WO2021051724A1 - 激光收发模组及其光调方法、激光雷达及自动驾驶设备 - Google Patents

激光收发模组及其光调方法、激光雷达及自动驾驶设备 Download PDF

Info

Publication number
WO2021051724A1
WO2021051724A1 PCT/CN2020/070295 CN2020070295W WO2021051724A1 WO 2021051724 A1 WO2021051724 A1 WO 2021051724A1 CN 2020070295 W CN2020070295 W CN 2020070295W WO 2021051724 A1 WO2021051724 A1 WO 2021051724A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
laser
receiving
channel
optical system
Prior art date
Application number
PCT/CN2020/070295
Other languages
English (en)
French (fr)
Inventor
周勇
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to JP2022541193A priority Critical patent/JP7312979B2/ja
Priority to CN202080004056.8A priority patent/CN112585493B/zh
Priority to EP20865390.7A priority patent/EP4086657A4/en
Priority to PCT/CN2020/070295 priority patent/WO2021051724A1/zh
Publication of WO2021051724A1 publication Critical patent/WO2021051724A1/zh
Priority to US17/516,789 priority patent/US20220057489A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters

Definitions

  • the embodiment of the present invention relates to the field of radar technology, in particular to a laser transceiver module and its light adjustment method, laser radar and automatic driving equipment.
  • Lidar is a radar system that uses lasers to detect the location and speed of target objects.
  • Lidar generally includes a laser transceiver module composed of a transmitter module and a receiver module. Its working principle is that the transmitter module first emits the outgoing laser for detection to the target, and then the receiver module receives the echo laser reflected from the target object, and processes the received echo laser to obtain relevant information about the target object, for example Parameters such as distance, azimuth, height, speed, attitude, and even shape.
  • the existing laser transceiver module contains many components, and after assembling each component, it is necessary to perform complex light adjustment, and then determine the position of each component. Since the light paths between each component affect each other, the light path adjustment is more complicated and the adjustment time is longer. In addition, in order to fix the positions of the various components, the fixed structure occupies a relatively large volume, resulting in a relatively large volume of the entire transceiver module.
  • the main purpose of the embodiments of the present invention is to provide a laser transceiver module and its light adjustment method, laser radar and automatic driving equipment, which realizes the modular design of the laser transceiver module and enables the light adjustment It is relatively simple and greatly compressed.
  • a technical solution adopted in the embodiment of the present invention is to provide a laser transceiver module, the laser transceiver module includes a base, a side cover, a laser emitting module, a transmitting optical system, a beam splitting module, a receiving optical system, and a laser receiving module ;
  • the base includes a base body, the base body and the side cover are enclosed to form a cavity, the transmitting optical system, the beam splitting module, and the receiving optical system are arranged in the cavity, and the cavity is Provided with a transmitting channel, a beam splitting channel and a receiving channel for respectively installing the transmitting optical system, the beam splitting module and the receiving optical system;
  • the laser emitting module and the laser receiving module are arranged on the base and placed outside the cavity;
  • the laser emitting module is used to emit the outgoing laser; the emitting optical system is used to collimate the outgoing laser; the beam splitting module is used to make the collimated outgoing laser pass through and then exit to the detection area, and make The echo laser incident coaxially with the outgoing laser is deflected and directed toward the receiving optical system; the receiving optical system is used for condensing the echo laser, and directing the concentrated echo laser to the laser Receiving module; the laser receiving module is used to receive the echo laser.
  • a first mounting frame, a second mounting frame, and a third mounting frame are provided in the cavity, a transmitting channel is provided in the first mounting frame, and a receiving channel is provided in the second mounting frame.
  • the third mounting frame is provided with a beam splitting channel, the beam splitting channel includes a first optical port, a second optical port, and a third optical port, and the first optical port is aligned with the light outlet of the emission channel, The third optical port is aligned with the light entrance of the receiving channel.
  • the first mounting frame is an integrated mounting frame
  • the second mounting frame is an integrated or split mounting frame
  • the first mounting frame includes a first top plate and a first bottom plate, and the emission channel is formed between the first top plate and the first bottom plate.
  • the emission optical system includes a fast-axis collimation module and a slow-axis collimation module, which are composed of multiple emission lenses, and the emission channel includes a plurality of emission lens positions for installing the emission lenses.
  • a limit block is arranged between the adjacent emission lens positions, and the limit block is arranged on the inner side of the emission channel and located on the upper and lower sides.
  • a weight reduction groove is opened at the bottom of the first bottom plate.
  • At least a first emission aperture and a second emission aperture are arranged in the emission channel;
  • the first emission aperture includes at least one first emission sub-aperture arranged in sequence between the fast axis collimation module and the slow axis collimation module, and each first emission sub-aperture includes a corresponding arrangement Light blocking parts on the lower side of the first top plate and the upper side of the first bottom plate;
  • the second emission aperture is arranged between the slow axis collimation module and the beam splitting module, and the second emission aperture is provided with a circular first light through hole.
  • the second mounting frame includes one or more second top plates, and one or more second bottom plates corresponding to the second top plates, one or more pairs of the second top plates and the first The receiving channel is formed between the two bottom plates.
  • the receiving optical system includes a focusing module and a correction module, composed of a plurality of receiving lenses
  • the receiving channel includes a plurality of receiving lens positions for installing the receiving lens
  • the adjacent receiving lens A limit block is arranged between the positions, and the limit block is arranged on the upper and lower sides of the receiving channel.
  • At least a first receiving diaphragm and a second receiving diaphragm are arranged in the receiving channel;
  • the first receiving aperture is arranged between the focusing module and the correction module, and the first receiving aperture is provided with a circular second light through hole;
  • the second receiving aperture is arranged between the correction module and the laser receiving module, and the second receiving aperture is provided with a circular third light-passing hole.
  • the third mounting frame and the first mounting frame are an integral structure.
  • a mirror module is further provided in the cavity, and the mirror module is used to reflect the echo laser deflected by the beam splitting module and then shoot it toward the receiving optical system;
  • a reflection channel is provided in the fourth mounting frame, and the mirror module is installed in the reflection channel; the light entrance of the reflection channel and the first beam splitting channel The three optical ports are aligned, and the light outlet of the reflection channel is aligned with the light inlet of the receiving channel.
  • the fourth mounting frame, the second mounting frame and the third mounting frame are of an integrated structure.
  • the base further includes a fixing plate extending from one side of the base body, the laser emitting module is arranged on the fixing plate, and the laser receiving module is arranged on the outer side wall of the base body .
  • the transmitting optical system, the beam splitting module and the receiving optical system are respectively fixed in the transmitting channel, the beam splitting channel and the receiving channel by adhesive.
  • An embodiment of the present invention also provides a laser radar, which includes at least one laser transceiver module as described above.
  • An embodiment of the present invention also provides an automatic driving device, including a driving device body and the above-mentioned lidar, and the lidar is installed on the driving device body.
  • the embodiment of the present invention also provides a method for adjusting the emitted light of the laser transceiver module as described above, and the method includes:
  • the laser emitting module is fixed to the base.
  • the embodiment of the present invention also provides a receiving light adjustment method of the laser transceiver module as described above, and the method includes:
  • the laser receiving module is fixed to the base.
  • the beneficial effect of the embodiment of the present invention is: different from the prior art, in the laser radar provided by the embodiment of the present invention, the transmitting optical system, the beam splitting module, and the receiving optical system are set in the cavity by setting a separate cavity.
  • the laser emitting module and the laser receiving module are arranged on a base outside the cavity, and the cavity is provided with a transmitting channel, a beam splitting channel and a receiving channel for fixing the transmitting optical system, the beam splitting module and the receiving optical system respectively.
  • the transmitting optical system, beam splitting module and receiving optical system are directly embedded in their respective channels, there is no need to install other fixing devices and fasteners for fixing, which reduces the number of parts, saves costs, and the assembly process is simpler and reduced
  • the assembly time is improved, and the assembly efficiency is improved; in addition, it is also beneficial to reduce the height and width of the laser transceiver module, so that the volume and weight of a single laser transceiver module are reduced.
  • the transmitting optical system, beam splitting module, and receiving optical system in the cavity can be used as a whole to perform optical adjustment between the laser emitting module and the laser receiving module. There are fewer parts involved in optical adjustment, which reduces the complexity of optical path adjustment. , Which reduces the adjustment time and assembly complexity.
  • the adjusted laser transceiver module has a modular structure and can be combined with other laser transceiver modules to form a multi-channel transceiver to meet the requirements of large field of view and high resolution.
  • the laser optical paths of each laser transceiver module are separated to avoid mutual influence.
  • the problem module can be directly replaced, which is convenient for repair and replacement, has strong interchangeability, and is easy to mass produce.
  • Figure 1 shows a structural block diagram of a lidar provided by an embodiment of the present invention
  • FIG. 2 shows a structural block diagram of a lidar provided by another embodiment of the present invention
  • Fig. 3 shows a structural block diagram of a lidar provided by another embodiment of the present invention.
  • FIG. 4 shows a structural block diagram of a laser transceiver module provided by an embodiment of the present invention
  • FIG. 5 shows a structural block diagram from another angle of the laser transceiver module provided by the embodiment of the present invention.
  • Figure 6 shows a front view of the laser transceiver module provided by the embodiment of the present invention after opening the side cover;
  • FIG. 7 shows a schematic structural diagram of a laser transceiver module provided by an embodiment of the present invention after the side cover is opened;
  • FIG. 8 shows a schematic structural diagram from another angle of the laser transceiver module provided by the embodiment of the present invention after the side cover is opened;
  • FIG. 9 shows a schematic structural diagram of the emitted light modulation of a laser transceiver module provided by an embodiment of the present invention.
  • FIG. 10 shows a schematic structural diagram from another angle of the emission light adjustment of the laser transceiver module provided by the embodiment of the present invention.
  • FIG. 11 shows a schematic structural diagram of receiving light modulation of a laser transceiver module according to an embodiment of the present invention
  • FIG. 12 shows a schematic structural diagram of an automatic driving device provided by an embodiment of the present invention.
