WO2021046882A1 - 一种抗震耐火高强韧不锈结构钢及其制备方法 - Google Patents

一种抗震耐火高强韧不锈结构钢及其制备方法 Download PDF

Info

Publication number
WO2021046882A1
WO2021046882A1 PCT/CN2019/106590 CN2019106590W WO2021046882A1 WO 2021046882 A1 WO2021046882 A1 WO 2021046882A1 CN 2019106590 W CN2019106590 W CN 2019106590W WO 2021046882 A1 WO2021046882 A1 WO 2021046882A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistant
fire
strength
structural steel
furnace
Prior art date
Application number
PCT/CN2019/106590
Other languages
English (en)
French (fr)
Inventor
王平
赵永璞
Original Assignee
王平
赵永璞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王平, 赵永璞 filed Critical 王平
Publication of WO2021046882A1 publication Critical patent/WO2021046882A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium

Definitions

  • the invention relates to the field of iron and steel metallurgy and the technical field of earthquake-resistant and fire-resistant stainless steel materials for building structures, in particular to an earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel and a preparation method thereof.
  • the advantages of stainless steel as a building material are corrosion resistance, beauty, and longevity.
  • the Savoy Hotel in London was built in 1929
  • the Chrysler Building in New York was built in 1930
  • the Empire State Building in New York was built in 1931. It belongs to stainless steel construction and is still in normal use.
  • Judging from the existing experience in the use of stainless steel buildings although the construction cost of stainless steel buildings will be about 10% higher than that of carbon steel buildings, there is almost no need for maintenance within 100 years of use.
  • the use time of the product has no maintenance value. Not only the use time is much lower than that of the stainless steel building, but it also does not have the building function of corrosion resistance, beautiful appearance, and maintenance after a hundred years.
  • the disadvantage of stainless steel is that its strength is relatively low. If a high-strength stainless steel material can be prepared with the characteristics of high strength, good toughness, corrosion resistance, beauty and longevity, then the construction use of the stainless steel material More significant.
  • the stainless steel material also has anti-seismic performance and fire-proof performance
  • the stainless steel material has a wider range of construction uses, stronger compatibility, and because it can resist natural disasters, the construction is safer and the service life is longer.
  • existing stainless steel buildings use fire-resistant coatings to achieve fire-resistant requirements, and the coatings will fall off after a period of time, and the fire-resistant performance of stainless steel is difficult to guarantee.
  • the peeled off stainless steel material is re-painted with the fireproof coating on the peeling part, the bonding performance between the newly painted fireproof coating and the peeling part and the bonding performance between the newly painted fireproof coating and the old fireproof coating in other parts are quite different. , Resulting in an increase in the probability of fire-retardant coating falling off, thereby making the building's fire-proof function ineffective.
  • the present invention proposes a kind of anti-seismic, fire-resistant, high-strength and tough stainless steel structural steel.
  • the stainless steel combines the properties of earthquake resistance, fire resistance, corrosion resistance, high yield strength, and high elongation. It is used for long-life buildings, bridges and offshore projects.
  • the anti-seismic, fire-resistant, high-strength and tough stainless structural steel is used for long-life buildings, bridges and offshore projects.
  • the technical problem to be solved by the present invention is how to make stainless steel materials possess anti-corrosion properties and also possess anti-vibration, fire resistance, high yield strength, and high elongation properties, which overcomes the existing stainless steel buildings using fire-resistant coatings to achieve fire-resistant requirements. After a period of time, it will fall off, and the fire resistance of stainless steel is difficult to be guaranteed.
  • the present invention provides an earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel.
  • the basic components of the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel are calculated by mass percentage: C 0.08-0.18%, Si ⁇ 0.8%, Mn ⁇ 0.8%, Cr 12.0-22.0%, Ni 1.5-2.0%, Mo 0.40-0.60%, V 0.15-0.25%, all Al 0.015-0.025%, P ⁇ 0.040%, S ⁇ 0.020%, all O ⁇ 35ppm, the rest are Fe and non Impurities to avoid.
  • the average size of crystal grains of the seismic, fire-resistant, high-strength and tough stainless structural steel is 5-10 microns, and the average size of the chromium-carbon nano-precipitated phase is 200-400 nanometers.
  • the fire resistance temperature of the seismic and fire-resistant high-strength stainless steel structural steel is 600°C
  • the fire resistance limit at 600°C fire resistance temperature includes a 1-hour fire resistance limit, a 2-hour fire resistance limit and a 3-hour fire resistance limit
  • the fire resistance rating of less than 1 hour adopts the 1-hour fire resistance limit
  • the fire resistance rating of less than 2 hours uses the 2-hour fire resistance limit
  • the fire resistance class of less than 3 hours uses the 3-hour fire resistance limit
  • All fire resistance levels below 3 hours adopt the 3-hour fire resistance limit.
  • the yield ratio of the seismic, fire-resistant, high-strength and tough stainless structural steel is less than or equal to 0.8.
  • the requirements of corrosion resistance it is selected from the range of 12% Cr that is resistant to atmospheric corrosion to 22% Cr that meets the requirements of marine corrosion while meeting the requirements of earthquake resistance.
  • the composition of high-strength and tough structural steel requiring fire resistance and corrosion resistance.
  • a method for preparing the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel comprising the following steps:
  • the raw material is the surface ore of low nickel laterite nickel ore, which is smelted into molten iron by blast furnace smelting or submerged electric furnace and sent to AOD blowing; or the molten iron obtained by smelting low nickel iron in induction furnace or electric arc furnace is sent to AOD blowing, AOD blowing
  • the adjustment of the lower limit target of the composition of the main alloy elements C, Cr, Ni, Mn, and Si of the seismic, fire-resistant, high-strength and tough stainless structural steel is completed during the refining process;
  • LF furnace starts to maintain white slag after 10 minutes of argon blowing and stirring.
  • add high calcium ratio limestone to adjust the slag to maintain the foamability of the slag, so that the refining and adjustment of the composition of the LF furnace can proceed smoothly;
  • the inclusions in the molten steel are modified by alkali metal cored wire, so that the composition of the molten steel meets the basic composition of the earthquake-resistant, fire-resistant, high-strength, stainless steel structural steel;
  • the molten steel obtained after refining in S7 and S6 is sent to the continuous caster to be cast into slabs, square billets or rectangular billets;
  • the slab or square billet or rectangular billet is sent for inspection and grinding, and then the required seismic, refractory, high-strength and tough stainless structural steel is produced by the rolling process and heat treatment of controlled rolling and cooling in the rolling mill;
  • the rolling process and heat treatment of controlled rolling and controlled cooling include controlled rolling and controlled cold rolling at the end temperature of 910-950°C, spray cooling to 690-720°C, and directly sent back to the furnace for nano-precipitation phase precipitation treatment;
  • the steel plate can be crimped at 690-720°C and sent back to the furnace for nano-precipitation phase precipitation treatment.
  • the reduced refining slag in S3 should control the alkalinity CaO/SiO 2 within the range of 2-3, and the composition of the reduced refining slag is CaO: 50-60% in terms of mass percentage.
  • the high-quality CaCO 3 contains CaO.
  • the total content ratio is more than 50%; SiO 2 : 25-30%; CaF 2 : 10%; the remaining high-alumina refractory bricks.
  • the lumpness of the reduced refining slag is less than 20mm, there is no powdery material, and it needs to be packed in a sealed moisture-proof bag.
  • the refining in the preparation method enables the inclusions and oxygen and sulfur content in the steel to reach a high purity level, the total oxygen content is less than 35 ppm, and the sulfur content is less than 50 ppm.
  • the time consumed for refining and adjusting the composition in the LF furnace in S5 is generally not more than 40 minutes.
  • the strip can be cooled by strong wind, and the hot coil is cooled by immersion in water, and cannot be thermally stacked at 200°C;
  • the medium-thickness original plates in S8 are immersed in water to cool, and cannot be stacked in thermal contact above 200°C.
  • the present invention proposes a seismic, fire-resistant, high-strength and high-strength stainless steel structural steel that combines seismic, fire-resistant, corrosion-resistant, high-yield strength, and high-elongation performance.
  • the average size of crystal grains is 5-10 microns, and chromium-carbon nano-precipitation
  • the average phase size is 200-400 nanometers; the subsequent smelting process controls the total oxygen content to be less than 35ppm and the sulfur content to less than 50ppm; and through controlled rolling, cooling and heat treatment, the solid solution and precipitation control make the average grain size and chromium carbon nanometer
  • the average size of the precipitated phase reaches the required specifications, thereby ensuring that the seismic performance, fire resistance, and corrosion resistance under high-strength conditions are met.
  • the stainless steel of the present invention adopts nano-precipitation phase metallurgy technology, and the lower limit of its yield strength is 600 MPa, and it has anti-seismic and fire-proof applications.
  • the steel's chloride ion resistance and atmospheric corrosion resistance are comparable to those of 304 and 316 stainless steel, and it also has better resistance to pitting and intergranular corrosion. It can be used to build long-life buildings and bridges, and can also be used as steel for offshore engineering construction. .
  • the technical problem to be solved by the present invention is how to make stainless steel materials possess anti-corrosion properties and also possess anti-seismic, fire-resistant, high yield strength and high elongation properties, which overcomes the existing stainless steel buildings using fire-resistant coatings to achieve fire-resistant requirements. After a period of time, it will fall off, and the fire resistance of stainless steel is difficult to be guaranteed.
  • the present invention provides an earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel.
  • the basic components of the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel are calculated by mass percentage: C 0.08-0.18%, Si ⁇ 0.8%, Mn ⁇ 0.8%, Cr 12.0-22.0%, Ni 1.5-2.0%, Mo 0.40-0.60%, V 0.15-0.25%, total Al 0.015-0.025%, P ⁇ 0.040%, S ⁇ 0.020%, total O ⁇ 35ppm , The rest is Fe and unavoidable impurities.
  • the average size of crystal grains of the anti-vibration, fire-resistant, high-strength and tough stainless structural steel is 5-10 microns
  • the average size of the chromium-carbon nano-precipitated phase is 200-400 nanometers.
  • the fire resistance temperature of the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel is 600°C
