WO2021051970A1 - 飞行时间的测量方法、装置、存储介质和激光雷达 - Google Patents

飞行时间的测量方法、装置、存储介质和激光雷达 Download PDF

Info

Publication number
WO2021051970A1
WO2021051970A1 PCT/CN2020/101118 CN2020101118W WO2021051970A1 WO 2021051970 A1 WO2021051970 A1 WO 2021051970A1 CN 2020101118 W CN2020101118 W CN 2020101118W WO 2021051970 A1 WO2021051970 A1 WO 2021051970A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal link
time
link
measurement
Prior art date
Application number
PCT/CN2020/101118
Other languages
English (en)
French (fr)
Inventor
周小军
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to EP20865826.0A priority Critical patent/EP4095560A4/en
Priority to CN202080005422.1A priority patent/CN112771408B/zh
Priority to CN202311547015.5A priority patent/CN117665831A/zh
Publication of WO2021051970A1 publication Critical patent/WO2021051970A1/zh
Priority to US17/868,655 priority patent/US20220350002A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • This application relates to the field of laser measurement, and in particular to a method, device, storage medium and lidar for measuring flight time.
  • Lidar is a device that emits a laser beam to detect the relevant parameters of a target object. Its working principle is: launch a detection laser beam to the target object, and then compare the received signal reflected from the target with the transmitted signal, and make appropriate processing After that, the relevant parameters of the target can be obtained, such as the distance, azimuth, height, speed, shape and other parameters of the target object.
  • the current lidar generally has a built-in photoelectric receiving device, which converts the optical signal reflected by the target object into an analog electrical signal, and then passes it to the analog-to-digital converter (Analog-to-Digital Converter, ADC, analog-to-digital converter) after amplification. Then it is converted into a digital signal, and then the flight time of the target object relative to the lidar is obtained through signal processing such as detection, and the distance between the lidar and the target object is calculated according to the flight time.
  • ADC Analog-to-Digital Converter
  • lidar is more sensitive to environmental parameters (such as temperature, humidity, or air pressure, etc.), and are different for target objects at the same location. There may be a large difference in the flight time measured under the environmental parameters of, which affects the accuracy of the lidar to measure the flight time.
  • the time-of-flight measurement, device, and lidar provided in the embodiments of the present application can solve the problem of inaccurate time-of-flight measurement results in related technologies.
  • the technical solution is as follows:
  • an embodiment of the present application provides a method for measuring flight time, and the method includes:
  • the measurement signal is transmitted in the second signal link, and the second transmission time of the measurement signal in the second signal link is measured; wherein, the first signal link and the second signal link are shared
  • the device is a temperature-sensitive device, and the device that is not shared between the first signal link and the second signal link is a non-temperature-sensitive device;
  • the flight time corresponding to the target object is determined according to the first transmission time, the second transmission time, and the delay time of the non-shared device.
  • an embodiment of the present application provides a time-of-flight measurement device, including:
  • Controller memory, first signal link and second signal link
  • the memory stores a computer program
  • the computer program is used to be loaded by the controller and execute the following steps:
  • the measurement signal is transmitted in the second signal link, and the second transmission time of the measurement signal in the second signal link is measured; wherein, the first signal link and the second signal link are shared
  • the device is a temperature-sensitive device, and the device that is not shared between the first signal link and the second signal link is a non-temperature-sensitive device;
  • the flight time corresponding to the target object is determined according to the first transmission time, the second transmission time, and the delay time of the non-shared device.
  • an embodiment of the present application provides a computer storage medium, the computer storage medium stores a plurality of instructions, and the instructions are suitable for being loaded by a processor and executing the above method steps.
  • an embodiment of the present application provides a lidar, which may include a processor and a memory; wherein the memory stores a computer program, and the computer program is adapted to be loaded by the processor and execute the above method steps .
  • the first signal link and the second signal link in this application have shared devices, and the shared devices are temperature-sensitive devices, that is, the delay time changes when the temperature changes.
  • the non-shared device in the first signal link and the second signal link is a non-temperature sensitive device, that is, a device whose delay time is basically unchanged when the temperature changes. According to the first transmission time, the second transmission time and the non-temperature sensitive device The delay time of the shared device determines the flight time corresponding to the target object.
  • the delay time of the temperature-sensitive devices can be eliminated according to the differential processing of the first transmission time and the second transmission time, and thus the flight time
  • the measurement result is only related to the delay time of the non-temperature sensitive device, so the problem of inaccurate measurement of the flight time of the target object caused by the temperature change of the measurement device can be reduced, and the measurement accuracy of the measurement device can be improved.
  • Figure 1 is a schematic diagram of the measurement principle of the measurement device in the related art
  • FIG. 2 is a schematic flowchart of a method for measuring flight time provided by an embodiment of the present application
  • Fig. 3 is a schematic structural diagram of a single-channel measurement device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a multi-channel measurement device provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a measuring device provided by the present application.
  • Figure 1 shows a schematic diagram of the measurement principle of the measurement device in the related art.
  • the measurement device 01 includes: a controller 10, a driving chip 11, a laser transmitter 12, a receiving sensor 13, a TIA 14, an amplifying circuit 15, and an ADC 16.
  • the laser transmitter 12 may be composed of a gallium nitride MOS tube and a laser diode.
  • the measuring device 01 is used to measure the flight time between the measuring device 01 and the target object 02, and the distance between the measuring device 01 and the target object 02 is determined according to the flight time.
  • the process of measuring the flight time of the measuring device 01 includes:
  • the controller 10 sends a control signal to the driving chip 11 through the output port.
  • the driving chip 11 drives the laser transmitter 12 to emit a ranging laser signal according to the control signal.
  • the ranging laser signal is reflected when it encounters an object in front of it, and the laser sensor 13 receives the target object 02 According to the echo laser signal formed by the reflection of the ranging laser signal, and the echo laser signal is converted into a current signal, the TIA (trans-impedance amplifier) 14 converts the current signal into a voltage signal, and the amplifying circuit 15 converts the current signal into a voltage signal.
  • TIA trans-impedance amplifier
  • the voltage signal is amplified, and the ADC (analog-to-digital converter) 16 samples the amplified voltage signal to obtain a digital signal (echo signal), and the digital signal is input to the input of the controller 10 port.
  • the controller 10 determines the time difference t according to the time when the control signal is transmitted and the time when the corresponding echo signal is received.
  • the time difference t also includes the various delay links in FIG. 1, for example: the time difference t includes The multiple time components shown in Table 1:
  • the actual flight time between the measuring device and the target object is t5
  • the measurement error It is t1+t2+t3+t4+t6+t7+t8+t9+t10.
  • it is necessary to perform static calibration on each delay link calculate the static error of each delay link, and then measure it in the actual The static error is subtracted to obtain the actual measured value of flight time.
  • the inventor found that some devices in the measurement device are temperature-sensitive devices, and the delay time varies greatly with temperature changes.
  • the delay time of the driver chip will vary greatly.
  • the time time is 30ns; when the ambient temperature is between -40°C ⁇ 85°C, the delay time of the driver chip is 35ns at most.
  • the error of 1ns flight time will lead to 15cm ranging error, if When the static calibration method is used to determine the delay time of each device, there will be a large error in the measurement result of the flight time.
  • FIG. 2 a schematic flowchart of a method for measuring flight time is provided for this embodiment of the application.
  • the method of the embodiment of the present application may include the following steps:
  • S201 Transmit a reference signal in the first signal link, and determine a first transmission time of the reference signal in the first signal link.
  • the first signal link is a signal link that transmits a reference signal
  • the number of devices in the first signal link is multiple
  • the reference signal is a signal with specified signal characteristics generated by the controller, and the signal characteristics include: frequency, amplitude One or more of and phase.
  • the controller is provided with an input port and an output port, the output port is used for transmitting signals, and the input port is used for receiving signals.
  • the controller generates a reference signal, and transmits the reference signal on the first signal link through the output port.
  • the reference signal reaches the input port of the controller after passing through each device in the first signal link.
