WO2021057335A1 - 一种新型破乳剂 - Google Patents

一种新型破乳剂 Download PDF

Info

Publication number
WO2021057335A1
WO2021057335A1 PCT/CN2020/109704 CN2020109704W WO2021057335A1 WO 2021057335 A1 WO2021057335 A1 WO 2021057335A1 CN 2020109704 W CN2020109704 W CN 2020109704W WO 2021057335 A1 WO2021057335 A1 WO 2021057335A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
demulsifier
fatty alcohol
demulsifier according
alcohol polyether
Prior art date
Application number
PCT/CN2020/109704
Other languages
English (en)
French (fr)
Inventor
何林
马俊
李鑫钢
隋红
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2021057335A1 publication Critical patent/WO2021057335A1/zh
Priority to US17/701,369 priority Critical patent/US20220213244A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/40Esters of unsaturated alcohols, e.g. allyl (meth)acrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/047Breaking emulsions with separation aids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/026Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/04Dewatering or demulsification of hydrocarbon oils with chemical means

Definitions

  • the invention belongs to the field of demulsifiers, and relates to a demulsification technology for water-in-oil, water-in-heavy oil, oil-in-water and other emulsions, and specifically relates to a new type of demulsifier.
  • a key problem that needs to be solved is to demulsify the oil-water emulsion, because the heavy oil contains natural interfacial active substances that can stabilize the oil-water emulsion, such as gums, asphaltenes, and naphthenic acid. And microcrystalline paraffin, as natural emulsifiers, they can stabilize the oil-water two-phase system, especially the high content of colloid in heavy oil. Asphaltene can form a certain viscoelastic interface film, which can be strong The adsorption on the surface of water molecules to stabilize the oil-water emulsion.
  • the surface-active substances or other chemical additives brought by the mining process can also be adsorbed on the oil-water interface, increasing the degree of oil-water two-phase emulsification, thereby making the oil-water two-phase system more stable and forming a highly stable oil-water emulsion.
  • the formed oil-water emulsion not only brings great difficulties to the subsequent processing (corrosion of equipment, poisoning of catalysts, increased transportation of finished products), but also seriously affects the quality of oil products. Therefore, the oil-water emulsion must be demulsified and dehydrated to achieve improvement. The quality of oil reduces oil loss.
  • the purpose of the present invention is to provide a demulsifier for the separation of heavy oil-water emulsion systems and a preparation method thereof in view of the deficiencies of the prior art.
  • the prepared demulsifier can quickly and effectively realize the demulsification and separation of heavy oil-water emulsion systems. It has the characteristics of fast demulsification speed and high dehydration rate.
  • a new type of demulsifier includes the following steps:
  • step 2 1) Add the organic catalyst to the fatty alcohol polyether solution described in step 1);
  • step 3) After the esterification reaction in step 3) is completed, an initiator is added to carry out the polymerization reaction;
  • step 4) After the polymerization reaction in step 4) is completed, the solvent in the product is evaporated to dryness, and the product is dried to obtain a novel demulsifier.
  • the fatty alcohol polyether is a linear polyether, specifically the initiator is propylene glycol, and the reaction monomer is a polyether of ethylene oxide and propylene oxide.
  • the solvent is an aromatic hydrocarbon solvent, and further, the aromatic hydrocarbon solvent is one or a mixture of two or more of toluene, methyl ethyl benzene, xylene, ethyl benzene, and trimethylbenzene.
  • the ratio of the fatty alcohol polyether single agent and the solvent is 0.1-200g:100mL.
  • the mass fraction of the fatty alcohol polyether single agent in the aromatic hydrocarbon solvent is 0.01%-70%;
  • the volume ratio of the two aromatic hydrocarbon mixed solvents is 0.1-10:1, specifically the volume of xylene and toluene
  • the ratio is 0.1-10:1;
  • the volume ratio of the three aromatic hydrocarbon mixed solvents is 0.1-10:2:1, specifically the volume ratio of toluene, trimethylbenzene, and ethylbenzene is 0.1-10:2:1;
  • the volume ratio of aromatic hydrocarbon mixed solvents is 0.1-10:2:1:1; specifically, the volume ratio of xylene, ethylbenzene, toluene, and trimethylbenzene is 0.1-10:2:1:1; five kinds of aromatic hydrocarbons
  • the volume ratio of the mixed solvent is 0.1-10:2:1:1; specifically, the volume ratio of toluene, methylethylbenzene, xylene, ethylbenzen
  • the organic catalyst is sulfonic acid or acetate, further, the sulfonic acid is aryl sulfonic acid, the organic acid salt is acetate, and further, the aryl sulfonic acid is
  • the benzene sulfonic acid substances are specifically one or a mixture of two or more of benzene sulfonic acid, p-toluene sulfonic acid, o-toluene sulfonic acid, and m-toluene sulfonic acid.
  • the acetate salt is specifically one or a mixture of two or more of zinc acetate, cobalt acetate, manganese acetate, and iron acetate.
  • the proportion of the organic catalyst added to the reaction accounts for 0.01%-20% of the mass fraction of the fatty alcohol polyether.
  • the mass fraction of a single benzenesulfonic acid substance is 0.01%-20%; the mass ratio of two benzenesulfonic acid substances is 0.1-5:1, specifically p-toluenesulfonic acid and o-toluenesulfonic acid
  • the mass ratio of acid is 0.1 ⁇ 5:1; the mass ratio of the three benzenesulfonic acids is 0.1 ⁇ 10:2:1, specifically the mass ratio of p-toluenesulfonic acid, m-toluenesulfonic acid and benzenesulfonic acid is 0.1 ⁇ 10:2:1;
  • the mass fraction of a single acetate is 0.01%-20%; the mass ratio of the two acetates is 0.1-10:1, specifically the mass ratio of zinc acetate and cobalt acetate is 0.1-10:1, the mass ratio of manganese acetate and iron acetate is 0.1-10:1; the mass ratio of the three acetates
  • the olefin acid is an olefin acid with 3-20 carbon atoms.
  • the olefin acid is an olefin acid with a carbon number of 3-20 and a molecular weight of 72-283 g/mol.
  • the said olefinic acid is an olefinic acid with 3-20 carbon atoms, 72-283 g/mol molecular weight, and at least one carboxyl group.
  • the specific olefin acid is one or a mixture of two or more of 2-butenoic acid, oleic acid, acrylic acid, and undecylenic acid.
  • the proportion of olefinic acid added to the reaction accounts for 0.1%-30% of the mass fraction of the fatty alcohol polyether.
  • the mass fraction of a single olefin acid is 0.1%-30%; the mass ratio of the two olefin acids is 0.1-8:1, specifically the mass ratio of acrylic acid and 2-butenoic acid is 0.1-8: 1.
  • the mass ratio of oleic acid and undecylenic acid is 0.1-8:1; the mass ratio of the three olefinic acids is 0.1-15:2:1, specifically the mass ratio of acrylic acid, 2-butenoic acid and oleic acid is 0.1-15:2:1; the mass ratio of 2-butenoic acid, oleic acid and undecylenic acid is 0.1-15:2:1.
  • the temperature of the esterification reaction is 80°C-170°C.
  • the esterification reaction temperature is 80°C-170°C, specifically when xylene is used as the solvent, the temperature is 130°C; when ethylbenzene is used as the solvent, the temperature is 136°C; When toluene is used as a solvent, the temperature is 80°C; when xylene is used as a solvent, the temperature is 170°C.
  • the initiator is one or a mixture of two or more of azobisisobutyronitrile, azobisisoheptatrin, benzoyl peroxide, di-tert-butyl peroxide, and peroxydicarbonate.
  • the proportion of the initiator added to the reaction accounts for 0.01%-20% of the mass fraction of the fatty alcohol polyether.
  • the mass fraction when the selected initiator is any one of the above-mentioned initiators, the mass fraction is 0.01%-20%; when the selected initiator is any two of the above-mentioned initiators, the ratio is 1:1, specifically: The mass ratio of azobisisobutyronitrile and azobisisoheptarine is 1:1; the mass ratio of benzoyl peroxide and di-tert-butyl peroxide is 1:1; when the selected initiator is any of the above In the case of three initiators, the ratio is 1:1:1, specifically the mass ratio of benzoyl peroxide, di-tert-butyl peroxide, and peroxydicarbonate is 1:1:1; The mass ratio of benzoyl peroxide and di-tert-butyl peroxide is 1:1:1.
  • the temperature of the polymerization reaction is 50°C-130°C.
  • the polymerization temperature is 50°C-130°C, specifically azobisisobutyronitrile, azobisisoheptatrin, benzoyl peroxide, peroxide
  • the polymerization temperature is 110°C; when benzoyl peroxide and di-tert-butyl peroxide are initiators, the polymerization temperature is 120°C; when the selected initiator is any of the above three initiators, it is specifically benzene peroxide When formyl, di-tert-butyl peroxide, and di-tert-butyl peroxide are initiators, the polymerization temperature is 125°C;
