WO2021062879A1 - 控制信道检测能力的确定方法、装置、设备及介质 - Google Patents

控制信道检测能力的确定方法、装置、设备及介质 Download PDF

Info

Publication number
WO2021062879A1
WO2021062879A1 PCT/CN2019/109829 CN2019109829W WO2021062879A1 WO 2021062879 A1 WO2021062879 A1 WO 2021062879A1 CN 2019109829 W CN2019109829 W CN 2019109829W WO 2021062879 A1 WO2021062879 A1 WO 2021062879A1
Authority
WO
WIPO (PCT)
Prior art keywords
span
combination
pdcch
detection capability
time domain
Prior art date
Application number
PCT/CN2019/109829
Other languages
English (en)
French (fr)
Inventor
徐婧
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980097248.5A priority Critical patent/CN114009112A/zh
Priority to EP19947920.5A priority patent/EP4021110A4/en
Priority to PCT/CN2019/109829 priority patent/WO2021062879A1/zh
Publication of WO2021062879A1 publication Critical patent/WO2021062879A1/zh
Priority to US17/711,813 priority patent/US12101749B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of mobile communications, and in particular to a processing solution for determining the downlink control channel detection capability.
  • the Third Generation Partnership Project (3GPP) has carried out the research and development of the New Radio (NR) system.
  • NR New Radio
  • the user equipment (User Equipment, UE) has the ability to detect physical downlink control channels (Physical Downlink Control Channel, PDCCH), mainly including: non-overlapping CCEs for channel estimation Number, and the number of blind detections of the PDCCH.
  • PDCCH Physical Downlink Control Channel
  • the embodiments of the present application provide a method, device, and storage medium for determining the control channel detection capability.
  • the technical solution is as follows:
  • a method for determining control channel detection capability including:
  • first span combination and the second span combination are applicable to the same time domain unit, and the first target PDCCH detection capability and the second target PDCCH detection capability are independent.
  • the position of the first PDCCH time domain resource satisfies the pattern corresponding to the first span combination, and the position of the first PDCCH time domain resource is obtained according to the resource configuration of the PDCCH;
  • the second PDCCH time domain resource position satisfies the pattern corresponding to the second span combination, and the second PDCCH time domain resource position is obtained according to the resource configuration of the PDCCH;
  • the position of the first PDCCH time domain resource and the position of the second PDCCH time domain resource do not overlap in the time domain, and the first span combination and the second span combination are independent.
  • the first span combination is a span combination that can cover the first PDCCH time domain resource position with the largest PDCCH detection capability among all span combinations;
  • the second span combination is a span combination that can cover the first PDCCH time domain resource position; 2.
  • the PDCCH time domain resource location in the time domain unit satisfies the pattern corresponding to the first span combination and the second span combination; the PDCCH time domain resource location in the time range is based on Obtained by the resource configuration of the PDCCH;
  • the pattern corresponding to the first span combination is the same as the pattern corresponding to the second span combination, the first target PDCCH detection capability corresponding to the first span combination and the second target PDCCH corresponding to the second span combination Independent detection capabilities.
  • the first target PDCCH detection capability corresponding to the first span combination is greater than or equal to the PDCCH detection capability corresponding to the first span combination; or the second target PDCCH detection capability corresponding to the second span combination Ability is equal to 0.
  • the first target PDCCH detection capability corresponding to the first span combination is equal to n times the PDCCH detection capability corresponding to the first span combination, and n is a non-negative number; or the second span combination corresponds to
  • the second target PDCCH detection capability of is equal to m times the PDCCH detection capability corresponding to the second span combination, and m is a non-negative number.
  • n k+1; or there is no configuration in the time domain range corresponding to the second span combination
  • m 0.
  • the resource configuration of the PDCCH includes at least one of: the configuration of a control resource set (CORESET) and the configuration of a search space (Search space).
  • CORESET control resource set
  • Search space search space
  • the method further includes:
  • first span combination and the second span combination include at least one of the following information: a pattern corresponding to the first span combination, The PDCCH detection capability corresponding to the first span combination, the pattern corresponding to the second span combination, and the PDCCH detection capability corresponding to the second span combination.
  • the pattern corresponding to the first span combination is a pattern determined according to the span combination (X1, Y1), X1 is the distance between the start symbols of two adjacent first Span pattern fragments, and Y1 Is the time domain range of the PDCCH in each first Span pattern segment;
  • the pattern corresponding to the second span combination is a pattern determined according to the span combination (X2, Y2), and X2 is the start of two adjacent second Span pattern segments
  • the distance between the initial symbols, Y2 is the time domain range of the PDCCH in each second Span pattern segment.
  • the pattern (X1, Y1) corresponding to the span combination includes at least one of the following combinations: combination (2, 2), combination (4, 3), combination (7, 3);
  • the pattern (X2, Y2) corresponding to the span combination includes at least one of the following combinations: combination (2, 2), combination (4, 3), and combination (7, 3).
  • the PDCCH detection capability corresponding to the span combination (2, 2) includes: the number of non-overlapping CCEs used for channel estimation 16; the PDCCH detection capability corresponding to the span combination (4, 3) includes : The number of non-overlapping CCEs used for channel estimation is 32; the PDCCH detection capability corresponding to the span combination (7, 3) includes: the number of non-overlapping CCEs used for channel estimation is 64.
  • the subcarrier spacing SCS supported by the first span combination and the second span combination includes: 15kHZ and 30kHZ.
  • the method is applied to uRLLC scenarios.
  • a device for determining the detection capability of a control channel includes a receiving module, a processing module, and a sending module.
  • the receiving module is used to realize the function of the receiving step in the above method
  • the processing module is used to realize the function of the determining step and other steps (non-receiving/sending) in the above method
  • the sending module is used to realize the sending step of the above method Function.
  • a UE including: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the processing The device is configured to load and execute the executable instructions to implement the method for determining the control channel detection capability as described in the above aspect.
  • a computer-readable storage medium is provided, and executable instructions are stored in the readable storage medium, and the executable instructions are loaded and executed by the processor to realize the above-mentioned The method of determining the detection capability of the control channel.
  • a chip is provided, the chip includes a programmable integrated circuit or program instructions, the programmable integrated circuit or program instructions are used to implement the method for determining the control channel detection capability as described in the above aspect .
  • a computer program product is provided, and executable instructions are stored in the program product, and the executable instructions are loaded and executed by the processor to realize the control channel detection as described in the above aspects.
  • Method of determining ability is provided.
  • a computer program in which executable instructions are stored, and the executable instructions are loaded and executed by the processor to implement the control channel detection capability described in the foregoing aspect. Determine the method.
  • the UE selects the largest or reasonable PDCCH detection capability according to the PDCCH resource configuration and at least two PDCCH detection capabilities supported by the UE, which can, without significantly increasing the complexity of the UE, Try to give full play to the UE's PDCCH detection capabilities.
  • Fig. 1 is a block diagram of a communication system provided by an exemplary embodiment of the present application
  • Figure 2 is a time-frequency schematic diagram of three typical Span patterns in a time slot
  • FIG. 3 is a time-frequency schematic diagram when three typical Span patterns in a time slot are compared with the search space of the UE;
  • Fig. 4 is a flowchart of a method for determining control channel detection capability provided by an exemplary embodiment of the present application
  • FIG. 5 is a time-frequency schematic diagram when three typical Span patterns in a time slot are compared with the search space of the UE;
  • FIG. 6 is a time-frequency schematic diagram when three typical Span patterns in a time slot are compared with the search space of the UE;
  • Fig. 7 is a block diagram of an apparatus for determining control channel detection capability provided by an exemplary embodiment of the present application.
  • Fig. 8 is a block diagram of a communication device provided by an exemplary embodiment of the present application.
  • Fig. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • the communication system may include: an access network 10 and a terminal 20.
  • the access network 10 includes several access network devices 11.
  • the access network 10 can be called NG-RAN (New Generation-Radio Access Network) in the 5G NR system; the access network device 11 can be a base station, and the base station 11 is a type of A device in the network 10 that provides wireless communication functions for the terminal 20.
  • the base station 11 includes various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • eNB evolved NodeB
  • 5G NR systems they are called gNodeB or gNB. (next generation NodeB).
  • the description of "base station” may change.
  • the above-mentioned devices providing wireless communication functions for the terminal 20 are collectively referred to as access network equipment.
  • the number of terminals 20 is usually multiple, and one or more terminals 20 may be distributed in a cell managed by each access network device 11.
  • the terminal 20 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of UE, MS (Mobile Station, mobile station), etc. .
  • the devices mentioned above are collectively referred to as terminals.
  • the access network device 11 and the terminal 20 communicate with each other through a certain aerial technology, such as a Uu interface.
  • the "5G NR system" in the embodiments of this application may also be referred to as a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of the present application may be applicable to the 5G NR system, and may also be applicable to the i-th evolution system after the 5G NR system, which is not limited in the embodiment of the present application.
  • the PDCCH detection capability includes: the number of non-overlapped CCEs (non-overlapped CCE for channel estimation) used for channel estimation, and the number of blind detections of the PDCCH.
  • PDCCH detection capabilities are defined for time slots, as shown in Table 1 and Table 2 below:
  • DL BWP Down Link Band Width Part
  • DL BWP Down Link Band Width Part
  • the PDCCH detection capability of the time slot does not restrict the uniform distribution of the PDCCH. Therefore, the UE's detection capability (the number of the above two tables) in one slot is difficult to increase.
  • the PDCCH detection capability does not increase, it will increase the scheduling delay of URLLC (Ultra-reliable and Low Latency Communications, high-reliability and low-latency communications). Therefore, this application introduces the PDCCH detection capability for Span, so that the PDCCH detection distribution is uniform, and without significantly increasing the complexity of the terminal, the PDCCH detection opportunity can be increased, and the scheduling delay of URLLC can be avoided.
  • the Span pattern is a pattern used to define the PDCCH detection capability.
  • the Span pattern is determined based on the combination (X, Y).
  • a Span pattern is a pattern that repeats periodically, and a single basic unit that repeats periodically is called a Span pattern segment.
  • X represents the interval between the start symbols of two adjacent Span pattern segments
  • Y is the time domain range of the PDCCH in a Span segment (calculated from the earliest symbol in the Span pattern segment).
  • Figure 2 shows three typical Span patterns (not limited to this).
  • the three typical Span patterns are combination (2, 2), combination (4, 3), and combination (7, 3).
  • Each Span pattern segment in the combination (2, 2) occupies 2 symbols, and each Span pattern segment has 2 symbols used as PDCCH monitoring positions.
  • symbol 0 and symbol 1 are a Span pattern segment
  • symbol 2 and symbol 3 are a Span pattern segment
  • symbol 4 and symbol 5 are a Span pattern segment
  • symbol 7 is a Span pattern fragment
  • symbol 8 and symbol 9 are a Span pattern fragment
  • symbol 10 and symbol 11 are a Span pattern fragment
  • symbol 12 and symbol 13 are a Span pattern fragment.
  • Each Span pattern segment in the combination (4, 3) occupies 4 symbols, and there are 3 symbols used as PDCCH monitoring positions in each Span pattern.
  • symbols 0, 1, 2, and 3 are a Span pattern segment, and symbols 0, 1, and 2 are the monitoring positions of the PDCCH; symbols 4, 5, 6, 7 It is a Span pattern segment, and the symbols 4, 5, and 6 are the monitoring positions of the PDCCH; the symbols 8, 9, 10, and 11 are a Span pattern segment, and the symbols 8, 9, and 10 are the monitoring positions of the PDCCH; the symbols 12 and symbols 13 is an incomplete Span pattern segment, and symbols 12 and 13 are the monitoring positions of the PDCCH.
  • Each Span pattern in the combination (7, 3) occupies 7 symbols, and there are 3 symbols used as PDCCH monitoring positions in each Span pattern.