  • FIG. 13 shows a schematic structural diagram of an automatic driving device provided by another embodiment of the present invention.
  • Lidar 100 laser transceiver module 10, base 1, base body 11, fixing plate 12, mounting plate 13, mounting hole 131, limit baffle 132, light entrance hole 14, light exit hole 15, side cover 2, laser emission Module 3, emission board 31, heat sink 32, emission optical system 4, fast axis collimation module 41, first fast axis collimator 411, second fast axis collimator 412, third fast axis collimator 413, Slow axis collimation module 42, beam splitting module 5, receiving optical system 6, focusing module 61, correction module 62, laser receiving module 7, mirror module 8, cavity 9, transmitting channel 91, beam splitting channel 92, receiving channel 93, reflection channel 94, limit block 95, first emission aperture 9611, second emission aperture 9612, first reception aperture 9621, second reception aperture, filter 963, first mounting frame 971, first A top plate 9711, a first bottom plate 9712, a weight reduction slot 9713, a second mounting frame 972, a second top plate 9721, a second bottom plate 9722, a
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may be that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • an embodiment of the present invention provides a laser radar 100, which includes a laser transceiver module 10.
  • the laser transceiver module 10 is used for emitting outgoing laser light and for receiving echoed laser light.
  • the echoed laser light is laser light returned after the outgoing laser light is reflected by an object in the detection area.
  • the laser transceiver module 10 includes a laser transmitting module 3, a transmitting optical system 4, a beam splitting module 5, a receiving optical system 6 and a laser receiving module 7.
  • the laser emitting module 3 is used to emit the outgoing laser; the emitting optical system 4 is used to collimate the outgoing laser; the beam splitting module 5 is used to make the collimated outgoing laser pass through and then exit to the detection area, and make it coaxially incident with the outgoing laser.
  • the echo laser is deflected and directed to the receiving optical system 6; the receiving optical system 6 is used to converge the echo laser and shoot the collected echo laser to the laser receiving module 7; the laser receiving module 7 is used to receive the echo laser.
  • the laser emission module 3 may include a laser module and an emission drive module.
  • the laser module is used to emit the emitted laser, and the emission drive module is connected to the laser module for driving and controlling the operation of the laser module.
  • the laser receiving module 7 may include a detector module and a receiving driving module. The detector module is used to receive the echo laser converged by the receiving optical system 6, and the receiving drive module is connected with the detector module to drive and control the operation of the detector module.
  • the lidar 100 may also include a control and signal processing module, such as a field programmable gate array (Field Programmable Gate Array, FPGA).
  • FPGA Field Programmable Gate Array
  • the FPGA is connected to the emission drive module to perform emission control of the emitted laser.
  • the FPGA is also connected to the clock pin, data pin, and control pin of the laser receiving module 7 to perform the receiving control of the echo laser.
  • the laser emitting module 3 may be various types of signal light sources, such as laser diodes (LD), vertical cavity surface emitting lasers (Vertical Cavity Surface Emitting Laser, VCSEL), light emitting diodes (Light Emitting Diode, LED) optical fiber and other devices .
  • the transmitting optical system 4 may adopt one or more combinations of optical fiber and ball lens group, separate ball lens group, cylindrical lens group, and the like.
  • the beam splitting module 5 may include a central circular hole reflector, a polarization beam splitter, a polarization beam splitter, a combined beam splitter (a polarization beam splitter is provided at the central opening of the reflector), and the like.
  • the receiving optical system 6 may adopt one or more combinations of a ball lens, a ball lens group, or a cylindrical lens group.
  • the laser receiving module 7 can use Avalanche Photo Diode (APD), Silicon photomultiplier (SiPM), APD, Multi-Pixel Photon Counter (MPPC), and photomultiplier tube. , PMT), single-photon avalanche diode (SPAD), fast charge-coupled device (Charge-coupled Device, CCD) and complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) and other receiving devices.
  • Avalanche Photo Diode Avalanche Photo Diode
  • SiPM Silicon photomultiplier
  • APD Multi-Pixel Photon Counter
  • PMT single-photon avalanche diode
  • FSD fast charge-coupled device
  • CCD charge-coupled Device
  • CMOS complementary metal oxide semiconductor
  • the specific structure of the laser transceiver module 10 will be further described below.
  • the laser transceiver module 10 includes a base 1, a side cover 2, a laser emitting module 3, a emitting optical system 4, a beam splitting module 5, a receiving optical system 6 and a laser receiving module 7.
  • the base 1 includes a base body 11, the base body 11 and the side cover 2 are enclosed to form a cavity 9.
  • the transmitting optical system 4, the beam splitting module 5, and the receiving optical system 6 are arranged in the cavity 9 and the cavity 9 is provided with separate
  • the transmitting optical system 4, the beam splitting module 5 and the transmitting channel 91, the beam splitting channel 92 and the receiving channel 93 of the receiving optical system 6 are installed.
  • the laser emitting module 3 and the laser receiving module 7 are arranged on the base 1 and placed outside the cavity 9.
  • the transmitting optical path and the receiving optical path are coaxially arranged.
  • the base body 11 has a square frame structure with one side open, and the side cover 2 covers the opening position.
  • the base 1 further includes a fixing plate 12 extending from one side of the base body 11, and the laser emitting module 3 is arranged on the fixing plate 12.
  • the laser receiving module 7 is arranged on the outer side wall of the base body 11.
  • the base body 11 is aligned with the laser emitting module 3 and is provided with a light entrance hole 14 penetrating through the side wall of the base body 11, and the outgoing laser light emitted by the laser emitting module 3 enters the emitting optical system in the cavity 9 through the light entrance hole 14 4.
  • the base body 11 is aligned with the laser receiving module 7 and is provided with a light exit hole 15 (as shown in FIG. 8) that penetrates the side wall of the base body 11, and the echo laser converged by the receiving optical system 6 in the cavity 9 passes through the light exit hole 15
  • the hole 15 is incident on the laser receiving module 7.
  • a mounting plate 13 is also provided on the base 1, and a mounting hole 131 is opened on the mounting plate 13, threaded connectors (such as screws or bolts, etc.) pass through the mounting hole 131 to fix the base 1 to a corresponding position in the lidar 100.
  • two mounting plates 13 are provided.
  • a first mounting plate 13 extends from the bottom of the side wall of one end of the base body 11 where the beam splitting module 5 is installed, and a second mounting plate 13 extends from one end of the fixing plate 12 .
  • the second mounting plate 13 is also provided with a limit baffle 132, and the laser emitting module 3 is located between the limit baffle 132 and the outer side wall of the base body 11.
  • the shape of the side cover 2 matches the shape of the opening of the base 1, and generally a square cover can be used.
  • the side cover 2 is fixed to the base body 11 by fasteners such as screws or bolts.
  • the laser emitting module 3 includes a emitting board 31 and a heat dissipation block 32 mounted on the emitting board 31.
  • the transmitting board 31 includes a printed circuit board (Printed Circuit Board, PCB), and a plurality of electronic components are arranged on the PCB.
  • the emitting board 31 is used to realize the function of emitting laser light.
  • the laser emitting module 3 is arranged on the fixed board 12 sideways, and the board surface of the PCB is perpendicular to the fixed board 12.
  • the laser emitting module 3 is arranged on the side, and the PCB is not attached to the fixed board 12 in a large area, which is beneficial to the heat dissipation of the emitting board 31.
  • the cavity 9 is provided with a first mounting frame 971, a second mounting frame 972, and a third mounting frame 973.
  • the first mounting frame 971 is provided with a launching channel 91
  • the second mounting frame 972 A receiving channel 93 is provided inside, and a beam splitting channel 92 is provided in the third mounting frame 973.
  • the transmitting optical system 4, the beam splitting module 5 and the receiving optical system 6 are respectively embedded in the transmitting channel 91, the beam splitting channel 92 and the receiving channel 93. Since the transmitting optical system 4, the beam splitting module 5 and the receiving optical system 6 are directly embedded in their respective channels, there is no need to set other fixing devices and fasteners for fixing, reducing the number of parts, saving costs, and improving the assembly process. It is simple, reduces assembly time and improves assembly efficiency; in addition, it is also beneficial to reduce the height and width of the laser transceiver module 10, so that the volume and weight of a single laser transceiver module 10 are reduced.
  • the transmitting optical system 4, the beam splitting module 5, and the receiving optical system 6 can be fixed in their respective channels by means of glue.
  • the emission channel 91 receives the emitted laser light through the light entrance hole 14 on the base 1, and the emission channel 91 also includes a light output port through which the emitted laser light enters the beam splitting channel 92.
  • the receiving channel 93 includes a light entrance through which the echo laser passing through the beam splitting channel 92 enters the receiving channel 93, and then enters the laser receiving module 7 through the light exit hole 15.
  • the beam splitting channel 92 includes a first optical port, a second optical port, and a third optical port. The first optical port is aligned with the light outlet of the emission channel 91, and the third optical port is aligned with the light inlet of the receiving channel 93. The two optical ports face the detection area.
  • the first mounting frame 971 is an integral mounting frame.
  • the first mounting frame 971 includes a first top plate 9711 and a first bottom plate 9712, and an emission channel 91 is formed between the first top plate 9711 and the first bottom plate 9712.
  • the bottom of the first bottom plate 9712 is provided with a weight-reducing groove 9713, which reduces the weight of the product by removing part of the raw materials, and meets the requirements of lighter product.
  • the emitting optical system 4 includes a plurality of emitting lenses, the emitting channel 91 includes a plurality of emitting lens positions for installing the emitting lens, a limit block 95 is arranged between adjacent emitting lens positions, and the limit block 95 is arranged in the emitting channel 91 The inner side and located on the upper and lower sides.
  • the limit block 95 is set on the inner side of the emission channel 91 to prevent the limit block 95 from being blocked in the emission channel 91 The outgoing laser light propagated in.
  • the multiple emission lenses of the emission optical system 4 constitute a fast-axis collimation module 41 and a slow-axis collimation module 42.
  • the fast axis collimating module 41 includes a first fast axis collimating lens 411, a second fast axis collimating lens 412, and a third fast axis collimating lens 413.
  • the slow axis collimating module 42 includes a slow axis collimating lens. At least a first emission aperture 9611 and a second emission aperture 9612 are provided in the emission channel 91, which can reduce or eliminate stray light on the emission light path.
  • the first emission aperture 9611 includes at least one first emission sub-aperture arranged between the fast-axis collimation module 41 and the slow-axis collimation module 42 in sequence, and each first emission sub-aperture includes a first emission sub-aperture corresponding to the first emission sub-aperture.
  • two first emission sub-apertures are provided, and by providing two first emission sub-apertures, more than 95% of stray light can be eliminated.
  • the structure of the first emission sub-aperture is elongated protrusions arranged on the upper and lower sides of the emission channel 91, and an arc-shaped transition is formed between the protrusions and the sidewall of the channel. Since the outgoing laser light collimated by the fast axis will be reflected back and forth on the side wall in the emission channel 91, the reflected light outside the optical path of the outgoing laser light can be blocked by setting the elongated protrusions.