  • the temperature of the dried product is 60°C-130°C, and the pressure is -0.1Mpa to -0.5Mpa.
  • the invention protects the application of the demulsifier in the separation of emulsion systems such as water-in-oil and heavy-weight water-in-oil.
  • the specific application method is:
  • the demulsifier is dissolved in deionized water to prepare a certain concentration of polyether demulsifier aqueous solution;
  • the present invention has the following beneficial effects: the conditions for preparing the demulsifier are controllable, the preparation process is simple and feasible, and it can effectively demulsify heavy oil-water emulsions that are stable for up to one year.
  • the water in the heavy oil-water emulsion system is completely removed, the dehydration effect is good, and the demulsification of the existing heavy oil-water emulsion system is greatly promoted.
  • Figure 1 shows the general chemical reaction formulas of the esterification reaction and the polymerization reaction in the examples.
  • Figure 2 is a photograph of the demulsifier prepared in Example 1.
  • Figure 3 is a Fourier transform infrared (FTIR) spectrum of the demulsifier prepared in Example 2.
  • Figure 4 is a hydrogen nuclear magnetic spectrum ( 1 H-NMR) of the demulsifier in Example 5.
  • Figure 5 is a nuclear magnetic carbon spectrum ( 13 C-NMR) of the demulsifier in Example 5.
  • Fig. 6 is a thermogravimetric (TG) chart of the demulsifier prepared in Example 4.
  • the present invention enumerates the following examples, but the present invention is not limited thereto. Those skilled in the art should understand that the embodiments are only to help understand the present invention and should not be regarded as specific limitations to the present invention.
  • the esterification reaction After the esterification reaction is completed, add benzoyl peroxide, the mass fraction of the initiator is 0.01%, and carry out the polymerization reaction at a temperature of 105°C for 1 hour.
  • the toluene solvent is evaporated by a rotary evaporator. After drying, the temperature of the rotary evaporator is set to 70°C, and the obtained liquid is vacuum dried at a temperature of 95°C for 20 minutes to obtain a demulsifier.
  • the demulsifier prepared by the above process is used for the demulsification of heavy oil-water emulsion system, and the demulsification performance of the demulsifier is characterized by the amount of water released in a certain period of time:
  • Demulsification experiment of heavy oil-water emulsion take the demulsifier prepared by the above method and add it to the heavy oil-water emulsion with water content of 10% (volume fraction).
  • the heavy oil-water emulsion is pre-loaded into a graduated measuring cylinder with stopper, and added
  • the concentration of the demulsifier is 300ppm, and then the measuring cylinder with stopper is placed in a 70°C water bath, and the amount of water released is measured every 5 minutes, and the relationship between the amount of water released within 30 minutes of the demulsification time and the change of the time is plotted, and the amount of water released Measured in volume percentage, this way is used to characterize the demulsification performance of the demulsifier for the demulsification of heavy oil-water emulsion systems.
  • the amount of water released at different times is shown in Table 1.
  • the preparation process of the demulsifier and the demulsification experiment in this example are similar to those in Example 1, except that the added fatty alcohol polyether single agent is 6g, the mass fraction of organic acid catalyst is 4%, and the mass fraction of initiator is 3%.
  • the esterification reaction time was 14 hours, and the polymerization reaction time was 16 hours.
  • the amount of water released at different times is shown in Table 1.
  • the preparation process of the demulsifier and the demulsification experiment in this example are similar to those of Example 1, except that the added fatty alcohol polyether single agent is 8g, the mass fraction of organic acid catalyst is 10%, and the mass fraction of initiator is 15%.
  • the esterification reaction time was 13 hours, and the polymerization reaction time was 15 hours.
  • the amount of water released at different times is shown in Table 1.
  • the preparation process of the demulsifier and the demulsification experiment in this example are similar to those of Example 1, except that the added fatty alcohol polyether single agent is 15g, the mass fraction of organic acid catalyst is 15%, and the mass fraction of initiator is 16%.
  • the esterification reaction time was 12 hours, and the polymerization reaction time was 14 hours.
  • the amount of water released at different times is shown in Table 1.
  • the preparation process of the demulsifier and the demulsification experiment in this example are similar to those of Example 1, except that the added fatty alcohol polyether single agent is 20g, the mass fraction of organic acid catalyst is 17%, and the mass fraction of initiator is 15%.
  • the esterification reaction time was 14.8 hours, and the polymerization reaction time was 16 hours.
  • the amount of water released at different times is shown in Table 1.
  • the preparation process of the demulsifier and the demulsification experiment in this example are similar to those of Example 1, except that the added fatty alcohol polyether single agent is 35g, the mass fraction of organic acid catalyst is 20%, and the mass fraction of initiator is 20%.
  • the esterification reaction time is 24 hours, and the polymerization reaction time is 24 hours.
  • the amount of water released at different times is shown in Table 1.
  • the preparation process of the demulsifier and the demulsification experiment in this example are similar to those of Example 1, except that the added fatty alcohol polyether single agent is 5g, the olefinic acid is a mixture of acrylic acid and 2-butenoic acid, and the mass is 0.5 respectively.
  • the solvent adopts 50 mL of a mixed solvent of methyl ethyl benzene and toluene, and the organic acid catalyst adopts a mixture of p-toluene sulfonic acid and o-toluene sulfonic acid, each of which has a mass fraction of 0.2%, and the temperature of the esterification reaction is 140°C.
  • the initiator is a mixture of azobisisobutyronitrile and azobisisoheptatrin, each of which has a mass fraction of 0.15%
  • the polymerization temperature is 110°C
  • the polymerization time is 6 hours.
  • Add demulsifier The concentration is 300ppm.
  • the amount of water released at different times is shown in Table 1.
  • the preparation process of the demulsifier and the demulsification experiment in this example are similar to those in Example 1, except that the added fatty alcohol polyether single agent is 10g, the olefinic acid is a mixture of acrylic acid, 2-butenoic acid and oleic acid, and the masses are respectively It is 0.5g, 1g, 0.5g.
  • the solvent adopts a mixed solvent of 20 mL of xylene, 40 mL of ethylbenzene, 20 mL of toluene, and 20 mL of trimethylbenzene.
  • the organic acid catalyst adopts a mixture of p-toluenesulfonic acid, m-toluenesulfonic acid and o-toluenesulfonic acid, each of which has a mass fraction of 2%. 4%, 2%.
  • the esterification reaction temperature is 95°C
  • the esterification reaction time is 2 hours
  • the initiator is a mixture of benzoyl peroxide and di-tert-butyl peroxide, each of which has a mass fraction of 0.15%
  • the polymerization temperature is 120°C.
  • the polymerization reaction time was 4 hours
  • the concentration of the demulsifier added was 300 ppm.
  • the amount of water released at different times is shown in Table 1.
  • the preparation process of the demulsifier and the demulsification experiment in this example are similar to those in Example 1, except that the added fatty alcohol polyether single agent is 10g, and the olefinic acid is a mixture of 2-butenoic acid, oleic acid and undecylenic acid. , The masses are respectively 0.5g, 1g, 0.5g.
  • the solvent adopts a mixed solvent of 20 mL of xylene, 40 mL of ethylbenzene, 20 mL of toluene and 20 mL of trimethylbenzene.
  • the organic acid catalyst adopts a mixture of p-toluenesulfonic acid, m-toluenesulfonic acid and o-toluenesulfonic acid, each of which has a mass fraction of 2%. 4%, 2%.
  • the temperature of the esterification reaction is 95°C
  • the reaction time of the esterification reaction is 2 hours
  • the initiator is a mixture of benzoyl peroxide and di-tert-butyl peroxide
  • the polymerization temperature is 120°C
  • the mass fraction of each is 0.15%.
  • the polymerization reaction time was 4 hours
  • the concentration of the demulsifier added was 300 ppm.
  • the amount of water released at different times is shown in Table 1.
  • the preparation process of the demulsifier and the demulsification experiment in this example are similar to those of Example 1, except that the added fatty alcohol polyether single agent is 8g, the olefinic acid is a mixture of oleic acid and undecylenic acid, and the masses are 0.6g respectively.