  • Each device in the first signal link pair The reference signal is processed accordingly, such as: driving, amplifying, analog-to-digital conversion, etc., and then the controller receives the reference signal through the input port, and the controller determines the reference signal in the first signal link according to the transmission time and reception time of the reference signal. The first transmission time.
  • S202 Transmit a measurement signal in the second signal link, and determine a second transmission time of the measurement signal in the second signal link.
  • the second signal link is a signal link for transmitting the measurement signal
  • the number of devices in the second signal link is multiple
  • the measurement signal is also a signal with specified signal characteristics.
  • the controller generates the measurement signal, and then transmits the measurement signal in the second signal link through the input port.
  • the measurement signal is electro-optically converted to generate a laser measurement signal.
  • the laser measurement signal meets the target object and reflects to form a laser echo signal, which is then received by the measuring device
  • the laser echo signal is photoelectrically converted to the laser echo signal, and then an electrical signal is generated again to reach the input port of the controller.
  • the measuring device determines the second transmission time according to the transmission time and the reception time of the measurement signal.
  • the number of devices in the first signal link is multiple
  • the number of devices in the second signal link is multiple
  • the first signal link and the second signal link have shared devices
  • the shared devices are temperature sensitive.
  • temperature-sensitive devices are devices whose delay time varies greatly due to temperature changes.
  • Devices other than the devices shared in the first signal link and the second signal link are referred to as "non-shared devices" in this application. All non-shared devices are non-temperature sensitive devices, that is, the delay time changes with temperature changes are small Of the device.
  • the measurement signal is used to measure the flight time
  • the second signal link of the present application includes the signal link corresponding to the flight time, that is, the signal link that the laser measurement signal and the echo laser signal experience.
  • the devices in the first signal link are: Device A, Device B, Device C, and Device D
  • the devices in the second signal link are: Device A, Device B, Device D, Device E, and Device F
  • the common devices in a signal link are device A, device B, and device D.
  • the above three devices are all temperature-sensitive devices.
  • the non-shared devices in the first signal link and the second signal link are: device C, device E and device F, the above three devices are all non-temperature sensitive devices.
  • the delay time of the non-shared device can be pre-stored in the memory.
  • the non-shared devices in the first signal link and the second signal link are non-temperature sensitive devices. Therefore, the delay time of the non-shared device can be determined by static calibration. Then, the delay time of each non-shared device obtained by static calibration is stored in the memory, and the controller reads the delay time of the non-shared device from the memory.
  • the non-shared devices are device C, device E, and device F.
  • the delay time of device C is pre-stored in the memory as t C
  • the delay time of device E is t E
  • the delay time of device F is The time is t F
  • the controller reads the delay time of the above three non-shared devices in the memory.
  • S204 Determine the flight time corresponding to the target object according to the first transmission time, the second transmission time and the delay time of the non-shared device.
  • the time of flight is the time difference between the laser measurement signal emitted by the measuring device and the reception of the laser echo signal.
  • the second signal link in the present application includes a signal link for transmitting the laser measurement signal and the laser echo signal. Since the devices shared by the first signal link and the second signal link are temperature-sensitive devices, differential processing of the transmission time of the second signal link and the transmission time of the first signal link can eliminate the delay of the temperature-sensitive device. The influence of time on flight time measurement results can improve the accuracy of flight time measurement.
  • t2-t1 t TOF + t E + t F- t C
  • t TOF t2-t1-t E- t F +t C.
  • the devices in the first signal link include: a drive chip, a reference signal conditioning circuit, a selection switch, an amplifier circuit, and an analog-to-digital converter;
  • the components in the second signal link include: the driving chip, the selection switch, the amplifying circuit, the analog-to-digital converter, the laser transmitter, the transimpedance amplifier, and the receiving sensor;
  • the first signal link is: the output port of the controller, the drive chip, the reference signal conditioning circuit, the selection switch, the amplifying circuit, the analog-to-digital converter to the controller The signal link between the input ports;
  • the second signal link is: the output port of the controller, the drive chip, the laser transmitter, the target object, the receiving sensor, the transimpedance amplifier, the selection switch, the The signal link between the amplifying circuit, the analog-to-digital converter and the input port of the controller.
  • the measuring device includes: a controller 30, a driving chip 31, a reference conditioning circuit 32, a selection switch 33, an amplifying circuit 34, ADC35, a laser transmitter 36, a TIA 37, and a receiving sensor 38.
  • the measuring device calculates the target object Flight time between 39.
  • the components in the first signal link are: drive chip 31, reference signal conditioning circuit 32, selection switch 33, amplifying circuit 34 and ADC35, and the components in the second signal link are: drive chip 31, laser transmitter 36, receiver The sensor 38, the TIA 37, the selection switch 33, the amplifying circuit 34 and the ADC35.
  • the selection switch 33 may be a single-pole double-throw switch, and the controller 30 may control the selection switch 33 so that the amplifying circuit 34 and the reference signal conditioning circuit 32 or the TIA 37 are conducted.
  • the controller 30 transmits signals through the first signal link; when the amplifying circuit 34 and the TIA 37 are connected, the controller 30 transmits signals through the second signal link.
  • the first signal link is: the signal link between the output port of the controller 30, the driving chip 31, the reference signal conditioning circuit 32, the selection switch 33, the amplifying circuit 34, the ADC 35 and the input port of the controller 30;
  • the second signal link is: between the output port of the controller 30, the drive chip 31, the laser transmitter 36, the target object 39, the receiving sensor 38, the TIA 37, the selection switch 33, the amplifying circuit 34, the ADC35 and the input port of the controller 30 Signal link.
  • the control unit 30 may adopt at least one hardware form among Digital Signal Processing (DSP), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), and Programmable Logic Array (Programmable Logic Array, PLA). achieve.
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PLA Programmable Logic Array
  • the common components in the first signal link and the second signal link are: the controller 30, the driving chip 31, the selection switch 33, the amplifying circuit 34 and the ADC35, the first signal link and the second signal link
  • the non-shared components in the circuit are: the reference signal conditioning circuit 32, the laser transmitter 3, the TIA 37, and the receiving sensor 38.
  • the controller 30, the driving chip 31, the selection switch 33, the amplifying circuit 34, and the ADC 35 are temperature-sensitive devices
  • the reference signal conditioning circuit 32, the laser transmitter 3, the TIA 37, and the receiving sensor 38 are non-temperature-sensitive devices.
  • the laser transmitter includes a gallium nitride MOS tube and a laser diode.
  • the driving chip is used to drive the laser transmitter to emit laser signals according to the control signal from the control unit 30.
  • the control signal can control the laser signal's emission time, number of emission, emission power and duration and other parameters.
  • the laser transmitter can be one or Multiple laser diodes and gallium nitride MOS tubes, multiple laser diodes can form an emission array.
  • the device parameters of the reference signal conditioning circuit and the transimpedance amplifier are the same, and the device parameters include the delay time.
  • the reference signal conditioning circuit and the transimpedance amplifier achieve the same function, and the reference signal conditioning circuit shapes and filters the signal output by the drive chip to obtain a signal with the same or similar signal characteristics as the output signal of the TIA.
  • the reference signal conditioning circuit and the transimpedance amplifier have the same model.
  • it further includes:
  • the first control signal Before transmitting the reference signal, sending a first control signal to the selection switch; wherein, the first control signal is used to control the selection switch to turn on the amplifying circuit and the reference signal conditioning circuit; or
  • a second control signal is sent to the selection switch; wherein, the second control signal is used to control the selection switch to conduct the amplifying circuit and the transimpedance amplifier.
  • the selection switch 33 can be a single-pole double-throw switch, and its control amplifying circuit 34 can only be conducted with one of the reference signal conditioning circuit 32 and the transimpedance amplifier 37 at any time.
  • the controller 30 Before transmitting the reference signal, the controller 30 The selection switch 33 sends a first control signal. The first control signal controls the selection switch to turn on the amplifying circuit 34 and the reference signal conditioning circuit. At this time, the amplifying circuit 34 and the transimpedance amplifier 37 are disconnected, and the reference signal will pass through The first signal link transmits.
