WO2021054652A1 - Method for preparing graft polymer - Google Patents

Method for preparing graft polymer Download PDF

Info

Publication number
WO2021054652A1
WO2021054652A1 PCT/KR2020/011776 KR2020011776W WO2021054652A1 WO 2021054652 A1 WO2021054652 A1 WO 2021054652A1 KR 2020011776 W KR2020011776 W KR 2020011776W WO 2021054652 A1 WO2021054652 A1 WO 2021054652A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
polymer
graft polymer
benzotriazole
Prior art date
Application number
PCT/KR2020/011776
Other languages
French (fr)
Korean (ko)
Inventor
최정수
이원석
이루다
박상후
이종주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200110944A external-priority patent/KR102536520B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20865696.7A priority Critical patent/EP3929223A4/en
Priority to US17/442,416 priority patent/US20220185933A1/en
Priority to CN202080021457.4A priority patent/CN113574082A/en
Publication of WO2021054652A1 publication Critical patent/WO2021054652A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings

Definitions

  • the present invention relates to a method for producing a graft polymer, and more particularly, to a method for producing a graft polymer using a reactive UV stabilizer.
  • a diene-based graft polymer obtained by graft polymerization of an aromatic vinyl-based monomer and a vinyl cyanide-based monomer on a diene-based rubber polymer has a good balance of physical properties such as impact strength and processability. Accordingly, diene-based graft polymers are variously used in automobile products, home appliances, and OA products. In recent years, development of transparent materials is underway due to diversification of designs, and technologies for imparting transparency by introducing alkyl (meth)acrylate-based monomers to diene-based graft polymers are being developed.
  • the transparent diene-based graft polymer produced by these techniques has excellent impact strength and workability, but it cannot be used outdoors because of poor weather resistance, and even when used indoors, discoloration occurs during long-term use, which is a problem.
  • a method of introducing an additive such as a UV stabilizer has been proposed when preparing a thermoplastic resin composition, but there is a limitation.
  • the problem to be solved by the present invention is to provide a graft polymer having excellent transparency, impact strength, and weather resistance.
  • the present invention is a composite rubber polymer by introducing and polymerizing a first monomer mixture and a reactive UV stabilizer including a diene-based rubber polymer, a (meth)acrylate-based monomer and an aromatic vinyl-based monomer into a reactor.
  • a graft polymer having excellent transparency, impact strength, and weather resistance can be prepared.
  • the refractive index means the absolute refractive index of a material, and the refractive index can be recognized as a ratio of the speed of electromagnetic radiation in free space to the speed of radiation in the material.
  • the radiation may be visible light having a wavelength of 450 to 680 nm, and specifically, may be visible light having a wavelength of 589.3 nm.
  • the refractive index can be measured using a known method, that is, an Abbe refractometer.
  • the average particle diameter can be measured using a dynamic light scattering method, and in detail, it can be measured using a Nicomp 380 equipment of Particle Sizing Systems.
  • the average particle diameter may mean an arithmetic average particle diameter in a particle size distribution measured by a dynamic light scattering method, that is, an average particle diameter of an intensity distribution.
  • the diene-based rubber polymer may mean a polymer prepared by crosslinking a diene-based monomer alone or a diene-based monomer and a comonomer copolymerizable therewith.
  • the diene-based monomer may be at least one selected from the group consisting of 1,3-butadiene, isoprene, chloroprene, and piperylene, of which 1,3-butadiene is preferable.
  • the comonomer may include an aromatic vinyl monomer, a vinyl cyanide monomer, and an olefin monomer.
  • the diene-based rubber polymer may include a butadiene rubber polymer, a butadiene-styrene rubber polymer, and a butadiene-acrylonitrile rubber polymer.
  • the diene rubber polymer is preferably a butadiene rubber polymer having excellent impact strength and chemical resistance.
  • the (meth) acrylate monomer may be a C 1 to C 10 alkyl (meth) acrylate monomer, and the C 1 to C 10 alkyl (meth) acrylate monomer is methyl (meth) acrylate , Ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, heptyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and decyl (meth) It may be one or more selected from the group consisting of acrylate, of which one or more selected from the group consisting of methyl methacrylate and butyl acrylate is preferred.
  • the aromatic vinyl-based monomer may be at least one selected from the group consisting of styrene, ⁇ -methyl styrene, ⁇ -ethyl styrene, and p-methyl styrene, among which styrene is preferable.
  • the vinyl cyanide monomer may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, phenylacrylonitrile and ⁇ -chloroacrylonitrile, of which acrylonitrile is preferable.
  • the C 1 to C 10 linear alkyl group may be a C 1 to C 10 linear or branched alkyl group, and preferably a C 1 to C 3 linear or branched alkyl group.
  • the C 1 to C 10 linear alkyl group may be a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, heptyl group, isoheptyl group, hexyl group or isohexyl group, of which methyl group is preferable.
  • the C 1 to C 10 linear alkylene group may be a C 1 to C 10 linear or branched alkylene group, and preferably a C 1 to C 3 linear or branched alkylene group.
  • the C 1 to C 10 linear alkylene group may mean a divalent group having two bonding positions in the C 1 to C 10 linear alkyl group.
  • the method for preparing a graft polymer according to an embodiment of the present invention includes 1) a first monomer mixture including a diene-based rubber polymer, a (meth)acrylate-based monomer, and an aromatic vinyl-based monomer and a reactive UV stabilizer into the reactor.
  • the type UV stabilizer is added in an amount of 0.1 to 2 parts by weight based on 100 parts by weight of the total of the diene-based rubber polymer, the first monomer mixture, and the second monomer mixture.
  • a first monomer mixture including a diene-based rubber polymer, a (meth)acrylate-based monomer, and an aromatic vinyl-based monomer, and a reactive UV stabilizer are added to the reactor and polymerized to prepare a composite rubbery polymer.
  • the reactive UV stabilizer is a UV stabilizer having a double bond capable of participating in the polymerization, and if it is added in an appropriate amount in the step of preparing the composite rubbery polymer, it can be directly bonded to the chain of the composite rubbery polymer, thereby remarkably improving the weather resistance. I can.
  • the reactive UV stabilizer since the reactive UV stabilizer is added in the step of preparing the composite rubbery polymer, the diene-based rubbery polymer and the shell may have no or only minimal effect. Accordingly, the impact strength and transparency of the graft polymer may not be affected or may be minimally affected.
  • the reactive UV stabilizer is added in an amount of 0.1 to 2 parts by weight, preferably 0.5 to 1.2 parts by weight, based on 100 parts by weight of the diene-based rubbery polymer, the first monomer mixture, and the second monomer mixture. can do. If the above-described range is satisfied, weather resistance can be remarkably improved while minimizing influence on transparency and impact strength. If it is added in less than the above-described range, the weather resistance improvement effect is insufficient, and if it is added in excess of the above-described range, transparency and impact strength are lowered, making it unsuitable for use as a transparent material.
  • the reactive UV stabilizer may be a compound represented by the following Formula 1:
  • R 1 is hydrogen or a C 1 to C 10 alkyl group
  • L 1 is a direct bond or a C 1 to C 10 alkylene group.
  • the reactive UV stabilizer is 2-[2'-hydroxy-5'-[2-(acryloxy)phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-( Methacryloxy)phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-(acryloxy)methyl]phenyl]-2H-benzotriazole, 2-[2'-hydro Roxy-5'-[2-(methacryloxy)methyl]phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-(acryloxy)ethyl]phenyl]-2H- Benzotriazole, 2-[2'-hydroxy-5'-[2-(methacryloxy)ethyl]phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-(methacryloxy)ethyl]phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2- (Acrylooxy)propyl
  • the diene-based rubber polymer may have an average particle diameter of 200 to 400 nm, and preferably 250 to 450 nm. If the above-described conditions are satisfied, a graft polymer having excellent impact strength can be prepared.
  • the diene-based rubber polymer is added to the reactor in a total of 100 parts by weight of the diene-based rubber polymer, the first monomer mixture and the second monomer mixture, 7 to 30 parts by weight, preferably 10 to 30 parts by weight, more preferably May be added in an amount of 15 to 25 parts by weight. If the above-described conditions are satisfied, a graft polymer having excellent impact strength and chemical resistance can be prepared. If added in less than the above-described range, the impact strength at room temperature and low temperature may be reduced. If the above-described range is exceeded, since a relatively small amount of the (meth)acrylate-based monomer is added in the manufacturing process of the composite rubbery polymer, the weather resistance of the graft polymer may be deteriorated.
  • the first monomer mixture in the reactor is 10 to 50 parts by weight, preferably 30 to 50 parts by weight, more preferably based on 100 parts by weight of the sum of the diene-based rubbery polymer, the first monomer mixture, and the second monomer mixture. Can be added in 35 to 45 parts by weight. If the above-described conditions are satisfied, a graft polymer having excellent weather resistance can be produced. If the amount is less than the above-described range, the content of the composite rubbery polymer in the graft polymer increases, so that mechanical properties such as tensile strength and flexural strength may decrease, and transparency may decrease.
  • the first monomer mixture may include a (meth)acrylate-based monomer and an aromatic vinyl-based monomer in a weight ratio of 70:30 to 50:50, preferably 65:35 to 55:45. If the above-described range is satisfied, a graft polymer having excellent weather resistance can be prepared.
  • the first monomer mixture preferably includes an acrylate-based monomer and an aromatic vinyl-based monomer, and more preferably includes butyl acrylate and styrene.
  • polymerization may be emulsion polymerization, and at least one selected from the group consisting of an initiator, an emulsifier, a crosslinking agent, a grafting agent, and an electrolyte may be additionally added to the reactor.
  • the initiator may be at least one selected from the group consisting of t-butyl peroxide, cumene hydroperoxide, diisopropylbenzene peroxide, potassium persulfate, sodium persulfate and ammonium persulfate, of which cumene hydroperoxide is desirable.
  • the emulsifier is fatty acid soap, potassium oleate, sodium oleate, sodium dicyclohexyl sulfosuccinate, sodium dihexyl sulfosuccinate, sodium di-2-ethylhexyl sulfosuccinate, potassium di-2-ethylhexyl Sulfosuccinate, sodium dioctyl sulfosuccinate, sodium dodecyl sulfate, sodium dodecyl benzene sulfate, sodium octadecyl sulfate, sodium oleic sulfate, sodium dodecyl sulfate, potassium octadecyl sulfate, potassium loginate and sodium lodge It may be one or more selected from the group consisting of nate, of which sodium dioctyl sulfosuccinate is preferred.
  • the crosslinking agent is ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1,3-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol It may be one or more selected from the group consisting of dimethacrylate, trimethylolpropane trimethacrylate, and trimethylolmethane tetraacrylate, of which ethylene glycol dimethacrylate is preferred.
  • the grafting agent may be at least one selected from the group consisting of allyl methacrylate, triallyl isocyanonate, triallylamine, and diallylamine, among which allyl methacrylate is preferred.
  • the electrolyte is KCl, NaCl, KOH, KHCO 3 , NaHCO 3 , K 2 CO 3 , Na 2 CO 3 , KHSO 3 , NaHSO 3 , K4P2O7, Na 4 P 2 O 7 , K 3 PO 4 , Na 3 PO 4 , It may be one or more selected from the group consisting of K 2 HPO 4 and Na 2 HPO 4 , of which at least one selected from the group consisting of KOH and K 2 CO 3 is preferred.
  • the composite rubbery polymer may have an average particle diameter of 250 to 500 nm, preferably 280 to 450 nm. If the above-described conditions are satisfied, transparency and mechanical properties of the graft polymer may be improved.
  • a graft polymer is prepared by graft polymerization of a second monomer mixture including a (meth)acrylate-based monomer, an aromatic vinyl-based monomer, and a vinyl cyanide-based monomer in the composite rubbery polymer.
  • the second monomer mixture is added in an amount of 20 to 70 parts by weight, preferably 30 to 50 parts by weight, more preferably, based on 100 parts by weight of the total of the diene-based rubbery polymer, the first monomer mixture, and the second monomer mixture. May be added in an amount of 35 to 45 parts by weight. If the above-described range is satisfied, a graft polymer having excellent transparency, appearance characteristics, and impact strength can be prepared. If it is put in less than the above-described range, the appearance characteristics deteriorate, and in particular, a flow mark or the like may be generated. If it is added in excess of the above-described range, the impact strength may be significantly lowered.
  • the second monomer mixture may include 60 to 80% by weight of a (meth)acrylate monomer, 15 to 35% by weight of an aromatic vinyl monomer, and 1 to 7% by weight of a vinyl cyanide monomer, preferably 65 to 75% by weight of a (meth)acrylate-based monomer, 20 to 30% by weight of an aromatic vinyl-based monomer, and 3 to 7% by weight of a vinyl cyanide-based monomer may be included. If the above-described range is satisfied, processability and chemical resistance may be improved while maintaining transparency.
  • the second monomer mixture preferably includes a methacrylate-based monomer and an aromatic vinyl-based monomer, and more preferably includes methyl methacrylate, styrene, and acrylonitrile.
  • polymerization may be emulsion polymerization, and at least one selected from the group consisting of an initiator, an emulsifier, a redox catalyst, and a molecular weight regulator may be additionally added to the reactor.
  • the oxidation-reduction catalyst may be at least one selected from the group consisting of sodium formaldehyde sulfoxylate, sodium ethylenediamine tetraacetate, ferrous sulfate, dextrose, sodium pyrophosphate, anhydrous sodium pyrophosphate, and sodium sulfate. And, it is preferable that it is at least one selected from the group consisting of ferrous sulfate, dextrose, and sodium pyrophosphate.
  • the molecular weight modifier is ⁇ -methyl styrene dimer, t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan, carbon tetrachloride, methylene chloride, methylene bromide, tetra ethyl thiuram disulfide, dipentamethylene thiuram disulfide.
  • Diisopropylxanthogen may be one or more selected from the group consisting of disulfide, of which t-dodecyl mercaptan is preferred.
  • the difference in refractive index between the diene-based rubber polymer, the composite rubber polymer, and the shell is 0.01 or less, and there is no difference in the refractive index thereof.
  • the graft polymer may have a refractive index of 1.51 to 1.52, preferably 1.515 to 1.517. If the above-described conditions are satisfied, a graft polymer having excellent transparency can be prepared.
  • thermoplastic resin composition according to another embodiment of the present invention is a graft polymer prepared by the manufacturing method according to an embodiment of the present invention; And a matrix polymer that is a polymer of a third monomer mixture including a (meth)acrylate-based monomer, an aromatic vinyl-based monomer, and a vinyl cyanide-based monomer.
  • the difference in refractive index between the graft polymer and the matrix polymer may be 0.01 or less, and it is preferable that there is no difference in refractive index. If the above-described conditions are satisfied, a thermoplastic resin molded article having excellent transparency can be manufactured.
  • the third monomer mixture may include 40 to 75 parts by weight of a (meth)acrylate-based monomer, 15 to 40 parts by weight of an aromatic vinyl-based monomer, and 1 to 20 parts by weight of a vinyl cyanide-based monomer, preferably (meth)acrylic It may include 55 to 70 parts by weight of an ite-based monomer, 20 to 30 parts by weight of an aromatic vinyl-based monomer, and 5 to 15 parts by weight of a vinyl cyanide-based monomer. If the above-described conditions are satisfied, a matrix polymer having excellent transparency, chemical resistance, scratch resistance, and processability can be prepared.
  • the thermoplastic resin composition may include a graft polymer and a matrix polymer in a weight ratio of 25:75 to 75:25, preferably 50:50 to 25:75.
  • a polymerization solution in which 63.36 parts by weight of methyl methacrylate, 24.64 parts by weight of styrene, 12 parts by weight of acrylonitrile, 30 parts by weight of toluene and 0.15 parts by weight of t-dodecyl mercaptan were mixed in a reactor was prepared so that the average polymerization time was 3 hours.
  • Polymerization was carried out while continuously adding at a rate, and the polymerization temperature was maintained at 148°C.
  • the polymer discharged from the reactor was heated in a preheating bath, and unreacted monomers were volatilized in the volatilization bath. Then, it was extruded in an extruder at 210° C. to prepare a pellet-shaped MSAN polymer (refractive index: 1.516).
  • butadiene rubber polymer latex (PBL, gel content: 70%, average particle diameter: 300 nm) 20 parts by weight (based on solid content), butyl acrylate (BA) 24 parts by weight, styrene (S) 16 parts by weight, ion-exchanged water 100 parts by weight, reactive UV stabilizer (RUVA93 of Otsuka Chemical), cumene hydroperoxide 0.1 parts by weight, sodium ethylenediaminetetraacetate 0.01 parts by weight, sodium formaldehyde sulfoxylate 0.04 parts by weight, sulfuric acid Ferrous 0.0001 parts by weight, sodium dioctyl sulfosuccinate 0.7 parts by weight, ethylene glycol dimethacrylate 0.4 parts by weight, allyl methacrylate 0.1 parts by weight, NaHCO 3 0.1 parts by weight at a constant rate for 3 hours at 70° C. Polymerization was carried out while continuously adding. Thereafter, the temperature of the reactor was raised to 80° C. and
  • MMA methyl methacrylate
  • S styrene
  • AN acrylonitrile
  • cumene hydroperoxide 0.01 parts by weight of sodium ethylenediaminetetraacetate Parts, sodium formaldehyde sulfoxylate 0.04 parts by weight, ferrous sulfate 0.001 parts by weight, sodium oleate 0.5 parts by weight, and t-dodecyl mercaptan 0.4 parts by weight were continuously added at 75° C. for 5 hours at a constant rate while polymerization was carried out. . Thereafter, the temperature of the reactor was raised to 80° C., aged for 1 hour, and polymerization was terminated, and a graft polymer latex was obtained.
  • MMA methyl methacrylate
  • S styrene
  • AN acrylonitrile
  • the graft polymer latex was aggregated with an aqueous calcium chloride solution, and then aged, washed, dehydrated and dried to obtain a graft polymer powder.
  • thermoplastic resin composition ⁇ Production of thermoplastic resin composition>
  • thermoplastic resin composition 35 parts by weight of the graft polymer powder and 65 parts by weight of the MSAN polymer of Preparation Example 1 were uniformly mixed to prepare a thermoplastic resin composition.
  • a graft polymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except that a reactive UV stabilizer (RUVA93 of Otsuka Chemical Co., Ltd.) was added to the reactor at the contents shown in the following table.
  • a reactive UV stabilizer RUVA93 of Otsuka Chemical Co., Ltd.
  • Graft polymer powder was prepared in the same manner as in Example 1.
  • thermoplastic resin composition ⁇ Production of thermoplastic resin composition>
  • thermoplastic resin composition 45 parts by weight of the graft polymer powder and 55 parts by weight of the MSAN polymer of Preparation Example 1 were uniformly mixed to prepare a thermoplastic resin composition.
  • a graft polymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except that a reactive UV stabilizer (RUVA93 of Otsuka Chemical Co., Ltd.) was added to the reactor at the contents shown in the following table.
  • a reactive UV stabilizer RUVA93 of Otsuka Chemical Co., Ltd.
  • butadiene rubber polymer latex (PBL, gel content: 70%, average particle diameter: 300 nm) 20 parts by weight (based on solid content), butyl acrylate (BA) 17.5 parts by weight, styrene (S) 12.5 parts by weight, ion-exchanged water 100 parts by weight, potassium persulfate 0.06 parts by weight, sodium dioctyl sulfosuccinate 0.5 parts by weight, ethylene glycol dimethacrylate 0.28 parts by weight, allyl methacrylate 0.1 parts by weight, NaHCO 3 0.1 parts by weight at 70° C. for 3 hours During the polymerization was carried out while continuously added at a constant rate. Thereafter, the temperature of the reactor was raised to 80° C. and polymerized for 1 hour to prepare a composite rubbery polymer latex.
  • MMA methyl methacrylate
  • S styrene
  • AN acrylonitrile
  • cumene hydroperoxide 0.1 parts by weight, sodium ethylenediaminetetraacetate 0.01 parts by weight Parts, sodium formaldehyde sulfoxylate 0.04 parts by weight, ferrous sulfate 0.001 parts by weight, sodium oleate 0.5 parts by weight, t-dodecyl mercaptan 0.5 parts by weight
  • polymerization was carried out at a constant rate at 75° C. for 5 hours. . Thereafter, the temperature of the reactor was raised to 80° C., aged for 1 hour, and polymerization was terminated, and a graft polymer latex was obtained.
  • the graft polymer latex was aggregated with an aqueous calcium chloride solution, and then aged, washed, dehydrated and dried to obtain a graft polymer powder.
  • thermoplastic resin composition ⁇ Production of thermoplastic resin composition>
  • thermoplastic resin composition 40 parts by weight of the graft polymer powder and 60 parts by weight of the MSAN polymer of Preparation Example 1 were uniformly mixed to prepare a thermoplastic resin composition.
  • butadiene rubbery polymer latex (PBL, gel content: 70%, average particle diameter: 300 nm) 20 parts by weight (based on solid content) 50 parts by weight, methyl methacrylic acid 35.5 parts by weight, styrene 12.5 parts by weight, acrylonitrile 2 parts by weight Parts, cumene hydroperoxide 0.1 parts by weight, sodium oleate 0.5 parts by weight, sodium ethylenediaminetetraacetate 0.1 parts by weight, sodium formaldehyde sulfoxylate 0.04 parts by weight, ferrous sulfate 0.001 parts by weight at 75° C. for 5 hours Polymerization was carried out while continuously charged at a rate. Thereafter, the temperature of the reactor was raised to 80° C., aged for 1 hour, and polymerization was terminated, and a graft polymer latex was obtained.
  • PBL polymer latex
  • the graft polymer latex was aggregated with an aqueous calcium chloride solution, and then aged, washed, dehydrated and dried to obtain a graft polymer powder.
  • thermoplastic resin composition ⁇ Production of thermoplastic resin composition>
  • thermoplastic resin composition 40 parts by weight of the graft polymer powder and 60 parts by weight of the MSAN polymer of Preparation Example 1 were uniformly mixed to prepare a thermoplastic resin composition.
  • a nitrogen-substituted polymerization reactor 90 parts by weight of ion-exchanged water, 75 parts by weight of 1,3-butadiene (BD), 3.5 parts by weight of reactive UV stabilizer (RUVA93 of Otsuka Chemical Co., Ltd.), 1.2 parts by weight of rosinate potassium salt, potassium oleate Salt 0.8 parts by weight, K 2 CO 3 1.0 parts by weight, t-dodecyl mercaptan 0.4 parts by weight, potassium persulfate 0.5 parts by weight were put in a batch. After raising the temperature of the reactor to 70° C., polymerization was initiated.
  • the reactor was polymerized while heating the reactor to 80°C, and the polymerization was terminated at the time when the polymerization conversion rate was 90%, and the butadiene rubbery polymer latex (gel content: 70%, average particle diameter: 300 nm) was prepared.
  • butadiene rubbery polymer latex 20 parts by weight (based on solid content), butyl acrylate (BA) 24 parts by weight, styrene (S) 16 parts by weight, ion-exchanged water 100 parts by weight, cumene hydroperoxide 0.1 parts by weight, sodium ethylenediamine Tetraacetate 0.01 parts by weight, sodium formaldehyde sulfoxylate 0.04 parts by weight, ferrous sulfate 0.0001 parts by weight, sodium dioctyl sulfosuccinate 0.7 parts by weight, ethylene glycol dimethacrylate 0.4 parts by weight, allyl methacrylate 0.1 Polymerization was carried out while continuously adding 0.1 parts by weight of NaHCO 3 at 70° C. for 3 hours at a constant rate. Thereafter, the temperature of the reactor was raised to 80° C. and polymerized for 1 hour to prepare a composite rubbery polymer latex.
  • BA butyl acrylate
  • S styrene
  • MMA methyl methacrylate
  • S styrene
  • AN acrylonitrile
  • cumene hydroperoxide 0.1 parts by weight, sodium ethylenediaminetetraacetate 0.01 parts by weight Parts, sodium formaldehyde sulfoxylate 0.04 parts by weight, ferrous sulfate 0.001 parts by weight, sodium oleate 0.5 parts by weight, t-dodecyl mercaptan 0.4 parts by weight
  • polymerization was carried out at 75° C. for 5 hours at a constant rate for 5 hours. . Thereafter, the temperature of the reactor was raised to 80° C., aged for 1 hour, and polymerization was terminated, thereby obtaining a graft polymer latex.
  • the graft polymer latex was aggregated with an aqueous calcium chloride solution, and then aged, washed, dehydrated and dried to obtain a graft polymer powder.
  • thermoplastic resin composition ⁇ Production of thermoplastic resin composition>
  • thermoplastic resin composition 35 parts by weight of the graft polymer powder and 65 parts by weight of the MSAN polymer of Preparation Example 1 were uniformly mixed to prepare a thermoplastic resin composition.
  • Refractive index The graft polymer powder was irradiated with visible light of 589.3 nm and measured with an Abbe refractometer.
  • thermoplastic resin compositions of Examples and Comparative Examples 100 parts by weight of the thermoplastic resin compositions of Examples and Comparative Examples, 0.2 parts by weight of ethylene bis stearate, 0.2 parts by weight of IR1076, and 0.1 parts by weight of BASF's Tinuvin 770 were uniformly mixed, and then extruded and injected to prepare a specimen.
  • the physical properties of the specimen were measured by the method described below, and the results are shown in Tables 1 and 2 below.
  • Haze value (Haze value, %): It was measured according to ASTM1003.
  • Notched Izod impact strength (kgf ⁇ cm/cm, 1/4 inch): Measured at 25°C according to ASTM D256.
  • the weather resistance was evaluated by calculating the color difference between the specimens stored for 500 hours and before storage using UV2000 (ATLAS) by the following equation.
  • Fluorescent UV lamps 40W, UVA 340 lamp
  • the temperature of the black panel 60 °C
  • L', a', b'are L, a, and b values measured by the CIE LAB color coordinate system after storage for 500 hours in the specimen and L 0 , a 0, and b 0 are the CIE LAB colors before storage. These are L, a, and b values measured with a coordinate system.
  • Examples 1 to 5 using a reactive UV stabilizer in an appropriate amount were excellent in all of transparency, impact strength, and weather resistance.
  • Comparative Example 1 using a reactive UV stabilizer in a small amount the weather resistance was markedly lowered.
  • Comparative Example 2 using a reactive UV stabilizer in an excessive amount was inappropriate as a transparent material due to decreased transparency.
  • Comparative Example 3 without using a reactive UV stabilizer it was confirmed that the weather resistance was significantly lowered.
  • Comparative Example 4 prepared with a diene-based rubbery polymer rather than a composite rubbery polymer without using a reactive UV stabilizer was found to significantly lower the weather resistance.
  • Comparative Example 5 in which the reactive UV stabilizer was used in the manufacture of a diene-based rubbery polymer latex, it was confirmed that transparency, impact resistance, and weather resistance were deteriorated.
  • the content of the reactive UV stabilizer included in the graft copolymer was the same, but it was confirmed that transparency, impact resistance, impact resistance, and weather resistance were deteriorated even when compared with Example 2, which differed only in the timing of addition.