  • the solvent adopts a mixed solvent of 25 mL of toluene, 25 mL of ethylbenzene, and 50 mL of trimethylbenzene, and the organic acid catalyst adopts a mixture of zinc acetate, cobalt acetate, and manganese acetate, each of which has a mass fraction of 2%, 2%, and 2%, respectively.
  • the temperature of the esterification reaction is 110°C
  • the reaction time of the esterification reaction is 3 hours
  • the initiator is a mixture of benzoyl peroxide, di-tert-butyl peroxide, and peroxydicarbonate
  • the temperature of the polymerization reaction is 125°C.
  • the mass fractions of are respectively 3%
  • the polymerization reaction time is 5 hours
  • the concentration of the demulsifier added is 300 ppm.
  • the amount of water released at different times is shown in Table 1.
  • the preparation process of the demulsifier and the demulsification experiment in this example are similar to those of Example 1, except that the added fatty alcohol polyether single agent is 12g, the olefinic acid is a mixture of oleic acid and undecanoic acid, and the masses are 0.6g respectively.
  • the masses are 50mL each of a mixed solvent of xylene and toluene as the solvent, a mixture of p-toluenesulfonic acid and o-toluenesulfonic acid as the organic acid catalyst, each of which has a mass fraction of 0.2%, the esterification temperature is 170°C, and the ester
  • the reaction time is 4 hours
  • the initiator is a mixture of azobisisobutyronitrile and azobisisoheptatrin, each of which has a mass fraction of 0.15%
  • the polymerization temperature is 110°C
  • the polymerization time is 4 hours.
  • the concentration of the emulsion is 300 ppm.
  • the amount of water released at different times is shown in Table 1.
  • the preparation process of the demulsifier and the demulsification experiment in this example are similar to those of Example 1, except that: the added fatty alcohol polyether single agent is 15g, the olefinic acid is a mixture of acrylic acid, 2-butenoic acid and oleic acid, and the masses are respectively 0.75g, 1.5g, 0.75g, 25mL of toluene, 50mL of trimethylbenzene and 25mL of ethylbenzene are used as the solvent.
  • the organic acid catalyst is a mixture of cobalt acetate, manganese acetate, and iron acetate, each of which has a mass fraction of 3%.
  • the temperature is 110°C
  • the esterification reaction time is 4 hours
  • the initiator is a mixture of azobisheptatrin, benzoyl peroxide, and di-tert-butyl peroxide, each of which has a mass fraction of 3%
  • the polymerization temperature is At 130°C
  • the polymerization reaction time was 4 hours
  • the concentration of the demulsifier added was 300 ppm.
  • the amount of water released at different times is shown in Table 1.
  • the commercially available demulsifier polyether AP2040 was used to carry out the demulsification experiment of the heavy oil-water emulsion.
  • the demulsification method and the demulsification experiment conditions were the same as the demulsification experiment method and demulsification experiment conditions in Example 1.
  • the amount of water released at different times is shown in Table 1.
  • the commercially available demulsifier polyether BP2050 was used for the demulsification experiment of heavy oil-water emulsion.
  • the demulsification method and demulsification experiment conditions were the same as those in Example 6.
  • the amount of water released at different times is shown in Table 1.
  • the commercially available demulsifier G-D05 was used for the demulsification experiment of heavy oil-water emulsion.
  • the demulsification method and demulsification experiment conditions were the same as those in Example 1.
  • the amount of water released at different times is shown in Table 1.
  • the commercially available demulsifier G-D07 was used to carry out the demulsification experiment of the heavy oil-water emulsion.
  • the demulsification method and demulsification experiment conditions were the same as those in Example 6.
  • the amount of water released at different times is shown in Table 1.
  • the commercially available demulsifier SP169 was used to carry out the demulsification experiment of the heavy oil-water emulsion.
  • the demulsification method and demulsification experiment conditions were the same as the demulsification experiment method and demulsification experiment conditions in Example 1.
  • the amount of water released at different times is shown in Table 1.
  • the commercially available demulsifier PE2040 was used for the demulsification experiment of heavy oil-water emulsion.
  • the demulsification method and demulsification experiment conditions were the same as those in Example 1.
  • the amount of water released at different times is shown in Table 1.
  • the commercially available demulsifier AE1951 was used for the demulsification experiment of heavy oil-water emulsion.
  • the demulsification method and demulsification experiment conditions were the same as those in Example 12.
  • the amount of water released at different times is shown in Table 1.
  • the commercially available demulsifier P-125 was used for the demulsification experiment of heavy oil-water emulsion.
  • the demulsification method and demulsification experiment conditions were the same as those in Example 1.
  • the amount of water released at different times is shown in Table 1.
  • the commercially available demulsifier WJ-46 was used for the demulsification experiment of heavy oil-water emulsion.
  • the demulsification method and demulsification experiment conditions were the same as those in Example 1.
  • the amount of water released at different times is shown in Table 1.
  • the commercially available demulsifier WJ-44 was used for the demulsification experiment of heavy oil-water emulsion.
  • the demulsification method and demulsification experiment conditions were the same as those in Example 12.
  • the amount of water released at different times is shown in Table 1.
  • the commercially available demulsifier WJ-11 was used for the demulsification experiment of heavy oil-water emulsion.
  • the demulsification method and demulsification experiment conditions were the same as those in Example 1.
  • the amount of water released at different times is shown in Table 1.
  • the commercially available demulsifier WJ-714 was used for the demulsification experiment of heavy oil-water emulsion.
  • the demulsification method and demulsification experiment conditions were the same as those in Example 1.
  • the amount of water released at different times is shown in Table 1.
  • Table 1 shows the comparison results of the demulsifiers prepared in Examples 1-12 and the demulsifiers in Comparative Examples 1-12 used in the demulsification of heavy oil-water emulsion systems at different time periods.
  • Examples 1-12 of the present invention have a fast demulsification rate for heavy water-in-oil emulsions, and complete separation of oil and water can be achieved within 15-30 minutes.
  • Examples 1-12 of the present invention Compared with Comparative Examples 1-12, the demulsification and dehydration rates are significantly better than those of Comparative Examples 1-12.
  • Fig. 2 is a photograph of the demulsifier prepared in Example 1. The color and appearance of the demulsifier prepared in other examples are the same as those in Fig. 1.
  • Figure 3 is a Fourier transform infrared (FTIR) spectrum of the demulsifier prepared in Example 2.
  • Figure 4 is a hydrogen nuclear magnetic spectrum ( 1 H-NMR) of the demulsifier in Example 5.
  • Figure 5 is a nuclear magnetic carbon spectrum ( 13 C-NMR) of the demulsifier in Example 5. Comparing Figure 3, Figure 4 and Figure 5, it can be seen that a polyether demulsifier with ester and carboxyl groups has been synthesized.
  • Fig. 6 is a thermogravimetric (TG) chart of the demulsifier prepared in Example 4. The thermogravigram shows that the thermal stability of the prepared demulsifier is better.
  • the present invention provides a method for preparing heavy oil-water emulsion demulsifiers.
  • the above examples are only used to illustrate the technical solutions of the present invention, not to limit it; although referring to the foregoing examples The present invention has been described in detail, and those of ordinary skill in the art should understand that it is still possible to make improvements and modifications to the technical solutions described in the foregoing embodiments, or to equivalently replace some or all of the technical features; and these improvements Or alternatively, the essence of the corresponding technical solutions does not deviate from the scope of the technical solutions of the embodiments of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种新型破乳剂,制备方法是将脂肪醇聚醚溶于溶剂中,配制成一定浓度的脂肪醇聚醚溶液;将有机催化剂和烯烃酸加入到脂肪醇聚醚溶液中,于一定温度及转速下,进行一定时间的酯化反应;待酯化反应完成后,于一定温度及转速下,加入引发剂进行一定时间的聚合反应;待聚合反应完成后,用旋转蒸发仪将反应容器中的溶剂蒸干后置于真空干燥箱中干燥一定时间得到新型破乳剂。本发明破乳剂具有破乳速度快、效率高的特点,并且制备方法简单,成本低。