  • the fire resistance limit at the 600°C fire resistance temperature includes 1 hour fire resistance, 2 hours fire resistance and 3 hours fire resistance
  • the fire resistance rating of less than 1 hour uses the 1-hour fire resistance limit
  • the fire resistance rating of less than 2 hours uses the 2-hour fire resistance rating
  • the fire resistance rating of less than 3 hours uses the 3-hour fire resistance limit
  • All fire resistance levels below 3 hours adopt the 3-hour fire resistance limit.
  • the yield ratio of the seismic, fire-resistant, high-strength and tough stainless structural steel is less than or equal to 0.8.
  • the range of 12% Cr that is resistant to atmospheric corrosion to 22% Cr that meets the requirements of marine corrosion is selected to meet the requirements of seismic, The composition of high-strength and tough structural steel required for fire resistance and corrosion resistance.
  • a method for preparing the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel comprising the following steps:
  • the raw material is the surface ore of low nickel laterite nickel ore, which is smelted into molten iron by blast furnace smelting or submerged electric furnace and sent to AOD blowing; or the molten iron obtained by smelting low nickel iron in induction furnace or electric arc furnace is sent to AOD blowing, AOD blowing
  • the adjustment of the lower limit target of the composition of the main alloy elements C, Cr, Ni, Mn, and Si of the seismic, fire-resistant, high-strength and tough stainless structural steel is completed during the refining process;
  • LF furnace starts to maintain white slag after 10 minutes of argon blowing and stirring.
  • add high calcium ratio limestone to adjust the slag to maintain the foamability of the slag, so that the refining and adjustment of the composition of the LF furnace can proceed smoothly;
  • the inclusions in the molten steel are modified by alkali metal cored wire, so that the composition of the molten steel meets the basic composition of the earthquake-resistant, fire-resistant, high-strength, stainless steel structural steel;
  • the molten steel obtained after refining in S7 and S6 is sent to the continuous caster to be cast into slabs, square billets or rectangular billets;
  • the slab or square billet or rectangular billet is sent for inspection and grinding, and then the required seismic, refractory, high-strength and tough stainless structural steel is produced by the rolling process and heat treatment of controlled rolling and cooling in the rolling mill;
  • controlled rolling and controlled cooling include controlled rolling and controlled cold rolling at the end temperature of 910-950°C, spray cooling to 690-720°C, and directly sent back to the furnace for nano-precipitation phase precipitation treatment;
  • the steel plate can be crimped at 690-720°C and sent back to the furnace for nano-precipitation phase precipitation treatment
  • the reduction refining slag in S3 should control the alkalinity CaO/SiO 2 within the range of 2-3, and the composition of the reduction refining slag is CaO: 50-60% by mass percentage, and the content of CaO in high-quality CaCO 3 The total ratio is more than 50%; SiO 2 : 25-30%; CaF 2 : 10%; the remaining high-alumina refractory bricks.
  • the lumpness of the reduced refining slag is less than 20mm, there is no powdery material, and it needs to be packed in a sealed moisture-proof bag.
  • the refining in the preparation method makes the inclusions and oxygen and sulfur content in the steel reach a high purity level, the total oxygen content is less than 35 ppm, and the sulfur content is less than 50 ppm.
  • the time consumed by the LF furnace in S5 for refining and adjusting the composition is generally not more than 40 minutes.
  • the strip after the nano-precipitation phase precipitation treatment in S8, it is cooled at 700°C, the strip can be cooled by strong wind, and the hot coil is cooled by immersion in water and cannot be thermally stacked at 200°C;
  • the medium-thickness original plates in S8 are immersed in water to cool, and cannot be stacked in thermal contact above 200°C.
  • An earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel the basic components of which are calculated by mass percentage: C 0.08%, Si 0.8%, Mn 0.8%, Cr 12.0%, Ni 1.5%, Mo 0.40%, V 0.15%, all Al 0.015%, P 0.040%, S 0.020%, all O 35ppm, and the rest are Fe and unavoidable impurities.
  • the average size of crystal grains of the anti-seismic, fire-resistant, high-strength and tough stainless structural steel is 5 microns, and the average size of the chromium-carbon nano-precipitated phase is 200 nanometers.
  • the fire resistance temperature of the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel is 600°C
  • the fire resistance limit at the 600°C fire resistance temperature includes 1 hour fire resistance, 2 hours fire resistance and 3 hours fire resistance
  • the fire resistance rating of less than 1 hour uses the 1-hour fire resistance limit
  • the fire resistance rating of less than 2 hours uses the 2-hour fire resistance rating
  • the fire resistance rating of less than 3 hours uses the 3-hour fire resistance limit
  • All fire resistance levels below 3 hours adopt the 3-hour fire resistance limit.
  • the yield ratio of the seismic, fire-resistant, high-strength and tough stainless structural steel is less than or equal to 0.8.
  • the range of 12% Cr that is resistant to atmospheric corrosion to 22% Cr that meets the requirements of marine corrosion is selected to meet the requirements of seismic, The composition of high-strength and tough structural steel required for fire resistance and corrosion resistance.
  • a method for preparing the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel comprising the following steps:
  • the raw material is the surface ore of low nickel laterite nickel ore, which is smelted into molten iron by blast furnace smelting or submerged electric furnace and sent to AOD blowing; or the molten iron obtained by smelting low nickel iron in induction furnace or electric arc furnace is sent to AOD blowing, AOD blowing
  • the adjustment of the lower limit target of the composition of the main alloy elements C, Cr, Ni, Mn, and Si of the seismic, fire-resistant, high-strength and tough stainless structural steel is completed during the refining process;
  • LF furnace starts to maintain white slag after 10 minutes of argon blowing and stirring.
  • add high calcium ratio limestone to adjust the slag to maintain the foamability of the slag, so that the refining and adjustment of the composition of the LF furnace can proceed smoothly;
  • the inclusions in the molten steel are modified by alkali metal cored wire, so that the composition of the molten steel meets the basic composition of the earthquake-resistant, fire-resistant, high-strength, stainless steel structural steel;
  • the molten steel obtained after refining in S7 and S6 is sent to the continuous casting machine to be cast into slabs;
  • controlled rolling and cold rolling include controlled rolling and cold rolling at 910°C, spray cooling to 690°C, and directly sent back to the furnace for nanoprecipitation phase precipitation treatment; steel sheets that can be rolled can be rolled at 690°C. °C curled and sent back to the furnace for nano-precipitation phase precipitation treatment.
  • the reduction refining slag in S3 should control the alkalinity CaO/SiO 2 within the range of 2.
  • the composition of the reduction refining slag is CaO: 50% by mass percentage, and the total content of CaO in high-quality CaCO 3 is 60%. %; SiO 2 : 25%; CaF 2 : 10%; the remaining high-alumina refractory bricks.
  • the reduction and refining slag has a lumpiness of 20mm, no powdery material, and it needs to be packed in a sealed moisture-proof bag.
  • the refining in the preparation method makes the inclusions and oxygen and sulfur content in the steel reach a high purity level, the total oxygen content is less than 35 ppm, and the sulfur content is less than 50 ppm.
  • the time consumed by the LF furnace in S5 for refining and adjusting the composition is 40 minutes.
  • the strip after the nano-precipitation phase precipitation treatment in S8, it is cooled at 700°C, the strip can be cooled by strong wind, and the hot coil is cooled by immersion in water and cannot be thermally stacked at 200°C;
  • the medium-thickness original plates in S8 are immersed in water to cool, and cannot be stacked in thermal contact above 200°C.
  • An earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel the basic components of which are calculated by mass percentages: C 0.18%, Si 0.7%, Mn 0.7%, Cr 22.0%, Ni 2.0%, Mo 0.60%, V 0.25%, all Al 0.025%, P 0.035%, S 0.015%, all O 32ppm, and the rest are Fe and unavoidable impurities.
  • the average size of crystal grains of the anti-seismic, fire-resistant, high-strength and tough stainless structural steel is 10 microns, and the average size of the chromium-carbon nano-precipitated phase is 400 nanometers.
  • the fire resistance temperature of the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel is 600°C
  • the fire resistance limit at the 600°C fire resistance temperature includes 1 hour fire resistance, 2 hours fire resistance and 3 hours fire resistance
  • the fire resistance rating of less than 1 hour uses the 1-hour fire resistance limit
  • the fire resistance rating of less than 2 hours uses the 2-hour fire resistance rating
  • the fire resistance rating of less than 3 hours uses the 3-hour fire resistance limit
  • All fire resistance levels below 3 hours adopt the 3-hour fire resistance limit.
  • the yield ratio of the seismic, fire-resistant, high-strength and tough stainless structural steel is less than or equal to 0.8.
  • the range of 12% Cr that is resistant to atmospheric corrosion to 22% Cr that meets the requirements of marine corrosion is selected to meet the requirements of seismic, The composition of high-strength and tough structural steel required for fire resistance and corrosion resistance.
  • a method for preparing the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel comprising the following steps:
  • the raw material is the surface ore of low nickel laterite nickel ore, which is smelted into molten iron by blast furnace smelting or submerged electric furnace and sent to AOD blowing; or the molten iron obtained by smelting low nickel iron in induction furnace or electric arc furnace is sent to AOD blowing, AOD blowing
  • the adjustment of the lower limit target of the composition of the main alloy elements C, Cr, Ni, Mn, and Si of the seismic, fire-resistant, high-strength and tough stainless structural steel is completed during the refining process;
  • LF furnace starts to maintain white slag after 10 minutes of argon blowing and stirring.
  • add high calcium ratio limestone to adjust the slag to maintain the foamability of the slag, so that the refining and adjustment of the composition of the LF furnace can proceed smoothly;
  • the inclusions in the molten steel are modified by alkali metal cored wire, so that the composition of the molten steel meets the basic composition of the earthquake-resistant, fire-resistant, high-strength, stainless steel structural steel;
  • the molten steel obtained after refining in S7 and S6 is sent to the continuous casting machine to be cast into billets;
  • the billet After cooling, the billet is sent for inspection and grinding, and then the required seismic, fire-resistant, high-strength and tough stainless structural steel is produced by the rolling process of controlled rolling and cooling in the rolling mill and heat treatment;