Abstract

The present invention relates to a method for preparing a graft polymer, the method comprising the steps of: preparing a composite rubber-like polymer by adding, into a reactor, a diene-based rubber-like polymer, a first monomer mixture comprising a (meth)acrylate-based monomer and an aromatic vinyl-based monomer, and a reactive UV stabilizer and polymerizing same; and graft-polymerizing, onto the composite rubber-like polymer, a second monomer mixture comprising a (meth)acrylate-based monomer, an aromatic vinyl-based monomer and a vinyl cyanide-based monomer to prepare a graft polymer, wherein 0.1-2 parts by weight of the reactive UV stabilizer is added with respect to 100 parts by weight of the total of the diene-based rubber-like polymer, the first monomer mixture, and the second monomer mixture.

Description

그라프트 중합체의 제조방법Method for producing graft polymer
[관련출원과의 상호인용][Mutual citation with related application]
본 발명은 2019년 09월 18일에 출원된 한국 특허 출원 제10-2019-0114888호 및 2020년 09월 01일 출원된 한국 특허 출원 제10-2020-0110944호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.The present invention claims the benefit of priority based on Korean Patent Application No. 10-2019-0114888 filed on September 18, 2019 and Korean Patent Application No. 10-2020-0110944 filed on September 01, 2020, All contents disclosed in the document of the Korean patent application are included as part of this specification.
[기술분야][Technical field]
본 발명은 그라프트 중합체의 제조방법에 관한 것으로서, 상세하게는 반응형 UV 안정제를 이용하는 그라프트 중합체의 제조방법에 관한 것이다.The present invention relates to a method for producing a graft polymer, and more particularly, to a method for producing a graft polymer using a reactive UV stabilizer.
디엔계 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 그라프트 중합한 디엔계 그라프트 중합체는 충격강도 및 가공성 등 물성의 균형을 잘 이루고 있다. 이에 따라 디엔계 그라프트 중합체는 자동차 용품, 가전제품, OA 용품 등에 다양하게 사용되고 있다. 최근에는 디자인의 다양화로 인해 투명 소재 개발이 진행되고 있는데, 디엔계 그라프트 중합체에 알킬 (메트)아크릴레이트계 단량체를 도입하여 투명성을 부여하는 기술들이 개발되고 있다.A diene-based graft polymer obtained by graft polymerization of an aromatic vinyl-based monomer and a vinyl cyanide-based monomer on a diene-based rubber polymer has a good balance of physical properties such as impact strength and processability. Accordingly, diene-based graft polymers are variously used in automobile products, home appliances, and OA products. In recent years, development of transparent materials is underway due to diversification of designs, and technologies for imparting transparency by introducing alkyl (meth)acrylate-based monomers to diene-based graft polymers are being developed.
이러한 기술들에 의하여 제조된 투명 디엔계 그라프트 중합체는 충격강도 및 가공성 등은 우수하나, 내후성이 좋지 않아 실외용으로는 사용할 수 없으며, 실내용으로 사용시에도 장기 사용시 변색이 발생하여 문제가 되기도 한다. 내후성을 향상시키기 위하여, 열가소성 수지 조성물의 제조 시 UV 안정제 등의 첨가제를 투입하는 방안이 제안되었으나, 한계가 있었다.The transparent diene-based graft polymer produced by these techniques has excellent impact strength and workability, but it cannot be used outdoors because of poor weather resistance, and even when used indoors, discoloration occurs during long-term use, which is a problem. In order to improve the weather resistance, a method of introducing an additive such as a UV stabilizer has been proposed when preparing a thermoplastic resin composition, but there is a limitation.
본 발명이 해결하고자 하는 과제는 투명성, 충격강도 및 내후성이 모두 우수한 그라프트 중합체를 제공하는 것이다.The problem to be solved by the present invention is to provide a graft polymer having excellent transparency, impact strength, and weather resistance.
상술한 과제를 해결하기 위하여, 본 발명은 반응기에 디엔계 고무질 중합체, (메트)아크릴레이트계 단량체 및 방향족 비닐계 단량체를 포함하는 제1 단량체 혼합물 및 반응형 UV 안정제를 투입하고 중합하여 복합 고무질 중합체를 제조하는 단계; 및 상기 복합 고무질 중합체에 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 제2 단량체 혼합물을 그라프트 중합하여 그라프트 중합체를 제조하는 단계를 포함하고, 상기 반응형 UV 안정제를 상기 디엔계 고무질 중합체, 상기 제1 단량체 혼합물 및 제2 단량체 혼합물의 합 100 중량부에 대하여 0.1 내지 2 중량부의 함량으로 투입하는 그라프트 중합체의 제조방법을 제공한다.In order to solve the above-described problems, the present invention is a composite rubber polymer by introducing and polymerizing a first monomer mixture and a reactive UV stabilizer including a diene-based rubber polymer, a (meth)acrylate-based monomer and an aromatic vinyl-based monomer into a reactor. Manufacturing a; And graft polymerization of a second monomer mixture comprising a (meth)acrylate-based monomer, an aromatic vinyl-based monomer, and a vinyl cyanide-based monomer to the composite rubbery polymer to prepare a graft polymer, wherein the reactive UV It provides a method for producing a graft polymer in which a stabilizer is added in an amount of 0.1 to 2 parts by weight based on 100 parts by weight of the total of the diene-based rubber polymer, the first monomer mixture, and the second monomer mixture.
본 발명의 그라프트 중합체의 제조방법에 따르면, 투명성, 충격강도 및 내후성이 모두 우수한 그라프트 중합체를 제조할 수 있다.According to the method for producing a graft polymer of the present invention, a graft polymer having excellent transparency, impact strength, and weather resistance can be prepared.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail to aid understanding of the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the specification and claims should not be construed as being limited to their usual or dictionary meanings, and the inventor may appropriately define the concept of terms in order to describe his own invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.
본 발명에서 굴절률은 물질의 절대 굴절률을 의미하는 것으로서, 굴절률은 자유 공간에서의 전자기 복사선 속도 대 물질 내에서의 복사선의 속도 비로서 인식될 수 있다. 이때 복사선은 파장이 450 ㎚ 내지 680 ㎚의 가시광선일 수 있고, 구체적으로는 파장이 589.3 ㎚의 가시광선일 수 있다. 굴절률은 공지된 방법, 즉 아베 굴절계(Abbe refractometer)를 이용하여 측정할 수 있다.In the present invention, the refractive index means the absolute refractive index of a material, and the refractive index can be recognized as a ratio of the speed of electromagnetic radiation in free space to the speed of radiation in the material. At this time, the radiation may be visible light having a wavelength of 450 to 680 nm, and specifically, may be visible light having a wavelength of 589.3 nm. The refractive index can be measured using a known method, that is, an Abbe refractometer.
본 발명에서 평균입경은 동적 광산란(dynamic light scattering)법을 이용하여 측정할 수 있고, 상세하게는 Particle Sizing Systems 社의 Nicomp 380 장비를 이용하여 측정할 수 있다. 본 발명에서 평균입경은 동적 광산란법에 의해 측정되는 입도분포에 있어서의 산술 평균입경, 즉 산란강도(Intensity Distribution) 평균입경을 의미할 수 있다.In the present invention, the average particle diameter can be measured using a dynamic light scattering method, and in detail, it can be measured using a Nicomp 380 equipment of Particle Sizing Systems. In the present invention, the average particle diameter may mean an arithmetic average particle diameter in a particle size distribution measured by a dynamic light scattering method, that is, an average particle diameter of an intensity distribution.
본 발명에서 디엔계 고무질 중합체는 디엔계 단량체 단독 또는 디엔계 단량체와 이와 공중합 가능한 공단량체를 가교 반응시켜 제조한 중합체를 의미할 수 있다. 상기 디엔계 단량체는 1,3-부타디엔, 이소프렌, 클로로프렌 및 피퍼릴렌으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 1,3-부타디엔이 바람직하다. 상기 공단량체는 방향족 비닐계 단량체 및 시안화 비닐계 단량체, 올레핀계 단량체 등을 들 수 있다. 상기 디엔계 고무질 중합체는 부타디엔 고무질 중합체, 부타디엔-스티렌 고무질 중합체, 부타디엔-아크릴로니트릴 고무질 중합체 등을 들 수 있다. 상기 디엔계 고무질 중합체로는 충격강도 및 내약품성이 모두 우수한 부타디엔 고무질 중합체가 바람직하다.In the present invention, the diene-based rubber polymer may mean a polymer prepared by crosslinking a diene-based monomer alone or a diene-based monomer and a comonomer copolymerizable therewith. The diene-based monomer may be at least one selected from the group consisting of 1,3-butadiene, isoprene, chloroprene, and piperylene, of which 1,3-butadiene is preferable. The comonomer may include an aromatic vinyl monomer, a vinyl cyanide monomer, and an olefin monomer. The diene-based rubber polymer may include a butadiene rubber polymer, a butadiene-styrene rubber polymer, and a butadiene-acrylonitrile rubber polymer. The diene rubber polymer is preferably a butadiene rubber polymer having excellent impact strength and chemical resistance.
본 발명에서 (메트)아크릴레이트계 단량체는 C1 내지 C10의 알킬 (메트)아크릴레이트계 단량체일 수 있으며, C1 내지 C10의 알킬 (메트)아크릴레이트계 단량체는 메틸 (메트)아크릴레이트, 에틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 부틸 (메트)아크릴레이트, 헵틸 (메트)아크릴레이트, 헥실 (메트)아크릴레이트, 2-에틸헥실 (메트)아크릴레이트 및 데실 (메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중 메틸 메타크릴레이트 및 부틸 아크릴레이트로 이루어진 군에서 선택되는 1종 이상이 바람직하다.In the present invention, the (meth) acrylate monomer may be a C 1 to C 10 alkyl (meth) acrylate monomer, and the C 1 to C 10 alkyl (meth) acrylate monomer is methyl (meth) acrylate , Ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, heptyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and decyl (meth) It may be one or more selected from the group consisting of acrylate, of which one or more selected from the group consisting of methyl methacrylate and butyl acrylate is preferred.
본 발명에서 방향족 비닐계 단량체는 스티렌, α-메틸 스티렌, α-에틸 스티렌 및 p-메틸 스티렌으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 스티렌이 바람직하다.In the present invention, the aromatic vinyl-based monomer may be at least one selected from the group consisting of styrene, α-methyl styrene, α-ethyl styrene, and p-methyl styrene, among which styrene is preferable.
본 발명에서 시안화 비닐계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 아크릴로니트릴이 바람직하다.In the present invention, the vinyl cyanide monomer may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, phenylacrylonitrile and α-chloroacrylonitrile, of which acrylonitrile is preferable.
본 발명에서 C1 내지 C10의 선형 알킬기는 C1 내지 C10의 직쇄 또는 분지쇄 알킬기일 수 있고, 바람직하게는 C1 내지 C3의 직쇄 또는 분지쇄 알킬기일 수 있다. 상기 C1 내지 C10의 선형 알킬기는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, 헵틸기, 이소헵틸기, 헥실기 또는 이소헥실기 일 수 있고, 이 중 메틸기가 바람직하다.In the present invention, the C 1 to C 10 linear alkyl group may be a C 1 to C 10 linear or branched alkyl group, and preferably a C 1 to C 3 linear or branched alkyl group. The C 1 to C 10 linear alkyl group may be a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, heptyl group, isoheptyl group, hexyl group or isohexyl group, of which methyl group is preferable. Do.
본 발명에서 C1 내지 C10의 선형 알킬렌기는 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기일 수 있고, 바람직하게는 C1 내지 C3의 직쇄 또는 분지쇄 알킬렌기일 수 있다. 상기 C1 내지 C10의 선형 알킬렌기는 상기 C1 내지 C10의 선형 알킬기에 결합 위치가 2개 있는 2가 기를 의미할 수 있다.In the present invention, the C 1 to C 10 linear alkylene group may be a C 1 to C 10 linear or branched alkylene group, and preferably a C 1 to C 3 linear or branched alkylene group. The C 1 to C 10 linear alkylene group may mean a divalent group having two bonding positions in the C 1 to C 10 linear alkyl group.