Description

一种新型破乳剂 技术领域
本发明属于破乳剂领域,涉及用于油包水、重质油包水、水包油等乳液的破乳技术,具体涉及一种新型破乳剂。
背景技术
随着世界石油工业的发展,石油开采量日益增加,世界石油需求量也在逐年增加。我国石油供需缺口也在逐年增加,开发并利用油砂、油页岩、油泥等重质油资源,从而代替部分常规石油,不仅能缓解我国能源压力,而且能最大化的有效的利用资源。
然而,在重质油开采过程中,需要解决的一个关键问题是进行油水乳液的破乳,因为重质油中存在能稳定油水乳液的天然界面活性物质,比如胶质,沥青质,环烷酸及微晶石蜡,这些作为天然的乳化剂,能够使油水两相体系稳定,尤其是重质油中高含量的胶质,沥青质能够形成具有一定黏弹性的界面膜,这种界面膜能够强有力的吸附在水分子的表面从而稳定油水乳液。另外,开采加工过程中带来的表面活性物质或其他化学助剂也能够吸附在油水界面上,加重油水两相乳化程度,从而使油水两相体系更加稳定,形成高度稳定的油水乳状液。形成的油水乳状液不仅给后续加工过程带来极大的困难(腐蚀设备,使催化剂中毒,增加运输成品),而且严重影响油品的品质,因此必须进行油水乳状液的破乳脱水以达到改善油的品质,减少油的损失。
为了将重质油加工过程中形成的稳定的油水两相体系打破,也就是进行破乳,可以采用不同的方法,但是工业上最常见的也是最有效的方法是加入化学药剂进 行破乳,加入的破乳剂分子渗入并粘附在乳化水滴的界面上,顶替天然乳化剂并破坏油水界面膜,使水滴聚集变大,沉降,从而使油水两相分离,现有技术中市售的常规破乳剂针对重质油形成的油水乳液破乳效果较差(脱水时间长、脱水效率低)。
发明内容
本发明的目的在于针对现有技术的不足,提供一种用于重质油水乳液体系分离的破乳剂及其制备方法,制备的破乳剂能快速有效的实现重质油水乳液体系的破乳分离,具有破乳速度快、脱水率高的特点。
实现本发明目的的技术方案为:
一种新型破乳剂,制备方法包括如下步骤:
1)将脂肪醇聚醚溶解于有机溶剂中,配制成一定浓度的脂肪醇聚醚溶液;
2)将有机催化剂加入到步骤1)中所述脂肪醇聚醚溶液中;
3)将烯烃酸加入到步骤2)得到的溶液中进行酯化反应;
4)待步骤3)中的酯化反应完成后,加入引发剂进行聚合反应;
5)待步骤4)中的聚合反应完成后,将产物中的溶剂蒸干,干燥产物,得到新型破乳剂。
所述的脂肪醇聚醚为直链型的聚醚,具体为起始剂为丙二醇,反应单体为环氧乙烷和环氧丙烷的聚醚。
所述溶剂为芳香烃类溶剂,进一步的,所述的芳香烃类溶剂为甲苯、甲乙苯、二甲苯、乙苯、三甲苯中的一种或两种以上的混合物。
所述的脂肪醇聚醚单剂和溶剂的比例为0.1-200g:100mL。
该比例中脂肪醇聚醚单剂在芳香烃类溶剂中的质量分数为0.01%-70%;两种 芳香烃类混合溶剂的体积比为0.1~10:1,具体为二甲苯和甲苯的体积比为0.1~10:1;三种芳香烃类混合溶剂的体积比为0.1~10:2:1,具体为甲苯、三甲苯、乙苯的体积比为0.1~10:2:1;四种芳香烃类混合溶剂的体积比为0.1~10:2:1:1;具体为二甲苯、乙苯、甲苯、三甲苯的体积比为0.1~10:2:1:1;五种芳香烃类混合溶剂的体积比为0.1~10:2:1:1:1;具体为甲苯、甲乙苯、二甲苯、乙苯、三甲苯的体积比为0.1~10:2:1:1:1。
所述的有机催化剂为磺酸或乙酸盐,进一步的,所述的磺酸为芳基磺酸,所述的有机酸盐为乙酸盐,更进一步的,所述的芳基磺酸为苯磺酸类物质,具体为苯磺酸、对甲苯磺酸、邻甲苯磺酸、间甲苯磺酸中的一种或两种以上的混合物。所述的乙酸盐具体为乙酸锌、乙酸钴、乙酸锰、乙酸铁中的一种或两种以上的混合物。
有机催化剂加入反应的比例占脂肪醇聚醚的质量分数为0.01%-20%。
该比例中,单一一种苯磺酸类物质的质量分数为0.01%-20%;两种苯磺酸类物质的质量比为0.1~5:1,具体为对甲苯磺酸和邻甲苯磺酸的质量比为0.1~5:1;三种苯磺酸类物质的质量比为0.1~10:2:1,具体为对甲苯磺酸、间甲苯磺酸和苯磺酸的质量比为0.1~10:2:1;单一一种乙酸盐的质量分数为0.01%-20%;两种乙酸盐的质量比为0.1~10:1,具体为乙酸锌和乙酸钴的质量比为0.1~10:1,乙酸锰、乙酸铁的质量比为0.1~10:1;三种乙酸盐的质量比为0.1~10:1:1,具体乙酸锌、乙酸钴、乙酸锰的质量比为0.1~10:1:1,乙酸钴、乙酸锰、乙酸铁的质量比为0.1~10:1:1。
所述的烯烃酸为碳原子数为3-20的烯烃酸。
进一步的,所述的烯烃酸为碳原子数为3-20分子量为72-283g/mol的烯烃酸。
更进一步的,所述的所述的烯烃酸为碳原子数为3-20、分子量为72-283g/mol,至少含有一个羧基的烯烃酸。
具体的烯烃酸为2-丁烯酸、油酸、丙烯酸、十一烯酸、中的一种或两种以上的混合物。
烯烃酸加入反应的比例占脂肪醇聚醚的质量分数为0.1%-30%。
该比例中,单一一种烯烃酸的质量分数为0.1%-30%;两种烯烃酸的质量比0.1~8:1,具体为丙烯酸和2-丁烯酸的质量比为0.1~8:1,油酸和十一烯酸的质量比为0.1~8:1;三种烯烃酸的质量比0.1~15:2:1,具体为丙烯酸、2-丁烯酸和油酸的质量比为0.1~15:2:1;2-丁烯酸、油酸和十一烯酸的质量比为0.1~15:2:1。
所述酯化反应的温度为80℃-170℃。
该温度中,当反应体系中单一芳烃作为溶剂时,酯化反应的温度为80℃-170℃,具体为二甲苯做溶剂时,温度为130℃;乙苯做溶剂时,温度为136℃;甲苯做溶剂时,温度为80℃;二甲苯做溶剂时,温度为170℃。
两种芳烃混合做溶剂时,具体为二甲苯和甲苯混合做溶剂,温度为100℃;三种芳烃混合做溶剂时,具体为甲苯、三甲苯和二甲苯混合做溶剂,温度为120℃;四种芳烃混合做溶剂时,具体为二甲苯、乙苯、甲苯、三甲苯混合做溶剂,温度为95℃。
所述的引发剂为偶氮二异丁晴、偶氮二异庚晴、过氧化苯甲酰、过氧化二叔丁基、过氧化二碳酸酯中的一种或两种以上的混合物。
引发剂加入反应的比例占脂肪醇聚醚的质量分数为0.01%-20%。
该比例中,当所选用的引发剂为上述任意一种引发剂时,质量分数为0.01%-20%;当所选用的引发剂为上述中任意两种引发剂时,比例为1:1,具体 为偶氮二异丁晴和偶氮二异庚晴的质量比为1:1;过氧化苯甲酰和过氧化二叔丁基的质量比为1:1;当所选用的引发剂为上述中任意三种引发剂时,比例为1:1:1,具体为过氧化苯甲酰、过氧化二叔丁基、过氧化二碳酸酯的质量比为1:1:1;偶氮二异庚晴、过氧化苯甲酰、过氧化二叔丁基的质量比为1:1:1。
