WO2021045198A1 - Composite fiber comprising cellulose fiber and inorganic particles, and manufacturing method for same - Google Patents

Composite fiber comprising cellulose fiber and inorganic particles, and manufacturing method for same Download PDF

Info

Publication number
WO2021045198A1
WO2021045198A1 PCT/JP2020/033627 JP2020033627W WO2021045198A1 WO 2021045198 A1 WO2021045198 A1 WO 2021045198A1 JP 2020033627 W JP2020033627 W JP 2020033627W WO 2021045198 A1 WO2021045198 A1 WO 2021045198A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
composite fiber
inorganic particles
composite
fibers
Prior art date
Application number
PCT/JP2020/033627
Other languages
French (fr)
Japanese (ja)
Inventor
絢香 長谷川
萌 渕瀬
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to US17/636,278 priority Critical patent/US20220290373A1/en
Priority to EP20861180.6A priority patent/EP4026946A4/en
Priority to CN202080053008.8A priority patent/CN114144553A/en
Priority to JP2020567177A priority patent/JP7123178B2/en
Publication of WO2021045198A1 publication Critical patent/WO2021045198A1/en
Priority to JP2022109386A priority patent/JP2022133416A/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/55Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with sulfur trioxide; with sulfuric acid or thiosulfuric acid or their salts
    • D06M11/56Sulfates or thiosulfates other than of elements of Groups 3 or 13 of the Periodic Table
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • D21H15/10Composite fibres
    • D21H15/12Composite fibres partly organic, partly inorganic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/66Salts, e.g. alums
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/69Water-insoluble compounds, e.g. fillers, pigments modified, e.g. by association with other compositions prior to incorporation in the pulp or paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/70Inorganic compounds forming new compounds in situ, e.g. within the pulp or paper, by chemical reaction with other substances added separately
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Definitions

  • the present invention relates to a composite fiber of cellulose fiber and inorganic particles and a method for producing the same.
  • Fibers such as wood fibers exhibit various properties based on the functional groups on the surface, but depending on the application, it may be necessary to modify the surface, and so far, the fibers have been surface-modified. Technology is being developed.
  • Patent Document 1 describes a complex in which crystalline calcium carbonate is mechanically bonded onto the fiber.
  • Patent Document 2 describes a technique for producing a composite of pulp and calcium carbonate by precipitating calcium carbonate in a pulp suspension by a carbon dioxide gas method.
  • an object of the present invention is to provide a composite fiber in which the surface of the cellulose fiber is strongly coated with many inorganic particles.
  • a method for producing a composite fiber of cellulose fiber and inorganic particles The process of synthesizing inorganic particles in a solution containing cellulose fibers to obtain composite fibers, The following (a) or (b): (A) A filtrate obtained by filtering an aqueous suspension of composite fibers having a solid content concentration of 0.1% with a sieve of 60 mesh (opening 250 ⁇ m). (B) An aqueous suspension of composite fibers having a solid content concentration of 0.3% was classified using a fiber classification analyzer under the conditions of a flow rate of 5.7 L / min, a water temperature of 25 ⁇ 1 ° C., and a total outflow of 22 L.
  • a method for producing a composite fiber sheet which comprises a step of forming a sheet from the composite fibers obtained by any of the methods [1] to [4].
  • a composite fiber of cellulose fibers and inorganic particles which has the following (a) or (b): (A) A filtrate obtained by filtering an aqueous suspension of a composite fiber having a solid content concentration of 0.1% with a sieve having a solid content of 0.3% (b) of a composite fiber having a solid content concentration of 0.3%.
  • a composite fiber of cellulose fibers and inorganic particles obtained by treating an aqueous suspension of a composite fiber having a solid content concentration of 0.1% with a sieve of 60 mesh (opening 250 ⁇ m) and passing through the sieve.
  • An aqueous suspension of composite fibers having a solid content concentration of 0.3% was classified using a fiber classification analyzer under the conditions of a flow velocity of 5.7 L / min, a water temperature of 25 ⁇ 1 ° C., and a total outflow of 22 L.
  • a composite fiber of cellulose fibers and inorganic particles obtained from a fraction corresponding to an outflow amount (L) of 18.51 to 19.50 and an outflow time (sec) of 37.4 to 48.0.