1. 그라프트 중합체의 제조방법1. Method for producing graft polymer
본 발명의 일실시예에 따른 그라프트 중합체의 제조방법은 1) 반응기에 디엔계 고무질 중합체, (메트)아크릴레이트계 단량체 및 방향족 비닐계 단량체를 포함하는 제1 단량체 혼합물 및 반응형 UV 안정제를 투입하고 중합하여 복합 고무질 중합체를 제조하는 단계; 및 2) 상기 복합 고무질 중합체에 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 제2 단량체 혼합물을 그라프트 중합하여 그라프트 중합체를 제조하는 단계를 포함하고, 상기 반응형 UV 안정제를 상기 디엔계 고무질 중합체, 상기 제1 단량체 혼합물 및 제2 단량체 혼합물의 합 100 중량부에 대하여 0.1 내지 2 중량부의 함량으로 투입한다.The method for preparing a graft polymer according to an embodiment of the present invention includes 1) a first monomer mixture including a diene-based rubber polymer, a (meth)acrylate-based monomer, and an aromatic vinyl-based monomer and a reactive UV stabilizer into the reactor. And polymerizing to prepare a composite rubbery polymer; And 2) graft polymerization of a second monomer mixture including a (meth)acrylate-based monomer, an aromatic vinyl-based monomer, and a vinyl cyanide-based monomer to the composite rubbery polymer to prepare a graft polymer, wherein the reaction The type UV stabilizer is added in an amount of 0.1 to 2 parts by weight based on 100 parts by weight of the total of the diene-based rubber polymer, the first monomer mixture, and the second monomer mixture.
이하, 본 발명의 일실시예에 따른 그라프트 중합체의 제조방법에 대하여 상세하게 설명한다.Hereinafter, a method for producing a graft polymer according to an embodiment of the present invention will be described in detail.
1) 복합 고무질 중합체의 제조1) Preparation of composite rubbery polymer
먼저, 반응기에 디엔계 고무질 중합체, (메트)아크릴레이트계 단량체 및 방향족 비닐계 단량체를 포함하는 제1 단량체 혼합물 및 반응형 UV 안정제를 투입하고 중합하여 복합 고무질 중합체를 제조한다.First, a first monomer mixture including a diene-based rubber polymer, a (meth)acrylate-based monomer, and an aromatic vinyl-based monomer, and a reactive UV stabilizer are added to the reactor and polymerized to prepare a composite rubbery polymer.
상기 반응형 UV 안정제는 중합에 참여할 수 있는 이중결합을 갖는 UV 안정제로서, 복합 고무질 중합체를 제조하는 단계에서 적정량으로 투입하면, 복합 고무질 중합체의 사슬과 직접 결합할 수 있어서, 내후성을 현저하게 개선시킬 수 있다. 또한, 복합 고무질 중합체를 제조하는 단계에서 반응형 UV 안정제를 투입하므로, 디엔계 고무질 중합체 및 쉘의 제조 시 영향을 미치지 않거나 최소한으로만 미칠 수 있다. 이에 따라, 그라프트 중합체의 충격강도 및 투명성에는 영향을 미치지 않거나 최소한으로 미칠 수 있다.The reactive UV stabilizer is a UV stabilizer having a double bond capable of participating in the polymerization, and if it is added in an appropriate amount in the step of preparing the composite rubbery polymer, it can be directly bonded to the chain of the composite rubbery polymer, thereby remarkably improving the weather resistance. I can. In addition, since the reactive UV stabilizer is added in the step of preparing the composite rubbery polymer, the diene-based rubbery polymer and the shell may have no or only minimal effect. Accordingly, the impact strength and transparency of the graft polymer may not be affected or may be minimally affected.
상기 반응형 UV 안정제를 상기 디엔계 고무질 중합체, 상기 제1 단량체 혼합물 및 제2 단량체 혼합물의 합 100 중량부에 대하여 0.1 내지 2 중량부의 함량으로 투입하고, 바람직하게는 0.5 내지 1.2 중량부의 함량으로 투입할 수 있다. 상술한 범위를 만족하면, 투명성 및 충격강도에 영향을 최소한으로 미치면서 내후성을 현저하게 개선시킬 수 있다. 상술한 범위 미만으로 투입하면, 내후성 개선 효과가 미비하고, 상술한 범위를 초과하여 투입하면, 투명성 및 충격강도가 저하되어, 투명 소재로 이용하기 부적합하다.The reactive UV stabilizer is added in an amount of 0.1 to 2 parts by weight, preferably 0.5 to 1.2 parts by weight, based on 100 parts by weight of the diene-based rubbery polymer, the first monomer mixture, and the second monomer mixture. can do. If the above-described range is satisfied, weather resistance can be remarkably improved while minimizing influence on transparency and impact strength. If it is added in less than the above-described range, the weather resistance improvement effect is insufficient, and if it is added in excess of the above-described range, transparency and impact strength are lowered, making it unsuitable for use as a transparent material.
상기 반응형 UV 안정제는 하기 화학식 1로 표시되는 화합물일 수 있다:The reactive UV stabilizer may be a compound represented by the following Formula 1:
<화학식 1><Formula 1>
Figure PCTKR2020011776-appb-I000001
Figure PCTKR2020011776-appb-I000001
상기 화학식 1에서,In Formula 1,
R1은 수소 또는 C1 내지 C10의 알킬기이고,R 1 is hydrogen or a C 1 to C 10 alkyl group,
L1은 직접 결합 또는 C1 내지 C10의 알킬렌기이다.L 1 is a direct bond or a C 1 to C 10 alkylene group.
상기 반응형 UV 안정제는 2-[2’-하이드록시-5’-[2-(아크릴옥시)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(메타크릴옥시)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(아크릴옥시)메틸]페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(메타크릴옥시)메틸]페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(아크릴옥시)에틸]페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(메타크릴옥시)에틸]페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(아크릴로옥시)프로필)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(메타크릴로옥시)프로필)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(아크릴로옥시)부틸)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(메타크릴로옥시)부틸)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(아크릴옥시)헥실)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(메타크릴옥시)헥실)페닐]-2H-벤조트리아졸로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 2-[2’-하이드록시-5’-[2-(메타크릴옥시)에틸)페닐]-2H-벤조트리아졸이 바람직하다.The reactive UV stabilizer is 2-[2'-hydroxy-5'-[2-(acryloxy)phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-( Methacryloxy)phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-(acryloxy)methyl]phenyl]-2H-benzotriazole, 2-[2'-hydro Roxy-5'-[2-(methacryloxy)methyl]phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-(acryloxy)ethyl]phenyl]-2H- Benzotriazole, 2-[2'-hydroxy-5'-[2-(methacryloxy)ethyl]phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2- (Acrylooxy)propyl)phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-(methacrylooxy)propyl)phenyl]-2H-benzotriazole, 2- [2'-hydroxy-5'-[2-(acrylooxy)butyl)phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-(methacrylooxy) Butyl)phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-(acryloxy)hexyl)phenyl]-2H-benzotriazole, 2-[2'-hydroxy- 5'-[2-(methacryloxy)hexyl)phenyl]-2H-benzotriazole may be one or more selected from the group consisting of, among which 2-[2'-hydroxy-5'-[2-( Methacryloxy)ethyl)phenyl]-2H-benzotriazole is preferred.
상기 디엔계 고무질 중합체는 평균입경이 200 내지 400 ㎚일 수 있고, 바람직하게는 250 내지 450 ㎚일 수 있다. 상술한 조건을 만족하면, 충격강도가 우수한 그라프트 중합체를 제조할 수 있다.The diene-based rubber polymer may have an average particle diameter of 200 to 400 nm, and preferably 250 to 450 nm. If the above-described conditions are satisfied, a graft polymer having excellent impact strength can be prepared.
상기 반응기에 상기 디엔계 고무질 중합체를 상기 디엔계 고무질 중합체, 제1 단량체 혼합물 및 제2 단량체 혼합물의 합 100 중량부에 대하여, 7 내지 30 중량부, 바람직하게는 10 내지 30 중량부, 보다 바람직하게는 15 내지 25 중량부의 함량으로 투입할 수 있다. 상술한 조건을 만족하면, 충격강도 및 내약품성이 우수한 그라프트 중합체를 제조할 수 있다. 상술한 범위 미만으로 투입하면 상온 및 저온 충격강도가 저하될 수 있다. 상술한 범위를 초과하면, 복합 고무질 중합체의 제조 과정에서 (메트)아크릴레이트계 단량체가 상대적으로 소량 투입되게 되므로, 그라프트 중합체의 내후성이 저하될 수 있다.The diene-based rubber polymer is added to the reactor in a total of 100 parts by weight of the diene-based rubber polymer, the first monomer mixture and the second monomer mixture, 7 to 30 parts by weight, preferably 10 to 30 parts by weight, more preferably May be added in an amount of 15 to 25 parts by weight. If the above-described conditions are satisfied, a graft polymer having excellent impact strength and chemical resistance can be prepared. If added in less than the above-described range, the impact strength at room temperature and low temperature may be reduced. If the above-described range is exceeded, since a relatively small amount of the (meth)acrylate-based monomer is added in the manufacturing process of the composite rubbery polymer, the weather resistance of the graft polymer may be deteriorated.
상기 반응기에 상기 제1 단량체 혼합물을 상기 디엔계 고무질 중합체, 제1 단량체 혼합물 및 제2 단량체 혼합물의 합 100 중량부에 대하여, 10 내지 50 중량부, 바람직하게는 30 내지 50 중량부, 보다 바람직하게는 35 내지 45 중량부로 투입할 수 있다. 상술한 조건을 만족하면, 내후성이 우수한 그라프트 중합체를 제조할 수 있다. 상술한 범위 미만으로 투입하면, 그라프트 중합체 내에 복합 고무질 중합체의 함량이 증가하여, 인장강도 및 굴곡강도 등의 기계적 물성이 저하될 수 있고, 투명성이 저하될 수 있다.The first monomer mixture in the reactor is 10 to 50 parts by weight, preferably 30 to 50 parts by weight, more preferably based on 100 parts by weight of the sum of the diene-based rubbery polymer, the first monomer mixture, and the second monomer mixture. Can be added in 35 to 45 parts by weight. If the above-described conditions are satisfied, a graft polymer having excellent weather resistance can be produced. If the amount is less than the above-described range, the content of the composite rubbery polymer in the graft polymer increases, so that mechanical properties such as tensile strength and flexural strength may decrease, and transparency may decrease.
상기 제1 단량체 혼합물은 (메트)아크릴레이트계 단량체 및 방향족 비닐계 단량체를 70:30 내지 50:50, 바람직하게는 65:35 내지 55:45의 중량비로 포함할 수 있다. 상술한 범위를 만족하면, 내후성이 우수한 그라프트 중합체를 제조할 수 있다.The first monomer mixture may include a (meth)acrylate-based monomer and an aromatic vinyl-based monomer in a weight ratio of 70:30 to 50:50, preferably 65:35 to 55:45. If the above-described range is satisfied, a graft polymer having excellent weather resistance can be prepared.
상기 제1 단량체 혼합물은 내후성을 보다 개선시키기 위하여, 아크릴레이트계 단량체 및 방향족 비닐계 단량체를 포함하는 것이 바람직하고, 부틸 아크릴레이트 및 스티렌을 포함하는 것이 보다 바람직하다.In order to further improve the weather resistance, the first monomer mixture preferably includes an acrylate-based monomer and an aromatic vinyl-based monomer, and more preferably includes butyl acrylate and styrene.
한편, 상기 복합 고무질 중합체의 제조 시 중합은 유화 중합일 수 있으며, 상기 반응기에 개시제, 유화제, 가교제, 그라프팅제 및 전해질로 이루어진 군에서 선택되는 1종 이상이 추가로 투입될 수 있다.Meanwhile, in the preparation of the composite rubbery polymer, polymerization may be emulsion polymerization, and at least one selected from the group consisting of an initiator, an emulsifier, a crosslinking agent, a grafting agent, and an electrolyte may be additionally added to the reactor.
상기 개시제는 t-부틸 퍼옥사이드, 큐멘하이드로퍼옥사이드, 디이소프로필벤젠 퍼옥사이드, 과황산칼륨, 과황산나트륨 및 과황산암모늄으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중 큐멘하이드로퍼옥사이드가 바람직하다.The initiator may be at least one selected from the group consisting of t-butyl peroxide, cumene hydroperoxide, diisopropylbenzene peroxide, potassium persulfate, sodium persulfate and ammonium persulfate, of which cumene hydroperoxide is desirable.
