WO2021065591A1 - Mold, flattening device, flattening method, and article manufacturing method - Google Patents

Mold, flattening device, flattening method, and article manufacturing method Download PDF

Info

Publication number
WO2021065591A1
WO2021065591A1 PCT/JP2020/035676 JP2020035676W WO2021065591A1 WO 2021065591 A1 WO2021065591 A1 WO 2021065591A1 JP 2020035676 W JP2020035676 W JP 2020035676W WO 2021065591 A1 WO2021065591 A1 WO 2021065591A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
substrate
contact
composition
flattening
Prior art date
Application number
PCT/JP2020/035676
Other languages
French (fr)
Japanese (ja)
Inventor
聡 岩谷
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2021065591A1 publication Critical patent/WO2021065591A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a mold, a flattening device, a flattening method, and a method for manufacturing an article.
  • microfabrication technology that molds and cures an uncured composition on a substrate to form a pattern of the composition on the substrate has been developed. Attention has been paid. Such a technique is called an imprint technique, and can form a fine pattern on the order of several nanometers on a substrate.
  • An imprinting device that employs a photocuring method molds a photocurable composition supplied to a shot region on a substrate with a mold, irradiates light to cure the composition, and molds the cured composition. By pulling them apart, a pattern is formed on the substrate.
  • Patent Document 1 a technique for flattening a composition on a substrate has been proposed (see Patent Document 1).
  • the technique disclosed in Patent Document 1 aims to improve the accuracy of flattening by dropping a composition based on a step on a substrate and curing the composition in a state where the dropped composition is in contact with a flat surface of a mold. It is a thing.
  • the present invention provides a configuration in which the contact state between the substrate and the mold can be easily confirmed without providing a camera for confirming the contact state between the mold and the composition.
  • the present invention has a mold holding portion for holding a mold having a flat surface portion, a substrate holding portion for holding a substrate, and a curing portion for curing a composition provided on the substrate.
  • the mold used in a flattening apparatus for curing the composition in the cured portion with the flat portion in contact with the composition on the substrate, wherein the flat portion is provided and the composition is provided. It is characterized by having a surface on the side in contact with the substrate and a contact detection sensor for detecting that an object has come into contact with the surface.
  • the flattening process is schematically shown in FIGS. 1A to 1D.
  • the flattening treatment described in the present embodiment describes a treatment in which the composition is dropped onto the entire surface of the substrate and the composition is brought into contact with the mold to flatten the composition.
  • the composition may be flattened by contacting the above composition with the mold.
  • the composition ML is arranged on the substrate 1 on which the base pattern W is formed (composition arrangement step). Specifically, the composition ML used as a flat material is dropped onto the substrate 1 held by the substrate holding unit 340, which will be described later, by the droplet supply unit DP such as a dispenser.
  • the distribution of the composition ML arranged by the droplet supply unit DP may be adjusted according to the shape of the base pattern W formed on the surface of the substrate 1.
  • a mold SS (also referred to as a super straight) having a flat surface portion on the substrate 1 having the same size as that of the substrate 1 or a size larger than that of the substrate 1 is formed on the composition ML of the substrate 1.
  • Contact with (contact process) As a result, the composition ML spreads and becomes a film.
  • the mold SS in a state where the mold SS is in contact with the composition ML on the substrate 1, energy for curing the composition ML is given to the composition ML from the cured portion IL, and the composition is prepared.
  • the ML is cured (curing step).
  • the curing step it is necessary that the flat surface portion of the mold SS is in contact with all the composition ML on the substrate, and the flat surface portion of the mold SS follows the surface shape of the substrate 1.
  • the curing energy used in the curing step light such as ultraviolet rays emitted from the light source IL (light irradiation unit) can be used.
  • composition ML is irradiated with the light from the part) through the mold SS to cure the composition ML.
  • the mold SS is separated from the cured composition ML on the substrate 1 (separation step).
  • a flattening film made of the cured composition ML remains on the substrate 1. That is, by using the mold SS, a flattening layer (flattening film) having a locally flattened surface can be formed by a cured product of the composition ML.
  • the flattening layer can be collectively formed over the entire area of the substrate 1 by using the mold SS having an area covering the entire area of the plurality of shot regions of the substrate 1.
  • the base pattern W on the substrate 1 will be omitted, but it is assumed that the base pattern W according to the manufacturing process is provided between the substrate 1 and the composition ML.
  • FIG. 2 shows the overall configuration of the flattening system 100 according to the present invention.
  • the flattening system 100 includes one or more flattening devices (film forming devices) R.
  • a contact step of contacting the composition portion ML on the substrate 1 and the mold SS described with reference to FIGS. 1A to 1D a curing step of curing the composition ML, and curing of the composition ML.
  • a flattening process including a separation step of separating the object and the mold SS is performed.
  • the flattening system 100 of FIG. 2 is provided with a substrate transfer mechanism 204, a preparation station 220, a heat treatment unit 209, and a control unit 210.
  • a substrate transfer mechanism 204 for example, EFEM (Equipment Front End Module) can be used.
  • the substrate transfer mechanism 204 the substrate 1 can be moved (conveyed) between the substrate transfer container 203, the heat treatment unit 209, and the preparation station 220.
  • FOUP Front-Opening Unified Pod
  • the substrate 1 stored in the substrate transfer container 203 is conveyed to the preparation station 220 by the substrate transfer mechanism 204.
  • the preparation station 220 is provided with an alignment mechanism 205 and a droplet supply unit (dispenser) DP.
  • the droplet supply unit DP is arranged in the information of the alignment mechanism 205.
  • the alignment mechanism 205 measures the rotation of the substrate 1 transported from the substrate transport container 203 around the Z axis by the substrate transport mechanism 204, and adjusts the rotation of the substrate W around the Z axis to a target angle based on the result. ..
  • the rotation of the substrate 1 around the Z axis can be measured, for example, by detecting a notch in the substrate 1. Further, the alignment mechanism 205 can measure the position of the substrate 1. Then, the alignment mechanism 205 can adjust the position of the substrate 1 based on the measurement result of the measured position of the substrate 1.
  • the position of the transfer hand 202 when the substrate 1 is delivered from the alignment mechanism 205 to the transfer hand 202 of the substrate transfer mechanism 204 may be adjusted based on the measurement result of the position of the substrate 1. Further, the preparation station 220 may be provided with a function of adjusting the temperature of the substrate 1.
  • the droplet supply unit DP arranges the composition ML on the substrate 1.
  • the droplet supply unit DP is connected to the circulation unit 211 that circulates the composition ML.
  • the circulation unit 211 maintains the physical characteristics by adjusting the temperature of the composition ML and the like, and also maintains the wettability of the discharge surface of the droplet supply unit DP and keeps the internal pressure of the droplet supply unit DP constant.
  • the composition ML is circulated in the water.
  • the circulation path of the composition ML can be a path from the storage tank provided in the circulation section 211 to the storage tank through the discharge surface of the droplet supply section DP.
  • the droplet supply unit DP may be configured as a spin coater or a slit coater.
  • the substrate 1 is conveyed from the substrate transfer container 203 to the preparation station 220 by the substrate transfer mechanism 204.
  • a process for arranging the composition ML on the substrate 1 is executed.
  • the droplet supply unit DP ejects the composition ML while moving along the XY plane, whereby the composition ML is discharged onto the substrate 1.
  • the composition ML can be placed in.
  • the alignment mechanism 205 has a substrate transporting portion, and the substrate transporting portion transports the substrate 1 along the XY plane while ejecting the composition ML from the droplet supply portion DP onto the substrate 1.
  • the composition ML can be placed in.
  • the composition ML may be placed on the substrate 1 while the substrate 1 is conveyed along the XY plane by the substrate transport unit and the droplet supply unit DP is also moved along the XY plane.
  • the transfer hand 202 of the substrate transfer mechanism 204 holds the substrate 1 and is composed by the droplet supply unit DP on the substrate 1.
  • the object ML may be arranged.
  • the heat treatment unit 209 is used for baking treatment (heat treatment) of the substrate 1 and cooling treatment.
  • the heat treatment unit 209 may be configured as a part of the flattening process R, or may be configured as a device different from the flattening device R.
  • the control unit 210 can control the flattening device R, the substrate transfer mechanism 204, the preparation station 220, and the heat treatment unit 209, that is, can control the entire flattening system 100.
  • the control unit 210 is, for example, a PLD (abbreviation for Programmable Logic Device) such as FPGA (abbreviation for Field Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit) general-purpose program, or an abbreviation for ASIC. Alternatively, it is composed of a dedicated computer or a combination of all or a part thereof.
  • the control unit 210 functions as a processing unit that comprehensively controls each unit of the flattening system 100 including the flattening device R to perform the flattening process.
  • a control unit may be provided in each flattening device R constituting the flattening system 100, and the control unit in the flattening device R may function as a processing unit that performs flattening processing.
  • the flattening device R executes the flattening process described with reference to FIGS. 1B to 1D.
  • the composition arranging step shown in FIG. 1A may also be performed by providing the droplet supply unit DP in the flattening device R.
  • a plurality of flattening devices R When a plurality of flattening devices R are arranged in the flattening system 100, they may be arranged along the XY plane or may be stacked and arranged along the Z axis. Further, when a plurality of flattening devices R are arranged in the flattening system 100, they may be arranged along the XY plane or may be arranged in a stack along the Z axis.
  • the device for executing the contact step the device for executing the curing step, and the separation. It may be divided into devices for executing the process.
  • a curable composition that cures when energy for curing is given can be used.
  • Electromagnetic waves, heat, and the like can be used as the energy for curing.
  • the electromagnetic wave for example, light such as infrared rays, visible light rays, and ultraviolet rays whose wavelength is selected from the range of 10 nm or more and 1 mm or less can be used.
  • the curable composition is a composition that is cured by irradiation with light or by heating.
  • the photocurable composition that is cured by irradiation with light contains at least a polymerizable compound and a photopolymerization initiator, and may contain a non-polymerizable compound or a solvent, if necessary.
  • the non-polymerizable compound is at least one selected from the group of sensitizers, hydrogen donors, internal release mold release agents, surfactants, antioxidants, polymer components and the like.
  • the composition ML may be arranged on the substrate 1 in the form of droplets or islands or films formed by connecting a plurality of droplets by the droplet supply unit DP (liquid injection head). Good.
  • the viscosity (viscosity at 25 ° C.) of such a composition ML for example, one having a viscosity of 1 mPa ⁇ s or more and 100 mPa ⁇ s or less can be used.
  • thermoplastic resin is heated to a temperature equal to or higher than the glass transition temperature, and the mold is pressed against the substrate through the resin in a state where the fluidity of the resin is increased to cool the resin.
  • a flattening film can be formed by later separating the mold from the resin.
  • the substrate 1 is typically a silicon wafer, but is not limited to this.
  • the substrate 1 may be any of semiconductor device substrates such as aluminum, titanium-tungsten alloy, aluminum-silicon alloy, aluminum-copper-silicon alloy, silicon oxide, silicon nitride, quartz glass, ceramics, metal, resin, and the like. Can be selected for.
  • a substrate may be used in which an adhesion layer is formed by surface treatment such as a silane coupling treatment, a silazane treatment, a film formation of an organic thin film, and the like, and the adhesion to the curable composition is improved. ..
  • the substrate 1 is typically a circle having a diameter of 300 mm, but the substrate 1 is not limited to this.
  • the mold SS a mold made of a light-transmitting material is used in consideration of the light irradiation process.
  • the material of the material constituting the mold SS include glass, quartz, PMMA (Polymethyl methylate), a phototransparent resin such as polycarbonate resin, a transparent metal vapor deposition film, a flexible film such as polydimethylsiloxane, and photocuring.
  • a film, a metal film, or the like is preferable.
  • the mold SS is preferably a circle having a diameter larger than 300 mm and smaller than 500 mm, but is not limited to this.
  • the thickness of the mold SS is preferably 0.25 mm or more and less than 2 mm, but is not limited to this.
  • the above-mentioned substrate transfer mechanism 204 can also function as a mold transfer mechanism for transferring the mold SS to the flattening device R, and the transfer hand 202 of the substrate transfer mechanism 204 can be moved from the mold transfer container (not shown) to the mold SS. Is taken out, and the mold SS is transported to the flattening device R.
  • the flattening layer forming (film forming) step shown in FIGS. 1A to 1D may be carried out a plurality of times on one substrate 1.
  • high heat is applied to the substrate 1 in plasma etching, coating, cleaning, ion implantation, and the like. Even after the substrate 1 is once flattened, the composition ML may shrink or the strain may be released by the heat applied in the subsequent step, and the flatness of the substrate 1 may be lowered again. It is not efficient to flatten the substrate 1 every time the flatness of the substrate 1 decreases.
  • the heat treatment unit 209 described above is useful for such applications.
  • the heat treatment unit 209 can be configured so that a plurality of substrates can be processed at one time.
  • the heat treatment unit 209 can stack the substrates 1 in the vertical direction at regular intervals and execute baking and cooling in a batch system in units of a fixed quantity.
  • the substrate 1 returned to the substrate transport mechanism 204 can be sent to the heat treatment unit 209, and baking and rapid cooling of about 250 to 400 degrees can be performed on the plurality of substrates 1.
  • FIG. 3 is a view of the flattening device R as viewed from the side surface side (X-axis side).
  • FIG. 4 is a diagram illustrating a configuration of a mold SS having electrodes constituting a contact detection sensor (also referred to as a touch sensor), a mold holding portion 302 for holding the mold SS, a head 301, and the like according to the present embodiment. It is a figure which looked at the head 301 from the lower side (the side which contacts a composition on a substrate).
  • the flattening device R is driven by a light source 304, a substrate chuck 340 (board holding portion), a substrate stage 305, a substrate drive mechanism 330, a head 301, and a plurality of mold drive mechanisms 308 and mold drive mechanisms 308 supported by the head 301. It has a mold holding portion 302. Further, the flattening device R is electrically connected to the mold SS, and the contact detection sensor of the mold SS transmitted via the wiring board 303 such as a flexible printed circuit board for transmitting an electric signal and the wiring board 303. A signal processing unit 307 for processing the electric signal of the above is provided. Further, a pressure control unit 306 for adjusting the pressure in the space region 300 provided between the mold and the mold holding unit 302 is also provided.
  • the mold SS is carried in by the transport hand 202 and held by the mold holding unit 302.
  • the mold holding unit 302 can hold the mold SS by, for example, a vacuum suction force or an electrostatic suction force.
  • the mold holding portion 302 can be provided, for example, with glass, ceramics, metal or resin, and more specifically, it can be made of quartz glass, sapphire, SiC ceramics, alumina ceramics, aluminum alloy or cordierite.
  • the mold SS can be provided with a circular or quadrangular outer shape, and a flat surface portion is provided on the surface on the side in contact with the substrate 1.
  • the flat surface portion has rigidity so as to come into contact with the composition ML on the substrate 1 and imitate the surface shape of the substrate 1.
  • the portion 302 when the mold holding portion 302 also has a portion arranged in the optical path of the light from the light source in consideration of the light irradiation process, the portion is made of a light-transmitting material.
  • the portion is preferably a material having a transmittance of 60% or more with respect to the irradiated light.
  • the mold holding portion 302 is configured so that a sealed space area 300 is formed between the mold holding portion 302 and the mold SS while holding the mold SS.
  • the shape of the mold SS can be controlled. Specifically, when the mold SS starts contacting the composition ML of the substrate 1, the space region 300 is pressed to deform the mold SS so as to have a convex shape toward the substrate 1. As a result, contact with the composition ML can be started from the central portion of the mold SS, and then the adsorption by the mold holding portion 302 is released and the flat portion of the mold SS imitates the surface of the composition ML, whereby the mold SS is formed.
  • the flat surface portion of the above can be brought into contact with the composition without bending. That is, it can be said that the normal state of the contact process is a state in which the contact region between the mold SS and the substrate 1 spreads radially from the central portion of the mold SS.
  • the size of the mold holding portion 302 is provided so as to be larger than that of the mold SS, and the outer peripheral portion of the mold holding portion 302 is provided by being coupled to the head 301.
  • the head 301 is provided with a plurality of mold drive mechanisms 308 for correcting the inclination of the mold SS around the Z axis.
  • three mold drive mechanisms 308 are evenly arranged at three locations of the head 301 at 120 degrees, and by driving the mold holding portion 302 in the Z-axis direction and the tilt direction, the mold SS It is possible to move in the Z-axis direction and correct the inclination.
  • the wiring board 303 for transmitting an electric signal from the mold SS is mounted on the head 301 and is connected to the external signal processing unit 307 via the head 301.
  • the length of the flexible wiring board constituting the wiring board 303 can be appropriately adjusted so that the mold SS can be electrically connected even when the mold SS is released from the mold holding portion 302 and is in contact with the substrate 1. preferable. It is not always necessary to be electrically connected while the mold SS is released, and the electrical connection with the mold SS is released at the timing when the contact state by the contact detection sensor does not need to be known. You may.
  • Ultraviolet rays used as photocuring energy are emitted from a light source 304 provided inside the head 301, pass through a mold holding portion 302 and a mold SS provided with a material through which ultraviolet rays are transmitted, and irradiate the composition ML on the substrate 1. Will be done. Details will be described later, but in the present embodiment, by providing the contact detection sensor on the mold SS, a high-speed, high-resolution camera image formation for confirming the contact state between the mold SS and the substrate 1 as in the conventional case is performed. There is no need to provide an optical system.
  • the light source 304 is located at the opposite position of the substrate 1 (near the substrate). Can be provided in.
  • an LED light source in which a plurality of LED elements that emit ultraviolet rays are arranged and provided as the light source 304.
  • the light source 304 is arranged inside the head 301, so that the light source 304 is arranged in the vicinity of the substrate 1.
  • the board drive mechanism 330 is provided so that the position of the board 1 can be adjusted by driving the board stage 305. Specifically, the board stage 305 is moved in the X-axis direction, the Y-axis direction, and Z. It is configured so that it can be driven in the axial direction. That is, the substrate drive mechanism 330 and the head 301 form a relative drive mechanism in which the relative positions of the substrate 1 and the mold SS are adjusted. That is, at least one of the substrate drive mechanism 330 and the head 301 is configured so that the relative position with respect to the Z-axis direction can be changed.