  • the second emission aperture 9612 is provided between the slow axis collimation module 42 and the beam splitting module 5. Since the light collimated by the slow axis is basically a circular spot, the second emission aperture 9612 may be provided with a circular first light-passing hole.
  • the second mounting frame 972 is an integrated or split mounting frame.
  • the second mounting frame 972 includes one or more second top plates 9721, and one or more second bottom plates 9722 corresponding to the second top plates 9721, and one or more pairs of second top plates 9721 and second bottom plates 9722 form a receiving Channel 93.
  • the first mounting frame 971 preferably adopts an integrated mounting frame, so that the entire emission light path is set in the enclosed emission channel 91, which can block the light and prevent the emitted laser light from being scattered or reflected by the laser receiving module 7 to form The leading light leads to the formation of a near-field blind zone after being received by the laser receiving module 7.
  • the receiving light path does not need to be subjected to light blocking treatment, and the second mounting frame 972 can be provided in sections, that is, the second mounting frame 972 can be a split mounting frame, which can simplify processing and reduce weight.
  • the receiving optical system 6 includes a plurality of receiving lenses, the receiving channel 93 includes a plurality of receiving lens positions for installing the receiving lens, a limit block 95 is arranged between adjacent receiving lens positions, and the limit block 95 is arranged in the receiving channel 93 The upper and lower sides. At least one receiving aperture 962 is provided in the receiving channel 93. The receiving diaphragm 962 is arranged between the receiving lenses, which can reduce or eliminate stray light in the receiving optical path.
  • the multiple receiving lenses of the receiving optical system 6 constitute a focusing module 61 and a correction module 62. At least a first receiving aperture 9621 and a second receiving aperture are provided in the receiving channel 93.
  • the first receiving aperture 9621 is provided between the focusing module 61 and the correction module 62, and the first receiving aperture 9621 is provided with a circular second light through hole.
  • the second receiving diaphragm is arranged between the correction module 62 and the laser receiving module 7, and the second receiving diaphragm is also provided with a circular third light-passing hole.
  • the light exit hole 15 shown in FIG. 8 is the second receiving aperture.
  • a filter 963 is also arranged between the beam splitting module 5 and the focusing module 61 to filter out stray light in the non-working band, which has a good effect on eliminating natural light interference and other radar interference.
  • the third mounting frame 973 and the first mounting frame 971 are an integrated structure, so that the entire emitting light path and the splitting light path are arranged in a closed channel, which can block the light and prevent the emitted laser light from being scattered or reflected to form a lead
  • the light is received by the laser receiving module 7 to form a near-field blind zone; at the same time, the transmitting optical system 4 and the beam splitting module 5 are compactly arranged, which is beneficial to reduce the height and width of the laser transceiver module 10, so that the volume of a single laser transceiver module 10 And weight are reduced.
  • the third mounting frame 973 and the first mounting frame 971 may also have a split structure.
  • a mirror module 8 is also provided in the cavity 9.
  • the mirror module 8 is used to reflect the echo laser deflected by the beam splitting module 5 and send it to the receiving optical system. 6.
  • the reflector module 8 can adopt a flat reflector, a cylindrical reflector, aspherical curvature reflector, and the like.
  • a fourth mounting frame 974 is provided in the cavity 9, a reflection channel 94 is provided in the fourth mounting frame 974, and the mirror module is installed in the reflection channel 94.
  • the light entrance of the reflection channel 94 is aligned with the third light opening of the beam splitting channel 92, and the light exit of the reflection channel 94 is aligned with the light entrance of the receiving channel 93.
  • the fourth mounting frame 974, the second mounting frame 972, and the third mounting frame 973 are an integrated structure, which is convenient for installation; at the same time, the mirror module 8 and the beam splitting module 5 and the receiving module 7 are compactly arranged, which is beneficial to The height and width of the laser transceiver module 10 are reduced, so that the volume and weight of a single laser transceiver module 10 are reduced.
  • the fourth mounting frame 974, the second mounting frame 972, and the third mounting frame 973 may also have a split structure.
  • first mounting bracket 971, the second mounting bracket 972, the third mounting bracket 973, and the fourth mounting bracket 974 are integrated with the base body 11; the first mounting bracket 971 and the second mounting bracket 972 are omitted.
  • the fixing structure of the third mounting frame 973 and the fourth mounting frame 974 is beneficial to reduce the height and width of the laser transceiver module 10, so that the volume and weight of a single laser transceiver module 10 are reduced.
  • a filter 963 may be further provided between the mirror module 8 and the receiving optical system 6.
  • the filter 963 may be a narrow band filter, such as a narrow band filter of 905 nm or 1550 nm.
  • the selection of the film can be determined according to the wavelength of the emitted laser light of the laser emitting module 3, which is mainly used to filter the interference light in the non-operating band, and has a good effect on eliminating natural light interference and other radar interference.
  • the laser transceiver module 10 of a single laser optical path is designed as a module to separate each laser optical path to avoid mutual influence.
  • the problem module can be directly replaced, which is convenient Maintenance and replacement, strong interchangeability, easy mass production.
  • the assembly of structural components is different from the traditional top-to-bottom assembly method, but adopts a side assembly method. Each optical component is embedded in the cavity 9 from the side for installation, omitting the connection structure between the optical components, reducing The height of the laser transceiver module 10 is reduced, the product size is reduced, and the product weight is also reduced.
  • the beam splitting module 5 and the receiving optical system 6 are directly embedded in their respective channels, there is no need to set other fixing devices and fasteners for fixing, which reduces the number of parts, saves costs, and improves the assembly process. It is simple, reduces assembly time and improves assembly efficiency; in addition, it is also beneficial to reduce the height and width of the laser transceiver module 10, so that the volume and weight of a single laser transceiver module 10 are reduced.
  • the assembly of the above-mentioned laser transceiver module will be described below.
  • the laser transceiver module is pre-installed and optically adjusted before the entire lidar is installed.
  • the emission light adjustment method of the laser transceiver module 10 includes:
  • Step 101 Fix the transmitting optical system, the beam splitting module and the receiving optical system in the transmitting channel, the beam splitting channel and the receiving channel respectively to obtain the pre-installed modules;
  • the transmitting lens, the receiving lens, the diaphragm, the beam splitter, the reflecting mirror, etc. are pre-installed in the corresponding channel in the base, and then glued and fixed.
  • Step 102 Fix the pre-installed module on the emission light adjustment platform 300 and align it with the parallel light plate 301;
  • Step 103 Place the laser emitting module in the area of the base for fixing the laser emitting module
  • the emitting board and the heat sink are pre-assembled with screws to form an integral laser emitting module, and then the laser emitting module is placed on the fixed plate of the base.
  • the outgoing laser needs to be aimed at the light entrance hole on the base.
  • Step 104 Clamp the laser emitting module by the tooling clamp 302, so that the laser emitting port of the laser emitting module is aligned with the light entrance hole of the base;
  • Step 105 Adjust the laser emitting module in the X-axis, Y-axis and Z-axis directions through the three-dimensional adjustment frame 303, until the light spot on the parallel light plate 301 meets the preset requirements;
  • the position and contour of the best form of the light spot can be marked on the parallel light plate in advance.
  • the divergence angle can be calculated by measuring the spot size of the collimated outgoing laser. When the divergence angle is not greater than the preset divergence angle threshold, the spot is considered to be in the best form.
  • the adjustment sequence of the three directions of X axis, Y axis and Z axis it is preferable to adjust first along the emission direction of the emitted laser, that is, the X axis direction in Fig. 9 and Fig. 10, so that the light emission surface is located on the focal length of the collimating lens. At this time, there will be three clear light spots on the parallel light board (depending on the device characteristics of the emitting board, the shape of the light spot may be different for different emitting boards). Then fix the position of the laser emitting module in this direction and adjust the other two directions.
  • the adjustment of the other two directions has no specific sequence requirements, and can be carried out arbitrarily, and finally the light spot is located at the set position of the parallel light plate.
  • Step 106 Fix the laser emitting module to the base.
  • the laser emitting module can be glued and fixed on the base.
  • the receiving light adjustment method of the above-mentioned laser transceiver module 10 includes:
  • Step 201 Fix the base after the emission light adjustment on the receiving light adjustment platform 400, and the base is fixed with the laser emission module, the emission optical system, the beam splitting module and the receiving optical system;
  • Step 202 Clamp the laser receiving module by the tooling clamp 302 so that the laser receiving module contacts the light-emitting hole of the base;
  • Step 203 Adjust the laser receiving module in the X-axis and Y-axis directions through the three-dimensional adjustment frame 303, until the echo laser signal meets the preset requirements;
  • the adjustment sequence for the two directions of the X axis and the Y axis is also preferably adjusted along the optical axis direction of the echo laser, that is, the X axis direction in the figure, so that the receiving light spot is located at a suitable position.
  • the optimal position of the echo laser signal can be determined by the following methods: compare the echo laser with the preset optical signal threshold; when the echo laser is lower than the preset optical signal threshold, adjust the position of the laser receiving module; When the echo laser is greater than or equal to the preset optical signal threshold, it is determined that the current position of the laser receiving module is the optimal position for receiving the echo laser signal.
  • Step 204 Fix the laser receiving module to the base.
  • the laser transmitter module and the laser receiver module need to be adjusted, which reduces the optical adjustment links, is easy to operate, and improves the optical adjustment efficiency.
  • the light of a single laser transceiver module is adjusted well before installation, and the modules do not affect each other.
  • an embodiment of the present invention proposes an automatic driving device 200 that includes the lidar 100 in the above-mentioned embodiment.
  • the automatic driving device 200 may be a car, an airplane, a boat, or other related applications.
  • Lidar is a device for intelligent sensing and detection.
  • the automatic driving device 200 includes a driving device body 201 and the lidar 100 in the above embodiment, and the lidar 100 is installed on the driving device body 201.
  • the automatic driving device 200 is an unmanned car, and the lidar 100 is installed on the side of the car body. As shown in FIG. 13, the automatic driving device 200 is also an unmanned car, and the lidar 100 is installed on the roof of the car.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光收发模组(10)及其光调方法、激光雷达(100)及自动驾驶设备,涉及雷达技术领域。激光收发模组(10)包括底座(1)、侧盖(2)、激光发射模块(3)、发射光学系统(4)、分束模块(5)、接收光学系统(6)和激光接收模块(7);底座(1)包括底座本体(11),底座本体(11)与侧盖(2)合围形成一腔体(9),发射光学系统(4)、分束模块(5)和接收光学系统(6)设置于腔体(9)内,腔体(9)内设置有用于分别安装发射光学系统(4)、分束模块(5)和接收光学系统(6)的发射通道(91)、分束通道(92)和接收通道(93);激光发射模块(3)和激光接收模块(7)设置于底座(1)上,并置于腔体(9)外侧;激光发射模块(3)用于发射出射激光。该方案实现了激光收发模组(10)的模块化设计,使光调较为简单。