상기 유화제는 지방산 비누, 칼륨 올레이트, 나트륨 올레이트, 나트륨 디시클로헥실 설포숙시네이트, 나트륨 디헥실 설포숙시네이트, 나트륨 디-2-에틸헥실 설포숙시네이트, 칼륨 디-2-에틸헥실 설포숙시네이트, 나트륨 디옥틸 설포숙시네이트, 나트륨 도데실 설페이트, 나트륨 도데실 벤젠 설페이트, 나트륨 옥타데실 설페이트, 나트륨 올레익 설페이트, 나트륨 도데실 설페이트, 칼륨 옥타데실 설페이트, 칼륨 로지네이트 및 나트륨 로지네이트로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 나트륨 디옥틸 설포숙시네이트가 바람직하다.The emulsifier is fatty acid soap, potassium oleate, sodium oleate, sodium dicyclohexyl sulfosuccinate, sodium dihexyl sulfosuccinate, sodium di-2-ethylhexyl sulfosuccinate, potassium di-2-ethylhexyl Sulfosuccinate, sodium dioctyl sulfosuccinate, sodium dodecyl sulfate, sodium dodecyl benzene sulfate, sodium octadecyl sulfate, sodium oleic sulfate, sodium dodecyl sulfate, potassium octadecyl sulfate, potassium loginate and sodium lodge It may be one or more selected from the group consisting of nate, of which sodium dioctyl sulfosuccinate is preferred.
상기 가교제는 에틸렌 글리콜 디메타크릴레이트, 디에틸렌 글리콜 디메타크릴레이트, 트리에틸렌글리콜 디메타크릴레이트, 1,3-부탄디올 디메타크릴레이트, 1,6-헥산디올 디메타크릴레이트, 네오펜틸글리콜 디메타크릴레이트, 트리메틸올프로판 트리메타크릴레이트, 및 트리메틸올메탄 테트라아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이중 에틸렌글리콜 디메타크릴레이트가 바람직하다.The crosslinking agent is ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1,3-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol It may be one or more selected from the group consisting of dimethacrylate, trimethylolpropane trimethacrylate, and trimethylolmethane tetraacrylate, of which ethylene glycol dimethacrylate is preferred.
상기 그라프팅제는 알릴메타크릴레이트, 트리알릴 이소시아누네이트, 트리알릴아민, 디알릴아민으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 알릴메타크릴레이트가 바람직하다.The grafting agent may be at least one selected from the group consisting of allyl methacrylate, triallyl isocyanonate, triallylamine, and diallylamine, among which allyl methacrylate is preferred.
상기 전해질은 KCl, NaCl, KOH, KHCO3, NaHCO3, K2CO3, Na2CO3, KHSO3, NaHSO3, K4P2O7, Na4P2O7, K3PO4, Na3PO4, K2HPO4 및 Na2HPO4으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 KOH 및 K2CO3으로 이루어진 군에서 선택되는 1종 이상이 바람직하다.The electrolyte is KCl, NaCl, KOH, KHCO 3 , NaHCO 3 , K 2 CO 3 , Na 2 CO 3 , KHSO 3 , NaHSO 3 , K4P2O7, Na 4 P 2 O 7 , K 3 PO 4 , Na 3 PO 4 , It may be one or more selected from the group consisting of K 2 HPO 4 and Na 2 HPO 4 , of which at least one selected from the group consisting of KOH and K 2 CO 3 is preferred.
한편, 상기 복합 고무질 중합체는 평균입경이 250 내지 500 ㎚, 바람직하게는 280 내지 450 ㎚일 수 있다. 상술한 조건을 만족하면, 그라프트 중합체의 투명성 및 기계적 물성이 개선될 수 있다.On the other hand, the composite rubbery polymer may have an average particle diameter of 250 to 500 ㎚, preferably 280 to 450 ㎚. If the above-described conditions are satisfied, transparency and mechanical properties of the graft polymer may be improved.
2) 그라프트 중합체의 제조2) Preparation of graft polymer
상기 복합 고무질 중합체에 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 제2 단량체 혼합물을 그라프트 중합하여 그라프트 중합체를 제조한다.A graft polymer is prepared by graft polymerization of a second monomer mixture including a (meth)acrylate-based monomer, an aromatic vinyl-based monomer, and a vinyl cyanide-based monomer in the composite rubbery polymer.
상기 반응기에 상기 제2 단량체 혼합물을 상기 디엔계 고무질 중합체, 제1 단량체 혼합물 및 제2 단량체 혼합물의 합 100 중량부에 대하여, 20 내지 70 중량부, 바람직하게는 30 내지 50 중량부, 보다 바람직하게는 35 내지 45 중량부의 함량으로 투입할 수 있다. 상술한 범위를 만족하면, 투명성, 외관특성 및 충격강도가 우수한 그라프트 중합체를 제조할 수 있다. 상술한 범위 미만으로 투입하면, 외관특성이 저하되고, 특히 플로우 마크 등이 생성될 수 있다. 상술한 범위를 초과하여 투입하면, 충격강도가 현저하게 저하될 수 있다.In the reactor, the second monomer mixture is added in an amount of 20 to 70 parts by weight, preferably 30 to 50 parts by weight, more preferably, based on 100 parts by weight of the total of the diene-based rubbery polymer, the first monomer mixture, and the second monomer mixture. May be added in an amount of 35 to 45 parts by weight. If the above-described range is satisfied, a graft polymer having excellent transparency, appearance characteristics, and impact strength can be prepared. If it is put in less than the above-described range, the appearance characteristics deteriorate, and in particular, a flow mark or the like may be generated. If it is added in excess of the above-described range, the impact strength may be significantly lowered.
상기 제2 단량체 혼합물은 (메트)아크릴레이트계 단량체를 60 내지 80 중량%, 방향족 비닐계 단량체를 15 내지 35 중량%, 시안화 비닐계 단량체를 1 내지 7 중량%로 포함할 수 있고, 바람직하게는 (메트)아크릴레이트계 단량체를 65 내지 75 중량%, 방향족 비닐계 단량체를 20 내지 30 중량%, 시안화 비닐계 단량체를 3 내지 7 중량%로 포함할 수 있다. 상술한 범위를 만족하면, 투명성을 유지하면서, 가공성 및 내화학성이 개선될 수 있다.The second monomer mixture may include 60 to 80% by weight of a (meth)acrylate monomer, 15 to 35% by weight of an aromatic vinyl monomer, and 1 to 7% by weight of a vinyl cyanide monomer, preferably 65 to 75% by weight of a (meth)acrylate-based monomer, 20 to 30% by weight of an aromatic vinyl-based monomer, and 3 to 7% by weight of a vinyl cyanide-based monomer may be included. If the above-described range is satisfied, processability and chemical resistance may be improved while maintaining transparency.
상기 제2 단량체 혼합물은 내후성을 보다 개선시키기 위하여, 메타크릴레이트계 단량체 및 방향족 비닐계 단량체를 포함하는 것이 바람직하고, 메틸 메타크릴레이트, 스티렌 및 아크릴로니트릴을 포함하는 것이 보다 바람직하다.In order to further improve the weather resistance, the second monomer mixture preferably includes a methacrylate-based monomer and an aromatic vinyl-based monomer, and more preferably includes methyl methacrylate, styrene, and acrylonitrile.
한편, 상기 그라프트 중합체의 제조 시 중합은 유화 중합일 수 있으며, 상기 반응기에 개시제, 유화제, 산화환원계 촉매 및 분자량 조절제로 이루어진 군에서 선택되는 1종 이상이 추가로 투입될 수 있다.Meanwhile, in the preparation of the graft polymer, polymerization may be emulsion polymerization, and at least one selected from the group consisting of an initiator, an emulsifier, a redox catalyst, and a molecular weight regulator may be additionally added to the reactor.
상기 개시제 및 유화제의 종류는 상술한 바와 같다.Kinds of the initiator and emulsifier are as described above.
상기 산화-환원계 촉매는 나트륨 포름알데히드 설폭실레이트, 나트륨 에틸렌디아민 테트라아세테이트, 황산제1철, 덱스트로즈, 피로인산나트륨, 무수 피로인산나트륨 및 나트륨 설페이트로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 황산제1철, 덱스트로즈 및 피로인산나트륨으로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하다.The oxidation-reduction catalyst may be at least one selected from the group consisting of sodium formaldehyde sulfoxylate, sodium ethylenediamine tetraacetate, ferrous sulfate, dextrose, sodium pyrophosphate, anhydrous sodium pyrophosphate, and sodium sulfate. And, it is preferable that it is at least one selected from the group consisting of ferrous sulfate, dextrose, and sodium pyrophosphate.
상기 분자량 조절제는 α-메틸 스티렌 다이머, t-도데실 머캅탄, n-도데실 머캅탄, 옥틸 머캅탄, 사염화탄소, 염화메틸렌, 브롬화메틸렌, 테트라 에틸 티우람 다이 설파이드, 디펜타메틸렌 티우람 다이 설파이드, 디이소프로필키산토겐 다이 설파이드로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 t-도데실 머캅탄이 바람직하다.The molecular weight modifier is α-methyl styrene dimer, t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan, carbon tetrachloride, methylene chloride, methylene bromide, tetra ethyl thiuram disulfide, dipentamethylene thiuram disulfide. , Diisopropylxanthogen may be one or more selected from the group consisting of disulfide, of which t-dodecyl mercaptan is preferred.
한편, 상기 그라프트 중합체가 투명성을 갖기 위해서는 디엔계 고무질 중합체, 복합 고무질 중합체 및 쉘의 굴절률이 차이가 0.01 이하인 것이 바람직하며, 이들의 굴절률의 차이가 없는 것이 바람직하다.On the other hand, in order for the graft polymer to have transparency, it is preferable that the difference in refractive index between the diene-based rubber polymer, the composite rubber polymer, and the shell is 0.01 or less, and there is no difference in the refractive index thereof.
또한, 상기 그라프트 중합체는 굴절률이 1.51 내지 1.52, 바람직하게는 1.515 내지 1.517일 수 있다. 상술한 조건을 만족하면, 투명성이 우수한 그라프트 중합체를 제조할 수 있다.In addition, the graft polymer may have a refractive index of 1.51 to 1.52, preferably 1.515 to 1.517. If the above-described conditions are satisfied, a graft polymer having excellent transparency can be prepared.
2. 열가소성 수지 조성물2. Thermoplastic resin composition
본 발명의 다른 일실시예에 따른 열가소성 수지 조성물은 본 발명의 일실시예에 따른 제조방법으로 제조된 그라프트 중합체; 및 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 제3 단량체 혼합물의 중합물인 매트릭스 중합체를 포함할 수 있다.The thermoplastic resin composition according to another embodiment of the present invention is a graft polymer prepared by the manufacturing method according to an embodiment of the present invention; And a matrix polymer that is a polymer of a third monomer mixture including a (meth)acrylate-based monomer, an aromatic vinyl-based monomer, and a vinyl cyanide-based monomer.
상기 그라프트 중합체와 상기 매트릭스 중합체의 굴절률의 차이는 0.01 이하일 수 있고, 굴절률의 차이가 없는 것이 바람직하다. 상술한 조건을 만족하면, 투명성이 우수한 열가소성 수지 성형품을 제조할 수 있다.The difference in refractive index between the graft polymer and the matrix polymer may be 0.01 or less, and it is preferable that there is no difference in refractive index. If the above-described conditions are satisfied, a thermoplastic resin molded article having excellent transparency can be manufactured.
상기 제3 단량체 혼합물은 (메트)아크릴이트계 단량체 40 내지 75 중량부, 방향족 비닐계 단량체 15 내지 40 중량부, 시안화 비닐계 단량체 1 내지 20 중량부를 포함할 수 있고, 바람직하게는 (메트)아크릴이트계 단량체 55 내지 70 중량부, 방향족 비닐계 단량체 20 내지 30 중량부, 시안화 비닐계 단량체 5 내지 15 중량부를 포함할 수 있다. 상술한 조건을 만족하면, 투명성, 내화학성, 내스크래치성 및 가공성이 모두 우수한 매트릭스 중합체가 제조될 수 있다.The third monomer mixture may include 40 to 75 parts by weight of a (meth)acrylate-based monomer, 15 to 40 parts by weight of an aromatic vinyl-based monomer, and 1 to 20 parts by weight of a vinyl cyanide-based monomer, preferably (meth)acrylic It may include 55 to 70 parts by weight of an ite-based monomer, 20 to 30 parts by weight of an aromatic vinyl-based monomer, and 5 to 15 parts by weight of a vinyl cyanide-based monomer. If the above-described conditions are satisfied, a matrix polymer having excellent transparency, chemical resistance, scratch resistance, and processability can be prepared.
상기 열가소성 수지 조성물은 그라프트 중합체 및 매트릭스 중합체를 25:75 내지 75:25, 바람직하게는 50:50 내지 25:75의 중량비로 포함할 수 있다. The thermoplastic resin composition may include a graft polymer and a matrix polymer in a weight ratio of 25:75 to 75:25, preferably 50:50 to 25:75.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily implement the present invention. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein.
제조예 1Manufacturing Example 1