  • the substrate 1 and the mold SS are brought into contact with each other in the contact step, and the cured composition ML and the mold SS on the substrate 1 are separated in the separation step.
  • the relative position with respect to the Z-axis direction can be changed.
  • the substrate drive mechanism 330 may be configured to drive the substrate stage 305 at a transfer position where the substrate 1 is delivered to and from the transfer hand 202 of the substrate transfer mechanism 204. Further, when the transfer hand 202 transfers the mold SS to the flattening device R, the substrate drive mechanism 330 drives the substrate stage 305 while holding the mold SS, so that the mold SS is transferred to the mold holding unit 302. It may be adsorbed.
  • the electric circuit technology that constitutes the capacitive touch sensor is applied to the type SS of this embodiment.
  • the capacitance method of the touch sensor there are a surface type capacitance method and a projection type capacitance method.
  • the projection type capacitance method mainly has a difference in the driving method, such as a self-capacitance method and a mutual capacitance method. Are known, and these can be adopted.
  • the self-capacity method can be adopted, but if it is desired to confirm the contact boundary line for determining the contact state, a plurality of contacts can be used at the same time. It is preferable to use a mutual capacitance type touch sensor capable of detection.
  • a projection type capacitance type touch sensor is adopted for the type SS will be described.
  • FIG. 5 is a diagram for explaining the electrode configuration provided on the mold SS, and is a view seen from the surface side opposite to the surface in contact with the composition ML of the mold SS.
  • Each X electrode is composed of a transparent electrode 502a made of a plurality of rectangular transparent conductive materials and a wiring 502 made of a transparent conductive material connecting them, and each is electrically connected to a wiring board 303 by a wiring 504.
  • each Y electrode is also composed of a transparent electrode 501a made of a plurality of rectangular transparent materials and a wiring 501 made of a transparent conductive material connecting them, and each is electrically connected to a wiring board 303 by a wiring 503.
  • the transparent electrode 502a of each X electrode and the transparent electrode 501a of each Y electrode are arranged so as not to overlap each other in the Z-axis direction.
  • the transparent electrodes 501a and 502a and the wirings 501 and 502 are arranged in such a shape that there is as little gap as possible between them. Further, a transparent electrode or a dummy electrode containing the same conductive film as the transparent wiring may be provided in these gaps.
  • the transparent conductive material as used in the present embodiment is a conductive material through which ultraviolet rays emitted from the light source 304 are transmitted.
  • conductive oxides such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, and zinc oxide added with gallium, or graphene can be used.
  • these wirings 501, 502 and transparent electrodes 501a, 502a are formed by forming a film of the above-mentioned conductive material having translucency on a mold SS by a sputtering method or the like, and then various patterning techniques such as a photolithography method. Therefore, unnecessary portions can be removed to form the film.
  • FIG. 6 is a schematic view for explaining the cross-sectional structure of the mold, and shows an example in the case where three transparent electrodes are provided.
  • the insulating layer 601 is laminated with the thin plate-shaped transparent substrate 600 constituting the mold SS as the lowermost layer. Further, a transparent electrode 501a and a wiring 501, a first patterning layer 602 having an insulating layer formed on the transparent electrode 501a and the wiring 501, and a second patterning layer 603 having an insulating layer formed on the transparent electrode 502a and the wiring 502.
  • the contact detection sensor is configured by stacking the wires.
  • the wiring 503 and the wiring 504 are provided so that their surfaces are exposed at the outer peripheral portion of the mold SS, and are electrically connected to the wiring board 303.
  • the wiring 503 and the wiring 504 can also be provided with the same transparent conductive material as the transparent electrode 501a and the like. However, if it is not necessary to transmit ultraviolet rays, the wirings 503 and 504 may be made of a metal material such as aluminum, gold, platinum, silver, nickel, titanium, tungsten, chromium, molybdenum, iron, cobalt, copper, or palladium. , An alloy material containing the metal material may be used.
  • the capacitance changes. Then, by detecting the amount of change as a contact signal in the signal processing unit 307, it is possible to detect in which part of the electrodes X1 to Xn and the electrodes Y1 to Yn of the type SS the contact has occurred.
  • the region where the capacitance changes corresponds to the contact area of the composition ML, and in the region where the change in capacitance occurs by a predetermined value or more, the composition ML and the surface of the mold SS come into contact with each other. It can be determined that the area is in the area.
  • FIG. 7A is an example of a signal waveform showing a change in the capacitance of the Y electrode.
  • FIG. 7B is an example of a signal waveform showing a change in the capacitance of the X electrode.
  • the horizontal axis is the number n of each electrode, and the vertical axis shows the change in the capacitance of each electrode.
  • Each change in capacitance is transmitted to the signal processing unit 307.
  • the signal processing unit 307 extracts the electrode number that maximizes the change in capacitance among the X electrodes and the electrode number that maximizes the change in the Y electrode, and the position corresponding to the intersecting portion is the contact center 701. It can be determined that there is.
  • FIG. 7C is a diagram illustrating a contact state when receiving the signal waveforms of FIGS. 7A and 7B, and is a waveform when contact is started from the contact center 701 and the mold SS and the substrate 1 are in contact with each other up to the contact boundary 702. An example is shown.
  • the boundary electrode number where the change from the initial value by a predetermined value or more occurs between the adjacent electrodes is the contact boundary 702.
  • the contact boundary 702 extends radially from the contact center 701 during the contact process of the mold SS, it can be determined that the contact process between the mold SS and the substrate 1 is proceeding normally.
  • FIGS. 7A to 7C an example in which the X electrode and the Y electrode are provided over almost the entire contact surface of the mold SS has been described. It may be sufficient to provide an electrode capable of discriminating the state of radially spreading from the region. That is, it is sufficient that a plurality of electrodes having different distances from the central portion are provided on a plurality of lines radially extending from the central portion of the mold SS, and contact detection can be performed at least at the position of the central portion and the positions of the plurality of electrodes.
  • FIG. 8 is a flowchart showing the flow of the flattening process of the flattening device. As described above, the flattening process is performed by the control unit 210 comprehensively controlling each unit of the flattening device R.
  • the control unit 210 performs a composition arranging step as shown in FIG. 1A. Specifically, in the preparation station 220, the composition ML as a flattening material is arranged by the droplet supply unit DP on the substrate 1 supported by the substrate support table WT of the alignment mechanism 205.
  • step S1 the control unit 210 carries the substrate 1 provided with the composition by the substrate transfer mechanism 204 into the flattening device R and places it on the substrate holding unit 340.
  • step S4 the control unit 210 drives the three mold drive mechanisms 308 of the head 301 shown in FIG. 4 to adjust the tilt of the mold holding unit 302 so that the position of the contact start point is the correct position. Then, in step S5, the control unit 210 determines whether or not the position of the contact start point is normal based on the detection result in the signal processing unit 307. If it is determined to be normal in step S5, the process proceeds to step S6. On the other hand, if it is determined that it is not normal again in step S4, there is a possibility that air bubbles or foreign matter are generated between the substrate 1 and the mold SS, so the process proceeds to step S12 and is determined in advance. Performs predetermined error processing and ends the processing.
  • a processing in which the processing of the conveyed substrate is completed and the process shifts to the next substrate flattening processing, or a cleaning processing for cleaning the mold SS can be adopted.
  • the cleaning means for performing such a cleaning process may be provided inside the flattening device R or outside the flattening device R.
  • step S6 the control unit 210 causes the pressure control unit 306 to control the pressure in the space region 300, and continues the contact processing of the mold.
  • the mold SS angle of the mold SS with respect to the plane parallel to the XY plane
  • the contact area expands.
  • step S7 the control unit 210 determines whether the contact region is normally progressing in the contact process started in step S6. Specifically, the control unit 210 monitors the situation in which the contact boundary moves radially from the central portion to the outer edge by detecting the temporal change of the capacitance of each electrode in the signal processing unit 307 in real time. can do. Then, if it is determined in step S7 that the contact area is proceeding normally, the process proceeds to step S8, and if it is detected during monitoring that an abnormality such as not spreading radially occurs, the process proceeds to step S8. Proceed to step S12 to perform a predetermined error processing.
  • step S8 the control unit 210 proceeds with the contact process started in step S6, the contact boundary reaches the vicinity of the outer edge of the substrate 1, the mold SS is released from being held by the mold holding unit 302, and the mold SS becomes the substrate 1. It is determined whether or not the composition of the above is placed on the ML. The process returns to step S6 until the contact process is completed, while the process proceeds to step S9 when it is determined that the contact process is completed.
  • the mold contact process is completed is a state in which the mold SS is placed on the composition ML of the substrate 1, the mold SS adheres to the global unevenness of the substrate 1, and the film made of the composition ML is formed. , It becomes uniform over the entire area of the substrate 1 and forms a flattening film.
  • step S9 the control unit 210 irradiates the composition ML with light (ultraviolet rays) from the light source 304 shown in FIG. 1C via the mold holding unit and the mold SS to cure the photocurable composition ML.
  • a curing step Exposure step.
  • the irradiation time of ultraviolet rays which is the energy for curing, is several tens of seconds.
  • the material used for the composition ML has high volatility, but the volatility from the composition ML in the contact step may affect the flatness of the film.
  • the composition ML is supplied onto the substrate 1 and then the substrate 1 is kept on standby in the flattening apparatus R without being treated is not desirable because the volatilization of the composition ML becomes large. Therefore, it is desirable to quickly shift from the contact step to the curing step, and the region to be irradiated with the curing energy is set to the center in accordance with the operation in which the contact region expands from the central portion of the mold SS toward the outer edge in the contact step. It may be enlarged or moved from the portion toward the outer circumference.
  • step S10 the control unit 210 controls the three mold drive mechanisms 308 of the head 301 and the pressure control unit 306, and the mold holding unit 302 sucks and holds the mold SS again, as shown in FIG. 1D.
  • the mold SS is separated from the cured composition ML on the substrate 1.
  • a large force of several hundred N (Newton) is required.
  • the pattern of the substrate 1 may be damaged, the composition ML may be peeled off, the mold SS may be damaged, and the like.
  • a force of about several N is locally applied to the interface between the composition ML and the mold SS to form a separation start point between the composition ML and the mold SS, and the head 301 is further raised or tilted.
  • the force required for separation can be reduced, and it is possible to prevent the pattern of the substrate 1 from being damaged, the composition ML from being peeled off, and the mold SS from being damaged.
  • the control unit 210 can monitor the contact state at the time of separation by detecting the time change of the capacitance of each electrode in real time in the signal processing unit 307.
  • step S11 assuming that the flattening process by the flattening device R has been completed, the control unit 210 carries out the upper substrate 1 of the substrate holding unit 340 from the flattening device R by the substrate transfer mechanism 204, and carries out the substrate transfer container 203. Complete the process of returning to. If the substrate to be processed remains in the substrate transfer container 203, the processing from S1 is restarted.
  • both the position of the contact start point and the contact state during the continuation of the mold contact process are determined using an example. , It is not necessary to perform both, and either one may be performed as appropriate.
  • the contact processing of the present embodiment the case where the mold SS is separated from the mold holding portion 302 has been described, but the contact processing may be performed while the mold SS is held by the mold holding portion 302. Good.
  • the contact detection sensor on the mold SS, an imaging optical system of a high-speed and high-resolution camera for confirming the contact state between the mold SS and the composition ML is provided. No need. As a result, it is not necessary to provide a complicated optical system that balances the illumination optical system that irradiates the light used for photocuring and the imaging optical system of the high-speed, high-resolution camera for confirming the contact state. As described above, the configuration of the illumination optical system can be simplified. Further, according to the contact detection sensor of the present embodiment, the contact state between the substrate and the mold can be easily confirmed, so that it is possible to provide an advantageous technique for flattening the composition on the substrate. ..
  • FIG. 9 is a schematic view for explaining the cross-sectional structure of the mold, and shows an example in the case where three transparent electrodes are provided as in FIG.
  • the first insulating layer 601a, the conductive layer 801 and the second insulating layer 601b are laminated with the thin plate-shaped transparent substrate 600 constituting the mold SS as the lowermost layer.
  • the conductive layer 801 is provided so that a voltage can be applied via a wiring board 303 or the like by wiring (not shown).
  • the transparent conductive material that can be used for the conductive layer 801 is a conductive material that transmits ultraviolet rays emitted from the light source 304.
  • conductive oxides such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, and zinc oxide added with gallium, or graphene can be used.
  • the contact detection sensor is configured by stacking the wires.
  • the wiring 503 and the wiring 504 are provided so that their surfaces are exposed at the outer peripheral portion of the mold SS, and are electrically connected to the wiring board 303.
  • the wiring 503 and the wiring 504 can also be provided with the same transparent conductive material as the transparent electrode 501a and the like. However, if it is not necessary to transmit ultraviolet rays, the wirings 503 and 504 may be made of a metal material such as aluminum, gold, platinum, silver, nickel, titanium, tungsten, chromium, molybdenum, iron, cobalt, copper, or palladium. , An alloy material containing the metal material may be used.
  • the contact surface between the composition ML of the transparent substrate 600 and the mold SS is charged and attracts surrounding particles, which may cause defects in the flattening film. There is. Therefore, by providing the conductive layer 801 inside the mold SS when performing the contact step and the separation step, a voltage is applied to the conductive layer 801 to eliminate static electricity on the 600 surface of the transparent substrate so as not to attract surrounding particles. Can be controlled.
  • the contact state between the mold SS and the composition ML is confirmed by providing the mold SS with a contact detection sensor as in the first embodiment. Therefore, it is not necessary to provide an imaging optical system for a high-speed, high-resolution camera. As a result, it is not necessary to provide a complicated optical system that balances the illumination optical system that irradiates the light used for photocuring and the imaging optical system of the high-speed, high-resolution camera for confirming the contact state. As described above, the configuration of the illumination optical system can be simplified. Further, according to the contact detection sensor of the present embodiment, the contact state between the substrate and the mold can be easily confirmed, so that it is possible to provide an advantageous technique for flattening the composition on the substrate. ..
  • the article can be manufactured by using the flattening device R as described above in the present embodiment.
  • Such an article manufacturing method includes a film forming step of forming a film (flattening film) made of a cured product of the composition on a substrate using a flattening device R, and the substrate having undergone the film forming step. It is possible to manufacture an article from the substrate which has undergone the processing step, which includes a processing step of performing the well-known processing treatment. Other well-known processing steps include etching, resist stripping, dicing, bonding, packaging and the like.
  • the flattening device R is configured as an imprint device that forms a pattern made of a cured product of the composition ML on the substrate 1 (for example, one region or a plurality of shot regions of the substrate 1 or the entire shot region of the substrate 1). You may.
  • the mold SS used in the imprinting apparatus has a pattern region in which a pattern to be transferred to the substrate W is arranged, and an alignment mark.
  • a pattern of the cured product of the composition may be formed on the substrate W whose surface is flattened by using the imprinting device.
  • a method of forming a pattern of a cured product on a substrate using an imprinting apparatus will be described.
  • the pattern of the cured product formed by using the imprint device is used permanently for at least a part of various articles or temporarily when manufacturing various articles.
  • the article is an electric circuit element, an optical element, a MEMS, a recording element, a sensor, a mold, or the like.
  • the electric circuit element include volatile or non-volatile semiconductor memories such as DRAM, SRAM, flash memory, and MRAM, and semiconductor elements such as LSI, CCD, image sensor, and FPGA.
  • Examples of the mold include a mold for imprinting.
  • the pattern of the cured product is used as it is as a constituent member of at least a part of the above-mentioned article, or is temporarily used as a resist mask.
  • the resist mask is removed after etching, ion implantation, or the like in the substrate processing process.
  • FIG. 10A to 10F show a method of manufacturing an article in which a pattern is formed on a substrate by an imprinting device, the substrate on which the pattern is formed is processed, and an article is produced from the processed substrate.
  • a substrate 1z such as a silicon wafer on which a work material 2z such as an insulator is formed on the surface is prepared, and then an imprint material is imprinted on the surface of the work material 2z by an inkjet method or the like. 3z is given.
  • a state in which a plurality of droplet-shaped imprint materials 3z are applied onto the substrate is shown.
  • the imprint mold 4z is opposed to the imprint material 3z on the substrate with the side on which the uneven pattern is formed facing.
  • the substrate 1z to which the imprint material 3z is applied is brought into contact with the mold 4z, and pressure is applied.
  • the imprint material 3z is filled in the gap between the mold 4z and the work material 2z. In this state, when light is irradiated through the mold 4z as energy for curing, the imprint material 3z is cured.
  • a pattern of the cured product of the imprint material 3z is formed on the substrate 1z.
  • the pattern of the cured product has a shape in which the concave portion of the mold corresponds to the convex portion of the cured product and the convex portion of the mold corresponds to the concave portion of the cured product, that is, the uneven pattern of the mold 4z is transferred to the imprint material 3z. It will be done.
  • the portion of the surface of the work material 2z that has no cured product or remains thin is removed to form a groove 5z.
  • FIG. 10F when the pattern of the cured product is removed, an article in which the groove 5z is formed on the surface of the work material 2z can be obtained.
  • the pattern of the cured product is removed, but it may not be removed even after processing, and may be used, for example, as a film for interlayer insulation contained in a semiconductor element or the like, that is, as a constituent member of an article.