  • controlled rolling and controlled cooling include controlled rolling and controlled cold rolling at the end temperature of 950°C, spray cooling to 720°C, and directly sent back to the furnace for nano-precipitation phase precipitation treatment; steel sheets that can be rolled can be rolled at 720°C °C curled and sent back to the furnace for nano-precipitation phase precipitation treatment.
  • the reduction refining slag in S3 should control the alkalinity CaO/SiO 2 within the range of 3.
  • the composition of the reduction refining slag is CaO: 58% by mass percentage, and the total content of CaO in the high-quality CaCO 3 is 55 %; SiO 2 : 30%; CaF 2 : 10%; the remaining high-alumina refractory bricks.
  • the reduction and refining slag has a lumpiness of 15mm, no powdery material, and it needs to be packed in a sealed moisture-proof bag.
  • the refining in the preparation method makes the inclusions and oxygen and sulfur content in the steel reach a high purity level, the total oxygen content is less than 35 ppm, and the sulfur content is less than 50 ppm.
  • the time consumed by the LF furnace in S5 for refining and adjusting the composition is 38 minutes.
  • the strip after the nano-precipitation phase precipitation treatment in S8, it is cooled at 700°C, the strip can be cooled by strong wind, and the hot coil is cooled by immersion in water and cannot be thermally stacked at 200°C;
  • the medium-thickness original plates in S8 are immersed in water to cool, and cannot be stacked in thermal contact above 200°C.
  • An earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel the basic components of which are calculated by mass percentage: C 0.14%, Si 0.6%, Mn 0.6%, Cr 17.0%, Ni 1.7%, Mo 0.50%, V 0.20%, all Al 0.020%, P 0.032%, S 0.015%, all O 30 ppm, and the rest are Fe and unavoidable impurities.
  • the average size of crystal grains of the seismic, fire-resistant, high-strength and tough stainless structural steel is 7 microns
  • the average size of the chromium-carbon nano-precipitated phase is 300 nanometers.
  • the fire resistance temperature of the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel is 600°C
  • the fire resistance limit at the 600°C fire resistance temperature includes 1 hour fire resistance, 2 hours fire resistance and 3 hours fire resistance
  • the fire resistance rating of less than 1 hour uses the 1-hour fire resistance limit
  • the fire resistance rating of less than 2 hours uses the 2-hour fire resistance rating
  • the fire resistance rating of less than 3 hours uses the 3-hour fire resistance limit
  • All fire resistance levels below 3 hours adopt the 3-hour fire resistance limit.
  • the yield ratio of the seismic, fire-resistant, high-strength and tough stainless structural steel is less than or equal to 0.8.
  • the range of 12% Cr that is resistant to atmospheric corrosion to 22% Cr that meets the requirements of marine corrosion is selected to meet the requirements of seismic, The composition of high-strength and tough structural steel required for fire resistance and corrosion resistance.
  • a method for preparing the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel comprising the following steps:
  • the raw material is the surface ore of low nickel laterite nickel ore, which is smelted into molten iron by blast furnace smelting or submerged electric furnace and sent to AOD blowing; or the molten iron obtained by smelting low nickel iron in induction furnace or electric arc furnace is sent to AOD blowing, AOD blowing
  • the adjustment of the lower limit target of the composition of the main alloy elements C, Cr, Ni, Mn, and Si of the seismic, fire-resistant, high-strength and tough stainless structural steel is completed during the refining process;
  • LF furnace starts to maintain white slag after 10 minutes of argon blowing and stirring.
  • add high calcium ratio limestone to adjust the slag to maintain the foamability of the slag, so that the refining and adjustment of the composition of the LF furnace can proceed smoothly;
  • the inclusions in the molten steel are modified by alkali metal cored wire, so that the composition of the molten steel meets the basic composition of the earthquake-resistant, fire-resistant, high-strength, stainless steel structural steel;
  • the molten steel obtained after refining in S7 and S6 is sent to the continuous casting machine to be cast into rectangular billets;
  • controlled rolling and controlled cooling include controlled rolling and controlled cold rolling at the end temperature of 930°C, spray cooling to 710°C, and directly return to the furnace for nano-precipitation phase precipitation treatment; steel sheets that can be rolled can be rolled at 705°C. °C curled and sent back to the furnace for nano-precipitation phase precipitation treatment.
  • the reduction refining slag in S3 should control the alkalinity CaO/SiO 2 within the range of 2-3, and the composition of the reduction refining slag is CaO: 60% by mass percentage, and the total content of CaO in the high-quality CaCO 3 The ratio is 58%; SiO 2 : 25%; CaF 2 : 10%; the remaining high-alumina refractory bricks.
  • the reduction and refining slag has a lumpiness of 16mm, no powdery material, and it needs to be packed in a sealed moisture-proof bag.
  • the refining in the preparation method makes the inclusions and oxygen and sulfur content in the steel reach a high purity level, the total oxygen content is less than 35 ppm, and the sulfur content is less than 50 ppm.
  • the time consumed by the LF furnace in S5 for refining and adjusting the composition is 35 minutes.
  • the strip after the nano-precipitation phase precipitation treatment in S8, it is cooled at 700°C, the strip can be cooled by strong wind, and the hot coil is cooled by immersion in water and cannot be thermally stacked at 200°C;
  • the medium-thickness original plates in S8 are immersed in water to cool, and cannot be stacked in thermal contact above 200°C.
  • An earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel The basic components of the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel are calculated by mass percentage: C 0.13%, Si 0.5%, Mn 0.5%, Cr 16.0%, Ni 1.8%, Mo 0.40%, V 0.18%, all Al 0.019%, P 0.030%, S 0.010%, all O 30ppm, and the rest are Fe and unavoidable impurities.
  • the average size of crystal grains of the seismic, fire-resistant, high-strength and tough stainless structural steel is 7 microns, and the average size of the chromium-carbon nano-precipitation phase is 270 nanometers.
  • the fire resistance temperature of the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel is 600°C
  • the fire resistance limit at the 600°C fire resistance temperature includes 1 hour fire resistance, 2 hours fire resistance and 3 hours fire resistance
  • the fire resistance rating of less than 1 hour uses the 1-hour fire resistance limit
  • the fire resistance rating of less than 2 hours uses the 2-hour fire resistance rating
  • the fire resistance rating of less than 3 hours uses the 3-hour fire resistance limit
  • All fire resistance levels below 3 hours adopt the 3-hour fire resistance limit.
  • the yield ratio of the seismic, fire-resistant, high-strength and tough stainless structural steel is less than or equal to 0.8.
  • the range of 12% Cr that is resistant to atmospheric corrosion to 22% Cr that meets the requirements of marine corrosion is selected to meet the requirements of seismic, The composition of high-strength and tough structural steel required for fire resistance and corrosion resistance.
  • a method for preparing the earthquake-resistant, fire-resistant, high-strength and tough stainless structural steel comprising the following steps:
  • the raw material is the surface ore of low nickel laterite nickel ore, which is smelted into molten iron by blast furnace smelting or submerged electric furnace and sent to AOD blowing; or the molten iron obtained by smelting low nickel iron in induction furnace or electric arc furnace is sent to AOD blowing, AOD blowing
  • the adjustment of the lower limit target of the composition of the main alloy elements C, Cr, Ni, Mn, and Si of the seismic, fire-resistant, high-strength and tough stainless structural steel is completed during the refining process;
  • LF furnace starts to maintain white slag after 10 minutes of argon blowing and stirring.
  • add high calcium ratio limestone to adjust the slag to maintain the foamability of the slag, so that the refining and adjustment of the composition of the LF furnace can proceed smoothly;
  • the inclusions in the molten steel are modified by alkali metal cored wire, so that the composition of the molten steel meets the basic composition of the earthquake-resistant, fire-resistant, high-strength, stainless steel structural steel;
  • the molten steel obtained after refining in S7 and S6 is sent to the continuous casting machine to be cast into a 1250x200mm slab;
  • controlled rolling and cold rolling include controlled rolling and cold rolling at 920°C, spray cooling to 710°C, coiling of hot coils at 700°C, and sending to stepping tunnel kiln tempering furnace for nano-precipitation. Phase precipitation treatment.
  • the reduction refining slag in S3 should control the alkalinity CaO/SiO 2 within the range of 2.5, and the composition of the reduction refining slag is CaO: 52% by mass percentage, and the total content of CaO in high-quality CaCO 3 is 60%. %; SiO 2 : 27%; CaF 2 : 10%; the remaining high alumina refractory bricks.
  • the reduction and refining slag has a lumpiness of 16mm, no powdery material, and it needs to be packed in a sealed moisture-proof bag.
  • the refining in the preparation method makes the inclusions and oxygen and sulfur content in the steel reach a high purity level, the total oxygen content is less than 35 ppm, and the sulfur content is less than 50 ppm.
  • the time consumed by the LF furnace in S5 for refining and adjusting the composition is 32 minutes.
  • the cooled hot coil can be sent to the subsequent straightening, slitting and pickling passivation to obtain a 10x1250mm hot-coiled flat plate, which will be delivered according to the inspection results.
  • the present invention proposes a seismic, fire-resistant, high-strength and tough stainless structural steel that combines seismic, fire-resistant, corrosion-resistant, high-yield strength, and high-elongation performance. Its average grain size is 5-10 microns.
  • the average size of the chromium-carbon nano-precipitated phase is 200-400 nanometers; the subsequent smelting process controls the total oxygen content to be less than 35ppm and the sulfur content to be less than 50ppm; and through controlled rolling and cooling and heat treatment, the solid solution and precipitation are controlled to make the average grain size
  • the average size of the precipitated phases of the chromium-carbon nanometer and the chromium carbon reaches the required specifications, thereby ensuring that the seismic performance, fire resistance, and corrosion resistance under high-strength conditions are met.
  • the stainless steel of the present invention adopts nano-precipitation phase metallurgy technology, the lower limit of its yield strength is 600 MPa, and has the functions of earthquake resistance and fire prevention.
  • the steel's chloride ion resistance and atmospheric corrosion resistance are comparable to those of 304 and 316 stainless steel, and it also has better resistance to pitting and intergranular corrosion. It can be used to build long-life buildings and bridges, and can also be used as steel for offshore engineering construction. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种抗震耐火高强韧不锈结构钢及其制备方法,属于钢铁冶金领域和建筑结构抗震、耐火不锈钢材料的领域。其基本成分按质量百分比计为:C 0.08-0.18%,Si≤0.8%,Mn≤0.8%,Cr 12.0-22.0%,Ni 1.5-2.0%,Mo 0.40-0.60%,V 0.15-0.25%,全Al 0.015-0.025%,P≤0.040%,S≤0.020%,全O≤35ppm,其余为Fe和不可避免的杂质。该不锈钢结合了抗震、耐火、耐腐蚀、高屈服强度、高延伸率性能于一体,可用于长寿型建筑、桥梁和海上工程,其晶粒平均尺寸和铬碳纳米析出相平均尺寸分别为5-10微米和200-400纳米。

