WO2021047268A1 - 高温加热炉的一种模块结构墙体及安装方法 - Google Patents
高温加热炉的一种模块结构墙体及安装方法 Download PDFInfo
- Publication number
- WO2021047268A1 WO2021047268A1 PCT/CN2020/100838 CN2020100838W WO2021047268A1 WO 2021047268 A1 WO2021047268 A1 WO 2021047268A1 CN 2020100838 W CN2020100838 W CN 2020100838W WO 2021047268 A1 WO2021047268 A1 WO 2021047268A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- furnace
- wall
- ceramic fiber
- fiber cotton
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/0003—Linings or walls
- F27D1/0006—Linings or walls formed from bricks or layers with a particular composition or specific characteristics
- F27D1/0009—Comprising ceramic fibre elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/10—Monolithic linings; Supports therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/02—Crowns; Roofs
- F27D1/021—Suspended roofs
- F27D1/022—Parts thereof, e.g. noses, arches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/02—Crowns; Roofs
- F27D1/021—Suspended roofs
- F27D1/024—Suspended roofs having an anchored layer of lining
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/14—Supports for linings
- F27D1/145—Assembling elements
Definitions
- the invention relates to the technical field of heating furnace structures, in particular to a modular structure wall of a high-temperature heating furnace.
- the invention also provides an installation method for the modular wall.
- the walls of ethylene cracking furnaces are mostly made of ceramic fiber cotton, and the walls of high-temperature heating furnaces such as steel heating furnaces and ceramic heating furnaces are mostly composed of refractory bricks and high-temperature castables.
- the walls of high-temperature heating furnaces such as ceramic fiber cotton, refractory bricks, and high-temperature castables have the following common disadvantages:
- refractory bricks and high temperature castable furnace walls also have the following defects:
- the traditional repair method is to remove the damaged part and use new bricks or use low-cement castable to cast the removed part as a whole.
- Patent Publication (Announcement) No.: CN201215439Y which discloses the "repair wall structure of walking heating furnace".
- the structure and maintenance method described are a big step forward compared with the traditional maintenance method, it only improves the maintenance speed.
- Changing the nature of the furnace wall means that it has not made any contribution to improving the service life of the furnace wall and improving the efficiency of radiation heat transfer on the inner wall of the furnace.
- Patent Publication (Announcement) No.: CN205066456U. which discloses "a new type of anti-burn-through refractory insulation furnace wall for forging furnaces", and provides a freely adjustable thickness, reduces the types of refractory bricks required, and reduces construction difficulty and labor costs , To avoid burning through the heat insulation layer, and to ensure that the temperature of the steel plate outside the furnace is low, and the new type of anti-burn through refractory heat insulation furnace wall is used for the forging furnace.
- the cross section of the furnace wall is from the outside to the inside, that is, “three layers of fiber blanket insulation, two layers of machine-made fiberboard insulation, one layer of diatomite brick insulation, two layers of clay brick refractory and castables are arranged in sequence on the inner side of the steel plate layer.
- Refractory layer Although the invention described in the literature has a certain contribution to the prevention of burn-through of the furnace wall, because the castable refractory layer still faces the high temperature environment in the furnace, firstly, it does not fundamentally change the problem of cracks in the castable refractory layer.
- the surface layer differentiation problem is that the radiation heat transfer performance of the inner wall of the furnace has not been changed.
- Patent application publication number: CN109535984A discloses "a kind of ultra-high temperature infrared infrared radiation heat preservation and energy-saving coating", the coating can withstand high temperature of 1800 degrees, the selected filler fused white corundum powder and tabular corundum powder also have very good properties. Strong high temperature resistance. On the one hand, it can ensure the high temperature resistance of the coating. On the other hand, the coating and the inner wall of the furnace wall are tightly connected to ensure that the coating does not fall off. This is because most of the inner walls of high-temperature kilns are made of corundum hollow. It is made of ball bricks, and materials of the same nature are easily permeated and sintered into a whole under the condition of no low melting point. However, the coatings described in the above documents still do not solve the problem that the inner wall of the furnace wall faces the high temperature environment in the furnace for a long time and gradually crystallizes and powders, which causes the coating to fall off.
- Patent Announcement Number: CN2575107Y It discloses a "spacer for high-temperature heating furnace", which is made of tungsten powder or molybdenum powder or doped tungsten, molybdenum powder and stacked in arc-shaped strips or plates, and the final image is Like the masonry wall, it is built into a cylindrical shape to form the spacer of the heating furnace, which separates the sintered material from the refractory material, avoids the pollution of the sintered material, reduces the wear of the refractory material, and improves the service life of the refractory material.
- the heating furnace spacer provided in the patent literature does not have the advantage of improving the radiation heat transfer performance of the inner wall of the furnace, and its technical background is proposed for tungsten and molybdenum induction sintering furnaces, and it does not indicate whether it is suitable for high-temperature heating furnaces in the steel, ceramics, and petrochemical industries. .
- Patent publication number: CN2575107Y It provides an energy-saving method for tubular heating furnaces, which solves the technical problem of being unable to reliably install numerous black-body elements with a certain weight on the lighter and softer refractory fiber lining, thereby realizing energy saving
- the invention has the advantages of good effect, low operating cost and easy realization. Specifically, it is hollow inside, one end is a black body element whose opening points to the center of the furnace, and one end is tapered into the refractory fiber lining of the furnace wall.
- the black body elements provided in the patent literature have the following defects: 1occupies the furnace space and hinders the production operation; 2the black body elements make the inner wall of the originally flat furnace wall greatly uneven, which reduces the radiant heat transfer and convective heat transfer in the furnace.
- the effect, in addition to the black body element materials and adhesives, are based on the existing technology in the field, and the materials do not have an original contribution to improve the energy-saving effect. Summary of the invention
- the present invention provides a modular structure wall of a high-temperature heating furnace, which greatly increases the radiation coefficient of the inner wall of the high-temperature heating furnace, significantly enhances the heat transfer efficiency in the furnace, saves energy and reduces emissions, and slows down the aging process of the furnace wall. , Increase the service life of the furnace wall.
- a modular structure wall of a high-temperature heating furnace includes a preset main truss of the furnace wall and a furnace top truss, characterized in that: the bottom surface of the furnace top truss is respectively fixed with corresponding The I-beam is connected, and the bottom of the I-beam is connected with a top clamping structure for hoisting outer screws, the upper surface of the ceramic fiber cotton module is uniformly distributed with upwardly convex hoisting outer screws, and the ceramic fiber cotton module Installed on the lower surface of the furnace roof truss by hoisting the outer screw, and leaving a gap with the lower surface of the connecting I-beam, the ceramic fiber cotton felt is laid on the ceramic fiber cotton module and connected to the I-beam In the gap area between the lower surfaces, the lower surface of the ceramic fiber surface module is fixedly equipped with a furnace wall inner lining; each group of the furnace wall main truss located on the periphery is arranged with first connecting members in an array, and the second
- a number of steel beam skeletons are evenly distributed in the area of the outer shell steel plate, the inner surface of the thickness of the adjacent steel beam skeleton is covered with a corresponding outer shell steel plate, and the inner end of the thickness of each steel beam skeleton passes through the second
- the connector is fixedly fixed with the ceramic fiber cotton module at the corresponding position, the ceramic fiber cotton felt is filled between the outer surface of the ceramic fiber surface module and the inner surface of the shell steel plate, and the inner surface of the ceramic fiber cotton module is fixed. Equipped with the inner protective lining of the furnace wall;
- the steel beam skeleton is riveted and welded with angle steel, square steel, flat steel, pipes, etc. to form a stable plane truss structure, and the outer shell steel plate is welded and riveted on its inner side area, and the thickness of the steel beam skeleton is array-type riveted or welded at the inner end.