Abstract

This mold is used for a flattening device for curing a composition in a state in which a planar section of the mold is brought into contact with the composition on a substrate, and is provided with a contact detecting sensor which detects that a target object has made contact with a surface on which the planar section is provided. Accordingly, the contact state between the substrate and the mold can be simply confirmed without providing a camera for checking the contact state.

Description

型、平坦化装置、平坦化方法及び物品の製造方法Molds, flattening devices, flattening methods and article manufacturing methods
 本発明は、型、平坦化装置、平坦化方法及び物品の製造方法に関する。 The present invention relates to a mold, a flattening device, a flattening method, and a method for manufacturing an article.
 半導体デバイスの微細化の要求が進み、従来のフォトリソグラフィ技術に加えて、基板上の未硬化の組成物を型で成形して硬化させ、基板上に組成物のパターンを形成する微細加工技術が注目されている。かかる技術は、インプリント技術と呼ばれ、基板上に数ナノメートルオーダーの微細なパターンを形成することができる。 With the increasing demand for miniaturization of semiconductor devices, in addition to conventional photolithography technology, microfabrication technology that molds and cures an uncured composition on a substrate to form a pattern of the composition on the substrate has been developed. Attention has been paid. Such a technique is called an imprint technique, and can form a fine pattern on the order of several nanometers on a substrate.
 インプリント技術の1つとして、例えば、光硬化法がある。光硬化法を採用したインプリント装置は、基板上のショット領域に供給された光硬化性の組成物を型で成形し、光を照射して組成物を硬化させ、硬化した組成物から型を引き離すことで、基板上にパターンを形成する。 As one of the imprinting techniques, for example, there is a photocuring method. An imprinting device that employs a photocuring method molds a photocurable composition supplied to a shot region on a substrate with a mold, irradiates light to cure the composition, and molds the cured composition. By pulling them apart, a pattern is formed on the substrate.
 また、近年では、基板上の組成物を平坦化する技術が提案されている(特許文献1参照)。特許文献1に開示された技術は、基板の段差に基づいて組成物を滴下し、滴下した組成物に型の平面を接触させた状態で組成物を硬化することで平坦化の精度向上を図るものである。 Further, in recent years, a technique for flattening a composition on a substrate has been proposed (see Patent Document 1). The technique disclosed in Patent Document 1 aims to improve the accuracy of flattening by dropping a composition based on a step on a substrate and curing the composition in a state where the dropped composition is in contact with a flat surface of a mold. It is a thing.
 このような平坦化装置においては、基板と型との間に気泡や異物等が挟まってしまうと所望の平坦化処理が行えないため、型の上側にカメラを設け、型を介して基板上の組成物と型との接触状態をカメラからの画像を用いて確認することが行われている。 In such a flattening device, if air bubbles or foreign substances are caught between the substrate and the mold, the desired flattening process cannot be performed. Therefore, a camera is provided on the upper side of the mold and the plate is placed on the substrate via the mold. The contact state between the composition and the mold is confirmed by using an image from a camera.
特表2011-529626号公報Japanese Patent Application Laid-Open No. 2011-528626
 従来の平坦化装置では、光硬化に用いる光を型を介して組成物に対して照射する必要があり、光硬化に用いる光を照射する照明光学系と、接触状態を確認するための高速・高分解能なカメラの結像光学系とを両立させるために複雑な光学系が必要であった。 In the conventional flattening device, it is necessary to irradiate the composition with the light used for photocuring through a mold, and the illumination optical system for irradiating the light used for photocuring and the high speed for confirming the contact state. A complicated optical system was required in order to be compatible with the imaging optical system of a high-resolution camera.
 そこで本発明は、型と組成物との接触状態を確認するためのカメラを設けなくとも、基板と型との接触状態を簡便に確認することができる構成を提供する。 Therefore, the present invention provides a configuration in which the contact state between the substrate and the mold can be easily confirmed without providing a camera for confirming the contact state between the mold and the composition.
 本発明は、平面部を有する型を保持する型保持部と、基板を保持する基板保持部と、前記基板の上に設けられた組成物を硬化させる硬化部と、を有し、前記型の平面部を前記基板の上の組成物に接触させた状態で前記組成物を前記硬化部で硬化させる平坦化装置に用いられる前記型であって、前記平面部が設けられ、前記組成物が設けられた基板に接する側の面と、前記面に対象物が接触したことを検知する接触検知センサと、を有することを特徴としている。 The present invention has a mold holding portion for holding a mold having a flat surface portion, a substrate holding portion for holding a substrate, and a curing portion for curing a composition provided on the substrate. The mold used in a flattening apparatus for curing the composition in the cured portion with the flat portion in contact with the composition on the substrate, wherein the flat portion is provided and the composition is provided. It is characterized by having a surface on the side in contact with the substrate and a contact detection sensor for detecting that an object has come into contact with the surface.
平坦化装置における平坦化処理を説明する図である。It is a figure explaining the flattening process in a flattening apparatus. 平坦化装置における平坦化処理を説明する図である。It is a figure explaining the flattening process in a flattening apparatus. 平坦化装置における平坦化処理を説明する図である。It is a figure explaining the flattening process in a flattening apparatus. 平坦化装置における平坦化処理を説明する図である。It is a figure explaining the flattening process in a flattening apparatus. 平坦化装置を含む平坦化システムの構成を示す図である。It is a figure which shows the structure of the flattening system including a flattening apparatus. 平坦化装置の構成を説明する図である。It is a figure explaining the structure of the flattening apparatus. 平坦化装置の型及び型保持部の構成を説明する図である。It is a figure explaining the structure of the mold of a flattening apparatus, and the mold holding part. 型に設けられた電極構成を説明する図である。It is a figure explaining the electrode structure provided in the mold. 第1の実施形態に係る平坦化装置の型の断面構造を説明する図である。It is a figure explaining the cross-sectional structure of the mold of the flattening apparatus which concerns on 1st Embodiment. Y軸側透明電極の静電容量の変化を示す信号波形の一例である。This is an example of a signal waveform showing a change in the capacitance of the transparent electrode on the Y-axis side. X軸側透明電極の静電容量の変化を示す信号波形の一例である。This is an example of a signal waveform showing a change in the capacitance of the transparent electrode on the X-axis side. 図7A及び図7Bの信号波形を受信する際の接触状態を説明する図である。It is a figure explaining the contact state at the time of receiving the signal waveform of FIG. 7A and FIG. 7B. 平坦化装置の平坦化処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the flattening process of a flattening apparatus. 第2の実施形態に係る平坦化装置の型の断面構造を説明する図である。It is a figure explaining the cross-sectional structure of the mold of the flattening apparatus which concerns on 2nd Embodiment. 物品の製造方法を例示する図である。It is a figure which illustrates the manufacturing method of the article. 物品の製造方法を例示する図である。It is a figure which illustrates the manufacturing method of the article. 物品の製造方法を例示する図である。It is a figure which illustrates the manufacturing method of the article. 物品の製造方法を例示する図である。It is a figure which illustrates the manufacturing method of the article. 物品の製造方法を例示する図である。It is a figure which illustrates the manufacturing method of the article. 物品の製造方法を例示する図である。It is a figure which illustrates the manufacturing method of the article.
 以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In addition, in each figure, the same member is given the same reference number, and duplicate description is omitted.
 (第1の実施形態)
 図1A~図1Dには、平坦化処理が模式的に示されている。本実施形態において説明する平坦化処理は、基板全面上に組成物を滴下して、その組成物と型を接触させて、組成物を平坦化させる処理について説明するが、基板の一部の領域上の組成物と型を接触させて、組成物を平坦化させてもよい。
(First Embodiment)
The flattening process is schematically shown in FIGS. 1A to 1D. The flattening treatment described in the present embodiment describes a treatment in which the composition is dropped onto the entire surface of the substrate and the composition is brought into contact with the mold to flatten the composition. The composition may be flattened by contacting the above composition with the mold.
 まず、図1Aに示すように、下地パターンWが形成されている基板1に対して、組成物MLを配置する(組成物配置工程)。具体的には後述する基板保持部340によって保持された基板1上にディスペンサなどの液滴供給部DPによって平坦材料として用いられる組成物MLが滴下される。ここで、基板1の表面に形成された下地パターンWの形状に応じて、液滴供給部DPによって配置される組成物MLの分布を調整してもよい。 First, as shown in FIG. 1A, the composition ML is arranged on the substrate 1 on which the base pattern W is formed (composition arrangement step). Specifically, the composition ML used as a flat material is dropped onto the substrate 1 held by the substrate holding unit 340, which will be described later, by the droplet supply unit DP such as a dispenser. Here, the distribution of the composition ML arranged by the droplet supply unit DP may be adjusted according to the shape of the base pattern W formed on the surface of the substrate 1.
 次に、図1Bに示すように、基板1上に基板1と同一または基板1よりも大きい寸法を有する平面部を備えた型SS(スーパーストレートとも称される)を、基板1の組成物MLと接触させる(接触工程)。これにより、組成物MLが広がって膜状になる。 Next, as shown in FIG. 1B, a mold SS (also referred to as a super straight) having a flat surface portion on the substrate 1 having the same size as that of the substrate 1 or a size larger than that of the substrate 1 is formed on the composition ML of the substrate 1. Contact with (contact process). As a result, the composition ML spreads and becomes a film.
 次に、図1Cに示すように、型SSを基板1の上の組成物MLと接触させた状態で、組成物MLを硬化させるためのエネルギーを硬化部ILから組成物MLに与え、組成物MLを硬化させる(硬化工程)。なお、硬化工程の際には、型SSの平面部が基板上の組成物MLにすべて接触し、型SSの平面部が基板1の表面形状に倣った状態であることが必要である。硬化工程で用いられる硬化用のエネルギーとしては、光源IL(光照射部)から放射される紫外線等の光を用いることができる。 Next, as shown in FIG. 1C, in a state where the mold SS is in contact with the composition ML on the substrate 1, energy for curing the composition ML is given to the composition ML from the cured portion IL, and the composition is prepared. The ML is cured (curing step). In the curing step, it is necessary that the flat surface portion of the mold SS is in contact with all the composition ML on the substrate, and the flat surface portion of the mold SS follows the surface shape of the substrate 1. As the curing energy used in the curing step, light such as ultraviolet rays emitted from the light source IL (light irradiation unit) can be used.
 詳細は後述するが、硬化用エネルギーとして光を用いる場合には、組成物MLに光硬化性を有する材料を用い、かつ、型SSは光源からの光を透過する材料で設け、光源IL(硬化部)からの光を型SSを介して組成物MLに照射し、組成物MLを硬化させる。 Details will be described later, but when light is used as the energy for curing, a material having photocurability is used for the composition ML, and the mold SS is provided with a material that transmits light from the light source, and the light source IL (curing) is provided. The composition ML is irradiated with the light from the part) through the mold SS to cure the composition ML.
 次に、図1Dに示すように、基板1上の硬化した組成物MLから型SSを分離させる(分離工程)。これにより、基板1上には、硬化した組成物MLからなる平坦化膜が残る。つまり型SSを用いることで、局所的に平坦化された表面を有する平坦化層(平坦化膜)を組成物MLの硬化物によって形成することができる。以上のような平坦化方法では、基板1の複数のショット領域の全域をカバーする面積を有する型SSを用いることで、基板1の全域に平坦化層を一括で形成することができる。 Next, as shown in FIG. 1D, the mold SS is separated from the cured composition ML on the substrate 1 (separation step). As a result, a flattening film made of the cured composition ML remains on the substrate 1. That is, by using the mold SS, a flattening layer (flattening film) having a locally flattened surface can be formed by a cured product of the composition ML. In the flattening method as described above, the flattening layer can be collectively formed over the entire area of the substrate 1 by using the mold SS having an area covering the entire area of the plurality of shot regions of the substrate 1.
 なお、以下の説明では、基板1上の下地パターンWについては説明を省略するが、基板1と組成物MLとの間には製造工程に応じた下地パターンWが設けられているものとする。 In the following description, the base pattern W on the substrate 1 will be omitted, but it is assumed that the base pattern W according to the manufacturing process is provided between the substrate 1 and the composition ML.
 図2には、本発明に係る平坦化システム100の全体構成が示されている。本明細書および図面では、鉛直方向をZ軸とするXYZ座標系において方向が示される。平坦化システム100は、1又は複数の平坦化装置(膜形成装置)Rを備えている。平坦化装置Rでは、図1A~図1Dを用いて説明した基板1の上の組成部MLと型SSとを接触させる接触工程、組成物MLを硬化させる硬化工程、および、組成物MLの硬化物と型SSとを分離する分離工程を含む平坦化処理が実行される。 FIG. 2 shows the overall configuration of the flattening system 100 according to the present invention. In the present specification and drawings, the direction is indicated in the XYZ coordinate system with the vertical direction as the Z axis. The flattening system 100 includes one or more flattening devices (film forming devices) R. In the flattening apparatus R, a contact step of contacting the composition portion ML on the substrate 1 and the mold SS described with reference to FIGS. 1A to 1D, a curing step of curing the composition ML, and curing of the composition ML. A flattening process including a separation step of separating the object and the mold SS is performed.
 図2の平坦化システム100には、基板搬送機構204と、準備ステーション220と、熱処理部209と、制御部210とが設けられている。基板搬送機構204は、例えば、EFEM(Equipment Front End Module)を用いることができる。この基板搬送機構204によって、基板搬送容器203、熱処理部209、準備ステーション220の間で基板1を移動(搬送)させることができる。基板搬送容器203は、FOUP(Front-Opening Unified Pod)を用いることができる。基板搬送容器203に格納された基板1は、基板搬送機構204によって、準備ステーション220に搬送される。 The flattening system 100 of FIG. 2 is provided with a substrate transfer mechanism 204, a preparation station 220, a heat treatment unit 209, and a control unit 210. As the substrate transfer mechanism 204, for example, EFEM (Equipment Front End Module) can be used. By this substrate transfer mechanism 204, the substrate 1 can be moved (conveyed) between the substrate transfer container 203, the heat treatment unit 209, and the preparation station 220. As the substrate transport container 203, FOUP (Front-Opening Unified Pod) can be used. The substrate 1 stored in the substrate transfer container 203 is conveyed to the preparation station 220 by the substrate transfer mechanism 204.
 準備ステーション220は、アライメント機構205と、液滴供給部(ディスペンサ)DPが設けられている。液滴供給部DPは、アライメント機構205の情報に配置されている。 The preparation station 220 is provided with an alignment mechanism 205 and a droplet supply unit (dispenser) DP. The droplet supply unit DP is arranged in the information of the alignment mechanism 205.
 アライメント機構205は、基板搬送機構204によって基板搬送容器203から搬送されてくる基板1のZ軸周りの回転を計測し、その結果に基づいて基板WのZ軸周りの回転を目標角度に調整する。基板1のZ軸周りの回転は、例えば、基板1のノッチを検出することに計測することができる。また、アライメント機構205は、基板1の位置を計測できる。そしてアライメント機構205は、計測された基板1の位置の計測結果に基づいて、基板1の位置を調整することができる。なお、アライメント機構205から基板搬送機構204の搬送ハンド202に基板1を引き渡すときの搬送ハンド202の位置を、基板1の位置の計測結果に基づいて調整するようにしてもよい。また、準備ステーション220には、基板1の温度を調整する機能を設けてもよい。 The alignment mechanism 205 measures the rotation of the substrate 1 transported from the substrate transport container 203 around the Z axis by the substrate transport mechanism 204, and adjusts the rotation of the substrate W around the Z axis to a target angle based on the result. .. The rotation of the substrate 1 around the Z axis can be measured, for example, by detecting a notch in the substrate 1. Further, the alignment mechanism 205 can measure the position of the substrate 1. Then, the alignment mechanism 205 can adjust the position of the substrate 1 based on the measurement result of the measured position of the substrate 1. The position of the transfer hand 202 when the substrate 1 is delivered from the alignment mechanism 205 to the transfer hand 202 of the substrate transfer mechanism 204 may be adjusted based on the measurement result of the position of the substrate 1. Further, the preparation station 220 may be provided with a function of adjusting the temperature of the substrate 1.
 液滴供給部DPは、基板1の上に組成物MLを配置する。液滴供給部DPは、組成物MLを循環させる循環部211と接続されている。循環部211は、組成物MLの温度調整等を行って物性を維持し、また、液滴供給部DPの吐出面の濡れ性の維持や液滴供給部DPの内部圧力を一定に維持するために組成物MLを循環させる。組成物MLの循環経路は、循環部211に設けられた貯蔵タンクから液滴供給部DPの吐出面を通って該貯蔵タンクに戻る経路とすることができる。また、液滴供給部DPは、スピンコーターまたはスリットコーターとして構成されてもよい。 The droplet supply unit DP arranges the composition ML on the substrate 1. The droplet supply unit DP is connected to the circulation unit 211 that circulates the composition ML. The circulation unit 211 maintains the physical characteristics by adjusting the temperature of the composition ML and the like, and also maintains the wettability of the discharge surface of the droplet supply unit DP and keeps the internal pressure of the droplet supply unit DP constant. The composition ML is circulated in the water. The circulation path of the composition ML can be a path from the storage tank provided in the circulation section 211 to the storage tank through the discharge surface of the droplet supply section DP. Further, the droplet supply unit DP may be configured as a spin coater or a slit coater.
 基板1は、基板搬送機構204によって基板搬送容器203から準備ステーション220に搬送される。準備ステーション220では、基板1のZ軸周りの回転および位置の調整のための処理の他、基板1の上に組成物MLを配置する処理が実行される。一つの例では、アライメント機構205によって保持された基板1の位置が固定された状態で、液滴供給部DPがXY平面に沿って移動しながら組成物MLを吐出し、これによって基板1の上に組成物MLを配置することができる。他の例では、アライメント機構205が基板搬送部を有し、該基板搬送部によって基板1をXY平面に沿って搬送しながら液滴供給部DPから組成物MLを吐出することによって基板1の上に組成物MLを配置することができる。あるいは、該基板搬送部によって基板1をXY平面に沿って搬送するとともに液滴供給部DPもXY平面に沿って移動させながら基板1の上に組成物MLを配置してもよい。あるいは、アライメント機構205によって基板1のZ軸周りの回転および位置が計測された後、基板搬送機構204の搬送ハンド202が基板1を保持した状態で基板1の上に液滴供給部DPによって組成物MLを配置してもよい。 The substrate 1 is conveyed from the substrate transfer container 203 to the preparation station 220 by the substrate transfer mechanism 204. At the preparation station 220, in addition to the process for rotating the substrate 1 around the Z axis and adjusting the position, a process for arranging the composition ML on the substrate 1 is executed. In one example, with the position of the substrate 1 held by the alignment mechanism 205 fixed, the droplet supply unit DP ejects the composition ML while moving along the XY plane, whereby the composition ML is discharged onto the substrate 1. The composition ML can be placed in. In another example, the alignment mechanism 205 has a substrate transporting portion, and the substrate transporting portion transports the substrate 1 along the XY plane while ejecting the composition ML from the droplet supply portion DP onto the substrate 1. The composition ML can be placed in. Alternatively, the composition ML may be placed on the substrate 1 while the substrate 1 is conveyed along the XY plane by the substrate transport unit and the droplet supply unit DP is also moved along the XY plane. Alternatively, after the rotation and position of the substrate 1 around the Z axis are measured by the alignment mechanism 205, the transfer hand 202 of the substrate transfer mechanism 204 holds the substrate 1 and is composed by the droplet supply unit DP on the substrate 1. The object ML may be arranged.
 熱処理部209は、基板1のベーキング処理(加熱処理)を行ったり、クーリング処理するために用いられる。なお、熱処理部209は、平坦化処理Rの一部として構成してもよいし、平坦化装置Rとは異なる装置として構成してもよい。 The heat treatment unit 209 is used for baking treatment (heat treatment) of the substrate 1 and cooling treatment. The heat treatment unit 209 may be configured as a part of the flattening process R, or may be configured as a device different from the flattening device R.