Description

激光收发模组及其光调方法、激光雷达及自动驾驶设备 技术领域
本发明实施例涉及雷达技术领域,特别是涉及一种激光收发模组及其光调方法、激光雷达及自动驾驶设备。
背景技术
激光雷达是用激光来探测目标物体的位置、速度等特征量的雷达系统。激光雷达一般包括由发射模组和接收模组组成的激光收发模组。其工作原理是发射模组先向目标发射用于探测的出射激光,然后接收模组接收从目标物体反射回来的回波激光,处理接收到的回波激光后可获得目标物体的有关信息,例如距离、方位、高度、速度、姿态、甚至形状等参数。
现有的激光收发模组中,包含的元器件较多,组装各元器件后需要进行复杂的光调,然后确定每个元器件的位置。由于每个元器件之间的光路相互影响,光路调节较为复杂,调节时间较长。且为了使各个元器件的位置装配固定,固定结构所占用的体积也较大,导致整个收发模组的体积较大。
发明内容
针对现有技术的上述缺陷,本发明实施例的主要目的在于提供一种激光收发模组及其光调方法、激光雷达及自动驾驶设备,实现了激光收发模组的模块化设计,使光调较为简单,体积大大压缩。
本发明实施例采用的一个技术方案是:提供一种激光收发模组,所述激光收发模组包括底座、侧盖、激光发射模块、发射光学系统、分束模块、接收光学系统和激光接收模块;
所述底座包括底座本体,所述底座本体与所述侧盖合围形成一腔体,所述发射光学系统、所述分束模块和所述接收光学系统设置于所述腔体内,所述腔体内设置有用于分别安装所述发射光学系统、所述分束模块和所述接收光学系统的发射通道、分束通道和接收通道;
所述激光发射模块和所述激光接收模块设置于所述底座上,并置于所述腔体外侧;
所述激光发射模块用于发射出射激光;所述发射光学系统用于准直所述出射激光;所述分束模块用于使准直后的所述出射激光穿过后出射到探测区域,并使与所 述出射激光同轴入射的回波激光偏转射向所述接收光学系统;所述接收光学系统用于会聚所述回波激光,并将会聚后的所述回波激光射向所述激光接收模块;所述激光接收模块用于接收所述回波激光。
可选的,所述腔体内设有第一安装架、第二安装架和第三安装架,所述第一安装架内设置有发射通道,所述第二安装架内设置有接收通道,所述第三安装架内设置有分束通道,所述分束通道包括第一光口、第二光口和第三光口,所述第一光口与所述发射通道的出光口对准,所述第三光口与所述接收通道的入光口对准。
可选的,所述第一安装架为一体式安装架,所述第二安装架为一体式或分体式安装架。
可选的,所述第一安装架包括第一顶板和第一底板,所述第一顶板和所述第一底板之间形成所述发射通道。
可选的,所述发射光学系统包括快轴准直模块和慢轴准直模块,由多个发射镜片组成,所述发射通道内包括多个用于安装所述发射镜片的发射镜片位,相邻的所述发射镜片位之间设置有限位块,所述限位块设置于所述发射通道的里侧并位于上下两侧。
可选的,所述第一底板的底部开设有减重槽。
可选的,所述发射通道内至少设置有第一发射光阑和第二发射光阑;
所述第一发射光阑包括依次设置于所述快轴准直模块和所述慢轴准直模块之间的至少一个第一发射子光阑,每个第一发射子光阑均包括对应设置于所述第一顶板下侧和所述第一底板上侧的挡光部;
所述第二发射光阑设置于所述慢轴准直模块和所述分束模块之间,所述第二发射光阑设有圆形的第一通光孔。
可选的,所述第二安装架包括一个或多个第二顶板、以及与所述第二顶板对应的一个或多个第二底板,一对或多对所述第二顶板和所述第二底板之间形成所述接收通道。
可选的,所述接收光学系统包括聚焦模块和校正模块,由多个接收镜片组成,所述接收通道内包括多个用于安装所述接收镜片的接收镜片位,相邻的所述接收镜片位之间设置有限位块,所述限位块设置于所述接收通道的上下两侧。
可选的,所述接收通道内至少设置有第一接收光阑和第二接收光阑;
所述第一接收光阑设置于所述聚焦模块和所述校正模块之间,所述第一接收光 阑设置有圆形的第二通光孔;
所述第二接收光阑设置于所述校正模块和所述激光接收模块之间,所述第二接收光阑设置有圆形的第三通光孔。
可选的,所述第三安装架和所述第一安装架为一体式结构。
可选的,所述腔体内还设置有反射镜模块,所述反射镜模块用于将所述分束模块偏转的所述回波激光反射后射向所述接收光学系统;所述腔体内设置有第四安装架,所述第四安装架内设置有反射通道,所述反射镜模组安装于所述反射通道内;所述反射通道的入光口与所述分束通道的所述第三光口对准,所述反射通道的出光口与所述接收通道的入光口对准。
可选的,所述第四安装架、所述第二安装架和所述第三安装架为一体式结构。
可选的,所述底座还包括从所述底座本体一侧延伸出的固定板,所述激光发射模块设置于所述固定板上,所述激光接收模块设置于所述底座本体的外侧壁上。
可选的,所述发射光学系统、所述分束模块和所述接收光学系统通过胶粘分别固定于所述发射通道、所述分束通道和所述接收通道内。
本发明实施例还提供了一种激光雷达,所述激光雷达包括至少一个如上所述的激光收发模组。
本发明实施例还提供了一种自动驾驶设备,包括驾驶设备本体以及如上所述的激光雷达,所述激光雷达安装于所述驾驶设备本体。
本发明实施例还提供了一种如上所述的激光收发模组的发射光调方法,所述方法包括:
将所述发射光学系统、分束模块和接收光学系统分别固定于所述发射通道、所述分束通道和所述接收通道内,得到预装模组;
将所述预装模组固定于发射光调平台上,对准平行光板;
将所述激光发射模块放置于所述底座用于固定所述激光发射模块的区域内;
通过工装夹夹住所述激光发射模块,使所述激光发射模块的激光出射口对准所述底座的入光孔;
通过三维调节架对所述激光发射模块在X轴、Y轴和Z轴方向进行调节,直至所述平行光板上的光斑满足预设要求;
将所述激光发射模块固定于所述底座。
本发明实施例还提供了一种如上所述的激光收发模组的接收光调方法,所述方法包括:
将经过发射光调的底座固定于接收光调平台上,所述底座上固定有激光发射模块、发射光学系统、分束模块和接收光学系统;
通过工装夹夹住所述激光接收模块,使所述激光接收模块接触所述底座的出光孔;
通过三维调节架对所述激光接收模块在X轴和Y轴方向进行调节,直至回波激光信号满足预设要求;
将所述激光接收模块固定于所述底座。
本发明实施例的有益效果是:区别于现有技术的情况,本发明实施例提供的激光雷达中,通过设置单独的腔体,将发射光学系统、分束模块和接收光学系统设置于腔体内,激光发射模块和激光接收模块设置于腔体外的底座上,腔体内设置有用于分别固定发射光学系统、分束模块和接收光学系统的发射通道、分束通道和接收通道。由于发射光学系统、分束模块和接收光学系统直接嵌于各自的通道内,无需设置其他固定装置以及紧固件进行固定,减少了零部件数量,节约了成本,组装工艺也更为简单,缩减了组装时间,提高了组装效率;此外也有利于减少激光收发模组的高度和宽度,使单个激光收发模组的体积和重量都减小。在腔体内的发射光学系统、分束模块和接收光学系统可以作为一个整体,分别与激光发射模块和激光接收模块之间进行光调,参与光调的部件较少,降低了光路调节的复杂度,减少了调节时间,也降低了装配复杂度。调整后的激光收发模组为模块化结构,可以与其他的激光收发模组组合构成多通道收发,满足大视场角和高分辨率要求。各个激光收发模组的激光光路之间分离,避免相互影响,单个激光收发模组有问题时可以直接更换问题模组,便于维修和更换,互换性强,容易量产。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1示出了本发明实施例提供的激光雷达的结构框图;
图2示出了本发明另一实施例提供的激光雷达的结构框图;
图3示出了本发明又一实施例提供的激光雷达的结构框图;
图4示出了本发明实施例提供的激光收发模组的结构框图;
图5示出了本发明实施例提供的激光收发模组的另一角度的结构框图;
图6示出了本发明实施例提供的激光收发模组打开侧盖后的主视图;
图7示出了本发明实施例提供的激光收发模组打开侧盖后的结构示意图;
图8示出了本发明实施例提供的激光收发模组打开侧盖后的另一角度的结构示意图;
图9示出了本发明实施例提供的激光收发模组的发射光调的结构示意图;
图10示出了本发明实施例提供的激光收发模组的发射光调的另一角度的结构示意图;
图11示出了本发明实施例提供的激光收发模组的接收光调的结构示意图;
图12示出了本发明实施例提供的自动驾驶设备的结构示意图;
图13示出了本发明另一实施例提供的自动驾驶设备的结构示意图。
具体实施方式中的附图标号如下:
激光雷达100,激光收发模组10,底座1,底座本体11,固定板12,安装板13,安装孔131,限位挡板132,入光孔14,出光孔15,侧盖2,激光发射模块3,发射板31,散热块32,发射光学系统4,快轴准直模块41,第一快轴准直镜411,第二快轴准直镜412,第三快轴准直镜413,慢轴准直模块42,分束模块5,接收光学系统6,聚焦模块61,校正模块62,激光接收模块7,反射镜模块8,腔体9,发射通道91,分束通道92,接收通道93,反射通道94,限位块95,第一发射光阑9611,第二发射光阑9612,第一接收光阑9621,第二接收光阑,滤光片963,第一安装架971,第一顶板9711,第一底板9712,减重槽9713,第二安装架972,第二顶板9721,第二底板9722,第三安装架973,第四安装架974,发射光调平台300,平行光板301,工装夹302,三维调节架303,接收光调平台400,自动驾驶设备200,驾驶设备本体201。
具体实施方式
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
需要注意的是,除非另有说明,本发明使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“垂直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本发明的描述中,“多个”、“若干”的含义是两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
如图1所示,本发明实施例提供了一种激光雷达100,其包括激光收发模组10。激光收发模组10用于发射出射激光,以及用于接收回波激光,回波激光为出射激光被探测区域内的物体反射后返回的激光。
如图2所示,激光收发模组10包括激光发射模块3、发射光学系统4、分束模块5、接收光学系统6和激光接收模块7。激光发射模块3用于发射出射激光;发射光学系统4用于准直出射激光;分束模块5用于使准直后的出射激光穿过后出射到探测区域,并使与出射激光同轴入射的回波激光偏转射向接收光学系统6;接收光学系统6用于会聚回波激光,并将会聚后的回波激光射向激光接收模块7;激光接收模块7用于接收回波激光。
如图3所示,激光发射模块3可以包括激光器模块和发射驱动模块,激光器模块用于发射出射激光,发射驱动模块与激光器模块连接,用于驱动和控制激光器模 块工作。激光接收模块7可以包括探测器模块和接收驱动模块。探测器模块用于接收经过接收光学系统6会聚的回波激光,接收驱动模块与探测器模块连接,用于驱动和控制探测器模块工作。
此外,激光雷达100还可以包括控制和信号处理模块,例如现场可编程门阵列(Field Programmable Gate Array,FPGA),FPGA与发射驱动模块连接,进行出射激光的发射控制。FPGA还分别与激光接收模块7的时钟引脚、数据引脚和控制引脚连接,进行回波激光的接收控制。
激光发射模块3可以为各种类型的信号光源,例如激光二极管(Laser Diode,LD)、垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)、发光二极管(Light Emitting Diode,LED)光纤等器件。发射光学系统4可以采用光纤和球透镜组、单独的球透镜组、柱面透镜组等的一种或多种组合。分束模块5可以包括中心圆孔反射镜、偏振分光镜、偏振分光平片、组合分光镜(反射镜中心开孔处设置有偏振分光平片)等。接收光学系统6可以采用球透镜、球透镜组或柱透镜组等的一种或多种组合。激光接收模块7可以采用雪崩光电二极管(Avalanche Photo Diode,APD)、硅光电倍增管(Silicon photomultiplier,SiPM)、APD、多像素光子计数器(Multi-Pixel Photon Counter,MPPC)、光电倍增管(photomultiplier tube,PMT)、单光子雪崩二极管(single-photon avalanche diode,SPAD)、快速电荷耦合元件(Charge-coupled Device,CCD)和互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)等接收器件。
下面对激光收发模组10的具体结构进行进一步说明。
如图4-图7所示,激光收发模组10包括底座1、侧盖2、激光发射模块3、发射光学系统4、分束模块5、接收光学系统6和激光接收模块7。底座1包括底座本体11,底座本体11与侧盖2合围形成一腔体9,发射光学系统4、分束模块5和接收光学系统6设置于腔体9内,腔体9内设置有用于分别安装发射光学系统4、分束模块5和接收光学系统6的发射通道91、分束通道92和接收通道93。激光发射模块3和激光接收模块7设置于底座1上,并置于腔体9外侧。
本实施例中,发射光路与接收光路同轴设置。
底座本体11呈一侧开口的方形框架结构,侧盖2盖合于该开口位置。底座1还包括从底座本体11一侧延伸出的固定板12,激光发射模块3设置于固定板12上。激光接收模块7设置于底座本体11的外侧壁上。
底座本体11上对准激光发射模块3的位置开设有贯穿底座本体11侧壁的入光 孔14,激光发射模块3发射的出射激光通过该入光孔14入射至腔体9内的发射光学系统4。底座本体11上对准激光接收模块7的位置开设有贯穿底座本体11侧壁的出光孔15(如图8所示),经过腔体9内的接收光学系统6会聚的回波激光通过该出光孔15入射至激光接收模块7。
底座1上还设置有安装板13,安装板13上开设有安装孔131,螺纹连接件(例如螺钉或螺栓等)穿过该安装孔131将底座1固定于激光雷达100内的相应位置。本实施例中设置有两块安装板13,从底座本体11安装分束模块5的一端的侧壁底部延伸出第一块安装板13,从固定板12的一端延伸出第二块安装板13。第二块安装板13上还设置有限位挡板132,激光发射模块3位于该限位挡板132和底座本体11的外侧壁之间。
侧盖2的形状与底座1的开口的形状相适配,一般可采用方形盖板。侧盖2通过螺钉或螺栓等紧固件固定于底座本体11。
激光发射模块3包括发射板31和安装于发射板31上的散热块32。发射板31包括一印制电路板(Printed Circuit Board,PCB),在该PCB上设置有多个电子元器件。发射板31用于实现发射出射激光的功能。本实施例中,激光发射模块3侧立设置于固定板12上,PCB的板面与固定板12垂直。将激光发射模块3侧立设置,PCB不与固定板12大面积贴合,有利于发射板31的散热。
如图6和图7所示,腔体9内设有第一安装架971、第二安装架972和第三安装架973,第一安装架971内设置有发射通道91,第二安装架972内设置有接收通道93,第三安装架973内设置有分束通道92。发射光学系统4、分束模块5和接收光学系统6分别嵌入发射通道91、分束通道92和接收通道93内。由于发射光学系统4、分束模块5和接收光学系统6直接嵌于各自的通道内,无需设置其他固定装置以及紧固件进行固定,减少了零部件数量,节约了成本,组装工艺也更为简单,缩减了组装时间,提高了组装效率;此外也有利于减少激光收发模组10的高度和宽度,使单个激光收发模组10的体积和重量都减小。
例如,发射光学系统4、分束模块5和接收光学系统6可以通过胶粘的方式固定于各自的通道内。
发射通道91通过底座1上的入光孔14接收出射激光,发射通道91还包括一出光口,出射激光通过该出光口入射至分束通道92。接收通道93包括一入光口,经过分束通道92的回波激光通过该入光口进入接收通道93,然后经过出光孔15入射至激光接收模块7。分束通道92包括第一光口、第二光口和第三光口,第一光口 与发射通道91的出光口对准,第三光口与接收通道93的入光口对准,第二光口朝向探测区域。
第一安装架971为一体式安装架,第一安装架971包括第一顶板9711和第一底板9712,第一顶板9711和第一底板9712之间形成发射通道91。第一底板9712的底部开设有减重槽9713,通过除去部分原材料,减轻产品的重量,满足产品轻量化的要求。
发射光学系统4包括多个发射镜片,发射通道91内包括多个用于安装发射镜片的发射镜片位,相邻的发射镜片位之间设置有限位块95,限位块95设置于发射通道91的里侧并位于上下两侧。通过设置上下两侧的两个限位块95,对安装于发射镜片位内的发射镜片准确限位;限位块95设置于发射通道91的里侧,避免限位块95遮挡在发射通道91中传播的出射激光。
发射光学系统4的多个发射镜片构成快轴准直模块41和慢轴准直模块42。快轴准直模块41包括第一快轴准直镜411、第二快轴准直镜412和第三快轴准直镜413。慢轴准直模块42包括慢轴准直镜。发射通道91内至少设置有第一发射光阑9611和第二发射光阑9612,可以减少或消除发射光路上的杂散光。