- the outer end of the second connecting member, and the inner end of the second connecting member is fixedly connected with a prime number ceramic fiber cotton module at a corresponding position;
- the second connecting member is specifically a bolt or screw made of high-temperature resistant material
- the main truss of the furnace wall is specifically designed to select channel steel, I-beam, angle steel, square steel, channel steel, and pipes to form a stable truss structure by riveting and welding according to the design requirements.
- the inner side of the furnace wall main truss is arrayed.
- the first connecting piece is riveted and welded, and the main truss of the furnace wall is the outer frame of the wall surrounding the high-temperature heating furnace;
- the furnace top truss is specifically selected channel steel, I-beam, angle steel, square steel, channel steel, and pipes to form a stable truss structure by riveting and welding according to design requirements.
- the bottom surface of the furnace top truss is a connecting I-beam.
- Furnace roof truss is the outer framework of the top wall of the furnace high-temperature heating furnace;
- the inner protective lining of the furnace wall is specifically a composite ceramic sheet, and the composite ceramic sheet is fixed to the ceramic fiber cotton module through a self-locking ceramic nail;
- Each of the ceramic fiber surface modules is provided with a guide mounting hole, the outer side of the guide mounting hole is a small diameter through hole, and the diameter of the guide mounting hole is larger than the small diameter through hole;
- the inner convex end of the second connector penetrates the small-diameter through hole and is located in the guide installation hole, and is threadedly connected with an inner nut.
- the outer diameter of the inner nut Larger than the small diameter through hole;
- the lower threaded cylinder of the hoisting outer screw passes through the small-diameter through hole and is located in the guide mounting hole, and is threadedly connected with an inner nut.
- the outer diameter of the inner nut It is larger than the small diameter through hole, which makes it convenient to set a convex lifting outer screw on the ceramic fiber cotton module used for installing the top wall;
- the top clamping structure of the hoisting outer screw rod is specifically a symmetrically arranged upper convex belt of a crab-claw type structure that is bent inside, and the pair of inner bends of the crab-claw type structure are respectively supported on the connecting I-beam
- the hoisting outer screw is slidably arranged along the length of the connecting I-beam, and the corresponding position is determined according to the position of the hoisting outer screw;
- the composite ceramic sheet When the composite ceramic sheet is installed on the top wall, first pass the self-locking ceramic nail through the installation hole of the composite ceramic sheet, and then insert the composite ceramic sheet from the lower end of the ceramic fiber cotton module, and the composite ceramic sheet covers the surface of the installation guide hole After the self-locking ceramic top penetrates the thickness of the ceramic fiber cotton module upwards, the nail tip is protruding outward, and the U-shaped card clamps the lower end surface of the nail tip, thereby preventing the self-locking ceramic nail on the top wall from falling off ;
- the U-shaped card is specifically a flat U-shape processed by metal wire or ceramic material.
- the width of the U groove is tightly matched with the diameter of the self-locking ceramic nail, and the groove depth is greater than the diameter of the self-locking ceramic nail.
- a method for installing a modular structure wall of a high-temperature heating furnace is characterized by: not changing other structures required by the design of the high-temperature heating furnace, as well as the position of the vent and the hard refractory structure near it, and only the surrounding walls and top of the furnace are modified.
- the surrounding furnace wall adopts wall modules instead of castable or refractory bricks used in the traditional furnace wall.
- the wall modules are fixedly installed on the inner side of the main truss of the furnace wall and installed in the furnace of the wall module. Install the inner protective lining of the furnace wall on the inner side; the wall module and the wall module are shell steel plates, ceramic fiber cotton felt, and ceramic fiber cotton modules in sequence from the outside to the inside;
- the top furnace wall is hoisted by sliding the hoisting outer screw from the lower end surface of the I-beam inside the roof truss.
- the ceramic fiber cotton module is installed on the lower surface of the furnace roof truss by hoisting the outer screw, and then the I-beam end surface is processed. , Arrange the ceramic fiber cotton module felt on the upper layer of the I-beam, and finally install the furnace wall inner protective lining on the furnace side of the ceramic fiber cotton module;
- the main truss of the furnace wall and the top truss of the furnace wall were completed at the high-temperature heating furnace site, and the wall modules were installed, the ceramic fiber cotton modules were hoisted, and the furnace wall lining was finally installed.
- the wall module, the inner protective lining of the furnace wall, and the outer screw for hoisting can be processed into finished products in advance at a production base other than the high-temperature heating furnace site, and then transported to the site where the high-temperature heating furnace needs to be built and installed to complete the furnace wall construction.
- the models of ceramic fiber cotton felt and ceramic fiber cotton modules can be selected from commercially available products according to the temperature requirements of the high-temperature heating furnace;
- the furnace wall inner protective lining is specifically a series of products described in patent documents CN106839777A., CN103292598A, CN206682111U., CN107726856A, which are mainly composed of composite ceramic sheets and self-locking ceramic nails.
- the furnace wall inner protective lining is armor-like They are installed on the wall module and the inner side of the furnace of the top ceramic fiber cotton module respectively.
- the high-temperature heating furnace can be constructed quickly and conveniently, and can greatly improve the heat transfer efficiency in the furnace, save energy and reduce emission, slow down the aging process of the furnace wall, and increase the service life of the furnace wall.
- changing the high-temperature castable furnace wall to the present invention has the advantages of reducing the weight of the wall and reducing the floor space of the furnace; at the same time, it will also avoid the problem of cracks in the wall, greatly reduce the wall heat dissipation and maintenance costs, and shorten the ignition temperature rise. , Stop the furnace and cool down time to reduce the abnormal production time of the furnace.
- Figure 1 is a schematic diagram of the cross-sectional structure of the top furnace wall of the present invention.
- Figure 2 is a schematic diagram of the cross-sectional structure of the surrounding furnace wall of the present invention.
- FIG. 3 is a schematic diagram of the cross-sectional structure of the wall module of the present invention.
- FIG. 4 is a schematic diagram of the installation structure of the hoisting outer screw and connecting I-beam of the present invention.
- Figure 5 is a schematic top view of the installation of the U-shaped card and self-locking ceramic nails of the present invention.
- FIG. 1 to 5 A modular structure wall of a high-temperature heating furnace is shown in Figures 1 to 5, which includes a preset furnace wall main truss 1, a furnace top truss 2, and the bottom surface of the furnace top truss 2 is respectively fixed with corresponding connections I-beam 4, the bottom of the connecting I-beam 4 is hooked with a top clamping structure for hoisting the outer screw 5,
- the upper surface of the ceramic fiber cotton module 6 is uniformly distributed with upwardly convex hoisting outer screws 5, and the ceramic fiber cotton module 6 is installed on the lower surface of the furnace roof truss 2 through the hoisting outer screw 5, and is connected to the A gap is left on the lower surface of the I-beam 4, the ceramic fiber cotton felt 3 is laid on the gap area between the ceramic fiber cotton module 6 and the lower surface of the I-beam 4, and the ceramic fiber surface module 6
- the inner protective lining of the furnace wall is fixed on the bottom surface;
- Each group of the furnace wall main truss 1 located on the periphery is provided with first connecting members 11 in an array, and the inner sides of the first connecting members 11 are respectively fixed to the outer surface of the wall module 12 of corresponding shape, and the wall
- the inner surface of the module 12 is fixedly fitted with an inner protective lining of the furnace wall, and the wall module 12 is an outer shell steel plate 14, a ceramic fiber cotton felt 3, and a ceramic fiber cotton module 6 from the outside to the inside in sequence.
- a number of steel beam skeletons 13 are evenly distributed in the area of the outer shell steel plate 14, and the inner surface of the thickness of the adjacent steel beam skeleton 13 is covered with a corresponding outer shell steel plate 14.