반응기에 메틸 메타크릴레이트 63.36 중량부, 스티렌 24.64 중량부, 아크릴로니트릴 12 중량부, 톨루엔 30 중량부 및 t-도데실 머캅탄 0.15 중량부를 혼합한 중합용액을 평균 중합시간이 3 시간이 되도록 일정한 속도로 연속 투입하면서 중합하였고, 중합온도를 148 ℃로 유지하였다. 상기 반응기에서 배출된 중합물을 예비 가열조에서 가열하고, 휘발조에서 미반응 단량체를 휘발시켰다. 그 후, 210 ℃의 압출기에서 압출하여 펠렛 형태의 MSAN 중합체(굴절률: 1.516)를 제조하였다. A polymerization solution in which 63.36 parts by weight of methyl methacrylate, 24.64 parts by weight of styrene, 12 parts by weight of acrylonitrile, 30 parts by weight of toluene and 0.15 parts by weight of t-dodecyl mercaptan were mixed in a reactor was prepared so that the average polymerization time was 3 hours. Polymerization was carried out while continuously adding at a rate, and the polymerization temperature was maintained at 148°C. The polymer discharged from the reactor was heated in a preheating bath, and unreacted monomers were volatilized in the volatilization bath. Then, it was extruded in an extruder at 210° C. to prepare a pellet-shaped MSAN polymer (refractive index: 1.516).
실시예 1Example 1
<그라프트 중합체 분말의 제조><Production of Graft Polymer Powder>
반응기에 부타디엔 고무질 중합체 라텍스(PBL, 겔 함량: 70 %, 평균입경: 300 ㎚) 20 중량부(고형분 기준), 부틸아크릴레이트(BA) 24 중량부, 스티렌(S) 16 중량부, 이온교환수 100 중량부, 하기 표에 기재된 함량의 반응형 UV 안정제(오츠카 화학 社의 RUVA93), 큐멘하이드로퍼옥사이드 0.1 중량부, 나트륨 에틸렌디아민테트라아세테이트 0.01 중량부, 나트륨 포름알데히드 설폭실레이트 0.04 중량부, 황산제1철 0.0001 중량부, 나트륨 디옥틸 설포숙시네이트 0.7 중량부, 에틸렌글리콜디메타크릴레이트 0.4 중량부, 알릴메타크릴레이트 0.1 중량부, NaHCO3 0.1 중량부를 70 ℃에서 3 시간 동안 일정한 속도로 연속 투입하면서 중합하였다. 그 후, 상기 반응기의 온도를 80 ℃로 승온하고 1 시간 동안 중합하여 복합 고무질 중합체 라텍스를 제조하였다.In the reactor, butadiene rubber polymer latex (PBL, gel content: 70%, average particle diameter: 300 nm) 20 parts by weight (based on solid content), butyl acrylate (BA) 24 parts by weight, styrene (S) 16 parts by weight, ion-exchanged water 100 parts by weight, reactive UV stabilizer (RUVA93 of Otsuka Chemical), cumene hydroperoxide 0.1 parts by weight, sodium ethylenediaminetetraacetate 0.01 parts by weight, sodium formaldehyde sulfoxylate 0.04 parts by weight, sulfuric acid Ferrous 0.0001 parts by weight, sodium dioctyl sulfosuccinate 0.7 parts by weight, ethylene glycol dimethacrylate 0.4 parts by weight, allyl methacrylate 0.1 parts by weight, NaHCO 3 0.1 parts by weight at a constant rate for 3 hours at 70° C. Polymerization was carried out while continuously adding. Thereafter, the temperature of the reactor was raised to 80° C. and polymerized for 1 hour to prepare a composite rubbery polymer latex.
상기 복합 고무질 중합체 라텍스에 메틸 메타크릴레이트(MMA) 28 중량부, 스티렌(S) 10 중량부, 아크릴로니트릴(AN) 2 중량부, 큐멘하이드퍼옥사이드 0.1 중량부, 나트륨 에틸렌디아민테트라아세테이트 0.01 중량부, 나트륨 포름알데히드 설폭실레이트 0.04 중량부, 황산제1철 0.001 중량부, 나트륨 올레이트 0.5 중량부, t-도데실 머캅탄 0.4 중량부를 75 ℃에서 5 시간 동안 일정한 속도로 연속 투입하면서 중합하였다. 그 후, 상기 반응기의 온도를 80 ℃로 승온하고 1 시간 동안 숙성하고 중합을 종료하였고, 그라프트 중합체 라텍스를 수득하였다. To the composite rubbery polymer latex, 28 parts by weight of methyl methacrylate (MMA), 10 parts by weight of styrene (S), 2 parts by weight of acrylonitrile (AN), 0.1 parts by weight of cumene hydroperoxide, 0.01 parts by weight of sodium ethylenediaminetetraacetate Parts, sodium formaldehyde sulfoxylate 0.04 parts by weight, ferrous sulfate 0.001 parts by weight, sodium oleate 0.5 parts by weight, and t-dodecyl mercaptan 0.4 parts by weight were continuously added at 75° C. for 5 hours at a constant rate while polymerization was carried out. . Thereafter, the temperature of the reactor was raised to 80° C., aged for 1 hour, and polymerization was terminated, and a graft polymer latex was obtained.
상기 그라프트 중합체 라텍스를 염화칼슘 수용액으로 응집한 후, 숙성, 세척, 탈수 및 건조하여 그라프트 중합체 분말을 수득하였다. The graft polymer latex was aggregated with an aqueous calcium chloride solution, and then aged, washed, dehydrated and dried to obtain a graft polymer powder.
<열가소성 수지 조성물의 제조><Production of thermoplastic resin composition>
그라프트 중합체 분말 35 중량부, 제조예 1의 MSAN 중합체 65 중량부를 균일하게 혼합하여 열가소성 수지 조성물을 제조하였다.35 parts by weight of the graft polymer powder and 65 parts by weight of the MSAN polymer of Preparation Example 1 were uniformly mixed to prepare a thermoplastic resin composition.
실시예 2 내지 실시예 4Examples 2 to 4
하기 표에 기재된 함량으로 반응형 UV 안정제(오츠카 화학 社의 RUVA93)를 반응기에 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 그라프트 중합체 분말 및 열가소성 수지 조성물을 제조하였다.A graft polymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except that a reactive UV stabilizer (RUVA93 of Otsuka Chemical Co., Ltd.) was added to the reactor at the contents shown in the following table.
실시예 5Example 5
<그라프트 중합체 분말의 제조><Production of Graft Polymer Powder>
실시예 1과 동일한 방법으로 그라프트 중합체 분말을 제조하였다.Graft polymer powder was prepared in the same manner as in Example 1.
<열가소성 수지 조성물의 제조><Production of thermoplastic resin composition>
그라프트 중합체 분말 45 중량부 및 제조예 1의 MSAN 중합체 55 중량부를 균일하게 혼합하여 열가소성 수지 조성물을 제조하였다.45 parts by weight of the graft polymer powder and 55 parts by weight of the MSAN polymer of Preparation Example 1 were uniformly mixed to prepare a thermoplastic resin composition.
비교예 1 및 비교예 2Comparative Example 1 and Comparative Example 2
하기 표에 기재된 함량으로 반응형 UV 안정제(오츠카 화학 社의 RUVA93)를 반응기에 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 그라프트 중합체 분말 및 열가소성 수지 조성물을 제조하였다.A graft polymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except that a reactive UV stabilizer (RUVA93 of Otsuka Chemical Co., Ltd.) was added to the reactor at the contents shown in the following table.
비교예 3Comparative Example 3
<그라프트 중합체 분말의 제조><Production of Graft Polymer Powder>
반응기에 부타디엔 고무질 중합체 라텍스(PBL, 겔 함량: 70 %, 평균입경: 300 ㎚) 20 중량부(고형분 기준), 부틸아크릴레이트(BA) 17.5 중량부, 스티렌(S) 12.5 중량부, 이온교환수 100 중량부, 과황산칼륨 0.06 중량부, 나트륨 디옥틸 설포숙시네이트 0.5 중량부, 에틸렌글리콜디메타크릴레이트 0.28 중량부, 알릴메타크릴레이트 0.1 중량부, NaHCO3 0.1 중량부를 70 ℃에서 3 시간 동안 일정한 속도로 연속 투입하면서 중합하였다. 그 후, 상기 반응기의 온도를 80 ℃로 승온하고 1 시간 동안 중합하여 복합 고무질 중합체 라텍스를 제조하였다.In the reactor, butadiene rubber polymer latex (PBL, gel content: 70%, average particle diameter: 300 nm) 20 parts by weight (based on solid content), butyl acrylate (BA) 17.5 parts by weight, styrene (S) 12.5 parts by weight, ion-exchanged water 100 parts by weight, potassium persulfate 0.06 parts by weight, sodium dioctyl sulfosuccinate 0.5 parts by weight, ethylene glycol dimethacrylate 0.28 parts by weight, allyl methacrylate 0.1 parts by weight, NaHCO 3 0.1 parts by weight at 70° C. for 3 hours During the polymerization was carried out while continuously added at a constant rate. Thereafter, the temperature of the reactor was raised to 80° C. and polymerized for 1 hour to prepare a composite rubbery polymer latex.
상기 복합 고무질 중합체 라텍스에 메틸 메타크릴레이트(MMA) 34.56 중량부, 스티렌(S) 13.44 중량부, 아크릴로니트릴(AN) 2 중량부, 큐멘하이드퍼옥사이드 0.1 중량부, 나트륨 에틸렌디아민테트라아세테이트 0.01 중량부, 나트륨 포름알데히드 설폭실레이트 0.04 중량부, 황산제1철 0.001 중량부, 나트륨 올레이트 0.5 중량부, t-도데실 머캅탄 0.5 중량부를 75 ℃에서 5 시간 동안 일정한 속도로 연속 투입하면서 중합하였다. 그 후, 상기 반응기의 온도를 80 ℃로 승온하고 1 시간 동안 숙성하고 중합을 종료하였고, 그라프트 중합체 라텍스를 수득하였다. To the composite rubbery polymer latex, methyl methacrylate (MMA) 34.56 parts by weight, styrene (S) 13.44 parts by weight, acrylonitrile (AN) 2 parts by weight, cumene hydroperoxide 0.1 parts by weight, sodium ethylenediaminetetraacetate 0.01 parts by weight Parts, sodium formaldehyde sulfoxylate 0.04 parts by weight, ferrous sulfate 0.001 parts by weight, sodium oleate 0.5 parts by weight, t-dodecyl mercaptan 0.5 parts by weight, polymerization was carried out at a constant rate at 75° C. for 5 hours. . Thereafter, the temperature of the reactor was raised to 80° C., aged for 1 hour, and polymerization was terminated, and a graft polymer latex was obtained.
상기 그라프트 중합체 라텍스를 염화칼슘 수용액으로 응집한 후, 숙성, 세척, 탈수 및 건조하여 그라프트 중합체 분말을 수득하였다. The graft polymer latex was aggregated with an aqueous calcium chloride solution, and then aged, washed, dehydrated and dried to obtain a graft polymer powder.
<열가소성 수지 조성물의 제조><Production of thermoplastic resin composition>
그라프트 중합체 분말 40 중량부, 제조예 1의 MSAN 중합체 60 중량부를 균일하게 혼합하여 열가소성 수지 조성물을 제조하였다.40 parts by weight of the graft polymer powder and 60 parts by weight of the MSAN polymer of Preparation Example 1 were uniformly mixed to prepare a thermoplastic resin composition.
비교예 4Comparative Example 4
<그라프트 중합체 분말의 제조><Production of Graft Polymer Powder>
반응기에 부타디엔 고무질 중합체 라텍스(PBL, 겔 함량: 70 %, 평균입경: 300 ㎚) 20 중량부(고형분 기준) 50 중량부, 메틸 메타크릴산 35.5 중량부, 스티렌 12.5 중량부, 아크릴로니트릴 2 중량부, 큐멘하이드로퍼옥사이드 0.1 중량부, 나트륨 올레이트 0.5 중량부, 나트륨 에틸렌디아민테트라아세테이트 0.1 중량부, 나트륨 포름알데히드 설폭실레이트 0.04 중량부, 황산제1철 0.001 중량부를 75 ℃에서 5 시간 동안 일정한 속도로 연속 투입하면서 중합하였다. 그 후, 상기 반응기의 온도를 80 ℃로 승온하고 1 시간 동안 숙성하고 중합을 종료하였고, 그라프트 중합체 라텍스를 수득하였다. In the reactor, butadiene rubbery polymer latex (PBL, gel content: 70%, average particle diameter: 300 nm) 20 parts by weight (based on solid content) 50 parts by weight, methyl methacrylic acid 35.5 parts by weight, styrene 12.5 parts by weight, acrylonitrile 2 parts by weight Parts, cumene hydroperoxide 0.1 parts by weight, sodium oleate 0.5 parts by weight, sodium ethylenediaminetetraacetate 0.1 parts by weight, sodium formaldehyde sulfoxylate 0.04 parts by weight, ferrous sulfate 0.001 parts by weight at 75° C. for 5 hours Polymerization was carried out while continuously charged at a rate. Thereafter, the temperature of the reactor was raised to 80° C., aged for 1 hour, and polymerization was terminated, and a graft polymer latex was obtained.
상기 그라프트 중합체 라텍스를 염화칼슘 수용액으로 응집한 후, 숙성, 세척, 탈수 및 건조하여 그라프트 중합체 분말을 수득하였다. The graft polymer latex was aggregated with an aqueous calcium chloride solution, and then aged, washed, dehydrated and dried to obtain a graft polymer powder.
<열가소성 수지 조성물의 제조><Production of thermoplastic resin composition>
그라프트 중합체 분말 40 중량부, 제조예 1의 MSAN 중합체 60 중량부를 균일하게 혼합하여 열가소성 수지 조성물을 제조하였다.40 parts by weight of the graft polymer powder and 60 parts by weight of the MSAN polymer of Preparation Example 1 were uniformly mixed to prepare a thermoplastic resin composition.
비교예 5Comparative Example 5
<디엔계 고무질 중합체의 제조><Preparation of diene rubber polymer>
질소 치환된 중합 반응기에 이온교환수 90 중량부, 1,3-부타디엔(BD) 75 중량부, 반응형 UV 안정제(오츠카 화학 社의 RUVA93) 3.5 중량부, 로진산 칼륨염 1.2 중량부, 올레인산 칼륨염 0.8 중량부, K2CO3 1.0 중량부, t-도데실 머캅탄 0.4 중량부, 과황산칼륨 0.5 중량부를 일괄 투입하였다. 상기 반응기를 70 ℃로 승온시킨 후, 중합을 개시하였다.In a nitrogen-substituted polymerization reactor, 90 parts by weight of ion-exchanged water, 75 parts by weight of 1,3-butadiene (BD), 3.5 parts by weight of reactive UV stabilizer (RUVA93 of Otsuka Chemical Co., Ltd.), 1.2 parts by weight of rosinate potassium salt, potassium oleate Salt 0.8 parts by weight, K 2 CO 3 1.0 parts by weight, t-dodecyl mercaptan 0.4 parts by weight, potassium persulfate 0.5 parts by weight were put in a batch. After raising the temperature of the reactor to 70° C., polymerization was initiated.
이어서 중합전환율이 약 35 %인 시점에서 상기 반응기에 1,3-부타디엔(BD) 25 중량부 및 과황산칼륨 0.15 중량부를 일괄 투입하여 중합을 지속하였다.Subsequently, when the polymerization conversion rate was about 35%, 25 parts by weight of 1,3-butadiene (BD) and 0.15 parts by weight of potassium persulfate were collectively added to the reactor to continue polymerization.
