the cylinder liner 10 is formed by performing honing processing using a honing machine. At this time, it is preferable to use abrasive grains (JIS R 6001-2: 2017, ISO8486-2: 2007) finer than F500 or # 800 for the particle size of the honing grindstone.
 更に、このホーニング加工によって中央部低粗さ領域22を形成した後は、その表面に皮膜処理を行わないことが好ましい。例えば、シリンダライナ10の製造工程で一般的に用いられるリン酸塩皮膜等を行うと、中央低粗さ領域22の表面性状が、皮膜によって変動するからである。 Further, after the central portion low roughness region 22 is formed by this honing process, it is preferable not to perform a film treatment on the surface thereof. For example, when a phosphate film or the like generally used in the manufacturing process of the cylinder liner 10 is applied, the surface texture of the central low roughness region 22 varies depending on the film.
 <ピストン及びピストンリング> <Piston and piston ring>
 図4(A)及び図4(B)にピストン30及びこのピストン30のリング溝に設置されるピストンリング40(トップリング50、セカンドリング60、オイルリング70)を示す。ピストンリング40は、シリンダライナ10の内壁面12に対して、外周面42が対向する状態でシリンダ軸方向に往復運動する。トップリング50は、ピストン30とシリンダライナ10との間のすき間を無くし、燃焼室からクランクケース側へと圧縮ガスが抜ける現象(ブローバイ)を防ぐ。セカンドリング60は、トップリング50と同様に、ピストン30とシリンダライナ10との間のすき間を無くす役割と、シリンダライナ10の内壁面12に付着する余分なエンジンオイルをかき落とす役割を兼ねる。オイルリング70は、シリンダライナ10の内壁面12についている余分なエンジンオイルをかき落として、適度な油膜を形成することで、ピストン30の焼きつきを防止する。 4 (A) and 4 (B) show the piston 30 and the piston ring 40 (top ring 50, second ring 60, oil ring 70) installed in the ring groove of the piston 30. The piston ring 40 reciprocates in the cylinder axial direction with the outer peripheral surface 42 facing the inner wall surface 12 of the cylinder liner 10. The top ring 50 eliminates the gap between the piston 30 and the cylinder liner 10 and prevents a phenomenon (blow-by) in which compressed gas escapes from the combustion chamber to the crankcase side. Like the top ring 50, the second ring 60 also has a role of eliminating a gap between the piston 30 and the cylinder liner 10 and a role of scraping off excess engine oil adhering to the inner wall surface 12 of the cylinder liner 10. The oil ring 70 scrapes off excess engine oil attached to the inner wall surface 12 of the cylinder liner 10 to form an appropriate oil film, thereby preventing seizure of the piston 30.
 図4(C)に拡大して示すように、トップリング50は、単一の環状部材であり、外周面52を断面視すると、径方向外側に凸となるいわゆるバレル形状となっている。具体的には、外周面52のシリンダ軸方向両外側縁は、シリンダ軸方向の外側に向かって内壁面12から離れる方向に傾斜している。なお、外周面52におけるシリンダライナ10の内壁面12に対する当あたり幅fは、例えば0.3mm以下に形成すると好適である。また、外周面52の触針式表面粗さ測定機(JIS B 0651:2001)によって測定される表面粗さ(輪郭曲線の算術平均粗さRa(JIS B 0601:2013))は、0.250(μm)以下が好ましい。 As shown enlarged in FIG. 4C, the top ring 50 is a single annular member, and has a so-called barrel shape that is convex outward in the radial direction when the outer peripheral surface 52 is viewed in cross section. Specifically, both outer edges of the outer peripheral surface 52 in the cylinder axial direction are inclined toward the outside in the cylinder axial direction in a direction away from the inner wall surface 12. The width f of the outer peripheral surface 52 with respect to the inner wall surface 12 of the cylinder liner 10 is preferably formed to be, for example, 0.3 mm or less. The surface roughness (arithmetic mean roughness Ra of the contour curve (JIS B 0601: 2013)) measured by the stylus type surface roughness measuring machine (JIS B 0651: 2001) of the outer peripheral surface 52 is 0.250. (Μm) or less is preferable.
 図4(D)に拡大して示すように、セカンドリング60は、単一の環状部材であり、その外周近傍は、シリンダ軸方向上端からシリンダ軸方向下側に向かうにつれて拡径するテーパ形状となっている。このテーパ形状の最外端に位置してシリンダライナ10の内壁面12と接触する外周面62は、断面視で平面形状となっている。なお、外周面62におけるシリンダライナ10の内壁面12に対する当たり幅fは、例えば0.3mm以下に形成すると好適である。また、外周面62の触針式表面粗さ測定機(JIS B 0651:2001)によって測定される表面粗さ(輪郭曲線の算術平均粗さRa(JIS B 0601:2013))は、0.250(μm)以下が好ましい。 As shown enlarged in FIG. 4D, the second ring 60 is a single annular member, and the vicinity of the outer circumference thereof has a tapered shape in which the diameter increases from the upper end in the cylinder axial direction toward the lower side in the cylinder axial direction. It has become. The outer peripheral surface 62 located at the outermost end of the tapered shape and in contact with the inner wall surface 12 of the cylinder liner 10 has a planar shape in a cross-sectional view. The contact width f of the cylinder liner 10 with respect to the inner wall surface 12 on the outer peripheral surface 62 is preferably formed to be, for example, 0.3 mm or less. The surface roughness (arithmetic mean roughness Ra of the contour curve (JIS B 0601: 2013)) measured by the stylus type surface roughness measuring machine (JIS B 0651: 2001) of the outer peripheral surface 62 is 0.250. (Μm) or less is preferable.
 なお、トップリング50やセカンドリング60の張力は、比較的低い値に設定されており、外周面52,62の当たり面に作用する面圧が、例えば0.5MPa以下となり、好ましくは0.3MPa以下となる。結果、トップリング50やセカンドリング60は、上死点近傍や下死点近傍を除けば、流体潤滑領域で摺動することが多い。 The tension of the top ring 50 and the second ring 60 is set to a relatively low value, and the surface pressure acting on the contact surfaces of the outer peripheral surfaces 52 and 62 is, for example, 0.5 MPa or less, preferably 0.3 MPa. It becomes as follows. As a result, the top ring 50 and the second ring 60 often slide in the fluid lubrication region except for the vicinity of the top dead center and the vicinity of the bottom dead center.
 図5(A)に拡大して示すオイルリング70は、2ピースタイプであり、リング本体72と、コイルばね状のコイルエキスパンダ76を有する。リング本体72は、軸方向両端に配置される一対の環状のレール73,73と、この一対のレール73,73の間に配置されてこれらを連結する環状の柱部75を有する。一対のレール73,73及び柱部75を合わせた断面形状は略I形状又はH形状となっており、この形状を利用して、内周面側には、コイルエキスパンダ76を収容するための断面半円弧形状の内周溝79が形成される。また、一対のレール73,73には、それぞれ、柱部75を基準として径方向外側に突出する環状突起74,74が形成される。この環状突起74,74の突端に形成される外周面82,82が、シリンダライナ10の内壁面12と当接する。コイルエキスパンダ76は、内周溝79に収容されることで、リング本体72を径方向外側に押圧付勢する。なお、リング本体72の柱部75には、油戻し孔77が、周方向に複数形成される。 The oil ring 70 enlarged and shown in FIG. 5 (A) is a two-piece type, and has a ring body 72 and a coil spring-shaped coil expander 76. The ring body 72 has a pair of annular rails 73, 73 arranged at both ends in the axial direction, and an annular column portion 75 arranged between the pair of rails 73, 73 and connecting them. The cross-sectional shape of the pair of rails 73, 73 and the pillar portion 75 combined is substantially I shape or H shape, and by utilizing this shape, the coil expander 76 is accommodated on the inner peripheral surface side. An inner groove 79 having a semicircular arc shape is formed. Further, the pair of rails 73 and 73 are formed with annular protrusions 74 and 74 that project radially outward with respect to the pillar portion 75, respectively. The outer peripheral surfaces 82, 82 formed at the tip of the annular protrusions 74, 74 come into contact with the inner wall surface 12 of the cylinder liner 10. The coil expander 76 is housed in the inner peripheral groove 79 to press and urge the ring body 72 outward in the radial direction. A plurality of oil return holes 77 are formed in the pillar portion 75 of the ring main body 72 in the circumferential direction.
 図5(A)の一対の外周面82,82の各々の当たり幅は、0.02mm~0.30mmに形成されることが好ましく、例えば0.15mmに設定される。なお、オイルリング70の外周面82の当たり面に作用する面圧は、例えば1.0MPa~2.0MPaとなり、例えば1.75MPa程度となる。従って、オイルリング70は、エンジンの回転数が高い場合は、流体潤滑領域で摺動することが多いが、エンジンの回転数が下がると、境界潤滑領域で摺動することが多くなる。なお、外周面82,82の径方向断面の形状は、図5(A)では、シンプルな台形となる場合を例示するが、本発明はこれに限定されず、上側レール73の外周面82と下側レール73の外周面82において、互いに向かい合う側(コイルエキスパンダ76側)の隅部をステップ状に切り欠いた形状(いわゆるステップランド形状)としてもよい。また、外周面82の触針式表面粗さ測定機(JIS B 0651:2001)によって測定される表面粗さ(輪郭曲線の算術平均粗さRa(JIS B 0601:2013))は、0.450(μm)以下が好ましい。 The contact width of each of the pair of outer peripheral surfaces 82 and 82 in FIG. 5A is preferably formed to be 0.02 mm to 0.30 mm, and is set to, for example, 0.15 mm. The surface pressure acting on the contact surface of the outer peripheral surface 82 of the oil ring 70 is, for example, 1.0 MPa to 2.0 MPa, for example, about 1.75 MPa. Therefore, the oil ring 70 often slides in the fluid lubrication region when the engine speed is high, but often slides in the boundary lubrication region when the engine speed decreases. In FIG. 5A, the shape of the radial cross section of the outer peripheral surfaces 82 and 82 is illustrated as a simple trapezoid, but the present invention is not limited to this, and the outer peripheral surface 82 of the upper rail 73 and the outer peripheral surface 82. On the outer peripheral surface 82 of the lower rail 73, the corners on the sides facing each other (coil expander 76 side) may be cut out in a step shape (so-called step land shape). The surface roughness (arithmetic mean roughness Ra of the contour curve (JIS B 0601: 2013)) measured by the stylus type surface roughness measuring machine (JIS B 0651: 2001) of the outer peripheral surface 82 is 0.450. (Μm) or less is preferable.
 なお、オイルリング70は2ピースタイプに限られず、例えば図5(B)に示す3ピースタイプのオイルリング70であっても良い。このオイルリング70は、上下に分離している環状のサイドレール73a,73bと、このサイドレール73a,73bの間に配置されるスペーサエキスパンダ76sを有する。 The oil ring 70 is not limited to the two-piece type, and may be, for example, the three-piece type oil ring 70 shown in FIG. 5 (B). The oil ring 70 has an annular side rail 73a, 73b separated vertically and a spacer expander 76s arranged between the side rails 73a, 73b.
