WO2021052280A1 - 网络测量系统、方法、设备及存储介质 - Google Patents

网络测量系统、方法、设备及存储介质 Download PDF

Info

Publication number
WO2021052280A1
WO2021052280A1 PCT/CN2020/114983 CN2020114983W WO2021052280A1 WO 2021052280 A1 WO2021052280 A1 WO 2021052280A1 CN 2020114983 W CN2020114983 W CN 2020114983W WO 2021052280 A1 WO2021052280 A1 WO 2021052280A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
message
node
identifier
information
Prior art date
Application number
PCT/CN2020/114983
Other languages
English (en)
French (fr)
Inventor
李俊武
郑凯
张永明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20865300.6A priority Critical patent/EP4024771A4/en
Publication of WO2021052280A1 publication Critical patent/WO2021052280A1/zh
Priority to US17/698,642 priority patent/US20220210036A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/065Generation of reports related to network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/40Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/14Arrangements for monitoring or testing data switching networks using software, i.e. software packages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/18Protocol analysers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/20Arrangements for monitoring or testing data switching networks the monitoring system or the monitored elements being virtualised, abstracted or software-defined entities, e.g. SDN or NFV
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/02Standardisation; Integration
    • H04L41/0213Standardised network management protocols, e.g. simple network management protocol [SNMP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/04Network management architectures or arrangements
    • H04L41/046Network management architectures or arrangements comprising network management agents or mobile agents therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/087Jitter