- the thickness of each steel beam skeleton 13 The inner end is fixedly connected to the corresponding position of the ceramic fiber cotton module 6 through the second connecting member 15, and the ceramic fiber cotton felt 3 is filled between the outer surface of the ceramic fiber surface module 6 and the inner surface of the shell steel plate 14.
- the inner surface of the ceramic fiber cotton module 6 is fixedly equipped with the inner protective lining of the furnace wall;
- the steel beam skeleton 13 is riveted and welded with angle steel, square steel, flat steel, pipes, etc. to form a stable plane truss structure.
- the outer shell steel plate 14 is welded and riveted on its inner side area.
- the thickness of the steel beam skeleton 13 is riveted at the inner end of the array.
- the outer end of the second connecting piece 15 is welded, and the prime number ceramic fiber cotton module 6 in the corresponding position is fixedly connected to the inner end of the second connecting piece 15;
- the second connecting member 15 is specifically a bolt or screw made of high-temperature resistant material
- the furnace wall main truss 1 is specifically selected channel steel, I-beam steel, angle steel, square steel, channel steel, and pipe to form a stable truss structure by riveting and welding according to design requirements.
- the furnace wall main truss 1 has an array on the inner side of the furnace.
- the first connecting piece 11 is riveted and welded in a manner, and the main truss 1 of the furnace wall is the outer frame of the wall around the high-temperature heating furnace;
- the furnace top truss 2 specifically selects channel steel, I-beam, angle steel, square steel, channel steel, and pipes to form a stable truss structure by riveting and welding according to design requirements.
- the bottom surface of the furnace top truss 2 is a connecting I-beam 4 .
- the furnace top truss 2 is the outer frame of the top wall of the furnace high-temperature heating furnace;
- the inner protective lining of the furnace wall is specifically a composite ceramic sheet 10, and the composite ceramic sheet 10 is fixed to the ceramic fiber cotton module 6 through a self-locking ceramic nail 9;
- Each of the ceramic fiber surface modules 6 is provided with a guide mounting hole 8, the outer side of the guide mounting hole 8 is a small-diameter through hole 81, and the diameter of the guide mounting hole 8 is larger than the small-diameter through hole 81;
- the inner protruding end of the second connecting member 15 penetrates the small-diameter through hole 81 and is located in the guide installation hole 8 and is threadedly connected with an inner nut 7.
- the outer diameter of the inner nut 7 is larger than the small diameter through hole 81;
- the lower threaded cylinder 17 of the hoisting outer screw 5 penetrates the small-diameter through hole 81 and is located in the guide installation hole 8 and is threadedly connected with an inner nut 7, so The outer diameter of the inner nut 7 is larger than the small-diameter through hole 81, which makes it convenient to provide a convex lifting outer screw 5 on the ceramic fiber cotton module 6 used for installing the top wall;
- the top clamping structure of the hoisting outer screw 5 is specifically a symmetrically arranged crab-claw-shaped structure 19 bent inside the upper convex belt, and the pair of inner bends of the crab-claw-shaped structure 19 are respectively supported by the connecting worker.
- the hoisting outer screw 5 is slidably arranged along the length of the connecting I-steel 4, and the corresponding position is determined according to the position of the hoisting outer screw 5;
- the hoisting outer screw 5 includes a crab-claw structure 19, a cylinder 16, a necking junction 18, and a lower threaded cylinder 17 from top to bottom.
- the outer diameter of the lower threaded body 17 is smaller than that of the cylinder 16, and Ensure that it is convenient to insert into the small diameter through hole 81;
- the composite ceramic sheet 10 When the composite ceramic sheet 10 is installed on the top wall, first pass the self-locking ceramic nail 9 through the mounting hole of the composite ceramic sheet 10, and then insert the composite ceramic sheet 10 from the lower end of the ceramic fiber cotton module 6 to cover the composite ceramic sheet 10 Hold the area of the installation guide hole 8, the self-locking ceramic nail 9 penetrates the thickness of the ceramic fiber cotton module 6 upwards and then protrudes the nail tip 91, and the U-shaped card 20 clamps the lower end surface of the nail tip 91, thereby Prevent the self-locking ceramic nail 9 on the top wall from falling off;
- the U-shaped card 20 is specifically a flat U-shape processed by metal wire or ceramic material.
- the width of the U groove is tightly matched with the diameter of the self-locking ceramic nail 9, and the groove depth is greater than the diameter of the self-locking ceramic nail.
- a method for installing a modular structure wall of a high-temperature heating furnace is characterized by: not changing other structures required by the design of the high-temperature heating furnace, as well as the position of the vent and the hard refractory structure near it, and only the surrounding walls and top of the furnace are modified.
- the surrounding furnace wall adopts wall modules instead of castable or refractory bricks used in the traditional furnace wall.
- the wall modules are fixedly installed on the inner side of the main truss of the furnace wall and installed in the furnace of the wall module. Install the inner protective lining of the furnace wall on the inner side; the wall module and the wall module are shell steel plates, ceramic fiber cotton felt, and ceramic fiber cotton modules in sequence from the outside to the inside;
- the top furnace wall is hoisted by sliding the hoisting outer screw from the lower end surface of the I-beam inside the roof truss.
- the ceramic fiber cotton module is installed on the lower surface of the furnace roof truss by hoisting the outer screw, and then the I-beam end surface is processed. , Arrange the ceramic fiber cotton module felt on the upper layer of the I-beam, and finally install the furnace wall inner protective lining on the furnace side of the ceramic fiber cotton module;
- the main truss of the furnace wall and the top truss of the furnace wall were completed at the high-temperature heating furnace site, and the wall modules were installed, the ceramic fiber cotton modules were hoisted, and the furnace wall lining was finally installed.
- the wall module, the inner protective lining of the furnace wall, and the outer screw for hoisting can be processed into finished products in advance at the production base outside the high-temperature heating furnace site, and transported to the site where the high-temperature heating furnace needs to be built and installed to complete the furnace wall construction; ceramic fiber cotton felt ,
- the model of the ceramic fiber cotton module can be selected from commercially available products according to the temperature requirements of the high-temperature heating furnace;
- the furnace wall inner protective lining is specifically a series of products described in patent documents CN106839777A., CN103292598A, CN206682111U., CN107726856A, which are mainly composed of composite ceramic sheets and self-locking ceramic nails.
- the furnace wall inner protective lining is armor-like They are installed on the wall module and the inner side of the furnace of the top ceramic fiber cotton module respectively.
- the high-temperature heating furnace can be constructed quickly and conveniently, and can greatly improve the heat transfer efficiency in the furnace, save energy and reduce emission, slow down the aging process of the furnace wall, and increase the service life of the furnace wall.