所述聚合反应的温度为50℃-130℃。
该温度中,当所选用的引发剂为上述任意一种引发剂时,聚合温度为50℃-130℃,具体为偶氮二异丁晴、偶氮二异庚晴、过氧化苯甲酰、过氧化二叔丁基、过氧化二碳酸酯对应的聚合温度;当所选用的引发剂为上述中任意两种引发剂时,具体为偶氮二异丁晴和偶氮二异庚晴为引发剂时,聚合温度为110℃;过氧化苯甲酰和过氧化二叔丁基为引发剂时,聚合温度为120℃;当所选用的引发剂为上述中任意三种引发剂时,具体为过氧化苯甲酰、过氧化二叔丁基、过氧化二碳酸酯为引发剂时,聚合温度为125℃;偶氮二异庚晴、过氧化苯甲酰、过氧化二叔丁基为引发剂时,聚合温度为130℃。
所述的干燥产物的温度为60℃-130℃,压力为-0.1Mpa至-0.5Mpa。
本发明保护破乳剂在油包水、重质油包水等乳液体系分离中的应用。
具体的应用方法为:
a)将破乳剂溶于去离子水中配制成一定浓度的聚醚破乳剂水溶液;
b)取一定量的聚醚破乳剂水溶液加入到油包水或重质油包水或水包油乳液中进行破乳。
与现有技术相比,本发明的有益效果在于:制备破乳剂的条件可控,制备工艺简单易行,能有效地将稳定长达一年的重质油水乳液进行破乳,短时间内能完全脱除重质油水乳液体系中的水,脱水效果好,并且对现有重质油水乳液体系破 乳起到了极大地促进作用。
附图说明
为了更清楚地说明本发明具体实施方式,下面将对具体实施方式中所需要使用的附图作简单地介绍。
图1为实施例中酯化反应和聚合反应的化学反应通式。
图2为实施例1中制得的破乳剂照片。
图3为实施例2中制得的破乳剂的傅里叶变换红外光(FTIR)谱图。
图4为实施例5中破乳剂的核磁氢谱图( 1H-NMR)。
图5为实施例5中破乳剂的核磁碳谱图( 13C-NMR)。
图6为实施例4中制得的破乳剂的热重(TG)图。
具体实施方式
为便于理解本发明,本发明列举实施例如下,但本发明并不局限于此。本领域技术人员应该明了,所述实施例仅仅是为了帮助理解本发明,不应视为对本发明的具体限制。
实施例1
制备用于油水乳液体系分离的破乳剂及破乳试验;
破乳剂的合成:室温下,在装有温度计、搅拌器、回流冷凝管的三口烧瓶中加入1g脂肪醇聚醚,然后加入100mL二甲苯,搅拌条件下使脂肪醇聚醚单剂完全溶解于甲苯中,溶解后脂肪醇聚醚单剂的浓度为0.01g/mL,然后加入0.01g丙烯酸,对甲苯磺酸的质量分数为0.01%,在油浴中逐步升温至100℃,进行1.5小时的酯化反应,待酯化反应完成后,加入过氧化苯甲酰,引发剂的质量分数0.01%,于温度105℃下进行聚合反应1小时,待聚合反应结束后,利用旋转蒸 发仪将甲苯溶剂蒸干,旋转蒸发仪的温度设置为70℃,将得到的液体于温度95℃进行真空干燥20min后得到破乳剂。
对上述过程制得的破乳剂用于重质油水乳液体系的破乳,以一定时间内脱出的水量表征破乳剂的破乳性能:
重质油水乳液的破乳实验:取通过上述方法制备得到的破乳剂加入到含水为10%(体积分数)重质油水乳液中,重质油水乳液预先装入带刻度的具塞量筒中,加入破乳剂的浓度为300ppm,然后将具塞量筒置于70℃水浴中,每隔5分钟计量一次脱出的水量,绘制破乳时间30分钟内,脱出的水量随时间的变化关系图,脱出的水量按照体积百分数计量,以此方式来表征破乳剂对重质油水乳液体系破乳的破乳性能。不同时间脱出的水量见表1。
实施例2
本实施例制备破乳剂过程和破乳实验与实施例1相似,不同之处在于:加入的脂肪醇聚醚单剂为6g,有机酸催化剂的质量分数4%,引发剂的质量分数3%,酯化反应时间为14小时,聚合反应时间为16小时。不同时间脱出的水量见表1。
实施例3
本实施例制备破乳剂过程和破乳实验与实施例1相似,不同之处在于:加入的脂肪醇聚醚单剂为8g,有机酸催化剂的质量分数10%,引发剂的质量分数15%,酯化反应时间为13小时,聚合反应时间为15小时。不同时间脱出的水量见表1。
实施例4
本实施例制备破乳剂过程和破乳实验与实施例1相似,不同之处在于:加入的脂肪醇聚醚单剂为15g,有机酸催化剂的质量分数15%,引发剂的质量分数16%,酯化反应时间为12小时,聚合反应时间为14小时。不同时间脱出的水量 见表1。
实施例5
本实施例制备破乳剂过程和破乳实验与实施例1相似,不同之处在于:加入的脂肪醇聚醚单剂为20g,有机酸催化剂的质量分数17%,引发剂的质量分数15%,酯化反应时间为14.8小时,聚合反应时间为16小时。不同时间脱出的水量见表1。
实施例6
本实施例制备破乳剂过程和破乳实验与实施例1相似,不同之处在于:加入的脂肪醇聚醚单剂为35g,有机酸催化剂的质量分数20%,引发剂的质量分数20%,酯化反应时间为24小时,聚合反应时间为24小时。不同时间脱出的水量见表1。
实施例7
本实施例制备破乳剂过程和破乳实验与实施例1相似,不同之处在于:加入的脂肪醇聚醚单剂为5g,烯烃酸为丙烯酸和2-丁烯酸的混合物、质量分别为0.5g,溶剂采用甲乙苯和甲苯的混合溶剂各50mL,有机酸催化剂采用对甲苯磺酸和邻甲苯磺酸混合物,其中各自的质量分数为0.2%,酯化反应的温度为140℃,酯化反应时间为4小时,引发剂为偶氮二异丁晴和偶氮二异庚晴混合物,其中各自的质量分数为0.15%,聚合反应的温度为110℃,聚合反应时间为6小时,加入破乳剂的浓度为300ppm。不同时间脱出的水量见表1。
实施例8
本实施例制备破乳剂过程和破乳实验与实施例1相似,不同之处在于:加入的脂肪醇聚醚单剂为10g,烯烃酸为丙烯酸、2-丁烯酸和油酸混合物,质量分别 为0.5g、1g、0.5g。溶剂采用二甲苯20mL、乙苯40mL、甲苯20mL和三甲苯20mL的混合溶剂,有机酸催化剂采用对甲苯磺酸、间甲苯磺酸和邻甲苯磺酸混合物,其中各自的质量分数分别为2%,4%,2%。酯化反应的温度为95℃,酯化反应时间为2小时,引发剂为过氧化苯甲酰和过氧化二叔丁基混合物,其中各自的质量分数为0.15%,聚合反应温度为120℃,聚合反应时间为4小时,加入破乳剂的浓度为300ppm。不同时间脱出的水量见表1。
实施例9