Definitions

  • This application relates to the field of communication technology, and in particular to a network measurement system, method, device, and storage medium.
  • FIG. 1 is a schematic diagram of the business logic of a cloud network provided by the prior art.
  • the cloud platform can provide more tenants Services usually use Virtual Extensible Lan (Vxlan), Network Virtualization using Generic Routing Encapsulation (Nvgre), Stateless Transport Tunneling Protocol (STT), general Network Virtualization Encapsulation (Generic Network Virtualization Encapsulation, Geneve) and other tunnel encapsulation technologies, take the network composed of multiple physical network devices 12 as the underlying physical network (underlay network), and build a set of upper layer virtual network (overlay network) on it. ).
  • Vxlan Virtual Extensible Lan
  • Nvgre Generic Routing Encapsulation
  • STT Stateless Transport Tunneling Protocol
  • GTE General Network Virtualization Encapsulation
  • Generic Network Virtualization Encapsulation Geneve
  • other tunnel encapsulation technologies take the network composed of multiple physical network devices 12 as the underlying physical network (underlay network), and build a set of upper layer virtual network (overlay network) on it. ).
  • Cloud networks involve a lot of network traffic, such as the internal layer 2/layer 3 (L2/L3) traffic of the Virtual Private Cloud (VPC), the east-west traffic between VPCs, and the elastic internet protocol (EIP). ) Traffic, Load Balancing (LB) public network access traffic, Source Network Address Translation (SNAT) public network access traffic, VPN traffic, dedicated line traffic, etc., which will form a variety of business messages .
  • service messages are transmitted between various servers through virtual switches or physical switches.
  • cloud networks or data center networks are very prone to problems such as network failures and network delays. In order to locate these problems, network measurement is proposed.
  • the server and the switch by adding an identifier to a service message, the server and the switch obtain the packet capture rule, the rule includes the identifier added in the service message, the server and the switch capture the packet according to the packet capture rule, and obtain the service
  • the measurement information of the message such as the capture time and location of the business message, and feedback the measurement information to the analysis node.
  • the analysis node analyzes the measurement information sent by each server and switch to obtain the measurement result. As a result, locate the network fault or determine the network delay, etc.
  • the need to add an identifier to the service message affects the normal execution of the service.
  • This application provides a network measurement system, method, device, and storage medium. Based on this, the control node does not need to measure the network through service messages, so that normal service execution is not affected, and the reliability of the entire communication network is improved.
  • this application provides a network measurement system, including: a control node, an analysis node, a first measurement node, and a first proxy node.
  • the control node is used to obtain the measurement task and the first identifier.
  • the measurement task includes: the message header information of the service message, generates a measurement message according to the message header information and the first identifier, and sends the measurement message to the first measuring node through the first proxy node.
  • a measurement message is sent, and the first identifier is used to identify that the measurement message is a message used for network measurement.
  • the first measurement node is used to capture and parse the measurement message to obtain the first measurement information of the measurement message, and send the first measurement information to the analysis node.
  • the first measurement information includes at least one of the following: a measurement message, a The time when a measuring node grabs the measurement message, the identification of the first measuring node, and the number of measurement messages issued in the measurement task.
  • the analysis node is used to obtain the network measurement result according to the first measurement information. Therefore, the control node does not need to measure the network through service messages, thereby not affecting normal service execution, and improving the reliability of the entire communication network.
  • the system further includes: a second measurement node.
  • the first measuring node is also used to send a measurement message to the second measuring node.
  • the second measurement node is used to capture and parse the measurement message to obtain the second measurement information of the measurement message, and send the second measurement information to the analysis node.
  • the second measurement information includes at least one of the following: a measurement message, The time at which the second measurement node grabs the measurement message, the identifier of the second measurement node, and the number of measurement messages issued in the measurement task.
  • the analysis node is specifically configured to obtain the network measurement result according to the first measurement information and the second measurement information.
  • the second measurement node is the end node on the path to be measured, and the second measurement node is also used to discard the measurement message after obtaining the second measurement information, so as to avoid affecting normal services.
  • the measurement message is a measurement message on the forwarding plane of the cloud network
  • the measurement message includes an external message header and an internal message header
  • the external message header includes: the tunnel involved in the tunnel encapsulation method of the cloud network Header
  • the internal message header includes: message header information and a first identifier.
  • the measurement message is a measurement message on the control plane of the cloud network
  • the measurement message includes an internal message header
  • the internal message header includes: message header information and a first identifier
  • the measurement message includes the message header information and the first identifier.
  • the first identifier is located after the message header information. Since the first identifier is carried after the message header information, that is, for any measuring node, the first identifier will not be stripped, so that any measuring node can grab the measurement message, and then the network measurement can be realized. .
  • the measurement message further includes: a second identifier.
  • the second identifier is used to identify the measurement task.
  • the second identifier is located after the message header information.
  • the measurement message further includes: a third identifier, which is used to identify whether the measurement message includes the data part of the service message.
  • control node is further configured to issue at least one packet capture rule to the first measurement node through the first proxy node, and the packet capture rule includes a first identifier, so that the first measurement node captures via the first identifier Measurement messages.
  • At least one packet capture rule in the Ethernet includes at least one of the following: a packet capture rule corresponding to the data link layer, a delivery rule corresponding to the network layer, and a delivery rule corresponding to the transport layer. That is, in this application, the control node only needs to construct a measurement message, and the control node only needs to issue at least one of the L2 layer message capture rules, the L3 layer message capture rules, and the L4 message capture rules One item is enough, which can reduce network overhead.
  • the first identifier has a validity period.
  • the first measurement node is specifically configured to send the first measurement information to the corresponding first proxy node, so that the first proxy node sends the first measurement information to the analysis node.
  • the first measurement node is specifically configured to directly send the first measurement information to the analysis node.
  • the measurement task also includes at least one of the following: tenant information, the tunnel encapsulation method of the lower-layer physical network of the cloud network, the identifier of the isolation domain to which the tenant belongs, and the information of the measurement message issued in the measurement task Quantity, measure the sending rate of messages in the measurement task.
  • the measurement task also includes at least one of the following: the number of measurement packets issued in the measurement task, and the sending rate of the measurement packets in the measurement task.
  • the message header information sequentially includes at least one of the following: information about the service message at the data link layer, information about the service message at the network layer, and information about the service message at the transmission layer.
  • the foregoing system further includes: a storage node, configured to store at least one of the following: a measurement task and the first measurement information.
  • the first measurement node is further configured to add at least one of the following to the measurement message: time information for the first measurement node to grab the measurement message, and an identifier of the first measurement node.
  • the present application provides a network measurement system, including: a control node, an analysis node, a first measurement node, and a first proxy node.
  • the control node is used to obtain a measurement task and a first identifier
  • the measurement task includes: message header information of a service message
  • the first identifier is used to identify that the measurement message is a message used for network measurement.
  • the control node sends the message header information and the first identifier to all the first measuring nodes through the first proxy node.
  • the first measurement node generates a measurement message according to the message header information and the first identifier, and captures and parses the measurement message to obtain the first measurement information of the measurement message, and sends the first measurement information to the analysis node.
  • the measurement information includes at least one of the following: a measurement message, the time when the first measurement node grabs the measurement message, the identifier of the first measurement node, and the number of measurement messages issued in the measurement task.
  • the analysis node is used to obtain the network measurement result according to the first measurement information.
  • the present application provides a network measurement method, including: a control node obtains a measurement task and a first identifier, and the measurement task includes: header information of a service packet.
  • the control node generates a measurement message according to the message header information and the first identifier.
  • the control node delivers a measurement message to the first measurement node through the first proxy node, and the first identifier is used to identify that the measurement message is a message used for network measurement.
  • the method further includes: the control node issues at least one packet capture rule to the first measuring node through the first proxy node, and the packet capture rule includes a first identifier, so that the first measuring node passes the first identifier Capture measurement messages.
  • this application provides a network measurement method, including: a first measurement node captures and parses a measurement message to obtain first measurement information of the measurement message, and the measurement message is based on the message header of the service message Information and a first identifier, the first identifier is used to identify that the measurement message is a message used for network measurement, and the first measurement information includes at least one of the following: a measurement message, and a measurement message captured by the first measurement node The time of the measurement, the identification of the first measurement node, and the number of measurement packets issued in the measurement task.
  • the first measurement node sends the first measurement information to the analysis node.
  • the method further includes: the first measurement node receives at least one packet capture rule issued by the control node through the first proxy node, and the packet capture rule includes the first One logo.
  • the first measurement node captures the measurement message through the first identifier.
  • the present application provides a network measurement method, including: a control node obtains a measurement task and a first identifier, and the measurement task includes: header information of a service packet.
  • the control node sends the message header information and the first identifier to the first measuring node through the first proxy node, so that the first proxy node generates a measurement message according to the message header information and the first identifier, and the first identifier is used to identify the measurement
  • a message is a message used for network measurement.
  • the present application provides a network measurement method, including: a first measurement node receives header information and a first identifier of a service packet sent by a control node through a first proxy node.
  • the first measurement node generates a measurement message according to the message header information and the first identifier, where the first identifier is used to identify that the measurement message is a message used for network measurement.
  • the first measurement node captures and parses the measurement message to obtain the first measurement information of the measurement message.
  • the first measurement node sends the first measurement information to the analysis node, and the first measurement information includes at least one of the following: a measurement message, the time when the first measurement node grabs the measurement message, the identification of the first measurement node, and the measurement task The number of sent measurement packets in the middle.
  • this application provides a control node, including:
  • the acquisition module is used to acquire the measurement task and the first identifier, and the measurement task includes: message header information of the business message.
  • the generating module is used to generate a measurement message according to the message header information and the first identifier.
  • the first delivery module is configured to deliver a measurement message to the first measurement node through the first proxy node, and the first identifier is used to identify that the measurement message is a message used for network measurement.
  • control node further includes: a second issuing module, configured to issue at least one packet capture rule to the first measuring node through the first proxy node, and the packet capture rule includes the first identifier so that the A measurement node captures the measurement message through the first identifier.
  • the present application provides a measuring node, which is a first measuring node and includes:
  • the processing module is used to capture and parse the measurement message to obtain the first measurement information of the measurement message.
  • the measurement message is generated according to the header information of the service message and the first identifier, and the first identifier is used to identify
  • a measurement message is a message used for network measurement.
  • the first measurement information includes at least one of the following: a measurement message, the time when the first measurement node grabs the measurement message, the identification of the first measurement node, and the measurement task Measure the number of delivered packets.
  • the sending module is used to send the first measurement information to the analysis node.
  • the first measurement node further includes:
  • the receiving module is configured to receive at least one packet capture rule issued by the control node through the first agent node before the processing module captures and parses the measurement packet, and the packet capture rule includes the first identifier.
  • the grabbing module is used to grab the measurement message through the first identifier.
  • this application provides a control node, including:
  • the acquisition module is used to acquire the measurement task and the first identifier, and the measurement task includes: message header information of the business message.
  • the sending module is configured to send the message header information and the first identifier to the first measuring node through the first proxy node, so that the first proxy node generates a measurement message according to the message header information and the first identifier, and the first identifier uses
  • the measurement message is a message used for network measurement.
  • this application provides a measurement node, the measurement node being the first measurement node, including:
  • the receiving module is configured to receive the message header information and the first identifier of the service message sent by the control node through the first proxy node.
  • the generating module is configured to generate a measurement message according to the message header information and a first identifier, where the first identifier is used to identify that the measurement message is a message used for network measurement.
  • the processing module is used to capture and parse the measurement message to obtain the first measurement information of the measurement message.
  • the sending module is configured to send the first measurement information to the analysis node.
  • the first measurement information includes at least one of the following: a measurement message, the time at which the first measurement node grabs the measurement message, the identification of the first measurement node, and the measurement Measure the number of sent packets in the task.
  • this application provides a control node, including: a memory and a processor.
  • the memory is used to store computer instructions.
  • the processor is used to run the computer instructions stored in the memory to implement the network measurement method executed by the above-mentioned control node.
  • a measurement node includes: a memory and a processor.
  • the memory is used to store computer instructions.
  • the processor is configured to run computer instructions stored in the memory to implement the network measurement method executed by the first measurement node.
  • the present application provides a chip, which is used to execute the above-mentioned network measurement method.
  • the present application provides a storage medium, including: a readable storage medium and computer instructions, the computer instructions are stored in the readable storage medium; the computer instructions are used to implement the aforementioned network measurement method.
  • this application provides a computer program product that includes computer instructions (ie, computer programs) to implement the above-mentioned network measurement method.
  • this application provides a network measurement system, method, device, and storage medium, in which a control node can obtain header information and a first identifier of a service message, and construct a measurement message according to the header information and the first identifier .
  • the control node obtains the message header information and the first identifier of the service message, and sends the message header information and the first identifier to the first measuring node, and the first measuring node constructs according to the message header information and the first identifier Measurement messages, the system finally measures the network according to the constructed measurement messages. Based on this, the control node does not need to measure the network through service messages, so that normal service execution is not affected, and the reliability of the entire communication network is improved.
  • FIG. 1 is a schematic diagram of business logic of a cloud network provided by the prior art
  • Figure 2 is a schematic diagram of a data center network provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a cloud network provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of a network measurement system provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a measurement message on a forwarding plane provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a measurement message on a control plane provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of a measurement message on a data center network provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a network measurement system provided by another embodiment of this application.
  • FIG. 9 is a schematic diagram of a network measurement system provided by still another embodiment of this application.
  • FIG. 10 is an interaction flowchart of a network measurement method provided by an embodiment of this application.
  • FIG. 11 is an interaction flowchart of a network measurement method provided by another embodiment of this application.
  • FIG. 12 is a schematic diagram of a control node provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of a first measuring node provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of a control node provided by another embodiment of this application.
  • 15 is a schematic diagram of a first measuring node provided by another embodiment of this application.
  • FIG. 16 is a schematic diagram of a second measuring node according to another embodiment of this application.
  • FIG. 17 is a schematic diagram of a control node provided by an embodiment of this application.
  • FIG. 18 is a schematic diagram of a first measuring node provided by an embodiment of this application.
  • FIG. 19 is a schematic diagram of a second measuring node provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a data center network provided by an embodiment of the application.
  • the data center network includes: a control node 21, an analysis node 22, and at least two servers (including those in the path to be measured).
  • the server 23 of the first node and the server 24 as the last node in the path to be measured), at least one switch 25 (as an intermediate node in the path to be measured), and a software-defined network (SDN) controller 26.
  • SDN software-defined network
  • control node 21 is a server, or a centralized or distributed server cluster composed of multiple servers, or a chip circuit, which is not limited in this application.
  • the analysis node 22 is a server, or a centralized or distributed server cluster composed of multiple servers, or a chip circuit, which is not limited in this application.
  • control node 21 and the analysis node 22 can be set on the same server or the same chip circuit, which is not limited in this application.
  • the data center network includes at least one SDN controller 26, and at least one SDN controller 26 has a corresponding relationship with servers and switches.
  • SDN controller 26 has a corresponding relationship with servers and switches.
  • all servers and switches correspond to one SDN controller.
  • FIG. 3 is a schematic diagram of a cloud network provided by an embodiment of the application.
  • the cloud network includes: a control node 31, an analysis node 32, and multiple servers 33, and each server 33 includes: an agent ( Agent) 331 and virtual switch 332.