- changing the high-temperature castable furnace wall to the present invention has the advantages of reducing the weight of the wall and reducing the floor space of the furnace; at the same time, it will also avoid the problem of cracks in the wall, greatly reduce the wall heat dissipation and maintenance costs, and shorten the ignition temperature rise. , Stop the furnace and cool down time to reduce the abnormal production time of the furnace.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Abstract
本发明提供了高温加热炉的一种模块结构墙体,其使得高温加热炉的炉墙内壁辐射系数大幅提高、炉内传热效率明显增强、节能减排、减缓炉墙老化进程、增加炉墙使用寿命。其包括预设的炉墙主桁架、炉顶桁架,其特征在于:所述炉顶桁架的底面上分别固设有对应的连接工字钢,所述连接工字钢的底部挂接有吊装外螺杆的顶部卡接结构,所述陶瓷纤维棉模块的上表面均布有上凸的吊装外螺杆,所述陶瓷纤维棉模块通过吊装外螺杆安装在所述炉顶桁架的下表面、且和所述连接工字钢的下表面留有间隙,所述陶瓷纤维棉毡铺设于所述陶瓷纤维棉模块、连接工字钢的下表面之间的间隙区域,所述陶瓷纤维面模块的下表面固装有炉墙内护衬。
Description
本发明涉及加温加热炉结构的技术领域,具体为高温加热炉的一种模块结构墙体,本发明还提供了该模块化墙体的安装方法。
目前,乙烯裂解炉的炉墙材料多采用陶瓷纤维棉,钢铁加热炉、陶瓷加热炉等高温加热炉的炉墙多为耐火砖、耐高温浇筑料构成。
陶瓷纤维棉、耐火砖、耐高温浇筑料这类高温加热炉的墙体具有如下共同缺点:
1)热辐射系数小,导致炉内壁辐射传热效率低下;
2)在炉内高温热流环境的长期作用下由表及里出现析晶粉化,降低炉墙使用寿命。
与陶瓷纤维棉炉墙相比,耐火砖、耐高温浇注料炉墙还具有以下缺陷:
1)断热性能的劣势,保温效果差,炉墙厚度需增加约
50%左右才能达到与陶瓷纤维棉炉墙相同的保温效果,还使炉子占地面积增加,建造要求高且耗工多。
2)炉墙厚度增加,则炉墙总体积也大,从而炉墙热容量大,因而炉子点火升温、停炉降温过程不仅浪费热能还增加耗时,贻误炉子正常生产。
3)服役一定年限后会出现裂缝,炉膛内的高温火焰会窜出裂缝,造成热能浪费。
对于耐火砖、耐高温浇注料炉墙,传统的修复方法是将损坏部分拆除,采用新砖砌筑或用低水泥浇注料对拆除部分进行整体浇注。
专利公开(公告)号:CN201215439Y,公开了“步进式加热炉的补墙结构”,其所述的结构,维修方法虽然比传统维修方法前进了一大步,但只是提高了维修速度而没有改变炉墙本质即没有在提高炉墙使用寿命、提高炉内壁面辐射传热效率等方面做出贡献。
专利公开(公告)号:CN205066456U.,公开了“锻造炉用新型防烧穿耐火隔热炉墙”,且提供一种可以自由调整厚度,减少所需耐火砖的种类,降低施工难度、人工费用,避免隔热层烧穿,保证炉外钢板温度低的锻造炉用新型防烧穿耐火隔热炉墙。具体为炉墙横断面从外到内依次为即“钢板层内侧依次设置纤维毯隔热三层、机制纤维板隔热二层、硅藻土砖隔热一层、粘土砖耐火二层和浇注料耐火一层。”虽然文献所述的发明对于炉墙防烧穿有一定贡献,但因浇注料耐火层仍然直面炉内高温环境,一是没有从根本上改变浇注料耐火层产生裂缝的问题和表层分化问题,二是没有改变炉内壁辐射传热性能。
为提升高温加热炉内壁辐射传热效率,近几十年来节能涂料品种繁多,尽管使用温度、技术性能和使用效果不一,但其明显的节能效果是公认的。高温加热炉内壁上喷涂节能涂层的一大难题是涂层易脱落,成为推广应用的瓶颈。脱落原因除了涂料产品本身的技术水平问题外,另一个主要原因就是陶瓷纤维棉、耐火砖、耐高温浇注料等炉墙材料长期直面炉内高温环境逐渐析晶粉化从而导致涂层与炉墙壁面之间的剪切应力伤失致使涂层脱落。
专利申请公开号:CN109535984A,公开了“一种超高温红外红外辐射保温节能涂料”,其所述的涂料可以耐高温1800度,所选用的填料电熔白刚玉微粉和板状刚玉微粉也具有很强的耐高温性能,一方面可以保证涂层的耐高温性能,另一方面涂层和炉墙内壁紧密连接在一起保证涂层不脱落,这是因为大部分高温窑炉内壁都是用刚玉空心球砖砌筑而成,相同性质的材料在不出现低熔物的条件下容易相互渗透烧结成一体。但是上述文献所述的涂料仍然没有解决炉墙内壁长期直面炉内高温环境逐渐析晶粉化从而导致涂层脱落问题。
专利公告号:CN2575107Y.,公开了“高温加热炉用隔套”,其由钨粉或钼粉或掺杂的钨、钼粉制成的呈圆弧状的条或板堆砌而成,最后像砌墙体一样,砌成圆筒状,形成加热炉的隔套,使烧结材料与耐火材料隔开,避免烧结材料的污染,减少耐火材料的磨损,提高耐火材料的使用寿命。但是专利文献提供的加热炉隔套没有提高炉内壁辐射传热性能的优势,而且其技术背景是针对钨、钼感应烧结炉提出的,也没有指出是否适合钢铁、陶瓷、石化行业的高温加热炉。
专利公开号:CN2575107Y.,其提供了一种管式加热炉的节能方法,解决了在较轻较软的耐火纤维炉衬上无法可靠安装众多具有一定重量的黑体元件的技术难题,从而实现了节能效果好、运行成本低、便于实现的发明目的。具体为内部中空,一端为开口指向炉膛中央,一端呈锥状嵌入炉墙耐火纤维炉衬内的黑体元件。但是专利文献提供的黑体元件有如下缺陷:①占据炉内空间,妨碍生产操作,②黑体元件使得原本为平面的炉墙内壁变得大幅凹凸 不平,反而降低了炉内辐射传热和对流传热效果,再加上黑体元件材料以及粘结剂乃采用本领域的现有技术,材质上不具有提高节能效果的原创性贡献。发明内容
针对上述问题,本发明提供了高温加热炉的一种模块结构墙体,其使得高温加热炉的炉墙内壁辐射系数大幅提高、炉内传热效率明显增强、节能减排、减缓炉墙老化进程、增加炉墙使用寿命。
高温加热炉的一种模块结构墙体,其技术方案是这样的,其包括预设的炉墙主桁架、炉顶桁架,其特征在于:所述炉顶桁架的底面上分别固设有对应的连接工字钢,所述连接工字钢的底部挂接有吊装外螺杆的顶部卡接结构,所述陶瓷纤维棉模块的上表面均布有上凸的吊装外螺杆,所述陶瓷纤维棉模块通过吊装外螺杆安装在所述炉顶桁架的下表面、且和所述连接工字钢的下表面留有间隙,所述陶瓷纤维棉毡铺设于所述陶瓷纤维棉模块、连接工字钢的下表面之间的间隙区域,所述陶瓷纤维面模块的下表面固装有炉墙内护衬;位于四周的每组所述炉墙主桁架内阵列式布置有第一连接件,所述第一连接件的内侧分别固接对应形状的墙体模块的外表面,所述墙体模块的内表面固装有炉墙内护衬,所述墙体模块由外至内顺次为外壳钢板、陶瓷纤维棉毡、陶瓷纤维棉模块。
其进一步特征在于:
所述外壳钢板的面域范围内还均布有若干钢梁骨架,相邻的钢梁骨架的厚度的内表面覆盖有对应的外壳钢板,每根所述钢梁骨架的厚度内端通过第二连接件固接有对应位置的陶瓷纤维棉模块,所述陶瓷纤维面模块的外表面和所述外壳钢板的内表面间填充有所述陶瓷纤维棉毡,所述陶瓷纤维棉模块 的内表面固装有所述炉墙内护衬;
所述钢梁骨架选用角钢、方钢、扁钢、管材等铆焊接呈稳固的平面桁架结构,外壳钢板焊铆接在其内侧面域,所述钢梁骨架的厚度内端阵列式铆接或焊接有所述第二连接件的外端,所述第二连接件的内端固接有对应位置的素数陶瓷纤维棉模块;
所述第二连接件具体为耐高温材料的螺栓或螺杆;
所述炉墙主桁架具体为按照设计要求选用槽钢、工字钢、角钢、方钢、槽钢、管材铆焊接呈稳固的桁架结构,所述炉墙主桁架的炉内一侧阵列式地铆焊接有所述第一连接件,所述炉墙主桁架是高温加热炉四周墙体的外层骨架;
所述炉顶桁架具体为按设计要求选用槽钢、工字钢、角钢、方钢、槽钢、管材铆焊接呈稳固的桁架结构,所述炉顶桁架的底面为连接工字钢,所述炉顶桁架是炉子高温加热炉的顶部墙体的外层骨架;
所述炉墙内护衬具体为复合陶瓷片,所述复合陶瓷片通过自锁式陶瓷钉固装于所述陶瓷纤维棉模块;