  • symbols 0, 1, 2, 3, 4, 5, and 6 are a Span pattern segment, and symbols 0, 1, 2 are PDCCH monitoring positions; symbol 7 , 8, 9, 10, 11, 12, and 13 are a Span pattern segment, and the symbols 7, 8, and 9 are the monitoring positions of the PDCCH.
  • the PDCCH detection capability under each combination can be characterized by the number of non-overlapping CCEs used for channel estimation.
  • the PDCCH detection ability corresponding to each Span pattern is denoted as C, namely C(2,2), C(4,3) and C(7,3).
  • 16 represents the number of non-overlapping CCEs used for channel estimation in a single (2, 2)
  • Span pattern segment is 16
  • 32 represents non-overlapping CCEs used for channel estimation in a single (4, 3) Span pattern segment.
  • the number of overlapping CCEs is 32 times, and 64 represents that the number of non-overlapping CCEs used for channel estimation in a single (7, 3) Span pattern segment is 64 times.
  • the PDCCH detection capability further includes: the number of blind detections.
  • the UE reports the PDCCH capabilities it supports to the base station, but the actual PDCCH resource configuration is configured by the base station to the terminal, and the two are independent of each other.
  • the resource configuration of PDCCH includes: control resource set CORESET and search space.
  • the base station configures search space 1 and search space 2 for the UE. From the search space 1 and search space 2, the PDCCH resource distribution is not uniform, and it is not consistent with each Span pattern. Exactly match. Among them, “matching” means that the time domain resource position of the search space is a subset of the PDCCH monitoring position in the Span pattern. "Perfect match” means that the time domain resource position of the search space is a subset of the PDCCH monitoring position in each span pattern segment of the Span pattern.
  • the first time domain resource position of search space 1 satisfies Span pattern segment 1 (including symbols 0 and 1)
  • the second time domain resource position of search space 1 satisfies the Span pattern
  • the third time-domain resource location of search space 1 satisfies Span pattern segment 5 (including symbols 8, 9).
  • the fourth time domain resource location in search space 2 satisfies Span pattern segment 1 (including symbols 0 and 1)
  • the fifth time domain resource location in search space 2 satisfies Span pattern segment 3 (including symbols 8, 9).
  • the first time domain resource location of search space 1 satisfies the Span pattern 1 segment (including symbols 0, 1, 2, 3), and the second time domain resource of search space 1
  • the position satisfies the Span pattern segment 2 (including the symbols 4, 5, 6, and 7)
  • the third time domain resource location of the search space 1 satisfies the Span pattern segment 5 (including the symbols 8, 9, 10, and 11).
  • the fourth time domain resource location in search space 2 satisfies Span pattern segment 1 (including symbols 0, 1, 2, 3)
  • the fifth time domain resource location in search space 2 satisfies Span pattern segment 3 (including symbols 8, 9) , 10, 11).
  • the first time domain resource location of search space 1 satisfies Span pattern segment 1 (including symbols 0, 1, 2, 3, 4, 5, and 6), but search space 1
  • the second time-domain resource location of does not satisfy Span pattern segment 1
  • the third time-domain resource location of search space 1 satisfies Span pattern segment 2 (including symbols 7, 8, 9, 10, 11, 12, and 13).
  • the fourth time domain resource location in search space 2 satisfies Span pattern segment 1 (including symbols 0, 1, 2, 3, 4, 5, 6)
  • the fifth time domain resource location in search space 2 satisfies Span pattern segment 2 (Including symbols 7, 8, 9, 10, 11, 12, 13).
  • the Span pattern segment 4 (including symbols 12 and 13) in the combination (4, 3) in FIG. 3 is not configured with PDCCH resources.
  • the PDCCH detection capability of the UE is not fully used, and other Span pattern segments are restricted due to the limitation of the PDCCH detection capability. Therefore, the problems caused by free Span pattern fragments also need to be resolved.
  • the PDCCH detection capability of the UE includes at least: the receiving capability of receiving wireless signals and the calculation capability of blindly detecting the PDCCH from the wireless signals.
  • the UE can receive wireless signals on symbols 0, 1, 2 by the receiver, and on symbols 0, 1, 2, 3, 4, 5, and 6 by the processor Blind detection of the PDCCH from the wireless signal, so the computing power on the idle Span pattern can be fully utilized.
  • Fig. 4 is a flowchart of a method for determining a control channel detection capability provided by an exemplary embodiment of the present application. This method can be applied to the communication system shown in FIG. 1, and the method includes:
  • Step 402 Receive the resource configuration of the PDCCH
  • the UE receives the PDCCH resource configuration sent by the base station.
  • the PDCCH resource configuration is received in a system information block (System Information Block, SIB).
  • SIB System Information Block
  • the resource configuration of the PDCCH includes: the configuration of the control resource set CORESET, and the configuration of the search space.
  • the PDCCH resource configuration is used to configure the time domain resource location of the PDCCH to the UE.
  • Step 404 Determine the first target PDCCH detection capability corresponding to the first span combination and the second target PDCCH detection capability corresponding to the second span combination according to the PDCCH resource configuration.
  • the first span combination and the second span combination are applicable to the same time domain unit.
  • the time domain unit includes but is not limited to: at least one of a time slot, a subframe, and a radio frame.
  • the following uses the time domain unit as a "time slot" as an example.
  • first span combination and the second span combination are span combinations supported by different time domain ranges (or segments) in the same time domain unit.
  • the UE supports at least two PDCCH detection capabilities.
  • the target PDCCH detection capability is related to the resource configuration of the PDCCH.
  • the target PDCCH detection capability is the maximum or reasonable PDCCH detection capability selected by the UE according to the PDCCH resource configuration.
  • the first target PDCCH detection capability and the second target PDCCH detection capability are independent. That is, the first target PDCCH detection capability and the second target PDCCH detection capability may be the same or different.
  • Span patterns is used to characterize the PDCCH detection capability.
  • the Span pattern is a pattern determined according to the combination (X, Y), X is the distance between the start symbols of two adjacent Span patterns, and Y is the time domain range of the PDCCH in the same Span pattern.
  • the first span combination can be expressed as a combination (X1, Y1), and the second span combination can be expressed as a combination (X2, Y2).
  • the pattern (X, Y) corresponding to the combination includes at least one of the following combinations: combination (2, 2), combination (4, 3), and combination (7, 3).
  • 16, 32, and 64 are exemplary values, which are not limited in this application.
  • the SCS supported by the combination (X, Y) includes: 15kHZ and 30kHZ.
  • the SCS is 60kHZ and 120kHZ, since the interval of each time slot is short enough, such as 0.25ms and 0.125ms, the PDCCH detection capability based on the time slot level can already meet the requirements of URLLC.
  • the combination (X, Y) also includes at least one of the following combinations: combination (2, 1), combination (3, 1), combination (3, 2), combination (3, 3), combination ( 4, 1), (4, 2), combination (7, 1), combination (7, 2).
  • combination (2, 2), combination (4, 3), and combination (7, 3) are used as examples in this application.
  • the method provided in this embodiment provides a PDCCH detection capability based on the Span level.
  • the UE selects the largest or reasonable PDCCH detection capability according to the PDCCH resource configuration and at least two PDCCH detection capabilities supported by the UE. It is possible to give full play to the PDCCH detection capability of the UE without significantly increasing the complexity of the UE.
  • Different time domain ranges in the same time domain unit independently determine span combinations, and the PDCCH detection capabilities corresponding to each span combination in the time domain range are the same or different.
  • the UE receives the PDCCH resource configuration sent by the base station, and determines the first PDCCH time domain resource location and the second PDCCH time domain resource location according to the PDCCH resource configuration. That is, the time domain resource location of the first PDCCH and the time domain resource location of the second PDCCH are both obtained according to the resource configuration of the PDCCH.
  • the position of the first PDCCH time domain resource satisfies the pattern corresponding to the first span combination; the position of the second PDCCH time domain resource satisfies the pattern corresponding to the second span combination.
  • the first PDCCH time domain resource location and the second PDCCH time domain resource location do not overlap in the time domain, and the first span combination and the second span combination are independent.
  • the first span combination is the span combination with the greatest PDCCH detection capability among all the span combinations that can cover the first PDCCH time domain resource location;
  • the second span combination is the PDCCH detection in all the span combinations that can cover the second PDCCH time domain resource location The most capable span combination.
  • the UE receives the resource configuration of the PDCCH sent by the base station.
  • the PDCCH resource configuration is received in a system information block (System Information Block, SIB).
  • SIB System Information Block
  • the resource configuration of the PDCCH includes: the configuration of the control resource set CORESET, and the configuration of the search space.
  • the PDCCH resource configuration is used to configure the time domain resource location of the PDCCH to the UE.
  • the resource configuration of the PDCCH includes: search space 1 and search space 2, as shown in FIG. 6.
  • Search space 1 includes: time domain resource location 1, time domain resource location 2, and time domain resource location 3 of the PDCCH.
  • Search space 2 includes: time domain resource position 4 and time domain resource position 5 of the PDCCH.
  • time domain resource position 1 and time domain resource position 4 are the first group of time domain resource positions
  • time domain resource position 2 is the second group of time domain resource positions
  • time domain resource position 3 and time domain resource position 5 are third Group time domain resource location.
  • Each group of time domain resource locations includes: one time domain resource location or multiple time domain resource locations that overlap in the time domain. The locations of time domain resources of different groups do not overlap each other in the time domain.
  • the first group of time domain resource positions and/or the second group of time domain resource positions are "first PDCCH time domain resource positions", and the third group of time domain resource positions are "second PDCCH time domain resource positions" for description.
  • the PDCCH detection capabilities supported by the terminal include: C (2, 2), C (4, 3) and C (7, 3).
  • the first time domain resource position of search space 1 satisfies Span pattern segment 1 (including symbols 0 and 1)
  • the second time domain resource position of search space 1 satisfies the Span pattern
  • the third time-domain resource location of search space 1 satisfies Span pattern segment 5 (including symbols 8, 9).
  • the fourth time domain resource location in search space 2 satisfies Span pattern segment 1 (including symbols 0 and 1)
  • the fifth time domain resource location in search space 2 satisfies Span pattern segment 3 (including symbols 8, 9). Therefore, Span pattern segments 1, 3, and 5 are available Span pattern segments.
  • the first time domain resource location of search space 1 satisfies the Span pattern 1 segment (including symbols 0, 1, 2, 3), and the second time domain resource of search space 1
  • the location satisfies Span pattern segment 2 (including symbols 4, 5, 6, and 7)
  • the third time domain resource location of search space 1 satisfies Span pattern segment 3 (including symbols 8, 9, 10, 11).
  • the fourth time domain resource location in search space 2 satisfies Span pattern segment 1 (including symbols 0, 1, 2, 3)
  • the fifth time domain resource location in search space 2 satisfies Span pattern segment 3 (including symbols 8, 9) , 10, 11). Therefore, Span pattern segments 1, 2, and 3 are available Span pattern segments.
  • Span pattern segment 2 is an available Span pattern segment.
  • the available Span pattern segments in a single time slot include:
  • Available Span pattern fragments that overlap in time domain include:
  • the combination (4, 3) is determined to correspond to the first group of time domain resource positions (time domain resource positions 1 and 4) The first span combination.
  • the combination (4, 3) is determined as the first corresponding to the second set of time domain resource locations (time domain resource location 2) span combination.
  • the combination (7, 3) is determined as the third group of time domain resource locations (time domain resource locations). 3 and 5) The corresponding second span combination.
  • symbol 7 can be divided into segments at this time, or symbol 7 can be divided into segments 3.
  • the symbol 7 is divided into segment 2 as an example, so as to ensure the PDCCH detection capability of the terminal in segment 2 as much as possible.
  • the method provided in this embodiment provides a PDCCH detection capability based on the Span level.
  • the UE selects the largest or reasonable PDCCH detection capability according to the PDCCH resource configuration and at least two PDCCH detection capabilities supported by the UE. It is possible to give full play to the PDCCH detection capability of the UE without significantly increasing the complexity of the UE.
  • This embodiment also uses the maximum PDCCH detection capability at the segment level as the maximum PDCCH detection capability on different time domain ranges (symbols) in a single time slot, so as to give full play to the UE’s PDCCH detection capability and make effective use of idle Span patterns. Test your ability.