  • control node 31 is a server, or a centralized or distributed server cluster composed of multiple servers, or a chip circuit, or a VM, or a container, etc., this application is about No restrictions.
  • the analysis node 32 is a server, or a centralized or distributed server cluster composed of multiple servers, or a chip circuit, or a VM, or a container, etc. This application does not Do restrictions.
  • control node 31 and the analysis node 32 can be set on the same server or the same chip circuit, which is not limited in this application.
  • the agent 331 is an agent process running on the server 33.
  • the virtual switch 332 may be set on the VM included in the server 33, or may not be set on the VM, which is not limited in this application.
  • control node to be provided below in this application may be the control node 21 or the control node 31
  • analysis node may be the analysis node 22 or the analysis node 33
  • measurement node may be the server 23, the server 24, the switch 25, the server 33, or
  • the proxy node may be the SDN controller 26 or the proxy 331.
  • this application provides a network measurement system, method, device, and storage medium.
  • FIG. 4 is a schematic diagram of a network measurement system provided by an embodiment of the application.
  • the system includes: a control node 41, an analysis node 42, a first measurement node 43, and a first proxy node 44.
  • the first measuring node 43 corresponds to the first proxy node 44.
  • each server includes an agent and a virtual switch.
  • each virtual switch ie, a measurement node
  • each agent ie, an agent node
  • the first measurement node 43 may be any measurement node on the path to be measured, for example, it may be the first measurement node on the path to be measured.
  • the administrator may issue a measurement task to the control node 41 through a web page or an application programming interface (Application Programming Interface, API), and the measurement task may include: header information of the service packet.
  • the message header information of the business message includes at least one of the following in turn: information about the business message at the data link layer (ie, information at the L2 layer), and information about the business message at the network layer (ie, the information at the L3 layer). Information), the information of the service message in the transport layer (that is, the information of the L4 layer).
  • the message header information includes the information of the L2 layer of the business message, or includes the information of the L2 layer and the information of the L3 layer of the business message, or includes the information of the L2 layer and the information of the L3 layer of the business message, and Information on the L4 layer.
  • the information of the L2 layer may include: source media access control (Media Access Control, MAC) address, destination MAC address, ethertype field (ethertype), VLAN information, and so on.
  • the information of the L3 layer may include: source Internet Protocol (Internet Protocol, IP) address, destination IP address, protocol number, Differentiated Services Code Point (DSCP) information, etc.
  • the information of the L4 layer may include: TCP/User Datagram Protocol (User Datagram Protocol, UDP) source port number, TCP/UDP destination port number, etc.
  • the measurement task further includes at least one of the following: tenant information, the tunnel encapsulation method of the underlying physical network of the cloud network, the identifier of the isolation domain to which the tenant belongs, and the measurement report issued in the measurement task.
  • tenant information the tunnel encapsulation method of the underlying physical network of the cloud network
  • the identifier of the isolation domain to which the tenant belongs the measurement report issued in the measurement task.
  • the measurement task further includes at least one of the following: the number of measurement packets issued in the measurement task, and the sending rate of measurement packets in the measurement task.
  • the tenant information includes: an identity (ID) of the tenant.
  • ID an identity of the tenant.
  • the tunnel encapsulation mode used by the underlying physical network of the cloud network can be Vxlan, nvgre, STT, Geneve, etc.
  • control node can issue one or more measurement messages in each measurement task.
  • control node can pre-configure the number of measurement messages that need to be delivered in each measurement task, and the sending rate of the measurement messages.
  • the so-called sending rate of measurement messages refers to the rate at which measurement messages are sent.
  • control node constructs a measurement message by obtaining the message header information of the service message, without using the service message to measure the network.
  • the control node 41 in addition to acquiring the above-mentioned measurement task, the control node 41 also acquires a first identifier, which is used to identify that the measurement message is a message used for network measurement.
  • the first identifier It can also be referred to as a measurement protocol identifier (Telemetry Protocol Identifier, TPID).
  • TPID Telemetry Protocol Identifier
  • the first identifier has a validity period, the validity period may be one month or one quarter, etc., and the length of the first identifier may be 16 bits, which is not limited in this application.
  • control node 41 After obtaining the message header information and the first identifier, the control node 41 generates a measurement message according to the message header information and the first identifier included in the measurement task, that is, constructs the measurement message.
  • the control node 41 if the control node 41 needs to construct the measurement message on the forwarding plane, the control node 41 only needs to construct the internal message header.
  • the forwarding plane of the cloud network is the pairing between the control node and the measurement node.
  • the data plane of the measurement packet forwarding processing, the forwarding plane may also be referred to as the data plane.
  • the internal message header includes: the message header information and the first identifier of the above-mentioned service message. During the transmission of the constructed measurement message on the path to be measured, other measurement nodes will encapsulate an external message header for the measurement message.
  • the external message header includes: the tunnel header involved in the tunnel encapsulation method of the cloud network Take the tunnel header involved in Vxlan as an example, the tunnel header includes: VXLAN network identifier (VXLAN Network Identifier, VNI), and only virtual machines on the same VXLAN can communicate with each other.
  • the internal message header further includes: a second identifier, which is used to identify the measurement task, that is, the second identifier is a single measurement identifier.
  • the second identification may be a token.
  • the second identifier may be a random value of at least 8 bits.
  • the external packet header also includes: Ethernet header, IP header, UDP header, etc.
  • the control node 41 For the cloud network, if the control node 41 needs to construct a measurement message on the control plane, the control node 41 only needs to construct an internal message header.
  • the control plane of the cloud network is to send control between the control node and the measurement node. Signaling network plane.
  • the internal message header includes: the message header information and the first identifier of the above-mentioned service message.
  • the internal message header further includes: the above-mentioned second identifier.
  • the measurement message includes the message header information and the first identifier.
  • the internal message header further includes: the above-mentioned second identifier.
  • the control node 41 sets the first identifier and the second identifier after the foregoing message header information. For example: if the measurement message of the L2 layer is pre-constructed, the first identifier and the second identifier are set after the information of the L2 layer, and the first identifier is adjacent to the information of the L2 layer. If the measurement message of the L3 layer is pre-constructed, the first identifier and the second identifier are set after the information of the L3 layer, and the first identifier is adjacent to the information of the L3 layer. If the measurement message of the L4 layer is pre-constructed, the first identifier and the second identifier are set after the information of the L4 layer, and the first identifier is adjacent to the information of the L4 layer.
  • the measurement message constructed by the control node 41 further includes: a third identifier, and the third identifier is used to identify whether the measurement message includes the data part of the foregoing service message. For example: when the third identifier is 0, it means that the measurement message does not include the data part of the above-mentioned service message; when the third identifier is 1, it means that the measurement message includes the data part of the above-mentioned service message.
  • the length of the third identifier may be 4 bits, and the data part of the service message may be part of Internet Control Message Protocol (ICMP) information and IP protocol header (IP Protocol Header), etc.
  • ICMP Internet Control Message Protocol
  • IP Protocol Header IP protocol header
  • the measurement message constructed by the control node 41 further includes: the data part of the service message.
  • FIG. 5 is a schematic diagram of a measurement message on the forwarding plane provided by an embodiment of the application.
  • the measurement message includes an external message header and an internal message header, wherein the external message header Including: Ethernet header, IP header, UDP header, tunnel header involved in tunnel encapsulation.
  • the internal message header includes: L2 layer information, L3 layer information, L4 layer information, and measurement standard header.
  • the measurement standard header includes: a first identifier, a second identifier, and a third identifier. And the first identifier is adjacent to the information of the L4 layer. When the third identifier takes the value 1, the internal message header also includes the data part of the service data.
  • the measurement standard header also includes: reserved field, length field and type, length, value (Type Length Value, TLV) field, and the length field is used to indicate the length of the measurement message.
  • FIG. 6 is a schematic diagram of a measurement message on the control plane provided by an embodiment of the application.
  • the measurement message includes an internal message header, and the internal message header includes: L2 layer information , L3 layer information, L4 layer information, measurement standard header, the measurement standard header includes: a first identifier, a second identifier, and a third identifier. And the first identifier is adjacent to the information of the L4 layer.
  • the third identifier takes the value 1
  • the internal message header also includes the data part of the service data.
  • the measurement standard header also includes: a reserved field, a length field, and a TLV field. The length field is used to indicate the length of the measurement message.
  • FIG. 7 is a schematic diagram of a measurement message on a data center network provided by an embodiment of this application.
  • the measurement message includes: L2 layer information, L3 layer information, and L4 layer information.
  • Information, a measurement standard head, the measurement standard head includes: a first identification, a second identification, and a third identification.
  • the first identifier is adjacent to the information of the L4 layer.
  • the third identifier takes the value 1
  • the internal message header also includes the data part of the service data.
  • the measurement standard header also includes: a reserved field, a length field, and a TLV field. The length field is used to indicate the length of the measurement message.
  • control node 41 may obtain current network information, and may determine the path to be measured in combination with the foregoing measurement task, or determine the first measurement node and the first proxy node.
  • the control node 41 can obtain current cloud network information, and can determine the path to be measured or determine the first measurement node and the first proxy node in combination with the aforementioned measurement task.
  • the cloud network information includes at least one of the following: the identification of the tenant computing instance, the object identification of the network, the virtual port, the virtual subnet, the virtual router, and other information.
  • the administrator may deliver the path to be measured to the control node 41 through a web page or API, or the identification of the first measurement node and the identification of the first proxy node.
  • the path to be measured includes at least two measurement nodes, such as the first node and the last node.
  • the system can also measure the network by acquiring measurement information from a measurement node.
  • the control node 41 can determine the measurement node and the proxy node corresponding to the measurement node according to the current network information and the measurement task described above.
  • control node 41 After the control node 41 generates the measurement message, it sends the measurement message to the first measurement node 43 through the first proxy node 44.
  • the control node 41 may issue at least one message capturing rule to the first measuring node 43 through the first proxy node 44, and each message capturing rule includes: Logo. Based on this, the first measurement node 43 can capture the measurement message through the first identifier.
  • the measurement message includes: the message header information and the first identifier of the business message, and the message header information of the business message in turn includes at least one of the following: the information of the business message at the data link layer (ie Information on the L2 layer), information on the network layer of the service message (that is, information on the L3 layer), and information on the transmission layer of the service message (that is, information on the L4 layer).
  • the message header information includes the information of the L2 layer of the service message. Or, it includes the information of the L2 layer and the information of the L3 layer of the business message, or includes the information of the L2 layer, the information of the L3 layer and the information of the L4 layer of the business message.
  • the measurement message includes the information of the L2 layer of the service message, but does not include the information of the L3 layer and the information of the L4 layer
  • the measurement message is referred to as the measurement message of the L2 layer.
  • the measurement message includes the information of the L2 layer and the information of the L3 layer of the service message, but does not include the information of the L4 layer
  • the measurement message is called the measurement message of the L3 layer.
  • the measurement message includes the information of the L2 layer, the information of the L3 layer, and the information of the L4 layer of the service message
  • the measurement message is called the measurement message of the L4 layer.
  • the message capture rules issued by the control node 41 may include the message capture rules for the measurement messages of the L2 layer, the message capture rules of the measurement messages of the L3 layer, and the measurement messages of the L4 layer. Packet capture rules.
  • the first agent node 44 issues the foregoing message capture rules to the first measurement node 43, or the administrator can use the command line interface (CLI), web page (Web), and simple network management protocol (Simple Network Management Protocol).
  • CLI command line interface
  • Web web page
  • Simple Network Management Protocol Simple Network Management Protocol
  • Traditional methods such as Network Management Protocol, SNMP) configure packet capture rules to the first measurement node 43.
  • the first measurement node 43 is used to capture measurement packets according to corresponding packet capture rules. After capturing the measurement message, the first measurement node 43 parses the measurement message to obtain the first measurement information of the measurement message, and sends the first measurement information to the analysis node 42.
  • the first measurement information includes at least one of the following: a measurement message, the time at which the first measurement node grabs the measurement message, the identification of the first measurement node, and the delivery of the measurement message in the measurement task Quantity.
  • the first measurement node 43 may send the first measurement information to the analysis node 42 in the following manner.
  • the first measurement node 43 sends the first measurement information to the first agent node 44, so that the first agent node 44 sends the first measurement information to the analysis node 42.
  • the first measurement node 43 directly sends the first measurement information to the analysis node 42.
  • the analysis node 42 After the analysis node 42 obtains the first measurement information, it analyzes the first measurement information to obtain a network measurement result. For example, the analysis node 42 may determine the packet capture duration of the first measurement node according to the performance of the first measurement node in advance, and after obtaining the time for the first measurement node to capture the measurement message, capture according to the first measurement node The measurement message time can also determine a packet capture duration of the first measuring node, and compare these two packet capture durations to determine the packet capture delay of the first measuring node, and the packet capture delay is A network measurement result. In addition, it is possible to determine the delay, delay jitter, measurement nodes, ports, involved flow tables, port queues, etc. that the measurement message passes through.
  • FIG. 8 is a schematic diagram of a network measurement system provided by another embodiment of the application.
  • the system includes: a control node 41, an analysis node 42, a first measurement node 43, and a first agent node.
  • a storage node 45 which can be used to store at least one of the following: measurement tasks, first measurement information, network information, such as cloud network information.
  • the storage node 45 may be a server including a Configuration Management Database (CMDB), or a centralized or distributed server cluster composed of multiple servers, or a chip circuit, or a VM, and Or containers, etc., this application does not limit this.
  • CMDB Configuration Management Database
  • the control node 41, the analysis node 42, and the storage node 45 may be set on the same server or the same chip circuit, which is not limited in this application.
  • the control node may construct a measurement message
  • the first measurement node may also construct a measurement message.
  • the control node is used to obtain the measurement task and the first identifier
  • the measurement task includes: header information of the service message, the first identifier is used to identify that the measurement message is a message used for network measurement; the control node
  • the first proxy node sends the message header information and the first identifier to all the first measuring nodes; the first measuring node generates a measurement message according to the message header information and the first identifier, and captures and parses the measurement message to
  • the first measurement information of the measurement message is obtained, and the first measurement information is sent to the analysis node; the analysis node is used to obtain the network measurement result according to the first measurement information.
  • this application provides a network measurement system, in which a control node can obtain header information and a first identifier of a service message, and construct a measurement message according to the header information and the first identifier, so as to construct a measurement message according to the constructed measurement message.
  • the article measures the network. Based on this, the control node does not need to measure the network through service messages, so that normal service execution is not affected, and the reliability of the entire communication network is improved.
  • the identifier in the service message is carried in the external message header, and the message capture rule issued by the control node carries the identifier, so that each measuring node can pass the Identifies and captures the business message.
  • the external header of the measurement message will be stripped off, causing such measurement nodes to be unable to capture the business message and thus unable to achieve network measurement .
  • the first identifier is carried after the message header information, that is, for any measuring node, the first identifier will not be stripped, so that any measuring node can capture the measurement message , And then can realize network measurement.
  • the control node For different business packets, their corresponding packet capture rules are different, which will cause the control node to issue a large number of packet capture rules, such as: based on Multi-Protocol Label Switching (MPLS)
  • MPLS Multi-Protocol Label Switching
  • the label (Label) of the virtual local network (Virtual Local Area Network, VLAN), the address of the IP header, the port based on the Transmission Control Protocol (TCP), the Vxlan Network Identifier (Vxlan Network Identifier, VNI), L2 layer, L3 layer, L4 layer and other packet capture rules, which cause the problem of excessive network overhead.
  • MPLS Multi-Protocol Label Switching
  • the network measurement system further includes: a second measurement node 46 and a second proxy node 47.
  • the first measurement node 43 and the second measurement node 46 are two measurement nodes on the path to be measured.
  • the first measurement node 43 and the second measurement node 46 may be the first node and the second measurement node on the path to be measured.
  • the intermediate node, or the first measuring node 43 and the second measuring node 46 may be the first node and the last node on the path to be measured.
  • the path to be measured may also include at least one intermediate node between the first measuring node 43 and the second measuring node 46.
  • the second measurement node 46 serves as the end node on the path to be measured. After obtaining the parsed measurement message to obtain the second measurement information, the measurement message may be discarded before entering the VM. As for the intermediate node, the measurement message may not be discarded.
  • the other functions of the intermediate node are similar to those of the second measuring node 46. Therefore, the functions of the intermediate node can refer to the functions of the second measuring node 46, which will not be described in detail below.
  • FIG. 9 is a schematic diagram of a network measurement system provided by another embodiment of the application.
  • the system includes: a control node 41, an analysis node 42, a first measurement node 43, and a first agent.
  • the second measuring node 46 corresponds to the second proxy node 47.
  • each server includes an agent and a virtual switch.
  • each virtual switch (that is, a measurement node) corresponds to an agent (that is, an agent node).
  • the second proxy node 47 and the first proxy node 44 may be the same proxy node, for example, both are the same SDN controller.