 制御部210は、平坦化装置R、基板搬送機構204、準備ステーション220および熱処理部209を制御することができ、すなわち平坦化システム100の全体を制御しうる。制御部210は、例えば、FPGA(Field Programmable Gate Arrayの略。)などのPLD(Programmable Logic Deviceの略。)、又は、ASIC(Application Specific Integrated Circuitの略。)、又は、プログラムが組み込まれた汎用又は専用のコンピュータ、又は、これらの全部または一部の組み合わせによって構成される。また、制御部210は、平坦化装置Rを含む平坦化システム100の各部を統括的に制御して平坦化処理を行う処理部として機能する。なお、平坦化システム100を構成する各平坦化装置Rに制御部を設け、当該平坦化装置R内の制御部を平坦化処理を行う処理部として機能させてもよい。 The control unit 210 can control the flattening device R, the substrate transfer mechanism 204, the preparation station 220, and the heat treatment unit 209, that is, can control the entire flattening system 100. The control unit 210 is, for example, a PLD (abbreviation for Programmable Logic Device) such as FPGA (abbreviation for Field Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit) general-purpose program, or an abbreviation for ASIC. Alternatively, it is composed of a dedicated computer or a combination of all or a part thereof. Further, the control unit 210 functions as a processing unit that comprehensively controls each unit of the flattening system 100 including the flattening device R to perform the flattening process. A control unit may be provided in each flattening device R constituting the flattening system 100, and the control unit in the flattening device R may function as a processing unit that performs flattening processing.
 平坦化装置Rは、図1B~図1Dで説明した平坦化処理を実行する。なお、図1Aに示された組成物配置工程も平坦化装置R内に液滴供給部DPを設けて実行してもよい。なお、平坦化システム100内に複数の平坦化装置Rが配置される場合には、それらはXY平面に沿って配置されてもよいし、Z軸に沿って積み重ねて配置されてもよい。また、平坦化システム100に複数の平坦化装置Rが配置される場合、それらはXY平面に沿って配置されてもよいし、Z軸に沿って積み重ねて配置されてもよい。また本実施形態では、平坦化装置Rで、接触工程、硬化工程、分離工程を連続して行う例を用いて説明するが、接触工程を実行する装置、硬化工程を実行する装置、および、分離工程を実行する装置に分けて構成してもよい。 The flattening device R executes the flattening process described with reference to FIGS. 1B to 1D. The composition arranging step shown in FIG. 1A may also be performed by providing the droplet supply unit DP in the flattening device R. When a plurality of flattening devices R are arranged in the flattening system 100, they may be arranged along the XY plane or may be stacked and arranged along the Z axis. Further, when a plurality of flattening devices R are arranged in the flattening system 100, they may be arranged along the XY plane or may be arranged in a stack along the Z axis. Further, in the present embodiment, an example in which the contact step, the curing step, and the separation step are continuously performed by the flattening device R will be described, but the device for executing the contact step, the device for executing the curing step, and the separation. It may be divided into devices for executing the process.
 組成物MLとしては、硬化用のエネルギーが与えられることによって硬化する硬化性組成物を用いることができる。硬化用のエネルギーとしては、電磁波、熱などを用いることができる。電磁波としては、例えば、その波長が10nm以上1mm以下の範囲から選択される、赤外線、可視光線、紫外線などの光を用いることができる。硬化性組成物は、光の照射によって、或いは、加熱によって硬化する組成物である。光の照射によって硬化する光硬化性組成物は、重合性化合物と光重合開始剤とを少なくとも含有し、必要に応じて、非重合性化合物又は溶剤を含有してもよい。非重合性化合物は、増感剤、水素供与体、内添型離型剤、界面活性剤、酸化防止剤、ポリマー成分などの群から選択される少なくとも一種である。組成物MLは、液滴供給部DP(液体噴射ヘッド)によって、液滴状、或いは、複数の液滴が繋がって形成された島状又は膜状の形態で基板1の上に配置されてもよい。このような組成物MLの粘度(25℃における粘度)は、例えば、1mPa・s以上100mPa・s以下のものを用いることができる。また、硬化用のエネルギーとして熱を用いる方法では、熱可塑性樹脂をガラス転移温度以上の温度に加熱し、該樹脂の流動性を高めた状態で該樹脂を介して基板に型を押し付け、冷却した後に該樹脂から型を分離することで平坦化膜を形成することができる。 As the composition ML, a curable composition that cures when energy for curing is given can be used. Electromagnetic waves, heat, and the like can be used as the energy for curing. As the electromagnetic wave, for example, light such as infrared rays, visible light rays, and ultraviolet rays whose wavelength is selected from the range of 10 nm or more and 1 mm or less can be used. The curable composition is a composition that is cured by irradiation with light or by heating. The photocurable composition that is cured by irradiation with light contains at least a polymerizable compound and a photopolymerization initiator, and may contain a non-polymerizable compound or a solvent, if necessary. The non-polymerizable compound is at least one selected from the group of sensitizers, hydrogen donors, internal release mold release agents, surfactants, antioxidants, polymer components and the like. The composition ML may be arranged on the substrate 1 in the form of droplets or islands or films formed by connecting a plurality of droplets by the droplet supply unit DP (liquid injection head). Good. As the viscosity (viscosity at 25 ° C.) of such a composition ML, for example, one having a viscosity of 1 mPa · s or more and 100 mPa · s or less can be used. Further, in the method using heat as energy for curing, the thermoplastic resin is heated to a temperature equal to or higher than the glass transition temperature, and the mold is pressed against the substrate through the resin in a state where the fluidity of the resin is increased to cool the resin. A flattening film can be formed by later separating the mold from the resin.
 以下の本実施形態では、硬化用エネルギーとして紫外線光を用い、組成物MLとして光硬化性の材料が用いられる例を用いて説明する。 In the following embodiment, an example in which ultraviolet light is used as the curing energy and a photocurable material is used as the composition ML will be described.
 基板1は、シリコンウエハが代表的な基材であるが、これに限定されるものではない。基板1は、アルミニウム、チタン-タングステン合金、アルミニウム-ケイ素合金、アルミニウム-銅-ケイ素合金、酸化ケイ素、チッ化ケイ素等の半導体デバイス用基板、石英ガラス、セラミックス、金属、樹脂等の中からも任意に選択することができる。なお、基板1には、シランカップリング処理、シラザン処理、有機薄膜の成膜、等の表面処理により密着層を形成し、硬化性組成物との密着性を向上させた基板を用いてもよい。なお、基板1は、典型的には、直径300mmの円形であるが、これに限定されるものではない。 The substrate 1 is typically a silicon wafer, but is not limited to this. The substrate 1 may be any of semiconductor device substrates such as aluminum, titanium-tungsten alloy, aluminum-silicon alloy, aluminum-copper-silicon alloy, silicon oxide, silicon nitride, quartz glass, ceramics, metal, resin, and the like. Can be selected for. As the substrate 1, a substrate may be used in which an adhesion layer is formed by surface treatment such as a silane coupling treatment, a silazane treatment, a film formation of an organic thin film, and the like, and the adhesion to the curable composition is improved. .. The substrate 1 is typically a circle having a diameter of 300 mm, but the substrate 1 is not limited to this.
 型SSとしては、光照射工程を考慮して光透過性の材料で構成された型を用いる。型SSを構成する材料の材質としては、具体的には、ガラス、石英、PMMA(Polymethyl methacrylate)、ポリカーボネート樹脂等の光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサン等の柔軟膜、光硬化膜、金属膜等が好ましい。なお、型SSは、300mmよりも大きく、500mmよりも小さい直径の円形が好ましいが、これに限られない。また、型SSの厚さは、好適には、0.25mm以上2mm未満であるが、これに限られない。また、上述の基板搬送機構204は、平坦化装置Rへ型SSを搬送する型搬送機構としても機能させることができ、基板搬送機構204の搬送ハンド202が型搬送容器(不図示)から型SSを取り出し、当該型SSは平坦化装置Rへと搬送される。 As the mold SS, a mold made of a light-transmitting material is used in consideration of the light irradiation process. Specific examples of the material of the material constituting the mold SS include glass, quartz, PMMA (Polymethyl methylate), a phototransparent resin such as polycarbonate resin, a transparent metal vapor deposition film, a flexible film such as polydimethylsiloxane, and photocuring. A film, a metal film, or the like is preferable. The mold SS is preferably a circle having a diameter larger than 300 mm and smaller than 500 mm, but is not limited to this. The thickness of the mold SS is preferably 0.25 mm or more and less than 2 mm, but is not limited to this. Further, the above-mentioned substrate transfer mechanism 204 can also function as a mold transfer mechanism for transferring the mold SS to the flattening device R, and the transfer hand 202 of the substrate transfer mechanism 204 can be moved from the mold transfer container (not shown) to the mold SS. Is taken out, and the mold SS is transported to the flattening device R.
 半導体形成工程においては、1枚の基板1に対して、図1A~図1Dに示された平坦化層形成(膜形成)工程が複数回にわたって実施されてもよい。半導体デバイスの製造工程は、プラズマエッチング、コーティング、洗浄、イオン注入等において基板1に高熱が加わるプロセスが多い。基板1を一旦平坦化した後も組成物MLが後工程で加えられた熱によって収縮したり歪が解放されたりして、再び基板1の平坦度が低下する可能性がある。基板1の平坦度が低下する度に、基板1を平坦化処理するのは効率がよくない。そこで、平坦化膜の形成の直後にヒートサイクルを行って予め基板1の組成物MLを収縮させ、歪を開放してから速やかに後の工程へ送ることが有利な場合がある。前述の熱処理部209は、このような用途に有用である。また熱処理部209は、複数の基板を一度に処理可能に構成することもできる。例えば、熱処理部209は、基板1を一定間隔で鉛直方向に積み上げ、一定数量を単位としてバッチ方式でベーキングおよびクーリングを実行しうる。例えば、基板搬送機構204に戻ってきた基板1を熱処理部209に送り、複数の基板1に対して約250度から400度のベーキングと急速クーリングを行うことができる。 In the semiconductor forming step, the flattening layer forming (film forming) step shown in FIGS. 1A to 1D may be carried out a plurality of times on one substrate 1. In many semiconductor device manufacturing processes, high heat is applied to the substrate 1 in plasma etching, coating, cleaning, ion implantation, and the like. Even after the substrate 1 is once flattened, the composition ML may shrink or the strain may be released by the heat applied in the subsequent step, and the flatness of the substrate 1 may be lowered again. It is not efficient to flatten the substrate 1 every time the flatness of the substrate 1 decreases. Therefore, it may be advantageous to perform a heat cycle immediately after the formation of the flattening film to shrink the composition ML of the substrate 1 in advance, release the strain, and then promptly send it to a later step. The heat treatment unit 209 described above is useful for such applications. Further, the heat treatment unit 209 can be configured so that a plurality of substrates can be processed at one time. For example, the heat treatment unit 209 can stack the substrates 1 in the vertical direction at regular intervals and execute baking and cooling in a batch system in units of a fixed quantity. For example, the substrate 1 returned to the substrate transport mechanism 204 can be sent to the heat treatment unit 209, and baking and rapid cooling of about 250 to 400 degrees can be performed on the plurality of substrates 1.
 次に、図3及び4を用いて本実施形態に係る平坦化装置Rおよび型SSの構成を詳細に説明する。図3は、平坦化装置Rを側面側(X軸側)からみた図である。図4は、本実施形態に係る、接触検知センサ(タッチセンサとも称する)を構成する電極を有する型SSと型SSを保持する型保持部302、ヘッド301等の構成を説明する図であり、ヘッド301を下側(基板上の組成物に接する側)から見た図である。 Next, the configurations of the flattening device R and the type SS according to the present embodiment will be described in detail with reference to FIGS. 3 and 4. FIG. 3 is a view of the flattening device R as viewed from the side surface side (X-axis side). FIG. 4 is a diagram illustrating a configuration of a mold SS having electrodes constituting a contact detection sensor (also referred to as a touch sensor), a mold holding portion 302 for holding the mold SS, a head 301, and the like according to the present embodiment. It is a figure which looked at the head 301 from the lower side (the side which contacts a composition on a substrate).
 平坦化装置Rは、光源304、基板チャック340(基板保持部)、基板ステージ305、基板駆動機構330、ヘッド301、ヘッド301に支持される複数の型駆動機構308、型駆動機構308によって駆動される型保持部302を有する。さらに、平坦化装置Rには、型SSと電気的に接続し、電気信号を伝送させるためのフレキシブルプリント基板等の配線基板303、配線基板303を介して伝送される型SSの接触検知センサからの電気信号を処理する信号処理部307が設けられている。さらに、型と型保持部302との間に設けられた空間領域300の圧力を調整する圧力制御部306も設けられている。 The flattening device R is driven by a light source 304, a substrate chuck 340 (board holding portion), a substrate stage 305, a substrate drive mechanism 330, a head 301, and a plurality of mold drive mechanisms 308 and mold drive mechanisms 308 supported by the head 301. It has a mold holding portion 302. Further, the flattening device R is electrically connected to the mold SS, and the contact detection sensor of the mold SS transmitted via the wiring board 303 such as a flexible printed circuit board for transmitting an electric signal and the wiring board 303. A signal processing unit 307 for processing the electric signal of the above is provided. Further, a pressure control unit 306 for adjusting the pressure in the space region 300 provided between the mold and the mold holding unit 302 is also provided.
 型SSは、搬送ハンド202により搬入され、型保持部302に保持される。型保持部302は、例えば真空吸引力または静電吸引力により型SSを保持することができる。型保持部302は、例えば、ガラス、セラミックス、金属または樹脂で設けることができ、より具体的には、石英ガラス、サファイア、SiCセラミックス、アルミナセラミックス、アルミニウム合金またはコージライトで構成することができる。型SSは、円形または四角形の外形で設けることができ、基板1に接する側の面に平面部が設けられている。平面部は、基板1上の組成物MLに接触して基板1の表面形状に倣うような剛性を有する。また、型保持部302も、光照射工程を考慮して光源からの光の光路に配置される部分がある場合には、当該部分は光透過性の材料で構成する。なお、当該部分は、照射される光に対して60%以上の透過率を有する材料であることが好ましい。 The mold SS is carried in by the transport hand 202 and held by the mold holding unit 302. The mold holding unit 302 can hold the mold SS by, for example, a vacuum suction force or an electrostatic suction force. The mold holding portion 302 can be provided, for example, with glass, ceramics, metal or resin, and more specifically, it can be made of quartz glass, sapphire, SiC ceramics, alumina ceramics, aluminum alloy or cordierite. The mold SS can be provided with a circular or quadrangular outer shape, and a flat surface portion is provided on the surface on the side in contact with the substrate 1. The flat surface portion has rigidity so as to come into contact with the composition ML on the substrate 1 and imitate the surface shape of the substrate 1. Further, when the mold holding portion 302 also has a portion arranged in the optical path of the light from the light source in consideration of the light irradiation process, the portion is made of a light-transmitting material. The portion is preferably a material having a transmittance of 60% or more with respect to the irradiated light.
 また、型保持部302は、型SSを保持した状態で、型保持部302と型SSとの間に密閉された空間領域300が形成されるように構成されている。空間領域300の圧力を圧力制御部306によって制御することで、型SSの形状を制御することができる。具体的には、型SSが基板1の組成物MLに接触開始する際に、空間領域300を加圧することによって、型SSを基板1に向かって凸形状となるように変形させる。これにより型SSの中央部から組成物MLに接触を開始させることができ、その後型保持部302による吸着が解除されて型SSの平面部が組成物MLの表面上に倣うことで、型SSの平面部を撓みなく組成物に接触させることができる。すなわち、型SSの中央部分から均等に型SSと基板1との接触領域が放射線状に広がっていく状態が、接触工程の正常な状態であるといえる。 Further, the mold holding portion 302 is configured so that a sealed space area 300 is formed between the mold holding portion 302 and the mold SS while holding the mold SS. By controlling the pressure in the space region 300 by the pressure control unit 306, the shape of the mold SS can be controlled. Specifically, when the mold SS starts contacting the composition ML of the substrate 1, the space region 300 is pressed to deform the mold SS so as to have a convex shape toward the substrate 1. As a result, contact with the composition ML can be started from the central portion of the mold SS, and then the adsorption by the mold holding portion 302 is released and the flat portion of the mold SS imitates the surface of the composition ML, whereby the mold SS is formed. The flat surface portion of the above can be brought into contact with the composition without bending. That is, it can be said that the normal state of the contact process is a state in which the contact region between the mold SS and the substrate 1 spreads radially from the central portion of the mold SS.
 図4に示すように、型保持部302の寸法は、型SSよりも大きくなるように設けられており、型保持部302の外周部分がヘッド301に結合されて設けられている。ヘッド301には、型SSのZ軸周りの傾きを補正するための複数の型駆動機構308が設けられている。図4に示す例では、3つの型駆動機構308がヘッド301の3か所に120度の均等配置されており、型保持部302をZ軸方向およびチルト方向へ駆動することによって、型SSのZ軸方向の移動および傾き補正を行うことができる。また、型SSからの電気信号伝送用の配線基板303は、ヘッド301に実装されており、ヘッド301を介して外部の信号処理部307へと接続されている。型SSが型保持部302から開放されて基板1上に接触している際にも電気的に接続できているように、配線基板303を構成するフレキシブル配線基板の長さは適宜調整することが好ましい。なお、型SSが解放されている間に電気的に接続されている必要は必ずしもなく、接触検知センサによる接触状態を知らなくてもよいタイミングにおいては、型SSとの電気的接続は解除されていてもよい。 As shown in FIG. 4, the size of the mold holding portion 302 is provided so as to be larger than that of the mold SS, and the outer peripheral portion of the mold holding portion 302 is provided by being coupled to the head 301. The head 301 is provided with a plurality of mold drive mechanisms 308 for correcting the inclination of the mold SS around the Z axis. In the example shown in FIG. 4, three mold drive mechanisms 308 are evenly arranged at three locations of the head 301 at 120 degrees, and by driving the mold holding portion 302 in the Z-axis direction and the tilt direction, the mold SS It is possible to move in the Z-axis direction and correct the inclination. Further, the wiring board 303 for transmitting an electric signal from the mold SS is mounted on the head 301 and is connected to the external signal processing unit 307 via the head 301. The length of the flexible wiring board constituting the wiring board 303 can be appropriately adjusted so that the mold SS can be electrically connected even when the mold SS is released from the mold holding portion 302 and is in contact with the substrate 1. preferable. It is not always necessary to be electrically connected while the mold SS is released, and the electrical connection with the mold SS is released at the timing when the contact state by the contact detection sensor does not need to be known. You may.
 光硬化エネルギーとして用いられる紫外線は、ヘッド301内部に設けた光源304から発せられ、紫外線が透過する材料で設けられた型保持部302および型SSを透過し、基板1上の組成物MLに照射される。詳細は後述するが、本実施形態においては、接触検知センサを型SSに設けることで、従来のような型SSと基板1との接触状態を確認するための高速・高分解能なカメラの結像光学系を設ける必要がない。つまり結像光学系と両立させるために、基板から離れて配置された光源からの光を基板へ導く照明光学系を設ける必要がないため、光源304を基板1の対向する位置(基板の近傍)に設けることができる。これにより、光源304として紫外線を発光するLED素子を複数配列して設けたLED光源を用いることができる。図3の例では、ヘッド301の内部に光源304を配置することで、基板1の近傍に光源304を配置している。 Ultraviolet rays used as photocuring energy are emitted from a light source 304 provided inside the head 301, pass through a mold holding portion 302 and a mold SS provided with a material through which ultraviolet rays are transmitted, and irradiate the composition ML on the substrate 1. Will be done. Details will be described later, but in the present embodiment, by providing the contact detection sensor on the mold SS, a high-speed, high-resolution camera image formation for confirming the contact state between the mold SS and the substrate 1 as in the conventional case is performed. There is no need to provide an optical system. That is, in order to be compatible with the imaging optical system, it is not necessary to provide an illumination optical system that guides the light from the light source arranged away from the substrate to the substrate, so that the light source 304 is located at the opposite position of the substrate 1 (near the substrate). Can be provided in. As a result, it is possible to use an LED light source in which a plurality of LED elements that emit ultraviolet rays are arranged and provided as the light source 304. In the example of FIG. 3, the light source 304 is arranged inside the head 301, so that the light source 304 is arranged in the vicinity of the substrate 1.
 基板駆動機構330は、基板ステージ305を駆動させることにより基板1の位置を調整することができるように設けられており、具体的には基板ステージ305を、X軸方向、Y軸方向、およびZ軸方向に駆動させることができるように構成されている。すなわち、基板駆動機構330とヘッド301とが、基板1と型SSとの相対位置が調整する相対駆動機構を構成する。つまり、基板駆動機構330およびヘッド301の少なくとも一方でZ軸方向に関しての相対位置が変更できるように構成されている。これにより接触工程において基板1上の組成物MLと型SSとを接触させ、分離工程において基板1上の硬化された組成物MLと型SSとを分離するように、基板1と型SSとのZ軸方向に関する相対位置を変更させることができる。 The board drive mechanism 330 is provided so that the position of the board 1 can be adjusted by driving the board stage 305. Specifically, the board stage 305 is moved in the X-axis direction, the Y-axis direction, and Z. It is configured so that it can be driven in the axial direction. That is, the substrate drive mechanism 330 and the head 301 form a relative drive mechanism in which the relative positions of the substrate 1 and the mold SS are adjusted. That is, at least one of the substrate drive mechanism 330 and the head 301 is configured so that the relative position with respect to the Z-axis direction can be changed. As a result, the substrate 1 and the mold SS are brought into contact with each other in the contact step, and the cured composition ML and the mold SS on the substrate 1 are separated in the separation step. The relative position with respect to the Z-axis direction can be changed.