第一发射光阑9611包括依次设置于快轴准直模块41和慢轴准直模块42之间的至少一个第一发射子光阑,每个第一发射子光阑均包括对应设置于第一顶板9711下侧和第一底板9712上侧的挡光部。本实施例中,设置有两个第一发射子光阑,通过设置两个第一发射子光阑,能够消除95%以上的杂散光。如果仅设置一个第一发射子光阑,对杂散光的消除可能无法满足实际需求;因此综合成本和效果,设置两个第一发射子光阑。本实施例中,第一发射子光阑的结构为设置于发射通道91上下两侧的长条状凸起,且凸起与通道侧壁之间呈弧形过渡。由于经快轴准直后的出射激光会在发射通道91内的侧壁上来回反射,通过设置长条状凸起可以挡住出射激光传播的光路之外的反射光。
第二发射光阑9612设置于慢轴准直模块42和分束模块5之间。由于经过慢轴准直后的光基本为圆形光斑,因此第二发射光阑9612可以设置一圆形的第一通光孔。
第二安装架972为一体式或分体式安装架。第二安装架972包括一个或多个第二顶板9721、以及与第二顶板9721对应的一个或多个第二底板9722,一对或多对第二顶板9721和第二底板9722之间形成接收通道93。
需要说明的是,第一安装架971优选采用一体式安装架,使整个发射光路被设 置在封闭的发射通道91内,可以挡光,防止出射激光散射或反射后被激光接收模块7接收,形成前导光,导致被激光接收模块7接收后形成近场盲区。而接收光路无需做挡光处理,可以分段设置第二安装架972,也即第二安装架972可以采用分体式安装架,能简化加工并减轻重量。
接收光学系统6包括多个接收镜片,接收通道93内包括多个用于安装接收镜片的接收镜片位,相邻的接收镜片位之间设置有限位块95,限位块95设置于接收通道93的上下两侧。接收通道93内设置有至少一个接收光阑962。接收光阑962设置于接收镜片之间,可以减少或消除接收光路的杂散光。
接收光学系统6的多个接收镜片构成聚焦模块61和校正模块62。接收通道93内至少设置有第一接收光阑9621和第二接收光阑。第一接收光阑9621设置于聚焦模块61和校正模块62之间,第一接收光阑9621设置有一圆形的第二通光孔。第二接收光阑设置于校正模块62和激光接收模块7之间,第二接收光阑也设置有一圆形的第三通光孔。在本实施例中,图8所示的出光孔15为第二接收光阑。在分束模块5和聚焦模块61之间还设置有滤光片963,滤除非工作波段的杂散光,对消除自然光干扰和其他雷达干扰有较好的作用。
本发明实施例中,第三安装架973和第一安装架971为一体式结构,使整个发射光路和分束光路被设置在封闭的通道内,可以挡光,防止出射激光散射或反射形成前导光,被激光接收模块7接收后形成近场盲区;同时也使发射光学系统4和分束模块5紧凑设置,利于减少激光收发模组10的高度和宽度,使单个激光收发模组10的体积和重量都减小。在其他实施例中,第三安装架973和第一安装架971还可以为分体式结构。
如图6和图7所示,在一些实施例中,腔体9内还设置有反射镜模块8,反射镜模块8用于将分束模块5偏转的回波激光反射后射向接收光学系统6。反射镜模块8可以采用平面反射镜、柱面反射镜、非球面曲率反射镜等。腔体9内设置有第四安装架974,第四安装架974内设置有反射通道94,反射镜模组安装于反射通道94内。反射通道94的入光口与分束通道92的第三光口对准,反射通道94的出光口与接收通道93的入光口对准。
本实施例中,第四安装架974、第二安装架972和第三安装架973为一体式结构,便于安装;同时也使反射镜模块8与分束模块5、接收模块7紧凑设置,利于减少激光收发模组10的高度和宽度,使单个激光收发模组10的体积和重量都减小。在其他实施例中,第四安装架974、第二安装架972和第三安装架973还可以为分 体式结构。本实施例中,上述第一安装架971、第二安装架972、第三安装架973和第四安装架974与底座本体11为一体式结构;省略第一安装架971、第二安装架972、第三安装架973和第四安装架974的固定结构,利于减少激光收发模组10的高度和宽度,使单个激光收发模组10的体积和重量都减小。
在一些实施例中,在反射镜模块8和接收光学系统6之间还可以设置滤光片963,该滤光片963可以为窄带滤光片,例如905nm或1550nm的窄带滤光片,滤光片的选择可根据激光发射模块3的发射激光波长而定,主要用于滤除非工作波段的干扰光,对消除自然光干扰和其他雷达干扰有较好的作用。
本发明实施例中,单个激光光路的激光收发模组10设计为一个模块,使每个激光光路之间分离,避免相互影响,单个激光收发模组10有问题时可以直接更换问题模组,便于维修和更换,互换性强,容易量产。结构上部件的装配不同于传统的从上到下的装配方式,而是采用侧面装配的方式,各光学部件从侧面嵌入腔体9内进行安装,省略了各光学部件之间的连接结构,降低了激光收发模组10的高度,减小了产品尺寸,也减轻了产品重量。由于发射光学系统4、分束模块5和接收光学系统6直接嵌于各自的通道内,无需设置其他固定装置以及紧固件进行固定,减少了零部件数量,节约了成本,组装工艺也更为简单,缩减了组装时间,提高了组装效率;此外也有利于减少激光收发模组10的高度和宽度,使单个激光收发模组10的体积和重量都减小。
下面对上述激光收发模组的装配进行说明。激光收发模组在整个激光雷达的装机之前完成预装和光调。
请参考图9和图10所示,所述激光收发模组10的发射光调方法包括:
步骤101:将发射光学系统、分束模块和接收光学系统分别固定于发射通道、分束通道和接收通道内,得到预装模组;
本步骤中,将发射镜片、接收镜片、光阑、分束镜、反射镜等预装在底座内相对应的通道内,然后点胶固定。
步骤102:将预装模组固定于发射光调平台300上,对准平行光板301;
步骤103:将激光发射模块放置于底座用于固定激光发射模块的区域内;
本步骤中,首先将发射板与散热块通过螺钉预组装在一起,形成整体的激光发射模块,然后再将激光发射模块放置于底座的固定板上。出射激光需对准底座上的 入光孔。
步骤104:通过工装夹302夹住激光发射模块,使激光发射模块的激光出射口对准底座的入光孔;
步骤105:通过三维调节架303对激光发射模块在X轴、Y轴和Z轴方向进行调节,直至平行光板301上的光斑满足预设要求;
本步骤中,需要调整到光斑的最佳形态。可通过预先在平行光板上标记出光斑最佳形态所处的位置和轮廓,调整过程中,当出射激光位于该位置,且形状相符时,则认为光斑已达到最佳形态,满足预设要求。可通过测量准直后的出射激光的光斑大小计算发散角,当该发散角不大于预设的发散角阈值时,认为光斑处于最佳形态。
关于X轴、Y轴和Z轴三个方向的调节顺序,优选先沿出射激光的出射方向调节,也即图9和图10中的X轴方向,使出光面位于准直镜片的焦距上,此时平行光板上会呈现三条清晰的光斑(与发射板的器件特性有关,可能不同的发射板此处的光斑形状不同)。然后使激光发射模块在该方向的位置固定,调整另外两个方向。另外两个方向的调节无特定的先后顺序要求,可以任意进行,最终使光斑位于平行光板的设定位置即可。
步骤106:将激光发射模块固定于底座。
本步骤中,可将激光发射模块点胶固定于底座上。
至此,完成激光收发模组10的发射光调。
请参考图11所示,上述激光收发模组10的接收光调方法包括:
步骤201:将经过发射光调的底座固定于接收光调平台400上,底座上固定有激光发射模块、发射光学系统、分束模块和接收光学系统;
步骤202:通过工装夹302夹住激光接收模块,使激光接收模块接触底座的出光孔;
步骤203:通过三维调节架303对激光接收模块在X轴和Y轴方向进行调节,直至回波激光信号满足预设要求;
本步骤中,需要调整到接收回波激光信号的最优位置。和发射光调相似,关于X轴和Y轴两个方向的调节顺序,也是优选先沿回波激光的光轴方向调节,也即图中的X轴方向,使接收光斑位于合适的位置。可通过如下方式确定回波激光信号的最优位置:将回波激光与预设的光信号阈值进行对比;当回波激光低于预设的光信 号阈值时,则调节激光接收模块的位置;当回波激光大于或等于预设的光信号阈值时,则确定激光接收模块的当前位置为接收回波激光信号的最优位置。
步骤204:将激光接收模块固定于底座。
至此,完成激光收发模组10的接收光调。
在激光收发模组的整个光调过程中,只需要对激光发射模块和激光接收模块进行光调,减少了光调环节,易于操作,提升了光调效率。单个激光收发模组在装机之前光调好,模组之间互不影响。
更进一步的,基于上述激光雷达100,本发明实施例提出了一种包含上述实施例中的激光雷达100的自动驾驶设备200,该自动驾驶设备200可以是汽车、飞机、船以及其他涉及到使用激光雷达进行智能感应和探测的设备,该自动驾驶设备200包括驾驶设备本体201以及如上实施例的激光雷达100,激光雷达100安装于驾驶设备本体201。
如图12所示,该自动驾驶设备200为无人驾驶汽车,激光雷达100安装于汽车的车身侧面。如图13所示,该自动驾驶设备200同样为无人驾驶汽车,激光雷达100安装于汽车的车顶。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (19)