 スペーサエキスパンダ76sは、鋼材をシリンダ軸方向に凹凸を繰り返す波形形状に塑性加工して形成される。この波型形状を利用して、上方側支持面78aと下方側支持面78bが形成され、一対のサイドレール73a,73bがそれぞれ軸方向に支持される。スペーサエキスパンダ76sの内周側端部には、軸方向外側に向かってアーチ状に立設される耳部74mを有する。この耳部74mは、サイドレール73a,73bの内周面に当接する。なお、スペーサエキスパンダ76sは、合口が付き合わされて、周方向に収縮状態でピストン30のリング溝に組み込まれる。結果、スペーサエキスパンダ76sの復元力によって、耳部74mがサイドレール73a,73bを径方向外側に押圧付勢する。 The spacer expander 76s is formed by plastic working a steel material into a corrugated shape that repeats unevenness in the cylinder axial direction. Using this corrugated shape, an upper support surface 78a and a lower support surface 78b are formed, and a pair of side rails 73a and 73b are supported in the axial direction, respectively. The inner peripheral side end of the spacer expander 76s has an ear portion 74 m that is erected in an arch shape toward the outer side in the axial direction. The selvage portion 74m abuts on the inner peripheral surfaces of the side rails 73a and 73b. The spacer expander 76s is incorporated into the ring groove of the piston 30 in a state of contraction in the circumferential direction with the abutment attached. As a result, the restoring force of the spacer expander 76s causes the selvage portion 74m to press and urge the side rails 73a and 73b outward in the radial direction.
 なお、図5(B)のサイドレール73a,73bの外周面82,82の各々の当たり幅fは、0.02mm~0.40mmに形成されることが好ましい。 The contact width f of each of the outer peripheral surfaces 82 and 82 of the side rails 73a and 73b in FIG. 5B is preferably formed to be 0.02 mm to 0.40 mm.
 <シリンダライナとピストンリングの摩擦態様> <Friction mode between cylinder liner and piston ring>
 次に、シリンダライナとピストンリングの摩擦態様について説明する。一般的な摺動時の摩擦係数の変化は、図6(A)に示すストライベック線図として表現される。このストライベック線図では、直接接触して摺動する固体接触領域110の摩擦態様、油性被膜を介して摺動する境界潤滑領域112の摩擦態様、粘性潤滑油膜を介して摺動する流体潤滑領域114における摩擦態様に分別される。また、境界潤滑領域112と流体潤滑領域114の間には、双方の状態が混在する混在潤滑領域113の摩擦態様が存在する。なお、このストライベック線図は、横軸が、「動粘度(動粘性率)μ」×「速度U」/「接触荷重W」を対数表示したものであり、縦軸が、摩擦係数(f)となる。従って、摩擦力が最も小さくなり得るのは流体潤滑領域114または混在潤滑領域113であり、この領域114、113を有効利用することが、低摩擦化、即ち、低燃費に有効となる。一方、速度Uが上昇しても、境界潤滑領域112の途中から流体潤滑領域114に移行できない場合は、点線に示すように、境界潤滑領域112がそのまま高速領域まで継続する状態になる。 Next, the friction mode between the cylinder liner and the piston ring will be described. The change in the coefficient of friction during general sliding is represented by the Strivec diagram shown in FIG. 6 (A). In this Strivec diagram, the friction mode of the solid contact region 110 that slides in direct contact, the friction mode of the boundary lubrication region 112 that slides through the oil-based coating, and the fluid lubrication region that slides through the viscous lubricating oil film. It is classified according to the friction mode in 114. Further, between the boundary lubrication region 112 and the fluid lubrication region 114, there is a friction mode of the mixed lubrication region 113 in which both states are mixed. In this Strivec diagram, the horizontal axis is a logarithmic representation of "kinematic viscosity (kinematic viscosity) μ" × "velocity U" / "contact load W", and the vertical axis is the coefficient of friction (f). ). Therefore, the frictional force can be minimized in the fluid lubrication region 114 or the mixed lubrication region 113, and effective utilization of these regions 114 and 113 is effective for low friction, that is, low fuel consumption. On the other hand, if the speed U cannot shift from the middle of the boundary lubrication region 112 to the fluid lubrication region 114 even if the speed U increases, the boundary lubrication region 112 continues to the high-speed region as it is, as shown by the dotted line.
 ちなみに、流体潤滑領域114の摩擦力の大部分は、オイルのせん断抵抗であり、このせん断抵抗は、(粘度)×(速度)×(面積)/(油膜厚さ)で定義される。結果、せん断面積を低減することが、摩擦力の低減に直結する。 Incidentally, most of the frictional force of the fluid lubrication region 114 is the shear resistance of oil, and this shear resistance is defined by (viscosity) × (velocity) × (area) / (oil film thickness). As a result, reducing the shear area is directly linked to the reduction of frictional force.
 そこで、本実施形態では、ピストンリング40の外周面42のあたり面にオイルを積極的に流入させることで、素早く流体潤滑領域114に移行して低摩擦化を実現する。同時に、シリンダライナ10に対していわゆるディンプルライナ技術を適用することで、シリンダライナ10の行程中央部領域20に凹部14を形成して、オイルのせん断抵抗が生じる実質面積を減少させることで、より効率的に摩擦力の低下を達成する。 Therefore, in the present embodiment, the oil is positively flowed into the contact surface of the outer peripheral surface 42 of the piston ring 40 to quickly shift to the fluid lubrication region 114 and realize low friction. At the same time, by applying the so-called dimple liner technique to the cylinder liner 10, a recess 14 is formed in the stroke central region 20 of the cylinder liner 10 to reduce the actual area where oil shear resistance is generated. Efficiently achieve a reduction in frictional force.
 また、図6(A)のストライベック線図は、ピストン40の1ストローク中の摩擦係数(f)の動的変化を示すものであるが、摩擦態様を評価する他の指標として、摩擦損失平均有効圧力(FMEP:Friction Mean Effective Pressure)がある。この摩擦損失平均有効圧力は、1サイクルあたりの摩擦仕事を行程容積で割った値を示す。この摩擦損失平均有効圧力の線図(FMEP線図)を図6(B)に示す。FMEP線図では、横軸が、回転数(N)となり、縦軸が摩擦損失平均有効圧力(kPa)となる。回転数(N)が高いほど、1ストローク中の流体潤滑領域114が占める割合が増える。一方、回転数(N)が低くなると、1ストローク中の流体潤滑領域114が占める割合が減って、混在潤滑領域113(または境界潤滑領域112)が占める割合が増える。従って、図6(B)のFMEP線図の形状は、図6(A)のストライベック線図の流体潤滑領域114及び混在潤滑領域113の形状と比較的近似する。 The Strivec diagram of FIG. 6A shows the dynamic change of the friction coefficient (f) during one stroke of the piston 40. As another index for evaluating the friction mode, the friction loss mean is used. There is effective pressure (FMEP: Friction Mean Effective Pressure). This friction loss mean effective pressure is the value obtained by dividing the friction work per cycle by the stroke volume. A diagram (FMEP diagram) of this friction loss mean effective pressure is shown in FIG. 6 (B). In the FMEP diagram, the horizontal axis is the rotation speed (N), and the vertical axis is the friction loss mean effective pressure (kPa). The higher the rotation speed (N), the greater the proportion of the fluid lubrication region 114 in one stroke. On the other hand, when the rotation speed (N) becomes low, the proportion occupied by the fluid lubrication region 114 in one stroke decreases, and the proportion occupied by the mixed lubrication region 113 (or the boundary lubrication region 112) increases. Therefore, the shape of the FMEP diagram of FIG. 6 (B) is relatively similar to the shapes of the fluid lubrication region 114 and the mixed lubrication region 113 of the Strivec diagram of FIG. 6 (A).
 次に、本第一実施形態のシリンダライナ10とピストンリング40の実際の摩擦態様等について説明する。なお、ピストン30に対して、これに設置されるトップリング50、セカンドリング60、オイルリング70の固定位置が、シリンダ軸方向に相対的に異なることから、シリンダライナ10と摩擦状態も厳密にはそれぞれのピストンリングで微差が生じるが、ここではセカンドリング60の位置を、ピストンリング40の基準位置として説明を行う。なお、最速通過点Cに限っては、トップリング50を基準としている。 Next, the actual friction mode between the cylinder liner 10 and the piston ring 40 of the first embodiment will be described. Since the fixed positions of the top ring 50, the second ring 60, and the oil ring 70 installed on the piston 30 are relatively different in the cylinder axial direction, the friction state with the cylinder liner 10 is strictly different. Although slight differences occur in each piston ring, the position of the second ring 60 will be described here as the reference position of the piston ring 40. The top ring 50 is used as a reference only for the fastest passing point C.
 <摩擦態様の測定方法(非燃焼時摩擦試験)> <Measurement method of friction mode (friction test during non-combustion)>
 図7に、第一実施形態で採用したシリンダライナ10とピストンリング50の摩擦態様を測定する摩擦単体測定装置500を示す。摩擦単体測定装置500は、ピストンリング40側を固定し、シリンダライナ10側を上下に往復移動させることで、両者間の摩擦状態を測定する。即ち、この摩擦状態の測定は、内燃機関としての燃焼を生じさせない状態の摩擦試験(非燃焼時摩擦試験)となる。摩擦単体測定装置500は、ピストンリング40(トップリング、セカンドリング、オイルリングの3本)がセットされる仮想ピストン510を、ロードセル512を介して固定軸514によって保持する。このロードセル512によって、ピストンリング40に作用する上下方向の外力(摩擦力)を測定する。 FIG. 7 shows a friction unit measuring device 500 for measuring the friction mode between the cylinder liner 10 and the piston ring 50 adopted in the first embodiment. The friction unit measuring device 500 measures the friction state between the two by fixing the piston ring 40 side and reciprocating the cylinder liner 10 side up and down. That is, the measurement of this friction state is a friction test (non-combustion friction test) in a state where combustion as an internal combustion engine does not occur. The friction unit measuring device 500 holds a virtual piston 510 in which a piston ring 40 (three of a top ring, a second ring, and an oil ring) is set by a fixed shaft 514 via a load cell 512. The load cell 512 measures the external force (friction force) in the vertical direction acting on the piston ring 40.
 シリンダライナ10は、その外壁側において移動スリーブ530で保持される。移動スリーブ530の下端は駆動用ピストン540に保持される。この駆動用ピストン540は、特に図示しないクランクシャフトによって上下動するコンロッド550に保持される。結果、シリンダライナ10が上下方向に往復移動する。移動スリーブ530の外周には固定スリーブ560が配置される。固定スリーブ560は基台570に固定される。なお、固定軸514は、固定スリーブ560の上端の蓋部材562に固定されている。移動スリーブ530の外周面と固定スリーブ560の内周面は摺動自在となる。固定スリーブ560の内部には、温度調整ジャケット565が設けられており、この温度調整ジャケット565内に温水または冷水を循環させることで、固定スリーブ560の温度を制御可能となっている。 The cylinder liner 10 is held by the moving sleeve 530 on the outer wall side thereof. The lower end of the moving sleeve 530 is held by the driving piston 540. The driving piston 540 is held by a connecting rod 550 that moves up and down by a crankshaft (not shown). As a result, the cylinder liner 10 reciprocates in the vertical direction. A fixed sleeve 560 is arranged on the outer circumference of the moving sleeve 530. The fixing sleeve 560 is fixed to the base 570. The fixed shaft 514 is fixed to the lid member 562 at the upper end of the fixed sleeve 560. The outer peripheral surface of the moving sleeve 530 and the inner peripheral surface of the fixed sleeve 560 are slidable. A temperature control jacket 565 is provided inside the fixed sleeve 560, and the temperature of the fixed sleeve 560 can be controlled by circulating hot water or cold water in the temperature control jacket 565.