  • the controller 30 sends a second control signal to the selection switch 33. The second control signal controls the selection switch 33 to turn on the amplifying circuit 34 and the transimpedance amplifier 37. At this time, the reference signal conditioning circuit 32 and the amplifying circuit 34 are turned on. If it is disconnected, the measurement signal will be transmitted through the second signal link.
  • the determining the flight time corresponding to the target object according to the first transmission time, the second transmission time, and the delay time of the non-shared device includes:
  • T 2 -T 1 t laserT + t TOF + t laserR + t TIA -t 'RS;
  • T 2 is the second transmission time
  • T 1 is the first transmission time
  • t laserT is the delay time of the laser transmitter
  • t TOF is the flight time corresponding to the target object
  • t laserR is the receiving sensor delay time
  • t TIA delay time of the transimpedance amplifier t 'RS delay time of the reference signal conditioning circuit.
  • the method for measuring the flight time of the present application is described: assuming that the laser transmitter includes a gallium nitride MOS tube and a laser diode, the measuring device measures the flight time corresponding to the target object before measuring the flight time.
  • the reference signal is transmitted in the first signal link, and the delay time in each delay link in the first signal link is shown in Table 2:
  • the measurement device transmits the measurement signal in the second signal link, and the delay time of each delay link in the second signal link is shown in Table 3:
  • the above three devices are all non-temperature sensitive devices.
  • the specific values of t3, t4 and t6 can be obtained by static calibration method, minus The values of t3, t4, and t6 finally result in an accurate time-of-flight t TOF .
  • a schematic diagram of the structure of a multi-channel measurement device provided by an embodiment of the present application.
  • the measurement device is provided with n measurement channels, each measurement channel corresponds to a first signal link and a second signal link, and n is an integer greater than 1.
  • the components in the first signal link corresponding to channel 1 are: drive chip 1, reference signal combining circuit, reference signal conditioning circuit, selection switch, amplifying circuit and ADC;
  • the components in the second signal link are: drive Chip 1, GaN1+LD1 (laser transmitter 1), receiving sensor 1, TIA1, selection switch, amplifying circuit, ADC.
  • the delay time of the temperature-sensitive devices can be eliminated according to the differential processing of the first transmission time and the second transmission time, Therefore, the measurement result of the flight time is only related to the delay time of the non-temperature sensitive device. Therefore, the problem of inaccurate flight time measurement of the target object caused by the temperature change of the measurement device device can be reduced, and the measurement accuracy of the measurement device can be improved.
  • the embodiment of the present application also provides a computer storage medium.
  • the computer storage medium may store a plurality of instructions, and the instructions are suitable for being loaded by a processor and executing the method steps of the embodiments shown in FIGS. 2 to 4 above.
  • the specific execution process please refer to the specific description of the embodiment shown in FIG. 2 to FIG. 4, which will not be repeated here.
  • the present application also provides a computer program product that stores at least one instruction, and the at least one instruction is loaded and executed by the processor to implement the laser ranging method as described in each of the above embodiments.
  • the measurement device may include: a controller 501, a memory 502, a first signal link and a second signal link, and multiple devices are provided in the first signal link and the second signal link.
  • the controller 501 and the memory 502 can be connected through a communication bus.
  • the communication bus is SPI (Serial Peripheral Interface).
  • the controller 501 may include one or more processing cores.
  • the controller 501 uses various interfaces and lines to connect various parts of the entire measuring device, and executes measurement by running or executing instructions, programs, code sets, or instruction sets stored in the memory 502, and calling data stored in the memory 502.
  • Various functions of the device and processing data may adopt at least one of digital signal processing (Digital Signal Processing, DSP), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), and Programmable Logic Array (Programmable Logic Array, PLA).
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PLA Programmable Logic Array
  • the controller 501 may integrate one or a combination of a central processing unit (CPU), a graphics processing unit (GPU), a modem, and the like.
  • the CPU mainly processes the operating system, user interface, and application programs; the GPU is used to render and draw the content that needs to be displayed on the display; the modem is used to process wireless communication. It is understandable that the above-mentioned modem may not be integrated into the controller 501, but may be implemented by a chip alone.
  • the memory 502 may include random access memory (RAM) or read-only memory (Read-Only Memory).
  • the memory 502 includes a non-transitory computer-readable storage medium.
  • the memory 502 may be used to store instructions, programs, codes, code sets or instruction sets.
  • the memory 502 may include a storage program area and a storage data area, where the storage program area may store instructions for implementing an operating system, instructions for at least one function (such as a system update function, etc.), and for implementing each of the foregoing method embodiments.
  • the storage data area can store the data involved in each method embodiment above.
  • the memory 502 may also be at least one storage device located far away from the aforementioned main controller 501.
  • the controller 501 may be used to call a computer program stored in the memory 502, and specifically execute the following steps:
  • the measurement signal is transmitted in the second signal link, and the second transmission time of the measurement signal in the second signal link is determined; wherein, the first signal link and the second signal link share the same
  • the device is a temperature-sensitive device, and the device that is not shared between the first signal link and the second signal link is a non-temperature-sensitive device;
  • the flight time corresponding to the target object is determined according to the first transmission time, the second transmission time, and the delay time of the non-shared device.
  • the components in the first signal link include: a driving chip, a reference signal conditioning circuit, a selection switch, an amplifying circuit, and an analog-to-digital converter;
  • the components in the second signal link include: the driving chip, the selection switch, the amplifying circuit, the analog-to-digital converter, the laser transmitter, the transimpedance amplifier, and the receiving sensor;
  • the first signal link is: the output port of the controller, the drive chip, the reference signal conditioning circuit, the selection switch, the amplifying circuit, the analog-to-digital converter to the controller The signal link between the input ports;
  • the second signal link is: the output port of the controller, the drive chip, the laser transmitter, the target object, the receiving sensor, the transimpedance amplifier, the selection switch, the The signal link between the amplifying circuit, the analog-to-digital converter and the input port of the controller.
  • the laser transmitter includes a gallium nitride MOS tube and a laser diode.
  • the device parameters of the reference signal conditioning circuit and the transimpedance amplifier are the same, and the device parameters include the delay time.
  • controller 501 is also used to execute:
  • the first control signal Before transmitting the reference signal, sending a first control signal to the selection switch; wherein, the first control signal is used to control the selection switch to turn on the amplifying circuit and the reference signal conditioning circuit; or
  • a second control signal is sent to the selection switch; wherein, the second control signal is used to control the selection switch to conduct the amplifying circuit and the transimpedance amplifier.
  • the determining the flight time corresponding to the target object according to the first transmission time, the second transmission time, and the delay time of the non-shared device includes:
  • T 2 -T 1 t laserT + t TOF + t laserR + t TIA -t 'RS;
  • T 2 is the second transmission time
  • T 1 is the first transmission time
  • t laserT is the delay time of the laser transmitter
  • t TOF is the flight time corresponding to the target object
  • t laserR is the receiving sensor delay time
  • t TIA delay time of the transimpedance amplifier t 'RS delay time of the reference signal conditioning circuit.
  • the obtaining the delay time of the non-shared device includes:
  • the pre-stored delay time of the non-shared device is obtained from the memory 502; wherein, the delay time is determined by using a static calibration method.
  • FIG. 5 and the method embodiment of FIG. 2 are based on the same concept, and the technical effects brought by them are also the same.
  • FIG. 5 refers to the description of FIG. 2 and will not be repeated here.
  • the application also provides a laser radar, including the measuring device shown in FIG. 5, and the laser radar in the application may be a multi-channel laser radar.
  • the program can be stored in a computer readable storage medium, and the program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium can be a magnetic disk, an optical disc, a read-only storage memory or a random storage memory, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种飞行时间的测量方法、装置和激光雷达,该方法包括:S201、在第一信号链路中发射参考信号,以及确定参考信号在第一信号链路的第一传输时间;S202、在第二信号链路中发射测量信号,以及确定测量信号在第二信号链路中的第二传输时间,其中,第一信号链路和第二信号链路之间共用的器件为温度敏感器件,第一信号链路和第二信号链路之间非共用的器件为非温度敏感器件;S203、获取非共用的器件的延时时间;S204、根据第一传输时间、第二传输时间和非共用器件的延时时间确定目标物体对应的飞行时间。由于第一信号链路和第二信号链路共用的器件为温度敏感器件,根据第一传输时间和第二传输时间的差分处理可以消除温度敏感器件的延时时间,从而飞行时间的测量结果仅与非温度敏感器件的延时时间有关,因此可以降低测量装置器件因温度变化造成的目标物体的飞行时间测量不准确的问题,提高测量装置的测量飞行时间的精度。