 また、基板駆動機構330は、基板搬送機構204の搬送ハンド202との間で基板1を受け渡しする受け渡し位置に基板ステージ305を駆動するように構成されていてもよい。また、搬送ハンド202が平坦化装置Rに型SSを搬送する際には、基板駆動機構330は、型SSを保持した状態で基板ステージ305を駆動することで、型保持部302に型SSを吸着させるようにしてもよい。 Further, the substrate drive mechanism 330 may be configured to drive the substrate stage 305 at a transfer position where the substrate 1 is delivered to and from the transfer hand 202 of the substrate transfer mechanism 204. Further, when the transfer hand 202 transfers the mold SS to the flattening device R, the substrate drive mechanism 330 drives the substrate stage 305 while holding the mold SS, so that the mold SS is transferred to the mold holding unit 302. It may be adsorbed.
 次に、図5及び図6を用いて、本実施形態に係る接触検知センサ(タッチセンサとも称する)を構成する電極を有する型SSの詳細について説明する。 Next, with reference to FIGS. 5 and 6, details of the type SS having electrodes constituting the contact detection sensor (also referred to as a touch sensor) according to the present embodiment will be described.
 本実施形態の型SSには、静電容量方式のタッチセンサを構成する電気回路技術が適用されている。タッチセンサの静電容量方式としては、表面型静電容量方式や投影型静電容量方式があり、投影型静電容量方式には主に駆動方法の違いから、自己容量方式や相互容量方式などが知られており、これらを採用することができる。本実施形態において、接触開始点のみがわかればよい場合には、自己容量方式を採用することもできるが、接触状態を判別するための接触境界線を確認したい場合には、同時に複数の接点の検出が行える相互容量方式のタッチセンサを採用することが好ましい。以下の実施形態の説明では、投影型静電容量方式のタッチセンサを型SSに採用した例を用いて説明する。 The electric circuit technology that constitutes the capacitive touch sensor is applied to the type SS of this embodiment. As the capacitance method of the touch sensor, there are a surface type capacitance method and a projection type capacitance method. The projection type capacitance method mainly has a difference in the driving method, such as a self-capacitance method and a mutual capacitance method. Are known, and these can be adopted. In the present embodiment, if only the contact start point needs to be known, the self-capacity method can be adopted, but if it is desired to confirm the contact boundary line for determining the contact state, a plurality of contacts can be used at the same time. It is preferable to use a mutual capacitance type touch sensor capable of detection. In the following description of the embodiment, an example in which a projection type capacitance type touch sensor is adopted for the type SS will be described.
 図5は、型SSに設けられた電極構成を説明する図であり、型SSの組成物MLと接触する面とは反対側の面側からみた図である。型SSのタッチセンサ部は、複数のX電極520X1~Xn(n=2以上)と複数のY電極510Y1~Yn(n=2以上)が、互いに交差(直交)するように配置されている。 FIG. 5 is a diagram for explaining the electrode configuration provided on the mold SS, and is a view seen from the surface side opposite to the surface in contact with the composition ML of the mold SS. The touch sensor unit of the type SS is arranged so that a plurality of X electrodes 520X1 to Xn (n = 2 or more) and a plurality of Y electrodes 510Y1 to Yn (n = 2 or more) intersect (orthogonally) with each other.
 各X電極は、複数の矩形形状の透明導電材料からなる透明電極502aとこれらを接続する透明導電材料からなる配線502とで構成されており、それぞれ配線基板303に配線504で電気的に接続されている。同様に各Y電極も、複数の矩形形状の透明材料からなる透明電極501aとこれらを接続する透明導電材料からなる配線501とで構成されており、それぞれ配線基板303に配線503で電気的に接続されている。そして各X電極の透明電極502aと各Y電極の透明電極501aとは、Z軸方向視において重ならないように配置されている。透明電極501a、502a及び配線501、502はこれらの間にできるだけ隙間が生じない形状として配置することが好ましい。また、これらの隙間に透明電極または透明配線と同一の導電膜を含むダミー電極を設けてもよい。 Each X electrode is composed of a transparent electrode 502a made of a plurality of rectangular transparent conductive materials and a wiring 502 made of a transparent conductive material connecting them, and each is electrically connected to a wiring board 303 by a wiring 504. ing. Similarly, each Y electrode is also composed of a transparent electrode 501a made of a plurality of rectangular transparent materials and a wiring 501 made of a transparent conductive material connecting them, and each is electrically connected to a wiring board 303 by a wiring 503. Has been done. The transparent electrode 502a of each X electrode and the transparent electrode 501a of each Y electrode are arranged so as not to overlap each other in the Z-axis direction. It is preferable that the transparent electrodes 501a and 502a and the wirings 501 and 502 are arranged in such a shape that there is as little gap as possible between them. Further, a transparent electrode or a dummy electrode containing the same conductive film as the transparent wiring may be provided in these gaps.
 なお、本実施形態でいうところの透明導電材料とは、光源304から発せられた紫外線が透過する導電性材料のことである。具体的には、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。また、これらの配線501、502、透明電極501a、502aは、上述の透光性を有する導電性材料を型SSの上にスパッタリング法等により成膜した後、フォトリソグラフィ法等の様々なパターニング技術により、不要な部分を除去して形成することができる。 The transparent conductive material as used in the present embodiment is a conductive material through which ultraviolet rays emitted from the light source 304 are transmitted. Specifically, conductive oxides such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, and zinc oxide added with gallium, or graphene can be used. Further, these wirings 501, 502 and transparent electrodes 501a, 502a are formed by forming a film of the above-mentioned conductive material having translucency on a mold SS by a sputtering method or the like, and then various patterning techniques such as a photolithography method. Therefore, unnecessary portions can be removed to form the film.
 図6は、型の断面構造を説明する模式図であり、3つの透明電極が設けられた場合の例を示している。型SSを構成する薄板状の透明基板600を最下層として、絶縁層601が積層されている。さらにその上に透明電極501aおよび配線501とこれらの上に絶縁層を形成した第1のパターニング層602と、透明電極502aおよび配線502の上に絶縁層を形成した第2のパターニング層603と、が積層されることで接触検知センサが構成されている。配線503及び配線504は型SSの外周部においてその表面が露出するように設けられ、配線基板303と電気的に接続されている。配線503および配線504は透明電極501a等と同じ透明導電材料で設けることもできる。しかし紫外線を透過させなくてもよい場合には、配線503および504は、アルミニウム、金、白金、銀、ニッケル、チタン、タングステン、クロム、モリブデン、鉄、コバルト、銅、又はパラジウム等の金属材料や、該金属材料を含む合金材料を用いてもよい。 FIG. 6 is a schematic view for explaining the cross-sectional structure of the mold, and shows an example in the case where three transparent electrodes are provided. The insulating layer 601 is laminated with the thin plate-shaped transparent substrate 600 constituting the mold SS as the lowermost layer. Further, a transparent electrode 501a and a wiring 501, a first patterning layer 602 having an insulating layer formed on the transparent electrode 501a and the wiring 501, and a second patterning layer 603 having an insulating layer formed on the transparent electrode 502a and the wiring 502. The contact detection sensor is configured by stacking the wires. The wiring 503 and the wiring 504 are provided so that their surfaces are exposed at the outer peripheral portion of the mold SS, and are electrically connected to the wiring board 303. The wiring 503 and the wiring 504 can also be provided with the same transparent conductive material as the transparent electrode 501a and the like. However, if it is not necessary to transmit ultraviolet rays, the wirings 503 and 504 may be made of a metal material such as aluminum, gold, platinum, silver, nickel, titanium, tungsten, chromium, molybdenum, iron, cobalt, copper, or palladium. , An alloy material containing the metal material may be used.
 型SSの組成物と接触する側の面に基板1上の組成物ML等の静電容量を変化させうる対象物が接触すると、静電容量に変化が生じる。そして、その変化量を接触信号として信号処理部307において検知することで型SSの電極X1~Xnと電極Y1~Ynのどの部分で接触が生じたかを検知することができる。このとき静電容量の変化する領域は、組成物MLの接触面積と対応しており、静電容量の変化が所定値以上生じている領域は、組成物MLと型SSの表面とが接触している領域であると判断することができる。 When an object that can change the capacitance, such as the composition ML on the substrate 1, comes into contact with the surface of the type SS that comes into contact with the composition, the capacitance changes. Then, by detecting the amount of change as a contact signal in the signal processing unit 307, it is possible to detect in which part of the electrodes X1 to Xn and the electrodes Y1 to Yn of the type SS the contact has occurred. At this time, the region where the capacitance changes corresponds to the contact area of the composition ML, and in the region where the change in capacitance occurs by a predetermined value or more, the composition ML and the surface of the mold SS come into contact with each other. It can be determined that the area is in the area.
 図7A~図7Cを用いて型SSの表面に基板1上の組成物MLが接触した際の検知状況について説明する。図7Aは、Y電極の静電容量の変化を示す信号波形の一例である。図7Bは、X電極の静電容量の変化を示す信号波形の一例である。図7A及び図7BではX電極、Y電極それぞれn=1番~15番まで設けられている場合の波形を示している。横軸は、各電極の番号nであり、縦軸は各電極の静電容量の変化を示している。それぞれの静電容量の変化は信号処理部307へと伝送される。信号処理部307では、X電極の中で静電容量の変化が最大となる電極番号と、Y電極の最大となる電極番号とを抽出し、その交差する部分に対応する位置が接触中心701であると判定することができる。 The detection situation when the composition ML on the substrate 1 comes into contact with the surface of the mold SS will be described with reference to FIGS. 7A to 7C. FIG. 7A is an example of a signal waveform showing a change in the capacitance of the Y electrode. FIG. 7B is an example of a signal waveform showing a change in the capacitance of the X electrode. 7A and 7B show waveforms when n = 1 to 15 are provided for each of the X electrode and the Y electrode. The horizontal axis is the number n of each electrode, and the vertical axis shows the change in the capacitance of each electrode. Each change in capacitance is transmitted to the signal processing unit 307. The signal processing unit 307 extracts the electrode number that maximizes the change in capacitance among the X electrodes and the electrode number that maximizes the change in the Y electrode, and the position corresponding to the intersecting portion is the contact center 701. It can be determined that there is.
 図7Cは、図7A及び図7Bの信号波形を受信する際の接触状態を説明する図であり、接触中心701から接触開始され、接触境界702まで型SSと基板1とが接触した場合の波形例を示している。接触中心701に対応するY電極n=8番とX電極n=8番の部分が静電容量の変化量が最も大きくなるため、最も変化している。 FIG. 7C is a diagram illustrating a contact state when receiving the signal waveforms of FIGS. 7A and 7B, and is a waveform when contact is started from the contact center 701 and the mold SS and the substrate 1 are in contact with each other up to the contact boundary 702. An example is shown. The portion of the Y electrode n = 8 and the X electrode n = 8 corresponding to the contact center 701 has the largest change in capacitance, so that the change is the largest.
 また、初期値から所定値以上変化している領域が接触領域であるといえるため、隣接する電極間で初期値から所定値以上の変化が生じた境界電極番号の箇所が接触境界702であると判断することができる。図7A~図7Cの例では、X電極n=3番、X電極n=13番、Y電極n=3番、Y電極n=13番が接触境界702を検知しているといえる。そして、型SSの接触工程中に接触境界702が接触中心701から放射線状に広がっている場合には、型SSと基板1との接触工程が正常に進行していると判断することができる。 Further, since it can be said that the region where the change from the initial value by a predetermined value or more is the contact region, the boundary electrode number where the change from the initial value by a predetermined value or more occurs between the adjacent electrodes is the contact boundary 702. You can judge. In the examples of FIGS. 7A to 7C, it can be said that the X electrode n = 3, the X electrode n = 13, the Y electrode n = 3, and the Y electrode n = 13 detect the contact boundary 702. When the contact boundary 702 extends radially from the contact center 701 during the contact process of the mold SS, it can be determined that the contact process between the mold SS and the substrate 1 is proceeding normally.
 なお、本実施形態では図7A~図7Cに示すように型SSの接触面のほぼ全面にわたってX電極とY電極が設けられている例を用いて説明したが、接触中心を判断できる領域と当該領域から放射線状に広がる状態が判別できる程度の電極を設けるだけでもよい。すなわち、型SSの中心部分から放射線状に広がる複数のライン上に、中心部分からの距離が互いに異なる複数の電極を設け、少なくとも中心部分の位置と複数の電極の位置で接触検知ができればよい。 In this embodiment, as shown in FIGS. 7A to 7C, an example in which the X electrode and the Y electrode are provided over almost the entire contact surface of the mold SS has been described. It may be sufficient to provide an electrode capable of discriminating the state of radially spreading from the region. That is, it is sufficient that a plurality of electrodes having different distances from the central portion are provided on a plurality of lines radially extending from the central portion of the mold SS, and contact detection can be performed at least at the position of the central portion and the positions of the plurality of electrodes.
 次に、図8を参照して、本実施形態における平坦化装置Rにおける平坦化処理について説明する。図8は、平坦化装置の平坦化処理の流れを示すフローチャートである。平坦化処理は、上述したように、制御部210が平坦化装置Rの各部を統括的に制御することで行われる。 Next, with reference to FIG. 8, the flattening process in the flattening apparatus R in the present embodiment will be described. FIG. 8 is a flowchart showing the flow of the flattening process of the flattening device. As described above, the flattening process is performed by the control unit 210 comprehensively controlling each unit of the flattening device R.
 ステップS1での処理が開始される前に、制御部210は、図1Aに示すような組成物配置工程を行う。具体的には、準備ステーション220において、アライメント機構205の基板支持テーブルWTによって支持された基板1の上に液滴供給部DPによって平坦化材料としての組成物MLが配置させる。 Before the process in step S1 is started, the control unit 210 performs a composition arranging step as shown in FIG. 1A. Specifically, in the preparation station 220, the composition ML as a flattening material is arranged by the droplet supply unit DP on the substrate 1 supported by the substrate support table WT of the alignment mechanism 205.
 その後、ステップS1において、制御部210は、基板搬送機構204によって組成物が設けられた基板1を平坦化装置R内に搬入し、基板保持部340の上に載置する。 After that, in step S1, the control unit 210 carries the substrate 1 provided with the composition by the substrate transfer mechanism 204 into the flattening device R and places it on the substrate holding unit 340.
 ステップS2においては、制御部210は、図1Bに示す接触工程を開始する処理として、型接触処理を開始する。具体的には、制御部210は、型保持部302によって保持された型SSが下降するようにヘッド301を下降させ、基板1の上の組成物MLと型SSの平面部との接触を開始する。その際に型SSは、その自重および圧力制御部306による空間領域300の圧力制御によって下方に凸形状になるように撓ませてある。そのため、型SSの中央部が最初に基板Wの上の組成物MLに接触する。したがって、正常に接触開始された場合には、図7Cに示すような型の点701が接触開始点となるため、X電極n=8番、Y電極n=8番の静電容量の変化として信号処理部307へと伝送される。 In step S2, the control unit 210 starts the mold contact process as the process of starting the contact process shown in FIG. 1B. Specifically, the control unit 210 lowers the head 301 so that the mold SS held by the mold holding unit 302 is lowered, and starts contact between the composition ML on the substrate 1 and the flat surface portion of the mold SS. To do. At that time, the mold SS is bent so as to have a downward convex shape by its own weight and the pressure control of the space region 300 by the pressure control unit 306. Therefore, the central portion of the mold SS first contacts the composition ML on the substrate W. Therefore, when the contact is normally started, the point 701 of the mold as shown in FIG. 7C becomes the contact start point, so that the change in capacitance of the X electrode n = 8 and the Y electrode n = 8 It is transmitted to the signal processing unit 307.
 次に、ステップS2において、制御部210は、接触開始点の位置が正常かを判定する。具体的には、制御部210は、信号処理部307で検知された接触開始点がX電極n=8番、Y電極n=8番となっているかを判定する。ステップS2で正しい位置であると判定された場合には、ステップS6に進み、正しい位置ではないと判定された場合には、ステップS4に進み調整処理を行う。 Next, in step S2, the control unit 210 determines whether the position of the contact start point is normal. Specifically, the control unit 210 determines whether the contact start points detected by the signal processing unit 307 are the X electrode n = 8 and the Y electrode n = 8. If it is determined in step S2 that the position is correct, the process proceeds to step S6, and if it is determined that the position is not correct, the process proceeds to step S4 to perform the adjustment process.
 ステップS4において、制御部210は、図4に示すヘッド301の3つの型駆動機構308を駆動させることで、接触開始点の位置が正しい位置となるように型保持部302のチルト調整を行う。そしてステップS5では、制御部210は信号処理部307で検知結果をもとに接触開始点の位置が正常かどうかを判定する。ステップS5で正常であると判定された場合には、ステップS6に進む。一方、ステップS4で再度正常でないと判定されるような場合には、基板1と型SSとの間に気泡や異物などが発生している可能性があるため、ステップS12に進みあらかじめ定められた所定のエラー処理を行い、処理を終了する。エラー処理の具体例としては、当該搬送された基板の処理は終了して次の基板の平坦化処理に移行する処理であったり、型SSを洗浄する洗浄処理を採用することができる。なお、このような洗浄処理を行う洗浄手段は、平坦化装置R内に設けてもよいし、平坦化装置R外に設けてもよい。 In step S4, the control unit 210 drives the three mold drive mechanisms 308 of the head 301 shown in FIG. 4 to adjust the tilt of the mold holding unit 302 so that the position of the contact start point is the correct position. Then, in step S5, the control unit 210 determines whether or not the position of the contact start point is normal based on the detection result in the signal processing unit 307. If it is determined to be normal in step S5, the process proceeds to step S6. On the other hand, if it is determined that it is not normal again in step S4, there is a possibility that air bubbles or foreign matter are generated between the substrate 1 and the mold SS, so the process proceeds to step S12 and is determined in advance. Performs predetermined error processing and ends the processing. As a specific example of the error processing, a processing in which the processing of the conveyed substrate is completed and the process shifts to the next substrate flattening processing, or a cleaning processing for cleaning the mold SS can be adopted. The cleaning means for performing such a cleaning process may be provided inside the flattening device R or outside the flattening device R.
 ステップS6では、制御部210は、圧力制御部306に空間領域300の圧力を制御させ、型の接触処理を継続する。このとき正常であれば組成物MLと型SSの接触開始後、接触領域とその外側の非接触領域の境界における型SSの(XY平面に平行な面に対する型SSの角度)が一定に維持されながら接触領域が拡大する。このように型SSの中央部から放射線状に接触領域を拡大させることによって、組成物MLの厚さを一定に維持しながら組成物MLを膜状に広げることができる。 In step S6, the control unit 210 causes the pressure control unit 306 to control the pressure in the space region 300, and continues the contact processing of the mold. At this time, if normal, after the start of contact between the composition ML and the mold SS, the mold SS (angle of the mold SS with respect to the plane parallel to the XY plane) at the boundary between the contact region and the non-contact region outside the contact region is maintained constant. However, the contact area expands. By expanding the contact region radially from the central portion of the mold SS in this way, the composition ML can be expanded in a film shape while maintaining the thickness of the composition ML constant.
 ステップS7では、制御部210は、ステップS6で開始された接触処理において接触領域が正常に進行しているかを判定する。具体的には、制御部210は、信号処理部307において各電極の静電容量の時間変化をリアルタイムで検知することで、接触境界が中央部から外縁に向かって放射線状に移動する状況をモニタリングすることができる。そしてステップS7で接触領域が正常に進行していると判定されている場合にはステップS8に進み、モニタリング中に、放射線状に広がっていないなどの異常が発生したと検知された場合には、ステップS12に進みあらかじめ定められた所定のエラー処理を行う。 In step S7, the control unit 210 determines whether the contact region is normally progressing in the contact process started in step S6. Specifically, the control unit 210 monitors the situation in which the contact boundary moves radially from the central portion to the outer edge by detecting the temporal change of the capacitance of each electrode in the signal processing unit 307 in real time. can do. Then, if it is determined in step S7 that the contact area is proceeding normally, the process proceeds to step S8, and if it is detected during monitoring that an abnormality such as not spreading radially occurs, the process proceeds to step S8. Proceed to step S12 to perform a predetermined error processing.