Description

一种抗震耐火高强韧不锈结构钢及其制备方法 技术领域
本发明涉及钢铁冶金领域和建筑结构抗震、耐火不锈钢材料的技术领域,尤其涉及一种抗震耐火高强韧不锈结构钢及其制备方法。
背景技术
目前,装配式建筑已经被业界广泛接受并成为建筑结构可持续发展的绿色导向。其中:不锈钢的耐腐蚀性使得不锈钢在建筑结构中受到越来越多的关注,而我国也正在积极研究和探索不锈钢建筑的材料、设计、施工、验收等规范。
不锈钢作为建筑材料的优点在于耐腐蚀、美观、长寿;如始建于1929年的伦敦萨伏伊酒店,始建于1930年的纽约克莱斯勒大厦,和始建于1931年的纽约帝国大厦等,都属于不锈钢建筑,至今仍然在正常的使用。从现有的不锈钢建筑使用经验来看,虽然不锈钢建筑建设成本会高出碳钢建筑约10%,但是在100年的使用时间里,几乎不需要维修;而对于碳钢建筑来讲,70年的使用时间已经没有维修价值了,不仅使用时间远低于不锈钢建筑,而且不具备耐腐蚀、美观、百年后维修还可继续使用的建筑功能。
而在耐候钢的耐火性能的研究上,虽然以前的研究者做了很多的工作,日本的技术人员也提出了很多方法,这些都是值得学习和借鉴的;但是目前在不锈钢的耐火极限问题的研究上却并未见有相关的报道。
不锈钢作为一种建筑材料,现在的缺点是强度比较低,如果能够制备出一种高强韧的不锈钢材料兼具强度高、韧性好、耐腐蚀、美观、长寿的特点,则该不锈钢材料的建筑用途更加显著。
如果上述的不锈钢材料还具有抗地震的性能和防火的性能,该不锈钢材料的建筑用途更加广泛,兼容性更强,并且因为可以抵抗自然灾害,建筑更安全,使用寿命也更长。而现有的不锈钢建筑采用防火涂料实现抗火要求,涂料经过一段时间后会发生脱落,不锈钢的耐火性能难以得到保障。脱落后的不锈钢材料即使重新涂刷防火涂料在脱落部位,新涂刷的防火涂料与脱落部位之间的结合性能以及新涂刷的防火涂料与其他部位旧防火涂料之间的结合性能差别较大,导致防火涂料脱落几率加剧,从而使得建筑的防火功能失效。
本发明提出了一种抗震耐火高强韧不锈结构钢,该不锈钢结合了抗震、耐火、耐腐蚀、高屈服强度、高延伸率性能于一体,是一种用于长寿型建筑、桥梁和海上工程的抗震耐火高强韧不锈结构钢。
发明内容
本发明所要解决的技术问题是如何使得不锈钢材料在具备耐腐蚀性能的同时还具备抗震、耐火、高屈服强度、高延伸率性能,克服了现有的不锈钢建筑采用防火涂料实现抗火要求,涂料经过一段时间后会发生脱落,不锈钢的耐火性能难以得到保障的技术难题。
本发明提供一种抗震耐火高强韧不锈结构钢,所述抗震耐火高强韧不锈结构钢的基本成分按质量百分比计为:C 0.08-0.18%,Si≤0.8%,Mn≤0.8%,Cr 12.0-22.0%,Ni 1.5-2.0%,Mo 0.40-0.60%,V 0.15-0.25%,全Al 0.015-0.025%,P≤0.040%,S≤0.020%,全O≤35ppm,其余为Fe和不可避免的杂质。
优选地,所述抗震耐火高强韧不锈结构钢的晶粒平均尺寸为5-10微米,铬碳纳米析出相平均尺寸为200-400纳米。
优选地,所述抗震耐火高强韧不锈结构钢的耐火温度为600℃,在600℃耐火温度下的耐火极限包括1小时耐火极限、2小时耐火极限和3小时耐火极限;
其中:在1小时以下的耐火等级采用1小时耐火极限,在2小时以下的耐火等级采用2小时耐火极限,在3小时以下的耐火等级采用3小时耐火极限; 或在1小时以下、2小时以下、3小时以下的耐火等级全部采用3小时耐火极限。
优选地,所述抗震耐火高强韧不锈结构钢的1小时耐火极限中,屈服强度Rp0.2≥700MPa,断裂强度Rm≥875MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
所述抗震耐火高强韧不锈结构钢的2小时耐火极限中,屈服强度Rp0.2≥600MPa,断裂强度Rm≥750MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
所述抗震耐火高强韧不锈结构钢的3小时耐火极限中,屈服强度Rp0.2≥500MPa,断裂强度Rm≥625MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J。
优选地,所述抗震耐火高强韧不锈结构钢的屈强比≤0.8,根据耐腐蚀条件要求,在耐大气腐蚀的12%Cr到满足海洋腐蚀要求的22%Cr范围内选择出同时满足抗震、耐火和耐腐蚀要求的高强韧结构钢的成分组成。
一种所述抗震耐火高强韧不锈结构钢的制备方法,所述制备方法包括以下步骤:
S1、原料为低镍红土镍矿表层矿,通过高炉冶炼或矿热电炉冶炼成铁水,送AOD吹炼;或者由感应炉、电弧炉冶炼低镍铁块获得的铁水送AOD吹炼,AOD吹炼过程中完成所述抗震耐火高强韧不锈结构钢的主要合金元素C、Cr、Ni、Mn、Si的成分下限目标的调整;
S2、将S1中AOD吹炼的钢水转入LF炉,并使得进入LF炉的钢水的碳含量、磷含量进入最终成分下限以下,防止后期增碳,留出后期操作增C和增P余量;
S3、向LF炉加入200-300mm厚度的还原精炼渣,对进入LF炉的钢水进行还原精炼,以便脱氧和脱硫及进行成分精确调整;
S4、LF炉吹氩气搅拌,LF炉吹氩气搅拌的程度达到渣面吹破即可;然后按每吨钢加入Al 0.8-1.2kg的方式加入铝,后续过程中钢水不再加入铝脱氧;在促进白渣形成时可以在LF炉渣表面加入铝粒,但不得用铝粉替代,防止铝粉的剧烈燃烧;
S5、LF炉吹氩气搅拌10分钟后开始保持白渣,炉渣过稀时,加入高钙比例石灰石调渣,以保持炉渣的发泡性,使得LF炉精炼与调整成分能够顺利进行;
S6、精炼结束后,通过碱金属包芯线对钢水中的夹杂物进行变性处理,使得钢水的成分满足所述抗震耐火高强韧不锈结构钢的基本成分;
S7、S6中精炼结束得到的钢水送连铸机铸成板坯或方坯或矩形坯;
S8、板坯或方坯或矩形坯经过冷却后送检验修磨,之后在轧机中进行控轧控冷的轧制工艺和热处理制得所需的抗震耐火高强韧不锈结构钢材;
控轧控冷的轧制工艺和热处理包括控轧控冷轧制结束温度控制在910-950℃,喷淋冷却至690-720℃,直接送回火炉,进行纳米沉淀相析出处理;能够卷曲的钢板可以在690-720℃卷曲送回火炉,进行纳米沉淀相析出处理。
优选地,S3中的还原精炼渣应将碱度CaO/SiO 2控制在2-3的范围内,还原精炼渣的成分按质量百分比计为CaO:50-60%,其中高品质CaCO 3中CaO含量总量比>50%;SiO 2:25-30%;CaF 2:10%;其余高铝耐火砖块状料。还原精炼渣的块度小于20mm,不能有粉状料,且需要以密封防潮袋袋装。
优选地,所述制备方法中的精炼使钢中的夹杂物和氧硫含量达到高纯净水平,总氧含量小于35ppm,硫含量小于50ppm。
优选地,S5中的LF炉精炼与调整成分所消耗的时间一般不大于40分钟。
优选地,S8中进行纳米沉淀相析出处理后700℃出炉冷却,条型材可以强风冷却,热卷板采用浸水冷却,不能在200℃热堆放;
S8中的中厚原平板浸水冷却,不能在200℃以上热接触性堆放。
本发明的上述技术方案的有益效果如下:
本发明提出了一种结合了抗震、耐火、耐腐蚀、高屈服强度、高延伸率性能于一体的抗震耐火高强韧不锈结构钢,其晶粒平均尺寸为5-10微米,铬碳纳米析出相平均尺寸为200-400纳米;后续的冶炼过程控制总氧含量小于35ppm,硫含量小于50ppm;并通过控轧控冷及热处理,其中的固溶与析出控制使得晶粒平均尺寸和铬碳纳米析出相平均尺寸达到所需规格,从而保证了满足高强度条件下的抗震性能、耐火性能、耐腐蚀性能。本发明的不锈钢采用纳 米析出相冶金技术,其屈服强度的下限值为600MPa,具备抗震和防火用途。该钢耐氯离子和大气腐蚀性能可以与304、316不锈钢相当,也具有较好的抗点腐蚀和晶间腐蚀能力,既可用于建设长寿型建筑和桥梁,也可用作海上工程建设用钢。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述。
本发明要解决的技术问题是如何使得不锈钢材料在具备耐腐蚀性能的同时还具备抗震、耐火、高屈服强度、高延伸率性能,克服了现有的不锈钢建筑采用防火涂料实现抗火要求,涂料经过一段时间后会发生脱落,不锈钢的耐火性能难以得到保障的技术难题。
为解决上述技术问题,本发明提供一种抗震耐火高强韧不锈结构钢,所述抗震耐火高强韧不锈结构钢的基本成分按质量百分比计为:C 0.08-0.18%,Si≤0.8%,Mn≤0.8%,Cr 12.0-22.0%,Ni 1.5-2.0%,Mo 0.40-0.60%,V 0.15-0.25%,全Al 0.015-0.025%,P≤0.040%,S≤0.020%,全O≤35ppm,其余为Fe和不可避免的杂质。
其中,所述抗震耐火高强韧不锈结构钢的晶粒平均尺寸为5-10微米,铬碳纳米析出相平均尺寸为200-400纳米。
其中,所述抗震耐火高强韧不锈结构钢的耐火温度为600℃,在600℃耐火温度下的耐火极限包括1小时耐火极限、2小时耐火极限和3小时耐火极限;
其中:在1小时以下的耐火等级采用1小时耐火极限,在2小时以下的耐火等级采用2小时耐火极限,在3小时以下的耐火等级采用3小时耐火极限;或在1小时以下、2小时以下、3小时以下的耐火等级全部采用3小时耐火极限。