 本実施形態では、摩擦単体測定装置500による摩擦態様の測定条件として、潤滑油の規格を10W-30とし、油温を60度に設定し、クランクシャフトの回転数を215rpm~2154rpmに変化させた。 In the present embodiment, as the measurement conditions of the friction mode by the friction unit measuring device 500, the standard of the lubricating oil is set to 10W-30, the oil temperature is set to 60 degrees, and the rotation speed of the crankshaft is changed from 215 rpm to 2154 rpm. ..
 なお、トップリング50は、高さ(幅)2.5mmを採用し、外周面52の表面粗さRaを0.180(μm)、張力を16.7Nに設定した。セカンドリング60は、高さ(幅)2.0mmを採用し、外周面62の表面粗さRaを0.180(μm)、張力を12.3Nに設定した。オイルリング70は、高さ(幅)3.0mmを採用し、外周面82の表面粗さRaを0.330(μm)、張力を22.6Nに設定した。 The height (width) of the top ring 50 was 2.5 mm, the surface roughness Ra of the outer peripheral surface 52 was set to 0.180 (μm), and the tension was set to 16.7 N. The height (width) of the second ring 60 was 2.0 mm, the surface roughness Ra of the outer peripheral surface 62 was set to 0.180 (μm), and the tension was set to 12.3 N. The oil ring 70 has a height (width) of 3.0 mm, and the surface roughness Ra of the outer peripheral surface 82 is set to 0.330 (μm) and the tension is set to 22.6N.
 <シリンダライナとピストンリングの摩擦態様(ストライベック線図)> <Friction mode between cylinder liner and piston ring (Strivec diagram)>
 本第一実施形態の摩擦態様を分析するために、中央低粗さ領域22の表面粗さRaを0.120(μm)にしたシリンダライナ10-Aと、表面粗さRaを0.083(μm)としたシリンダライナ10-Bを用意し、摩擦単体測定装置500を用いて摩擦態様を測定した。参考となる比較例として、シリンダライナ10と同一形状で表面粗さRaを0.160(μm)にしたシリンダライナXと、凹部14を形成せずに、その表面粗さRaを0.160(μm)にしたシリンダライナYを用意し、その他を同一条件に設定して、摩擦単体測定装置500を用いて摩擦態様を測定した。そのストライベック線図の測定結果を図8(A)、FMEP線図の測定結果を図8(B)に示す。なお、図8(A)(B)には、本第一実施形態に相当する仮想的なシリンダライナK(表面粗さRa0.140(μm))についての推測値も示す。 In order to analyze the friction mode of the first embodiment, the cylinder liner 10-A having the surface roughness Ra of the central low roughness region 22 set to 0.120 (μm) and the surface roughness Ra set to 0.083 ( A cylinder liner 10-B set to μm) was prepared, and the friction mode was measured using the friction unit measuring device 500. As a reference comparative example, a cylinder liner X having the same shape as the cylinder liner 10 and having a surface roughness Ra of 0.160 (μm) and a cylinder liner X having a surface roughness Ra of 0.160 (μm) without forming the recess 14 ( A cylinder liner Y set to μm) was prepared, the others were set under the same conditions, and the friction mode was measured using the friction unit measuring device 500. The measurement result of the Strivec diagram is shown in FIG. 8 (A), and the measurement result of the FMEP diagram is shown in FIG. 8 (B). Note that FIGS. 8A and 8B also show estimated values for a virtual cylinder liner K (surface roughness Ra0.140 (μm)) corresponding to the first embodiment.
 まず、シリンダライナ10-A、10-B、Kの表面粗さ一覧を以下の表1に示す。なお、算術平均粗さRaは、触針式表面粗さ測定機(JIS B 0651:2001)によって測定される値であり、算術平均高さSa(μm)、突出山部高さSpk(μm)、突出谷部深さSvk(μm)、コア部レベル差:Sk(μm)は、すでに説明したレーザー顕微鏡を利用した非接触式表面粗さ測定機を用いて測定した値である。
Figure JPOXMLDOC01-appb-T000001
First, a list of surface roughness of the cylinder liners 10-A, 10-B, and K is shown in Table 1 below. The arithmetic average roughness Ra is a value measured by a stylus type surface roughness measuring machine (JIS B 0651: 2001), and has an arithmetic average height Sa (μm) and a protruding peak height Spk (μm). , Projection valley depth Svk (μm), core level difference: Sk (μm) are values measured using a non-contact surface roughness measuring machine using the laser microscope described above.
Figure JPOXMLDOC01-appb-T000001
 本実施形態のシリンダライナ10-A,10-Bと、比較例となるシリンダライナXは、行程中央部領域20の全体に凹部14が形成される。図9に示すように、ピストン30が、シリンダライナの上死点Tから下死点Uまで摺動する際の、シリンダライナとピストンリング40の摩擦係数の変動は、両者の相対速度に依存する。この相対速度は、エンジンの回転数(rpm)に対して一義的に決定する。ピストン30は、シリンダライナ10の上死点Tの速度が零の状態から下降して行程Aを経由し、途中で最高速度Cに達する。その後、行程Bを経由して下死点Uに到達すると速度が零となる。この間に、図8(A)のストライベック線図に沿って摩擦係数が常に変化する。 In the cylinder liners 10-A and 10-B of the present embodiment and the cylinder liner X as a comparative example, a recess 14 is formed in the entire stroke central region 20. As shown in FIG. 9, the fluctuation of the coefficient of friction between the cylinder liner and the piston ring 40 when the piston 30 slides from the top dead center T to the bottom dead center U of the cylinder liner depends on the relative speeds of the two. .. This relative speed is uniquely determined with respect to the engine speed (rpm). The piston 30 descends from the state where the speed of the top dead center T of the cylinder liner 10 is zero, passes through the stroke A, and reaches the maximum speed C on the way. After that, when the bottom dead center U is reached via the process B, the speed becomes zero. During this time, the coefficient of friction constantly changes along the Strivec diagram of FIG. 8 (A).
 図8(A)のストライベック線図において、中央低粗さ領域22における動粘度(動粘性率)をμ、ピストン30(ピストンリング40)との相対速度をU、ピストン30に対する接触荷重をW、ピストン30との間の摩擦係数をf(グラフ縦軸)と定義し、評価パラメータをA=μ×U/W(グラフ横軸(対数表記))と定義する。 In the Strivec diagram of FIG. 8A, the kinematic viscosity (kinematic viscosity) in the central low roughness region 22 is μ, the relative speed with the piston 30 (piston ring 40) is U, and the contact load with respect to the piston 30 is W. , The coefficient of friction with the piston 30 is defined as f (vertical axis of the graph), and the evaluation parameter is defined as A = μ × U / W (horizontal axis of the graph (logarial notation)).
 本実施形態のシリンダライナ10-A、10-Bでは、評価パラメータAが0.0003以下の範囲内に、中央低粗さ領域20における摩擦係数fの極小値fminが位置する。より望ましくは、評価パラメータAが0.0002以下の範囲内に摩擦係数fの極小値fminが位置する。一方、評価パラメータAが0.0001以上の範囲内に中央低粗さ領域20における摩擦係数fの極小値fminが位置する。 In the cylinder liners 10-A and 10-B of the present embodiment, the minimum value fmin of the friction coefficient f in the central low roughness region 20 is located within the range where the evaluation parameter A is 0.0003 or less. More preferably, the minimum value fmin of the friction coefficient f is located within the range where the evaluation parameter A is 0.0002 or less. On the other hand, the minimum value fmin of the friction coefficient f in the central low roughness region 20 is located within the range where the evaluation parameter A is 0.0001 or more.
 更に、本実施形態のシリンダライナ10-A、10-Bでは、評価パラメータAが0.0003以下となる範囲内のいずれかで、中央低粗さ領域20における摩擦係数fが0.07以下となる。望ましくは摩擦係数fが0.06以下となる。 Further, in the cylinder liners 10-A and 10-B of the present embodiment, the friction coefficient f in the central low roughness region 20 is 0.07 or less in any of the ranges where the evaluation parameter A is 0.0003 or less. Become. Desirably, the friction coefficient f is 0.06 or less.
 シリンダライナX(表面粗さRa0.160(μm)/凹部あり)と比べると分かるように、本実施形態のシリンダライナ10-A、10-Bでは、摩擦係数が0.07以下となる範囲が、評価パラメータAが0.0003以下となるグラフの左側に広がる。これは、低速度の摺動においても、流体潤滑領域114及び混在潤滑領域113となる範囲が広がることを意味し、極めて摩擦係数fの低い摺動態様となる。 As can be seen from the comparison with the cylinder liner X (surface roughness Ra 0.160 (μm) / with recesses), the cylinder liners 10-A and 10-B of the present embodiment have a range in which the friction coefficient is 0.07 or less. , Spreads to the left side of the graph where the evaluation parameter A is 0.0003 or less. This means that even in low-speed sliding, the range of the fluid lubrication region 114 and the mixed lubrication region 113 is widened, and the sliding mode has an extremely low friction coefficient f.
 参考として、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)の場合、評価パラメータAが0.0003を超える範囲になると、凹部14の効果が表れて摩擦係数fの上昇率が低下し、シリンダライナY(表面粗さRa0.160(μm)/凹部なし)よりも摩擦率fが小さくなる。一方、評価パラメータAが0.0003~0.0005の範囲内で、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)のグラフとシリンダライナY(表面粗さRa0.160(μm)/凹部なし)のグラフが交差し、評価パラメータAが0.0003以下になると、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)の摩擦係数fが0.07を超える範囲で上昇して、シリンダライナY(表面粗さRa0.160(μm)/凹部なし)の摩擦係数fを上回る。すなわち、従来のシリンダライナX(表面粗さRa0.160(μm)/凹部あり)の場合、評価パラメータAが0.0003を超える範囲では、凹部14が摩擦係数fを小さくするように作用するが、評価パラメータAが0.0003以下の範囲になると、凹部14が摩擦係数fを増大させる。本発明者らの未公知の考察によると、従来のシリンダライナX(表面粗さRa0.160(μm)/凹部あり)の場合、凹部14の存在によってシリンダライナとピストンリング40との実接触面積が小さくなるので、低速度領域において潤滑油による潤滑不足が生じやすく、境界潤滑領域に陥りやすいと推察された。 For reference, in the case of cylinder liner X (surface roughness Ra 0.160 (μm) / with recesses), when the evaluation parameter A exceeds 0.0003, the effect of the recesses 14 appears and the rate of increase in the friction coefficient f increases. It decreases, and the friction coefficient f becomes smaller than that of the cylinder liner Y (surface roughness Ra 0.160 (μm) / no recess). On the other hand, when the evaluation parameter A is in the range of 0.0003 to 0.0005, the graph of the cylinder liner X (surface roughness Ra 0.160 (μm) / with recesses) and the cylinder liner Y (surface roughness Ra 0.160 (μm)) ) / Without recesses), and when the evaluation parameter A is 0.0003 or less, the friction coefficient f of the cylinder liner X (surface roughness Ra0.160 (μm) / with recesses) exceeds 0.07. Exceeds the friction coefficient f of the cylinder liner Y (surface roughness Ra 0.160 (μm) / no recesses). That is, in the case of the conventional cylinder liner X (surface roughness Ra 0.160 (μm) / with recess), the recess 14 acts to reduce the friction coefficient f in the range where the evaluation parameter A exceeds 0.0003. When the evaluation parameter A is in the range of 0.0003 or less, the recess 14 increases the friction coefficient f. According to an unknown consideration by the present inventors, in the case of the conventional cylinder liner X (surface roughness Ra 0.160 (μm) / with recess), the actual contact area between the cylinder liner and the piston ring 40 due to the presence of the recess 14 It is presumed that the lubrication shortage due to the lubricating oil is likely to occur in the low speed region, and the boundary lubrication region is likely to occur.