  • the composite fiber having a value of (D50-D10) / D50 calculated from the particle size distribution of 0.85 or less.
  • a method for analyzing a composite fiber of cellulose fibers and inorganic particles wherein the following (a) or (b): (A) A filtrate obtained by filtering an aqueous suspension of a composite fiber having a solid content concentration of 0.1% with a sieve having a solid content of 0.3% (b) of a composite fiber having a solid content concentration of 0.3%.
  • the aqueous suspension was classified using a fiber classification analyzer under the conditions of a flow rate of 5.7 L / min, a water temperature of 25 ⁇ 1 ° C., and a total runoff of 22 L, the runoff (L) 18.51-19. 50, Fraction corresponding to outflow time (sec) 37.4-48.0,
  • the above method which comprises the step of measuring the particle size distribution of (D50-D10) / D50 and calculating (D50-D10) / D50.
  • the present invention it is possible to obtain a composite fiber in which the surface of the cellulose fiber is strongly coated with many inorganic particles and the production efficiency in a post-process such as dehydration or sheet formation can be improved.
  • the inorganic particles and the cellulose fibers are more strongly bound than the conventional composite fiber, the inorganic particles are less likely to fall off during dehydration or sheet formation (excellent in the yield of the inorganic particles in the subsequent process), and the particles are small. Since there are few free particles with a diameter, the drainage is also good. Improvement of dehydration and drainage leads to improvement of productivity (dehydration speed and speed of extraction) of various products, and also functional inorganic particles are hard to fall off. Therefore, the present invention uses composite fibers as a material. It also leads to improved functionality of products.
  • sample 1 It is an electron micrograph of sample 1 (magnification: 3000 times). It is an electron micrograph of sample 2 (magnification: 3000 times). It is an electron micrograph of sample 3 (magnification: 3000 times). It is an electron micrograph of sample 4 (magnification: 3000 times). It is an electron micrograph of sample 5 (magnification: 3000 times). It is an electron micrograph of sample 6 (magnification: 3000 times). It is an electron micrograph of sample 7 (magnification: 3000 times). It is an electron micrograph of sample 8 (magnification: 3000 times). It is an electron micrograph of sample 9 (magnification: 3000 times). It is an electron micrograph of sample 10 (left: 3000 times, right: 10000 times).
  • sample 11 It is an electron micrograph of sample 11 (left: 3000 times, right: 10000 times). It is an electron micrograph of sample 12 (left: 3000 times, right: 10000 times). It is an electron micrograph of sample A (magnification: 3000 times). It is an electron micrograph of sample B (magnification: 3000 times). It is an electron micrograph of sample C1 (magnification: 3000 times). It is an electron micrograph of sample C2 (magnification: 3000 times). It is an electron micrograph of sample D1 (magnification: 3000 times). It is an electron micrograph of sample D2 (magnification: 3000 times).
  • the present invention relates to a composite fiber (composite) in which the surface of the cellulose fiber is strongly coated with inorganic particles.
  • the composite fiber according to the present invention has 15% or more of the fiber surface coated with inorganic particles.
  • the fiber and the inorganic particle are not simply mixed, but the fiber and the inorganic particle are bound by a hydrogen bond or the like, so that the inorganic particle is less likely to fall off from the fiber.
  • the strength of binding of fibers and inorganic particles in a complex can generally be evaluated by a numerical value such as ash yield (%, that is, sheet ash ⁇ complex ash before dissociation ⁇ 100). .. Specifically, the complex is dispersed in water, adjusted to a solid content concentration of 0.2%, dissociated with a standard disintegrator specified in JIS P 820-1: 2012 for 5 minutes, and then according to JIS P 8222: 1998.
  • the ash yield when sheeted using a 150 mesh wire can be used for evaluation.
  • the present invention by classifying the composite fiber, it is possible to evaluate a good composite fiber having a strong binding even if the strength of the binding cannot be sufficiently evaluated by the conventional method.
  • the composite particles of the cellulose fibers and the composite fibers of the inorganic particles can be appropriately evaluated by analyzing the particle size distribution of (a) or (b) below.
  • An aqueous suspension of a composite fiber having a solid content concentration of 0.3% is obtained by filtering an aqueous suspension of a composite fiber having a solid content concentration of 0.1%.