  • the UE receives the PDCCH resource configuration sent by the base station, and determines at least one PDCCH time domain resource location according to the PDCCH resource configuration. That is, the time domain resource position of at least one PDCCH is all obtained according to the resource configuration of the PDCCH.
  • the (all) time domain resource positions of the PDCCH in the time domain unit satisfy the pattern corresponding to the first span combination and the second span combination.
  • the pattern corresponding to the first span combination is the same as the pattern corresponding to the second span combination, and the first target PDCCH detection capability corresponding to the first span combination and the second target PDCCH detection capability corresponding to the second span combination are independent.
  • the combination with the largest PDCCH detection capability is selected as the first span combination and the second span combination.
  • the first target PDCCH detection capability corresponding to the first span combination is greater than or equal to the PDCCH detection capability corresponding to the first span combination; or the second target PDCCH detection capability corresponding to the second span combination is equal to zero.
  • the first target PDCCH detection capability corresponding to the first span combination is equal to n times the PDCCH detection capability corresponding to the first span combination, where n is a non-negative number; or the second target PDCCH detection capability corresponding to the second span combination is equal to all
  • the PDCCH detection capability corresponding to the second span combination is m times, and m is a non-negative number.
  • the k adjacent combinations of the first span combination may be the adjacent k combinations before the first span combination, or the adjacent k combinations after the first span combination, or before and after the first span combination
  • the k adjacent combinations of the first span are not limited in the embodiment of the present application.
  • the adjacent k combinations of the first span are the adjacent k combinations after the first span combination.
  • the UE receives the PDCCH resource configuration sent by the base station.
  • the resource configuration of the PDCCH is received in the SIB.
  • the resource configuration of the PDCCH includes: the configuration of the control resource set CORESET, and the configuration of the search space.
  • the PDCCH resource configuration is used to configure the time domain resource location of the PDCCH to the UE.
  • the resource configuration of the PDCCH includes: search space 1 and search space 2, as shown in FIG. 6.
  • Search space 1 includes: candidate search position 1, time domain resource position 2, and time domain resource position 3 of the PDCCH.
  • Search space 2 includes: time domain resource position 4 and time domain resource position 5 of the PDCCH.
  • time domain resource position 1 and time domain resource position 4 are the first group of time domain resource positions
  • time domain resource position 2 is the second group of time domain resource positions
  • time domain resource position 3 and time domain resource position 5 are third Group time domain resource location.
  • Each group of time domain resource locations includes: one time domain resource location or multiple time domain resource locations that overlap in the time domain. The locations of time domain resources of different groups do not overlap each other in the time domain.
  • the PDCCH detection capabilities supported by the terminal include: C (2, 2), C (4, 3) and C (7, 3).
  • the first time domain resource position of search space 1 satisfies Span pattern segment 1 (including symbols 0 and 1)
  • the second time domain resource position of search space 1 satisfies the Span pattern
  • the third time-domain resource location of search space 1 satisfies Span pattern segment 5 (including symbols 8, 9).
  • the fourth time domain resource location in search space 2 satisfies Span pattern segment 1 (including symbols 0 and 1)
  • the fifth time domain resource location in search space 2 satisfies Span pattern segment 3 (including symbols 8, 9). Therefore, the combination (2, 2) satisfies the time domain resource positions of all PDCCHs in the time slot.
  • the first time domain resource location of search space 1 satisfies the Span pattern 1 segment (including symbols 0, 1, 2, 3), and the second time domain resource of search space 1
  • the location satisfies Span pattern segment 2 (including symbols 4, 5, 6, and 7)
  • the third time domain resource location of search space 1 satisfies Span pattern segment 3 (including symbols 8, 9, 10, 11).
  • the fourth time domain resource location in search space 2 satisfies Span pattern segment 1 (including symbols 0, 1, 2, 3)
  • the fifth time domain resource location in search space 2 satisfies Span pattern segment 3 (including symbols 8, 9) , 10, 11). Therefore, the combination (4, 3) satisfies the time domain resource positions of all PDCCHs in the time slot.
  • the first time domain resource location of search space 1 satisfies Span pattern segment 1 (including symbols 0, 1, 2, 3, 4, 5, and 6), but search space 1
  • the second time-domain resource location of does not satisfy Span pattern segment 1
  • the third time-domain resource location of search space 1 satisfies Span pattern segment 2 (including symbols 7, 8, 9, 10, 11, 12, and 13).
  • the first time domain resource location in search space 2 satisfies Span pattern segment 1 (including symbols 0, 1, 2, 3, 4, 5, and 6)
  • the second time domain resource location in search space 2 satisfies Span pattern segment 2 (Including symbols 7, 8, 9, 10, 11, 12, 13). Therefore, the combination (7, 3) does not satisfy the time domain resource positions of all PDCCHs in the time slot.
  • satisfying the time domain resource positions of all PDCCHs in the time slot includes: 1. Combination (2, 2); 2. Combination (4, 3). Since the PDCCH detection ability of the combination (4, 3) is greater than the PDCCH detection ability of the combination (2, 2), the PDCCH detection ability C (4, 3) of the combination (4, 3) is determined as the first PDCCH detection ability.
  • the combination (4, 3) includes four segments in a single time slot:
  • Span pattern fragment 1 (including symbols 0, 1, 2, 3);
  • Span pattern fragment 3 (including symbols 8, 9, 10, 11);
  • Span pattern fragment 4 (including symbols 12 and 13).
  • the span pattern segment 3 can be regarded as the "first span combination”
  • the span pattern segment 4 can be regarded as the "second span combination”. That is, the first span combination and the second span combination are span combinations that are satisfied on different time domain ranges (symbols) in the same time slot.
  • the method provided in this embodiment provides a PDCCH detection capability based on the Span level.
  • the UE selects the largest or reasonable PDCCH detection capability according to the PDCCH resource configuration and at least two PDCCH detection capabilities supported by the UE. It is possible to give full play to the PDCCH detection capability of the UE without significantly increasing the complexity of the UE.
  • the PDCCH detection capability of the UE can be fully utilized as much as possible, and the detection capability on the idle Span pattern can be effectively utilized.
  • the first span combination and the second span combination include at least one of the following information: the pattern corresponding to the first span combination, the first The PDCCH detection capability corresponding to the span combination, the pattern corresponding to the second span combination, and the PDCCH detection capability corresponding to the second span combination.
  • the base station may configure multiple search spaces for the UE, for example, 2 to 10 search spaces.
  • the above search space 1 and search space 2 are only exemplary descriptions.
  • FIG. 7 shows a block diagram of an apparatus for determining a control channel detection capability provided by an exemplary embodiment of the present application.
  • the apparatus includes: a receiving module 720, a processing module 740, and a sending module 760.
  • the receiving module 720 is used to implement the functions of the receiving step in the above method
  • the processing module 740 is used to implement the functions of the determining step and other steps (non-receiving/sending) in the above method
  • the sending module 760 is used to implement Functions related to sending steps. among them,
  • the receiving module 720 is configured to receive the resource configuration of the physical downlink control channel PDCCH;
  • the processing module 740 is configured to determine the first target PDCCH detection capability corresponding to the first span combination and the second target PDCCH detection capability corresponding to the second span combination according to the PDCCH resource configuration;
  • first span combination and the second span combination are applicable to the same time domain unit, and the first target PDCCH detection capability and the second target PDCCH detection capability are independent.
  • the first PDCCH time domain resource position satisfies the pattern corresponding to the first span combination, the first PDCCH time domain resource position is obtained according to the PDCCH resource configuration;
  • the second PDCCH time domain resource position The location of the domain resource satisfies the pattern corresponding to the second span combination, and the location of the second PDCCH time domain resource is obtained according to the PDCCH resource configuration;
  • the position of the first PDCCH time domain resource and the position of the second PDCCH time domain resource do not overlap in the time domain, and the first span combination and the second span combination are independent.
  • the first span combination is a span combination with the largest PDCCH detection capability among all span combinations that can cover the location of the first PDCCH time domain resource;
  • the second span combination is a span combination with the largest PDCCH detection capability among all span combinations that can cover the position of the second PDCCH time domain resource.
  • the PDCCH time domain resource location in the time domain unit satisfies the pattern corresponding to the first span combination and the second span combination; the PDCCH time domain resource location within the time range is Obtained according to the resource configuration of the PDCCH;
  • the pattern corresponding to the first span combination is the same as the pattern corresponding to the second span combination, the first target PDCCH detection capability corresponding to the first span combination and the second target PDCCH corresponding to the second span combination Independent detection capabilities.
  • the first target PDCCH detection capability corresponding to the first span combination is greater than or equal to the PDCCH detection capability corresponding to the first span combination;
  • the first target PDCCH detection capability corresponding to the first span combination is equal to n times the PDCCH detection capability corresponding to the first span combination, and n is a non-negative number;
  • the second target PDCCH detection capability corresponding to the second span combination is equal to m times the PDCCH detection capability corresponding to the second span combination, and m is a non-negative number.
  • the resource configuration of the PDCCH includes at least one of: the configuration of the control resource set CORESET, and the configuration of the search space.
  • the device further includes:
  • the sending module 760 is used to report the first span combination and the second span combination to the access network device.
  • the first span combination and the second span combination include at least one of the following information: a pattern corresponding to the first span combination, and the first span combination.
  • the pattern corresponding to the first span combination is a pattern determined according to the span combination (X1, Y1), and X1 is the distance between the start symbols of two adjacent first Span pattern segments, Y1 is the time domain range of the PDCCH in each first Span pattern segment; the pattern corresponding to the second span combination is a pattern determined according to the span combination (X2, Y2), and X2 is the pattern of two adjacent second Span pattern segments The distance between the start symbols, Y2 is the time domain range of the PDCCH in each second Span pattern segment.
  • the pattern (X1, Y1) corresponding to the span combination includes at least one of the following combinations: combination (2, 2), combination (4, 3), combination (7, 3);
  • the pattern (X2, Y2) corresponding to the span combination includes at least one of the following combinations: combination (2, 2), combination (4, 3), and combination (7, 3).
  • the subcarrier spacing SCS supported by the first span combination and the second span combination includes: 15kHZ and 30kHZ.
  • the combination (X, Y) includes at least one of the following combinations:
  • the device is applied to the uRLLC scenario.
  • FIG. 8 shows a schematic structural diagram of a communication device (UE or access network device) provided by an exemplary embodiment of the present application.
  • the UE includes: a processor 101, a receiver 102, a transmitter 103, a memory 104, and a bus 105.
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 104 is connected to the processor 101 through a bus 105.
  • the memory 104 may be used to store at least one instruction, and the processor 101 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
  • the memory 104 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read-only memory (EEPROM), erasable programmable read-only memory (EPROM), static anytime access memory (SRAM), read-only memory (ROM), magnetic memory, flash memory, programmable read-only memory (PROM) .
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, and the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the method for determining the control channel detection capability performed by the UE provided in the foregoing method embodiments.
  • a computer program product stores at least one instruction, at least one program, a code set, or an instruction set, the at least one instruction, the at least one program,
  • the code set or instruction set is loaded and executed by the processor to implement the method for determining the control channel detection capability performed by the UE provided in the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种控制信道检测能力的确定方法、装置、设备及存储介质,应用于通信系统中,该方法包括:接收PDCCH的资源配置;根据所述PDCCH的资源配置,确定第一span组合对应的第一目标PDCCH检测能力和第二span组合对应的第二目标PDCCH检测能力;其中,所述第一span组合和所述第二span组合适用于同一个时域单元,所述第一目标PDCCH检测能力和第二目标PDCCH检测能力独立。本申请在不明显增加UE复杂度的情况下,尽量充分发挥UE的PDCCH检测能力。