本实施例制备破乳剂过程和破乳实验与实施例1相似,不同之处在于:加入的脂肪醇聚醚单剂为10g,烯烃酸采用2-丁烯酸、油酸和十一烯酸混合物,质量分别为0.5g、1g、0.5g。溶剂采用二甲苯20mL、乙苯40mL、甲苯20mL和三甲苯20mL的混合溶剂,有机酸催化剂采用对甲苯磺酸、间甲苯磺酸和邻甲苯磺酸混合物,其中各自的质量分数分别为2%,4%,2%。酯化反应的温度为95℃,酯化反应时间为2小时,引发剂为过氧化苯甲酰和过氧化二叔丁基混合物,聚合反应温度为120℃,其中各自的质量分数为0.15%,聚合反应时间为4小时,加入破乳剂的浓度为300ppm。不同时间脱出的水量见表1。
实施例10
本实施例制备破乳剂过程和破乳实验与实施例1相似,不同之处在于:加入的脂肪醇聚醚单剂为8g,烯烃酸采用油酸和十一烯酸混合物,质量分别为0.6g,溶剂采用甲苯25mL、乙苯25mL、和三甲苯50mL的混合溶剂,有机酸催化剂采用乙酸锌、乙酸钴、乙酸锰混合物,其中各自的质量分数分别为2%,2%,2%。酯化反应的温度为110℃,酯化反应时间为3小时,引发剂为过氧化苯甲酰、过氧化二叔丁基、过氧化二碳酸酯混合物,聚合反应的温度为125℃,其中各自的 质量分数分别为3%,聚合反应时间为5小时,加入破乳剂的浓度为300ppm。不同时间脱出的水量见表1。
实施例11
本实施例制备破乳剂过程和破乳实验与实施例1相似,不同之处在于:加入的脂肪醇聚醚单剂为12g,烯烃酸为油酸和十一酸的混合物,质量分别为0.6g,质量分别为溶剂采用二甲苯和甲苯的混合溶剂各50mL,有机酸催化剂采用对甲苯磺酸和邻甲苯磺酸混合物,其中各自的质量分数为0.2%,酯化反应的温度为170℃,酯化反应时间为4小时,引发剂为偶氮二异丁晴和偶氮二异庚晴混合物,其中各自的质量分数为0.15%,聚合反应温度为110℃,聚合反应时间为4小时,加入破乳剂的浓度为300ppm。不同时间脱出的水量见表1。
实施例12
本实施例制备破乳剂过程和破乳实验与实施例1相似,不同之处在于:加入的脂肪醇聚醚单剂为15g,烯烃酸为丙烯酸、2-丁烯酸和油酸混合物,质量分别为0.75g,1.5g,0.75g,溶剂采用甲苯25mL、三甲苯50mL、乙苯25mL,有机酸催化剂采用乙酸钴、乙酸锰、乙酸铁混合物,其中各自的质量分数为3%,酯化反应的温度为110℃,酯化反应时间为4小时,引发剂为偶氮二异庚晴、过氧化苯甲酰、过氧化二叔丁基混合物,其中各自的质量分数为3%,聚合反应温度为130℃,聚合反应时间为4小时,加入破乳剂的浓度为300ppm。不同时间脱出的水量见表1。
对比例1
采用市售的破乳剂聚醚AP2040进行重质油水乳液的破乳实验,破乳方法和破乳实验条件和实施例1中的破乳实验方法和破乳实验条件相同。不同时间脱出 的水量见表1。
对比例2
采用市售的破乳剂聚醚BP2050进行重质油水乳液的破乳实验,破乳方法和破乳实验条件和实施例6中的破乳实验方法和破乳实验条件相同。不同时间脱出的水量见表1。
对比例3
采用市售的破乳剂G-D05进行重质油水乳液的破乳实验,破乳方法和破乳实验条件和实施例1中的破乳实验方法和破乳实验条件相同。不同时间脱出的水量见表1。
对比例4
采用市售的破乳剂G-D07进行重质油水乳液的破乳实验,破乳方法和破乳实验条件和实施例6中的破乳实验方法和破乳实验条件相同。不同时间脱出的水量见表1。
对比例5
采用市售的破乳剂SP169进行重质油水乳液的破乳实验,破乳方法和破乳实验条件和实施例1中的破乳实验方法和破乳实验条件相同。不同时间脱出的水量见表1。
对比例6
采用市售的破乳剂PE2040进行重质油水乳液的破乳实验,破乳方法和破乳实验条件和实施例1中的破乳实验方法和破乳实验条件相同。不同时间脱出的水量见表1。
对比例7
采用市售的破乳剂AE1951进行重质油水乳液的破乳实验,破乳方法和破乳实验条件和实施例12中的破乳实验方法和破乳实验条件相同。不同时间脱出的水量见表1。
对比例8
采用市售的破乳剂P-125进行重质油水乳液的破乳实验,破乳方法和破乳实验条件和实施例1中的破乳实验方法和破乳实验条件相同。不同时间脱出的水量见表1。
对比例9
采用市售的破乳剂WJ-46进行重质油水乳液的破乳实验,破乳方法和破乳实验条件和实施例1中的破乳实验方法和破乳实验条件相同。不同时间脱出的水量见表1。
对比例10
采用市售的破乳剂WJ-44进行重质油水乳液的破乳实验,破乳方法和破乳实验条件和实施例12中的破乳实验方法和破乳实验条件相同。不同时间脱出的水量见表1。
对比例11
采用市售的破乳剂WJ-11进行重质油水乳液的破乳实验,破乳方法和破乳实验条件和实施例1中的破乳实验方法和破乳实验条件相同。不同时间脱出的水量见表1。
对比例12
采用市售的破乳剂WJ-714进行重质油水乳液的破乳实验,破乳方法和破乳实验条件和实施例1中的破乳实验方法和破乳实验条件相同。不同时间脱出的水 量见表1。
表1所示为实施例1-12制得的破乳剂和对比例1-12中的破乳剂用于重质油水乳液体系破乳于不同时间段脱水率的对比结果。
Figure PCTCN2020109704-appb-000001
Figure PCTCN2020109704-appb-000002
从表1可以看出,本发明实施例1-12的破乳剂对重质油包水乳液的破乳速度很快,在15-30min就能实现油水完全分离,本发明的实施例1-12和对比例1-12相比,破乳脱水率均明显优于对比例1-12。
图2为实施例1中制得的破乳剂照片,其余实施例中制得的破乳剂的颜色及外观状态和图1一致。
图3为实施例2中制得的破乳剂的傅里叶变换红外光(FTIR)谱图。
图4为实施例5中破乳剂的核磁氢谱图( 1H-NMR)。
图5为实施例5中破乳剂的核磁碳谱图( 13C-NMR)。对比图3、图4和图5可知,合成了带有酯基、羧基的聚醚破乳剂。
图6为实施例4中制得的破乳剂的热重(TG)图。热重图表明制备的到破乳剂的热稳定性较好。
最后应说明的是:本发明提供了一种用于重质油水乳液破乳剂的制备方法,以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实 施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所描述的技术方案进行改进和修饰,或者对其中部分或者全部技术特征进行等同替换;而这些改进或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (19)