  • the numerical value of (D50-D10) / D50 calculated from the volume-based particle size distribution of (a) or (b) above can be used as an index.
  • D10 and D50 are particle diameters measured from a volume-based particle size distribution
  • D10 is a cumulative 10% particle diameter
  • D50 is a cumulative 50% particle diameter.
  • the value of (D50-D10) / D50 is 0.85 or less.
  • composite fibers can be synthesized by synthesizing inorganic particles in a solution containing fibers such as cellulose fibers. This is because the fiber surface serves as a suitable field for the precipitation of inorganic particles, and it is easy to synthesize composite fibers.
  • a solution containing a precursor of the fiber and the inorganic particle may be stirred and mixed in an open reaction tank to synthesize the composite, or a precursor of the fiber and the inorganic particle may be synthesized. It may be synthesized by injecting an aqueous suspension containing the above into a reaction vessel.
  • cavitation bubbles may be generated and inorganic particles may be synthesized in the presence of the cavitation bubbles.
  • Each of the inorganic particles can be synthesized on the cellulose fiber by a known reaction.
  • the formation of inorganic particles is captured when the size of inorganic particles exceeds the critical size after shifting from the cluster state (repeating aggregation and dispersal at the stage where the number of atoms and molecules gathered is small) to the nucleus (from the cluster to the stable assembly state). It is known that atoms and molecules do not disperse) and grow (new atoms and molecules gather in the nucleus and the particles become larger), and the higher the raw material concentration and reaction temperature, the more nucleation occurs. It is said to be easy.
  • the composite fiber of the present invention is mainly produced on the fiber by adjusting the raw material concentration, the beating degree (specific surface area) of the pulp, the viscosity of the solution containing the fiber, the concentration and addition speed of the added chemicals, the reaction temperature, and the stirring speed.
  • the liquid may be sprayed under conditions that generate cavitation bubbles in the reaction vessel, or may be sprayed under conditions that do not generate cavitation bubbles.
  • the reaction vessel is preferably a pressure vessel in any case.
  • the pressure vessel in the present invention is a vessel capable of applying a pressure of 0.005 MPa or more. Under conditions that do not generate cavitation bubbles, the pressure in the pressure vessel is preferably 0.005 MPa or more and 0.9 MPa or less in static pressure.
  • cavitation bubbles When synthesizing the composite fiber according to the present invention, inorganic particles can be precipitated in the presence of cavitation bubbles.
  • cavitation is a physical phenomenon in which bubbles are generated and disappear in a short time due to a pressure difference in a fluid flow, and is also called a cavity phenomenon.
  • Bubbles generated by cavitation are generated as nuclei of very small "bubble nuclei" of 100 microns or less existing in a liquid when the pressure in the fluid becomes lower than the saturated vapor pressure for a very short time.
  • cavitation bubbles can be generated in the reaction vessel by a known method.
  • cavitation bubbles are generated by injecting a fluid at high pressure, cavitation is generated by stirring at high speed in the fluid, cavitation is generated by causing an explosion in the fluid, and ultrasonic vibration. It is conceivable that cavitation is generated by the child (vibration fluid cavitation).
  • a reaction solution such as a raw material can be used as it is as an injection liquid to generate cavitation, or some fluid can be injected into the reaction vessel to generate cavitation bubbles.
  • the fluid formed by the liquid jet may be a liquid, a gas, a solid such as powder or pulp, or a mixture thereof as long as it is in a fluid state.
  • another fluid such as carbon dioxide gas can be added to the above fluid as a new fluid.
  • the above fluid and the new fluid may be uniformly mixed and injected, or may be injected separately.
  • a liquid jet is a jet of a liquid or a fluid in which solid particles or gas are dispersed or mixed in the liquid, and is a liquid jet containing a raw material slurry or bubbles of pulp or inorganic particles.
  • the gas referred to here may contain bubbles due to cavitation.
  • the cavitation number ⁇ is 0.001 or more and 0.5 or less, and 0.003 or more and 0.2 or less. It is preferable, and it is particularly preferable that it is 0.01 or more and 0.1 or less.
  • the cavitation number ⁇ is less than 0.001, the effect is small because the pressure difference with the surroundings when the cavitation bubble collapses is small, and when it is larger than 0.5, the pressure difference of the flow is low and the cavitation is It becomes difficult to occur.