Description

控制信道检测能力的确定方法、装置、设备及介质 技术领域
本申请涉及移动通信领域,特别涉及一种确定下行控制信道检测能力的处理方案。
背景技术
第三代合作伙伴项目(Third Generation Partnership Project,3GPP)开展了新空口(New Radio,NR)系统的研发。
在NR系统中,用户设备(3GPP对移动终端的命名)(User Equipment,UE)对物理下行控制信道(Physical Downlink Control Channel,PDCCH)的检测能力,主要包括:用于信道估计的非重叠CCE个数,和PDCCH的盲检测次数。
如何在不明显增加终端的复杂度的情况下,能够增加PDCCH检测机会,避免调度时延,是亟待解决的问题。
发明内容
本申请实施例提供了一种控制信道检测能力的确定方法、装置和存储介质。所述技术方案如下:
根据本申请的一个方面,提供了一种控制信道检测能力的确定方法,所述方法包括:
接收PDCCH的资源配置;
根据所述PDCCH的资源配置,确定第一span组合对应的第一目标PDCCH检测能力和第二span组合对应的第二目标PDCCH检测能力;
其中,所述第一span组合和所述第二span组合适用于同一个时域单元,所述第一目标PDCCH检测能力和第二目标PDCCH检测能力独立。
在一个可能的设计中,第一PDCCH时域资源位置满足所述第一span组合对应的图样,所述第一PDCCH时域资源位置是根据所述PDCCH的资源配置获得的;
第二PDCCH时域资源位置满足所述第二span组合对应的图样,所述第二PDCCH时域资源位置是根据所述PDCCH的资源配置获得的;
其中,所述第一PDCCH时域资源位置和所述第二PDCCH时域资源位置在时域上不重叠,所述第一span组合和所述第二span组合独立。
在一个可能的设计中,所述第一span组合是能够覆盖所述第一PDCCH时域资源位置的所有span组合中PDCCH检测能力最大的span组合;所述第二span组合是能够覆盖所述第二PDCCH时域资源位置的所有span组合中PDCCH检测能力最大的span组合。
在一个可能的设计中,所述时域单元内的PDCCH时域资源位置满足所述第一span组合和所述第二span组合对应的图样;所述时间范围内的PDCCH时域资源位置是根据所述PDCCH的资源配置获得的;
其中,所述第一span组合对应的图样和所述第二span组合对应的图样相同,所述第一span组合对应的第一目标PDCCH检测能力和所述第二Span组合对应的第二目标PDCCH检测能力独立。
在一个可能的设计中,所述第一span组合对应的第一目标PDCCH检测能力大于或等于所述第一span组合对应的PDCCH检测能力;或所述第二Span组合对应的第二目标PDCCH检测能力等于0。
在一个可能的设计中,所述第一span组合对应的第一目标PDCCH检测能力等于所述第一span组合对应的PDCCH检测能力的n倍,n为非负数;或所述第二Span组合对应的第二目标PDCCH检测能力等于所述第二span组合对应的PDCCH检测能力的m倍,m为非负数。
在一个可能的设计中,所述第一span组合相邻k个组合对应的时域范围内没有配置PDCCH时,n=k+1;或所述第二span组合对应的时域范围内没有配置所述PDCCH,m=0。
在一个可能的设计中,所述PDCCH的资源配置包括至少之一:控制资源集(CORESET)的配置,以及,搜索空间(Search space)的配置。
在一个可能的设计中,所述方法还包括:
向接入网设备上报所述第一span组合和所述第二span组合,所述第一span组合和所述第二span组合至少包含如下信息之一:所述第一span组合对应的图样,所述第一span组合对应的PDCCH检测能力,所述第二span组合对应的图样,所述第二span组合对应的PDCCH检测能力。
在一个可能的设计中,所述第一span组合对应的图样是根据span组合(X1,Y1)确定的图样,X1是相邻两个第一Span图样片段的起始符号之间的距离,Y1是每个第一Span图样片段中PDCCH的时域范围;所述第二span组合对应的图样是根据span组合(X2,Y2)确定的图样,X2是相邻两个第二Span图样片段的起始符号之间的距离,Y2是每个第二Span图样片段中PDCCH的时域范围。
在一个可能的设计中,所述span组合对应的图样(X1,Y1)包括如下组合中的至少一种:组合(2,2)、组合(4,3)、组合(7,3);所述span组合对应的图样(X2,Y2)包括如下组合中的至少一种:组合(2,2)、组合(4,3)、组合(7,3)。
在一个可能的设计中,所述span组合(2,2)对应的PDCCH检测能力包括:用于信道估计的非重叠CCE的次数16;所述span组合(4,3)对应的PDCCH检测能力包括:用于信道估计的非重叠CCE的次数32;所述span组合(7,3)对应的PDCCH检测能力包括:用于信道估计的非重叠CCE的次数64。
在一个可能的设计中,所述第一span组合和所述第二span组合支持的子载波间隔SCS包括:15kHZ和30kHZ。
在一个可能的设计中,所述方法应用于uRLLC场景。
本申请的另一方面,还提供了一种控制信道检测能力的确定装置,所述装置包括:接收模块、处理模块和发送模块。接收模块用于实现上述方法中有关接收步骤的功能,处理模块用于实现上述方法中有关确定步骤以及其它步骤(非接收/发送)的步骤的功能,发送模块用于实现上述方法中有关发送步骤的功能。
根据本申请的一个方面,提供了一种UE,所述UE包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的控制信道检测能力的确定方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上方面所述的控制信道检测 能力的确定方法。
根据本申请的一个方面,提供了一种芯片,所述芯片包括可编程集成电路或程序指令,所述可编程集成电路或程序指令用于实现如上述方面所述的控制信道检测能力的确定方法。
根据本申请的一个方面,提供了一种计算机程序产品,所述程序产品中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的控制信道检测能力的确定方法。
根据本申请的一个方面,提供了一种计算机程序,所述程序中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的控制信道检测能力的确定方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过提供Span级别的UE检测能力,由UE根据PDCCH的资源配置和自身支持的至少两种PDCCH检测能力中,选择出最大或合理的PDCCH检测能力,能够在不明显增加UE复杂度的情况下,尽量充分发挥UE的PDCCH检测能力。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的通信系统的框图;
图2是在一个时隙中的3种典型的Span图样的时频示意图;
图3是在一个时隙中的3种典型的Span图样与UE的搜索空间对照时的时频示意图;
图4是本申请一个示例性实施例提供的控制信道检测能力的确定方法的流程图;
图5是在一个时隙中的3种典型的Span图样与UE的搜索空间对照时的时频示意图;
图6是在一个时隙中的3种典型的Span图样与UE的搜索空间对照时的时频示意图;
图7是本申请一个示例性实施例提供的控制信道检测能力的确定装置的框图;
图8是本申请一个示例性实施例提供的通信设备的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的通信系统以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本申请一个示例性实施例提供的通信系统的框图。如图1所示,该通信系统可以包括:接入网10和终端20。
接入网10中包括若干个接入网设备11。接入网10在5G NR系统中可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网);接入网设备11可以是基站,该基站11是一种部署在接入网10中为终端20提供无线通信功能的装置,基站11包括各种 形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNB(evolved NodeB);在5G NR系统中,称为gNodeB或者gNB(next generation NodeB)。随着通信技术的演进,“基站”这一描述可能会变化。为方便本申请实施例中,上述为终端20提供无线通信功能的装置统称为接入网设备。
终端20的数量通常为多个,每一个接入网设备11所管理的小区内可以分布一个或多个终端20。终端20可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的UE、MS(Mobile Station,移动台)等等。为方便描述,上面提到的设备统称为终端。接入网设备11与终端20之间通过某种空中技术互相通信,例如Uu接口。
本申请实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后i个的演进系统,本申请实施例对此不作限定。
PDCCH检测能力包括:用于信道估计的非重叠CCE(non-overlapped CCE for channel estimation)个数,和PDCCH的盲检测次数。在相关技术中,PDCCH检测能力是针对时隙来定义的,如下表一和表二所示:
表一
Figure PCTCN2019109829-appb-000001
在单一服务小区中根据子载波间隔SCS配置μ的一个下行带宽部分(Down Link BandWidth Part,DL BWP)中,在每个时隙监听PDCCH候选的最大数量
Figure PCTCN2019109829-appb-000002
表二
Figure PCTCN2019109829-appb-000003
在单一服务小区中根据子载波间隔SCS配置μ的一个下行带宽部分(Down Link BandWidth Part,DL BWP)中,在每个时隙中用于信道估计的非重叠CCEs的最大数量
Figure PCTCN2019109829-appb-000004
相关技术中针对时隙的PDCCH检测能力,没有约束PDCCH的均匀分布。因此,UE在一个时隙内的检测能力(上述两个表格的数目)难以增加。但PDCCH检测能力不增加,会增加URLLC(Ultra-reliable and Low Latency Communications,高可靠和低延迟通信)的调度时延。因此,本申请引入了针对Span的PDCCH检测能力,使得PDCCH检测分布均匀,并且在不明显增加终端复杂度的情况下,能够增加PDCCH检测机会,避免URLLC的调度时延。
Span图样是用于定义PDCCH检测能力的图样。Span图样是基于组合(X,Y)来确定 的。Span图样是周期性重复的图样,周期性重复的单个基本单元称为Span图样片段。其中,X表示相邻两个Span图样片段之间的起始符号之间的间隔,Y是一个Span片段内的PDCCH的时域范围(从Span图样片段内的最早一个符号开始起算)。图2示出了3种典型的Span图样(不限于此)。该3种典型的Span图样分别是组合(2,2)、组合(4,3)、组合(7,3)。
组合(2,2)中的每个Span图样片段占用2个符号,每个Span图样片段中用于作为PDCCH监听位置的符号为2个。在包括编号0至13共14个符号的时隙中,符号0和符号1是一个Span图样片段,符号2和符号3是一个Span图样片段,符号4和符号5是一个Span图样片段,符号6和符号7是一个Span图样片段,符号8和符号9是一个Span图样片段,符号10和符号11是一个Span图样片段,符号12和符号13是一个Span图样片段。
组合(4,3)中的每个Span图样片段占用4个符号,每个Span图样中用于作为PDCCH监听位置的符号为3个。在包括编号0至13共14个符号的时隙中,符号0、1、2、3是一个Span图样片段,且符号0、1、2是PDCCH的监听位置;符号4、5、6、7是一个Span图样片段,且符号4、5、6是PDCCH的监听位置;符号8、9、10、11是一个Span图样片段,且符号8、9、10是PDCCH的监听位置;符号12和符号13是一个不完整的Span图样片段,且符号12和13是PDCCH的监听位置。
组合(7,3)中的每个Span图样占用7个符号,每个Span图样中用于作为PDCCH监听位置的符号为3个。在包括编号0至13共14个符号的时隙中,符号0、1、2、3、4、5、6是一个Span图样片段,且符号0、1、2是PDCCH的监听位置;符号7、8、9、10、11、12、13是一个Span图样片段,且符号7、8、9是PDCCH的监听位置。