其中,所述抗震耐火高强韧不锈结构钢的1小时耐火极限中,屈服强度Rp0.2≥700MPa,断裂强度Rm≥875MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
所述抗震耐火高强韧不锈结构钢的2小时耐火极限中,屈服强度Rp0.2≥600MPa,断裂强度Rm≥750MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
所述抗震耐火高强韧不锈结构钢的3小时耐火极限中,屈服强度Rp0.2≥500MPa,断裂强度Rm≥625MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J。
其中,所述抗震耐火高强韧不锈结构钢的屈强比≤0.8,根据耐腐蚀条件要求,在耐大气腐蚀的12%Cr到满足海洋腐蚀要求的22%Cr范围内选择出同时满足抗震、耐火和耐腐蚀要求的高强韧结构钢的成分组成。
一种所述抗震耐火高强韧不锈结构钢的制备方法,所述制备方法包括以下步骤:
S1、原料为低镍红土镍矿表层矿,通过高炉冶炼或矿热电炉冶炼成铁水,送AOD吹炼;或者由感应炉、电弧炉冶炼低镍铁块获得的铁水送AOD吹炼,AOD吹炼过程中完成所述抗震耐火高强韧不锈结构钢的主要合金元素C、Cr、Ni、Mn、Si的成分下限目标的调整;
S2、将S1中AOD吹炼的钢水转入LF炉,并使得进入LF炉的钢水的碳含量、磷含量进入最终成分下限以下,防止后期增碳,留出后期操作增C和增P余量;
S3、向LF炉加入200-300mm厚度的还原精炼渣,对进入LF炉的钢水进行还原精炼,以便脱氧和脱硫及进行成分精确调整;
S4、LF炉吹氩气搅拌,LF炉吹氩气搅拌的程度达到渣面吹破即可;然后按每吨钢加入Al 0.8-1.2kg的方式加入铝,后续过程中钢水不再加入铝脱氧;在促进白渣形成时可以在LF炉渣表面加入铝粒,但不得用铝粉替代,防止铝粉的剧烈燃烧;
S5、LF炉吹氩气搅拌10分钟后开始保持白渣,炉渣过稀时,加入高钙比例石灰石调渣,以保持炉渣的发泡性,使得LF炉精炼与调整成分能够顺利进行;
S6、精炼结束后,通过碱金属包芯线对钢水中的夹杂物进行变性处理,使得钢水的成分满足所述抗震耐火高强韧不锈结构钢的基本成分;
S7、S6中精炼结束得到的钢水送连铸机铸成板坯或方坯或矩形坯;
S8、板坯或方坯或矩形坯经过冷却后送检验修磨,之后在轧机中进行控轧控冷的轧制工艺和热处理制得所需的抗震耐火高强韧不锈结构钢材;
控轧控冷的轧制工艺和热处理包括控轧控冷轧制结束温度控制在910-950℃,喷淋冷却至690-720℃,直接送回火炉,进行纳米沉淀相析出处理;能够卷曲的钢板可以在690-720℃卷曲送回火炉,进行纳米沉淀相析出处理
其中,S3中的还原精炼渣应将碱度CaO/SiO 2控制在2-3的范围内,还原精炼渣的成分按质量百分比计为CaO:50-60%,其中高品质CaCO 3中CaO含量总量比>50%;SiO 2:25-30%;CaF 2:10%;其余高铝耐火砖块状料。
还原精炼渣的块度小于20mm,不能有粉状料,且需要以密封防潮袋袋装。
其中,所述制备方法中的精炼使钢中的夹杂物和氧硫含量达到高纯净水平,总氧含量小于35ppm,硫含量小于50ppm。
其中,S5中的LF炉精炼与调整成分所消耗的时间一般不大于40分钟。
其中,S8中进行纳米沉淀相析出处理后700℃出炉冷却,条型材可以强风冷却,热卷板采用浸水冷却,不能在200℃热堆放;
S8中的中厚原平板浸水冷却,不能在200℃以上热接触性堆放。
具体抗震耐火高强韧不锈结构钢及其制备方法结合以下实施例进行说明:
实施例一:
一种抗震耐火高强韧不锈结构钢,所述抗震耐火高强韧不锈结构钢的基本成分按质量百分比计为:C 0.08%,Si 0.8%,Mn 0.8%,Cr 12.0%,Ni 1.5%,Mo 0.40%,V 0.15%,全Al 0.015%,P 0.040%,S0.020%,全O 35ppm,其余为Fe和不可避免的杂质。
其中,所述抗震耐火高强韧不锈结构钢的晶粒平均尺寸为5微米,铬碳纳米析出相平均尺寸为200纳米。
其中,所述抗震耐火高强韧不锈结构钢的耐火温度为600℃,在600℃耐火温度下的耐火极限包括1小时耐火极限、2小时耐火极限和3小时耐火极限;
其中:在1小时以下的耐火等级采用1小时耐火极限,在2小时以下的耐 火等级采用2小时耐火极限,在3小时以下的耐火等级采用3小时耐火极限;或在1小时以下、2小时以下、3小时以下的耐火等级全部采用3小时耐火极限。
其中,所述抗震耐火高强韧不锈结构钢的1小时耐火极限中,屈服强度Rp0.2≥700MPa,断裂强度Rm≥875MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
所述抗震耐火高强韧不锈结构钢的2小时耐火极限中,屈服强度Rp0.2≥600MPa,断裂强度Rm≥750MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
所述抗震耐火高强韧不锈结构钢的3小时耐火极限中,屈服强度Rp0.2≥500MPa,断裂强度Rm≥625MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J。
其中,所述抗震耐火高强韧不锈结构钢的屈强比≤0.8,根据耐腐蚀条件要求,在耐大气腐蚀的12%Cr到满足海洋腐蚀要求的22%Cr范围内选择出同时满足抗震、耐火和耐腐蚀要求的高强韧结构钢的成分组成。
一种所述抗震耐火高强韧不锈结构钢的制备方法,所述制备方法包括以下步骤:
S1、原料为低镍红土镍矿表层矿,通过高炉冶炼或矿热电炉冶炼成铁水,送AOD吹炼;或者由感应炉、电弧炉冶炼低镍铁块获得的铁水送AOD吹炼,AOD吹炼过程中完成所述抗震耐火高强韧不锈结构钢的主要合金元素C、Cr、Ni、Mn、Si的成分下限目标的调整;
S2、将S1中AOD吹炼的钢水转入LF炉,并使得进入LF炉的钢水的碳含量、磷含量进入最终成分下限以下,防止后期增碳,留出后期操作增C和增P余量;
S3、向LF炉加入250mm厚度的还原精炼渣,对进入LF炉的钢水进行还原精炼,以便脱氧和脱硫及进行成分精确调整;
S4、LF炉吹氩气搅拌,LF炉吹氩气搅拌的程度达到渣面吹破即可;然后按每吨钢加入Al 0.8kg的方式加入铝,后续过程中钢水不再加入铝脱氧;在促进白渣形成时可以在LF炉渣表面加入铝粒,但不得用铝粉替代,防止铝粉的 剧烈燃烧;
S5、LF炉吹氩气搅拌10分钟后开始保持白渣,炉渣过稀时,加入高钙比例石灰石调渣,以保持炉渣的发泡性,使得LF炉精炼与调整成分能够顺利进行;
S6、精炼结束后,通过碱金属包芯线对钢水中的夹杂物进行变性处理,使得钢水的成分满足所述抗震耐火高强韧不锈结构钢的基本成分;
S7、S6中精炼结束得到的钢水送连铸机铸成板坯;
S8、板坯经过冷却后送检验修磨,之后在轧机中进行控轧控冷的轧制工艺和热处理制得所需的抗震耐火高强韧不锈结构钢材;
控轧控冷的轧制工艺和热处理包括控轧控冷轧制结束温度控制在910℃,喷淋冷却至690℃,直接送回火炉,进行纳米沉淀相析出处理;能够卷曲的钢板可以在690℃卷曲送回火炉,进行纳米沉淀相析出处理。
其中,S3中的还原精炼渣应将碱度CaO/SiO 2控制在2的范围内,还原精炼渣的成分按质量百分比计为CaO:50%,其中高品质CaCO 3中CaO含量总量比60%;SiO 2:25%;CaF 2:10%;其余高铝耐火砖块状料。
还原精炼渣的块度20mm,不能有粉状料,且需要以密封防潮袋袋装。
其中,所述制备方法中的精炼使钢中的夹杂物和氧硫含量达到高纯净水平,总氧含量小于35ppm,硫含量小于50ppm。
其中,S5中的LF炉精炼与调整成分所消耗的时间为40分钟。
其中,S8中进行纳米沉淀相析出处理后700℃出炉冷却,条型材可以强风冷却,热卷板采用浸水冷却,不能在200℃热堆放;
S8中的中厚原平板浸水冷却,不能在200℃以上热接触性堆放。
实施例二:
一种抗震耐火高强韧不锈结构钢,所述抗震耐火高强韧不锈结构钢的基本成分按质量百分比计为:C 0.18%,Si 0.7%,Mn 0.7%,Cr 22.0%,Ni 2.0%,Mo 0.60%,V 0.25%,全Al 0.025%,P 0.035%,S 0.015%,全O 32ppm,其余为Fe和不可避免的杂质。
其中,所述抗震耐火高强韧不锈结构钢的晶粒平均尺寸为10微米,铬碳 纳米析出相平均尺寸为400纳米。
其中,所述抗震耐火高强韧不锈结构钢的耐火温度为600℃,在600℃耐火温度下的耐火极限包括1小时耐火极限、2小时耐火极限和3小时耐火极限;
其中:在1小时以下的耐火等级采用1小时耐火极限,在2小时以下的耐火等级采用2小时耐火极限,在3小时以下的耐火等级采用3小时耐火极限;或在1小时以下、2小时以下、3小时以下的耐火等级全部采用3小时耐火极限。
其中,所述抗震耐火高强韧不锈结构钢的1小时耐火极限中,屈服强度Rp0.2≥700MPa,断裂强度Rm≥875MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