每块所述陶瓷纤维面模块上设置有导向安装孔,所述导向安装孔的外侧为小径贯穿孔,所述导向安装孔的孔径大于所述小径贯穿孔;
陶瓷纤维面模块用于侧墙安装时,所述第二连接件的内凸端贯穿所述小径贯穿孔后位于所述导向安装孔内、并螺纹连接有内螺母,所述内螺母的外径大于所述小径贯穿孔;
陶瓷纤维面模块用于顶墙安装时,所述吊装外螺杆的下螺纹柱体贯穿所述小径贯穿孔后位于所述导向安装孔内、并螺纹连接有内螺母,所述内螺母 的外径大于所述小径贯穿孔,其使得用于安装顶墙的陶瓷纤维棉模块上方便设置上凸的吊装外螺杆;
所述吊装外螺杆的顶部卡接结构具体为对称布置的上凸带内折弯的蟹爪型结构,所述蟹爪型结构的成对的内折弯分别支承于所述连接工字钢的下横杆的两侧上表面,吊装外螺杆沿着连接工字钢的长度方向滑动设置,具体根据吊装外螺杆的位置确定对应位置;
复合陶瓷片安装于顶墙时,将自锁式陶瓷钉先从复合陶瓷片的安装孔穿过,然后将复合陶瓷片从陶瓷纤维棉模块下端面插入、复合陶瓷片覆盖住安装导向孔的面域,所述自锁式陶瓷顶并向上穿透陶瓷纤维棉模块的厚度后外凸钉尖,U型卡卡住所述钉尖的下端面,从而防止顶墙上的自锁式陶瓷钉脱落;
所述U型卡具体为金属丝或陶瓷材料加工而成的平面U形,U槽宽度与自锁式陶瓷钉的直径实现紧配合,槽深大于自锁式陶瓷钉的直径。
高温加热炉的一种模块结构墙体的安装方法,其特征在于:不改变高温加热炉设计要求的其它结构,以及喷火口位置及其附近的硬质耐火结构,只改其四周炉墙和顶部炉墙的材料和结构以及安装方式,四周炉墙采用墙体模块代替传统炉墙所采用的浇注料或耐火砖,将墙体模块固定安装在炉墙主桁架内侧,并在墙体模块的炉内一侧安装炉墙内护衬;所述墙体模块所述墙体模块由外至内顺次为外壳钢板、陶瓷纤维棉毡、陶瓷纤维棉模块;
顶部炉墙采用将吊装外螺杆从炉顶桁架内侧的连接工字钢的下端面滑入,陶瓷纤维棉模块通过吊装外螺杆安装在炉顶桁架的下表面即完成吊装,然后处理工字钢端面,在工字钢上层布置陶瓷纤维棉模块毡,最后在陶瓷纤 维棉模块的炉内一侧安装炉墙内护衬;
其按设计要求在高温加热炉现场完成炉墙主桁架和炉顶桁架的建造,再安装墙体模块、吊装陶瓷纤维棉模块,最后安装炉墙内衬。
其进一步特征在于:所述墙体模块、炉墙内护衬、吊装外螺杆可以在高温加热炉现场以外的生产基地事先加工为成品,运至需要建造高温加热炉的现场安装即完成炉墙建造;陶瓷纤维棉毡、陶瓷纤维棉模块的型号可以根据高温加热炉的温度要求选用市售产品;
所述炉墙内护衬具体为专利文献CN106839777A.、CN103292598A、CN206682111U.、CN107726856A所描述的系列产品,其主要由复合陶瓷片和自锁式陶瓷钉组成,所述炉墙内护衬铠甲般地分别安装在墙体模块和顶部陶瓷纤维棉模块的炉内一侧。
采用上述技术方案后,高温加热炉可以快速方便地完成建造,且可以实现大幅度提高炉内传热效率、节能减排、减缓炉墙老化进程、增加炉墙使用寿命。特别是将耐高温浇注料炉墙改用本发明,另具有降低墙体重量、减少炉子占地面积;同时还将避免墙体出现裂缝问题、大幅度减少墙体散热和维修费用;缩短点火升温、停炉降温时间从而减少炉子非正常生产时间。
图1为本发明的顶部炉墙的横断面结构示意图;
图2为本发明的四周炉墙的横断面结构示意图;
图3为本发明的墙体模块的横断面结构示意图;
图4为本发明的吊装外螺杆和连接工字钢的安装结构示意图;
图5为本发明的U型卡与自锁式陶瓷钉的安装俯视示意图;
图中序号所对应的名称如下:
炉墙主桁架1、炉顶桁架2、陶瓷纤维棉毡3、连接工字钢4、吊装外螺杆5、陶瓷纤维棉模块6、内螺母7、安装导向孔8、小径贯穿孔81、复合陶瓷片9、钉尖91、自锁式陶瓷钉10、第一连接件11、墙体模块12、平面桁架13、外壳钢板14、第二连接件15、圆柱体16、下螺纹柱体17、缩口交接处18、蟹爪型结构19、U型卡20
高温加热炉的一种模块结构墙体,见图1-图5,其包括预设的炉墙主桁架1、炉顶桁架2,所述炉顶桁架2的底面上分别固设有对应的连接工字钢4,所述连接工字钢4的底部挂接有吊装外螺杆5的顶部卡接结构,
所述陶瓷纤维棉模块6的上表面均布有上凸的吊装外螺杆5,所述陶瓷纤维棉模块6通过吊装外螺杆5安装在所述炉顶桁架2的下表面、且和所述连接工字钢4的下表面留有间隙,所述陶瓷纤维棉毡3铺设于所述陶瓷纤维棉模块6、连接工字钢4的下表面之间的间隙区域,所述陶瓷纤维面模块6的下表面固装有炉墙内护衬;
位于四周的每组所述炉墙主桁架1内阵列式布置有第一连接件11,所述第一连接件11的内侧分别固接对应形状的墙体模块12的外表面,所述墙体模块12的内表面固装有炉墙内护衬,所述墙体模块12由外至内顺次为外壳钢板14、陶瓷纤维棉毡3、陶瓷纤维棉模块6。
所述外壳钢板14的面域范围内还均布有若干钢梁骨架13,相邻的钢梁骨架13的厚度的内表面覆盖有对应的外壳钢板14,每根所述钢梁骨架13的厚度内端通过第二连接件15固接有对应位置的陶瓷纤维棉模块6,所述陶瓷纤 维面模块6的外表面和所述外壳钢板14的内表面间填充有所述陶瓷纤维棉毡3,所述陶瓷纤维棉模块6的内表面固装有所述炉墙内护衬;
所述钢梁骨架13选用角钢、方钢、扁钢、管材等铆焊接呈稳固的平面桁架结构,外壳钢板14焊铆接在其内侧面域,所述钢梁骨架13的厚度内端阵列式铆接或焊接有所述第二连接件15的外端,所述第二连接件15的内端固接有对应位置的素数陶瓷纤维棉模块6;
所述第二连接件15具体为耐高温材料的螺栓或螺杆;
所述炉墙主桁架1具体为按照设计要求选用槽钢、工字钢、角钢、方钢、槽钢、管材铆焊接呈稳固的桁架结构,所述炉墙主桁架1的炉内一侧阵列式地铆焊接有所述第一连接件11,所述炉墙主桁架1是高温加热炉四周墙体的外层骨架;
所述炉顶桁架2具体为按设计要求选用槽钢、工字钢、角钢、方钢、槽钢、管材铆焊接呈稳固的桁架结构,所述炉顶桁架2的底面为连接工字钢4,所述炉顶桁架2是炉子高温加热炉的顶部墙体的外层骨架;
所述炉墙内护衬具体为复合陶瓷片10,所述复合陶瓷片10通过自锁式陶瓷钉9固装于所述陶瓷纤维棉模块6;
每块所述陶瓷纤维面模块6上设置有导向安装孔8,所述导向安装孔8的外侧为小径贯穿孔81,所述导向安装孔8的孔径大于所述小径贯穿孔81;
陶瓷纤维面模块6用于侧墙安装时,所述第二连接件15的内凸端贯穿所述小径贯穿孔81后位于所述导向安装孔8内、并螺纹连接有内螺母7,所述内螺母7的外径大于所述小径贯穿孔81;
陶瓷纤维面模块6用于顶墙安装时,所述吊装外螺杆5的下螺纹柱体17 贯穿所述小径贯穿孔81后位于所述导向安装孔8内、并螺纹连接有内螺母7,所述内螺母7的外径大于所述小径贯穿孔81,其使得用于安装顶墙的陶瓷纤维棉模块6上方便设置上凸的吊装外螺杆5;
所述吊装外螺杆5的顶部卡接结构具体为对称布置的上凸带内折弯的蟹爪型结构19,所述蟹爪型结构19的成对的内折弯分别支承于所述连接工字钢4的下横杆的两侧上表面,吊装外螺杆5沿着连接工字钢4的长度方向滑动设置,具体根据吊装外螺杆5的位置确定对应位置;
所述吊装外螺杆5自上而下顺次包括蟹爪型结构19、圆柱体16、缩口交接处18、下螺纹柱体17,所述下螺纹主体17外径小于所述圆柱体16,确保方便插装于小径贯穿孔81;
复合陶瓷片10安装于顶墙时,将自锁式陶瓷钉9先从复合陶瓷片10的安装孔穿过,然后将复合陶瓷片10从陶瓷纤维棉模块6下端面插入、复合陶瓷片10覆盖住安装导向孔8的面域,所述自锁式陶瓷钉9向上穿透陶瓷纤维棉模块6的厚度后外凸钉尖91,U型卡20卡住所述钉尖91的下端面,从而防止顶墙上的自锁式陶瓷钉9脱落;
所述U型卡20具体为金属丝或陶瓷材料加工而成的平面U形,U槽宽度与自锁式陶瓷钉9的直径实现紧配合,槽深大于自锁式陶瓷钉的直径。
高温加热炉的一种模块结构墙体的安装方法,其特征在于:不改变高温加热炉设计要求的其它结构,以及喷火口位置及其附近的硬质耐火结构,只改其四周炉墙和顶部炉墙的材料和结构以及安装方式,四周炉墙采用墙体模块代替传统炉墙所采用的浇注料或耐火砖,将墙体模块固定安装在炉墙主桁架内侧,并在墙体模块的炉内一侧安装炉墙内护衬;所述墙体模块所述墙体 模块由外至内顺次为外壳钢板、陶瓷纤维棉毡、陶瓷纤维棉模块;
顶部炉墙采用将吊装外螺杆从炉顶桁架内侧的连接工字钢的下端面滑入,陶瓷纤维棉模块通过吊装外螺杆安装在炉顶桁架的下表面即完成吊装,然后处理工字钢端面,在工字钢上层布置陶瓷纤维棉模块毡,最后在陶瓷纤维棉模块的炉内一侧安装炉墙内护衬;