  • the second agent node 47 and the first agent node 44 are not the same agent node, for example, the second agent node 47 and the first agent node 44 are two agents on different servers.
  • the control node 41 can issue at least one packet capture rule to the second measurement node 46 through the second proxy node 47.
  • message capture rules please refer to the content of the foregoing embodiment, which will not be repeated here.
  • the first measuring node 43 After the first measuring node 43 obtains the measurement message from the control node 41, it can inject the measurement message into the forwarding plane, and send the measurement message to the second measuring node 46 through the forwarding plane. If the second measuring node 46 has an intermediate node, the first measuring node 43 forwards the measurement message to the second measuring node 46 through the intermediate node.
  • the second measurement node captures the measurement message according to the obtained message capture rule, and parses the measurement message to obtain the second measurement information of the measurement message, and sends the second measurement information to the analysis node 42.
  • the second measurement information may include at least one of the following: a measurement message, the time stamp information of the measurement message, the identification of the node that grabs the measurement message, that is, the identification of the second measurement node, in the measurement task
  • the number of sent measurement packets is the time when the second measurement node grabs the measurement message.
  • the analysis node 42 obtains the first quantity and the second quantity, if it is determined that the second quantity is less than the first quantity, it is determined that a packet loss situation has occurred on the second measurement node, and the packet loss situation is a network measurement. result.
  • the storage node 45 may also be used to store the second measurement information.
  • the second measurement node 46 may also construct a response message corresponding to the request message, and send the response message to the first measurement node 43.
  • this application provides a network measurement system, in which a control node can obtain header information and a first identifier of a service message, and construct a measurement message according to the header information and the first identifier, so as to construct a measurement message according to the constructed measurement message.
  • the article measures the network. Based on this, the control node does not need to measure the network through service messages, so that normal service execution is not affected, and the reliability of the entire communication network is improved.
  • the identifier in the service message is carried in the external message header, and the message capture rule issued by the control node carries the identifier, so that each measuring node can pass the Identifies and captures the business message.
  • the external header of the measurement message will be stripped off, causing such measurement nodes to be unable to capture the business message and thus unable to achieve network measurement .
  • the first identifier is carried after the message header information, that is, for any measuring node, the first identifier will not be stripped, so that any measuring node can capture the measurement message , And then can realize network measurement.
  • the corresponding packet capture rules for the measuring node are different, which will cause the control node to issue a large number of packet capture rules, which will cause the problem of excessive network overhead.
  • the control node only needs to construct the measurement message, and the control node only needs to issue at least one of L2 layer message capture rules, L3 layer message capture rules, and L4 message capture rules One item is enough, which can reduce network overhead.
  • the second measurement node may discard the measurement packet after obtaining the second measurement information through analysis, so as to avoid affecting normal services.
  • Fig. 10 is an interactive flowchart of a network measurement method provided by an embodiment of the application.
  • the network elements involved in the method include: a control node, an analysis node, a first measurement node, and a first proxy node. Corresponding to the proxy node. As shown in Figure 10, the method includes the following steps:
  • Step S1001 The control node obtains a measurement task and a first identifier, the measurement task includes: message header information of the service message, and generates a measurement message according to the message header information and the first identifier.
  • the first identifier is used to identify that the measurement message is a message used for network measurement.
  • Step S1002 The control node delivers a measurement message to the first agent node.
  • Step S1003 The first proxy node delivers a measurement message to the first measuring node.
  • Step S1004 The first measurement node grabs and parses the measurement message to obtain the first measurement information of the measurement message.
  • Step S1005 the first measurement node sends the first measurement information to the analysis node.
  • the first measurement information includes at least one of the following: a measurement message, the time when the first measurement node grabs the measurement message, the identifier of the first measurement node, and the number of measurement messages issued in the measurement task.
  • Step S1006 The analysis node obtains a network measurement result according to the first measurement information.
  • the above method further involves the following network elements: a second measuring node and a second proxy node, where the second measuring node corresponds to the second proxy node.
  • the above method further includes: the first measurement node sends a measurement message to the second measurement node; the second measurement node captures and parses the measurement message to obtain the second measurement information of the measurement message, and compares the second measurement message to the measurement message.
  • the measurement information is sent to the analysis node, and the second measurement information includes at least one of the following: a measurement message, the time at which the second measurement node grabs the measurement message, the identifier of the second measurement node, and the measurement message in the measurement task
  • the analysis node obtaining the network measurement result according to the first measurement information includes: obtaining the network measurement result according to the first measurement information and the second measurement information.
  • the second measurement node is the end node on the path to be measured.
  • the above method further includes: the second measurement node discards the measurement message after obtaining the second measurement information.
  • the measurement message is a measurement message on the forwarding plane of the cloud network
  • the measurement message includes an external message header and an internal message header
  • the external message header includes: the tunnel involved in the tunnel encapsulation method of the cloud network Header
  • the internal message header includes: message header information and a first identifier.
  • the measurement message is a measurement message on the control plane of the cloud network
  • the measurement message includes an internal message header
  • the internal message header includes: message header information and a first identifier
  • the measurement message includes the message header information and the first identifier.
  • the first identifier is located after the message header information.
  • the measurement message further includes: a second identifier.
  • the second identifier is used to identify the measurement task, and the second identifier is located after the message header information.
  • the above method further includes: the control node issues at least one packet capture rule to the first measuring node through the first proxy node, and the packet capture rule includes a first identifier, so that the first measuring node passes the first identifier Capture measurement messages.
  • At least one packet capture rule in the Ethernet includes at least one of the following: a packet capture rule corresponding to the data link layer, a delivery rule corresponding to the network layer, and a delivery rule corresponding to the transport layer.
  • the network measurement method provided by the present application can be executed by each node in the above-mentioned network measurement system, and its content and effects can be referred to the system embodiment part, which will not be repeated here.
  • FIG. 11 is an interaction flowchart of a network measurement method provided by another embodiment of the application.
  • the network elements involved in the method include: a control node, an analysis node, a first measurement node, and a first proxy node.
  • One proxy node corresponds.
  • the method includes the following steps:
  • Step S1101 The control node obtains the measurement task and the first identifier, and the measurement task includes: message header information of the service message.
  • the first identifier is used to identify that the measurement message is a message used for network measurement.
  • Step S1102 The control node sends the message header information and the first identifier to the first proxy node.
  • Step S1103 The first proxy node sends the message header information and the first identifier to the first measuring node.
  • Step S1104 The first measurement node generates a measurement message according to the message header information and the first identifier, and captures and analyzes the measurement message to obtain the first measurement information of the measurement message.
  • Step S1105 The first measurement node sends the first measurement information to the analysis node.
  • the first measurement information includes at least one of the following: a measurement message, the time when the first measurement node grabs the measurement message, the identifier of the first measurement node, and the number of measurement messages issued in the measurement task.
  • Step S1106 The analysis node obtains a network measurement result according to the first measurement information.
  • the above method further involves the following network elements: a second measuring node and a second proxy node, where the second measuring node corresponds to the second proxy node.
  • the above method further includes: the first measurement node sends a measurement message to the second measurement node; the second measurement node captures and parses the measurement message to obtain the second measurement information of the measurement message, and compares the second measurement message to the measurement message.
  • the measurement information is sent to the analysis node, and the second measurement information includes at least one of the following: a measurement message, the time at which the second measurement node grabs the measurement message, the identifier of the second measurement node, and the measurement message in the measurement task
  • the analysis node obtaining the network measurement result according to the first measurement information includes: obtaining the network measurement result according to the first measurement information and the second measurement information.
  • the second measurement node is the end node on the path to be measured.
  • the above method further includes: the second measurement node discards the measurement message after obtaining the second measurement information.
  • the measurement message is a measurement message on the forwarding plane of the cloud network
  • the measurement message includes an external message header and an internal message header
  • the external message header includes: the tunnel involved in the tunnel encapsulation method of the cloud network Header
  • the internal message header includes: message header information and a first identifier.
  • the measurement message is a measurement message on the control plane of the cloud network
  • the measurement message includes an internal message header
  • the internal message header includes: message header information and a first identifier
  • the measurement message includes the message header information and the first identifier.
  • the first identifier is located after the message header information.
  • the measurement message further includes: a second identifier.
  • the second identifier is used to identify the measurement task, and the second identifier is located after the message header information.
  • the above method further includes: the control node issues at least one packet capture rule to the first measuring node through the first proxy node, and the packet capture rule includes a first identifier, so that the first measuring node passes the first identifier Capture measurement messages.
  • At least one packet capture rule in the Ethernet includes at least one of the following: a packet capture rule corresponding to the data link layer, a delivery rule corresponding to the network layer, and a delivery rule corresponding to the transport layer.
  • the network measurement method provided by the present application can be executed by each node in the above-mentioned network measurement system, and its content and effects can be referred to the system embodiment part, which will not be repeated here.
  • FIG. 12 is a schematic diagram of a control node provided by an embodiment of the application. As shown in FIG. 12, the control node includes:
  • the obtaining module 1201 is configured to obtain a measurement task and a first identifier, and the measurement task includes: message header information of a service message.
  • the generating module 1202 is configured to generate a measurement message according to the message header information and the first identifier.
  • the first delivery module 1203 is configured to deliver a measurement message to the first measurement node through the first proxy node, and the first identifier is used to identify that the measurement message is a message used for network measurement.
  • control node further includes: a second issuing module 1204, configured to issue at least one packet capture rule to the first measuring node through the first proxy node, and the packet capture rule includes the first identifier so that The first measurement node captures the measurement message through the first identifier.
  • a second issuing module 1204 configured to issue at least one packet capture rule to the first measuring node through the first proxy node, and the packet capture rule includes the first identifier so that The first measurement node captures the measurement message through the first identifier.
  • control node provided in the present application is the control node in the above-mentioned network measurement system, and its content and effects can be referred to the system embodiment part, which will not be repeated here.
  • FIG. 13 is a schematic diagram of a first measurement node provided by an embodiment of this application. As shown in FIG. 13, the first measurement node includes:
  • the processing module 1301 is used to capture and parse the measurement message to obtain the first measurement information of the measurement message.
  • the measurement message is generated according to the header information of the service message and the first identifier, and the first identifier is used for
  • the identification measurement message is a message used for network measurement.
  • the first measurement information includes at least one of the following: a measurement message, the time when the first measurement node grabs the measurement message, the identification of the first measurement node, and the measurement task The number of sent measurement packets in the middle.
  • the sending module 1302 is used to send the first measurement information to the analysis node.
  • the first measurement node further includes:
  • the receiving module 1303 is used for receiving at least one message capture rule issued by the control node through the first agent node before the processing module 1301 captures and parses the measurement message, and the message capture rule includes a first identifier.
  • the grabbing module 1304 is used to grab the measurement message through the first identifier.
  • the first measurement node provided in this application is the first measurement node in the above-mentioned network measurement system, and its content and effects can be referred to the system embodiment part, which will not be repeated here.
  • FIG. 14 is a schematic diagram of a control node provided by another embodiment of this application. As shown in FIG. 14, the control node includes:
  • the obtaining module 1401 is configured to obtain a measurement task and a first identifier, and the measurement task includes: message header information of a service message.
  • the sending module 1402 is configured to send the message header information and the first identifier to the first measuring node through the first proxy node, so that the first proxy node generates a measurement message according to the message header information and the first identifier, and the first identifier It is used to identify that the measurement message is a message used for network measurement.
  • control node provided in the present application is the control node in the above-mentioned network measurement system, and its content and effects can be referred to the system embodiment part, which will not be repeated here.
  • FIG. 15 is a schematic diagram of a first measurement node according to another embodiment of this application. As shown in FIG. 15, the first measurement node includes:
  • the receiving module 1501 is configured to receive the message header information and the first identifier of the service message sent by the control node through the first proxy node.
  • the generating module 1502 is configured to generate a measurement message according to the message header information and a first identifier, where the first identifier is used to identify that the measurement message is a message used for network measurement.
  • the processing module 1503 is used to capture and parse the measurement message to obtain the first measurement information of the measurement message.
  • the sending module 1504 is configured to send the first measurement information to the analysis node.
  • the first measurement information includes at least one of the following: a measurement message, the time when the first measurement node grabs the measurement message, the identification of the first measurement node, and the The number of measurement packets issued in a measurement task.
  • the first measurement node provided in this application is the first measurement node in the above-mentioned network measurement system, and its content and effects can be referred to the system embodiment part, which will not be repeated here.
  • FIG. 16 is a schematic diagram of a second measurement node according to another embodiment of this application. As shown in FIG. 16, the second measurement node includes:
  • the receiving module 1601 is configured to receive a measurement message sent by the first measuring node.
  • the processing module 1602 is configured to capture and parse the measurement message to obtain second measurement information of the measurement message, where the second measurement information includes at least one of the following: the measurement message, the first 2. The time at which the measurement node grabs the measurement message, the identifier of the second measurement node, and the number of measurement messages issued in the measurement task.
  • the sending module 1603 is configured to send the second measurement information to the analysis node,
  • the second measurement node is the end node on the path to be measured, and the second measurement node further includes a discarding module 1604 for discarding the measurement after the processing module 1602 obtains the second measurement information. Message.
  • the second measurement node provided in the present application is the second measurement node in the above-mentioned network measurement system, and its content and effects can be referred to the system embodiment part, which will not be repeated here.
  • FIG. 17 is a schematic diagram of a control node provided by an embodiment of the application.
  • the control node includes: a memory 1701 and a processor 1702; the memory 1701 is used to store computer instructions; and the processor 1702 is used to run the memory
  • the computer instructions stored in 1701 implement the network measurement method performed by the above-mentioned control node.
  • the control node further includes a receiver 1703, which is used to implement data transmission between the control node and other nodes.
  • control node provided in the present application is the control node in the above-mentioned network measurement system, and its content and effects can be referred to the system embodiment part, which will not be repeated here.
  • FIG. 18 is a schematic diagram of a first measurement node according to an embodiment of the application.
  • the first measurement node includes: a memory 1801 and a processor 1802, where the memory 1801 is used to store computer instructions; and the processor 1802 is configured to run the computer instructions stored in the memory 1801 to implement the network measurement method executed by the first measurement node described above.
  • the first measurement node further includes: a receiver 1803, configured to implement data transmission between the first measurement node and other nodes.
  • the first measurement node provided in this application is the first measurement node in the above-mentioned network measurement system, and its content and effects can be referred to the system embodiment part, which will not be repeated here.
  • FIG. 19 is a schematic diagram of a second measurement node provided by an embodiment of the application.
  • the second measurement node includes: a memory 1901 and a processor 1902, where the memory 1901 is used to store computer instructions; and the processor 1902 is configured to run the computer instructions stored in the memory 1901 to implement the network measurement method executed by the second measurement node.
  • the second measurement node further includes: a receiver 1903, configured to implement data transmission between the second measurement node and other nodes.
  • the second measurement node provided in the present application is the second measurement node in the above-mentioned network measurement system, and its content and effects can be referred to the system embodiment part, which will not be repeated here.
  • the application also provides a chip, which is used to execute the above-mentioned network measurement method.
  • This method can be executed by the network element in the above-mentioned network measurement system, and the content and effect of the method can be referred to the system embodiment part, which will not be repeated here.
  • the present application also provides a storage medium, including: a readable storage medium and computer instructions, the computer instructions are stored in the readable storage medium; the computer instructions are used to implement the network measurement method described above, and its content and effects Please refer to the system embodiment part, which will not be repeated here.
  • the present application also provides a computer program product, which includes computer instructions (ie, computer programs) to implement the above-mentioned network measurement method.
  • computer instructions ie, computer programs