 本実施形態のシリンダライナ10-A、10-Bでは、中央低粗さ領域20の表面粗さRaが0.120(μm)以下に設定されるので、評価パラメータAが0.0003以下の低速度領域であって、かつ、凹部14によってピストンリング40との実接触面積が小さくても、流体潤滑領域114または混在潤滑領域113を維持しやすくなる。また、仮に境界潤滑状態となった場合であっても、表面粗さが小さいので摩擦係数が小さく維持される。一般的に、シリンダライナの内周面の表面粗さRaを0.120(μm)以下にすると、接触面の潤滑油の保持力が低下して潤滑油不足に陥りやすいが、本実施形態では、中央低粗さ領域22に重畳形成される凹部14が、中央低粗さ領域20に対する潤滑油の貯留部として機能するので、中央低粗さ領域20において潤滑油不足が生じにくいという相乗効果も得られる。 In the cylinder liners 10-A and 10-B of the present embodiment, the surface roughness Ra of the central low roughness region 20 is set to 0.120 (μm) or less, so that the evaluation parameter A is as low as 0.0003 or less. Even if the actual contact area with the piston ring 40 is small due to the recess 14 in the velocity region, the fluid lubrication region 114 or the mixed lubrication region 113 can be easily maintained. Further, even if the boundary lubrication state is reached, the friction coefficient is kept small because the surface roughness is small. Generally, when the surface roughness Ra of the inner peripheral surface of the cylinder liner is 0.120 (μm) or less, the holding force of the lubricating oil on the contact surface is lowered and it is easy to run out of lubricating oil. Since the recess 14 superposed on the central low roughness region 22 functions as a storage portion for the lubricating oil with respect to the central low roughness region 20, there is also a synergistic effect that the lubricating oil shortage is unlikely to occur in the central low roughness region 20. can get.
 更に、シリンダライナ10-A、10-Bにおいて、評価パラメータAが0.0003を超える範囲(高速領域)の摩擦係数fは、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)の摩擦係数fと近似するか、あるいは、それよりも小さくなる。つまり、シリンダライナ10-A、10-Bは、高速度領域においても、中央低粗さ領域20が摩擦係数fの低減に貢献している。 Further, in the cylinder liners 10-A and 10-B, the friction coefficient f in the range where the evaluation parameter A exceeds 0.0003 (high-speed region) is the cylinder liner X (surface roughness Ra0.160 (μm) / with recesses). It is close to or smaller than the coefficient of friction f of. That is, in the cylinder liners 10-A and 10-B, the central low roughness region 20 contributes to the reduction of the friction coefficient f even in the high speed region.
 なお、図8(A)のストライベック線図には、実測値ではないが、シリンダライナ10-Aと同じ構成で、中央低粗さ領域20の表面粗さRaが0.140(μm)に設定されるシリンダライナKの摩擦係数を推定表示する。シリンダライナKの摩擦係数は、表面粗さRaが0.160(μm)となる従来のシリンダライナX、Yの状態と、表面粗さRaが0.120(μm)となるシリンダライナ10-Aの中間値に近似すると推測できる。このシリンダライナKであっても、評価パラメータAが0.0003以下となる範囲内のいずれかで、中央低粗さ領域20における摩擦係数fが0.07以下となり、望ましくは摩擦係数fが0.06以下となる。更に、シリンダライナKにおいて、評価パラメータAが0.0003を超える範囲(高速領域)の摩擦係数fは、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)の摩擦係数fと近似するか、あるいは、それよりも小さくなる。 Although it is not an actual measurement value in the Strivec diagram of FIG. 8A, the surface roughness Ra of the central low roughness region 20 has the same configuration as the cylinder liner 10-A to 0.140 (μm). The friction coefficient of the set cylinder liner K is estimated and displayed. The friction coefficient of the cylinder liner K is the state of the conventional cylinder liners X and Y having a surface roughness Ra of 0.160 (μm) and the cylinder liner 10-A having a surface roughness Ra of 0.120 (μm). It can be inferred that it approximates the intermediate value of. Even with this cylinder liner K, the friction coefficient f in the central low roughness region 20 is 0.07 or less, preferably the friction coefficient f is 0, within the range where the evaluation parameter A is 0.0003 or less. It will be .06 or less. Further, in the cylinder liner K, the friction coefficient f in the range where the evaluation parameter A exceeds 0.0003 (high-speed region) is close to the friction coefficient f of the cylinder liner X (surface roughness Ra 0.160 (μm) / with recesses). Or less.
 <シリンダライナとピストンリングの摩擦態様(FMEP線図)> <Friction mode between cylinder liner and piston ring (FMEP diagram)>
 図8(B)のFMEP線図において、中央低粗さ領域22とピストンリング40の間の摩擦損失平均有効圧力(FMEP)をT(kPa)(縦軸)と定義し、内燃機関の回転数をN(r/min)(横軸)と定義する。 In the FMEP diagram of FIG. 8B, the mean effective pressure (FMEP) of friction loss between the central low roughness region 22 and the piston ring 40 is defined as T (kPa) (vertical axis), and the rotation speed of the internal combustion engine. Is defined as N (r / min) (horizontal axis).
 本実施形態のシリンダライナ10-A、10-Bでは、回転数Nが700以下の範囲内に、中央低粗さ領域20における摩擦損失平均有効圧Tの極小値Tminが位置する。より望ましくは、回転数Nが600以下の範囲内に摩擦損失平均有効圧Tの極小値Tminが位置する。 In the cylinder liners 10-A and 10-B of the present embodiment, the minimum value Tmin of the average effective pressure T of friction loss in the central low roughness region 20 is located within the range where the rotation speed N is 700 or less. More preferably, the minimum value Tmin of the average effective pressure T of friction loss is located within the range where the rotation speed N is 600 or less.
 更に、本実施形態のシリンダライナ10-A、10-Bでは、回転数Nが700以下の範囲内のいずれかで、中央低粗さ領域20における摩擦損失平均有効圧力Tが14kPa以下となるように設定する。 Further, in the cylinder liners 10-A and 10-B of the present embodiment, the friction loss mean effective pressure T in the central low roughness region 20 is set to 14 kPa or less in any of the ranges where the rotation speed N is 700 or less. Set to.
 シリンダライナX(表面粗さRa0.160(μm)/凹部あり)と比べると分かるように、本実施形態のシリンダライナ10-A、10-Bでは、摩擦損失平均有効圧力Tが14kPa以下に小さくなる範囲が、回転数Nが700以下(グラフの左側)に広がる。結果、低回転時においても、極めて摩擦損失の少ない摺動態様となる。 As can be seen from the comparison with the cylinder liner X (surface roughness Ra0.160 (μm) / with recesses), the friction loss mean effective pressure T is smaller than 14 kPa in the cylinder liners 10-A and 10-B of the present embodiment. The range extends to 700 or less rotation speed N (on the left side of the graph). As a result, even at low rotation speeds, the sliding mode has extremely low friction loss.
 参考として、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)の場合、回転数Nが700を超える高回転領域になると、凹部14の効果が表れて摩擦損失の上昇率が低下し、特に回転数Nが1000を超えるとシリンダライナY(表面粗さRa0.160(μm)/凹部なし)よりも摩擦損失が小さくなる。一方、回転数Nが1000~1300の範囲内で、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)のグラフとシリンダライナY(表面粗さRa0.160(μm)/凹部なし)のグラフが交差する。回転数Nが1000以下になると、シリンダライナY(表面粗さRa0.160(μm)/凹部なし)の摩擦損失を上回り、700以下になると摩擦損失が14kPaを超える範囲で上昇する。すなわち、従来のシリンダライナX(表面粗さRa0.160(μm)/凹部あり)の場合、回転数Nが1000を超える範囲では、凹部14が摩擦損失を小さくするように作用するが、回転数Nが1000以下の範囲になると、凹部14が摩擦損失を増大させるように作用する。本発明者らの未公知の考察によると、従来のシリンダライナX(表面粗さRa0.160(μm)/凹部あり)の場合、凹部14の存在によってシリンダライナとピストンリング40との実接触面積が小さくなるので、低回転領域において潤滑油による潤滑不足が生じやすく、境界潤滑領域が占有する比率が増大しやすいと推察された。 As a reference, in the case of cylinder liner X (surface roughness Ra 0.160 (μm) / with recesses), when the rotation speed N exceeds 700 in a high rotation region, the effect of the recess 14 appears and the rate of increase in friction loss decreases. However, especially when the rotation speed N exceeds 1000, the friction loss becomes smaller than that of the cylinder liner Y (surface roughness Ra 0.160 (μm) / no recess). On the other hand, when the rotation speed N is in the range of 1000 to 1300, the graph of the cylinder liner X (surface roughness Ra0.160 (μm) / with recesses) and the cylinder liner Y (surface roughness Ra0.160 (μm) / without recesses) ) Graphs intersect. When the rotation speed N is 1000 or less, the friction loss of the cylinder liner Y (surface roughness Ra 0.160 (μm) / no recess) is exceeded, and when it is 700 or less, the friction loss increases in a range exceeding 14 kPa. That is, in the case of the conventional cylinder liner X (surface roughness Ra 0.160 (μm) / with recesses), the recess 14 acts to reduce the friction loss in the range where the rotation speed N exceeds 1000, but the rotation speed When N is in the range of 1000 or less, the recess 14 acts to increase the friction loss. According to an unknown consideration by the present inventors, in the case of the conventional cylinder liner X (surface roughness Ra 0.160 (μm) / with recess), the actual contact area between the cylinder liner and the piston ring 40 due to the presence of the recess 14 Therefore, it is presumed that insufficient lubrication due to the lubricating oil is likely to occur in the low rotation region, and the ratio occupied by the boundary lubrication region is likely to increase.