其中,每种组合下的PDCCH检测能力可以采用用于信道估计的非重叠CCE的次数来表征。每种Span图样对应的PDCCH检测能力记为C,即C(2,2),C(4,3)和C(7,3).一种典型的取值为C(2,2)=16,C(4,3)=32,C(7,3)=64。其中,16代表单个(2,2)的Span图样片段内的用于信道估计的非重叠CCE的次数为16次,32代表单个(4,3)的Span图样片段内的用于信道估计的非重叠CCE的次数为32次,64代表单个(7,3)的Span图样片段内的用于信道估计的非重叠CCE的次数为64次。可选地,PDCCH检测能力还包括:盲检测次数。
UE向基站上报自身支持的PDCCH能力,但实际的PDCCH的资源配置是由基站来向终端配置的,两者互相独立。PDCCH的资源配置包括:控制资源集CORESET和搜索空间(Search space)。示例性的如图3所述,基站为UE配置了搜索空间1和搜索空间2,从搜索空间1和搜索空间2来看,PDCCH的资源分布并不是均匀的,并且与每种Span图样也不是完全匹配的。其中,“匹配”是指:搜索空间的时域资源位置是Span图样中PDCCH监听位置的子集。“完全匹配”是指:搜索空间的时域资源位置是Span图样的每段span图样片段中PDCCH监听位置的子集。
对于组合(2,2)对应的Span图样,搜索空间1的第1个时域资源位置满足Span图样片段1(含符号0、1),搜索空间1的第2个时域资源位置满足Span图样片段3(含符号4、5),搜索空间1的第3个时域资源位置满足Span图样片段5(含符号8、9)。搜索空间2的第4个时域资源位置满足Span图样片段1(含符号0、1),搜索空间2的第5个时域资源位置满足Span图样片段3(含符号8、9)。
对于组合(4,3)对应的Span图样,搜索空间1的第1个时域资源位置满足Span图样1片段(含符号0、1、2、3),搜索空间1的第2个时域资源位置满足Span图样片段2(含符号4、5、6、7),搜索空间1的第3个时域资源位置满足Span图样片段5(含符号8、9、 10、11)。搜索空间2的第4个时域资源位置满足Span图样片段1(含符号0、1、2、3),搜索空间2的第5个时域资源位置满足Span图样片段3(含符号8、9、10、11)。
对于组合(7,3)对应的Span图样,搜索空间1的第1个时域资源位置满足Span图样片段1(含符号0、1、2、3、4、5、6),但搜索空间1的第2个时域资源位置不满足Span图样片段1,搜索空间1的第3个时域资源位置满足Span图样片段2(含符号7、8、9、10、11、12、13)。搜索空间2的第4个时域资源位置满足Span图样片段1(含符号0、1、2、3、4、5、6),搜索空间2的第5个时域资源位置满足Span图样片段2(含符号7、8、9、10、11、12、13)。
针对给定的子载波间隔SCS(比如15kHz和30kHz),如果UE上报了支持的至少一种组合C(X,Y),以及如果C(X,Y)的多个组合对Span图样有效,则应用最大的有效组合C。
1、如果Span图样满足在每个时序中的给定组合的X和Y,则一个组合C(X,Y)是有效的。
2、在Span图样中的空闲Span图样的影响是需要讨论的。
基于上述结论,如图3所示,当UE上报了多个Span图样的组合时,比如组合(2,2),组合(4,3)和组合(7,3)被上报。针对一个时隙,确定PDCCH的资源配置满足的Span图样的组合为组合(2,2)和组合(4,3),则将其中最大的C确定为终端的目标PDCCH检测能力,也即C(4,3)=32。
但是在这种确定方式下,会导致空闲Span图样片段的出现。比如图3的组合(4,3)中的Span图样片段4(含符号12和13)上没有配置PDCCH资源。导致UE的PDCCH检测能力没有被充分使用,而其它Span图样片段却因为PDCCH检测能力的限制而约束了调度。所以,空闲Span图样片段导致的问题也需要解决。
需要说明的是,UE的PDCCH检测能力至少包括:接收无线信号的接收能力和从无线信号中盲检PDCCH的计算能力。以组合(7,3)的Span图样1为例,UE可以在符号0、1、2上由接收器接收无线信号,在符号0、1、2、3、4、5、6上由处理器从无线信号中盲检PDCCH,因此空闲Span图样上的计算能力是可以被充分利用的。
图4是本申请一个示例性实施例提供的控制信道检测能力的确定方法的流程图。该方法可以应用于图1所示的通信系统中,所述方法包括:
步骤402,接收PDCCH的资源配置;
UE接收基站发送的PDCCH的资源配置。比如,在系统信息块(System Information Block,SIB)中接收PDCCH的资源配置。
可选地,PDCCH的资源配置包括:控制资源集CORESET的配置,以及,搜索空间Search space的配置。PDCCH的资源配置,用于向UE配置PDCCH的时域资源位置。
步骤404,根据PDCCH的资源配置,确定第一span组合对应的第一目标PDCCH检测能力和第二span组合对应的第二目标PDCCH检测能力。
其中,第一span组合和第二span组合适用于同一个时域单元。在本申请中,时域单元包括但不限于:时隙、子帧、无线帧中的至少一种。以下采用时域单元是“时隙”来举例说明。
可选地,第一span组合和第二span组合是同一个时域单元中不同的时域范围(或分段)所支持的span组合。
UE支持至少两个PDCCH检测能力。其中,目标PDCCH检测能力与PDCCH的资源配置有关。可选地,目标PDCCH检测能力是UE根据PDCCH的资源配置,选择出的最大或合理的PDCCH检测能力。第一目标PDCCH检测能力和第二目标PDCCH检测能力独立。也即,第一目标PDCCH检测能力和第二目标PDCCH检测能力可以相同,也可以不同。
在本申请中,采用Span图样的组合来表征PDCCH检测能力。
可选地,Span图样是根据组合(X,Y)确定的图样,X是相邻两个Span图样的起始符号之间的距离,Y是同一个Span图样中PDCCH的时域范围。第一span组合可表示为组合(X1,Y1),第二span组合可表示为组合(X2,Y2)。
可选地,组合对应的图样(X,Y)包括如下组合中的至少一种:组合(2,2)、组合(4,3)、组合(7,3)。示例性的,组合(2,2)对应的PDCCH检测能力包括:盲检测次数16,也即C(2,2)=16;组合(4,3)对应的PDCCH检测能力包括:盲检测次数32,也即C(4,3)=32;组合(7,3)对应的PDCCH检测能力包括:盲检测次数64,也即C(7,3)=64。其中,16、32、64是示例性的值,本申请对此不加以限定。
可选地,组合(X,Y)支持的SCS包括:15kHZ和30kHZ。对于SCS是60kHZ和120kHZ的情形,由于每个时隙的间隔足够短,比如0.25ms和0.125ms,因此基于时隙级别的PDCCH检测能力已经能够应对URLLC的需求。
可选地,组合(X,Y)还包括如下组合中的至少一种:组合(2,1)、组合(3,1)、组合(3,2)、组合(3,3)、组合(4,1)、(4,2)、组合(7,1)、组合(7,2)。但是由于某些组合之间的性能相近,因此本申请中以组合(2,2)、组合(4,3)、组合(7,3)来举例说明。
综上所述,本实施例提供的方法,提供了基于Span级别的PDCCH检测能力,由UE根据PDCCH的资源配置和自身支持的至少两种PDCCH检测能力,选择出最大或合理的PDCCH检测能力,能够在不明显增加UE复杂度的情况下,尽量充分发挥UE的PDCCH检测能力。
上述实施例存在至少两种不同的实现方式:
1、同一时域单元中的不同时域范围独立确定span组合,每个时域范围的span组合对应的PDCCH检测能力相同或不同。
典型的,存在至少两个span组合对应的PDCCH检测能力相同或不同。
2、同一时域单元中的不同时域范围统一确定span组合,当存在空闲span图样时,将空闲span组合对应的PDCCH检测能力合并至前方或后方最近一个非空闲span组合中。
针对第一种实现方式:
UE接收基站发送的PDCCH的资源配置,根据PDCCH的资源配置确定出第一PDCCH时域资源位置和第二PDCCH时域资源位置。也即,第一PDCCH时域资源位置和第二PDCCH的时域资源位置均是根据PDCCH的资源配置获得的。
第一PDCCH时域资源位置满足第一span组合对应的图样;第二PDCCH时域资源位置满足第二span组合对应的图样。其中,第一PDCCH时域资源位置和第二PDCCH时域资源位置在时域上不重叠,第一span组合和第二span组合独立。
其中,第一span组合是能够覆盖第一PDCCH时域资源位置的所有span组合中PDCCH检测能力最大的span组合;第二span组合是能够覆盖第二PDCCH时域资源位置的所有span 组合中PDCCH检测能力最大的span组合。
作为一个示例,结合参考图5,UE接收基站发送的PDCCH的资源配置。比如,在系统信息块(System Information Block,SIB)中接收PDCCH的资源配置。
可选地,PDCCH的资源配置包括:控制资源集CORESET的配置,以及,搜索空间Search space的配置。PDCCH的资源配置,用于向UE配置PDCCH的时域资源位置。
假设PDCCH的资源配置包括:搜索空间1和搜索空间2,如图6所示。搜索空间1包括:PDCCH的时域资源位置1、时域资源位置2和时域资源位置3。搜索空间2包括:PDCCH的时域资源位置4和时域资源位置5。
其中,时域资源位置1和时域资源位置4是第一组时域资源位置,时域资源位置2是第二组时域资源位置,时域资源位置3和时域资源位置5是第三组时域资源位置。每组时域资源位置包括:一个时域资源位置或者多个时域上重叠的时域资源位置。不同组的时域资源位置在时域上是互不重叠的。
以第一组时域资源位置和/或第二组时域资源位置为“第一PDCCH时域资源位置”,第三组时域资源位置为“第二PDCCH时域资源位置”进行说明。
设终端支持的PDCCH检测能力包括:C(2,2),C(4,3)和C(7,3)。
对于组合(2,2)对应的Span图样,搜索空间1的第1个时域资源位置满足Span图样片段1(含符号0、1),搜索空间1的第2个时域资源位置满足Span图样片段3(含符号4、5),搜索空间1的第3个时域资源位置满足Span图样片段5(含符号8、9)。搜索空间2的第4个时域资源位置满足Span图样片段1(含符号0、1),搜索空间2的第5个时域资源位置满足Span图样片段3(含符号8、9)。因此,Span图样片段1、3、5是可用Span图样片段。
对于组合(4,3)对应的Span图样,搜索空间1的第1个时域资源位置满足Span图样1片段(含符号0、1、2、3),搜索空间1的第2个时域资源位置满足Span图样片段2(含符号4、5、6、7),搜索空间1的第3个时域资源位置满足Span图样片段3(含符号8、9、10、11)。搜索空间2的第4个时域资源位置满足Span图样片段1(含符号0、1、2、3),搜索空间2的第5个时域资源位置满足Span图样片段3(含符号8、9、10、11)。因此,Span图样片段1、2、3是可用Span图样片段。
对于组合(7,3)对应的Span图样,搜索空间1的第1个时域资源位置满足Span图样片段1(含符号0、1、2、3、4、5、6),但搜索空间1的第2个时域资源位置不满足Span图样片段1,搜索空间1的第3个时域资源位置满足Span图样片段2(含符号7、8、9、10、11、12、13)。搜索空间2的第1个时域资源位置满足Span图样片段1(含符号0、1、2、3、4、5、6),搜索空间2的第2个时域资源位置满足Span图样片段2(含符号7、8、9、10、11、12、13)。因此,Span图样片段2是可用Span图样片段。
也即,单个时隙中的可用Span图样片段,包括:
1、组合(2,2)中的可用Span图样片段1、3、5;
2、组合(4,3)中的可用Span图样片段1、2、3;
3、组合(7,3)中的可用Span图样片段2。
对于单个时隙中的可用Span图样片段,按照时域由前到后的顺序。时域重叠的可用Span图样片段包括:
1、组合(2,2)中的可用Span图样片段1和组合(4,3)中的可用Span图样片段1在 时域上重叠;
由于组合(4,3)的PDCCH检测能力大于组合(2,2)的PDCCH检测能力,将组合(4,3)确定为第一组时域资源位置(时域资源位置1和4)对应的第一span组合。
2、组合(2,2)中的可用Span图样片段3和组合(4,3)中的可用Span图样片段2在时域上重叠;
由于组合(4,3)的PDCCH检测能力大于组合(2,2)的PDCCH检测能力,将组合(4,3)确定为第二组时域资源位置(时域资源位置2)对应的第一span组合。
也即,第一PDCCH时域资源位置(时域资源位置1、2、4)对应的第一span组合是组合(4,3),第一PDCCH检测能力是C(4,3)=32。
3、组合(2,2)中的可用Span图样片段5、组合(4,3)中的可用Span图样片段3、组合(7,3)中的可用Span图样片段2在时域上重叠。
由于组合(7,3)的PDCCH检测能力大于组合(2,2)以及(4,3)的PDCCH检测能力,将组合(7,3)确定为第三组时域资源位置(时域资源位置3和5)对应的第二span组合。