  1. 一种新型破乳剂,制备方法包括如下步骤:
    1)将脂肪醇聚醚溶于有机溶剂中,配制成一定浓度的脂肪醇聚醚溶液;
    2)将有机催化剂加入到步骤1)中所述脂肪醇聚醚溶液中;
    3)将烯烃酸加入到步骤2)得到的溶液中进行酯化反应;
    4)待步骤3)中的酯化反应完成后,加入引发剂进行聚合反应;
    5)待步骤4)中的聚合反应完成后,将产物中的溶剂蒸干,干燥产物,得到一种新型破乳剂。
  2. 根据权利要求1所述的破乳剂,其特征在于:所述的脂肪醇聚醚为直链型、起始剂为丙二醇,单体为环氧乙烷和环氧丙烷的聚醚。
  3. 根据权利要求1所述的破乳剂,其特征在于:所述溶剂为芳香烃类溶剂。
  4. 根据权利要求3所述的破乳剂,其特征在于:所述的芳香烃类溶剂为甲苯、甲乙苯、二甲苯、乙苯、三甲苯中的一种或两种以上的混合物。
  5. 根据权利要求1~4任一权利要求所述的破乳剂,其特征在于:所述脂肪醇聚醚单剂和溶剂的比例为0.1-200g:100mL。
  6. 根据权利要求1所述的破乳剂,其特征在于:所述的有机催化剂为磺酸或有机酸盐。
  7. 根据权利要求6所述的破乳剂,其特征在于:所述的磺酸为芳基磺酸;所述的有机酸盐为乙酸盐。
  8. 根据权利要求7所述的破乳剂,其特征在于:所述的芳基磺酸为苯磺酸、对甲苯磺酸、邻甲苯磺酸、间甲苯磺酸中的一种或两种以上的混合物;所述的乙酸盐为乙酸锌、乙酸钴、乙酸锰、乙酸铁中的一种或两种以上的混合物。
  9. 根据权利要求1或6或7或8所述的破乳剂,其特征在于:有机催化剂 加入反应的比例占脂肪醇聚醚的质量分数为0.01%-20%。
  10. 根据权利要求1所述的破乳剂,其特征在于:所述的烯烃酸为碳原子数为3-20的烯烃酸。
  11. 根据权利要求10所述的破乳剂,其特征在于:所述的烯烃酸为至少含有一个羧基且分子量为72-300g/mol的烯烃酸。
  12. 根据权利要求11所述的破乳剂,其特征在于:所述的烯烃酸为2-丁烯酸、油酸、丙烯酸、十一烯酸中的一种或两种以上的混合物。
  13. 根据权利要求1或10或11或12所述的破乳剂,其特征在于:烯烃酸加入反应的比例占脂肪醇聚醚的质量分数为0.1%-30%。
  14. 根据权利要求1所述的破乳剂,其特征在于:所述酯化反应的温度为80℃-170℃。
  15. 根据要求1所述的破乳剂,其特征在于:所述的引发剂为偶氮二异丁晴、偶氮二异庚晴、过氧化苯甲酰、过氧化二叔丁基、过氧化二碳酸酯中的一种或两种以上的混合物。
  16. 根据权利要求1或15所述的破乳剂,其特征在于:引发剂加入反应的比例占脂肪醇聚醚的质量分数为0.01%-20%。
  17. 根据权利要求1所述的破乳剂,其特征在于:所述聚合反应的温度为50℃-130℃。
  18. 根据权利要求1所述的破乳剂,其特征在于:所述的干燥产物的温度为60℃-130℃,压力为-0.1Mpa至-0.5Mpa。
  19. 一种权利要求1所述的破乳剂在油包水、重质油包水、水包油乳液体系分离中应用。
PCT/CN2020/109704 2019-09-24 2020-08-18 一种新型破乳剂 WO2021057335A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/701,369 US20220213244A1 (en) 2019-09-24 2022-03-22 Novel demulsifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910902577.4A CN110628012A (zh) 2019-09-24 2019-09-24 一种新型破乳剂
CN201910902577.4 2019-09-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/701,369 Continuation US20220213244A1 (en) 2019-09-24 2022-03-22 Novel demulsifier