其按设计要求在高温加热炉现场完成炉墙主桁架和炉顶桁架的建造,再安装墙体模块、吊装陶瓷纤维棉模块,最后安装炉墙内衬。
所述墙体模块、炉墙内护衬、吊装外螺杆可以在高温加热炉现场以外的生产基地事先加工为成品,运至需要建造高温加热炉的现场安装即完成炉墙建造;陶瓷纤维棉毡、陶瓷纤维棉模块的型号可以根据高温加热炉的温度要求选用市售产品;
所述炉墙内护衬具体为专利文献CN106839777A.、CN103292598A、CN206682111U.、CN107726856A所描述的系列产品,其主要由复合陶瓷片和自锁式陶瓷钉组成,所述炉墙内护衬铠甲般地分别安装在墙体模块和顶部陶瓷纤维棉模块的炉内一侧。
采用上述技术方案后,高温加热炉可以快速方便地完成建造,且可以实现大幅度提高炉内传热效率、节能减排、减缓炉墙老化进程、增加炉墙使用寿命。特别是将耐高温浇注料炉墙改用本发明,另具有降低墙体重量、减少炉子占地面积;同时还将避免墙体出现裂缝问题、大幅度减少墙体散热和维修费用;缩短点火升温、停炉降温时间从而减少炉子非正常生产时间。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实 现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
Claims (10)
- 高温加热炉的一种模块结构墙体,其包括预设的炉墙主桁架、炉顶桁架,其特征在于:所述炉顶桁架的底面上分别固设有对应的连接工字钢,所述连接工字钢的底部挂接有吊装外螺杆的顶部卡接结构,所述陶瓷纤维棉模块的上表面均布有上凸的吊装外螺杆,所述陶瓷纤维棉模块通过吊装外螺杆安装在所述炉顶桁架的下表面、且和所述连接工字钢的下表面留有间隙,所述陶瓷纤维棉毡铺设于所述陶瓷纤维棉模块、连接工字钢的下表面之间的间隙区域,所述陶瓷纤维面模块的下表面固装有炉墙内护衬;位于四周的每组所述炉墙主桁架内阵列式布置有第一连接件,所述第一连接件的内侧分别固接对应形状的墙体模块的外表面,所述墙体模块的内表面固装有炉墙内护衬,所述墙体模块由外至内顺次为外壳钢板、陶瓷纤维棉毡、陶瓷纤维棉模块。
- 如权利要求1所述的高温加热炉的一种模块结构墙体,其特征在于:所述外壳钢板的面域范围内还均布有若干钢梁骨架,相邻的钢梁骨架的厚度的内表面覆盖有对应的外壳钢板,每根所述钢梁骨架的厚度内端通过第二连接件固接有对应位置的陶瓷纤维棉模块,所述陶瓷纤维面模块的外表面和所述外壳钢板的内表面间填充有所述陶瓷纤维棉毡,所述陶瓷纤维棉模块的内表面固装有所述炉墙内护衬。
- 如权利要求2所述的高温加热炉的一种模块结构墙体,其特征在于:所述钢梁骨架选用角钢、方钢、扁钢、管材等铆焊接呈稳固的平面桁架结构,外壳钢板焊铆接在其内侧面域,所述钢梁骨架的厚度内端阵列式铆接或焊接有所述第二连接件的外端,所述第二连接件的内端固接有对应位置的陶瓷纤维棉模块。
- 如权利要求3所述的高温加热炉的一种模块结构墙体,其特征在于: 所述第二连接件具体为耐高温材料的螺栓或螺杆。
- 如权利要求1所述的高温加热炉的一种模块结构墙体,其特征在于:所述炉墙主桁架具体为按照设计要求选用槽钢、工字钢、角钢、方钢、槽钢、管材铆焊接呈稳固的桁架结构,所述炉墙主桁架的炉内一侧阵列式地铆焊接有所述第一连接件,所述炉墙主桁架是高温加热炉四周墙体的外层骨架。
- 如权利要求1所述的高温加热炉的一种模块结构墙体,其特征在于:所述炉顶桁架具体为按设计要求选用槽钢、工字钢、角钢、方钢、槽钢、管材铆焊接呈稳固的桁架结构,所述炉顶桁架的底面为连接工字钢,所述炉顶桁架是炉子高温加热炉的顶部墙体的外层骨架。
- 如权利要求1所述的高温加热炉的一种模块结构墙体,其特征在于:所述炉墙内护衬具体为复合陶瓷片,所述复合陶瓷片通过自锁式陶瓷钉固装于所述陶瓷纤维棉模块。
- 如权利要求1所述的高温加热炉的一种模块结构墙体,其特征在于所述吊装外螺杆的顶部卡接结构具体为对称布置的上凸带内折弯的蟹爪型结构,所述蟹爪型结构的成对的内折弯分别支承于所述连接工字钢的下横杆的两侧上表面,吊装外螺杆沿着连接工字钢的长度方向滑动设置,具体根据吊装外螺杆的位置确定对应位置。
- 如权利要求7所述的高温加热炉的一种模块结构墙体,其特征在于:复合陶瓷片安装于顶墙时,将自锁式陶瓷钉先从复合陶瓷片的安装孔穿过,然后将复合陶瓷片从陶瓷纤维棉模块下端面插入、复合陶瓷片覆盖住安装导向孔的面域,所述自锁式陶瓷顶并向上穿透陶瓷纤维棉模块的厚度后外凸钉尖,U型卡卡住所述钉尖的下端面。
- 高温加热炉的一种模块结构墙体的安装方法,其特征在于:不改变高温加热炉设计要求的其它结构,以及喷火口位置及其附近的硬质耐火结构,只改其四周炉墙和顶部炉墙的材料和结构以及安装方式,四周炉墙采用墙体模块代替传统炉墙所采用的浇注料或耐火砖,将墙体模块固定安装在炉墙主桁架内侧,并在墙体模块的炉内一侧安装炉墙内护衬;所述墙体模块所述墙体模块由外至内顺次为外壳钢板、陶瓷纤维棉毡、陶瓷纤维棉模块;顶部炉墙采用将吊装外螺杆从炉顶桁架内侧的连接工字钢的下端面滑入,陶瓷纤维棉模块通过吊装外螺杆安装在炉顶桁架的下表面即完成吊装,然后处理工字钢端面,在工字钢上层布置陶瓷纤维棉模块毡,最后在陶瓷纤维棉模块的炉内一侧安装炉墙内护衬;其按设计要求在高温加热炉现场完成炉墙主桁架和炉顶桁架的建造,再安装墙体模块、吊装陶瓷纤维棉模块,最后安装炉墙内衬
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2021572699A JP7341534B2 (ja) | 2019-09-10 | 2020-07-08 | 高温加熱炉のモジュール化囲い構造及び取付方法 |
| US17/411,004 US12078420B2 (en) | 2019-09-10 | 2021-08-24 | Modular enclosure structure of high temperature heating furnace and installation method |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910851968.8A CN110455082B (zh) | 2019-09-10 | 2019-09-10 | 高温加热炉的一种模块结构墙体及安装方法 |
| CN201910851968.8 | 2019-09-10 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/411,004 Continuation-In-Part US12078420B2 (en) | 2019-09-10 | 2021-08-24 | Modular enclosure structure of high temperature heating furnace and installation method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021047268A1 true WO2021047268A1 (zh) | 2021-03-18 |
Family
ID=68491354
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2020/100838 Ceased WO2021047268A1 (zh) | 2019-09-10 | 2020-07-08 | 高温加热炉的一种模块结构墙体及安装方法 |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US12078420B2 (zh) |
| JP (1) | JP7341534B2 (zh) |
| CN (1) | CN110455082B (zh) |
| WO (1) | WO2021047268A1 (zh) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110455082B (zh) * | 2019-09-10 | 2024-07-12 | 日上(苏州)轻化纺高科技有限公司 | 高温加热炉的一种模块结构墙体及安装方法 |