也即,第二PDCCH时域资源位置(时域资源位置3和5)对应的第二span组合是组合(7,3),第二PDCCH检测能力为C(7,3)=64。
需要说明的是,结合参考图5,由于同一个时隙中的片段2和片段3存在交集,此时可以将符号7划分至片段,也可以将符号7划分至片,3。本实施例以将符号7划分至片段2来举例说明,从而尽量保证终端在片段2中的PDCCH检测能力。
综上所述,本实施例提供的方法,提供了基于Span级别的PDCCH检测能力,由UE根据PDCCH的资源配置和自身支持的至少两种PDCCH检测能力,选择出最大或合理的PDCCH检测能力,能够在不明显增加UE复杂度的情况下,尽量充分发挥UE的PDCCH检测能力。
本实施例还通过按照片段级别的最大PDCCH检测能力,作为单个时隙中不同时域范围(符号)上的最大PDCCH检测能力,能够尽量充分发挥UE的PDCCH检测能力,有效利用空闲Span图样上的检测能力。
针对第二种实现方式:
UE接收基站发送的PDCCH的资源配置,根据PDCCH的资源配置确定出至少一个PDCCH时域资源位置。也即,至少一个PDCCH的时域资源位置均是根据PDCCH的资源配置获得的。
时域单元内的PDCCH的(所有)时域资源位置满足第一span组合和第二span组合对应的图样。其中,第一span组合对应的图样和第二span组合对应的图样相同,第一span组合对应的第一目标PDCCH检测能力和第二Span组合对应的第二目标PDCCH检测能力独立。
可选地,当时域单元内的PDCCH的所有时域资源位置所满足的相同span组合存在至少两个候选组合时,选择PDCCH检测能力最大的一个组合,作为第一span组合和第二span组合。
可选地,第一span组合对应的第一目标PDCCH检测能力大于或等于第一span组合对应的PDCCH检测能力;或第二Span组合对应的第二目标PDCCH检测能力等于0。
可选地,第一span组合对应的第一目标PDCCH检测能力等于第一span组合对应的PDCCH检测能力的n倍,n为非负数;或第二span组合对应的第二目标PDCCH检测能力 等于所述第二span组合对应的PDCCH检测能力的m倍,m为非负数。
可选地,第一span组合相邻k个组合对应的时域范围内没有配置PDCCH时,n=k+1;或第二span组合对应的时域范围内没有配置所述PDCCH,m=0。示意性地,第一span组合相邻k个组合可以是第一span组合之前的相邻k个组合,也可以是第一span组合之后的相邻k个组合,还可以是第一span组合前后的相邻k个组合,本申请实施例对此不作限定,典型地,第一span相邻k个组合是第一span组合之后的相邻k个组合。
作为一个示意性的例子,参考图6,UE接收基站发送的PDCCH的资源配置。比如,在SIB中接收PDCCH的资源配置。
可选地,PDCCH的资源配置包括:控制资源集CORESET的配置,以及,搜索空间Search space的配置。PDCCH的资源配置,用于向UE配置PDCCH的时域资源位置。
在一个例子中,PDCCH的资源配置包括:搜索空间1和搜索空间2,如图6所示。搜索空间1包括:PDCCH的候选搜素位置1、时域资源位置2和时域资源位置3。搜索空间2包括:PDCCH的时域资源位置4和时域资源位置5。
其中,时域资源位置1和时域资源位置4是第一组时域资源位置,时域资源位置2是第二组时域资源位置,时域资源位置3和时域资源位置5是第三组时域资源位置。每组时域资源位置包括:一个时域资源位置或者多个时域上重叠的时域资源位置。不同组的时域资源位置在时域上是互不重叠的。
假设终端支持的PDCCH检测能力包括:C(2,2),C(4,3)和C(7,3)。
对于组合(2,2)对应的Span图样,搜索空间1的第1个时域资源位置满足Span图样片段1(含符号0、1),搜索空间1的第2个时域资源位置满足Span图样片段3(含符号4、5),搜索空间1的第3个时域资源位置满足Span图样片段5(含符号8、9)。搜索空间2的第4个时域资源位置满足Span图样片段1(含符号0、1),搜索空间2的第5个时域资源位置满足Span图样片段3(含符号8、9)。因此,组合(2,2)满足时隙内的所有PDCCH的时域资源位置。
对于组合(4,3)对应的Span图样,搜索空间1的第1个时域资源位置满足Span图样1片段(含符号0、1、2、3),搜索空间1的第2个时域资源位置满足Span图样片段2(含符号4、5、6、7),搜索空间1的第3个时域资源位置满足Span图样片段3(含符号8、9、10、11)。搜索空间2的第4个时域资源位置满足Span图样片段1(含符号0、1、2、3),搜索空间2的第5个时域资源位置满足Span图样片段3(含符号8、9、10、11)。因此,组合(4,3)满足时隙内的所有PDCCH的时域资源位置。
对于组合(7,3)对应的Span图样,搜索空间1的第1个时域资源位置满足Span图样片段1(含符号0、1、2、3、4、5、6),但搜索空间1的第2个时域资源位置不满足Span图样片段1,搜索空间1的第3个时域资源位置满足Span图样片段2(含符号7、8、9、10、11、12、13)。搜索空间2的第1个时域资源位置满足Span图样片段1(含符号0、1、2、3、4、5、6),搜索空间2的第2个时域资源位置满足Span图样片段2(含符号7、8、9、10、11、12、13)。因此,组合(7,3)不满足时隙内的所有PDCCH的时域资源位置。
也即,满足时隙内的所有PDCCH的时域资源位置,包括:1、组合(2,2);2、组合(4,3)。由于组合(4,3)的PDCCH检测能力大于组合(2,2)的PDCCH检测能力,将组合(4,3)的PDCCH检测能力C(4,3)确定为第一PDCCH检测能力。
组合(4,3)在单个时隙中包括四个片段:
Span图样片段1(含符号0、1、2、3);
Span图样片段2(含符号4、5、6、7);
Span图样片段3(含符号8、9、10、11);
Span图样片段4(含符号12、13)。
其中,span图样片段3可视为“第一span组合”,span图样片段4可视为“第二span组合”。也即,第一span组合和第二span组合是同一时隙内的不同时域范围(符号)上所满足的span组合。
针对Span图样片段1或2,由于Span图样片段1或2的后1个Span图样片段不是空闲Span图样片段,因此将PDCCH检测能力C(4,3)=32确定为Span图样片段1或2对应的目标PDCCH检测能力。
针对Span图样片段3,由于Span图样片段3的后1个Span图样片段是空闲Span图样片段,因此将n=1+1=2,2*C(4,3)=64确定为Span图样片段3对应的第一目标PDCCH检测能力。
针对Span图样片段4,由于Span图样片段4是空闲Span图样片段,因此将m=0,0*C(4,3)=0确定为Span图样片段4对应的第二目标PDCCH检测能力。
综上所述,本实施例提供的方法,提供了基于Span级别的PDCCH检测能力,由UE根据PDCCH的资源配置和自身支持的至少两种PDCCH检测能力,选择出最大或合理的PDCCH检测能力,能够在不明显增加UE复杂度的情况下,尽量充分发挥UE的PDCCH检测能力。
本实施例还通过将空闲Span图样片段上的PDCCH检测能力合并至前方最近的一个可用Span图样片段上,能够尽量充分发挥UE的PDCCH检测能力,有效利用空闲Span图样上的检测能力。
需要说明的一点是,上述方法可以应用于uRLLC场景。
需要说明的一点是,上述终端向接入网设备上报第一span组合和第二span组合,第一span组合和第二span组合至少包含如下信息之一:第一span组合对应的图样,第一span组合对应的PDCCH检测能力,第二span组合对应的图样,第二span组合对应的PDCCH检测能力。
需要说明的另一点是,基站为UE配置的搜索空间可能为多个,比如2至10个。上述搜索空间1和搜索空间2仅为示例性说明。
图7示出了本申请一个示例性实施例提供的控制信道检测能力的确定装置的框图,该装置包括:接收模块720、处理模块740和发送模块760。接收模块720用于实现上述方法中有关接收步骤的功能,处理模块740用于实现上述方法中有关确定步骤以及其它步骤(非接收/发送)的步骤的功能,发送模块760用于实现上述方法中有关发送步骤的功能。其中,
接收模块720,用于接收物理下行控制信道PDCCH的资源配置;
处理模块740,用于根据所述PDCCH的资源配置,确定第一span组合对应的第一目标PDCCH检测能力和第二span组合对应的第二目标PDCCH检测能力;
其中,所述第一span组合和所述第二span组合适用于同一个时域单元,所述第一目标PDCCH检测能力和第二目标PDCCH检测能力独立。
在一个可能的实施例中,第一PDCCH时域资源位置满足所述第一span组合对应的图样,所述第一PDCCH时域资源位置是根据所述PDCCH的资源配置获得的;第二PDCCH时域资源位置满足所述第二span组合对应的图样,所述第二PDCCH时域资源位置是根据所述PDCCH的资源配置获得的;
其中,所述第一PDCCH时域资源位置和所述第二PDCCH时域资源位置在时域上不重叠,所述第一span组合和所述第二span组合独立。
在一个可能的实施例中,所述第一span组合是能够覆盖所述第一PDCCH时域资源位置的所有span组合中PDCCH检测能力最大的span组合;
所述第二span组合是能够覆盖所述第二PDCCH时域资源位置的所有span组合中PDCCH检测能力最大的span组合。
在一个可能的实施例中,所述时域单元内的PDCCH时域资源位置满足所述第一span组合和所述第二span组合对应的图样;所述时间范围内的PDCCH时域资源位置是根据所述PDCCH的资源配置获得的;
其中,所述第一span组合对应的图样和所述第二span组合对应的图样相同,所述第一span组合对应的第一目标PDCCH检测能力和所述第二Span组合对应的第二目标PDCCH检测能力独立。
在一个可能的实施例中,所述第一span组合对应的第一目标PDCCH检测能力大于或等于所述第一span组合对应的PDCCH检测能力;
或所述第二Span组合对应的第二目标PDCCH检测能力等于0。
在一个可能的实施例中,所述第一span组合对应的第一目标PDCCH检测能力等于所述第一span组合对应的PDCCH检测能力的n倍,n为非负数;
或所述第二Span组合对应的第二目标PDCCH检测能力等于所述第二span组合对应的PDCCH检测能力的m倍,m为非负数。
在一个可能的实施例中,所述第一span组合相邻a个组合对应的时域范围内没有配置PDCCH,n=k+1;或所述第二span组合对应的时域范围内没有配置所述PDCCH时,m=0。
在一个可能的实施例中,所述PDCCH的资源配置包括至少之一:控制资源集CORESET的配置,以及,搜索空间Search space的配置。
在一个可能的实施例中,所述装置还包括:
发送模块760,用于向接入网设备上报第一span组合和第二span组合,第一span组合和第二span组合至少包含如下信息之一:第一span组合对应的图样,第一span组合对应的PDCCH检测能力,第二span组合对应的图样,第二span组合对应的PDCCH检测能力。
在一个可能的实施例中,所述第一span组合对应的图样是根据span组合(X1,Y1)确定的图样,X1是相邻两个第一Span图样片段的起始符号之间的距离,Y1是每个第一Span图样片段中PDCCH的时域范围;所述第二span组合对应的图样是根据span组合(X2,Y2)确定的图样,X2是相邻两个第二Span图样片段的起始符号之间的距离,Y2是每个第二Span图样片段中PDCCH的时域范围。
在一个可能的实施例中,所述span组合对应的图样(X1,Y1)包括如下组合中的至少一种:组合(2,2)、组合(4,3)、组合(7,3);
所述span组合对应的图样(X2,Y2)包括如下组合中的至少一种:组合(2,2)、组合(4,3)、组合(7,3)。
在一个可能的实施例中,所述第一span组合和所述第二span组合支持的子载波间隔SCS包括:15kHZ和30kHZ。
在一个可能的实施例中,所述组合(X,Y)包括如下组合中的至少一种:
组合(2,1)、组合(3,1)、组合(3,2)、组合(3,3)、组合(4,1)、(4,2)、组合(7,1)、组合(7,2)。
在一个可能的实施例中,所述装置应用于uRLLC场景。
图8示出了本申请一个示例性实施例提供的通信设备(UE或接入网设备)的结构示意图,该UE包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由UE执行的控制信道检测能力的确定方法。
在示例性实施例中,还提供了一种计算机程序产品,所述计算机程序产品中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由UE执行的控制信道检测能力的确定方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (31)