중합전환율이 약 60 %인 시점에서 상기 반응기를 80 ℃로 승온시키면서, 중합하였고, 중합전환율이 90 %인 시점에서 중합을 종료하여 부타디엔 고무질 중합체 라텍스(겔 함량: 70 %, 평균입경: 300 ㎚)를 제조하였다.When the polymerization conversion rate was about 60%, the reactor was polymerized while heating the reactor to 80°C, and the polymerization was terminated at the time when the polymerization conversion rate was 90%, and the butadiene rubbery polymer latex (gel content: 70%, average particle diameter: 300 nm) Was prepared.
<그라프트 중합체 분말의 제조><Production of Graft Polymer Powder>
반응기에 부타디엔 고무질 중합체 라텍스 20 중량부(고형분 기준), 부틸아크릴레이트(BA) 24 중량부, 스티렌(S) 16 중량부, 이온교환수 100 중량부, 큐멘하이드로퍼옥사이드 0.1 중량부, 나트륨 에틸렌디아민테트라아세테이트 0.01 중량부, 나트륨 포름알데히드 설폭실레이트 0.04 중량부, 황산제1철 0.0001 중량부, 나트륨 디옥틸 설포숙시네이트 0.7 중량부, 에틸렌글리콜디메타크릴레이트 0.4 중량부, 알릴메타크릴레이트 0.1 중량부, NaHCO3 0.1 중량부를 70 ℃에서 3 시간 동안 일정한 속도로 연속 투입하면서 중합하였다. 그 후, 상기 반응기의 온도를 80 ℃로 승온하고 1 시간 동안 중합하여 복합 고무질 중합체 라텍스를 제조하였다.In the reactor, butadiene rubbery polymer latex 20 parts by weight (based on solid content), butyl acrylate (BA) 24 parts by weight, styrene (S) 16 parts by weight, ion-exchanged water 100 parts by weight, cumene hydroperoxide 0.1 parts by weight, sodium ethylenediamine Tetraacetate 0.01 parts by weight, sodium formaldehyde sulfoxylate 0.04 parts by weight, ferrous sulfate 0.0001 parts by weight, sodium dioctyl sulfosuccinate 0.7 parts by weight, ethylene glycol dimethacrylate 0.4 parts by weight, allyl methacrylate 0.1 Polymerization was carried out while continuously adding 0.1 parts by weight of NaHCO 3 at 70° C. for 3 hours at a constant rate. Thereafter, the temperature of the reactor was raised to 80° C. and polymerized for 1 hour to prepare a composite rubbery polymer latex.
상기 복합 고무질 중합체 라텍스에 메틸 메타크릴레이트(MMA) 28 중량부, 스티렌(S) 10 중량부, 아크릴로니트릴(AN) 2 중량부, 큐멘하이드퍼옥사이드 0.1 중량부, 나트륨 에틸렌디아민테트라아세테이트 0.01 중량부, 나트륨 포름알데히드 설폭실레이트 0.04 중량부, 황산제1철 0.001 중량부, 나트륨 올레이트 0.5 중량부, t-도데실 머캅탄 0.4 중량부를 75 ℃에서 5 시간 동안 일정한 속도로 연속 투입하면서 중합하였다. 그 후, 상기 반응기의 온도를 80 ℃로 승온하고 1 시간 동안 숙성하고 중합을 종료하였고, 그라프트 중합체 라텍스를 수득하였다. To the composite rubbery polymer latex, methyl methacrylate (MMA) 28 parts by weight, styrene (S) 10 parts by weight, acrylonitrile (AN) 2 parts by weight, cumene hydroperoxide 0.1 parts by weight, sodium ethylenediaminetetraacetate 0.01 parts by weight Parts, sodium formaldehyde sulfoxylate 0.04 parts by weight, ferrous sulfate 0.001 parts by weight, sodium oleate 0.5 parts by weight, t-dodecyl mercaptan 0.4 parts by weight, polymerization was carried out at 75° C. for 5 hours at a constant rate for 5 hours. . Thereafter, the temperature of the reactor was raised to 80° C., aged for 1 hour, and polymerization was terminated, thereby obtaining a graft polymer latex.
상기 그라프트 중합체 라텍스를 염화칼슘 수용액으로 응집한 후, 숙성, 세척, 탈수 및 건조하여 그라프트 중합체 분말을 수득하였다. The graft polymer latex was aggregated with an aqueous calcium chloride solution, and then aged, washed, dehydrated and dried to obtain a graft polymer powder.
<열가소성 수지 조성물의 제조><Production of thermoplastic resin composition>
그라프트 중합체 분말 35 중량부, 제조예 1의 MSAN 중합체 65 중량부를 균일하게 혼합하여 열가소성 수지 조성물을 제조하였다.35 parts by weight of the graft polymer powder and 65 parts by weight of the MSAN polymer of Preparation Example 1 were uniformly mixed to prepare a thermoplastic resin composition.
실험예 1Experimental Example 1
실시예 및 비교예의 복합 고무질 중합체의 물성을 하기에 기재된 방법으로 측정하고, 그 결과를 하기 표에 기재하였다.The physical properties of the composite rubbery polymers of Examples and Comparative Examples were measured by the method described below, and the results are shown in the following table.
① 평균입경(㎚): Particle Sizing Systems 社의 Nicomp 380를 이용하여 동적 광산란법으로 측정하였다.① Average particle diameter (nm): Measured by dynamic light scattering using Nicomp 380 manufactured by Particle Sizing Systems.
실험예 2Experimental Example 2
실시예 및 비교예의 그라프트 중합체 분말의 물성을 하기에 기재된 방법으로 측정하고, 그 결과를 하기 표 1 및 표 2에 기재하였다.The physical properties of the graft polymer powders of Examples and Comparative Examples were measured by the method described below, and the results are shown in Tables 1 and 2 below.
② 굴절률: 그라프트 중합체 분말에 589.3 ㎚의 가시광선을 조사하고 아베 굴절계로 측정하였다.② Refractive index: The graft polymer powder was irradiated with visible light of 589.3 nm and measured with an Abbe refractometer.
실험예 3Experimental Example 3
실시예 및 비교예의 열가소성 수지 조성물 100 중량부, 에틸렌비스스테아레이트 0.2 중량부, IR1076 0.2 중량부 및 BASF 社의 Tinuvin 770 0.1 중량부를 균일하게 혼합한 후, 압출 및 사출하여 시편을 제조하였다. 시편의 물성을 하기에 기재된 방법으로 측정하고, 그 결과를 하기 표 1 및 표 2에 기재하였다.100 parts by weight of the thermoplastic resin compositions of Examples and Comparative Examples, 0.2 parts by weight of ethylene bis stearate, 0.2 parts by weight of IR1076, and 0.1 parts by weight of BASF's Tinuvin 770 were uniformly mixed, and then extruded and injected to prepare a specimen. The physical properties of the specimen were measured by the method described below, and the results are shown in Tables 1 and 2 below.
③ 헤이즈(Haze value, %): ASTM1003에 의거하여 측정하였다.③ Haze (Haze value, %): It was measured according to ASTM1003.
④ 노치드 아이조드 충격강도(㎏f·㎝/㎝, 1/4 inch): ASTM D256에 의거하여 25 ℃에서 측정하였다. ④ Notched Izod impact strength (kgf·cm/cm, 1/4 inch): Measured at 25°C according to ASTM D256.
⑤ 내후성: UV2000 (ATLAS사)를 이용하여 시편을 500 시간 동안 보관 후와 보관 전의 색상 차이를 하기 식으로 계산하여 내후성을 평가하였다. ⑤ Weather resistance: The weather resistance was evaluated by calculating the color difference between the specimens stored for 500 hours and before storage using UV2000 (ATLAS) by the following equation.
한편, 내후성 평가 조건은 하기와 같았다.On the other hand, the weather resistance evaluation conditions were as follows.
광원(Light Source): 형광 UV 램프(Fluorescent UV lamps, 40W, UVA 340 lamp)Light Source: Fluorescent UV lamps (40W, UVA 340 lamp)
복사조도(Irradiance): 0.55 W/㎡(340 nm)Irradiance: 0.55 W/㎡ (340 nm)
검은 패널의 온도: 60 ℃The temperature of the black panel: 60 ℃
Figure PCTKR2020011776-appb-I000002
Figure PCTKR2020011776-appb-I000002
상기 식에서, L’, a’, b’은 시편에 500 시간 동안 보관한 후, CIE LAB 색 좌표계로 측정한 L, a, b 값이고, L0, a0, b0는 보관 전에 CIE LAB 색 좌표계로 측정한 L, a, b 값이다.In the above formula, L', a', b'are L, a, and b values measured by the CIE LAB color coordinate system after storage for 500 hours in the specimen, and L 0 , a 0, and b 0 are the CIE LAB colors before storage. These are L, a, and b values measured with a coordinate system.
구분division 비교예Comparative example 실시예Example 비교예Comparative example
1One 1One 22 33 44 22
복합 고무질 중합체 라텍스(중량부)Composite rubbery polymer latex (parts by weight) PBLPBL 2020 2020 2020 2020 2020 2020
BABA 2424 2424 2424 2424 2424 2424
SS 1616 1616 1616 1616 1616 1616
반응형 UV 안정제Reactive UV Stabilizer 0.050.05 0.30.3 0.70.7 1.51.5 22 33
평균입경(㎚)Average particle diameter (nm) 410410 410410 410410 410410 410410 410410
그라프트 중합체 분말(중량부)Graft polymer powder (parts by weight) MMAMMA 2828 2828 2828 2828 2828 2828
SS 1010 1010 1010 1010 1010 1010
ANAN 22 22 22 22 22 22
굴절률Refractive index 1.5161.516 1.5161.516 1.5161.516 1.5161.516 1.5161.516 1.5161.516
열가소성 수지 조성물Thermoplastic resin composition 그라프트중합체 분말(중량부)Graft polymer powder (parts by weight) 3535 3535 3535 3535 3535 3535
제조예 1의MSAN 중합체(중량부)MSAN polymer of Preparation Example 1 (parts by weight) 6565 6565 6565 6565 6565 6565
헤이즈Haze 1.81.8 1.81.8 1.91.9 2.12.1 2.22.2 2.52.5
충격강도Impact strength 9.09.0 8.88.8 8.98.9 8.78.7 8.78.7 8.68.6
내후성Weather resistance 4.24.2 1.51.5 0.90.9 0.80.8 0.60.6 0.60.6
구분division 실시예 5Example 5 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5
디엔계 고무질 중합체 라텍스의 제조(중량부)Preparation of diene rubber polymer latex (parts by weight) BDBD -- -- -- 100100
반응형 UV 안정제Reactive UV Stabilizer -- -- -- 3.53.5
평균입경(㎚)Average particle diameter (nm) -- -- -- 300300
복합 고무질 중합체 라텍스(중량부)Composite rubbery polymer latex (parts by weight) PBLPBL 2020 2020 5050 2020
BABA 2424 17.517.5 00 2424
SS 1616 12.512.5 00 1616
반응형 UV 안정제Reactive UV Stabilizer 0.70.7 00 00 00
평균입경(㎚)Average particle diameter (nm) 410410 390390 300300 410410
그라프트 중합체 분말(중량부)Graft polymer powder (parts by weight) MMAMMA 2828 34.5634.56 35.535.5 2828
SS 1010 13.4413.44 12.512.5 1010
ANAN 1212 22 22 1212
굴절률Refractive index 1.5161.516 1.5181.518 1.5161.516 1.5161.516
열가소성 수지 조성물Thermoplastic resin composition 그라프트 중합체 분말(중량부)Graft polymer powder (parts by weight) 4545 4040 4040 3535
MSAN 중합체(중량부)MSAN polymer (parts by weight) 5555 6060 6060 6565
헤이즈Haze 2.12.1 2.12.1 1.91.9 2.52.5
충격강도Impact strength 12.312.3 8.38.3 18.118.1 8.58.5
내후성Weather resistance 1.01.0 3.93.9 7.27.2 2.12.1
표 1 및 표 2를 참조하면, 반응형 UV 안정제를 적정량으로 이용한 실시예 1 내지 실시예 5는 투명성, 충격강도 및 내후성이 모두 우수한 것을 확인할 수 있었다. 반면에, 반응형 UV 안정제를 소량으로 이용한 비교예 1은 내후성이 현저하게 저하되었다. 반응형 UV 안정제를 과량으로 이용한 비교예 2는 투명성이 저하되어 투명 소재로는 부적절하였다. 반응형 UV 안정제를 이용하지 않은 비교예 3은 내후성이 현저하게 저하되는 것을 확인할 수 있었다. 반응형 UV 안정제를 이용하지 않고 복합 고무질 중합체가 아닌 디엔계 고무질 중합체로 제조된 비교예 4는 내후성이 현저하게 저하되는 것을 확인할 수 있었다. 반응형 UV 안정제를 디엔계 고무질 중합체 라텍스의 제조 시 이용한 비교예 5는 투명성, 내충격성 및 내후성이 저하되는 것을 확인할 수 있었다. 비교예 5는 그라프트 공중합체에 포함된 반응형 UV 안정제의 함량은 동일하나, 투입 시기만 다른 실시예 2와 비교해서도 투명성, 내충격성, 내충격성 및 내후성이 저하되는 것을 확인할 수 있었다.Referring to Tables 1 and 2, it was confirmed that Examples 1 to 5 using a reactive UV stabilizer in an appropriate amount were excellent in all of transparency, impact strength, and weather resistance. On the other hand, in Comparative Example 1 using a reactive UV stabilizer in a small amount, the weather resistance was markedly lowered. Comparative Example 2 using a reactive UV stabilizer in an excessive amount was inappropriate as a transparent material due to decreased transparency. In Comparative Example 3 without using a reactive UV stabilizer, it was confirmed that the weather resistance was significantly lowered. Comparative Example 4 prepared with a diene-based rubbery polymer rather than a composite rubbery polymer without using a reactive UV stabilizer was found to significantly lower the weather resistance. In Comparative Example 5, in which the reactive UV stabilizer was used in the manufacture of a diene-based rubbery polymer latex, it was confirmed that transparency, impact resistance, and weather resistance were deteriorated. In Comparative Example 5, the content of the reactive UV stabilizer included in the graft copolymer was the same, but it was confirmed that transparency, impact resistance, impact resistance, and weather resistance were deteriorated even when compared with Example 2, which differed only in the timing of addition.