Description

飞行时间的测量方法、装置、存储介质和激光雷达 技术领域
本申请涉及激光测量领域,尤其涉及一种飞行时间的测量方法、装置、存储介质和激光雷达。
背景技术
激光雷达是以发射激光光束来探测目标物体的相关参数的设备,其工作原理是:向目标物体发射探测激光光束,然后将接收到的从目标反射回来的信号与发射信号进行比较,作适当处理后,就可获得目标的有关参数,例如:目标物体的距离、方位、高度、速度、形状等参数。
当前的激光雷达一般内置有光电接收器件,将目标物体反射回来的光信号转换为模拟的电信号,经过放大后再传递给模数转换器(Analog-to-Digital Converter,ADC,模数转换器再将其转换为数字信号,然后通过检波等信号处理过程得到目标物体的相对于激光雷达的飞行时间,根据飞行时间计算激光雷达到目标物体之间的距离。
然而,发明人发现:激光雷达中的激光器、光电接收元件、芯片、电容、电阻等电子器件对环境参数(例如:温度、湿度或气压等)较为敏感,对于同一位置的目标物体来说,不同的环境参数下测量到的飞行时间可能存在较大差异,从而影响激光雷达的测量飞行时间的精度。
发明内容
本申请实施例提供了的飞行时间的测量、装置及激光雷达,可以解决相关技术中飞行时间的测量结果不精确的问题。所述技术方案如下:
第一方面,本申请实施例提供了一种飞行时间的测量方法,所述方法包括:
在第一信号链路中发射参考信号,以及测量所述参考信号在所述第一信号链路的第一传输时间;
在第二信号链路中发射测量信号,以及测量所述测量信号在第二信号链路 中的第二传输时间;其中,所述第一信号链路和所述第二信号链路之间共用的器件为温度敏感器件,所述第一信号链路和所述第二信号链路之间非共用的器件为非温度敏感器件;
获取所述非共用的器件的延时时间;
根据所述第一传输时间、所述第二传输时间和所述非共用器件的延时时间确定目标物体对应的飞行时间。
第二方面,本申请实施例提供了一种飞行时间的测量装置,包括:
控制器、存储器、第一信号链路和第二信号链路;
其中,所述存储器存储有计算机程序,所述计算机程序用于由所述控制器加载并执行如下步骤:
在第一信号链路中发射参考信号,以及测量所述参考信号在所述第一信号链路的第一传输时间;
在第二信号链路中发射测量信号,以及测量所述测量信号在第二信号链路中的第二传输时间;其中,所述第一信号链路和所述第二信号链路之间共用的器件为温度敏感器件,所述第一信号链路和所述第二信号链路之间非共用的器件为非温度敏感器件;
获取所述非共用的器件的延时时间;
根据所述第一传输时间、所述第二传输时间和所述非共用器件的延时时间确定目标物体对应的飞行时间。
第三方面,本申请实施例提供一种计算机存储介质,所述计算机存储介质存储有多条指令,所述指令适于由处理器加载并执行上述的方法步骤。
第四方面,本申请实施例提供一种激光雷达,可包括:处理器和存储器;其中,所述存储器存储有计算机程序,所述计算机程序适于由所述处理器加载并执行上述的方法步骤。
本申请一些实施例提供的技术方案带来的有益效果至少包括:
在测量目标物体对应的飞行时间时,在第一信号链路中发射参考信号,测量参考信号在第一信号链路中的第一传输时间,在第二信号链路中发射测量信号,以及测量测量信号在第二信号链路中的传输时间,本申请的第一信号链路 和第二信号链路存在共用的器件,共用的器件为温度敏感器件,即温度变化其延时时间变化较大的器件,第一信号链路和第二信号链路中的非共用器件为非温度敏感器件,即温度变化其延时时间基本不变的器件,根据第一传输时间、第二传输时间和非共用器件的的延时时间确定目标物体对应的飞行时间。本申请实施例由于第一传输链路和第二传输链路共用的器件为温度敏感器件,根据第一传输时间和第二传输时间的差分处理可以消除温度敏感器件的延时时间,从而飞行时间的测量结果仅与非温度敏感器件的延时时间有关,因此可以降低测量装置器件因温度变化造成的目标物体的飞行时间测量不准确的问题,提高测量装置的测量精度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中测量装置的测量原理示意图;
图2是本申请实施例提供的飞行时间的测量方法的流程示意图;
图3是本申请实施例提供的单通道测量装置的结构示意图;
图4是本申请实施例提供的多通道测量装置的结构示意图;
图5是本申请提供的一种测量装置的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例方式作进一步地详细描述。
图1示出了相关技术中测量装置的测量原理示意图,在图1中,测量装置01包括:控制器10、驱动芯片11、激光发射器12、接收传感器13、TIA14、放大电路15、ADC16,激光发射器12可以由氮化镓MOS管和激光二极管组成。测量装置01用于测量测量装置01到目标物体02之间的飞行时间,根据飞行时间确定测量装置01到目标物体02之间的距离。测量装置01测量飞行 时间的过程包括:
控制器10通过输出端口向驱动芯片11发送控制信号,驱动芯片11根据控制信号驱动激光发射器12发射测距激光信号,测距激光信号遇到前方的物体产生反射,激光传感器13接收目标物体02根据测距激光信号反射形成的回波激光信号,以及将回波激光信号转换成电流信号,TIA(trans-impedance amplifier,跨阻放大器)14将该电流信号转换为电压信号,放大电路15将该电压信号进行放大处理,ADC(analog-to-digital converter,模数转换器)16对放大处理后的电压信号进行采样处理得到数字信号(回波信号),将数字信号输入至控制器10的输入端口。控制器10根据发射控制信号的时刻和接收到对应的回波信号的时刻确定时间差为t,该时间差t除包括飞行时间之外,还包括图1中的各个延时环节,例如:时间差t包括表1所示的多个时间组成:
Figure PCTCN2020101118-appb-000001
表1
根据表1所示,测量装置和目标物体之间实际的飞行时间为t5,飞行时间的测量值为t=t1+t2+t3+t4+t5+t6+t7+t8+t9+t10,测量误差为t1+t2+t3+t4+t6+t7+t8+t9+t10,在相关技术中,为了降低测量误差,需要对各个 延迟环节进行静态标定,计算各个延迟环节的静态误差,然后在实际测量中减去静态误差得到飞行时间的实际测量值。发明人发现,测量装置中某些器件为温度敏感器件,随着温度变化延时时间的变化较大,例如:以某型号的驱动芯片为例,在环境温度为25℃时,驱动芯片的延时时间为30ns;在环境温度在-40℃~85℃之间时,驱动芯片的延时时间最大为35ns,根据测距公式可知,1ns的飞行时间的误差会导致15cm的测距误差,如果采用静态标定的方式确定各个器件的延时时间时,飞行时间的测量结果会存在较大误差。
如图2所示,为本申请实施例提供了一种飞行时间的测量方法的流程示意图。如图2所示,本申请实施例的所述方法可以包括以下步骤:
S201、在第一信号链路中发射参考信号,以及确定参考信号在第一信号链路中的第一传输时间。
其中,第一信号链路为传输参考信号的信号链路,第一信号链路中器件的数量为多个,参考信号为控制器生成的具有指定信号特征的信号,信号特征包括:频率、振幅和相位中的一种或多种。控制器设置有输入端口和输出端口,输出端口用于发射信号,输入端口用于接收信号。控制器生成参考信号,通过输出端口在第一信号链路上发射参考信号,参考信号经过第一信号链路中的各个器件之后到达控制器的输入端口,第一信号链路中的各个器件对参考信号进行相应的处理,例如:驱动、放大、模数转换等,然后控制器通过输入端口接收参考信号,控制器根据参考信号的发射时刻和接收时刻确定参考信号在第一信号链路中的第一传输时间。
S202、在第二信号链路中发射测量信号,以及确定测量信号在第二信号链路中的第二传输时间。