Publications (1)

Publication Number Publication Date
WO2021057335A1 true WO2021057335A1 (zh) 2021-04-01

Family

ID=68973739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109704 WO2021057335A1 (zh) 2019-09-24 2020-08-18 一种新型破乳剂

Country Status (3)

Country Link
US (1) US20220213244A1 (zh)
CN (1) CN110628012A (zh)
WO (1) WO2021057335A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628012A (zh) * 2019-09-24 2019-12-31 天津大学 一种新型破乳剂
CN113698528B (zh) * 2020-05-20 2023-03-14 中国石油化工股份有限公司 一种带有超长链的丙烯酸酯类共聚物及其制法、应用和其破乳剂
CN114075313B (zh) * 2020-08-14 2024-07-02 中国石油化工股份有限公司 一种含有长短支链的聚合物及其制法、应用和支链型油溶性破乳剂
CN116410453B (zh) * 2023-04-14 2023-11-07 东北石油大学 一种油田过渡层处理剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2174096A (en) * 1985-04-16 1986-10-29 Goldschmidt Ag Th Copolymers of polyoxyalkylene ethers and acrylic or methacrylic esters and their use as demulsifiers for petroleum containing water
CN1317544A (zh) * 2001-04-18 2001-10-17 东南大学 高效聚合物型原油乳液破乳剂及其合成方法
CN103570862A (zh) * 2012-07-20 2014-02-12 中国石油化工股份有限公司 一种破乳剂及其制备方法和应用
CN103755884A (zh) * 2013-12-20 2014-04-30 西南石油大学 一种处理油田聚驱采出液用反相破乳剂及其制备方法
CN108003918A (zh) * 2017-12-11 2018-05-08 石河子大学 一种丙烯酸改性聚醚基础物的改性方法
CN110628012A (zh) * 2019-09-24 2019-12-31 天津大学 一种新型破乳剂

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102533314B (zh) * 2012-02-16 2014-03-19 中国海洋石油总公司 一种快速原油破乳剂及其制备方法
CN104072683A (zh) * 2014-07-17 2014-10-01 天津亿利科能源科技发展股份有限公司 一种含聚合物原油破乳剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2174096A (en) * 1985-04-16 1986-10-29 Goldschmidt Ag Th Copolymers of polyoxyalkylene ethers and acrylic or methacrylic esters and their use as demulsifiers for petroleum containing water
CN1317544A (zh) * 2001-04-18 2001-10-17 东南大学 高效聚合物型原油乳液破乳剂及其合成方法
CN103570862A (zh) * 2012-07-20 2014-02-12 中国石油化工股份有限公司 一种破乳剂及其制备方法和应用
CN103755884A (zh) * 2013-12-20 2014-04-30 西南石油大学 一种处理油田聚驱采出液用反相破乳剂及其制备方法
CN108003918A (zh) * 2017-12-11 2018-05-08 石河子大学 一种丙烯酸改性聚醚基础物的改性方法
CN110628012A (zh) * 2019-09-24 2019-12-31 天津大学 一种新型破乳剂

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHENG CHEN, WANG FEI, LIU YING-JIE, YANG JI-HE: "Synthesis of a paraffin-based low-temperature crude oil demulsifier", MODERN CHEMICAL INDUSTRY, vol. 37, no. 4, 1 April 2017 (2017-04-01), pages 67 - 70, XP055795557 *
HU GUANGQUN, CHEN ZHIMING: "Preparation of Crude Oil Demusifiers With Low Temperature and High Effective Performances", CHEMICAL INDUSTRY TIMES, no. 11, 1 January 2002 (2002-01-01), pages 31 - 34, XP055795566 *
LI KUI: "Synthesis and Performance of Comb- like Polymer Demulsifier", ADVANCES IN FINE PETROCHEMICALS, vol. 6, no. 11, 1 November 2005 (2005-11-01), pages 4 - 8, XP055795572 *

Also Published As

Publication number Publication date
US20220213244A1 (en) 2022-07-07
CN110628012A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2021057335A1 (zh) 一种新型破乳剂
CN101418230B (zh) 一种原油破乳剂及其制备方法
CN107778474B (zh) 一种高效破乳剂的制备方法
Fan et al. MPEG grafted quaternized carboxymethyl chitosan for demulsification of crude oil emulsions
CN102399576A (zh) 一种新型原油破乳剂及其制备方法
CN102517069A (zh) 一种稠油低温破乳剂及其制备方法
CN103570862A (zh) 一种破乳剂及其制备方法和应用
CN110093181A (zh) 催化裂化油浆脱固的方法
CN111662745A (zh) 一种原油三采采出液用磺酸盐型破乳剂及其制备方法
CN111203005A (zh) 一种含油废水破乳剂及其制备方法和应用
CN103484149A (zh) 一种自交联型聚醚破乳剂
CN114032117B (zh) 一种处理原油脱水系统中富含聚合物及富含胶质沥青质的油水过渡层的破乳剂及其制备方法
CN115449067B (zh) 一种用于处理页岩油的破乳剂及其制备方法
CN111592910B (zh) 一种制备复配型聚醚类破乳剂方法
CN108865224B (zh) 一种聚醚接枝水包油型原油破乳剂及其制备方法
CN109364530B (zh) 一种对水包油型乳状液进行破乳的方法
Liu et al. Synthesis, modification, and demulsification properties of multi-branched block polyether demulsifiers
CN108865227B (zh) 一种壳聚糖类梳形聚合物原油破乳剂及其制备方法
Cheng et al. Swelling poly (ionic liquid) s for demulsifying oil‐in‐water emulsion by anion exchange
CN113355130B (zh) 一种用于油水过渡层的复合破乳剂及其应用
CN108865226B (zh) 一种水包油型原油破乳剂及其制备方法
CN108865232B (zh) 一种壳聚糖类改性原油破乳剂及其制备方法
CN108865221B (zh) 一种梳形聚合物水包油型原油破乳剂及其制备方法
CN108865231B (zh) 一种改性原油破乳剂及其制备方法
CN108865228B (zh) 一种改性原油破乳剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870345

Country of ref document: EP

Kind code of ref document: A1