Claims (8)

  1. 반응기에 디엔계 고무질 중합체, (메트)아크릴레이트계 단량체 및 방향족 비닐계 단량체를 포함하는 제1 단량체 혼합물 및 반응형 UV 안정제를 투입하고 중합하여 복합 고무질 중합체를 제조하는 단계; 및Adding a first monomer mixture including a diene-based rubber polymer, a (meth)acrylate-based monomer, and an aromatic vinyl-based monomer and a reactive UV stabilizer to a reactor and polymerizing to prepare a composite rubbery polymer; And
    상기 복합 고무질 중합체에 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 제2 단량체 혼합물을 그라프트 중합하여 그라프트 중합체를 제조하는 단계를 포함하고,Graft polymerization of a second monomer mixture comprising a (meth)acrylate-based monomer, an aromatic vinyl-based monomer, and a vinyl cyanide-based monomer to the composite rubbery polymer to prepare a graft polymer,
    상기 반응형 UV 안정제를 상기 디엔계 고무질 중합체, 상기 제1 단량체 혼합물 및 제2 단량체 혼합물의 합 100 중량부에 대하여 0.1 내지 2 중량부의 함량으로 투입하는 그라프트 중합체의 제조방법.The method for producing a graft polymer in which the reactive UV stabilizer is added in an amount of 0.1 to 2 parts by weight based on 100 parts by weight of the total of the diene-based rubbery polymer, the first monomer mixture, and the second monomer mixture.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 반응형 UV 안정제를 상기 디엔계 고무질 중합체, 상기 제1 단량체 혼합물 및 제2 단량체 혼합물의 합 100 중량부에 대하여 0.5 내지 1.2 중량부의 함량으로 투입하는 그라프트 중합체의 제조방법.The method for producing a graft polymer in which the reactive UV stabilizer is added in an amount of 0.5 to 1.2 parts by weight based on 100 parts by weight of the total of the diene-based rubber polymer, the first monomer mixture, and the second monomer mixture.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 반응형 UV 안정제는 하기 화학식 1로 표시되는 화합물인 것인 그라프트 중합체의 제조방법:The reactive UV stabilizer is a method for producing a graft polymer that is a compound represented by the following formula (1):
    <화학식 1><Formula 1>
    Figure PCTKR2020011776-appb-I000003
    Figure PCTKR2020011776-appb-I000003
    상기 화학식 1에서,In Formula 1,
    R1은 수소 또는 C1 내지 C10의 선형 알킬기이고,R 1 is hydrogen or a C 1 to C 10 linear alkyl group,
    L1은 직접 결합 또는 C1 내지 C10의 선형 알킬렌기이다.L 1 is a direct bond or a C 1 to C 10 linear alkylene group.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 반응형 UV 안정제는 2-[2’-하이드록시-5’-[2-(아크릴옥시)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(메타크릴옥시)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(아크릴옥시)메틸]페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(메타크릴옥시)메틸]페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(아크릴옥시)에틸]페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(메타크릴옥시)에틸]페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(아크릴로옥시)프로필)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(메타크릴로옥시)프로필)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(아크릴로옥시)부틸)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(메타크릴로옥시)부틸)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(아크릴옥시)헥실)페닐]-2H-벤조트리아졸, 2-[2’-하이드록시-5’-[2-(메타크릴옥시)헥실)페닐]-2H-벤조트리아졸로 이루어진 군에서 선택되는 1종 이상인 것인 그라프트 중합체의 제조방법.The reactive UV stabilizer is 2-[2'-hydroxy-5'-[2-(acryloxy)phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-( Methacryloxy)phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-(acryloxy)methyl]phenyl]-2H-benzotriazole, 2-[2'-hydro Roxy-5'-[2-(methacryloxy)methyl]phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-(acryloxy)ethyl]phenyl]-2H- Benzotriazole, 2-[2'-hydroxy-5'-[2-(methacryloxy)ethyl]phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2- (Acrylooxy)propyl)phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-(methacrylooxy)propyl)phenyl]-2H-benzotriazole, 2- [2'-hydroxy-5'-[2-(acrylooxy)butyl)phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-(methacrylooxy) Butyl)phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-[2-(acryloxy)hexyl)phenyl]-2H-benzotriazole, 2-[2'-hydroxy- 5′-[2-(methacryloxy)hexyl)phenyl]-2H-benzotriazole.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 디엔계 고무질 중합체, 제1 단량체 혼합물 및 제2 단량체 혼합물의 합 100 중량부에 대하여,Based on 100 parts by weight of the total of the diene-based rubber polymer, the first monomer mixture, and the second monomer mixture,
    상기 디엔계 고무질 중합체 7 내지 30 중량부;7 to 30 parts by weight of the diene rubber polymer;
    상기 제1 단량체 혼합물 10 내지 50 중량부; 및10 to 50 parts by weight of the first monomer mixture; And
    상기 제2 단량체 혼합물 20 내지 70 중량부의 함량으로 투입하는 것인 그라프트 중합체의 제조방법.The method for producing a graft polymer is added in an amount of 20 to 70 parts by weight of the second monomer mixture.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 디엔계 고무질 중합체는 평균입경이 200 내지 400 ㎚인 것인 그라프트 중합체의 제조방법.The diene-based rubber polymer is a method for producing a graft polymer having an average particle diameter of 200 to 400 nm.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 복합 고무질 중합체는 평균입경이 250 내지 450 ㎚인 것인 그라프트 중합체의 제조방법.The method for producing a graft polymer wherein the composite rubbery polymer has an average particle diameter of 250 to 450 nm.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 그라프트 중합체는 굴절률이 1.51 내지 1.52인 것인 그라프트 중합체의 제조방법.The graft polymer is a method of producing a graft polymer having a refractive index of 1.51 to 1.52.
PCT/KR2020/011776 2019-09-18 2020-09-02 Method for preparing graft polymer WO2021054652A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20865696.7A EP3929223A4 (en) 2019-09-18 2020-09-02 Method for preparing graft polymer
US17/442,416 US20220185933A1 (en) 2019-09-18 2020-09-02 Method of preparing graft polymer
CN202080021457.4A CN113574082A (en) 2019-09-18 2020-09-02 Process for preparing graft polymers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190114888 2019-09-18
KR10-2019-0114888 2019-09-18
KR1020200110944A KR102536520B1 (en) 2019-09-18 2020-09-01 Method for preparing graft polymer
KR10-2020-0110944 2020-09-01