 本実施形態のシリンダライナ10-A、10-Bでは、中央低粗さ領域20の表面粗さRaが0.120(μm)以下に設定されるので、回転数Nが700以下の低回転領域であっても、流体潤滑領域114または混在潤滑領域113を維持することで摩擦損失が抑制される。また、仮に境界潤滑状態となった場合であっても、表面粗さが小さいので摩擦損失が抑制される。具体的に、回転数Nが700以下になると、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)を基準として、シリンダライナ10-Aの場合は2.0kPa程度、シリンダライナ10-Bの場合は4.0kPa程度の低減効果が得られる。一般的に、シリンダライナの内周面の表面粗さRaを0.120(μm)以下にすると、潤滑油の保持力が低下して潤滑油不足に陥りやすいが、本実施形態では、中央低粗さ領域22に重畳形成される凹部14が、中央低粗さ領域20に対する潤滑油の貯留部として機能するので、中央低粗さ領域20において潤滑油不足が生じにくいという相乗効果も得られる。 In the cylinder liners 10-A and 10-B of the present embodiment, the surface roughness Ra of the central low roughness region 20 is set to 0.120 (μm) or less, so that the rotation speed N is 700 or less in the low rotation region. Even so, the friction loss is suppressed by maintaining the fluid lubrication region 114 or the mixed lubrication region 113. Further, even if the boundary lubrication state is reached, the friction loss is suppressed because the surface roughness is small. Specifically, when the rotation speed N becomes 700 or less, the cylinder liner X (surface roughness Ra 0.160 (μm) / with recesses) is used as a reference, and in the case of the cylinder liner 10-A, about 2.0 kPa, the cylinder liner 10 In the case of −B, a reduction effect of about 4.0 kPa can be obtained. Generally, when the surface roughness Ra of the inner peripheral surface of the cylinder liner is 0.120 (μm) or less, the holding power of the lubricating oil is lowered and the lubricating oil is liable to run short. Since the recess 14 superposed on the roughness region 22 functions as a storage portion for the lubricating oil with respect to the central low roughness region 20, a synergistic effect that the lubricating oil shortage is unlikely to occur in the central low roughness region 20 can be obtained.
 更に、シリンダライナ10-A、10-Bにおいて、回転数Nが700を超える高回転領域の摩擦損失は、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)の摩擦損失と近似するか、あるいは、それよりも小さくなる。つまり、シリンダライナ10-A、10-Bでは、高回転領域においても、中央低粗さ領域20が摩擦損失に悪影響を及ぼすことがない。 Further, in the cylinder liners 10-A and 10-B, the friction loss in the high rotation region where the rotation speed N exceeds 700 is close to the friction loss of the cylinder liner X (surface roughness Ra0.160 (μm) / with recesses). Or less. That is, in the cylinder liners 10-A and 10-B, the central low roughness region 20 does not adversely affect the friction loss even in the high rotation region.
 ちなみに、このFMEP線図は、非燃焼状態の摩擦試験に基づく。従って、実燃焼が生じる実際の内燃機関のFMEPは、燃焼圧力が作用することから、FMEP値はこれよりも上昇する。 By the way, this FMEP diagram is based on the friction test in the non-combustion state. Therefore, in the FMEP of the actual internal combustion engine in which the actual combustion occurs, the FMEP value is higher than this because the combustion pressure acts.
 なお、図8(B)のFMEP線図には、実測値ではないが、シリンダライナ10-Aと同じ構成で、中央低粗さ領域20の表面粗さRaが0.140(μm)に設定されるシリンダライナKのFMEPを推定表示する。シリンダライナKのFMEP線図は、表面粗さRa0.160(μm)となる従来のシリンダライナX、YのFMEP線図と、表面粗さRa0.120(μm)となるシリンダライナ10-AのFMEP線図の中間値に近似すると推測できる。このシリンダライナKも、摩擦損失平均有効圧力Tが14kPa以下に小さくなる範囲が、回転数Nが700以下(グラフの左側)に広がる。結果、低回転時においても、極めて摩擦損失の少ない摺動態様となる。 Although it is not an actual measurement value in the FMEP diagram of FIG. 8B, the surface roughness Ra of the central low roughness region 20 is set to 0.140 (μm) with the same configuration as the cylinder liner 10-A. The FMEP of the cylinder liner K to be made is estimated and displayed. The FMEP diagram of the cylinder liner K is the FMEP diagram of the conventional cylinder liners X and Y having a surface roughness Ra0.160 (μm) and the cylinder liner 10-A having a surface roughness Ra0.120 (μm). It can be inferred that it approximates the intermediate value of the FMEP diagram. Also in this cylinder liner K, the range in which the mean effective pressure T of friction loss becomes 14 kPa or less extends to 700 or less in rotation speed N (left side of the graph). As a result, even at low rotation speeds, the sliding mode has extremely low friction loss.
 すなわち、シリンダライナKでは、回転数Nが700以下の低回転領域であっても、流体潤滑領域114または混在潤滑領域113を維持することで摩擦損失が抑制される。また、仮に境界潤滑状態となった場合であっても、表面粗さが小さいので摩擦損失が抑制される。一般的に、シリンダライナの内周面の表面粗さRaを0.140(μm)以下にすると、潤滑油の保持力が低下して潤滑油不足に陥りやすいが、本実施形態では、中央低粗さ領域22に重畳形成される凹部14が、中央低粗さ領域20に対する潤滑油の貯留部として機能するので、中央低粗さ領域20において潤滑油不足が生じにくいという相乗効果も得られる。 That is, in the cylinder liner K, friction loss is suppressed by maintaining the fluid lubrication region 114 or the mixed lubrication region 113 even in the low rotation speed region where the rotation speed N is 700 or less. Further, even if the boundary lubrication state is reached, the friction loss is suppressed because the surface roughness is small. Generally, when the surface roughness Ra of the inner peripheral surface of the cylinder liner is 0.140 (μm) or less, the holding power of the lubricating oil is lowered and the lubricating oil is liable to run short. Since the recess 14 superposed on the roughness region 22 functions as a storage portion for the lubricating oil with respect to the central low roughness region 20, a synergistic effect that the lubricating oil shortage is unlikely to occur in the central low roughness region 20 can be obtained.
 <1ストローク中の摩擦力の変化> <Change in frictional force during one stroke>
 図10(A)には、回転数Nが646(低回転)となる場合のシリンダライナXとシリンダライナ10-Bのストローク中の摩擦力の変動を示す。図10(B)には、回転数Nが2154(高回転)となる場合のシリンダライナXとシリンダライナ10-Bのストローク中の摩擦力の変動を示す。なお、これらのグラフの横軸は、コンロッドの位相(角度)となる。図10(A)の低回転運転時は、シリンダライナ10-BとシリンダライナXの摩擦力に大きな差が生じていることがわかる。特に、上死点側に移動する行程では位相が45度~135度の範囲、下死点側に移動する行程では位相が225度から315度の範囲において、摩擦力の差が大きいことがわかる。特に、下死点側に移動する行程の180度~360度の範囲は、全般に亘って摩擦力が大幅に小さくなる。低回転時において、シリンダライナXは境界潤滑領域に近い摺動態様であるが、シリンダライナ10-Bは流体潤滑領域(又は混在潤滑領域)に近い摺動態様になると推察される。 FIG. 10A shows the fluctuation of the frictional force during the stroke of the cylinder liner X and the cylinder liner 10-B when the rotation speed N becomes 646 (low rotation speed). FIG. 10B shows fluctuations in the frictional force between the cylinder liner X and the cylinder liner 10-B during the stroke when the rotation speed N is 2154 (high rotation speed). The horizontal axis of these graphs is the phase (angle) of the connecting rod. It can be seen that during the low rotation operation of FIG. 10A, there is a large difference in the frictional force between the cylinder liner 10-B and the cylinder liner X. In particular, it can be seen that the difference in frictional force is large in the range of 45 to 135 degrees in phase in the process of moving to the top dead center side and in the range of 225 to 315 degrees in the phase of moving to the bottom dead center side. .. In particular, in the range of 180 degrees to 360 degrees in the process of moving to the bottom dead center side, the frictional force is significantly reduced over the whole. At low rotation, the cylinder liner X has a sliding mode close to the boundary lubrication region, but the cylinder liner 10-B is presumed to have a sliding mode close to the fluid lubrication region (or mixed lubrication region).
 図10(B)の高回転運転時は、シリンダライナ10-Bの摩擦力が、シリンダライナXの摩擦力に対して、全般的に小さくなる。高回転運転時は、シリンダライナ10-BとシリンダライナXの双方が流体潤滑領域となるが、この流体潤滑領域においても、シリンダライナ10-Bの摩擦力の方が常に小さくなることが分かる。同時に、境界潤滑領域になりやすい下死点となる位相0度近傍及び360度近傍や、上死点となる位相180度近傍の摩擦力が、大幅に小さくなることが分かる。 During the high rotation operation shown in FIG. 10B, the frictional force of the cylinder liner 10-B is generally smaller than the frictional force of the cylinder liner X. During high-speed operation, both the cylinder liner 10-B and the cylinder liner X are in the fluid lubrication region, and it can be seen that the frictional force of the cylinder liner 10-B is always smaller even in this fluid lubrication region. At the same time, it can be seen that the frictional forces near the bottom dead center of 0 degrees and 360 degrees, which tend to be the boundary lubrication region, and the phase of 180 degrees, which is the top dead center, are significantly reduced.
 <オイル消費量> <Oil consumption>
 本実施形態のシリンダライナ10とピストン30の摺動構造の場合、オイル消費量も抑制される。これは、中央低粗さ領域22に形成される潤滑油膜の絶対量が少なくなることに起因する。油膜の絶対量が減少しても、重畳的に凹部14が形成されているので、潤滑不足に陥ることはない。すなわち、本実施形態では、オイル消費量の低減と、十分な潤滑効果の双方を、合理的に解決することが可能となっている。本発明者らのシミュレーションによると、ディーゼルエンジンの場合、シリンダライナXと比較してシリンダライナ10-Bの方がLOC比率で約10%低減することが推察された。 In the case of the sliding structure of the cylinder liner 10 and the piston 30 of the present embodiment, the oil consumption is also suppressed. This is because the absolute amount of the lubricating oil film formed in the central low roughness region 22 is reduced. Even if the absolute amount of the oil film is reduced, the recesses 14 are formed in an overlapping manner, so that the lubrication is not insufficient. That is, in the present embodiment, it is possible to rationally solve both the reduction of oil consumption and the sufficient lubrication effect. According to the simulations of the present inventors, in the case of a diesel engine, it was inferred that the LOC ratio of the cylinder liner 10-B was reduced by about 10% as compared with the cylinder liner X.
 <第二実施形態のシリンダライナ> <Cylinder liner of the second embodiment>
 次に、本発明の第二の実施の形態に係る内燃機関の摺動構造に関して添付図面を参照して説明する。 Next, the sliding structure of the internal combustion engine according to the second embodiment of the present invention will be described with reference to the attached drawings.
 図11(A)に示すように、第二実施形態の内燃機関に係るシリンダライナ10の内壁面12には、複数の凹部14が形成される。凹部14は、内壁面12における行程中央部領域20のみに形成される。この行程中央部領域20は、ピストン30の上死点Tにおける最下位のピストンリングのリング溝の下面位置19A(以下、上死点側端縁とも呼ぶ)から、ピストン30の下死点Uおける最上位のピストンリングのリング溝の上面位置19B(以下、下死点側端縁とも呼ぶ)までの全範囲(以下、基準行程領域19と呼ぶ)の一部となっている。 As shown in FIG. 11A, a plurality of recesses 14 are formed on the inner wall surface 12 of the cylinder liner 10 according to the internal combustion engine of the second embodiment. The recess 14 is formed only in the stroke central region 20 on the inner wall surface 12. This stroke central region 20 is located at the bottom dead center U of the piston 30 from the lower surface position 19A of the ring groove of the lowest piston ring at the top dead center T of the piston 30 (hereinafter, also referred to as the top dead center side edge). It is a part of the entire range (hereinafter, referred to as reference stroke area 19) up to the upper surface position 19B (hereinafter, also referred to as bottom dead center side edge) of the ring groove of the uppermost piston ring.