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供一种网络测量系统、方法、设备及存储介质,控制节点获取测量任务和第一标识,测量任务包括:业务报文的报文头信息,根据报文头信息和第一标识生成测量报文,并向第一测量节点下发测量报文;第一测量节点用于抓取和解析测量报文,以得到测量报文的第一测量信息,将第一测量信息发送至分析节点;分析节点根据第一测量信息得到网络测量结果。基于此,控制节点无需通过业务报文对网络进行测量,从而并不影响正常的业务执行,提高了整个通信网络的可靠性。

Description

网络测量系统、方法、设备及存储介质
本申请要求于2019年09月19日提交中国专利局、申请号为201910886165.6、申请名称为“网络测量系统、方法、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种网络测量系统、方法、设备及存储介质。
背景技术
目前存在数据中心网络以及云网络,云网络尤其受用户的青睐。该数据中心网络也被称为传统数据中心网络,云网络相对于传统数据中心网络,具有高度的虚拟化,这其中包括服务器、存储、网络、应用等虚拟化,而传统数据中心网络并不涉及虚拟化技术。图1为现有技术提供的一种云网络的业务逻辑示意图,如图1所示,为了能够突破虚拟局域网(Virtual Local Area Network,VLAN)的4K数目限制,让云平台可以向更多租户提供服务,通常会使用虚拟扩展局域网(Virtual Extensible Lan,Vxlan)、使用通用路由封装的网络虚拟化(Network Virtualization using Generic Routing Encapsulation,Nvgre)、无状态传输隧道协议(Stateless Transport Tunneling Protocol,STT)、通用网络虚拟化封装(Generic Network Virtualization Encapsulation,Geneve)等隧道封装技术,将多个物理网络设备12构成的网络作为下层物理网络(underlay network),并在其之上构建一套上层虚拟网络(overlay network)。
云网络中涉及众多网络流量,如虚拟私有云(Virtual Private Cloud,VPC)内部的层2/层3(L2/L3)流量、VPC之间的东西向流量、弹性互联网协议(Elastic internet protocol,EIP)流量、负载均衡(Load Balancing,LB)的公网访问流量、源网络地址转换(Source Network Address Translation,SNAT)的公网访问流量、VPN流量、专线流量等,这将形成多种业务报文。其中,业务报文通过虚拟交换机或者物理交换机在各个服务器之间传输。众所周知,云网络或者数据中心网络非常容易出现网络故障、网络延时等问题,为了定位这些问题,网络测量被提出。现有技术中,通过在业务报文中添加标识,服务器、交换机获取抓包规则,该规则包括业务报文中所添加的标识,服务器、交换机根据该抓包规则进行抓包,并得到该业务报文的测量信息,如该业务报文的抓取时间、抓取地点,并将测量信息反馈给分析节点,分析节点对各个服务器、交换机发送的测量信息进行分析,以得到测量结果,根据测量结果定位网络故障或者确定网络延时等。然而,由于要在业务报文中添加标识,从而影响了业务的正常执行。
发明内容
本申请提供一种网络测量系统、方法、设备及存储介质。基于此,控制节点无需通过业务报文对网络进行测量,从而并不影响正常的业务执行,提高了整个通信网络 的可靠性。
第一方面,本申请提供一种网络测量系统,包括:控制节点、分析节点、第一测量节点和第一代理节点。控制节点用于获取测量任务和第一标识,测量任务包括:业务报文的报文头信息,根据报文头信息和第一标识生成测量报文,通过第一代理节点向第一测量节点下发测量报文,第一标识用于标识测量报文是用于进行网络测量的报文。第一测量节点用于抓取和解析测量报文,以得到测量报文的第一测量信息,将第一测量信息发送至分析节点,第一测量信息包括以下至少一项:测量报文、第一测量节点抓取测量报文的时间、第一测量节点的标识、在测量任务中测量报文的下发数量。分析节点用于根据第一测量信息得到网络测量结果。从而使得控制节点无需通过业务报文对网络进行测量,从而并不影响正常的业务执行,提高了整个通信网络的可靠性。
可选的,该系统还包括:第二测量节点。第一测量节点还用于向第二测量节点发送测量报文。第二测量节点用于抓取和解析测量报文,以得到测量报文的第二测量信息,并将第二测量信息发送给分析节点,第二测量信息包括以下至少一项:测量报文、第二测量节点抓取测量报文的时间、第二测量节点的标识、在测量任务中测量报文的下发数量。相应的,分析节点具体用于根据第一测量信息和第二测量信息得到网络测量结果。可选的,第二测量节点为待测量路径上的末节点,第二测量节点还用于在得到第二测量信息之后,丢弃测量报文,从而避免对正常业务产生影响。
可选的,若测量报文是云网络的转发面上的测量报文,则测量报文包括外部报文头和内部报文头,外部报文头包括:云网络的隧道封装方式涉及的隧道头部,内部报文头包括:报文头信息和第一标识。
可选的,若测量报文是云网络的控制面上的测量报文,则测量报文包括内部报文头,内部报文头包括:报文头信息和第一标识。
可选的,若测量报文是数据中心网络上的测量报文,则测量报文包括报文头信息和第一标识。
可选的,第一标识位于报文头信息之后。由于第一标识携带在报文头信息之后,即对于任一个测量节点来讲,该第一标识都不会被剥离,从而使得任何测量节点都可以抓取到测量报文,进而可以实现网络测量。
可选的,测量报文还包括:第二标识。第二标识用于标识测量任务。
可选的,第二标识位于报文头信息之后。
可选的,测量报文还包括:第三标识,第三标识用于标识测量报文是否包括业务报文的数据部分。
可选的,控制节点还用于通过第一代理节点向第一测量节点下发至少一条报文抓取规则,报文抓取规则包括第一标识,以便第一测量节点通过第一标识抓取测量报文。
可选的,在以太网中至少一条报文抓取规则包括以下至少一项:数据链路层对应的报文抓取规则、网络层对应的下发规则、传输层对应的下发规则。即在本申请中,控制节点只需构造测量报文即可,控制节点只需要下发L2层的报文抓取规则、L3层的报文抓取规则和L4报文抓取规则中的至少一项即可,进而可以降低网络开销。
可选的,第一标识具有有效期。
可选的,第一测量节点具体用于将第一测量信息发送给对应的第一代理节点,以 使第一代理节点将第一测量信息发送给分析节点。或者,第一测量节点具体用于直接将第一测量信息发送给分析节点。
可选的,针对云网络,测量任务还包括以下至少一项:租户信息、云网络的下层物理网络的隧道封装方式、租户所属的隔离域的标识、在测量任务中下发的测量报文的数量、在测量任务中测量报文的发送速率。针对数据中心网络,测量任务还包括以下至少一项:在测量任务中下发的测量报文的数量、在测量任务中测量报文的发送速率。
可选的,报文头信息依次包括以下至少一项:业务报文在数据链路层的信息、业务报文在网络层的信息、业务报文在传输层的信息。
可选的,上述系统还包括:存储节点,用于存储以下至少一项:测量任务、第一测量信息。
可选的,第一测量节点还用于在测量报文中添加以下至少一项:第一测量节点抓取测量报文的时间信息、第一测量节点的标识。
下面将介绍网络测量系统、网络测量方法、装置、设备、存储介质及计算机程序产品,其效果和参考上述网络测量系统的效果,下面对此不再赘述。
第二方面,本申请提供一种网络测量系统,包括:控制节点、分析节点、第一测量节点和第一代理节点。控制节点用于获取测量任务和第一标识,测量任务包括:业务报文的报文头信息,第一标识用于标识测量报文是用于进行网络测量的报文。控制节点通过第一代理节点将报文头信息和第一标识发送给所第一测量节点。第一测量节点根据报文头信息和第一标识生成测量报文,并抓取和解析测量报文,以得到测量报文的第一测量信息,将第一测量信息发送至分析节点,第一测量信息包括以下至少一项:测量报文、第一测量节点抓取测量报文的时间、第一测量节点的标识、在测量任务中测量报文的下发数量。分析节点用于根据第一测量信息得到网络测量结果。
第三方面,本申请提供一种网络测量方法,包括:控制节点获取测量任务和第一标识,测量任务包括:业务报文的报文头信息。控制节点根据报文头信息和第一标识生成测量报文。控制节点通过第一代理节点向第一测量节点下发测量报文,第一标识用于标识测量报文是用于进行网络测量的报文。
可选的,该方法还包括:控制节点通过第一代理节点向第一测量节点下发至少一条报文抓取规则,报文抓取规则包括第一标识,以便第一测量节点通过第一标识抓取测量报文。
第四方面,本申请提供一种网络测量方法,包括:第一测量节点抓取和解析测量报文,以得到测量报文的第一测量信息,测量报文是根据业务报文的报文头信息和第一标识生成的,第一标识用于标识测量报文是用于进行网络测量的报文,第一测量信息包括以下至少一项:测量报文、第一测量节点抓取测量报文的时间、第一测量节点的标识、在测量任务中测量报文的下发数量。第一测量节点将第一测量信息发送至分析节点。
可选的,第一测量节点抓取和解析测量报文之前,还包括:第一测量节点接收控制节点通过第一代理节点下发的至少一条报文抓取规则,报文抓取规则包括第一标识。第一测量节点通过第一标识抓取测量报文。
第五方面,本申请提供一种网络测量方法,包括:控制节点获取测量任务和第一标识,测量任务包括:业务报文的报文头信息。控制节点通过第一代理节点将报文头信息和第一标识发送给第一测量节点,以使第一代理节点根据报文头信息和第一标识生成测量报文,第一标识用于标识测量报文是用于进行网络测量的报文。
第六方面,本申请提供一种网络测量方法,包括:第一测量节点接收控制节点通过第一代理节点发送的业务报文的报文头信息和第一标识。第一测量节点根据报文头信息和第一标识生成测量报文,第一标识用于标识测量报文是用于进行网络测量的报文。第一测量节点抓取和解析测量报文,以得到测量报文的第一测量信息。第一测量节点将第一测量信息发送至分析节点,第一测量信息包括以下至少一项:测量报文、第一测量节点抓取测量报文的时间、第一测量节点的标识、在测量任务中测量报文的下发数量。
第七方面,本申请提供一种控制节点,包括:
获取模块,用于获取测量任务和第一标识,测量任务包括:业务报文的报文头信息。
生成模块,用于根据报文头信息和第一标识生成测量报文。
第一下发模块,用于通过第一代理节点向第一测量节点下发测量报文,第一标识用于标识测量报文是用于进行网络测量的报文。
第八方面,该控制节点还包括:第二下发模块,用于通过第一代理节点向第一测量节点下发至少一条报文抓取规则,报文抓取规则包括第一标识,以便第一测量节点通过第一标识抓取测量报文。
第九方面,本申请提供一种测量节点,该测量节点为第一测量节点,包括:
处理模块,用于抓取和解析测量报文,以得到测量报文的第一测量信息,测量报文是根据业务报文的报文头信息和第一标识生成的,第一标识用于标识测量报文是用于进行网络测量的报文,第一测量信息包括以下至少一项:测量报文、第一测量节点抓取测量报文的时间、第一测量节点的标识、在测量任务中测量报文的下发数量。
发送模块,用于将第一测量信息发送至分析节点。
可选的,该第一测量节点还包括:
接收模块,用于在处理模块抓取和解析测量报文之前,接收控制节点通过第一代理节点下发的至少一条报文抓取规则,报文抓取规则包括第一标识。
抓取模块,用于通过第一标识抓取测量报文。
第十方面,本申请提供一种控制节点,包括:
获取模块,用于获取测量任务和第一标识,测量任务包括:业务报文的报文头信息。
发送模块,用于通过第一代理节点将报文头信息和第一标识发送给第一测量节点,以使第一代理节点根据报文头信息和第一标识生成测量报文,第一标识用于标识测量报文是用于进行网络测量的报文。
第十一方面,本申请提供一种测量节点,测量节点为第一测量节点,包括:
接收模块,用于接收控制节点通过第一代理节点发送的业务报文的报文头信息和第一标识。
生成模块,用于根据报文头信息和第一标识生成测量报文,第一标识用于标识测量报文是用于进行网络测量的报文。
处理模块,用于抓取和解析测量报文,以得到测量报文的第一测量信息。
发送模块,用于将第一测量信息发送至分析节点,第一测量信息包括以下至少一项:测量报文、第一测量节点抓取测量报文的时间、第一测量节点的标识、在测量任务中测量报文的下发数量。
第十二方面,本申请提供一种控制节点,包括:存储器和处理器。存储器用于存储计算机指令。处理器用于运行存储器存储的计算机指令实现上述控制节点所执行的网络测量方法。
第十三方面,一种测量节点,包括:存储器和处理器。存储器用于存储计算机指令。处理器用于运行存储器存储的计算机指令实现上述第一测量节点所执行的网络测量方法。
第十四方面,本申请提供一种芯片,该芯片用于执行上述的网络测量方法。
第十五方面,本申请提供一种存储介质,包括:可读存储介质和计算机指令,所述计算机指令存储在所述可读存储介质中;所述计算机指令用于实现上述的网络测量方法。
第十六方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机指令(即计算机程序),以实现上述的网络测量方法。
综上,本申请提供一种网络测量系统、方法、设备及存储介质,其中控制节点可以获取业务报文的报文头信息以及第一标识,根据报文头信息和第一标识构造测量报文。或者,控制节点获取业务报文的报文头信息以及第一标识,并将该报文头信息以及第一标识发送给第一测量节点,第一测量节点根据报文头信息和第一标识构造测量报文,最终系统根据构造的测量报文对网络进行测量。基于此,控制节点无需通过业务报文对网络进行测量,从而并不影响正常的业务执行,提高了整个通信网络的可靠性。
附图说明
图1为现有技术提供的一种云网络的业务逻辑示意图;
图2为本申请一实施例提供的数据中心网络的示意图;
图3为本申请一实施例提供的云网络的示意图;
图4为本申请一实施例提供的一种网络测量系统的示意图;
图5为本申请一实施例提供的转发面上的测量报文的示意图;
图6为本申请一实施例提供的控制面上的测量报文的示意图;
图7为本申请一实施例提供的数据中心网络上的测量报文的示意图;
图8为本申请另一实施例提供的一种网络测量系统的示意图;
图9为本申请再一实施例提供的一种网络测量系统的示意图;
图10为本申请一实施例提供的网络测量方法的交互流程图;
图11为本申请另一实施例提供的网络测量方法的交互流程图;
图12为本申请一实施例提供的一种控制节点的示意图;
图13为本申请一实施例提供的一种第一测量节点的示意图;
图14为本申请另一实施例提供的一种控制节点的示意图;
图15为本申请另一实施例提供的一种第一测量节点的示意图;
图16为本申请另一实施例提供的一种第二测量节点的示意图;
图17为本申请一实施例提供的一种控制节点的示意图;
图18为本申请一实施例提供的一种第一测量节点的示意图;
图19为本申请一实施例提供的一种第二测量节点的示意图。
具体实施方式
目前存在数据中心网络以及云网络。示例性的,图2为本申请一实施例提供的数据中心网络的示意图,如图2所示,数据中心网络包括:控制节点21、分析节点22、至少两个服务器(包括作为待测量路径中首节点的服务器23和作为待测量路径中末节点的服务器24)、至少一个交换机25(作为待测量路径中的中间节点)和软件定义网络(Software Defined Network,SDN)控制器26。
可选的,该控制节点21是一台服务器,或者是多台服务器构成的集中式或分布式服务器集群,又或者是一个芯片电路,本申请对此不做限制。
可选的,分析节点22是一台服务器,或者是多台服务器构成的集中式或分布式服务器集群,又或者是一个芯片电路,本申请对此不做限制。
其中,控制节点21和分析节点22可以设置在同一台服务器或者同一个芯片电路上,本申请对此不做限制。
可选的,数据中心网络包括至少一个SDN控制器26,至少一个SDN控制器26与服务器以及交换机具有对应关系,例如:如图2所示,所有的服务器和交换机与一个SDN控制器对应。