所述抗震耐火高强韧不锈结构钢的2小时耐火极限中,屈服强度Rp0.2≥600MPa,断裂强度Rm≥750MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
所述抗震耐火高强韧不锈结构钢的3小时耐火极限中,屈服强度Rp0.2≥500MPa,断裂强度Rm≥625MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J。
其中,所述抗震耐火高强韧不锈结构钢的屈强比≤0.8,根据耐腐蚀条件要求,在耐大气腐蚀的12%Cr到满足海洋腐蚀要求的22%Cr范围内选择出同时满足抗震、耐火和耐腐蚀要求的高强韧结构钢的成分组成。
一种所述抗震耐火高强韧不锈结构钢的制备方法,所述制备方法包括以下步骤:
S1、原料为低镍红土镍矿表层矿,通过高炉冶炼或矿热电炉冶炼成铁水,送AOD吹炼;或者由感应炉、电弧炉冶炼低镍铁块获得的铁水送AOD吹炼,AOD吹炼过程中完成所述抗震耐火高强韧不锈结构钢的主要合金元素C、Cr、Ni、Mn、Si的成分下限目标的调整;
S2、将S1中AOD吹炼的钢水转入LF炉,并使得进入LF炉的钢水的碳含量、磷含量进入最终成分下限以下,防止后期增碳,留出后期操作增C和增P余量;
S3、向LF炉加入260mm厚度的还原精炼渣,对进入LF炉的钢水进行还 原精炼,以便脱氧和脱硫及进行成分精确调整;
S4、LF炉吹氩气搅拌,LF炉吹氩气搅拌的程度达到渣面吹破即可;然后按每吨钢加入Al 1.2kg的方式加入铝,后续过程中钢水不再加入铝脱氧;在促进白渣形成时可以在LF炉渣表面加入铝粒,但不得用铝粉替代,防止铝粉的剧烈燃烧;
S5、LF炉吹氩气搅拌10分钟后开始保持白渣,炉渣过稀时,加入高钙比例石灰石调渣,以保持炉渣的发泡性,使得LF炉精炼与调整成分能够顺利进行;
S6、精炼结束后,通过碱金属包芯线对钢水中的夹杂物进行变性处理,使得钢水的成分满足所述抗震耐火高强韧不锈结构钢的基本成分;
S7、S6中精炼结束得到的钢水送连铸机铸成方坯;
S8、方坯经过冷却后送检验修磨,之后在轧机中进行控轧控冷的轧制工艺和热处理制得所需的抗震耐火高强韧不锈结构钢材;
控轧控冷的轧制工艺和热处理包括控轧控冷轧制结束温度控制在950℃,喷淋冷却至720℃,直接送回火炉,进行纳米沉淀相析出处理;能够卷曲的钢板可以在720℃卷曲送回火炉,进行纳米沉淀相析出处理。
其中,S3中的还原精炼渣应将碱度CaO/SiO 2控制在3的范围内,还原精炼渣的成分按质量百分比计为CaO:58%,其中高品质CaCO 3中CaO含量总量比55%;SiO 2:30%;CaF 2:10%;其余高铝耐火砖块状料。
还原精炼渣的块度15mm,不能有粉状料,且需要以密封防潮袋袋装。
其中,所述制备方法中的精炼使钢中的夹杂物和氧硫含量达到高纯净水平,总氧含量小于35ppm,硫含量小于50ppm。
其中,S5中的LF炉精炼与调整成分所消耗的时间38分钟。
其中,S8中进行纳米沉淀相析出处理后700℃出炉冷却,条型材可以强风冷却,热卷板采用浸水冷却,不能在200℃热堆放;
S8中的中厚原平板浸水冷却,不能在200℃以上热接触性堆放。
实施例三:
一种抗震耐火高强韧不锈结构钢,所述抗震耐火高强韧不锈结构钢的基本 成分按质量百分比计为:C 0.14%,Si 0.6%,Mn 0.6%,Cr 17.0%,Ni 1.7%,Mo 0.50%,V 0.20%,全Al 0.020%,P0.032%,S 0.015%,全O 30ppm,其余为Fe和不可避免的杂质。
其中,所述抗震耐火高强韧不锈结构钢的晶粒平均尺寸为7微米,铬碳纳米析出相平均尺寸为300纳米。
其中,所述抗震耐火高强韧不锈结构钢的耐火温度为600℃,在600℃耐火温度下的耐火极限包括1小时耐火极限、2小时耐火极限和3小时耐火极限;
其中:在1小时以下的耐火等级采用1小时耐火极限,在2小时以下的耐火等级采用2小时耐火极限,在3小时以下的耐火等级采用3小时耐火极限;或在1小时以下、2小时以下、3小时以下的耐火等级全部采用3小时耐火极限。
其中,所述抗震耐火高强韧不锈结构钢的1小时耐火极限中,屈服强度Rp0.2≥700MPa,断裂强度Rm≥875MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
所述抗震耐火高强韧不锈结构钢的2小时耐火极限中,屈服强度Rp0.2≥600MPa,断裂强度Rm≥750MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
所述抗震耐火高强韧不锈结构钢的3小时耐火极限中,屈服强度Rp0.2≥500MPa,断裂强度Rm≥625MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J。
其中,所述抗震耐火高强韧不锈结构钢的屈强比≤0.8,根据耐腐蚀条件要求,在耐大气腐蚀的12%Cr到满足海洋腐蚀要求的22%Cr范围内选择出同时满足抗震、耐火和耐腐蚀要求的高强韧结构钢的成分组成。
一种所述抗震耐火高强韧不锈结构钢的制备方法,所述制备方法包括以下步骤:
S1、原料为低镍红土镍矿表层矿,通过高炉冶炼或矿热电炉冶炼成铁水,送AOD吹炼;或者由感应炉、电弧炉冶炼低镍铁块获得的铁水送AOD吹炼,AOD吹炼过程中完成所述抗震耐火高强韧不锈结构钢的主要合金元素C、Cr、Ni、Mn、Si的成分下限目标的调整;
S2、将S1中AOD吹炼的钢水转入LF炉,并使得进入LF炉的钢水的碳含量、磷含量进入最终成分下限以下,防止后期增碳,留出后期操作增C和增P余量;
S3、向LF炉加入270mm厚度的还原精炼渣,对进入LF炉的钢水进行还原精炼,以便脱氧和脱硫及进行成分精确调整;
S4、LF炉吹氩气搅拌,LF炉吹氩气搅拌的程度达到渣面吹破即可;然后按每吨钢加入Al 1.0kg的方式加入铝,后续过程中钢水不再加入铝脱氧;在促进白渣形成时可以在LF炉渣表面加入铝粒,但不得用铝粉替代,防止铝粉的剧烈燃烧;
S5、LF炉吹氩气搅拌10分钟后开始保持白渣,炉渣过稀时,加入高钙比例石灰石调渣,以保持炉渣的发泡性,使得LF炉精炼与调整成分能够顺利进行;
S6、精炼结束后,通过碱金属包芯线对钢水中的夹杂物进行变性处理,使得钢水的成分满足所述抗震耐火高强韧不锈结构钢的基本成分;
S7、S6中精炼结束得到的钢水送连铸机铸成矩形坯;
S8、矩形坯经过冷却后送检验修磨,之后在轧机中进行控轧控冷的轧制工艺和热处理制得所需的抗震耐火高强韧不锈结构钢材;
控轧控冷的轧制工艺和热处理包括控轧控冷轧制结束温度控制在930℃,喷淋冷却至710℃,直接送回火炉,进行纳米沉淀相析出处理;能够卷曲的钢板可以在705℃卷曲送回火炉,进行纳米沉淀相析出处理。
其中,S3中的还原精炼渣应将碱度CaO/SiO 2控制在2-3的范围内,还原精炼渣的成分按质量百分比计为CaO:60%,其中高品质CaCO 3中CaO含量总量比58%;SiO 2:25%;CaF 2:10%;其余高铝耐火砖块状料。
还原精炼渣的块度16mm,不能有粉状料,且需要以密封防潮袋袋装。
其中,所述制备方法中的精炼使钢中的夹杂物和氧硫含量达到高纯净水平,总氧含量小于35ppm,硫含量小于50ppm。
其中,S5中的LF炉精炼与调整成分所消耗的时间35分钟。
其中,S8中进行纳米沉淀相析出处理后700℃出炉冷却,条型材可以强风冷却,热卷板采用浸水冷却,不能在200℃热堆放;
S8中的中厚原平板浸水冷却,不能在200℃以上热接触性堆放。
实施例四:
一种抗震耐火高强韧不锈结构钢,所述抗震耐火高强韧不锈结构钢的基本成分按质量百分比计为:C 0.13%,Si 0.5%,Mn 0.5%,Cr 16.0%,Ni 1.8%,Mo 0.40%,V 0.18%,全Al 0.019%,P 0.030%,S 0.010%,全O 30ppm,其余为Fe和不可避免的杂质。
其中,所述抗震耐火高强韧不锈结构钢的晶粒平均尺寸为7微米,铬碳纳米析出相平均尺寸为270纳米。
其中,所述抗震耐火高强韧不锈结构钢的耐火温度为600℃,在600℃耐火温度下的耐火极限包括1小时耐火极限、2小时耐火极限和3小时耐火极限;
其中:在1小时以下的耐火等级采用1小时耐火极限,在2小时以下的耐火等级采用2小时耐火极限,在3小时以下的耐火等级采用3小时耐火极限;或在1小时以下、2小时以下、3小时以下的耐火等级全部采用3小时耐火极限。
其中,所述抗震耐火高强韧不锈结构钢的1小时耐火极限中,屈服强度Rp0.2≥700MPa,断裂强度Rm≥875MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
所述抗震耐火高强韧不锈结构钢的2小时耐火极限中,屈服强度Rp0.2≥600MPa,断裂强度Rm≥750MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
所述抗震耐火高强韧不锈结构钢的3小时耐火极限中,屈服强度Rp0.2≥500MPa,断裂强度Rm≥625MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J。
其中,所述抗震耐火高强韧不锈结构钢的屈强比≤0.8,根据耐腐蚀条件要求,在耐大气腐蚀的12%Cr到满足海洋腐蚀要求的22%Cr范围内选择出同时满足抗震、耐火和耐腐蚀要求的高强韧结构钢的成分组成。