| CN114623320B (zh) * | 2022-02-15 | 2024-06-07 | 无锡华光环保能源集团股份有限公司 | 一种余热锅炉板式吊杆保温结构及其安装方法 |
| CN116173529A (zh) * | 2022-04-19 | 2023-05-30 | 牛勇超 | 一种加热底座 |
| CN115325828B (zh) * | 2022-07-15 | 2025-04-04 | 武汉一冶钢结构有限责任公司 | 集成式电加热炉炉墙模块 |
| CN116222222A (zh) * | 2023-02-22 | 2023-06-06 | 中冶南方(武汉)热工有限公司 | 一种轧钢加热炉全纤维炉顶结构 |
| CN116734612B (zh) * | 2023-06-25 | 2025-08-29 | 四川科达节能技术有限公司 | 一种加热炉黑体元件安装设备 |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4045924A (en) * | 1975-12-15 | 1977-09-06 | S. J. Agnew | Furnace roof construction |
| CN202171397U (zh) * | 2011-05-20 | 2012-03-21 | 上海梅山钢铁股份有限公司 | 陶瓷纤维模块炉衬及其锚固件 |
| CN202928360U (zh) * | 2012-11-26 | 2013-05-08 | 战文凯 | 一种钢铁厂工业炉窑互锁陶瓷炉衬 |
| CN103727791A (zh) * | 2012-10-12 | 2014-04-16 | 中国石油化工集团公司 | 一种工业炉辐射段的模块化结构 |
| CN204085178U (zh) * | 2014-09-24 | 2015-01-07 | 郑州金海威科技实业有限公司 | 陶瓷纤维模块拼装式热压烧结炉炉体 |
| US9310132B1 (en) * | 2012-02-08 | 2016-04-12 | Carbonyx, Inc. | Replaceable insulation roof for industrial oven |
| CN105674746A (zh) * | 2016-01-27 | 2016-06-15 | 江苏南方节能科技有限公司 | 一种炉顶模块组装工艺 |
| CN207113604U (zh) * | 2017-03-30 | 2018-03-16 | 上海伊索热能技术股份有限公司 | 一种新型陶瓷纤维模块的固定装置 |
| CN207351219U (zh) * | 2017-10-12 | 2018-05-11 | 神雾科技集团股份有限公司 | 工业炉 |
| CN110455082A (zh) * | 2019-09-10 | 2019-11-15 | 日上(苏州)轻化纺高科技有限公司 | 高温加热炉的一种模块结构墙体及安装方法 |
| CN211233944U (zh) * | 2019-09-10 | 2020-08-11 | 日上(苏州)轻化纺高科技有限公司 | 高温加热炉的一种模块结构墙体 |
Family Cites Families (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| USRE33463E (en) * | 1971-06-28 | 1990-11-27 | Thermal Ceramics, Inc. | High temperature insulation module |
| US4341916A (en) * | 1980-10-30 | 1982-07-27 | Manville Service Corporation | Electric furnace insulation module |
| US4473015A (en) * | 1981-10-30 | 1984-09-25 | J. T. Thorpe Company | Self-supporting fabric reinforced refractory fiber composite curtain |
| DE3241593A1 (de) * | 1981-11-12 | 1983-05-19 | General Signal Corp., 06904 Stamford, Conn. | Feuerfeste auskleidung mit aus fasermaterial bestehenden elementen und verfahren zu ihrer herstellung |
| US4475470A (en) * | 1982-02-01 | 1984-10-09 | Merkle Engineers, Inc. | Suspended roof construction for industrial furnaces |
| JPS6048097U (ja) * | 1983-09-06 | 1985-04-04 | 品川白煉瓦株式会社 | 工業用窯炉の炉体構造 |
| US4640202A (en) * | 1984-07-30 | 1987-02-03 | Eltech Systems Corporation | Readily repairable and lightweight cover for a heated vessel |
| US4580974A (en) * | 1985-04-05 | 1986-04-08 | Kaiser Aluminum & Chemical Corporation | Melting furnace cover |
| US5511356A (en) * | 1990-06-13 | 1996-04-30 | Gossler Feuerfest- Und Isoliertechnik Gmbh | Module comprised of fiber mats |
| US5176876A (en) * | 1990-10-10 | 1993-01-05 | Simko & Sons Industrial Refractories Inc. | Insulating ceramic fiber batting module, anchoring system, ladle cover assembly and method of assembly |
| JPH0510681A (ja) * | 1991-07-02 | 1993-01-19 | Murata Mfg Co Ltd | 加熱炉の断熱構造 |
| JPH11201655A (ja) * | 1998-01-13 | 1999-07-30 | Nippon Steel Corp | 熱処理炉の炉内壁 |
| CN2575107Y (zh) | 2002-10-22 | 2003-09-24 | 山东光明钨钼股份有限公司 | 高温加热炉用隔套 |
| US7726249B2 (en) * | 2007-05-01 | 2010-06-01 | Merkle International, Inc. | Apparatus and method for isolating zones of an industrial furnace |
| CN201215439Y (zh) | 2008-06-05 | 2009-04-01 | 山西太钢不锈钢股份有限公司 | 步进式加热炉的补墙结构 |
| BRPI0904128A2 (pt) * | 2009-10-05 | 2011-06-14 | Eduardo Arasanz Loeches | forno modular nço gerador de gases de efeito estufa para aquecimento de barras metÁlicas e de outros materiais suscetÍvies, para posterior processo de conformaÇço e transformaÇço a quente |