 本実施形態の行程中央部領域20は、基準行程領域19の上死点側端縁19Aよりも下側にずれた位置となる。その結果、基準行程領域19の上死点側端縁19Aから、行程中央部領域20の上死点側の端縁27Aまでの間の全部には、凹部を有しない平滑な上側平滑領域130Aが形成される。上側平滑領域130Aはピストンリング40が通過する領域となる。 The stroke central region 20 of the present embodiment is located at a position shifted below the top dead center side edge 19A of the reference stroke region 19. As a result, a smooth upper smoothing region 130A having no recess is formed in the entire area from the top dead center side edge 19A of the reference stroke region 19 to the top dead center side edge 27A of the stroke central region 20. It is formed. The upper smoothing region 130A is a region through which the piston ring 40 passes.
 また、本実施形態の行程中央部領域20は、基準行程領域19の下死点側端縁19Bよりも上側にずれた位置となる。その結果、基準行程領域19の下死点側端縁19Bから、行程中央部領域20の下死点側の端縁27Bまでの間の全部には、凹部を有しない平滑な下側平滑領域130Bが形成される。下側平滑領域130Bはピストンリング40が通過する領域となる。 Further, the stroke central region 20 of the present embodiment is located at a position shifted upward from the bottom dead center side edge 19B of the reference stroke region 19. As a result, a smooth lower smooth region 130B having no recess in the entire area from the bottom dead center side edge 19B of the reference stroke region 19 to the bottom dead center side edge 27B of the stroke center region 20. Is formed. The lower smoothing region 130B is a region through which the piston ring 40 passes.
 本実施形態では、行程中央部領域20の上死点側の端縁27Aを、凹部14が形成される場所と凹部14が形成されない場所の境界線を意味する「上側境界」と呼ぶことがあり、また、行程中央部領域20の下死点側の端縁27Bを、凹部14が形成される場所と凹部14が形成されない場所の境界線を意味する「下側境界」と呼ぶこともある。なお、行程中央部領域20の下死点側の端縁(下側境界)27Bを、基準行程領域19の下死点側端縁19Bと一致させたり、それよりも下側まで広げたりしても良い。 In the present embodiment, the edge 27A on the top dead center side of the stroke central region 20 may be referred to as an "upper boundary" which means a boundary line between a place where the recess 14 is formed and a place where the recess 14 is not formed. Further, the edge 27B on the bottom dead center side of the stroke central region 20 may be referred to as a "lower boundary" which means a boundary line between a place where the recess 14 is formed and a place where the recess 14 is not formed. The lower dead center side edge (lower boundary) 27B of the stroke central region 20 may be aligned with the lower dead center side edge 19B of the reference stroke area 19 or may be extended to the lower side. Is also good.
 また、行程中央部領域20の外側の領域を外部領域25と定義すると、この外部領域25は、行程中央部領域20の上死点側に隣接する上側外部領域25Aと、行程中央部領域20の下死点側に隣接する下側外部領域25Bから構成される。なお、上側外部領域25Aの一部には、上側平滑領域130Aが含まれることになり、下側外部領域23Bの一部には、下側平滑領域130Bが含まれることになる。 Further, if the region outside the stroke central region 20 is defined as the external region 25, the external region 25 includes the upper external region 25A adjacent to the top dead center side of the stroke central region 20 and the stroke central region 20. It is composed of a lower outer region 25B adjacent to the bottom dead center side. The upper smoothing region 130A is included in a part of the upper outer region 25A, and the lower smoothing region 130B is included in a part of the lower outer region 23B.
 本実施形態では、この行程中央部領域20の少なくとも一部において、触針式表面粗さ測定機によって測定される表面粗さ(算術平均粗さ)Raが0.140(μm)以下となり、好ましくは表面粗さRaが0.120(μm)以下となる、中央低粗さ領域22が形成される。ここでは、行程中央部領域20の全部を中央低粗さ領域22としている。結果として、中央低粗さ領域22は、凹部14が形成される行程中央部領域20の上端縁近傍及び下端縁近傍を含む。 In the present embodiment, the surface roughness (arithmetic mean roughness) Ra measured by the stylus type surface roughness measuring machine is 0.140 (μm) or less, which is preferable in at least a part of the process central region 20. Is formed with a central low roughness region 22 having a surface roughness Ra of 0.120 (μm) or less. Here, the entire process central region 20 is defined as the central low roughness region 22. As a result, the central low roughness region 22 includes the vicinity of the upper end edge and the vicinity of the lower end edge of the process central region 20 in which the recess 14 is formed.
 この中央低粗さ領域22を、レーザー顕微鏡を利用した非接触式表面粗さ測定機で測定した場合の表面粗さ値を以下に示す。
算術平均高さSa(μm):0.192以下、好ましくは0.163以下、更に望ましくは0.120以下(具体的には0.110に設定される)。
突出山部高さSpk(μm):0.159以下、好ましくは0.144以下、更に望ましくは0.121以下(具体的には0.116に設定される)。
コア部レベル差Sk(μm):0.521以下、好ましくは0.449以下、更に望ましくは0.340以下(具体的には0.315に設定される)。
突出谷部深さSvk(μm):0.409以下、好ましくは0.342以下、更に望ましくは0.241以下(具体的には0.218に設定される)。
The surface roughness value when the central low roughness region 22 is measured by a non-contact type surface roughness measuring machine using a laser microscope is shown below.
Arithmetic mean height Sa (μm): 0.192 or less, preferably 0.163 or less, more preferably 0.120 or less (specifically set to 0.110).
Overhang height Spk (μm): 0.159 or less, preferably 0.144 or less, more preferably 0.121 or less (specifically set to 0.116).
Core level difference Sk (μm): 0.521 or less, preferably 0.449 or less, more preferably 0.340 or less (specifically, set to 0.315).
Overhang valley depth Svk (μm): 0.409 or less, preferably 0.342 or less, more preferably 0.241 or less (specifically set to 0.218).
 更に、行程中央部領域20の上側に隣接する上側平滑領域130Aには、触針式表面粗さ測定機によって表面粗さ(算術平均粗さ)Raが0.140(μm)以下となり、好ましくは、表面粗さRaが0.120(μm)以下となる上側低粗さ領域23Aが形成される。本実施形態の上側低粗さ領域23Aは、上側平滑領域130Aに重畳しつつ、更に上方側に越えた範囲まで形成される。また、行程中央部領域20の下側に隣接する下側平滑領域130には、表面粗さ(算術平均粗さ)Raが0.140(μm)以下となり、好ましくは、表面粗さRaが0.120(μm)以下となる下側低粗さ領域23Bが形成される。本実施形態の下側低粗さ領域23Bは、下側平滑領域130Bに重畳しつつ、更に下方側に越えた範囲まで形成される。上側低粗さ領域23Aと、中央低粗さ領域22と、下側低粗さ領域23Bは、均一な表面粗さ状態で完全に連なっており、全体として一体的な連続平面となっている。 Further, in the upper smoothing region 130A adjacent to the upper side of the stroke central region 20, the surface roughness (arithmetic mean roughness) Ra is 0.140 (μm) or less by the stylus type surface roughness measuring machine, which is preferable. An upper low roughness region 23A having a surface roughness Ra of 0.120 (μm) or less is formed. The upper low roughness region 23A of the present embodiment is formed to a range beyond the upper smooth region 130A while being superimposed on the upper smooth region 130A. Further, in the lower smooth region 130 adjacent to the lower side of the stroke central region 20, the surface roughness (arithmetic mean roughness) Ra is 0.140 (μm) or less, and the surface roughness Ra is preferably 0. A lower low roughness region 23B of .120 (μm) or less is formed. The lower low roughness region 23B of the present embodiment is formed to a range beyond the lower smooth region 130B while being superimposed on the lower smooth region 130B. The upper low roughness region 23A, the central low roughness region 22, and the lower low roughness region 23B are completely connected in a uniform surface roughness state, and form an integral continuous plane as a whole.
 この上側低粗さ領域23A及び/または下側低粗さ領域23Bを、レーザー顕微鏡を利用した非接触式表面粗さ測定機で測定した場合の表面粗さ値を以下に示す。
算術平均高さSa(μm):0.192以下、好ましくは0.163以下、更に望ましくは0.120以下(具体的には0.110に設定される)。
突出山部高さSpk(μm):0.159以下、好ましくは0.144以下、更に望ましくは0.121以下(具体的には0.116に設定される)。
コア部レベル差Sk(μm):0.521以下、好ましくは0.449以下、更に望ましくは0.340以下(具体的には0.315に設定される)。
突出谷部深さSvk(μm):0.409以下、好ましくは0.342以下、更に望ましくは0.241以下(具体的には0.218に設定される)。
The surface roughness values when the upper low roughness region 23A and / or the lower low roughness region 23B are measured by a non-contact type surface roughness measuring machine using a laser microscope are shown below.
Arithmetic mean height Sa (μm): 0.192 or less, preferably 0.163 or less, more preferably 0.120 or less (specifically set to 0.110).
Overhang height Spk (μm): 0.159 or less, preferably 0.144 or less, more preferably 0.121 or less (specifically set to 0.116).
Core level difference Sk (μm): 0.521 or less, preferably 0.449 or less, more preferably 0.340 or less (specifically, set to 0.315).
Overhang valley depth Svk (μm): 0.409 or less, preferably 0.342 or less, more preferably 0.241 or less (specifically set to 0.218).
 ピストン30がシリンダライナ10内を往復運動する際、上側外部領域25A(上側低粗さ領域23A)、行程中央部領域20(中央低粗さ領域22)、下側外部領域25B(下側低粗さ領域23B)、行程中央部領域20(中央低粗さ領域22)、上側外部領域25A(上側低粗さ領域23A)をこの順に繰り返し通過する。 When the piston 30 reciprocates in the cylinder liner 10, the upper outer region 25A (upper low roughness region 23A), the stroke central region 20 (center low roughness region 22), and the lower outer region 25B (lower low roughness region 25B) The cylinder region 23B), the stroke central region 20 (center low roughness region 22), and the upper outer region 25A (upper low roughness region 23A) are repeatedly passed in this order.
 上側平滑領域130の行程方向距離は、望ましくは、基準行程領域19の行程方向全距離の30%以上に設定される。また、行程中央部領域20における行程方向の中央点20Mは、基準行程領域における行程方向の中央点19Mと比較して、ピストンの下死点U側に位置する。 The stroke direction distance of the upper smoothing region 130 is preferably set to 30% or more of the total stroke direction distance of the reference stroke region 19. Further, the center point 20M in the stroke direction in the stroke center region 20 is located on the bottom dead center U side of the piston as compared with the center point 19M in the stroke direction in the reference stroke region.
 最上位のピストンリング(後述するトップリング50)が内壁面12を最高速度で通過する位置を最速通過点Cと定義した場合、行程中央部領域20の上死点側の端縁(上側境界)27Aは、最速通過点C以下に設定される。本実施形態では、上死点側の端縁27Aと最速通過点Cが一致するように設定されている。 When the position where the uppermost piston ring (top ring 50 described later) passes through the inner wall surface 12 at the maximum speed is defined as the fastest passing point C, the edge (upper boundary) on the top dead center side of the stroke central region 20 is defined. 27A is set to the fastest passing point C or less. In the present embodiment, the edge 27A on the top dead center side and the fastest passing point C are set to coincide with each other.