一种所述抗震耐火高强韧不锈结构钢的制备方法,所述制备方法包括以下步骤:
S1、原料为低镍红土镍矿表层矿,通过高炉冶炼或矿热电炉冶炼成铁水,送AOD吹炼;或者由感应炉、电弧炉冶炼低镍铁块获得的铁水送AOD吹炼,AOD吹炼过程中完成所述抗震耐火高强韧不锈结构钢的主要合金元素C、Cr、Ni、Mn、Si的成分下限目标的调整;
S2、将S1中AOD吹炼的钢水转入LF炉,并使得进入LF炉的钢水的碳含量、磷含量进入最终成分下限以下,防止后期增碳,留出后期操作增C和增P余量;
S3、向LF炉加入300mm厚度的还原精炼渣,对进入LF炉的钢水进行还原精炼,以便脱氧和脱硫及进行成分精确调整;
S4、LF炉吹氩气搅拌,LF炉吹氩气搅拌的程度达到渣面吹破即可;然后按每吨钢加入Al 0.9kg的方式加入铝,后续过程中钢水不再加入铝脱氧;在促进白渣形成时可以在LF炉渣表面加入铝粒,但不得用铝粉替代,防止铝粉的剧烈燃烧;
S5、LF炉吹氩气搅拌10分钟后开始保持白渣,炉渣过稀时,加入高钙比例石灰石调渣,以保持炉渣的发泡性,使得LF炉精炼与调整成分能够顺利进行;
S6、精炼结束后,通过碱金属包芯线对钢水中的夹杂物进行变性处理,使得钢水的成分满足所述抗震耐火高强韧不锈结构钢的基本成分;
S7、S6中精炼结束得到的钢水送连铸机铸成1250x200mm板坯;
S8、板坯经过冷却后送检验修磨,之后在轧机中进行控轧控冷的轧制工艺和热处理制得所需的抗震耐火高强韧不锈结构钢10mm厚的卷板;
控轧控冷的轧制工艺和热处理包括控轧控冷轧制结束温度控制在920℃,喷淋冷却至710℃,热卷板在700℃卷曲送步进式隧道窑回火炉,进行纳米沉淀相析出处理。
其中,S3中的还原精炼渣应将碱度CaO/SiO 2控制在2.5的范围内,还原精炼渣的成分按质量百分比计为CaO:52%,其中高品质CaCO 3中CaO含量总量比60%;SiO 2:27%;CaF 2:10%;其余高铝耐火砖块状料。
还原精炼渣的块度16mm,不能有粉状料,且需要以密封防潮袋袋装。
其中,所述制备方法中的精炼使钢中的夹杂物和氧硫含量达到高纯净水 平,总氧含量小于35ppm,硫含量小于50ppm。
其中,S5中的LF炉精炼与调整成分所消耗的时间为32分钟。
其中,S8中进行纳米沉淀相析出处理后700℃出炉冷却,热卷板采用浸水冷却,不能在200℃热堆放;
冷却后的热卷可以送后续校直分切检验酸洗钝化,得到10x1250mm热卷开平板,并按照检验结果交货。
综上可见,本发明提出了一种结合了抗震、耐火、耐腐蚀、高屈服强度、高延伸率性能于一体的抗震耐火高强韧不锈结构钢,其晶粒平均尺寸为5-10微米,铬碳纳米析出相平均尺寸为200-400纳米;后续的冶炼过程控制总氧含量小于35ppm,硫含量小于50ppm;并通过控轧控冷及热处理,其中的固溶与析出控制使得晶粒平均尺寸和铬碳纳米析出相平均尺寸达到所需规格,从而保证了满足高强度条件下的抗震性能、耐火性能、耐腐蚀性能。本发明的不锈钢采用纳米析出相冶金技术,其屈服强度的下限值为600MPa,具备抗震和防火用途。该钢耐氯离子和大气腐蚀性能可以与304、316不锈钢相当,也具有较好的抗点腐蚀和晶间腐蚀能力,既可用于建设长寿型建筑和桥梁,也可用作海上工程建设用钢。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种抗震耐火高强韧不锈结构钢,其特征在于,所述抗震耐火高强韧不锈结构钢的基本成分按质量百分比计为:C 0.08-0.18%,Si≤0.8%,Mn≤0.8%,Cr 12.0-22.0%,Ni 1.5-2.0%,Mo 0.40-0.60%,V 0.15-0.25%,全Al 0.015-0.025%,P≤0.040%,S≤0.020%,全O≤35ppm,其余为Fe和不可避免的杂质。
  2. 根据权利要求1所述抗震耐火高强韧不锈结构钢,其特征在于,所述抗震耐火高强韧不锈结构钢的晶粒平均尺寸为5-10微米,铬碳纳米析出相平均尺寸为200-400纳米。
  3. 根据权利要求1所述抗震耐火高强韧不锈结构钢,其特征在于,所述抗震耐火高强韧不锈结构钢的耐火温度为600℃,在600℃耐火温度下的耐火极限包括1小时耐火极限、2小时耐火极限和3小时耐火极限;
    其中:在1小时以下的耐火等级采用1小时耐火极限,在2小时以下的耐火等级采用2小时耐火极限,在3小时以下的耐火等级采用3小时耐火极限;或在1小时以下、2小时以下、3小时以下的耐火等级全部采用3小时耐火极限。
  4. 根据权利要求3所述抗震耐火高强韧不锈结构钢,其特征在于,所述抗震耐火高强韧不锈结构钢的1小时耐火极限中,屈服强度Rp0.2≥700MPa,断裂强度Rm≥875MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
    所述抗震耐火高强韧不锈结构钢的2小时耐火极限中,屈服强度Rp0.2≥600MPa,断裂强度Rm≥750MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J;
    所述抗震耐火高强韧不锈结构钢的3小时耐火极限中,屈服强度Rp0.2≥500MPa,断裂强度Rm≥625MPa,延伸率≥18%,室温20℃冲击吸收功≥40J,-40℃冲击吸收功≥40J。
  5. 根据权利要求1所述抗震耐火高强韧不锈结构钢,其特征在于,所述抗震耐火高强韧不锈结构钢的屈强比≤0.8,根据耐腐蚀条件要求,在耐大气腐蚀的12%Cr到满足海洋腐蚀要求的22%Cr范围内选择出同时满足抗震、耐 火和耐腐蚀要求的高强韧结构钢的成分组成。
  6. 一种权利要求1所述抗震耐火高强韧不锈结构钢的制备方法,其特征在于,所述制备方法包括以下步骤:
    S1、原料为低镍红土镍矿表层矿,通过高炉冶炼或矿热电炉冶炼成铁水,送AOD吹炼;或者由感应炉、电弧炉冶炼低镍铁块获得的铁水送AOD吹炼,AOD吹炼过程中完成所述抗震耐火高强韧不锈结构钢的主要合金元素C、Cr、Ni、Mn、Si的成分下限目标的调整;
    S2、将S1中AOD吹炼的钢水转入LF炉,并使得进入LF炉的钢水的碳含量、磷含量进入最终成分下限以下,防止后期增碳,留出后期操作增C和增P余量;
    S3、向LF炉加入200-300mm厚度的还原精炼渣,对进入LF炉的钢水进行还原精炼,以便脱氧和脱硫及进行成分精确调整;
    S4、LF炉吹氩气搅拌,LF炉吹氩气搅拌的程度达到渣面吹破即可;然后按每吨钢加入Al 0.8-1.2kg的方式加入铝,后续过程中钢水不再加入铝脱氧;在促进白渣形成时可以在LF炉渣表面加入铝粒,但不得用铝粉替代,防止铝粉的剧烈燃烧;
    S5、LF炉吹氩气搅拌10分钟后开始保持白渣,炉渣过稀时,加入高钙比例石灰石调渣,以保持炉渣的发泡性,使得LF炉精炼与调整成分能够顺利进行;
    S6、精炼结束后,通过碱金属包芯线对钢水中的夹杂物进行变性处理,使得钢水的成分满足所述抗震耐火高强韧不锈结构钢的基本成分;
    S7、S6中精炼结束得到的钢水送连铸机铸成板坯或方坯或矩形坯;
    S8、板坯或方坯或矩形坯经过冷却后送检验修磨,之后在轧机中进行控轧控冷的轧制工艺和热处理制得所需的抗震耐火高强韧不锈结构钢材;
    控轧控冷的轧制工艺和热处理包括控轧控冷轧制结束温度控制在910-950℃,喷淋冷却至690-720℃,直接送回火炉,进行纳米沉淀相析出处理;能够卷曲的钢板可以在690-720℃卷曲送回火炉,进行纳米沉淀相析出处理。
  7. 根据权利要求6所述抗震耐火高强韧不锈结构钢的制备方法,其特征在于,S3中的还原精炼渣应将碱度CaO/SiO 2控制在2-3的范围内,还原精炼 渣的成分按质量百分比计为CaO:50-60%,其中高品质CaCO 3中CaO含量总量比>50%;SiO 2:25-30%;CaF 2:10%;其余高铝耐火砖块状料;还原精炼渣的块度小于20mm,不能有粉状料,且需要以密封防潮袋袋装。
  8. 根据权利要求6所述抗震耐火高强韧不锈结构钢的制备方法,其特征在于,所述制备方法中的精炼使钢中的夹杂物和氧硫含量达到高纯净水平,总氧含量小于35ppm,硫含量小于50ppm。
  9. 根据权利要求6所述抗震耐火高强韧不锈结构钢的制备方法,其特征在于,S5中的LF炉精炼与调整成分所消耗的时间一般不大于40分钟。
  10. 根据权利要求6所述抗震耐火高强韧不锈结构钢的制备方法,其特征在于,S8中进行纳米沉淀相析出处理后700℃出炉冷却,条型材可以强风冷却,热卷板采用浸水冷却,不能在200℃热堆放;
    S8中的中厚原平板浸水冷却,不能在200℃以上热接触性堆放。
PCT/CN2019/106590 2019-09-09 2019-09-19 一种抗震耐火高强韧不锈结构钢及其制备方法 WO2021046882A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910848522.X 2019-09-09
CN201910848522.XA CN110512143A (zh) 2019-09-09 2019-09-09 一种抗震耐火高强韧不锈结构钢及其制备方法