其中,第二信号链路为传输测量信号的信号链路,第二信号链路中的器件数量为多个,测量信号也是具有指定信号特征的信号。控制器生成测量信号,然后通过输入端口在第二信号链路中发射测量信号,测量信号经过电光转换生成激光测量信号,激光测量信号遇到目标物体进行反射形成激光回波信号,然后测量装置接收激光回波信号,对激光回波信号进行光电转换后再次生成电信号到达控制器的输入端口,测量装置根据测量信号的发射时刻和接收时刻确定 第二传输时间。
其中,第一信号链路中器件的数量为多个,第二信号链路中器件的数量为多个,第一信号链路和第二信号链路存在共用的器件,共用的器件为温度敏感器件,温度敏感器件为温度变化其延时时间变化较大的器件。第一信号链路和第二信号链路中共用的器件之外的器件本申请称为“非共用器件”,所有的非共用器件为非温度敏感器件,即温度变化其延时时间变化较小的器件。测量信号用于测量飞行时间,本申请的第二信号链路包括飞行时间对应的信号链路,即激光测量信号和回波激光信号经历的信号链路。
例如:第一信号链路中的器件为:器件A、器件B、器件C和器件D,第二信号链路中的器件为:器件A、器件B、器件D、器件E和器件F,第一信号链路中共用的器件为器件A、器件B和器件D,上述3个器件均为温度敏感器件,第一信号链路和第二信号链路中非共用的器件为:器件C、器件E和器件F,上述3个器件均为非温度敏感器件。
S203、获取非共用器件的延时时间。
其中,存储器中可以预先存储有非共用器件的延时时间,第一信号链路和第二信号链路中非共用器件为非温度敏感器件,因此可以采用静态标定的方式确定非共用器件的延时时间,然后将静态标定得到的各个非共用器件的延时时间存储到存储器中,控制器从存储器中读取非共用器件的延时时间。
例如:根据S202的例子,非共用器件为器件C、器件E和器件F,存储器中预先存储有器件C的延时时间为t C,器件E的延时时间为t E,器件F的延时时间为t F,控制器在存储器中读取上述3个非共用器件的延时时间。
S204、根据第一传输时间、第二传输时间和非共用器件的延时时间确定目标物体对应的飞行时间。
其中,飞行时间为测量装置发射的激光测量信号到接收到激光回波信号之间的时间差,本申请的第二信号链路包括传输激光测量信号和激光回波信号的信号链路。由于第一信号链路和第二信号链路共用的器件均为温度敏感器件,将第二信号链路的传输时间和第一信号链路的传输时间进行差分处理就能消除温度敏感器件的延时时间对飞行时间的测量结果的影响,可以提高测量飞行时间的精度。
例如:根据S202的例子,假设第一传输时间为t1,第二传输时间为t2,则t2-t1=t TOF+t E+t F-t C,t TOF=t2-t1-t E-t F+t C
在一个或多个可能的实施方式中,所述第一信号链路中的器件包括:驱动芯片、参考信号调理电路、选择开关、放大电路和模数转换器;
所述第二信号链路中的器件包括:所述驱动芯片、所述选择开关、所述放大电路、所述模数转换器、激光发射器、跨阻放大器和接收传感器;
其中,所述第一信号链路为:控制器的输出端口、所述驱动芯片、所述参考信号调理电路、所述选择开关、所述放大电路、所述模数转换器到所述控制器的输入端口之间的信号链路;
所述第二信号链路为:所述控制器的输出端口、所述驱动芯片、所述激光发射器、所述目标物体、所述接收传感器、所述跨阻放大器、所述选择开关、所述放大电路、所述模数转换器到所述控制器的输入端口之间的信号链路。
参见图3所示,测量装置包括:控制器30、驱动芯片31、参考调理电路32、选择开关33、放大电路34、ADC35、激光发射器36、TIA37和接收传感器38,测量装置计算到目标物体39之间的飞行时间。第一信号链路中的器件为:驱动芯片31、参考信号调理电路32、选择开关33、放大电路34和ADC35,第二信号链路中的器件为:驱动芯片31、激光发射器36、接收传感器38、TIA37、选择开关33、放大电路34和ADC35。其中,选择开关33可以为单刀双掷开关,控制器30可以控制选择开关33,使放大电路34与参考信号调理电路32或TIA37进行导通。在放大电路34与参考信号调理电路32之间连接时,控制器30通过第一信号链路传输信号;在放大电路34与TIA37之间连接时,控制器30通过第二信号链路传输信号。
其中,第一信号链路为:控制器30的输出端口、驱动芯片31、参考信号调理电路32、选择开关33、放大电路34、ADC35到控制器30的输入端口之间的信号链路;第二信号链路为:控制器30的输出端口、驱动芯片31、激光发射器36、目标物体39、接收传感器38、TIA37、选择开关33、放大电路34、ADC35到控制器30的输入端口之间的信号链路。
控制单元30可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵 列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。
由图3可知,第一信号链路和第二信号链路中共用的器件为:控制器30、驱动芯片31、选择开关33、放大电路34和ADC35,第一信号链路和第二信号链路中非共用的器件为:参考信号调理电路32、激光发射器3、TIA37和接收传感器38。其中,控制器30、驱动芯片31、选择开关33、放大电路34和ADC35为温度敏感器件,参考信号调理电路32、激光发射器3、TIA37和接收传感器38为非温度敏感器件。
在一个或多个可能的实施例中,激光发射器包括氮化镓MOS管和激光二极管。
其中,驱动芯片用于根据来自控制单元30的控制信号驱动激光发射器发射激光信号,控制信号可以控制激光信号的发射时刻、发射次数、发射功率和持续时间等参数,激光发射器可以是一个或多个激光二极管和氮化镓MOS管,多个激光二极管可以组成发射阵列。
在一个或多个可能的实施例中,参考信号调理电路和跨阻放大器的器件参数相同,器件参数包括延时时间。其中,参考信号调理电路和跨阻放大器实现相同的功能,参考信号调理电路对驱动芯片输出的信号进行整形和滤波得到与TIA的输出信号的信号特征相同或相近的信号。例如:参考信号调理电路和跨阻放大器的型号相同。
在一个或多个可能的实施例中,还包括:
在发射所述参考信号之前,向所述选择开关发送第一控制信号;其中,所述第一控制信号用于控制所述选择开关将所述放大电路和所述参考信号调理电路进行导通;或
在发射所述测量信号之前,向所述选择开关发送第二控制信号;其中,所述第二控制信号用于控制所述选择开关将所述放大电路和所述跨阻放大器进行导通。
其中,选择开关33可以为单刀双掷开关,其控制放大电路34在任意时刻只能与参考信号调理电路32和跨阻放大器37中的一个进行导通,在发射参考信号之前,控制器30向选择开关33发送第一控制信号,第一控制信号控制选择开关将放大电路34和参考信号调理电路导通,此时放大电路34和跨阻放大 器37之间是断开的,那么参考信号会经过第一信号链路进行传输。在发射测量信号之前,控制器30向选择开关33发送第二控制信号,第二控制信号控制选择开关33将放大电路34和跨阻放大器37导通,此时参考信号调理电路32和放大电路34之间是断开的,那么测量信号会经过第二信号链路进行传输。
在一个或多个可能的实施方式中,所述根据所述第一传输时间、所述第二传输时间和所述非共用器件的延时时间确定目标物体对应的飞行时间,包括:
根据如下公式确定目标物体对应的飞行时间:
T 2-T 1=t laserT+t TOF+t laserR+t TIA-t' RS
其中,T 2为所述第二传输时间,T 1为所述第一传输时间,t laserT为所述激光发射器的延时时间,t TOF为所述目标物体对应的飞行时间,t laserR为所述接收传感器的延时时间,t TIA为所述跨阻放大器的延时时间,t′ RS为所述参考信号调理电路的延时时间。