Publications (1)

Publication Number Publication Date
WO2021054652A1 true WO2021054652A1 (en) 2021-03-25

Family

ID=74883723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011776 WO2021054652A1 (en) 2019-09-18 2020-09-02 Method for preparing graft polymer

Country Status (1)

Country Link
WO (1) WO2021054652A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918716A (en) * 1982-07-23 1984-01-31 Hitachi Chem Co Ltd Manufacture of thermoplastic resin
JP2003192742A (en) * 2001-12-27 2003-07-09 Hitachi Chem Co Ltd Process for producing impact-resistant thermoplastic resin excellent in weatherability, and thermoplastic resin composition
JP2007238864A (en) * 2006-03-10 2007-09-20 Toray Ind Inc Resin composition
JP2008174683A (en) * 2007-01-22 2008-07-31 Toray Ind Inc Resin composition containing rubbery material
JP2009235326A (en) * 2008-03-28 2009-10-15 Asahi Kasei Chemicals Corp Organic-inorganic composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918716A (en) * 1982-07-23 1984-01-31 Hitachi Chem Co Ltd Manufacture of thermoplastic resin
JP2003192742A (en) * 2001-12-27 2003-07-09 Hitachi Chem Co Ltd Process for producing impact-resistant thermoplastic resin excellent in weatherability, and thermoplastic resin composition
JP2007238864A (en) * 2006-03-10 2007-09-20 Toray Ind Inc Resin composition
JP2008174683A (en) * 2007-01-22 2008-07-31 Toray Ind Inc Resin composition containing rubbery material
JP2009235326A (en) * 2008-03-28 2009-10-15 Asahi Kasei Chemicals Corp Organic-inorganic composite

Similar Documents

Publication Publication Date Title
WO2018084486A2 (en) Method for preparing asa-based graft copolymer, method for preparing thermoplastic asa-based resin composition comprising same, and method for manufacturing asa-based molded product
WO2014035055A1 (en) Acrylonitrile-acrylate-styrene graft copolymer and thermoplastic resin composition including same
WO2013115610A1 (en) Asa-based graft copolymer composition
WO2017039157A1 (en) Thermoplastic resin composition and preparation method therefor
WO2018174395A1 (en) Method for preparing asa-based graft copolymer, method for preparing thermoplastic resin composition comprising same, and method for manufacturing molded product
WO2017099409A1 (en) Thermoplastic graft copolymer resin, method for preparing same, and thermoplastic resin composition containing same
WO2015026153A1 (en) Acrylate-styrene-acrylonitrile polymer and thermoplastic resin composition
WO2019066375A2 (en) Thermoplastic resin composition and thermoplastic resin molded product manufactured therefrom
WO2019083153A1 (en) Graft copolymer, thermoplastic resin composition comprising same and preparation method therefor
WO2012087056A2 (en) Graft monomer composition for thermoplastic transparent resin, composition for theremoplastic transparent resin using the same, and theremoplastic transparent resin having good transparency and color with low rubber amounts
WO2017082649A1 (en) Thermoplastic resin composition having excellent low gloss characteristics, weather resistance, and mechanical properties, and extruded product manufactured therefrom
WO2021060743A1 (en) Method for preparing graft polymer
WO2013077614A1 (en) Acryl-based laminate film having good weatherability and formability and method for manufacturing same
WO2013022205A2 (en) Alkyl (meth)acrylate-based thermoplastic resin composition and thermoplastic resin having adjusted scratch resistance and yellowness
WO2016204485A1 (en) Thermoplastic resin, preparation method therefor, and thermoplastic resin composition containing same
WO2021054652A1 (en) Method for preparing graft polymer
WO2015030415A1 (en) Transparent abs resin and transparent abs resin composition
WO2020101182A1 (en) Core-shell copolymer, preparation method therefor, and thermoplastic resin composition comprising same
WO2017160011A1 (en) Thermoplastic resin composition and molded article manufactured therefrom
WO2023008808A1 (en) Thermoplastic resin composition
WO2021040269A1 (en) Thermoplastic resin composition comprising (meth)acrylate graft copolymer, and production method therefor
WO2023008807A1 (en) Thermoplastic resin composition
WO2021015485A1 (en) Acrylic copolymer coagulant and method for preparing graft copolymer using same
WO2016043424A1 (en) Thermoplastic resin composition and thermoplastic resin molded article prepared therefrom
WO2020101326A1 (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020865696

Country of ref document: EP

Effective date: 20210920

NENP Non-entry into the national phase

Ref country code: DE