随着数据中心网络的大规模云化部署,云网络的使用频率越来越高。示例性的,如图1所示的数据中心网络的网络层次被分为下层物理网络和上层虚拟网络。其中,下层物理网络主要由物理网络设备构成,虚拟网络主要由虚拟设备构成(如图1所示的各虚拟交换机、虚拟路由器11、虚拟机(Virtual Machine,VM)等)。为了充分利用资源,租户的业务均在上层虚拟网络中运行,通过不同的虚拟网络实现租户资源隔离。示例性的,图3为本申请一实施例提供的云网络的示意图,如图3所示,云网络包括:控制节点31、分析节点32、多台服务器33,每台服务器33包括:代理(Agent)331和虚拟交换机332。
可选的,该控制节点31是一台服务器,或者是多台服务器构成的集中式或分布式服务器集群,又或者是一个芯片电路,又或者是VM,又或者是容器等,本申请对此不做限制。
可选的,分析节点32是一台服务器,或者是多台服务器构成的集中式或分布式服务器集群,又或者是一个芯片电路,又或者是VM,又或者是容器等,本申请对此不做限制。
其中,控制节点31和分析节点32可以设置在同一台服务器或者同一个芯片电路上,本申请对此不做限制。
可选的,代理331为服务器33上运行的一个代理进程。
可选的,虚拟交换机332可以设置在服务器33所包括的VM上,也可以不设置在VM上,本申请对此不做限制。
需要说明的是,本申请提供的技术方案适用但不限于上述的数据中心网络和云网络。为了统一起见,本申请下面将提供的控制节点可以是控制节点21或者控制节点31,分析节点可以是分析节点22或者分析节点33;测量节点可以是服务器23、服务器24、交换机25、服务器33或者服务器33中的虚拟交换机332,代理节点可以是SDN控制器26或者代理331。
如上所述,由于现有的网络测量方式,需要在业务报文中添加标识,从而影响了业务的正常执行。为了解决该技术问题,本申请提供一种网络测量系统、方法、设备及存储介质。
图4为本申请一实施例提供的一种网络测量系统的示意图,如图4所示,该系统包括:控制节点41、分析节点42、第一测量节点43和第一代理节点44。其中第一测量节点43和第一代理节点44对应。示例性的,在上层虚拟网络中,每个服务器包括:agent以及虚拟交换机,这种情况下,每个虚拟交换机(即测量节点)对应一个agent(即代理节点)。第一测量节点43可以是待测量路径上的任一测量节点,例如可以是待测量路径上的第一个测量节点。
其中,管理员可以通过网络(web)页面或者应用程序编程接口(Application Programming Interface,API)向控制节点41下发测量任务,该测量任务可以包括:业务报文的报文头信息。可选的,业务报文的报文头信息依次包括以下至少一项:业务报文在数据链路层的信息(即L2层的信息)、业务报文在网络层的信息(即L3层的信息)、业务报文在传输层的信息(即L4层的信息)。例如:报文头信息包括业务报文的L2层的信息,或者,包括业务报文的L2层的信息和L3层的信息,或者,包括业务报文的L2层的信息、L3层的信息和L4层的信息。其中,L2层的信息可以包括:源媒体访问控制地址(Media Access Control,MAC)地址、目的MAC地址、以太网类型字段(ethertype)、Vlan信息等。L3层的信息可以包括:源互联网协议地址(Internet Protocol,IP)地址、目的IP地址、协议号、差分服务代码点(Differentiated Services Code Point,DSCP)信息等。L4层的信息可以包括:TCP/用户数据报协议(User Datagram Protocol,UDP)源端口号、TCP/UDP目的端口号等。
可选的,针对云网络,测量任务还包括以下至少一项:租户信息、云网络的下层物理网络的隧道封装方式、租户所属的隔离域的标识、在所述测量任务中下发的测量报文的数量、在所述测量任务中测量报文的发送速率。
可选的,针对数据中心网络,测量任务还包括以下至少一项:在所述测量任务中下发的测量报文的数量、在所述测量任务中测量报文的发送速率。
可选的,租户信息包括:租户的标识(Identity,ID)。
可选的,云网络的下层物理网络所使用的隧道封装方式可以是Vxlan、nvgre、STT、Geneve等。
其中在每次测量任务中控制节点可以下发一个或多个测量报文。可选的,控制节点可以预先配置好需要在每次测量任务中下发的测量报文的数量,以及,测量报文的发送速率。所谓测量报文的发送速率指的是发送测量报文的速率。
本申请的主旨思想是控制节点通过获取业务报文的报文头信息,来构造测量报文,而无需使用业务报文对网络进行测量。
具体的,控制节点41除了用于获取上述测量任务之外,还获取第一标识,该第一标识用于标识测量报文是用于进行网络测量的报文,示例性地,该第一标识也可以被称为测量协议标识(Telemetry Protocol Identifier,TPID)。该第一标识具有有效期,该有效期可以是一个月或是一个季度等,该第一标识的长度可以是16比特,本申请对此不做限制。
控制节点41在获取到报文头信息和第一标识之后,根据测量任务包括的报文头信息和第一标识生成测量报文,即构造测量报文。
其中,对于云网络,若控制节点41需要构造转发面上的测量报文,则控制节点41只需要构造内部报文头即可,其中,云网络的转发面是控制节点和测量节点之间对测量报文转发处理的数据平面,该转发面也可以被称为数据面。该内部报文头包括:上述业务报文的报文头信息和第一标识。构造好的测量报文在待测量路径的传输过程中,其他的测量节点会为该测量报文封装上外部报文头,该外部报文头包括:云网络的隧道封装方式涉及的隧道头部,以Vxlan涉及的隧道头部为例,该隧道头部包括:VXLAN网络标识(VXLAN Network Identifier,VNI),只有在同一个VXLAN上的虚拟机之间才能相互通信。可选的,内部报文头还包括:第二标识,第二标识用于标识所述测量任务,即第二标识是一个单次测量标识。该第二标识可以是一个令牌(Token)。该第二标识可以是至少8比特的随机值。在各次测量任务中,若第一标识一直有效,则各次测量任务涉及的第一标识是相同的,但是各次测量任务涉及的第二标识不同。可选的,若云网络采用的隧道封装方式为Vxlan,则外部报文头还包括:以太网头部、IP头部、UDP头部等。
对于云网络,若控制节点41需要构造控制面上的测量报文,则控制节点41也只需要构造内部报文头即可,其中,云网络的控制面是控制节点与测量节点之间发送控制信令的网络平面。该内部报文头包括:上述业务报文的报文头信息和第一标识。可选的,内部报文头还包括:上述第二标识。
对于数据中心网络上的测量报文,则测量报文包括报文头信息和第一标识。可选的,内部报文头还包括:上述第二标识。
可选的,控制节点41将第一标识和第二标识设置在上述报文头信息之后。例如:若预构造L2层的测量报文,则将第一标识和第二标识设置在L2层的信息之后,第一标识与L2层的信息相邻。若预构造L3层的测量报文,则将第一标识和第二标识设置在L3层的信息之后,第一标识与L3层的信息相邻。若预构造L4层的测量报文,则将第一标识和第二标识设置在L4层的信息之后,第一标识与L4层的信息相邻。
可选的,控制节点41构造的测量报文中还包括:第三标识,该第三标识用于标识该测量报文是否包括上述业务报文的数据部分。例如:当第三标识是0时,表示该测量报文不包括上述业务报文的数据部分,当第三标识是1时,表示该测量报文包括上 述业务报文的数据部分。可选的,该第三标识的长度可以是4比特,业务报文的数据部分可以是部分Internet控制报文协议(Internet Control Message Protocol,ICMP)信息以及IP协议头(IP Protocol Header)等。
可选的,当上述第三标识表示该测量报文包括上述业务报文的数据部分,则控制节点41构造的测量报文中还包括:上述业务报文的数据部分。
示例性的,图5为本申请一实施例提供的转发面上的测量报文的示意图,如图5所示,该测量报文包括外部报文头和内部报文头,其中外部报文头包括:以太网头部、IP头部、UDP头部、隧道封装方式涉及的隧道头部。内部报文头包括:L2层的信息、L3层的信息、L4层的信息、测量标准头,该测量标准头包括:第一标识、第二标识和第三标识。且第一标识与L4层的信息相邻。当该第三标识取值为1时,内部报文头还包括业务数据的数据部分。此外,测量标准头还包括:预留字段、长度字段和类型、长度、值(Type Length Value,TLV)字段,该长度字段用于表示测量报文的长度。
示例性的,图6为本申请一实施例提供的控制面上的测量报文的示意图,如图6所示,该测量报文包括内部报文头,内部报文头包括:L2层的信息、L3层的信息、L4层的信息、测量标准头,该测量标准头包括:第一标识、第二标识和第三标识。且第一标识与L4层的信息相邻。当该第三标识取值为1时,内部报文头还包括业务数据的数据部分。此外,测量标准头还包括:预留字段、长度字段和TLV字段,该长度字段用于表示测量报文的长度。
示例性的,图7为本申请一实施例提供的数据中心网络上的测量报文的示意图,如图7所示,该测量报文包括:L2层的信息、L3层的信息、L4层的信息、测量标准头,该测量标准头包括:第一标识、第二标识和第三标识。且第一标识与L4层的信息相邻。当该第三标识取值为1时,内部报文头还包括业务数据的数据部分。此外,测量标准头还包括:预留字段、长度字段和TLV字段,该长度字段用于表示测量报文的长度。
可选的,控制节点41可以获取当前网络信息,结合上述的测量任务可以确定待测量路径,或者,确定第一测量节点和第一代理节点。例如:对于云网络,控制节点41可以获取当前云网络信息,结合上述的测量任务可以确定待测量路径或者确定第一测量节点和第一代理节点。该云网路信息包括以下至少一项:租户计算实例的标识、网络的对象标识、虚拟端口、虚拟子网、虚拟路由器等信息。或者,管理员可以通过网络(web)页面或者API向控制节点41下发待测量路径,或者,第一测量节点的标识和第一代理节点标识。本申请实施例对此不做限制。需要说明的是,待测量路径包括至少两个测量节点,如首节点和末节点。当然系统也可以通过从一个测量节点获取测量信息,以对网络进行测量,这时控制节点41根据当前网络信息,结合上述的测量任务可以确定该测量节点,以及,该测量节点对应的代理节点。
控制节点41在生成测量报文之后,通过第一代理节点44向第一测量节点43下发测量报文。
在第一测量节点43抓取测量报文之前,控制节点41可以通过第一代理节点44向第一测量节点43下发至少一条报文抓取规则,每条报文抓取规则包括:第一标识。基于此,第一测量节点43可以通过该第一标识抓取测量报文。如上所述,测量报文包 括:业务报文的报文头信息和第一标识,该业务报文的报文头信息依次包括以下至少一项:业务报文在数据链路层的信息(即L2层的信息)、业务报文在网络层的信息(即L3层的信息)、业务报文在传输层的信息(即L4层的信息)。例如:报文头信息包括业务报文的L2层的信息。或者,包括业务报文的L2层的信息和L3层的信息,或者,包括业务报文的L2层的信息、L3层的信息和L4层的信息。在本申请中,若测量报文包括业务报文的L2层的信息,而不包括L3层的信息和L4层的信息,则将给测量报文称为L2层的测量报文。若测量报文包括业务报文的L2层的信息和L3层的信息,而不包括L4层的信息,则将给测量报文称为L3层的测量报文。若测量报文包括业务报文的L2层的信息、L3层的信息和L4层的信息,则将给测量报文称为L4层的测量报文。
相应的,控制节点41下发的报文抓取规则可以包括针对L2层的测量报文的报文抓取规则、L3层的测量报文的报文抓取规则和L4层的测量报文的报文抓取规则。
或者,第一代理节点44向第一测量节点43下发上述报文抓取规则,或者,管理员可以通过命令行界面(Command Line Interface,CLI)、网页(Web)和简单网络管理协议(Simple Network Management Protocol,SNMP)等传统方式向第一测量节点43配置报文抓取规则。
需要说明的是,在任一个第一标识的有效期结束之后,上述的报文抓取规则都要进行更新。
基于此,第一测量节点43用于根据相应的报文抓取规则抓取测量报文。在抓取到测量报文之后,第一测量节点43解析测量报文,以得到测量报文的第一测量信息,并向分析节点42发送第一测量信息。该第一测量信息包括以下至少一项:测量报文、第一测量节点抓取所述测量报文的时间、第一测量节点的标识、在所述测量任务中所述测量报文的下发数量。
可选的,第一测量节点43可以通过如下方式向分析节点42发送第一测量信息,如第一测量节点43将该第一测量信息发送给第一代理节点44,以使该第一代理节点44将第一测量信息发送给分析节点42。或者,第一测量节点43直接将第一测量信息发送给分析节点42。
分析节点42获取到第一测量信息之后,对第一测量信息进行分析得到网络测量结果。比如:分析节点42可以预先根据第一测量节点的性能确定第一测量节点的抓包时长,在获取到第一测量节点抓取所述测量报文的时间之后,根据该第一测量节点抓取所述测量报文的时间也可以确定第一测量节点的一个抓包时长,并对这两个抓包时长进行比较,以确定第一测量节点的抓包时延,该抓包时延即为一项网络测量结果。此外还可以确定时延、时延抖动、测量报文所经过的测量节点、端口、涉及的流表、端口队列等。
可选的,上述网络测量系统还可以包括存储节点。其中,图8为本申请另一实施例提供的一种网络测量系统的示意图,如图8所示,该系统除了包括:控制节点41、分析节点42、第一测量节点43和第一代理节点44之外,还包括存储节点45,该存储节点45可以用于存储以下至少一项:测量任务、第一测量信息、网络信息,如云网络信息。该存储节点45可以是包括配置管理数据库(Configuration Management Database, CMDB)的一台服务器,或者是多台服务器构成的集中式或分布式服务器集群,又或者是一个芯片电路,又或者是VM,又或者是容器等,本申请对此不做限制。其中,控制节点41、分析节点42和存储节点45可以设置在同一台服务器或者同一个芯片电路上,本申请对此不做限制。
需要说明的是,在上述实施例提供的网络测量系统中,控制节点可以构造测量报文,实际上,还可以由第一测量节点构造测量报文。可选的,控制节点用于获取测量任务和第一标识,测量任务包括:业务报文的报文头信息,第一标识用于标识测量报文是用于进行网络测量的报文;控制节点通过第一代理节点将报文头信息和第一标识发送给所第一测量节点;第一测量节点根据报文头信息和第一标识生成测量报文,并抓取和解析测量报文,以得到测量报文的第一测量信息,将第一测量信息发送至分析节点;分析节点用于根据第一测量信息得到网络测量结果。
综上,本申请提供一种网络测量系统,其中控制节点可以获取业务报文的报文头信息以及第一标识,根据报文头信息和第一标识构造测量报文,以根据构造的测量报文对网络进行测量。基于此,控制节点无需通过业务报文对网络进行测量,从而并不影响正常的业务执行,提高了整个通信网络的可靠性。
进一步地,在现有技术中,针对云网络,业务报文中的标识被携带在外部报文头中,控制节点下发的报文抓取规则中携带该标识,以使各个测量节点通过该标识抓取该业务报文,然而,对于上层虚拟网络中的测量节点,该测量报文的外部报文头会被剥离,从而造成这类测量节点无法抓取业务报文,进而无法实现网络测量。而在本申请中,由于第一标识携带在报文头信息之后,即对于任一个测量节点来讲,该第一标识都不会被剥离,从而使得任何测量节点都可以抓取到测量报文,进而可以实现网络测量。
此外,针对不同的业务报文,它们对应的报文抓取规则不同,这将导致控制节点下发大量的报文抓取规则,比如:基于多协议标签交换(Multi-Protocol Label Switching,MPLS)的标签(Label)、虚拟本地网(Virtual Local Area Network,VLAN)的标识、IP头部的地址、基于传输控制协议(Transmission Control Protocol,TCP)的端口、Vxlan的Vxlan网络标识(Vxlan Network Identifier,VNI)、L2层、L3层、L4层等报文抓包规则,从而造成网络开销过大的问题。而在本申请中,控制节点只需构造测量报文即可,控制节点只需要下发L2层的报文抓取规则、L3层的报文抓取规则和L4层的报文抓取规则中的至少一项即可,进而可以降低网络开销。