 ステップS8では、制御部210は、ステップS6で開始された接触処理が進行し接触境界が基板1の外縁付近まで到達し、型保持部302による型SSの保持が解除され、型SSが基板1の組成物ML上に載置されたかを判定する。接触処理が完了するまで、ステップS6に戻り処理を続け、一方接触処理が完了したと判定された場合には、ステップS9に進む。型接触処理が完了状態とは、型SSが基板1の組成物ML上に載置された状態であり、型SSは、基板1のグローバルな凹凸にならい密着し、組成物MLからなる膜は、基板1の全域において均一になり平坦化膜を形成する。 In step S8, the control unit 210 proceeds with the contact process started in step S6, the contact boundary reaches the vicinity of the outer edge of the substrate 1, the mold SS is released from being held by the mold holding unit 302, and the mold SS becomes the substrate 1. It is determined whether or not the composition of the above is placed on the ML. The process returns to step S6 until the contact process is completed, while the process proceeds to step S9 when it is determined that the contact process is completed. The mold contact process is completed is a state in which the mold SS is placed on the composition ML of the substrate 1, the mold SS adheres to the global unevenness of the substrate 1, and the film made of the composition ML is formed. , It becomes uniform over the entire area of the substrate 1 and forms a flattening film.
 次に、ステップS9では、制御部210は、図1Cに示す光源304からの光(紫外線)を型保持部及び型SSを介して組成物MLに照射させ、光硬化性の組成物MLを硬化させる硬化工程(露光工程)を行う。硬化用のエネルギーとなる紫外線の照射時間は、数十秒である。一般的に組成物MLに用いられる材料は高い揮発性を有しているが、接触工程において組成物MLからの揮発は、膜の平坦性に影響を及ぼす可能性がある。そのため、基板1の上に組成物MLを供給した後、平坦化装置Rにおいて未処理のままで基板1を待機させる状況、は組成物MLの揮発が大きくなるため望ましくない。そのため、接触工程から速やかに硬化工程へ移行することが望ましく、接触工程において接触領域が型SSの中央部から外縁に向かって拡大する動作に合わせて、硬化用のエネルギーを照射する領域を該中央部から外周に向かって拡大または移動させてもよい。 Next, in step S9, the control unit 210 irradiates the composition ML with light (ultraviolet rays) from the light source 304 shown in FIG. 1C via the mold holding unit and the mold SS to cure the photocurable composition ML. Perform a curing step (exposure step). The irradiation time of ultraviolet rays, which is the energy for curing, is several tens of seconds. Generally, the material used for the composition ML has high volatility, but the volatility from the composition ML in the contact step may affect the flatness of the film. Therefore, a situation in which the composition ML is supplied onto the substrate 1 and then the substrate 1 is kept on standby in the flattening apparatus R without being treated is not desirable because the volatilization of the composition ML becomes large. Therefore, it is desirable to quickly shift from the contact step to the curing step, and the region to be irradiated with the curing energy is set to the center in accordance with the operation in which the contact region expands from the central portion of the mold SS toward the outer edge in the contact step. It may be enlarged or moved from the portion toward the outer circumference.
 次に、ステップS10では、制御部210は、ヘッド301の3つの型駆動機構308をおよび圧力制御部306を制御し、型保持部302によって型SSを再び吸着保持させ、図1Dに示すように、基板1上の硬化した組成物MLから型SSを分離させる。このとき、単にヘッド301を鉛直方向(Z軸方向)に上昇させて組成物MLから型SSを分離しようとすると、数百N(ニュートン)もの大きな力が必要となる。このような大きな力が型SSや基板1に加わると、基板1が有するパターンの破損や組成物MLの剥離や型SSの破損等が引き起こされる可能性がある。そのため、まず組成物MLと型SSとの界面に対して局所的に数N程度の力を加えて組成物MLと型SSとの分離開始点を形成し、さらにヘッド301を上昇あるいは傾斜させて、分離開始点を起点として分離領域を拡大させ、分離を完了させることが好ましい。これにより、分離に必要な力を低減することができ、基板1が有するパターンの破損や組成物MLの剥離や型SSの破損当を防止することができる。なお、この分離動作中にも制御部210は、信号処理部307において各電極の静電容量の時間変化をリアルタイムで検知することで、分離時の接触状況をモニタリングすることができる。 Next, in step S10, the control unit 210 controls the three mold drive mechanisms 308 of the head 301 and the pressure control unit 306, and the mold holding unit 302 sucks and holds the mold SS again, as shown in FIG. 1D. , The mold SS is separated from the cured composition ML on the substrate 1. At this time, if the head 301 is simply raised in the vertical direction (Z-axis direction) to separate the mold SS from the composition ML, a large force of several hundred N (Newton) is required. When such a large force is applied to the mold SS and the substrate 1, the pattern of the substrate 1 may be damaged, the composition ML may be peeled off, the mold SS may be damaged, and the like. Therefore, first, a force of about several N is locally applied to the interface between the composition ML and the mold SS to form a separation start point between the composition ML and the mold SS, and the head 301 is further raised or tilted. , It is preferable to expand the separation region starting from the separation start point and complete the separation. As a result, the force required for separation can be reduced, and it is possible to prevent the pattern of the substrate 1 from being damaged, the composition ML from being peeled off, and the mold SS from being damaged. Even during this separation operation, the control unit 210 can monitor the contact state at the time of separation by detecting the time change of the capacitance of each electrode in real time in the signal processing unit 307.
 ステップS11では、制御部210は、平坦化装置Rによる平坦化処理が完了したものとして、基板搬送機構204によって基板保持部340の上基板1を平坦化装置R内から搬出し、基板搬送容器203などに戻し処理を完了する。なお、基板搬送容器203内に処理予定の基板が残っているような場合には、再度S1からの処理を開始する。 In step S11, assuming that the flattening process by the flattening device R has been completed, the control unit 210 carries out the upper substrate 1 of the substrate holding unit 340 from the flattening device R by the substrate transfer mechanism 204, and carries out the substrate transfer container 203. Complete the process of returning to. If the substrate to be processed remains in the substrate transfer container 203, the processing from S1 is restarted.
 なお、図8のフローチャートに示す例では、接触開始点の位置が正常であるかと型接触処理を継続している間の接触状態が正常であるかをいずれも判定する例を用いて説明したが、両方行う必要はなく、適宜いずれか一方が行われるようにしてもよい。 In the example shown in the flowchart of FIG. 8, both the position of the contact start point and the contact state during the continuation of the mold contact process are determined using an example. , It is not necessary to perform both, and either one may be performed as appropriate.
 また、本実施形態の接触処理の例では、型SSが型保持部302から分離される場合を用いて説明したが、型SSが型保持部302に保持された状態で接触処理を行ってもよい。 Further, in the example of the contact processing of the present embodiment, the case where the mold SS is separated from the mold holding portion 302 has been described, but the contact processing may be performed while the mold SS is held by the mold holding portion 302. Good.
 以上のように、本実施形態においては型SSに接触検知センサを設けたことにより、型SSと組成物MLとの接触状態を確認するための高速・高分解能なカメラの結像光学系を設ける必要がなくなる。これにより、光硬化に用いる光を照射する照明光学系と、接触状態を確認するための高速・高分解能なカメラの結像光学系とを両立させる複雑な光学系を設ける必要がないため、上述したように照明光学系の構成を簡便な構成とすることができる。さらに、本実施形態の接触検知センサによれば、基板と型との接触状態を簡便に確認することができるため、基板上の組成物を平坦化するのに有利な技術を提供することができる。 As described above, in the present embodiment, by providing the contact detection sensor on the mold SS, an imaging optical system of a high-speed and high-resolution camera for confirming the contact state between the mold SS and the composition ML is provided. No need. As a result, it is not necessary to provide a complicated optical system that balances the illumination optical system that irradiates the light used for photocuring and the imaging optical system of the high-speed, high-resolution camera for confirming the contact state. As described above, the configuration of the illumination optical system can be simplified. Further, according to the contact detection sensor of the present embodiment, the contact state between the substrate and the mold can be easily confirmed, so that it is possible to provide an advantageous technique for flattening the composition on the substrate. ..
 (第2の実施形態)
 本実施形態では、第1の実施形態とは異なる型の断面構造の例について説明する。それ以外の構成については、第1の実施形態と同様であるため、説明を省略する。
(Second embodiment)
In this embodiment, an example of a cross-sectional structure of a type different from that of the first embodiment will be described. Since the other configurations are the same as those of the first embodiment, the description thereof will be omitted.
 図9は、型の断面構造を説明する模式図であり、図6と同様に3つの透明電極が設けた場合の例を示している。型SSを構成する薄板状の透明基板600を最下層として、第一絶縁層601aと導電層801と第二絶縁層601bとが積層されている。導電層801は、不図示の配線により、配線基板303等を介して電圧を印可することができるように設けられている。導電層801に用いることができる透明導電材料としては、光源304から発せられた紫外線が透過する導電性材料のことである。具体的には、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。さらにその上に透明電極501aおよび配線501とこれらの上に絶縁層を形成した第1のパターニング層602と、透明電極502aおよび配線502の上に絶縁層を形成した第2のパターニング層603と、が積層されることで接触検知センサが構成されている。配線503及び配線504は型SSの外周部においてその表面が露出するように設けられ、配線基板303と電気的に接続されている。配線503および配線504は透明電極501a等と同じ透明導電材料で設けることもできる。しかし紫外線を透過させなくてもよい場合には、配線503および504は、アルミニウム、金、白金、銀、ニッケル、チタン、タングステン、クロム、モリブデン、鉄、コバルト、銅、又はパラジウム等の金属材料や、該金属材料を含む合金材料を用いてもよい。 FIG. 9 is a schematic view for explaining the cross-sectional structure of the mold, and shows an example in the case where three transparent electrodes are provided as in FIG. The first insulating layer 601a, the conductive layer 801 and the second insulating layer 601b are laminated with the thin plate-shaped transparent substrate 600 constituting the mold SS as the lowermost layer. The conductive layer 801 is provided so that a voltage can be applied via a wiring board 303 or the like by wiring (not shown). The transparent conductive material that can be used for the conductive layer 801 is a conductive material that transmits ultraviolet rays emitted from the light source 304. Specifically, conductive oxides such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, and zinc oxide added with gallium, or graphene can be used. Further, a transparent electrode 501a and a wiring 501, a first patterning layer 602 having an insulating layer formed on the transparent electrode 501a and the wiring 501, and a second patterning layer 603 having an insulating layer formed on the transparent electrode 502a and the wiring 502. The contact detection sensor is configured by stacking the wires. The wiring 503 and the wiring 504 are provided so that their surfaces are exposed at the outer peripheral portion of the mold SS, and are electrically connected to the wiring board 303. The wiring 503 and the wiring 504 can also be provided with the same transparent conductive material as the transparent electrode 501a and the like. However, if it is not necessary to transmit ultraviolet rays, the wirings 503 and 504 may be made of a metal material such as aluminum, gold, platinum, silver, nickel, titanium, tungsten, chromium, molybdenum, iron, cobalt, copper, or palladium. , An alloy material containing the metal material may be used.
 型SSが図1Bの接触工程及び図1Dの分離工程を経ると、透明基板600の組成物MLと型SSとの接触面が帯電し、周囲のパーティクルを引きつけて平坦化膜に欠陥が生じる怖れがある。そのため、接触工程および分離工程を行う際に、型SS内部の導電層801を設けておくことで、導電層801に電圧をかけて透明基板600面を除電し、周囲のパーティクルを引き付けないように制御することができる。 When the mold SS goes through the contact step of FIG. 1B and the separation step of FIG. 1D, the contact surface between the composition ML of the transparent substrate 600 and the mold SS is charged and attracts surrounding particles, which may cause defects in the flattening film. There is. Therefore, by providing the conductive layer 801 inside the mold SS when performing the contact step and the separation step, a voltage is applied to the conductive layer 801 to eliminate static electricity on the 600 surface of the transparent substrate so as not to attract surrounding particles. Can be controlled.
 このような断面構造を有する型SSを用いた場合にも、第1の実施形態と同様に、型SSに接触検知センサを設けたことにより、型SSと組成物MLとの接触状態を確認するための高速・高分解能なカメラの結像光学系を設ける必要がなくなる。これにより、光硬化に用いる光を照射する照明光学系と、接触状態を確認するための高速・高分解能なカメラの結像光学系とを両立させる複雑な光学系を設ける必要がないため、上述したように照明光学系の構成を簡便な構成とすることができる。さらに、本実施形態の接触検知センサによれば、基板と型との接触状態を簡便に確認することができるため、基板上の組成物を平坦化するのに有利な技術を提供することができる。 Even when a mold SS having such a cross-sectional structure is used, the contact state between the mold SS and the composition ML is confirmed by providing the mold SS with a contact detection sensor as in the first embodiment. Therefore, it is not necessary to provide an imaging optical system for a high-speed, high-resolution camera. As a result, it is not necessary to provide a complicated optical system that balances the illumination optical system that irradiates the light used for photocuring and the imaging optical system of the high-speed, high-resolution camera for confirming the contact state. As described above, the configuration of the illumination optical system can be simplified. Further, according to the contact detection sensor of the present embodiment, the contact state between the substrate and the mold can be easily confirmed, so that it is possible to provide an advantageous technique for flattening the composition on the substrate. ..
 (平坦化装置による物品の製造)
 以上本実施形態で説明したような平坦化装置Rを用いて、物品の製造を行うことができる。そのような物品製造方法は、平坦化装置Rを使って基板の上に組成物の硬化物からなる膜(平坦化膜)を形成する膜形成工程と、該膜形成工程を経た該基板を他の周知の加工処理を行う処理工程とを含み、該処理工程を経た該基板から物品を製造することができる。他の周知の加工工程には、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等が含まれる。
(Manufacturing of goods by flattening device)
The article can be manufactured by using the flattening device R as described above in the present embodiment. Such an article manufacturing method includes a film forming step of forming a film (flattening film) made of a cured product of the composition on a substrate using a flattening device R, and the substrate having undergone the film forming step. It is possible to manufacture an article from the substrate which has undergone the processing step, which includes a processing step of performing the well-known processing treatment. Other well-known processing steps include etching, resist stripping, dicing, bonding, packaging and the like.
 上記の平坦化装置Rは、基板1(例えば、基板1の1領域又は複数のショット領域あるいは基板1の全ショット領域)に組成物MLの硬化物からなるパターンを形成するインプリント装置として構成されてもよい。インプリント装置において使用される型SSは、基板Wに転写されるパターンが配置されたパターン領域、および、アライメントマークを有する。 The flattening device R is configured as an imprint device that forms a pattern made of a cured product of the composition ML on the substrate 1 (for example, one region or a plurality of shot regions of the substrate 1 or the entire shot region of the substrate 1). You may. The mold SS used in the imprinting apparatus has a pattern region in which a pattern to be transferred to the substrate W is arranged, and an alignment mark.
 さらに平坦化装置Rによって図1Dに示すように表面が平坦化された基板Wの上にインプリント装置を用いて組成物の硬化物のパターンを形成してもよい。以下、インプリント装置を用いて基板上に硬化物のパターンを形成する方法について説明する。 Further, as shown in FIG. 1D by the flattening device R, a pattern of the cured product of the composition may be formed on the substrate W whose surface is flattened by using the imprinting device. Hereinafter, a method of forming a pattern of a cured product on a substrate using an imprinting apparatus will be described.
 インプリント装置を用いて形成した硬化物のパターンは、各種物品の少なくとも一部に恒久的に、或いは各種物品を製造する際に一時的に、用いられる。物品とは、電気回路素子、光学素子、MEMS、記録素子、センサ、或いは、型等である。電気回路素子としては、DRAM、SRAM、フラッシュメモリ、MRAMのような、揮発性或いは不揮発性の半導体メモリや、LSI、CCD、イメージセンサ、FPGAのような半導体素子等が挙げられる。型としては、インプリント用のモールド等が挙げられる。 The pattern of the cured product formed by using the imprint device is used permanently for at least a part of various articles or temporarily when manufacturing various articles. The article is an electric circuit element, an optical element, a MEMS, a recording element, a sensor, a mold, or the like. Examples of the electric circuit element include volatile or non-volatile semiconductor memories such as DRAM, SRAM, flash memory, and MRAM, and semiconductor elements such as LSI, CCD, image sensor, and FPGA. Examples of the mold include a mold for imprinting.
 硬化物のパターンは、上記物品の少なくとも一部の構成部材として、そのまま用いられるか、或いは、レジストマスクとして一時的に用いられる。基板の加工工程においてエッチング又はイオン注入等が行われた後、レジストマスクは除去される。 The pattern of the cured product is used as it is as a constituent member of at least a part of the above-mentioned article, or is temporarily used as a resist mask. The resist mask is removed after etching, ion implantation, or the like in the substrate processing process.
 図10A~図10Fに、インプリント装置によって基板にパターンを形成し、該パターンが形成された基板を処理し、該処理が行われた基板から物品を製造する物品製造方法について説明する。まず図10Aに示すように、絶縁体等の被加工材2zが表面に形成されたシリコンウエハ等の基板1zを用意し、続いて、インクジェット法等により、被加工材2zの表面にインプリント材3zを付与する。ここでは、複数の液滴状になったインプリント材3zが基板上に付与された様子を示している。 10A to 10F show a method of manufacturing an article in which a pattern is formed on a substrate by an imprinting device, the substrate on which the pattern is formed is processed, and an article is produced from the processed substrate. First, as shown in FIG. 10A, a substrate 1z such as a silicon wafer on which a work material 2z such as an insulator is formed on the surface is prepared, and then an imprint material is imprinted on the surface of the work material 2z by an inkjet method or the like. 3z is given. Here, a state in which a plurality of droplet-shaped imprint materials 3z are applied onto the substrate is shown.
 図10Bに示すように、インプリント用の型4zを、その凹凸パターンが形成された側を基板上のインプリント材3zに向け、対向させる。図10Cに示すように、インプリント材3zが付与された基板1zと型4zとを接触させ、圧力を加える。インプリント材3zは型4zと被加工材2zとの隙間に充填される。この状態で硬化用のエネルギーとして光を型4zを介して照射すると、インプリント材3zは硬化する。 As shown in FIG. 10B, the imprint mold 4z is opposed to the imprint material 3z on the substrate with the side on which the uneven pattern is formed facing. As shown in FIG. 10C, the substrate 1z to which the imprint material 3z is applied is brought into contact with the mold 4z, and pressure is applied. The imprint material 3z is filled in the gap between the mold 4z and the work material 2z. In this state, when light is irradiated through the mold 4z as energy for curing, the imprint material 3z is cured.
 図10Dに示すように、インプリント材3zを硬化させた後、型4zと基板1zを引き離すと、基板1z上にインプリント材3zの硬化物のパターンが形成される。この硬化物のパターンは、型の凹部が硬化物の凸部に、型の凸部が硬化物の凹部に対応した形状になっており、即ち、インプリント材3zに型4zの凹凸パターンが転写されたことになる。 As shown in FIG. 10D, when the mold 4z and the substrate 1z are separated from each other after the imprint material 3z is cured, a pattern of the cured product of the imprint material 3z is formed on the substrate 1z. The pattern of the cured product has a shape in which the concave portion of the mold corresponds to the convex portion of the cured product and the convex portion of the mold corresponds to the concave portion of the cured product, that is, the uneven pattern of the mold 4z is transferred to the imprint material 3z. It will be done.
 図10Eに示すように、硬化物のパターンを耐エッチングマスクとしてエッチングを行うと、被加工材2zの表面のうち、硬化物が無いか或いは薄く残存した部分が除去され、溝5zとなる。図10Fに示すように、硬化物のパターンを除去すると、被加工材2zの表面に溝5zが形成された物品を得ることができる。ここでは硬化物のパターンを除去したが、加工後も除去せずに、例えば、半導体素子等に含まれる層間絶縁用の膜、つまり、物品の構成部材として利用してもよい。 As shown in FIG. 10E, when etching is performed using the pattern of the cured product as an etching resistant mask, the portion of the surface of the work material 2z that has no cured product or remains thin is removed to form a groove 5z. As shown in FIG. 10F, when the pattern of the cured product is removed, an article in which the groove 5z is formed on the surface of the work material 2z can be obtained. Here, the pattern of the cured product is removed, but it may not be removed even after processing, and may be used, for example, as a film for interlayer insulation contained in a semiconductor element or the like, that is, as a constituent member of an article.
 以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。 Although the preferred embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist thereof.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various modifications and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the following claims are attached in order to publicize the scope of the present invention.
 本願は、2019年10月2日提出の日本国特許出願特願2019-182450を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2019-182450 submitted on October 2, 2019, and all the contents thereof are incorporated herein by reference.