Publications (1)

Publication Number Publication Date
WO2021046882A1 true WO2021046882A1 (zh) 2021-03-18

Family

ID=68630350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106590 WO2021046882A1 (zh) 2019-09-09 2019-09-19 一种抗震耐火高强韧不锈结构钢及其制备方法

Country Status (2)

Country Link
CN (1) CN110512143A (zh)
WO (1) WO2021046882A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111172461A (zh) * 2020-01-22 2020-05-19 王平 一种表层低镍红土镍矿生产的不锈钢及其制备方法
CN112129627B8 (zh) * 2020-07-24 2024-02-09 浙江金字机械电器股份有限公司 轻量化高强度吊架制动模块的选型方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096024A (ja) * 1996-09-20 1998-04-14 Nkk Corp 耐火性に優れた耐震性建築鋼材の製造方法
RU2237102C2 (ru) * 2002-04-22 2004-09-27 Открытое акционерное общество "Ижорские заводы" Жаропрочная сталь
RU2515716C1 (ru) * 2013-04-26 2014-05-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Малоактивируемая жаропрочная радиационностойкая сталь
CN107557696A (zh) * 2016-06-30 2018-01-09 郑州永通特钢有限公司 一种抗震不锈结构钢
CN107557697A (zh) * 2016-06-30 2018-01-09 郑州永通特钢有限公司 一种索氏体不锈钢
CN107747063A (zh) * 2017-11-29 2018-03-02 郑州永通特钢有限公司 一种高强韧马氏体不锈钢
CN110239165A (zh) * 2019-07-08 2019-09-17 巩义市永裕节能新材料厂 建筑施工或模板用高强度不锈钢中空复合板及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103447B2 (ja) * 1990-07-12 1995-11-08 株式会社日本製鋼所 高純度耐熱鋼
JPH06142981A (ja) * 1992-11-06 1994-05-24 Nippon Steel Corp 高Crフェライト系耐熱鋼用溶接材料
WO2014184890A1 (ja) * 2013-05-15 2014-11-20 日新製鋼株式会社 ステンレス鋼拡散接合製品の製造方法
CN106399829B (zh) * 2016-10-13 2018-03-23 天津钢管集团股份有限公司 高强高韧耐腐蚀马氏体不锈钢油井管及其制造方法
CN108103405B (zh) * 2017-12-29 2019-10-25 钢研晟华科技股份有限公司 一种高强度耐火抗震钢筋及其低成本制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096024A (ja) * 1996-09-20 1998-04-14 Nkk Corp 耐火性に優れた耐震性建築鋼材の製造方法
RU2237102C2 (ru) * 2002-04-22 2004-09-27 Открытое акционерное общество "Ижорские заводы" Жаропрочная сталь
RU2515716C1 (ru) * 2013-04-26 2014-05-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Малоактивируемая жаропрочная радиационностойкая сталь
CN107557696A (zh) * 2016-06-30 2018-01-09 郑州永通特钢有限公司 一种抗震不锈结构钢
CN107557697A (zh) * 2016-06-30 2018-01-09 郑州永通特钢有限公司 一种索氏体不锈钢
CN107747063A (zh) * 2017-11-29 2018-03-02 郑州永通特钢有限公司 一种高强韧马氏体不锈钢
CN110239165A (zh) * 2019-07-08 2019-09-17 巩义市永裕节能新材料厂 建筑施工或模板用高强度不锈钢中空复合板及其制造方法

Also Published As

Publication number Publication date
CN110512143A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
CN110592494B (zh) 一种红土镍矿冶炼的含镍铁素体不锈钢及其制备方法
CN102041367B (zh) 薄带连铸冷轧无取向电工钢的制造方法
CN108774711B (zh) 一种钢筋混凝土用经济型500MPa级耐海水腐蚀钢筋及其生产方法
WO2015192391A1 (zh) 一种钢筋及其制备方法
WO2023241666A1 (zh) 一种具有高耐候性能的高强度热轧带钢及其制造方法
CN109852893B (zh) 一种低温高韧性耐火钢及其制备方法
CN103361569A (zh) 一种超低温耐候结构钢板及其生产方法
WO2022022040A1 (zh) 一种355MPa级别海洋工程用耐低温热轧H型钢及其制备方法
CN106756566A (zh) 一种高强度低合金钢传力杆及其制造方法
CN110184548B (zh) 一种高锰钢连铸坯凝固组织细化的方法
CN110735085A (zh) 一种薄规格Q345qE、Q370qE钢板的制造方法
CN109762967A (zh) 一种具有优良低温韧性的耐腐蚀船用球扁钢及制造方法
CN102899582A (zh) 一种高强度镍基耐蚀合金及其制造方法
CN104178697A (zh) 一种耐高温抗震钢筋及其生产方法
WO2021046882A1 (zh) 一种抗震耐火高强韧不锈结构钢及其制备方法
CN108728757A (zh) 一种低温l450m管线钢及其制造方法
WO2023097979A1 (zh) 一种耐腐蚀大线能量焊接海洋工程用高强度钢板及其制备方法
CN102268615A (zh) 心部低温冲击韧性优良及抗层状撕裂的工程钢材及其生产方法
CN101892439A (zh) 耐硫酸露点腐蚀用钢
CN110578101B (zh) 一种海洋用回火索氏体高强韧不锈结构钢及其制备方法
CN106636924B (zh) 一种235MPa级别建筑结构用抗震热轧钢板、钢带及其制备方法
CN113215499A (zh) 屈服强度390MPa级特厚抗震耐火钢板及其制造方法
CN108277442A (zh) 一种含Ti集装箱钢及其生产方法
CN114164333A (zh) 一种超细晶粒带肋抗震钢筋的制备方法
WO2021026973A1 (zh) 一种贝氏体不锈钢及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944685

Country of ref document: EP

Kind code of ref document: A1