| CN202814086U (zh) * | 2012-06-28 | 2013-03-20 | 郭丰亮 | 一种保温效果较好的退火炉炉墙 |
| CN103292598B (zh) | 2013-07-05 | 2016-03-02 | 日上(苏州)轻化纺高科技有限公司 | 一种高温加热炉隔热和增加热辐射结构 |
| CN205066456U (zh) | 2015-10-20 | 2016-03-02 | 江苏腾达环境工程有限公司 | 锻造炉用新型防烧穿耐火隔热炉墙 |
| CN105403051B (zh) * | 2015-12-08 | 2017-06-30 | 机械工业第一设计研究院 | 一种耐火纤维模块及使用该耐火纤维模块的快速施工方法 |
| CN206682111U (zh) | 2017-04-07 | 2017-11-28 | 日上(苏州)轻化纺高科技有限公司 | 自锁圈及自锁式陶瓷钉 |
| CN106839777A (zh) | 2017-04-07 | 2017-06-13 | 日上(苏州)轻化纺高科技有限公司 | 高温炉墙体保护系统 |
| JP6926936B2 (ja) | 2017-10-23 | 2021-08-25 | 日本製鉄株式会社 | 炉壁の補修方法 |
| CN107726856A (zh) | 2017-11-23 | 2018-02-23 | 苏州哈雅西节能科技有限公司 | 一种具有高热辐射和强断热性能的耐高温炉墙复合内衬 |
| CN109535984A (zh) | 2018-12-27 | 2019-03-29 | 中钢集团洛阳耐火材料研究院有限公司 | 一种超高温红外辐射保温节能涂料 |
-
2019
- 2019-09-10 CN CN201910851968.8A patent/CN110455082B/zh active Active
-
2020
- 2020-07-08 JP JP2021572699A patent/JP7341534B2/ja active Active
- 2020-07-08 WO PCT/CN2020/100838 patent/WO2021047268A1/zh not_active Ceased
-
2021
- 2021-08-24 US US17/411,004 patent/US12078420B2/en active Active
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4045924A (en) * | 1975-12-15 | 1977-09-06 | S. J. Agnew | Furnace roof construction |
| CN202171397U (zh) * | 2011-05-20 | 2012-03-21 | 上海梅山钢铁股份有限公司 | 陶瓷纤维模块炉衬及其锚固件 |
| US9310132B1 (en) * | 2012-02-08 | 2016-04-12 | Carbonyx, Inc. | Replaceable insulation roof for industrial oven |
| CN103727791A (zh) * | 2012-10-12 | 2014-04-16 | 中国石油化工集团公司 | 一种工业炉辐射段的模块化结构 |
| CN202928360U (zh) * | 2012-11-26 | 2013-05-08 | 战文凯 | 一种钢铁厂工业炉窑互锁陶瓷炉衬 |
| CN204085178U (zh) * | 2014-09-24 | 2015-01-07 | 郑州金海威科技实业有限公司 | 陶瓷纤维模块拼装式热压烧结炉炉体 |
| CN105674746A (zh) * | 2016-01-27 | 2016-06-15 | 江苏南方节能科技有限公司 | 一种炉顶模块组装工艺 |
| CN207113604U (zh) * | 2017-03-30 | 2018-03-16 | 上海伊索热能技术股份有限公司 | 一种新型陶瓷纤维模块的固定装置 |
| CN207351219U (zh) * | 2017-10-12 | 2018-05-11 | 神雾科技集团股份有限公司 | 工业炉 |
| CN110455082A (zh) * | 2019-09-10 | 2019-11-15 | 日上(苏州)轻化纺高科技有限公司 | 高温加热炉的一种模块结构墙体及安装方法 |
| CN211233944U (zh) * | 2019-09-10 | 2020-08-11 | 日上(苏州)轻化纺高科技有限公司 | 高温加热炉的一种模块结构墙体 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110455082B (zh) | 2024-07-12 |
| US20210381768A1 (en) | 2021-12-09 |
| US12078420B2 (en) | 2024-09-03 |
| CN110455082A (zh) | 2019-11-15 |
| JP2022522543A (ja) | 2022-04-19 |
| JP7341534B2 (ja) | 2023-09-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2021047268A1 (zh) | 高温加热炉的一种模块结构墙体及安装方法 | |
| CN201190106Y (zh) | 一种碳素罐式煅烧炉 | |
| CN103727791B (zh) | 一种工业炉辐射段的模块化结构 | |
| CN211233944U (zh) | 高温加热炉的一种模块结构墙体 | |
| CN204787826U (zh) | 轻质高强加热炉耐火材料炉衬结构 | |
| CN117287979A (zh) | 一种全纤维复合炉顶结构 | |
| CN207945690U (zh) | 一种带有砖体结构的高温炉烟管道 | |
| CN106643151A (zh) | 熔锌保温炉 | |
| CN202734545U (zh) | 一种新型工业窑炉 | |
| CN201945180U (zh) | 高温加热炉炉门多晶氧化铝纤维复合模块衬里结构 | |
| CN209371760U (zh) | 一种回转窑下料簸箕托板箱 | |
| CN201772742U (zh) | 一种用于焙烧渗花砖宽体辊道窑的窑顶 | |
| CN219890138U (zh) | 一种隔焰式燃烧煅烧氧化锆的辊道窑炉 | |
| CN208108842U (zh) | 一种隔热型耐高温烟道闸板 | |
| CN102759274B (zh) | 一种窑炉窑顶构件 | |
| CN206974175U (zh) | 一种节能控温工业电炉 | |
| CN202734544U (zh) | 一种新型窑炉窑顶构件 | |
| CN221944900U (zh) | 窑炉吊顶结构 | |
| CN102748950A (zh) | 一种工业窑炉及其建造方法 | |
| CN110683480B (zh) | 一种老旧窑炉升高装置及其升高方法 | |
| CN204490933U (zh) | 高精度气氛保护程控回火炉用炉体 | |
| CN218846190U (zh) | 耐火炉墙结构 | |
| CN216409724U (zh) | 衬里结构和高温钟罩加热炉 | |
| CN202973875U (zh) | 适合于连铸连轧工艺的矩形铝液保温炉 | |
| CN215725086U (zh) | 一种加热炉炉顶纤维模块固定结构 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20862418 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2021572699 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20862418 Country of ref document: EP Kind code of ref document: A1 |