 なお、シリンダライナ10の中央部低粗さ領域22、上側低粗さ領域23A及び下側低粗さ領域23Bは、ホーニング盤を用いてホーニング加工を行うことで形成される。この際のホーニング砥石の粒度は、例えばF500又は#800よりも細かい砥粒(JIS R 6001-2:2017,ISO8486-2:2007)を使用することが好ましい。このホーニング加工によって中央部低粗さ領域22、上側低粗さ領域23A及び下側低粗さ領域23Bを形成した後は、その表面に皮膜処理を行わないことが好ましい。例えば、シリンダライナ10の製造工程で一般的に用いられるリン酸塩皮膜等を行うと、中央低粗さ領域22、上側低粗さ領域23A及び下側低粗さ領域23Bの表面性状が、皮膜によって変動するからである。 The central portion low roughness region 22, the upper low roughness region 23A, and the lower low roughness region 23B of the cylinder liner 10 are formed by performing honing processing using a honing machine. At this time, it is preferable to use abrasive grains (JIS R 6001-2: 2017, ISO8486-2: 2007) finer than F500 or # 800 for the particle size of the honing grindstone. After the central low roughness region 22, the upper low roughness region 23A and the lower low roughness region 23B are formed by this honing process, it is preferable not to perform a film treatment on the surface thereof. For example, when a phosphate film or the like generally used in the manufacturing process of the cylinder liner 10 is applied, the surface texture of the central low roughness region 22, the upper low roughness region 23A and the lower low roughness region 23B becomes a film. This is because it varies depending on the.
 <上側低粗さ領域23Aの存在意義> <Significance of existence of upper low roughness region 23A>
 既に述べたように、本実施形態では、凹部が重畳形成される中央低粗さ領域22よりも上死点側に、凹部が形成されない上側低粗さ領域23Aを備える。この上側低粗さ領域23Aの意義は次の通りである。ピストン30の上死点側は、燃焼室が存在することから高温環境となる。従って、シリンダライナ10の上死点側に凹部を形成して、凹部内にエンジンオイルを滞留させてしまうと、そのエンジンオイルが高温となり、気化することでオイル消費量が増大する。そこで、上側低粗さ領域23Aについては、凹部を形成しないことで、オイルの消費量を抑制する。一方、上側低粗さ領域23Aを本実施形態のように低粗さ化すると、潤滑不足が生じる可能性があるか、下側に隣接する中央低粗さ領域22に重畳形成される凹部14が潤滑油の貯留部として機能しており、この凹部14を介して、上側低粗さ領域23Aに潤滑油が積極的に供給されるので、潤滑不足が生じにくいという相乗効果も得られる。 As already described, in the present embodiment, the upper low roughness region 23A in which the concave portion is not formed is provided on the upper dead center side of the central low roughness region 22 in which the concave portion is superposed. The significance of this upper low roughness region 23A is as follows. The top dead center side of the piston 30 is in a high temperature environment due to the existence of the combustion chamber. Therefore, if a recess is formed on the top dead center side of the cylinder liner 10 and the engine oil is retained in the recess, the engine oil becomes hot and vaporizes, so that the oil consumption increases. Therefore, in the upper low roughness region 23A, the oil consumption is suppressed by not forming the recess. On the other hand, if the upper low roughness region 23A is reduced in roughness as in the present embodiment, there is a possibility that lubrication may be insufficient, or the recess 14 formed so as to be superimposed on the central low roughness region 22 adjacent to the lower side may be formed. Since the lubricating oil functions as a storage portion for the lubricating oil and the lubricating oil is positively supplied to the upper low roughness region 23A through the recess 14, a synergistic effect that insufficient lubrication does not easily occur can be obtained.
 また、ピストン30の上死点T側は、高温環境によってエンジンオイルの粘性も低下するので、油膜が形成されにくいが、上側低粗さ領域23Aによって表面粗さRaを0.120(μm)以下、好ましくは0.100(μm)以下とすることで、少ない油膜であっても積極的に流体潤滑領域または混在潤滑領域とする。仮に境界潤滑領域になったとしても、低粗さとなるので、摩擦係数が小さくて済む。更に、中央低粗さ領域22に重畳形成される凹部14に溜まる潤滑油によって、上側低粗さ領域23Aに対して潤滑油の供給できるので、上側低粗さ領域23Aにおける潤滑油不足も生じにくいという利点がある。 Further, on the top dead center T side of the piston 30, the viscosity of the engine oil also decreases due to the high temperature environment, so that an oil film is difficult to form, but the surface roughness Ra is 0.120 (μm) or less due to the upper low roughness region 23A. , Preferably 0.100 (μm) or less, so that even a small amount of oil film is positively set as a fluid lubrication region or a mixed lubrication region. Even if the boundary lubrication region is reached, the roughness is low, so that the friction coefficient can be small. Further, since the lubricating oil accumulated in the recess 14 formed so as to be superimposed on the central low roughness region 22 can supply the lubricating oil to the upper low roughness region 23A, the lubricating oil shortage in the upper low roughness region 23A is unlikely to occur. There is an advantage.
 <第二実施形態のシリンダライナとピストンリングの摺動構造> <Sliding structure of cylinder liner and piston ring of the second embodiment>
 図11(B)には、シリンダライナ10をピストンリング40が上死点Tから下死点Uに向かって相対移動する行程を示す。ピストンリング40が、上側低粗さ領域23Aを相対移動する際中は、行程線A、Lとなる。そして、ピストンリング40が、中央低粗さ領域22を通過する際は行程線Mとなる。その後、シリンダライナ10の下側低粗さ領域23Bを、ピストンリング40が下死点側に向かって相対移動している最中は、行程線N、Bとなる。 FIG. 11B shows a process in which the piston ring 40 relatively moves the cylinder liner 10 from the top dead center T to the bottom dead center U. While the piston ring 40 moves relative to the upper low roughness region 23A, it becomes stroke lines A and L. Then, when the piston ring 40 passes through the central low roughness region 22, it becomes the stroke line M. After that, while the piston ring 40 is relatively moving toward the bottom dead center side in the lower low roughness region 23B of the cylinder liner 10, the stroke lines N and B are formed.
 本第二実施形態の内燃機関に係る摺動構造によれば、第一実施形態と同様に、中央低粗さ領域22によって、低速移動時の摩擦係数を小さくすることができる。また、低回転時の摩擦損失を低減することが可能となる。更に、ピストンリング40が通過する上側低粗さ領域23Aによって、オイル消費量を抑制することができる。 According to the sliding structure of the internal combustion engine of the second embodiment, the friction coefficient during low-speed movement can be reduced by the central low roughness region 22 as in the first embodiment. Further, it is possible to reduce the friction loss at low rotation speed. Further, the oil consumption can be suppressed by the upper low roughness region 23A through which the piston ring 40 passes.
 尚、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention.
10  シリンダライナ
12  内壁面
14  凹部
20  行程中央部領域
22  中央低粗さ領域
23A  上側低粗さ領域
23B  下側低粗さ領域
25  外部領域
25A  上側外部領域
25B  下側外部領域
30  ピストン
40  ピストンリング
110  固体接触領域
112  境界潤滑領域
113  混在潤滑領域
114  流体潤滑領域
10 Cylinder liner 12 Inner wall surface 14 Recession 20 Stroke central area 22 Central low roughness area 23A Upper low roughness area 23B Lower low roughness area 25 External area 25A Upper outer area 25B Lower outer area 30 Piston 40 Piston ring 110 Solid contact area 112 Boundary lubrication area 113 Mixed lubrication area 114 Fluid lubrication area

Claims (16)

  1.  シリンダとピストンを有する内燃機関の摺動構造であって、
     前記シリンダは、
     内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、
     前記行程中央部領域における前記ピストンリングと接触する面の少なくとも一部には、触針式表面粗さ測定機によって測定される輪郭曲線の算術平均粗さRaが0.140μm以下となる中央低粗さ領域が形成されることを特徴とする、
     内燃機関の摺動構造。
    It is a sliding structure of an internal combustion engine having a cylinder and a piston.
    The cylinder
    All or one of the inner wall surfaces from the lower surface position of the ring groove of the lowest piston ring at the top dead center of the piston to the upper surface position of the ring groove of the highest piston ring at the bottom dead center of the piston. Multiple recesses are formed in the central region of the stroke, which is the part.
    Central low roughness such that the arithmetic mean roughness Ra of the contour curve measured by the stylus type surface roughness measuring machine is 0.140 μm or less on at least a part of the surface in contact with the piston ring in the central region of the stroke. Characterized by the formation of a region,
    Sliding structure of internal combustion engine.
  2.  非接触式表面粗さ測定機によって測定される前記中央低粗さ領域の輪郭曲面の算術平均高さSaが0.20μm以下となることを特徴とする、
     請求の範囲1に記載の内燃機関の摺動構造。
    The arithmetic mean height Sa of the contour curved surface of the central low roughness region measured by the non-contact surface roughness measuring machine is 0.20 μm or less.
    The sliding structure of an internal combustion engine according to claim 1.
  3.  非接触式表面粗さ測定機によって測定される前記中央低粗さ領域の突出谷部深さSvkが0.41μm以下となることを特徴とする、
     請求の範囲1または2に記載の内燃機関の摺動構造。
    The protrusion valley depth Svk of the central low roughness region measured by a non-contact surface roughness measuring machine is 0.41 μm or less.
    The sliding structure of an internal combustion engine according to claim 1 or 2.
  4.  非接触式表面粗さ測定機によって測定される前記中央低粗さ領域の突出山部高さSpkが0.16μm以下となることを特徴とする、
     請求の範囲1~3のいずれか一項に記載の内燃機関の摺動構造。
    The protrusion height Spk of the central low roughness region measured by a non-contact surface roughness measuring machine is 0.16 μm or less.
    The sliding structure of an internal combustion engine according to any one of claims 1 to 3.
  5.  非接触式表面粗さ測定機によって測定される前記中央低粗さ領域のコア部のレベル差Skが0.53μm以下となることを特徴とする、
     請求の範囲1~4のいずれか一項に記載の内燃機関の摺動構造。
    The level difference Sk of the core portion of the central low roughness region measured by the non-contact surface roughness measuring machine is 0.53 μm or less.
    The sliding structure of an internal combustion engine according to any one of claims 1 to 4.
  6.  前記中央低粗さ領域における前記非接触式表面粗さ測定機によって測定される突出山部高さをE(Spk)、突出谷部深さをI(Svk)とした場合に、I/Eが2.6以下となることを特徴とする、
     請求の範囲1~5のいずれか一項に記載の内燃機関の摺動構造。
    When the height of the protruding peak portion measured by the non-contact type surface roughness measuring machine in the central low roughness region is E (Spk) and the depth of the protruding valley portion is I (Svk), the I / E is The feature is that it is 2.6 or less.
    The sliding structure of an internal combustion engine according to any one of claims 1 to 5.
  7.  触針式表面粗さ測定機によって測定される前記中央低粗さ領域の輪郭曲線の算術平均粗さRaが0.120μm以下となることを特徴とする、
     請求の範囲1~6のいずれか一項に記載の内燃機関の摺動構造。
    The arithmetic average roughness Ra of the contour curve of the central low roughness region measured by the stylus type surface roughness measuring machine is 0.120 μm or less.