在上述实施例的基础上,进一步地,网络测量系统还包括:第二测量节点46和第二代理节点47。其中第一测量节点43、第二测量节点46是待测量路径上的两个测量节点,可选的,该第一测量节点43和该第二测量节点46可以为待测量路径上的首节点和中间节点,或者,该第一测量节点43和该第二测量节点46可以为待测量路径上的首节点和末节点。假设第二测量节点46是待测量路径上的末节点,则该待测量路径上还可以包括第一测量节点43和第二测量节点46之间的至少一个中间节点。其中,第二测量节点46作为待测量路径上的末节点,在得到解析测量报文,以得到第二测量信息之后,可以在进入VM前丢弃测量报文。而对于中间节点来讲,可以不丢弃测量报文。中间节点的其他功能和第二测量节点46的功能类似,因此关于中间节点的功能 可参考第二测量节点46的功能,下面对此不再赘述。
示例性的,图9为本申请再一实施例提供的一种网络测量系统的示意图,如图9所示,该系统包括:控制节点41、分析节点42、第一测量节点43、第一代理节点44、存储节点45、第二测量节点46和第二代理节点47。第二测量节点46和第二代理节点47对应。在上层虚拟网络中,每个服务器包括:agent以及虚拟交换机,这种情况下,每个虚拟交换机(即测量节点)对应一个agent(即代理节点)。如图9所示,这里假设第一测量节点43和第二测量节点46不存在中间节点。
需要说明的是,第二代理节点47和第一代理节点44可以是同一个代理节点,如都是同一个SDN控制器。或者,第二代理节点47和第一代理节点44不是同一个代理节点,如第二代理节点47和第一代理节点44分别是不同服务器上的两个agent。
控制节点41可以通过第二代理节点47向第二测量节点46下发至少一条报文抓取规则。关于报文抓取规则可参考上述实施例内容,对此不再赘述。
第一测量节点43从控制节点41获取到测量报文后,可以将该测量报文注入转发面,通过转发面将该测量报文发送给第二测量节点46,如果第一测量节点43和第二测量节点46存在中间节点,则第一测量节点43通过中间节点将该测量报文转发给第二测量节点46。第二测量节点通过获取到的报文抓取规则抓取该测量报文,并解析测量报文,以得到测量报文的第二测量信息,并将该第二测量信息发送给分析节点42。其中该第二测量信息可以包括以下至少一项:测量报文、测量报文的时间戳信息、抓取到测量报文的节点的标识、即第二测量节点的标识、在所述测量任务中下发的测量报文的数量。该测量报文的时间戳信息为第二测量节点抓取测量报文的时间。需要说明的是,假设将第一测量信息所包括的在所述测量任务中下发的测量报文的数量称为第一数量,将第二测量信息所包括的在所述测量任务中下发的测量报文的数量称为第二数量。正常情况下,第一数量和第二数量应该相同。当发生网络故障时,这两个数量一般不同。因此,分析节点42在获取到第一数量和第二数量之后,若确定第二数量小于第一数量,则确定第二测量节点上发生了丢包情况,该丢包情况即为一项网络测量结果。
存储节点45还可以用于存储第二测量信息。
可选的,当上述测量报文是一个请求报文时,第二测量节点46还可以构造该请求报文对应的响应报文,并将响应报文发送给第一测量节点43。
综上,本申请提供一种网络测量系统,其中控制节点可以获取业务报文的报文头信息以及第一标识,根据报文头信息和第一标识构造测量报文,以根据构造的测量报文对网络进行测量。基于此,控制节点无需通过业务报文对网络进行测量,从而并不影响正常的业务执行,提高了整个通信网络的可靠性。
进一步地,在现有技术中,针对云网络,业务报文中的标识被携带在外部报文头中,控制节点下发的报文抓取规则中携带该标识,以使各个测量节点通过该标识抓取该业务报文,然而,对于上层虚拟网络中的测量节点,该测量报文的外部报文头会被剥离,从而造成这类测量节点无法抓取业务报文,进而无法实现网络测量。而在本申请中,由于第一标识携带在报文头信息之后,即对于任一个测量节点来讲,该第一标识都不会被剥离,从而使得任何测量节点都可以抓取到测量报文,进而可以实现网络 测量。
此外,针对不同的业务报文,对于测量节点来说其对应的报文抓取规则不同,这将导致控制节点下发大量的报文抓取规则,从而造成网络开销过大的问题。而在本申请中,控制节点只需构造测量报文即可,控制节点只需要下发L2层的报文抓取规则、L3层的报文抓取规则和L4报文抓取规则中的至少一项即可,进而可以降低网络开销。
更进一步地,对于待测量路径中的末节点,即上述第二测量节点,第二测量节点在解析得到第二测量信息之后,可以丢弃测量报文,从而避免对正常业务产生影响。
图10为本申请一实施例提供的网络测量方法的交互流程图,该方法涉及的网元包括:控制节点、分析节点、第一测量节点和第一代理节点,其中第一测量节点与第一代理节点对应。如图10所示,该方法包括如下步骤:
步骤S1001:控制节点获取测量任务和第一标识,测量任务包括:业务报文的报文头信息,并根据报文头信息和第一标识生成测量报文。
其中,第一标识用于标识测量报文是用于进行网络测量的报文。
步骤S1002:控制节点向第一代理节点下发测量报文。
步骤S1003:第一代理节点向第一测量节点下发测量报文。
步骤S1004:第一测量节点抓取和解析测量报文,以得到测量报文的第一测量信息。
步骤S1005:第一测量节点将第一测量信息发送至分析节点。
其中,第一测量信息包括以下至少一项:测量报文、第一测量节点抓取测量报文的时间、第一测量节点的标识、在测量任务中测量报文的下发数量。
步骤S1006:分析节点根据第一测量信息得到网络测量结果。
可选的,上述方法还涉及如下网元:第二测量节点和第二代理节点,第二测量节点与第二代理节点对应。相应的,上述方法还包括:第一测量节点向第二测量节点发送测量报文;第二测量节点抓取和解析测量报文,以得到测量报文的第二测量信息,并将所述第二测量信息发送给所述分析节点,第二测量信息包括以下至少一项:测量报文、第二测量节点抓取测量报文的时间、第二测量节点的标识、在测量任务中测量报文的下发数量;相应的,分析节点根据第一测量信息得到网络测量结果包括:根据第一测量信息和第二测量信息得到网络测量结果。
可选的,第二测量节点为待测量路径上的末节点,相应的,上述方法还包括:第二测量节点在得到第二测量信息之后,丢弃测量报文。
可选的,若测量报文是云网络的转发面上的测量报文,则测量报文包括外部报文头和内部报文头,外部报文头包括:云网络的隧道封装方式涉及的隧道头部,内部报文头包括:报文头信息和第一标识。
可选的,若测量报文是云网络的控制面上的测量报文,则测量报文包括内部报文头,内部报文头包括:报文头信息和第一标识。
可选的,若测量报文是数据中心网络上的测量报文,则测量报文包括报文头信息和第一标识。
可选的,第一标识位于报文头信息之后。
可选的,测量报文还包括:第二标识。第二标识用于标识测量任务,第二标识位 于报文头信息之后。
可选的,上述方法还包括:控制节点通过第一代理节点向第一测量节点下发至少一条报文抓取规则,报文抓取规则包括第一标识,以便第一测量节点通过第一标识抓取测量报文。
可选的,在以太网中至少一条报文抓取规则包括以下至少一项:数据链路层对应的报文抓取规则、网络层对应的下发规则、传输层对应的下发规则。
本申请提供的网络测量方法,可由上述网络测量系统中的各个节点执行,其内容和效果可参考系统实施例部分,对此不再赘述。
图11为本申请另一实施例提供的网络测量方法的交互流程图,该方法涉及的网元包括:控制节点、分析节点、第一测量节点和第一代理节点,其中第一测量节点与第一代理节点对应。如图11所示,该方法包括如下步骤:
步骤S1101:控制节点获取测量任务和第一标识,测量任务包括:业务报文的报文头信息。
其中,第一标识用于标识测量报文是用于进行网络测量的报文。
步骤S1102:控制节点向第一代理节点发送报文头信息和第一标识。
步骤S1103:第一代理节点向第一测量节点发送报文头信息和第一标识。
步骤S1104:第一测量节点根据报文头信息和第一标识生成测量报文,并抓取和解析测量报文,以得到测量报文的第一测量信息。
步骤S1105:第一测量节点将第一测量信息发送至分析节点。
其中,第一测量信息包括以下至少一项:测量报文、第一测量节点抓取测量报文的时间、第一测量节点的标识、在测量任务中测量报文的下发数量。
步骤S1106:分析节点根据第一测量信息得到网络测量结果。
可选的,上述方法还涉及如下网元:第二测量节点和第二代理节点,第二测量节点与第二代理节点对应。相应的,上述方法还包括:第一测量节点向第二测量节点发送测量报文;第二测量节点抓取和解析测量报文,以得到测量报文的第二测量信息,并将所述第二测量信息发送给所述分析节点,第二测量信息包括以下至少一项:测量报文、第二测量节点抓取测量报文的时间、第二测量节点的标识、在测量任务中测量报文的下发数量;相应的,分析节点根据第一测量信息得到网络测量结果包括:根据第一测量信息和第二测量信息得到网络测量结果。
可选的,第二测量节点为待测量路径上的末节点,相应的,上述方法还包括:第二测量节点在得到第二测量信息之后,丢弃测量报文。
可选的,若测量报文是云网络的转发面上的测量报文,则测量报文包括外部报文头和内部报文头,外部报文头包括:云网络的隧道封装方式涉及的隧道头部,内部报文头包括:报文头信息和第一标识。
可选的,若测量报文是云网络的控制面上的测量报文,则测量报文包括内部报文头,内部报文头包括:报文头信息和第一标识。
可选的,若测量报文是数据中心网络上的测量报文,则测量报文包括报文头信息和第一标识。
可选的,第一标识位于报文头信息之后。
可选的,测量报文还包括:第二标识。第二标识用于标识测量任务,第二标识位于报文头信息之后。
可选的,上述方法还包括:控制节点通过第一代理节点向第一测量节点下发至少一条报文抓取规则,报文抓取规则包括第一标识,以便第一测量节点通过第一标识抓取测量报文。
可选的,在以太网中至少一条报文抓取规则包括以下至少一项:数据链路层对应的报文抓取规则、网络层对应的下发规则、传输层对应的下发规则。
本申请提供的网络测量方法,可由上述网络测量系统中的各个节点执行,其内容和效果可参考系统实施例部分,对此不再赘述。
图12为本申请一实施例提供的一种控制节点的示意图,如图12所示,该控制节点包括:
获取模块1201,用于获取测量任务和第一标识,测量任务包括:业务报文的报文头信息。
生成模块1202,用于根据报文头信息和第一标识生成测量报文。
第一下发模块1203,用于通过第一代理节点向第一测量节点下发测量报文,第一标识用于标识测量报文是用于进行网络测量的报文。
可选的,该控制节点还包括:第二下发模块1204,用于通过第一代理节点向第一测量节点下发至少一条报文抓取规则,报文抓取规则包括第一标识,以便第一测量节点通过第一标识抓取测量报文。
本申请提供的控制节点为上述网络测量系统中的控制节点,其内容和效果可参考系统实施例部分,对此不再赘述。
图13为本申请一实施例提供的一种第一测量节点的示意图,如图13所示,该第一测量节点包括:
处理模块1301,用于抓取和解析测量报文,以得到测量报文的第一测量信息,测量报文是根据业务报文的报文头信息和第一标识生成的,第一标识用于标识测量报文是用于进行网络测量的报文,第一测量信息包括以下至少一项:测量报文、第一测量节点抓取测量报文的时间、第一测量节点的标识、在测量任务中测量报文的下发数量。
发送模块1302,用于将第一测量信息发送至分析节点。
可选的,第一测量节点还包括:
接收模块1303,用于在处理模块1301抓取和解析测量报文之前,接收控制节点通过第一代理节点下发的至少一条报文抓取规则,报文抓取规则包括第一标识.
抓取模块1304,用于通过第一标识抓取测量报文。
本申请提供的第一测量节点为上述网络测量系统中的第一测量节点,其内容和效果可参考系统实施例部分,对此不再赘述。
图14为本申请另一实施例提供的一种控制节点的示意图,如图14所示,该控制节点包括:
获取模块1401,用于获取测量任务和第一标识,测量任务包括:业务报文的报文头信息。
发送模块1402,用于通过第一代理节点将报文头信息和第一标识发送给第一测量 节点,以使第一代理节点根据报文头信息和第一标识生成测量报文,第一标识用于标识测量报文是用于进行网络测量的报文。
本申请提供的控制节点为上述网络测量系统中的控制节点,其内容和效果可参考系统实施例部分,对此不再赘述。
图15为本申请另一实施例提供的一种第一测量节点的示意图,如图15所示,该第一测量节点包括:
接收模块1501,用于接收控制节点通过第一代理节点发送的业务报文的报文头信息和第一标识。
生成模块1502,用于根据报文头信息和第一标识生成测量报文,第一标识用于标识测量报文是用于进行网络测量的报文。
处理模块1503,用于抓取和解析测量报文,以得到测量报文的第一测量信息。
发送模块1504,用于将第一测量信息发送至分析节点,第一测量信息包括以下至少一项:测量报文、第一测量节点抓取测量报文的时间、第一测量节点的标识、在测量任务中测量报文的下发数量。
本申请提供的第一测量节点为上述网络测量系统中的第一测量节点,其内容和效果可参考系统实施例部分,对此不再赘述。
图16为本申请另一实施例提供的一种第二测量节点的示意图,如图16所示,该第二测量节点包括:
接收模块1601,用于接收第一测量节点发送的测量报文。
处理模块1602,用于抓取和解析所述测量报文,以得到所述测量报文的第二测量信息,所述第二测量信息包括以下至少一项:所述测量报文、所述第二测量节点抓取所述测量报文的时间、所述第二测量节点的标识、在所述测量任务中所述测量报文的下发数量。
发送模块1603,用于将所述第二测量信息发送给所述分析节点,
可选的,所述第二测量节点为待测量路径上的末节点,所述第二测量节点还包括丢弃模块1604,用于在处理模块1602得到所述第二测量信息之后,丢弃所述测量报文。
本申请提供的第二测量节点为上述网络测量系统中的第二测量节点,其内容和效果可参考系统实施例部分,对此不再赘述。
图17为本申请一实施例提供的一种控制节点的示意图,如图17所示,该控制节点包括:存储器1701和处理器1702;存储器1701用于存储计算机指令;处理器1702用于运行存储器1701存储的计算机指令实现上述控制节点执行的网络测量方法。其中,该控制节点还包括:接收器1703,用于实现控制节点与其他节点之间的数据传输。
本申请提供的控制节点为上述网络测量系统中的控制节点,其内容和效果可参考系统实施例部分,对此不再赘述。
图18为本申请一实施例提供的一种第一测量节点的示意图,如图18所示,该第一测量节点包括:存储器1801和处理器1802,其中存储器1801用于存储计算机指令;处理器1802用于运行存储器1801存储的计算机指令实现上述第一测量节点执行的网 络测量方法。其中,该第一测量节点还包括:接收器1803,用于实现第一测量节点与其他节点之间的数据传输。
本申请提供的第一测量节点为上述网络测量系统中的第一测量节点,其内容和效果可参考系统实施例部分,对此不再赘述。
图19为本申请一实施例提供的一种第二测量节点的示意图,如图19所示,该第二测量节点包括:存储器1901和处理器1902,其中存储器1901用于存储计算机指令;处理器1902用于运行存储器1901存储的计算机指令实现上述第二测量节点执行的网络测量方法。其中,该第二测量节点还包括:接收器1903,用于实现第二测量节点与其他节点之间的数据传输。
本申请提供的第二测量节点为上述网络测量系统中的第二测量节点,其内容和效果可参考系统实施例部分,对此不再赘述。
本申请还提供一种芯片,该芯片用于执行上述的网络测量方法。该方法可以由上述网络测量系统中的网元执行,其内容和效果可参考系统实施例部分,对此不再赘述。
本申请还提供一种存储介质,包括:可读存储介质和计算机指令,所述计算机指令存储在所述可读存储介质中;所述计算机指令用于实现上述的网络测量方法,其内容和效果可参考系统实施例部分,对此不再赘述。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机指令(即计算机程序),以实现上述的网络测量方法,其内容和效果可参考系统实施例部分,对此不再赘述。