Claims (13)

  1.  平面部を有する型を保持する型保持部と、基板を保持する基板保持部と、前記基板の上に設けられた組成物を硬化させる硬化部と、を有し、前記型の平面部を前記基板の上の組成物に接触させた状態で前記組成物を前記硬化部で硬化させる平坦化装置に用いられる前記型であって、
     前記平面部が設けられ、前記組成物が設けられた基板に接する側の面と、
     前記面に対象物が接触したことを検知する接触検知センサと、
     を有することを特徴とする型。
    A mold holding portion for holding a mold having a flat surface portion, a substrate holding portion for holding a substrate, and a curing portion for curing a composition provided on the substrate are provided, and the flat surface portion of the mold is described. The mold used in a flattening apparatus that cures the composition at the cured portion in contact with the composition on the substrate.
    A surface on the side where the flat surface portion is provided and in contact with the substrate on which the composition is provided,
    A contact detection sensor that detects that an object has come into contact with the surface,
    A mold characterized by having.
  2.  前記組成物は光硬化性の材料からなり、
     前記平坦化装置の硬化部は、前記型を介して光を照射することで、前記組成物を硬化させる光照射部であり、
     前記接触検知センサは、前記光照射部から照射される光が透過する材料からなる透明電極で構成されていることを特徴とする請求項1に記載の型。
    The composition is made of a photocurable material and is made of a photocurable material.
    The cured portion of the flattening device is a light-irradiated portion that cures the composition by irradiating light through the mold.
    The mold according to claim 1, wherein the contact detection sensor is composed of a transparent electrode made of a material through which light emitted from the light irradiation unit is transmitted.
  3.  前記接触検知センサは、対象物が接触すると静電容量が変化することにより、前記面への対象物の接触を検知することを特徴とする請求項1または2に記載の型。 The type according to claim 1 or 2, wherein the contact detection sensor detects the contact of the object with the surface by changing the capacitance when the object comes into contact with the object.
  4.  前記接触検知センサは、対象物との複数の接点を検知できることを特徴とする請求項1乃至3のいずれか1項に記載の型。 The type according to any one of claims 1 to 3, wherein the contact detection sensor can detect a plurality of contacts with an object.
  5.  前記接触検知センサは、少なくとも型の中心部分の位置と、当該中心部分の位置から放射線状に広がるライン上の、前記中心部分からの距離が互いに異なる複数の位置において、検知できることを特徴とする請求項1乃至4のいずれか1項に記載の型。 The claim is characterized in that the contact detection sensor can detect at least the position of the central portion of the mold and a plurality of positions on a line extending radially from the position of the central portion at different distances from the central portion. The type according to any one of Items 1 to 4.
  6.  平面部が設けられ、組成物が設けられた基板に接する側の面と、前記面に対象物が接触したことを検知する接触検知センサとを有する型を保持する型保持部と、
     基板を保持する基板保持部と、
     前記基板の上に設けられた組成物を硬化させる硬化部と、
     前記型の平面部を前記基板の上の組成物に接触させた状態で前記組成物を前記硬化部で硬化させるように制御する制御部と、を有し、
     前記制御部は、前記接触検知センサからの信号に応じて、前記型の平面部と前記組成物との接触を検知することを特徴とする平坦化装置。
    A mold holding portion for holding a mold having a surface on a side in contact with a substrate on which a flat surface portion is provided and a composition is provided, and a contact detection sensor for detecting that an object has come into contact with the surface.
    The board holding part that holds the board and
    A cured portion for curing the composition provided on the substrate, and a cured portion.
    It has a control unit that controls the composition to be cured by the cured portion in a state where the flat portion of the mold is in contact with the composition on the substrate.
    The control unit is a flattening device that detects contact between the flat surface portion of the mold and the composition in response to a signal from the contact detection sensor.
  7.  前記制御部は、前記接触検知センサからの信号に応じて、前記型の平面部と前記組成物との接触開始点および接触状態の少なくとも一方が正しいかを判定することを特徴とする請求項6に記載の平坦化装置。 6. The control unit is characterized in that, in response to a signal from the contact detection sensor, at least one of a contact start point and a contact state between the flat surface portion of the mold and the composition is correct. The flattening device according to.
  8.  前記制御部は、前記接触開始点および前記接触状態の少なくとも一方に異常がある場合には、前記硬化部による組成物の硬化を行わないように制御することを特徴とする請求項7に記載の平坦化装置。 The seventh aspect of claim 7, wherein the control unit controls so that the composition is not cured by the cured unit when there is an abnormality in at least one of the contact starting point and the contact state. Flattening device.
  9.  前記組成物は光硬化性の材料からなり、
     前記硬化部は、前記型を介して光を照射することで、前記組成物を硬化させる光照射部であることを特徴とする請求項6乃至8のいずれか1項に記載の平坦化装置。
    The composition is made of a photocurable material and is made of a photocurable material.
    The flattening apparatus according to any one of claims 6 to 8, wherein the cured portion is a light-irradiated portion that cures the composition by irradiating light through the mold.
  10.  前記型の接触検知センサは、前記光照射部からの光が透過する導電性材料からなる透明電極で構成されており、
     前記光照射部は、前記型を介して前記基板の組成物に対して露光することを特徴とする請求項9に記載の平坦化装置。
    The contact detection sensor of the type is composed of a transparent electrode made of a conductive material through which light from the light irradiation unit is transmitted.
    The flattening apparatus according to claim 9, wherein the light irradiation unit exposes the composition of the substrate via the mold.
  11.  請求項6乃至10のいずれか1項に記載の平坦化装置を用いて、基板を平坦にする工程と、前記工程で平坦にされた前記基板を加工する工程と、を含み、
     前記加工された前記基板から物品を製造することを特徴とする物品の製造方法。
    A step of flattening a substrate using the flattening apparatus according to any one of claims 6 to 10 and a step of processing the flattened substrate in the step are included.
    A method for producing an article, which comprises producing the article from the processed substrate.
  12.  平面部が設けられ、組成物が設けられた基板に接する側の面と、前記面に対象物が接触したことを検知する接触検知センサとを有する型を保持する型保持部と、基板を保持する基板保持部と、前記基板の上に設けられた組成物を硬化させる硬化部と、を有することを特徴とする平坦化装置の平坦化方法であって、
     前記接触検知センサからの信号に応じて、前記型の平面部と前記組成物との接触を検知する検知工程と、
     検知工程の結果に応じて、前記組成物を硬化させる前記硬化部を制御する制御工程と、を行うことを特徴とする平坦化方法。
    A mold holding portion for holding a mold having a flat surface portion and a surface on the side in contact with the substrate on which the composition is provided, and a contact detection sensor for detecting that an object has come into contact with the surface, and a substrate are held. A method for flattening a flattening apparatus, which comprises a substrate holding portion to be formed and a curing portion for curing a composition provided on the substrate.
    A detection step of detecting contact between the flat surface portion of the mold and the composition in response to a signal from the contact detection sensor.
    A flattening method comprising performing a control step of controlling the cured portion for curing the composition according to the result of the detection step.
  13.  前記制御工程では、前記接触検知センサからの信号に応じて、前記型の平面部と前記組成物との接触開始点および接触状態の少なくとも一方が正しいかを判定し、
     前記接触開始点および前記接触状態の少なくとも一方が正しくないと判定された場合には、前記組成物の硬化を行わないように制御することを特徴とする請求項12に記載の平坦化方法。
    In the control step, it is determined whether at least one of the contact start point and the contact state between the flat surface portion of the mold and the composition is correct in response to the signal from the contact detection sensor.
    The flattening method according to claim 12, wherein when at least one of the contact start point and the contact state is determined to be incorrect, the composition is controlled so as not to be cured.
PCT/JP2020/035676 2019-10-02 2020-09-23 Mold, flattening device, flattening method, and article manufacturing method WO2021065591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019182450A JP7328109B2 (en) 2019-10-02 2019-10-02 Mold, flattening apparatus, flattening method and method for manufacturing article
JP2019-182450 2019-10-02