  1. 一种控制信道检测能力的确定方法,其特征在于,所述方法包括:
    接收物理下行控制信道PDCCH的资源配置;
    根据所述PDCCH的资源配置,确定第一span组合对应的第一目标PDCCH检测能力和第二span组合对应的第二目标PDCCH检测能力;
    其中,所述第一span组合和所述第二span组合适用于同一个时域单元,所述第一目标PDCCH检测能力和第二目标PDCCH检测能力独立。
  2. 根据权利要求1所述的方法,其特征在于,
    第一PDCCH时域资源位置满足所述第一span组合对应的图样,所述第一PDCCH时域资源位置是根据所述PDCCH的资源配置获得的;
    第二PDCCH时域资源位置满足所述第二span组合对应的图样,所述第二PDCCH时域资源位置是根据所述PDCCH的资源配置获得的;
    其中,所述第一PDCCH时域资源位置和所述第二PDCCH时域资源位置在时域上不重叠,所述第一span组合和所述第二span组合独立。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一span组合是能够覆盖所述第一PDCCH时域资源位置的所有span组合中PDCCH检测能力最大的span组合;
    所述第二span组合是能够覆盖所述第二PDCCH时域资源位置的所有span组合中PDCCH检测能力最大的span组合。
  4. 根据权利要求1所述的方法,其特征在于,
    所述时域单元内的PDCCH时域资源位置满足所述第一span组合和/或所述第二span组合对应的图样;所述时域单元内的PDCCH时域资源位置是根据所述PDCCH的资源配置获得的;
    其中,所述第一span组合对应的图样和所述第二span组合对应的图样相同,所述第一span组合对应的第一目标PDCCH检测能力和所述第二Span组合对应的第二目标PDCCH检测能力独立。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一span组合对应的第一目标PDCCH检测能力大于或等于所述第一span组合对应的PDCCH检测能力;或
    所述第二span组合对应的第二目标PDCCH检测能力等于0。
  6. 根据权利要求4所述的方法,其特征在于,
    所述第一span组合对应的第一目标PDCCH检测能力等于所述第一span组合对应的PDCCH检测能力的n倍,n为非负数;或
    所述第二span组合对应的第二目标PDCCH检测能力等于所述第二span组合对应的PDCCH检测能力的m倍,m为非负数。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一span组合相邻k个组合对应的时域范围内没有配置PDCCH时,n=k+1;或
    所述第二span组合对应的时域范围内没有配置所述PDCCH,m=0。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述PDCCH的资源配置包括至少之一:控制资源集CORESET的配置,以及,搜索空间Search space的配置。
  9. 根据权利要求1至7任一所述的方法,其特征在于,所述方法还包括:
    向接入网设备上报所述第一span组合和所述第二span组合,所述第一span组合和所述第二span组合至少包含如下信息之一:所述第一span组合对应的图样,所述第一span组合对应的PDCCH检测能力,所述第二span组合对应的图样,所述第二span组合对应的PDCCH检测能力。
  10. 根据权利要求1至7任一所述的方法,其特征在于,
    所述第一span组合对应的图样是根据span组合(X1,Y1)确定的图样,X1是相邻两个第一Span图样片段的起始符号之间的距离,Y1是每个第一Span图样片段中PDCCH的时域范围;
    所述第二span组合对应的图样是根据span组合(X2,Y2)确定的图样,X2是相邻两个第二Span图样片段的起始符号之间的距离,Y2是每个第二Span图样片段中PDCCH的时域范围。
  11. 根据权利要求10所述的方法,其特征在于,
    所述span组合对应的图样(X1,Y1)包括如下组合中的至少一种:组合(2,2)、组合(4,3)、组合(7,3);
    所述span组合对应的图样(X2,Y2)包括如下组合中的至少一种:组合(2,2)、组合(4,3)、组合(7,3)。
  12. 根据权利要求11所述的方法,其特征在于,
    所述span组合(2,2)对应的PDCCH检测能力包括:用于信道估计的非重叠CCE的次数16;
    所述span组合(4,3)对应的PDCCH检测能力包括:用于信道估计的非重叠CCE的次数32;
    所述span组合(7,3)对应的PDCCH检测能力包括:用于信道估计的非重叠CCE的次数64。
  13. 根据权利要求1至12任一所述的方法,其特征在于,所述第一span组合和所述第 二span组合支持的子载波间隔SCS包括:15kHZ和30kHZ。
  14. 一种控制信道检测能力的确定装置,其特征在于,所述装置包括:
    接收模块,用于接收物理下行控制信道PDCCH的资源配置;
    处理模块,用于根据所述PDCCH的资源配置,确定第一span组合对应的第一目标PDCCH检测能力和第二span组合对应的第二目标PDCCH检测能力;
    其中,所述第一span组合和所述第二span组合适用于同一个时域单元,所述第一目标PDCCH检测能力和第二目标PDCCH检测能力独立。
  15. 根据权利要求14所述的装置,其特征在于,
    第一PDCCH时域资源位置满足所述第一span组合对应的图样,所述第一PDCCH时域资源位置是根据所述PDCCH的资源配置获得的;
    第二PDCCH时域资源位置满足所述第二span组合对应的图样,所述第二PDCCH时域资源位置是根据所述PDCCH的资源配置获得的;
    其中,所述第一PDCCH时域资源位置和所述第二PDCCH时域资源位置在时域上不重叠,所述第一span组合和所述第二span组合独立。
  16. 根据权利要求15所述的装置,其特征在于,
    所述第一span组合是能够覆盖所述第一PDCCH时域资源位置的所有span组合中PDCCH检测能力最大的span组合;
    所述第二span组合是能够覆盖所述第二PDCCH时域资源位置的所有span组合中PDCCH检测能力最大的span组合。
  17. 根据权利要求13所述的装置,其特征在于,
    所述时域单元内的PDCCH时域资源位置满足所述第一span组合和所述第二span组合对应的图样;所述时域单元内的PDCCH时域资源位置是根据所述PDCCH的资源配置获得的;
    其中,所述第一span组合对应的图样和所述第二span组合对应的图样相同,所述第一span组合对应的第一目标PDCCH检测能力和所述第二Span组合对应的第二目标PDCCH检测能力独立。
  18. 根据权利要求17所述的装置,其特征在于,
    所述第一span组合对应的第一目标PDCCH检测能力大于或等于所述第一span组合对应的PDCCH检测能力;或
    所述第二Span组合对应的第二目标PDCCH检测能力等于0。
  19. 根据权利要求17所述的装置,其特征在于,
    所述第一span组合对应的第一目标PDCCH检测能力等于所述第一span组合对应的PDCCH检测能力的n倍,n为非负数;或,
    所述第二Span组合对应的第二目标PDCCH检测能力等于所述第二span组合对应的 PDCCH检测能力的m倍,m为非负数。
  20. 根据权利要求19所述的装置,其特征在于,
    所述第一span组合相邻k个组合对应的时域范围内没有配置PDCCH时,n=k+1;或
    所述第二span组合对应的时域范围内没有配置所述PDCCH,m=0。
  21. 根据权利要求14至20任一所述的装置,其特征在于,所述PDCCH的资源配置包括至少之一:控制资源集CORESET的配置,以及,搜索空间Search space的配置。
  22. 根据权利要求14至20任一所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向接入网设备上报所述第一span组合和所述第二span组合,所述第一span组合和所述第二span组合至少包含如下信息之一:所述第一span组合对应的图样,所述第一span组合对应的PDCCH检测能力,所述第二span组合对应的图样,所述第二span组合对应的PDCCH检测能力。
  23. 根据权利要求14至20任一所述的装置,其特征在于,
    所述第一span组合对应的图样是根据span组合(X1,Y1)确定的图样,X1是相邻两个第一Span图样片段的起始符号之间的距离,Y1是每个第一Span图样片段中PDCCH的时域范围;
    所述第二span组合对应的图样是根据span组合(X2,Y2)确定的图样,X2是相邻两个第二Span图样片段的起始符号之间的距离,Y2是每个第二Span图样片段中PDCCH的时域范围。
  24. 根据权利要求23所述的装置,其特征在于,
    所述span组合对应的图样(X1,Y1)包括如下组合中的至少一种:组合(2,2)、组合(4,3)、组合(7,3);
    所述span组合对应的图样(X2,Y2)包括如下组合中的至少一种:组合(2,2)、组合(4,3)、组合(7,3)。
  25. 根据权利要求24所述的装置,其特征在于,
    所述span组合(2,2)对应的PDCCH检测能力包括:用于信道估计的非重叠CCE的次数16;
    所述span组合(4,3)对应的PDCCH检测能力包括:用于信道估计的非重叠CCE的次数32;
    所述span组合(7,3)对应的PDCCH检测能力包括:用于信道估计的非重叠CCE的次数64。
  26. 根据权利要求14至25任一所述的装置,其特征在于,所述第一span组合和所述第二span组合支持的子载波间隔SCS包括:15kHZ和30kHZ。
  27. 一种UE,其特征在于,所述UE包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至13任一所述的控制信道检测能力的确定方法。
  28. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如权利要求1至13任一所述的控制信道检测能力的确定方法。
  29. 一种芯片,其特征在于,所述芯片包括:可编程逻辑电路或程序指令,所述可编程逻辑电路或程序指令用于执行如权利要求1至13中任一项所述的控制信道检测能力的确定方法。
  30. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的控制信道检测能力的确定方法。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至13中任一项所述的控制信道检测能力的确定方法。
PCT/CN2019/109829 2019-10-04 2019-10-04 控制信道检测能力的确定方法、装置、设备及介质 WO2021062879A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980097248.5A CN114009112A (zh) 2019-10-04 2019-10-04 控制信道检测能力的确定方法、装置、设备及介质
EP19947920.5A EP4021110A4 (en) 2019-10-04 2019-10-04 METHOD AND APPARATUS FOR DETERMINING CONTROL CHANNEL DETECTION CAPACITY, DEVICE AND MEDIA
PCT/CN2019/109829 WO2021062879A1 (zh) 2019-10-04 2019-10-04 控制信道检测能力的确定方法、装置、设备及介质
US17/711,813 US12101749B2 (en) 2022-04-01 Control channel monitoring capability determining methods, user equipment and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109829 WO2021062879A1 (zh) 2019-10-04 2019-10-04 控制信道检测能力的确定方法、装置、设备及介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/711,813 Continuation US12101749B2 (en) 2022-04-01 Control channel monitoring capability determining methods, user equipment and network device