以图3的测量装置为例对本申请的飞行时间的测量方法进行说明:假设激光发射器包括氮化镓MOS管和激光二极管(laser diode),测量装置在测量目标物体对应的飞行时间之前,在第一信号链路中发射参考信号,第一信号链路中各个延时环节中的延时时间如表2所示:
Figure PCTCN2020101118-appb-000002
Figure PCTCN2020101118-appb-000003
表2
然后,测量装置在第二信号链路中发射测量信号,第二信号链路中各个延时环节的延时时间如表3所示:
Figure PCTCN2020101118-appb-000004
表3
在参考信号调理电路和TIA的延时时间相等的情况下,即t7=t7’,将第二传输时间减去第一传输时间得到的时间为t=t3+t4+t TOF+t6,t3、t4和t6分别为GaN导通延时、LD出光延时和接收传感器的转换延迟,上述3个器件均为非温度敏感器件,可以利用静态标定法得到t3、t4和t6的具体值,减去t3、t4和t6的值最终得到准确的飞行时间t TOF
参见图4所示,本申请实施例提供的一种多通道的测量装置的结构示意 图,相比于单通道的测量装置,增加了参考信号合路电路。在本申请实施例中,测量装置设置有n个测量通道,每个测量通道对应1个第一信号链路和1个第二信号链路,n为大于1的整数。例如:通道1对应的第一信号链路中的器件为:驱动芯片1、参考信号合路电路、参考信号调理电路,选择开关、放大电路和ADC;第二信号链路中的器件为:驱动芯片1、GaN1+LD1(激光发射器1)、接收传感器1、TIA1、选择开关、放大电路、ADC。其中,对于每个对于多通道的测量装置来说,因为温度是缓慢变化的一个量,不必在每一个收发周期都测试所有通道的参考信号延时,一个收发周期测试其中一个通道的参考信号延时就可以,这样每n个收发周期就可以测量一次所有通道的参考信号延时。
实施本申请的实施例,由于第一传输链路和第二传输链路共用的器件为温度敏感器件,根据第一传输时间和第二传输时间的差分处理可以消除温度敏感器件的延时时间,从而飞行时间的测量结果仅与非温度敏感器件的延时时间有关,因此可以降低测量装置器件因温度变化造成的目标物体的飞行时间测量不准确的问题,提高测量装置的测量精度。
本申请实施例还提供了一种计算机存储介质,所述计算机存储介质可以存储有多条指令,所述指令适于由处理器加载并执行如上述图2-图4所示实施例的方法步骤,具体执行过程可以参见图2-图4所示实施例的具体说明,在此不进行赘述。
本申请还提供了一种计算机程序产品,该计算机程序产品存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现如上各个实施例所述的激光测距方法。
请参见图5,为本申请实施例提供了一种测量装置的结构示意图。如图5所示,所述测量装置可以包括:控制器501、存储器502、第一信号链路和第二信号链路,第一信号链路和第二信号链路中设置有多个器件。
其中控制器501和存储器502之间可以通过通信总线相连。例如:通信总线为SPI总线(Serial Peripheral Interface,串行外设接口总线)。
其中,控制器501可以包括一个或者多个处理核心。控制器501利用各种接口和线路连接整个测量装置内的各个部分,通过运行或执行存储在存储器502内的指令、程序、代码集或指令集,以及调用存储在存储器502内的数据,执行测量装置的各种功能和处理数据。可选的,控制器501可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。控制器501可集成中央处理器(Central Processing Unit,CPU)、图像处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示屏所需要显示的内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到控制器501中,单独通过一块芯片进行实现。
其中,存储器502可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。可选的,该存储器502包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。存储器502可用于存储指令、程序、代码、代码集或指令集。存储器502可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于至少一个功能的指令(比如系统更新功能等)、用于实现上述各个方法实施例的指令等;存储数据区可存储上面各个方法实施例中涉及到的数据等。存储器502可选的还可以是至少一个位于远离前述主控制器501的存储装置。
在图5所示的测量装置中,控制器501可以用于调用存储器502中存储的计算机程序,并具体执行以下步骤步骤:
在第一信号链路中发射参考信号,以及确定所述参考信号在所述第一信号链路的第一传输时间;
在第二信号链路中发射测量信号,以及确定所述测量信号在第二信号链路中的第二传输时间;其中,所述第一信号链路和所述第二信号链路之间共用的器件为温度敏感器件,所述第一信号链路和所述第二信号链路之间非共用的器件为非温度敏感器件;
获取所述非共用的器件的延时时间;
根据所述第一传输时间、所述第二传输时间和所述非共用器件的延时时间确定目标物体对应的飞行时间。
可选的,所述第一信号链路中的器件包括:驱动芯片、参考信号调理电路、选择开关、放大电路和模数转换器;
所述第二信号链路中的器件包括:所述驱动芯片、所述选择开关、所述放大电路、所述模数转换器、激光发射器、跨阻放大器和接收传感器;
其中,所述第一信号链路为:控制器的输出端口、所述驱动芯片、所述参考信号调理电路、所述选择开关、所述放大电路、所述模数转换器到所述控制器的输入端口之间的信号链路;
所述第二信号链路为:所述控制器的输出端口、所述驱动芯片、所述激光发射器、所述目标物体、所述接收传感器、所述跨阻放大器、所述选择开关、所述放大电路、所述模数转换器到所述控制器的输入端口之间的信号链路。
可选的,所述激光发射器包括氮化镓MOS管和激光二极管。
可选的,所述参考信号调理电路和所述跨阻放大器的器件参数相同,所述器件参数包括延时时间。
可选的,控制器501还用于执行:
在发射所述参考信号之前,向所述选择开关发送第一控制信号;其中,所述第一控制信号用于控制所述选择开关将所述放大电路和所述参考信号调理电路进行导通;或
在发射所述测量信号之前,向所述选择开关发送第二控制信号;其中,所述第二控制信号用于控制所述选择开关将所述放大电路和所述跨阻放大器进行导通。
可选的,所述根据所述第一传输时间、所述第二传输时间和所述非共用器件的延时时间确定目标物体对应的飞行时间,包括:
根据如下公式确定目标物体对应的飞行时间:
T 2-T 1=t laserT+t TOF+t laserR+t TIA-t' RS
其中,T 2为所述第二传输时间,T 1为所述第一传输时间,t laserT为所述激光发射器的延时时间,t TOF为所述目标物体对应的飞行时间,t laserR为所述接收传感器的延时时间,t TIA为所述跨阻放大器的延时时间,t′ RS为所述参考信号调理 电路的延时时间。
可选的,所述获取所述非共用的器件的延时时间,包括:
从存储器502中获取预先存储的所述非共用的器件的延时时间;其中,所述延时时间为采用静态标定法确定的。
其中,图5的实施例和图2的方法实施例基于相同的构思,其带来的技术效果也相同,图5的具体实现过程可参照图2的描述,此处不再赘述。
本申请还提供了一种激光雷达,包括图5所示的测量装置,本申请的激光雷达可以为多通道的激光雷达。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体或随机存储记忆体等。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (10)