    The sliding structure of an internal combustion engine according to any one of claims 1 to 6.
  8.  前記中央低粗さ領域は、前記行程中央部領域における上端縁近傍及び下端縁近傍を含むことを特徴とする、
     請求の範囲1~7のいずれか一項に記載の内燃機関の摺動構造。
    The central low roughness region is characterized by including the vicinity of the upper end edge and the vicinity of the lower end edge in the process central region.
    The sliding structure of an internal combustion engine according to any one of claims 1 to 7.
  9.  前記行程中央部領域の全体が、前記中央低粗さ領域となることを特徴とする、
     請求の範囲1~8のいずれか一項に記載の内燃機関の摺動構造。
    The entire central region of the stroke is the central low roughness region.
    The sliding structure of an internal combustion engine according to any one of claims 1 to 8.
  10.  前記中央低粗さ領域における動粘度(動粘性率)をμ、前記ピストンとの相対速度をU、前記ピストンに対する接触荷重をW、前記ピストンとの間の摩擦係数をfとし、
     ストライベック線図の評価パラメータをA=μ×U/Wと定義する際に、
     前記中央低粗さ領域における前記摩擦係数fの極小値fminは、前記評価パラメータAが0.0003以下の範囲内で達成されることを特徴とする、
     請求の範囲1~9のいずれか一項に記載の内燃機関の摺動構造。
    The kinematic viscosity (kinematic viscosity) in the central low roughness region is μ, the relative velocity with the piston is U, the contact load with respect to the piston is W, and the friction coefficient with the piston is f.
    When defining the evaluation parameter of the Strivec diagram as A = μ × U / W,
    The minimum value fmin of the friction coefficient f in the central low roughness region is characterized in that the evaluation parameter A is achieved within the range of 0.0003 or less.
    The sliding structure of an internal combustion engine according to any one of claims 1 to 9.
  11.  前記極小値fminは、前記評価パラメータAが0.0001以上の範囲内で達成されることを特徴とする、
     請求の範囲10に記載の内燃機関の摺動構造。
    The minimum value fmin is characterized in that the evaluation parameter A is achieved within the range of 0.0001 or more.
    The sliding structure of an internal combustion engine according to claim 10.
  12.  前記中央低粗さ領域における動粘度(動粘性率)をμ、前記ピストンとの相対速度をU、前記ピストンに対する接触荷重をW、前記ピストンとの間の摩擦係数をfとし、
     ストライベック線図の評価パラメータをA=μ×U/Wと定義する際に、
     前記評価パラメータAが0.0003以下となる範囲内のいずれかで、前記中央低粗さ領域における前記摩擦係数fが0.07以下となることを特徴とする、
     請求の範囲1~9のいずれか一項に記載の内燃機関の摺動構造。
    The kinematic viscosity (kinematic viscosity) in the central low roughness region is μ, the relative velocity with the piston is U, the contact load with respect to the piston is W, and the friction coefficient with the piston is f.
    When defining the evaluation parameter of the Strivec diagram as A = μ × U / W,
    The friction coefficient f in the central low roughness region is 0.07 or less in any of the ranges in which the evaluation parameter A is 0.0003 or less.
    The sliding structure of an internal combustion engine according to any one of claims 1 to 9.
  13.  前記中央低粗さ領域における動粘度(動粘性率)をμ、前記ピストンとの相対速度をU、前記ピストンに対する接触荷重をW、前記ピストンとの間の摩擦係数をfとし、
     ストライベック線図の評価パラメータをA=μ×U/Wと定義する際に、
     前記評価パラメータAが0.0003以下となる範囲内のいずれかで、前記中央低粗さ領域における前記ピストンと前記シリンダが流体潤滑状態となることを特徴とする、
     請求の範囲1~9のいずれか一項に記載の内燃機関の摺動構造。
    The kinematic viscosity (kinematic viscosity) in the central low roughness region is μ, the relative velocity with the piston is U, the contact load with respect to the piston is W, and the friction coefficient with the piston is f.
    When defining the evaluation parameter of the Strivec diagram as A = μ × U / W,
    The piston and the cylinder in the central low roughness region are in a fluid-lubricated state within any range in which the evaluation parameter A is 0.0003 or less.
    The sliding structure of an internal combustion engine according to any one of claims 1 to 9.
  14.  前記ピストンリングに相当するトップリング、セカンドリングおよびオイルリングを用いた非燃焼状態の摩擦試験において、前記内燃機関の回転数をN(r/min)とし、前記中央低粗さ領域における前記ピストンリングとの間の摩擦損失平均有効圧力(FMEP)をT(kPa)とする際に、
     前記中央低粗さ領域における前記摩擦損失平均有効圧Tの極小値Tminは、前記回転数Nが700以下の範囲内で達成されることを特徴とする、
     請求の範囲1~13のいずれか一項に記載の内燃機関の摺動構造。
    In a friction test in a non-combustion state using a top ring, a second ring, and an oil ring corresponding to the piston ring, the rotation speed of the internal combustion engine is set to N (r / min), and the piston ring in the central low roughness region. Friction loss between and when the mean effective pressure (FMEP) is T (kPa)
    The minimum value Tmin of the friction loss average effective pressure T in the central low roughness region is achieved within the range where the rotation speed N is 700 or less.
    The sliding structure of an internal combustion engine according to any one of claims 1 to 13.
  15.  前記ピストンリングに相当するトップリング、セカンドリングおよびオイルリングを用いた非燃焼状態の摩擦試験において、前記内燃機関の回転数をN(r/min)とし、前記中央低粗さ領域における前記ピストンリングとの間の摩擦損失平均有効圧力(FMEP)をT(kPa)とする際に、
     前記回転数Nが700以下となる範囲内のいずれかで、前記中央低粗さ領域における前記摩擦損失平均有効圧力Tが14kPa以下となることを特徴とする、
     請求の範囲1~13のいずれか一項に記載の内燃機関の摺動構造。
    In a friction test in a non-combustion state using a top ring, a second ring, and an oil ring corresponding to the piston ring, the rotation speed of the internal combustion engine is set to N (r / min), and the piston ring in the central low roughness region. Friction loss between and when the mean effective pressure (FMEP) is T (kPa)
    The friction loss mean effective pressure T in the central low roughness region is 14 kPa or less in any of the ranges where the rotation speed N is 700 or less.
    The sliding structure of an internal combustion engine according to any one of claims 1 to 13.
  16.  前記ピストンリングに相当するトップリング、セカンドリングおよびオイルリングを用いた非燃焼状態の摩擦試験において、前記内燃機関の回転数をN(r/min)とし、前記中央低粗さ領域における前記ピストンリングとの間の摩擦損失平均有効圧力(FMEP)をT(kPa)とする際に、
     前記回転数Nが700以下となる範囲内のいずれかで、前記中央低粗さ領域における前記ピストンと前記シリンダが流体潤滑状態となることを特徴とする、
     請求の範囲1~13のいずれか一項に記載の内燃機関の摺動構造。
    In a friction test in a non-combustion state using a top ring, a second ring, and an oil ring corresponding to the piston ring, the rotation speed of the internal combustion engine is set to N (r / min), and the piston ring in the central low roughness region. Friction loss between and when the mean effective pressure (FMEP) is T (kPa)
    It is characterized in that the piston and the cylinder in the central low roughness region are in a fluid lubricated state within any range in which the rotation speed N is 700 or less.
    The sliding structure of an internal combustion engine according to any one of claims 1 to 13.
PCT/JP2020/037294 2019-09-30 2020-09-30 Sliding structure for internal combustion engine WO2021066067A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080040318.6A CN113906208B (en) 2019-09-30 2020-09-30 Sliding structure of internal combustion engine
JP2021551418A JPWO2021066067A1 (en) 2019-09-30 2020-09-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019179141 2019-09-30
JP2019-179141 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021066067A1 true WO2021066067A1 (en) 2021-04-08

Family

ID=75337034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037294 WO2021066067A1 (en) 2019-09-30 2020-09-30 Sliding structure for internal combustion engine

Country Status (2)

Country Link
JP (1) JPWO2021066067A1 (en)
WO (1) WO2021066067A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023596A (en) * 2006-06-23 2008-02-07 Nissan Motor Co Ltd Method for processing minute concave portion
JP2010255846A (en) * 2009-03-31 2010-11-11 Nippon Piston Ring Co Ltd Cylinder
WO2015125832A1 (en) * 2014-02-19 2015-08-27 株式会社リケン Piston ring
JP5833276B1 (en) * 2014-09-12 2015-12-16 Tpr株式会社 Combination oil ring
WO2017209135A1 (en) * 2016-05-31 2017-12-07 日本ピストンリング株式会社 Sliding structure for internal combustion engine, method for controlling idling operation and method for controlling operation of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023596A (en) * 2006-06-23 2008-02-07 Nissan Motor Co Ltd Method for processing minute concave portion
JP2010255846A (en) * 2009-03-31 2010-11-11 Nippon Piston Ring Co Ltd Cylinder
WO2015125832A1 (en) * 2014-02-19 2015-08-27 株式会社リケン Piston ring
JP5833276B1 (en) * 2014-09-12 2015-12-16 Tpr株式会社 Combination oil ring
WO2017209135A1 (en) * 2016-05-31 2017-12-07 日本ピストンリング株式会社 Sliding structure for internal combustion engine, method for controlling idling operation and method for controlling operation of internal combustion engine

Also Published As

Publication number Publication date
CN113906208A (en) 2022-01-07
JPWO2021066067A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
CN103998755B (en) The air cylinder device of mar proof is improved by the best allocation of micro concavo-convex
US9915220B2 (en) Sliding assembly
EP1207314B1 (en) A sliding structure for a reciprocating internal combustion engine and a reciprocating internal combustion engine using the sliding structure
JP6231781B2 (en) Different thickness coatings for cylinder liners
CA2341723C (en) Sliding member and piston for internal combustion engine
KR101935936B1 (en) Sliding structure of internal combustion engine, control method of idling operation, operation control method of internal combustion engine
JP2017110804A (en) Cylinder liner for internal combustion engine
JP2006161563A (en) Piston for internal combustion engine
JP2008095721A (en) Sliding member
KR20150082206A (en) Piston ring with a periodically varying groove
JP7297917B2 (en) cylinder liner and cylinder bore
US10961947B2 (en) Cylinder liner
EP3115654B1 (en) Piston ring configured to reduce friction
JP2008223663A (en) Engine piston
WO2021066067A1 (en) Sliding structure for internal combustion engine
JP6894879B2 (en) Internal combustion engine cylinder and manufacturing method
CN113906208B (en) Sliding structure of internal combustion engine
JP2022155552A (en) Slide structure for internal combustion engine
US10077838B2 (en) Piston ring configured to reduce friction
JP7329690B2 (en) cylinder liner and cylinder bore
JP7045383B2 (en) piston ring
JP2023505574A (en) Pistons and methods of manufacturing pistons
JP2008231972A (en) Piston of engine
JP7369253B2 (en) Cylinder
KR20110071176A (en) Micro grooves structure of the cylinder liner bore for engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551418

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871613

Country of ref document: EP

Kind code of ref document: A1