Publications (1)

Publication Number Publication Date
WO2021062879A1 true WO2021062879A1 (zh) 2021-04-08

Family

ID=75336710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109829 WO2021062879A1 (zh) 2019-10-04 2019-10-04 控制信道检测能力的确定方法、装置、设备及介质

Country Status (3)

Country Link
EP (1) EP4021110A4 (zh)
CN (1) CN114009112A (zh)
WO (1) WO2021062879A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210250753A1 (en) * 2020-02-10 2021-08-12 Qualcomm Incorporated Signaling of capability information by user equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011026383A1 (zh) * 2009-09-07 2011-03-10 中兴通讯股份有限公司 一种物理层控制信道资源的分配方法和装置
US20130195043A1 (en) * 2012-01-27 2013-08-01 Qualcomm Incorporated Regional and narrow band common reference signal (crs) for user equipment (ue) relays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011026383A1 (zh) * 2009-09-07 2011-03-10 中兴通讯股份有限公司 一种物理层控制信道资源的分配方法和装置
US20130195043A1 (en) * 2012-01-27 2013-08-01 Qualcomm Incorporated Regional and narrow band common reference signal (crs) for user equipment (ue) relays

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Summary of 7.2.6.1 PDCCH enhancements", 3GPP TSG RAN WG1 MEETING #98 R1-1909736, 30 August 2019 (2019-08-30), XP051766329 *
HUAWEI: "Summary of 7.2.6.1 PDCCH enhancements", 3GPP TSG RAN WG1 MEETING #98 R1-1909827, 30 August 2019 (2019-08-30), XP051766419 *
See also references of EP4021110A4 *
SPREADTRUM COMMUNICATIONS: "Discussion on PDCCH enhancements for URLLCc", 3GPP TSG RAN WG1 #98BIS R1-1910027, 1 October 2019 (2019-10-01), XP051788834 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210250753A1 (en) * 2020-02-10 2021-08-12 Qualcomm Incorporated Signaling of capability information by user equipment
US11706610B2 (en) * 2020-02-10 2023-07-18 Qualcomm Incorporated Signaling of capability information by user equipment
US12069767B2 (en) 2020-02-10 2024-08-20 Qualcomm Incorporated Signaling of capability information by user equipment

Also Published As

Publication number Publication date
EP4021110A4 (en) 2022-09-14
EP4021110A1 (en) 2022-06-29
CN114009112A (zh) 2022-02-01
US20220225329A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
US11323992B2 (en) Method for detecting downlink control information, terminal device, and network device
WO2019161807A1 (zh) 控制信令的发送、控制信令的接收以及信息的确定方法及装置
US11632206B2 (en) Method and apparatus for obtaining resource indication value
US11601958B2 (en) Data transmission method and apparatus
WO2019029427A1 (zh) 用于监听pdcch的方法、网络设备及终端
CN111435897A (zh) 信息传输的方法和通信装置
CN111699721A (zh) 用于非许可无线电频带场景的临时浮动下行链路定时方法
WO2019122518A1 (en) Managing pdcch blind searches in new radio unlicensed band scenario
US20220256487A1 (en) Rate matching indication method and apparatus, and device and storage medium
CN111385892B (zh) Dci检测方法和装置
WO2021249476A1 (zh) Srs资源指示方法、srs资源确定方法及相关设备
WO2021062879A1 (zh) 控制信道检测能力的确定方法、装置、设备及介质
WO2020237510A1 (zh) 控制信令的检测方法、装置、设备及存储介质
WO2024098577A1 (en) Configuring resources for uplink transmissions
US12101749B2 (en) Control channel monitoring capability determining methods, user equipment and network device
US10992435B2 (en) Information indication method, device, and system
US20220330229A1 (en) Method for aperiodic positioning reference signal transmission
WO2022061733A1 (zh) 无线通信方法和设备
EP4266788A1 (en) Physical downlink control channel transmission method and related apparatus
WO2024146606A1 (zh) 基于on-demand prs的请求方法及设备
WO2019047680A1 (zh) 控制资源集的配置方法、网络设备及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019947920

Country of ref document: EP

Effective date: 20220322

NENP Non-entry into the national phase

Ref country code: DE