  1. 一种飞行时间的测量方法,其特征在于,所述方法包括:
    在第一信号链路中发射参考信号,以及确定所述参考信号在所述第一信号链路的第一传输时间;
    在第二信号链路中发射测量信号,以及确定所述测量信号在第二信号链路中的第二传输时间;其中,所述第一信号链路和所述第二信号链路之间共用的器件为温度敏感器件,所述第一信号链路和所述第二信号链路之间非共用的器件为非温度敏感器件;
    获取所述非共用的器件的延时时间;
    根据所述第一传输时间、所述第二传输时间和所述非共用器件的延时时间确定目标物体对应的飞行时间。
  2. 根据权利要求1所述的测量方法,其特征在于,所述第一信号链路中的器件包括:驱动芯片、参考信号调理电路、选择开关、放大电路和模数转换器;
    所述第二信号链路中的器件包括:所述驱动芯片、所述选择开关、所述放大电路、所述模数转换器、激光发射器、跨阻放大器和接收传感器;
    其中,所述第一信号链路为:控制器的输出端口、所述驱动芯片、所述参考信号调理电路、所述选择开关、所述放大电路、所述模数转换器到所述控制器的输入端口之间的信号链路;
    所述第二信号链路为:所述控制器的输出端口、所述驱动芯片、所述激光发射器、所述目标物体、所述接收传感器、所述跨阻放大器、所述选择开关、所述放大电路、所述模数转换器到所述控制器的输入端口之间的信号链路。
  3. 根据权利要求2所述的测量方法,其特征在于,所述激光发射器包括氮化镓MOS管和激光二极管。
  4. 根据权利要求2或3所述的测量方法,其特征在于,所述参考信号调 理电路和所述跨阻放大器的器件参数相同,所述器件参数包括延时时间。
  5. 根据权利要求2至4任意一项所述的测量方法,其特征在于,还包括:
    在发射所述参考信号之前,向所述选择开关发送第一控制信号;其中,所述第一控制信号用于控制所述选择开关将所述放大电路和所述参考信号调理电路进行导通;或
    在发射所述测量信号之前,向所述选择开关发送第二控制信号;其中,所述第二控制信号用于控制所述选择开关将所述放大电路和所述跨阻放大器进行导通。
  6. 根据权利要求2所述的测量方法,其特征在于,所述根据所述第一传输时间、所述第二传输时间和所述非共用器件的延时时间确定目标物体对应的飞行时间,包括:
    根据如下公式确定目标物体对应的飞行时间:
    T 2-T 1=t laserT+t TOF+t laserR+t TIA-t' RS
    其中,T 2为所述第二传输时间,T 1为所述第一传输时间,t laserT为所述激光发射器的延时时间,t TOF为所述目标物体对应的飞行时间,t laserR为所述接收传感器的延时时间,t TIA为所述跨阻放大器的延时时间,t′ RS为所述参考信号调理电路的延时时间。
  7. 根据权利要求1所述的测量方法,其特征在于,所述获取所述非共用的器件的延时时间,包括:
    从存储器中获取预先存储的所述非共用的器件的延时时间;其中,所述延时时间为采用静态标定法确定的。
  8. 一种飞行时间的测量装置,其特征在于,包括:
    控制器、存储器、第一信号链路和第二信号链路;其中,所述存储器存储有计算机程序,所述计算机程序用于由所述控制器加载并执行如下步骤:
    在第一信号链路中发射参考信号,以及确定所述参考信号在所述第一信号 链路的第一传输时间;
    在第二信号链路中发射测量信号,以及确定所述测量信号在第二信号链路中的第二传输时间;其中,所述第一信号链路和所述第二信号链路之间共用的器件为温度敏感器件,所述第一信号链路和所述第二信号链路之间非共用的器件为非温度敏感器件;
    获取所述非共用的器件的延时时间;
    根据所述第一传输时间、所述第二传输时间和所述非共用器件的延时时间确定目标物体对应的飞行时间。
  9. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有多条指令,所述指令适于由处理器加载并执行如权利要求1~7任意一项的方法步骤。
  10. 一种激光雷达,其特征在于,包括:如权利要求8所述的飞行时间的测量装置。
PCT/CN2020/101118 2020-01-20 2020-07-09 飞行时间的测量方法、装置、存储介质和激光雷达 WO2021051970A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20865826.0A EP4095560A4 (en) 2020-01-20 2020-07-09 METHOD AND DEVICE FOR TIME OF FLIGHT MEASUREMENT, STORAGE MEDIUM AND LIDAR
CN202080005422.1A CN112771408B (zh) 2020-01-20 2020-07-09 飞行时间的测量方法、装置、存储介质和激光雷达
CN202311547015.5A CN117665831A (zh) 2020-01-20 2020-07-09 飞行时间的测量方法、装置、存储介质和激光雷达
US17/868,655 US20220350002A1 (en) 2020-01-20 2022-07-19 Method and device for measuring time of flight, storage medium, and lidar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/073251 2020-01-20
PCT/CN2020/073251 WO2021051733A1 (zh) 2020-01-20 2020-01-20 激光测距方法、装置、存储介质和激光雷达