  1. 一种激光收发模组,其特征在于,所述激光收发模组包括底座、侧盖、激光发射模块、发射光学系统、分束模块、接收光学系统和激光接收模块;
    所述底座包括底座本体,所述底座本体与所述侧盖合围形成一腔体,所述发射光学系统、所述分束模块和所述接收光学系统设置于所述腔体内,所述腔体内设置有用于分别安装所述发射光学系统、所述分束模块和所述接收光学系统的发射通道、分束通道和接收通道;
    所述激光发射模块和所述激光接收模块设置于所述底座上,并置于所述腔体外侧;
    所述激光发射模块用于发射出射激光;所述发射光学系统用于准直所述出射激光;所述分束模块用于使准直后的所述出射激光穿过后出射到探测区域,并使与所述出射激光同轴入射的回波激光偏转射向所述接收光学系统;所述接收光学系统用于会聚所述回波激光,并将会聚后的所述回波激光射向所述激光接收模块;所述激光接收模块用于接收所述回波激光。
  2. 如权利要求1所述的激光收发模组,其特征在于,所述腔体内设有第一安装架、第二安装架和第三安装架,所述第一安装架内设置有发射通道,所述第二安装架内设置有接收通道,所述第三安装架内设置有分束通道,所述分束通道包括第一光口、第二光口和第三光口,所述第一光口与所述发射通道的出光口对准,所述第三光口与所述接收通道的入光口对准。
  3. 如权利要求2所述的激光收发模组,其特征在于,所述第一安装架为一体式安装架,所述第二安装架为一体式或分体式安装架。
  4. 如权利要求2或3所述的激光收发模组,其特征在于,所述第一安装架包括第一顶板和第一底板,所述第一顶板和所述第一底板之间形成所述发射通道。
  5. 如权利要求4所述的激光收发模组,其特征在于,所述发射光学系统包括快轴准直模块和慢轴准直模块,由多个发射镜片组成,所述发射通道内包括多个用于安装所述发射镜片的发射镜片位,相邻的所述发射镜片位之间设置有限位块,所述限位块设置于所述发射通道的里侧并位于上下两侧。
  6. 如权利要求4所述的激光收发模组,其特征在于,所述第一底板的底部 开设有减重槽。
  7. 如权利要求5所述的激光收发模组,其特征在于,所述发射通道内至少设置有第一发射光阑和第二发射光阑;
    所述第一发射光阑包括依次设置于所述快轴准直模块和所述慢轴准直模块之间的至少一个第一发射子光阑,每个第一发射子光阑均包括对应设置于所述第一顶板下侧和所述第一底板上侧的挡光部;
    所述第二发射光阑设置于所述慢轴准直模块和所述分束模块之间,所述第二发射光阑设有圆形的第一通光孔。
  8. 如权利要求2或3所述的激光收发模组,其特征在于,所述第二安装架包括一个或多个第二顶板、以及与所述第二顶板对应的一个或多个第二底板,一对或多对所述第二顶板和所述第二底板之间形成所述接收通道。
  9. 如权利要求8所述的激光收发模组,其特征在于,所述接收光学系统包括聚焦模块和校正模块,由多个接收镜片组成,所述接收通道内包括多个用于安装所述接收镜片的接收镜片位,相邻的所述接收镜片位之间设置有限位块,所述限位块设置于所述接收通道的上下两侧。
  10. 如权利要求9所述的激光收发模组,其特征在于,所述接收通道内至少设置有第一接收光阑和第二接收光阑;
    所述第一接收光阑设置于所述聚焦模块和所述校正模块之间,所述第一接收光阑设置有圆形的第二通光孔;
    所述第二接收光阑设置于所述校正模块和所述激光接收模块之间,所述第二接收光阑设置有圆形的第三通光孔。
  11. 如权利要求2所述的激光收发模组,其特征在于,所述第三安装架和所述第一安装架为一体式结构。
  12. 如权利要求2所述的激光收发模组,其特征在于,所述腔体内还设置有反射镜模块,所述反射镜模块用于将所述分束模块偏转的所述回波激光反射后射向所述接收光学系统;所述腔体内设置有第四安装架,所述第四安装架内设置有反射通道,所述反射镜模组安装于所述反射通道内;所述反射通道的入光口与所述分束通道的所述第三光口对准,所述反射通道的出光口与所述接收通道的入光口对准。
  13. 如权利要求12所述的激光收发模组,其特征在于,所述第四安装架、所述第二安装架和所述第三安装架为一体式结构。
  14. 如权利要求1所述的激光收发模组,其特征在于,所述底座还包括从所述底座本体一侧延伸出的固定板,所述激光发射模块设置于所述固定板上,所述激光接收模块设置于所述底座本体的外侧壁上。
  15. 如权利要求1所述的激光收发模组,其特征在于,所述发射光学系统、所述分束模块和所述接收光学系统通过胶粘分别固定于所述发射通道、所述分束通道和所述接收通道内。
  16. 一种激光雷达,其特征在于,所述激光雷达包括至少一个如权利要求1-15任意一项所述的激光收发模组。
  17. 一种自动驾驶设备,其特征在于,包括驾驶设备本体以及如权利要求18所述的激光雷达,所述激光雷达安装于所述驾驶设备本体。
  18. 一种如权利要求1-15任意一项所述的激光收发模组的发射光调方法,其特征在于,所述方法包括:
    将所述发射光学系统、分束模块和接收光学系统分别固定于所述发射通道、所述分束通道和所述接收通道内,得到预装模组;
    将所述预装模组固定于发射光调平台上,对准平行光板;
    将所述激光发射模块放置于所述底座用于固定所述激光发射模块的区域内;
    通过工装夹夹住所述激光发射模块,使所述激光发射模块的激光出射口对准所述底座的入光孔;
    通过三维调节架对所述激光发射模块在X轴、Y轴和Z轴方向进行调节,直至所述平行光板上的光斑满足预设要求;
    将所述激光发射模块固定于所述底座。
  19. 一种如权利要求1-15任意一项所述的激光收发模组的接收光调方法,其特征在于,所述方法包括:
    将经过发射光调的底座固定于接收光调平台上,所述底座上固定有激光发射模块、发射光学系统、分束模块和接收光学系统;
    通过工装夹夹住所述激光接收模块,使所述激光接收模块接触所述底座的 出光孔;
    通过三维调节架对所述激光接收模块在X轴和Y轴方向进行调节,直至回波激光信号满足预设要求;
    将所述激光接收模块固定于所述底座。
PCT/CN2020/070295 2020-01-03 2020-01-03 激光收发模组及其光调方法、激光雷达及自动驾驶设备 WO2021051724A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022541193A JP7312979B2 (ja) 2020-01-03 2020-01-03 レーザートランシーバーモジュールおよびその光学調整方法、レーザーレーダーおよび自動運転装置
CN202080004056.8A CN112585493B (zh) 2020-01-03 2020-01-03 激光收发模组及其光调方法、激光雷达及自动驾驶设备
EP20865390.7A EP4086657A4 (en) 2020-01-03 2020-01-03 LASER EMISSION-RECEPTION MODULE AND ASSOCIATED LIGHT MODULATION METHOD, LIDAR AND AUTONOMOUS DRIVING DEVICE
PCT/CN2020/070295 WO2021051724A1 (zh) 2020-01-03 2020-01-03 激光收发模组及其光调方法、激光雷达及自动驾驶设备
US17/516,789 US20220057489A1 (en) 2020-01-03 2021-11-02 Laser transceiving module and light adjustment method thereof, lidar, and automatic drive apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070295 WO2021051724A1 (zh) 2020-01-03 2020-01-03 激光收发模组及其光调方法、激光雷达及自动驾驶设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/516,789 Continuation US20220057489A1 (en) 2020-01-03 2021-11-02 Laser transceiving module and light adjustment method thereof, lidar, and automatic drive apparatus