Publications (1)

Publication Number Publication Date
WO2021065591A1 true WO2021065591A1 (en) 2021-04-08

Family

ID=75336433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035676 WO2021065591A1 (en) 2019-10-02 2020-09-23 Mold, flattening device, flattening method, and article manufacturing method

Country Status (2)

Country Link
JP (1) JP7328109B2 (en)
WO (1) WO2021065591A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022210776A1 (en) 2021-03-29 2022-10-06

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030213382A1 (en) * 2002-01-11 2003-11-20 Massachusetts Institute Of Technology Microcontact printing
US20060073227A1 (en) * 2002-12-31 2006-04-06 Shinill Kang Molding system for molding micro pattern structure having micro heating heating element and method for fabricating mold insert for molding micro pattern structure used therein
JP2012084732A (en) * 2010-10-13 2012-04-26 Canon Inc Imprint method and device
JP2016096327A (en) * 2014-11-11 2016-05-26 キヤノン株式会社 Imprint method, imprint device, mold, and manufacturing method of article
JP2016201522A (en) * 2015-04-14 2016-12-01 キヤノン株式会社 Imprint device, imprint method and manufacturing method for article
JP2019145786A (en) * 2018-02-19 2019-08-29 キヤノン株式会社 Imprint apparatus, planarization layer forming apparatus, forming apparatus, control method, and article manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030213382A1 (en) * 2002-01-11 2003-11-20 Massachusetts Institute Of Technology Microcontact printing
US20060073227A1 (en) * 2002-12-31 2006-04-06 Shinill Kang Molding system for molding micro pattern structure having micro heating heating element and method for fabricating mold insert for molding micro pattern structure used therein
JP2012084732A (en) * 2010-10-13 2012-04-26 Canon Inc Imprint method and device
JP2016096327A (en) * 2014-11-11 2016-05-26 キヤノン株式会社 Imprint method, imprint device, mold, and manufacturing method of article
JP2016201522A (en) * 2015-04-14 2016-12-01 キヤノン株式会社 Imprint device, imprint method and manufacturing method for article
JP2019145786A (en) * 2018-02-19 2019-08-29 キヤノン株式会社 Imprint apparatus, planarization layer forming apparatus, forming apparatus, control method, and article manufacturing method

Also Published As

Publication number Publication date
JP7328109B2 (en) 2023-08-16
JP2021061265A (en) 2021-04-15

Similar Documents

Publication Publication Date Title
JP7033994B2 (en) Molding equipment and manufacturing method of articles
WO2021065591A1 (en) Mold, flattening device, flattening method, and article manufacturing method
US11061335B2 (en) Information processing apparatus, storage medium, lithography apparatus, lithography system, and article manufacturing method
JP7194238B2 (en) Imprint apparatus and article manufacturing method
KR102571412B1 (en) Planarization apparatus, planarization method, and article manufacturing method
JP2020061446A (en) Film formation device and manufacturing method of article
WO2020213571A1 (en) Molding apparatus, molding method, and method for manufacturing article
JP6898785B2 (en) Imprint equipment and article manufacturing method
US11590754B2 (en) Imprint apparatus and article manufacturing method
US11915948B2 (en) Flattening apparatus, article manufacturing method, flattening method, and imprinting apparatus
JP2020072241A (en) Molding apparatus and article manufacturing method
JP2017199731A (en) Imprinting device and article manufacturing method
JP7280768B2 (en) Film forming apparatus and article manufacturing method
US11073769B2 (en) Conveyance apparatus, conveyance method, lithography apparatus, lithography system, and article manufacturing method
JP6700983B2 (en) Measuring apparatus, transfer system, lithographic apparatus, and article manufacturing method
US20230073885A1 (en) Molding apparatus for molding composition on substrate using mold, molding method, and method for manufacturing article
US20230382019A1 (en) Forming apparatus, forming method, and article manufacturing method
TW202404789A (en) Forming apparatus, forming method, and article manufacturing method
US11840010B2 (en) Pattern forming method, imprint apparatus, and article manufacturing method
US20230112924A1 (en) Substrate conveyance method, substrate conveyance apparatus, molding method, and article manufacturing method
JP7134844B2 (en) Molding apparatus and article manufacturing method
JP7263152B2 (en) Molding apparatus, article manufacturing method using molding apparatus
US20220184876A1 (en) Planarization apparatus, planarization method, and article manufacturing method
JP2022187832A (en) Molding device, molding method, and method for manufacturing article
JP2021193714A (en) Molding device and article manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872143

Country of ref document: EP

Kind code of ref document: A1