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/868,655 Continuation US20220350002A1 (en) 2020-01-20 2022-07-19 Method and device for measuring time of flight, storage medium, and lidar

Publications (1)

Publication Number Publication Date
WO2021051970A1 true WO2021051970A1 (zh) 2021-03-25

Family

ID=74883327

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/073251 WO2021051733A1 (zh) 2020-01-20 2020-01-20 激光测距方法、装置、存储介质和激光雷达
PCT/CN2020/101118 WO2021051970A1 (zh) 2020-01-20 2020-07-09 飞行时间的测量方法、装置、存储介质和激光雷达

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073251 WO2021051733A1 (zh) 2020-01-20 2020-01-20 激光测距方法、装置、存储介质和激光雷达

Country Status (4)

Country Link
US (2) US20220365183A1 (zh)
EP (1) EP4095560A4 (zh)
CN (3) CN113474675A (zh)
WO (2) WO2021051733A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702986B (zh) * 2021-08-23 2024-04-26 欧姆龙(上海)有限公司 光电检测装置及方法
CN115128623A (zh) * 2022-04-13 2022-09-30 深圳市灵明光子科技有限公司 激光测距方法和装置
CN117075128B (zh) * 2023-09-11 2024-04-09 深圳市速腾聚创科技有限公司 测距方法、装置、电子设备和计算机可读存储介质
CN117607844B (zh) * 2024-01-17 2024-04-12 鹏城实验室 激光通信测距方法、装置、系统及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278369A (ja) * 1995-04-03 1996-10-22 Yazaki Corp レーザを用いた物標間距離測定方法及びその装置
CN101504462A (zh) * 2008-02-04 2009-08-12 深圳市博时雅科技有限公司 相位差检测方法和系统、双晶振混频电路及距离测量装置
CN101581783A (zh) * 2008-05-16 2009-11-18 张俊忠 一种相位测量的校准方法、装置及测距设备
CN107884779A (zh) * 2016-09-30 2018-04-06 比亚迪股份有限公司 激光雷达、车辆、测距误差测量方法、及测距方法
CN109633672A (zh) * 2019-01-17 2019-04-16 杜鑫 脉冲式激光测距系统及其测距方法
CN109870702A (zh) * 2019-03-28 2019-06-11 河北镭族光电科技有限公司 一种基于tdc的远距离高精度激光测距装置及测距方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3219423C2 (de) * 1981-06-09 1986-04-30 MTC, Meßtechnik und Optoelektronik AG, Neuenburg/Neuchâtel Entfernungsmeßverfahren und Vorrichtung zu seiner Durchführung
EP1752789A1 (de) * 2005-08-08 2007-02-14 Leica Geosystems AG Vorrichtung und Verfahren zur Kalibrierung von Entfernungsmessgeräten
CN100478704C (zh) * 2006-04-21 2009-04-15 太原理工大学 Ld抽运固体激光器混沌激光测距的装置及方法
CN101957446B (zh) * 2010-09-26 2012-12-26 深圳市汉华安道科技有限责任公司 一种fmcw雷达测距的方法和装置
CN102176004B (zh) * 2011-02-22 2013-06-05 南京理工大学 基于多通道时延估计的激光飞行时间测量装置及其方法
US9635351B2 (en) * 2013-11-20 2017-04-25 Infineon Technologies Ag Integrated reference pixel
CN103941262B (zh) * 2014-04-01 2016-06-29 中国科学院合肥物质科学研究院 一种脉冲激光测距装置及采用该装置的脉冲激光测距方法
US10495736B2 (en) * 2016-08-04 2019-12-03 Stmicroelectronics (Research & Development) Limited Single SPAD array ranging system
CN108387906A (zh) * 2018-01-10 2018-08-10 北京理工大学 一种基于fpga-tdc的三维激光成像系统
CN110275173B (zh) * 2018-03-13 2024-03-22 深圳越登智能技术有限公司 一种激光测距系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278369A (ja) * 1995-04-03 1996-10-22 Yazaki Corp レーザを用いた物標間距離測定方法及びその装置
CN101504462A (zh) * 2008-02-04 2009-08-12 深圳市博时雅科技有限公司 相位差检测方法和系统、双晶振混频电路及距离测量装置
CN101581783A (zh) * 2008-05-16 2009-11-18 张俊忠 一种相位测量的校准方法、装置及测距设备
CN107884779A (zh) * 2016-09-30 2018-04-06 比亚迪股份有限公司 激光雷达、车辆、测距误差测量方法、及测距方法
CN109633672A (zh) * 2019-01-17 2019-04-16 杜鑫 脉冲式激光测距系统及其测距方法
CN109870702A (zh) * 2019-03-28 2019-06-11 河北镭族光电科技有限公司 一种基于tdc的远距离高精度激光测距装置及测距方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095560A4 *

Also Published As

Publication number Publication date
CN112771408B (zh) 2023-12-12
CN112771408A (zh) 2021-05-07
CN113474675A (zh) 2021-10-01
US20220350002A1 (en) 2022-11-03
EP4095560A4 (en) 2023-07-12
EP4095560A1 (en) 2022-11-30
WO2021051733A1 (zh) 2021-03-25
CN117665831A (zh) 2024-03-08
US20220365183A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
WO2021051970A1 (zh) 飞行时间的测量方法、装置、存储介质和激光雷达
US20220026544A1 (en) Ranging Method, Apparatus, and Device
US11592553B2 (en) Distance measurement system and method using lidar waveform matching
CN107884779B (zh) 激光雷达、车辆、测距误差测量方法、及测距方法
US10281578B2 (en) Compensated distance measurement methods and apparatus
CN114938662A (zh) 激光雷达及激光雷达的控制方法
CN115210603B (zh) 激光雷达及激光雷达控制方法
WO2017221909A1 (ja) 距離測定装置
CN109581401B (zh) 距离检测传感器及其工作方法
CN112162291A (zh) 一种激光雷达信号处理电路及激光雷达
CN111366942B (zh) 激光雷达系统、用于增加激光雷达感测距离的装置和方法
JP2016014535A (ja) 測距装置
CN104777471B (zh) 一种脉冲激光近程动态增益控制电路
US20230161015A1 (en) Method and apparatus for improving laser beam ranging capability of lidar system, and storage medium thereof
CN116256767A (zh) 一种激光雷达飞行时间测量方法及系统
CN112099034A (zh) 一种脉冲信号测量电路及激光雷达系统
CN112198518A (zh) 一种脉冲激光雷达及其测距方法
CN218470966U (zh) 跨阻放大器芯片的检测装置、光电接收装置及激光雷达
WO2022160622A1 (zh) 一种距离测量方法、装置及系统
CN110850427B (zh) 可用于激光雷达的放大电路、激光雷达、控制方法
US20190154814A1 (en) Electronic distance meter
CN106054199B (zh) 无人机、超声波测距方法及装置
US20220120881A1 (en) Control of optical receiver based on environmental condition
CN117805782A (zh) 激光雷达的飞行时间测量方法及装置
CN114609615A (zh) 一种激光雷达脉冲光信号接收探测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020865826

Country of ref document: EP

Effective date: 20220822