Publications (1)

Publication Number Publication Date
WO2021051724A1 true WO2021051724A1 (zh) 2021-03-25

Family

ID=74883917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070295 WO2021051724A1 (zh) 2020-01-03 2020-01-03 激光收发模组及其光调方法、激光雷达及自动驾驶设备

Country Status (5)

Country Link
US (1) US20220057489A1 (zh)
EP (1) EP4086657A4 (zh)
JP (1) JP7312979B2 (zh)
CN (1) CN112585493B (zh)
WO (1) WO2021051724A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534168A (zh) * 2021-07-19 2021-10-22 深圳市镭神智能系统有限公司 一种激光雷达系统及驾驶设备
WO2023202282A1 (zh) * 2022-04-20 2023-10-26 探维科技(北京)有限公司 激光雷达装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113457916B (zh) * 2021-06-29 2023-01-06 珠海市华亚智能科技有限公司 一种激光雷达发射器校准装配设备
CN216385506U (zh) * 2022-02-17 2022-04-26 宁德时代新能源科技股份有限公司 检测装置及极片制造设备
CN115267741B (zh) * 2022-08-17 2023-09-15 深圳市速腾聚创科技有限公司 激光收发模组、激光雷达及自动驾驶设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184223A1 (en) * 2004-02-19 2005-08-25 Makoto Inomata Object detecting apparatus
CN108139555A (zh) * 2017-09-29 2018-06-08 索尔思光电(成都)有限公司 降低或消除内部光反射,提高良率,降低高温传输失效和/或改进osa传输性能的方法及实施该方法的改进型光收发器
CN109814087A (zh) * 2019-03-11 2019-05-28 上海禾赛光电科技有限公司 激光收发模块及激光雷达系统
CN109975783A (zh) * 2019-03-19 2019-07-05 深圳市速腾聚创科技有限公司 激光雷达
CN109991588A (zh) * 2019-04-29 2019-07-09 北京握奇数据股份有限公司 一种激光雷达扫描装置
CN110275177A (zh) * 2019-06-10 2019-09-24 深圳市速腾聚创科技有限公司 固态激光雷达、结构及其控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867622A (en) * 1997-07-15 1999-02-02 Kyocera Corporation Module for optical communication
CN1967285A (zh) * 2006-09-14 2007-05-23 中国科学院安徽光学精密机械研究所 激光雷达透射式共焦距收发光学系统
CN103649673A (zh) * 2011-04-15 2014-03-19 法罗技术股份有限公司 激光跟踪器中的增强的位置检测器
US9651417B2 (en) * 2012-02-15 2017-05-16 Apple Inc. Scanning depth engine
WO2019109993A1 (zh) * 2017-12-08 2019-06-13 上海禾赛光电科技有限公司 激光雷达系统及其控制方法、扫描角度的获取方法及车辆
CN108594206B (zh) * 2018-06-29 2020-04-24 上海禾赛光电科技有限公司 光传输模块、激光发射模块、激光雷达系统及车辆
CN208013418U (zh) * 2018-04-18 2018-10-26 北京爱尔达电子设备有限公司 一种激光云雷达的光学系统
CN208110044U (zh) * 2018-04-18 2018-11-16 北京爱尔达电子设备有限公司 一种激光云雷达装置
CN109991585A (zh) * 2019-03-25 2019-07-09 深圳市速腾聚创科技有限公司 激光雷达及激光雷达的装调方法
CN110376597B (zh) * 2019-08-08 2021-09-10 上海禾赛科技有限公司 激光雷达及其探测装置
CN110632618B (zh) * 2019-11-22 2020-11-27 深圳市速腾聚创科技有限公司 激光雷达及其控制方法以及自动驾驶装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184223A1 (en) * 2004-02-19 2005-08-25 Makoto Inomata Object detecting apparatus
CN108139555A (zh) * 2017-09-29 2018-06-08 索尔思光电(成都)有限公司 降低或消除内部光反射,提高良率,降低高温传输失效和/或改进osa传输性能的方法及实施该方法的改进型光收发器
CN109814087A (zh) * 2019-03-11 2019-05-28 上海禾赛光电科技有限公司 激光收发模块及激光雷达系统
CN109975783A (zh) * 2019-03-19 2019-07-05 深圳市速腾聚创科技有限公司 激光雷达
CN109991588A (zh) * 2019-04-29 2019-07-09 北京握奇数据股份有限公司 一种激光雷达扫描装置
CN110275177A (zh) * 2019-06-10 2019-09-24 深圳市速腾聚创科技有限公司 固态激光雷达、结构及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4086657A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534168A (zh) * 2021-07-19 2021-10-22 深圳市镭神智能系统有限公司 一种激光雷达系统及驾驶设备
WO2023202282A1 (zh) * 2022-04-20 2023-10-26 探维科技(北京)有限公司 激光雷达装置

Also Published As

Publication number Publication date
EP4086657A4 (en) 2023-03-15
CN112585493A (zh) 2021-03-30
JP7312979B2 (ja) 2023-07-24
EP4086657A1 (en) 2022-11-09
CN112585493B (zh) 2024-02-27
US20220057489A1 (en) 2022-02-24
JP2023500746A (ja) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2021051724A1 (zh) 激光收发模组及其光调方法、激光雷达及自动驾驶设备
CN112327275B (zh) 一种激光雷达
CN108594206B (zh) 光传输模块、激光发射模块、激光雷达系统及车辆
KR102319494B1 (ko) 차량 센서들에 대한 가변 빔 간격, 타이밍, 및 전력
CN108318874B (zh) 一种面阵激光雷达及移动平台
WO2021196192A1 (zh) 激光收发系统、激光雷达及自动驾驶设备
WO2022041137A1 (zh) 激光雷达和测距方法
CN112068150A (zh) 激光雷达和测距方法
US11609311B2 (en) Pulsed light irradiation/detection device, and optical radar device
US20230145710A1 (en) Laser receiving device, lidar, and intelligent induction apparatus
WO2022042078A1 (zh) 激光光源、光发射单元和激光雷达
US10969473B2 (en) Infrared range-measurement device and TIR lens
CN112585490B (zh) 激光发射模组及其装调方法、激光雷达及智能感应设备
CN210347918U (zh) 一种激光发射装置以及激光雷达系统
CN108873181A (zh) 光路控制系统及光模块
US7099536B1 (en) Single lens system integrating both transmissive and reflective surfaces for light focusing to an optical fiber and light reflection back to a monitor photodetector
US11867837B2 (en) LiDAR and device having LiDAR
US20050129407A1 (en) Imaging lens for multi-channel free-space optical interconnects
JP2024514846A (ja) レーザーレーダー
CN115053149A (zh) 激光雷达及具有激光雷达的设备
CN221595273U (zh) 雷达接收装置及激光雷达
CN220399650U (zh) 激光雷达系统和车辆
CN113030910A (zh) 一种激光雷达系统
CN216900913U (zh) 一种光路通道模块及激光雷达
CN212379567U (zh) 激光雷达光学系统与激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541193

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020865390

Country of ref document: EP

Effective date: 20220803