Claims (28)

  1. 一种网络测量系统,其特征在于,包括:控制节点、分析节点、第一测量节点和第一代理节点;
    所述控制节点用于获取测量任务和第一标识,所述测量任务包括:业务报文的报文头信息,根据所述报文头信息和所述第一标识生成测量报文,通过所述第一代理节点向所述第一测量节点下发所述测量报文,所述第一标识用于标识所述测量报文是用于进行网络测量的报文;
    所述第一测量节点用于抓取和解析所述测量报文,以得到所述测量报文的第一测量信息,将所述第一测量信息发送至所述分析节点,所述第一测量信息包括以下至少一项:所述测量报文、所述第一测量节点抓取所述测量报文的时间、所述第一测量节点的标识、在所述测量任务中所述测量报文的下发数量;
    所述分析节点用于根据所述第一测量信息得到网络测量结果。
  2. 根据权利要求1所述的系统,其特征在于,还包括:第二测量节点;
    所述第一测量节点还用于向所述第二测量节点发送所述测量报文;
    所述第二测量节点用于抓取和解析所述测量报文,以得到所述测量报文的第二测量信息,并将所述第二测量信息发送给所述分析节点,所述第二测量信息包括以下至少一项:所述测量报文、所述第二测量节点抓取所述测量报文的时间、所述第二测量节点的标识、在所述测量任务中所述测量报文的下发数量;
    相应的,所述分析节点具体用于根据所述第一测量信息和所述第二测量信息得到网络测量结果。
  3. 根据权利要求2所述的系统,其特征在于,所述第二测量节点为待测量路径上的末节点,所述第二测量节点还用于在得到所述第二测量信息之后,丢弃所述测量报文。
  4. 根据权利要求1-3任一项所述的系统,其特征在于,若所述测量报文是云网络的转发面上的测量报文,则所述测量报文包括外部报文头和内部报文头,所述外部报文头包括:云网络的隧道封装方式涉及的隧道头部,所述内部报文头包括:所述报文头信息和第一标识。
  5. 根据权利要求1-3任一项所述的系统,其特征在于,若所述测量报文是云网络的控制面上的测量报文,则所述测量报文包括内部报文头,所述内部报文头包括:所述报文头信息和所述第一标识。
  6. 根据权利要求1-3任一项所述的系统,其特征在于,若所述测量报文是数据中心网络上的测量报文,则所述测量报文包括所述报文头信息和所述第一标识。
  7. 根据权利要求4-6任一项所述的系统,其特征在于,所述第一标识位于所述报文头信息之后。
  8. 根据权利要求4-7任一项所述的系统,其特征在于,所述测量报文还包括:第二标识;
    所述第二标识用于标识所述测量任务。
  9. 根据权利要求8所述的系统,其特征在于,所述第二标识位于所述报文头信息之后。
  10. 根据权利要求1-9任一项所述的系统,其特征在于,所述控制节点还用于通过所述第一代理节点向所述第一测量节点下发至少一条报文抓取规则,所述报文抓取规则包括所述第一标识,以便所述第一测量节点通过所述第一标识抓取所述测量报文。
  11. 根据权利要求10所述的系统,其特征在于,在以太网中所述至少一条报文抓取规则包括以下至少一项:数据链路层对应的报文抓取规则、网络层对应的下发规则、传输层对应的下发规则。
  12. 一种网络测量系统,其特征在于,包括:控制节点、分析节点、第一测量节点和第一代理节点;
    所述控制节点用于获取测量任务和第一标识,所述测量任务包括:业务报文的报文头信息,所述第一标识用于标识所述测量报文是用于进行网络测量的报文;
    所述控制节点通过所述第一代理节点将所述报文头信息和所述第一标识发送给所述第一测量节点;
    所述第一测量节点根据所述报文头信息和所述第一标识生成测量报文,并抓取和解析所述测量报文,以得到所述测量报文的第一测量信息,将所述第一测量信息发送至所述分析节点,所述第一测量信息包括以下至少一项:所述测量报文、所述第一测量节点抓取所述测量报文的时间、所述第一测量节点的标识、在所述测量任务中所述测量报文的下发数量;
    所述分析节点用于根据所述第一测量信息得到网络测量结果。
  13. 一种网络测量方法,其特征在于,包括:
    控制节点获取测量任务和第一标识,所述测量任务包括:业务报文的报文头信息;
    所述控制节点根据所述报文头信息和所述第一标识生成测量报文;
    所述控制节点通过第一代理节点向第一测量节点下发所述测量报文,所述第一标识用于标识所述测量报文是用于进行网络测量的报文。
  14. 根据权利要求13所述的方法,其特征在于,还包括:
    所述控制节点通过所述第一代理节点向所述第一测量节点下发至少一条报文抓取规则,所述报文抓取规则包括所述第一标识,以便所述第一测量节点通过所述第一标识抓取所述测量报文。
  15. 一种网络测量方法,其特征在于,包括:
    第一测量节点抓取和解析测量报文,以得到所述测量报文的第一测量信息,所述测量报文是根据业务报文的报文头信息和第一标识生成的,所述第一标识用于标识所述测量报文是用于进行网络测量的报文,所述第一测量信息包括以下至少一项:所述测量报文、所述第一测量节点抓取所述测量报文的时间、所述第一测量节点的标识、在所述测量任务中所述测量报文的下发数量;
    所述第一测量节点将所述第一测量信息发送至分析节点。
  16. 根据权利要求15所述的方法,其特征在于,所述第一测量节点抓取和解析测量报文之前,还包括:
    所述第一测量节点接收控制节点通过第一代理节点下发的至少一条报文抓取规则,所述报文抓取规则包括所述第一标识;
    所述第一测量节点通过所述第一标识抓取所述测量报文。
  17. 一种网络测量方法,其特征在于,包括:
    控制节点获取测量任务和第一标识,所述测量任务包括:业务报文的报文头信息;
    所述控制节点通过第一代理节点将所述报文头信息和所述第一标识发送给第一测量节点,以使所述第一代理节点根据所述报文头信息和所述第一标识生成测量报文,所述第一标识用于标识所述测量报文是用于进行网络测量的报文。
  18. 一种网络测量方法,其特征在于,包括:
    第一测量节点接收控制节点通过第一代理节点发送的业务报文的报文头信息和第一标识;
    所述第一测量节点根据所述报文头信息和所述第一标识生成测量报文,所述第一标识用于标识所述测量报文是用于进行网络测量的报文;
    所述第一测量节点抓取和解析所述测量报文,以得到所述测量报文的第一测量信息;
    所述第一测量节点将所述第一测量信息发送至分析节点,所述第一测量信息包括以下至少一项:所述测量报文、所述第一测量节点抓取所述测量报文的时间、所述第一测量节点的标识、在所述测量任务中所述测量报文的下发数量。
  19. 一种控制节点,其特征在于,包括:
    获取模块,用于获取测量任务和第一标识,所述测量任务包括:业务报文的报文头信息;
    生成模块,用于根据所述报文头信息和所述第一标识生成测量报文;
    第一下发模块,用于通过第一代理节点向第一测量节点下发所述测量报文,所述第一标识用于标识所述测量报文是用于进行网络测量的报文。
  20. 根据权利要求19所述的控制节点,其特征在于,还包括:
    第二下发模块,用于通过所述第一代理节点向所述第一测量节点下发至少一条报文抓取规则,所述报文抓取规则包括所述第一标识,以便所述第一测量节点通过所述第一标识抓取所述测量报文。
  21. 一种测量节点,其特征在于,所述测量节点为第一测量节点,包括:
    处理模块,用于抓取和解析测量报文,以得到所述测量报文的第一测量信息,所述测量报文是根据业务报文的报文头信息和第一标识生成的,所述第一标识用于标识所述测量报文是用于进行网络测量的报文,所述第一测量信息包括以下至少一项:所述测量报文、所述第一测量节点抓取所述测量报文的时间、所述第一测量节点的标识、在所述测量任务中所述测量报文的下发数量;
    发送模块,用于将所述第一测量信息发送至分析节点。
  22. 根据权利要求21所述的测量节点,其特征在于,还包括:
    接收模块,用于在处理模块抓取和解析测量报文之前,接收控制节点通过第一代理节点下发的至少一条报文抓取规则,所述报文抓取规则包括所述第一标识;
    抓取模块,用于通过所述第一标识抓取所述测量报文。
  23. 一种控制节点,其特征在于,包括:
    获取模块,用于获取测量任务和第一标识,所述测量任务包括:业务报文的报文头信息;
    发送模块,用于通过第一代理节点将所述报文头信息和所述第一标识发送给第一测量节点,以使所述第一代理节点根据所述报文头信息和所述第一标识生成测量报文,所述第一标识用于标识所述测量报文是用于进行网络测量的报文。
  24. 一种测量节点,其特征在于,所述测量节点为第一测量节点,包括:
    接收模块,用于接收控制节点通过第一代理节点发送的业务报文的报文头信息和第一标识;
    生成模块,用于根据所述报文头信息和所述第一标识生成测量报文,所述第一标识用于标识所述测量报文是用于进行网络测量的报文;
    处理模块,用于抓取和解析所述测量报文,以得到所述测量报文的第一测量信息;
    发送模块,用于将所述第一测量信息发送至分析节点,所述第一测量信息包括以下至少一项:所述测量报文、所述第一测量节点抓取所述测量报文的时间、所述第一测量节点的标识、在所述测量任务中所述测量报文的下发数量。
  25. 一种控制节点,其特征在于,包括:存储器和处理器;
    所述存储器用于存储计算机指令;所述处理器用于运行所述存储器存储的所述计算机指令实现权利要求13、14或17所述的网络测量方法。
  26. 一种测量节点,其特征在于,包括:存储器和处理器;
    所述存储器用于存储计算机指令;所述处理器用于运行所述存储器存储的所述计算机指令实现权利要求15、16或18所述的网络测量方法。
  27. 一种芯片,其特征在于,所述芯片用于执行如权利要求13-18任一项所述的网络测量方法。
  28. 一种计算机存储介质,其特征在于,包括:计算机可执行指令,所述计算机可执行指令用于实现如权利要求13-18任一项所述的网络测量方法。
PCT/CN2020/114983 2019-09-19 2020-09-14 网络测量系统、方法、设备及存储介质 WO2021052280A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20865300.6A EP4024771A4 (en) 2019-09-19 2020-09-14 NETWORK MEASUREMENT SYSTEM AND METHOD, DEVICE AND STORAGE MEDIUM
US17/698,642 US20220210036A1 (en) 2019-09-19 2022-03-18 Network Measurement System And Method, Device, And Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910886165.6A CN112532468B (zh) 2019-09-19 2019-09-19 网络测量系统、方法、设备及存储介质
CN201910886165.6 2019-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/698,642 Continuation US20220210036A1 (en) 2019-09-19 2022-03-18 Network Measurement System And Method, Device, And Storage Medium

Publications (1)

Publication Number Publication Date
WO2021052280A1 true WO2021052280A1 (zh) 2021-03-25

Family

ID=74884485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114983 WO2021052280A1 (zh) 2019-09-19 2020-09-14 网络测量系统、方法、设备及存储介质

Country Status (4)

Country Link
US (1) US20220210036A1 (zh)
EP (1) EP4024771A4 (zh)
CN (1) CN112532468B (zh)
WO (1) WO2021052280A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994987B (zh) * 2021-05-07 2021-09-14 阿里云计算有限公司 云网络、用于云网络的测量系统、方法、设备及存储介质
CN113890789B (zh) * 2021-09-29 2023-03-21 华云数据控股集团有限公司 适用于数据中心的udp隧道流量的分流方法、流量转发方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685014A (zh) * 2012-05-29 2012-09-19 华为技术有限公司 用于测量业务流的性能指标的方法和发送端设备
CN103795596A (zh) * 2014-03-03 2014-05-14 北京邮电大学 可编程控制的sdn网络测量系统和测量方法
CN104601394A (zh) * 2014-11-26 2015-05-06 华为技术有限公司 一种业务链连通性检测的方法、装置及系统
US20170078176A1 (en) * 2015-09-11 2017-03-16 Telefonaktiebolaget L M Ericsson (Publ) Method and system for delay measurement of a traffic flow in a software-defined networking (sdn) system
CN106921533A (zh) * 2015-12-25 2017-07-04 清华大学 一种测量网络性能的方法、装置及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040196840A1 (en) * 2003-04-04 2004-10-07 Bharadwaj Amrutur Passive measurement platform
CN101056215B (zh) * 2006-04-14 2011-04-20 华为技术有限公司 一种网络性能测量方法及系统
US8295186B2 (en) * 2006-09-28 2012-10-23 Alcatel Lucent Individual end-to-end D/DV/L measurement in IP multicast
WO2010086907A1 (ja) * 2009-02-02 2010-08-05 富士通株式会社 パケットキャプチャシステム、パケットキャプチャ方法、情報処理装置およびプログラム
US8730819B2 (en) * 2009-10-14 2014-05-20 Cisco Teechnology, Inc. Flexible network measurement
CN101699786B (zh) * 2009-10-15 2012-09-05 华为技术有限公司 一种丢包检测的方法、装置和系统
EP3289463B1 (en) * 2015-04-27 2019-12-04 Telefonaktiebolaget LM Ericsson (publ) Compute infrastructure resource monitoring method and entities
US10021216B2 (en) * 2015-05-25 2018-07-10 Juniper Networks, Inc. Monitoring services key performance indicators using TWAMP for SDN and NFV architectures
US10270690B2 (en) * 2016-02-29 2019-04-23 Cisco Technology, Inc. System and method for dataplane-signaled packet capture in IPV6 environment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685014A (zh) * 2012-05-29 2012-09-19 华为技术有限公司 用于测量业务流的性能指标的方法和发送端设备
CN103795596A (zh) * 2014-03-03 2014-05-14 北京邮电大学 可编程控制的sdn网络测量系统和测量方法
CN104601394A (zh) * 2014-11-26 2015-05-06 华为技术有限公司 一种业务链连通性检测的方法、装置及系统
US20170078176A1 (en) * 2015-09-11 2017-03-16 Telefonaktiebolaget L M Ericsson (Publ) Method and system for delay measurement of a traffic flow in a software-defined networking (sdn) system
CN106921533A (zh) * 2015-12-25 2017-07-04 清华大学 一种测量网络性能的方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024771A4

Also Published As

Publication number Publication date
CN112532468A (zh) 2021-03-19
CN112532468B (zh) 2023-03-28
EP4024771A4 (en) 2022-10-26
EP4024771A1 (en) 2022-07-06
US20220210036A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
US10565001B2 (en) Distributed virtual network controller
CN108696402B (zh) 虚拟路由器的基于会话的业务统计记录
US11979322B2 (en) Method and apparatus for providing service for traffic flow
US10574763B2 (en) Session-identifer based TWAMP data session provisioning in computer networks
US11374857B2 (en) Network device management method and apparatus, and system for indicating a network device to perform management operation
EP2859694B1 (en) Physical path determination for virtual network packet flows
US7808919B2 (en) Network monitoring using a proxy
WO2016058245A1 (zh) 操作、管理和维护oam报文处理方法及装置
US11588717B2 (en) Troubleshooting multi-layered networks using datapath analysis
WO2012106869A1 (zh) 一种报文处理方法及相关设备
CN106603550B (zh) 一种网络隔离方法及装置
CN109428782B (zh) 网络监控的方法和设备
US20140293798A1 (en) Mpls-tp network and link trace method thereof
US20220210036A1 (en) Network Measurement System And Method, Device, And Storage Medium
JP2022532731A (ja) スライスベースネットワークにおける輻輳回避
WO2014019348A1 (zh) 操作、管理和维护oam配置的方法、设备及系统
WO2018150223A1 (en) A method and system for identification of traffic flows causing network congestion in centralized control plane networks
WO2019196914A1 (zh) 一种发现转发路径的方法及其相关设备
Amamou et al. A trill-based multi-tenant data center network
Jain OpenFlow, software defined networking (SDN) and network function virtualization (NFV)
CN108833284B (zh) 一种云平台和idc网络的通信方法及装置
Matties Distributed responder ARP: Using SDN to re-engineer ARP from within the network
US20200382399A1 (en) Trace routing in virtual networks
WO2022053007A1 (zh) 网络可达性验证方法及装置、计算机存储介质
Cheng et al. The Smart SD-WAN Architecture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020865300

Country of ref document: EP

Effective date: 20220330