  • the pressure of the injection liquid is preferably 0.01 MPa or more and 30 MPa or less, and 0.7 MPa or more and 20 MPa or less. It is preferably 2 MPa or more and 15 MPa or less more preferably. If the upstream pressure is less than 0.01 MPa, a pressure difference with the downstream pressure is unlikely to occur and the effect is small. Further, if it is higher than 30 MPa, a special pump and a pressure vessel are required, and energy consumption becomes large, which is disadvantageous in terms of cost.
  • the pressure inside the container (downstream pressure) is preferably 0.005 MPa or more and 0.9 MPa or less in static pressure. The ratio of the pressure in the container to the pressure of the injection liquid is preferably in the range of 0.001 to 0.5.
  • the pressure of the injection liquid is 2 MPa or less, preferably 1 MPa or less, and the pressure of the injection liquid (downstream side pressure) is released to 0.05 MPa or less.
  • the jet velocity of the jet liquid is preferably in the range of 1 m / sec or more and 200 m / sec or less, and preferably in the range of 20 m / sec or more and 100 m / sec or less.
  • the jet velocity is less than 1 m / sec, the pressure drop is low and cavitation is unlikely to occur, so the effect is weak.
  • it is larger than 200 m / sec, high pressure is required and a special device is required, which is disadvantageous in terms of cost.
  • the place where cavitation is generated in the present invention may be generated in a reaction vessel for synthesizing inorganic particles. It is also possible to process with one pass, but it is also possible to circulate as many times as necessary. Furthermore, it can be processed in parallel or in a permutation using a plurality of generating means.
  • the injection of the liquid for generating cavitation may be performed in a container open to the atmosphere, but it is preferably performed in a pressure vessel to control cavitation.
  • the solid content concentration of the reaction solution is preferably 30% by weight or less, more preferably 20% by weight or less. This is because such a concentration makes it easy for the cavitation bubbles to act uniformly on the reaction system.
  • the aqueous suspension of slaked lime, which is a reaction solution preferably has a solid content concentration of 0.1% by weight or more from the viewpoint of reaction efficiency.
  • the pH of the reaction solution is on the basic side at the start of the reaction, but changes to neutral as the carbonation reaction progresses. Therefore, the reaction can be controlled by monitoring the pH of the reaction solution.
  • the flow velocity of the injection liquid increases, and the pressure decreases accordingly, so that stronger cavitation can be generated.
  • the pressure in the region where the cavitation bubbles collapse increases, and the pressure difference between the bubbles and the surroundings increases, so that the bubbles collapse violently and the impact force can be increased.
  • the reaction temperature is preferably 0 ° C. or higher and 90 ° C. or lower, and particularly preferably 10 ° C. or higher and 60 ° C. or lower.
  • the impact force is maximized at the midpoint between the melting point and the boiling point. Therefore, in the case of an aqueous solution, about 50 ° C. is preferable, but even if the temperature is lower than that, it is affected by the vapor pressure. Therefore, a high effect can be obtained within the above range.
  • auxiliaries can be further added.
  • a chelating agent can be added, specifically, polyhydroxycarboxylic acids such as citric acid, malic acid and tartaric acid, dicarboxylic acids such as oxalic acid, sugar acids such as gluconic acid, iminodiacetic acid and ethylenediamine tetra.
  • Amino polycarboxylic acids such as acetic acid and alkali metal salts thereof, alkali metal salts of polyphosphates such as hexametaphosphate and tripolyphosphate, amino acids such as glutamic acid and aspartic acid and alkali metal salts thereof, acetylacetone, methyl acetate acetate, acetacetic acid.
  • alkali metal salts of polyphosphates such as hexametaphosphate and tripolyphosphate
  • amino acids such as glutamic acid and aspartic acid and alkali metal salts thereof
  • acetylacetone methyl acetate acetate
  • acetacetic acid examples thereof include ketones such as allyl, sugars such as sucrose, and polyols such as sorbitol.
  • saturated amino acids such as palmitic acid and stearic acid
  • unsaturated amino acids such as oleic acid and linoleic acid
  • resin acids such as alicyclic carboxylic acid and avietic acid, salts, esters and ethers thereof, and alcohol-based surfactants.
  • Activators sorbitan fatty acid esters, amide and amine surfactants, polyoxyalkylene alkyl ethers, polyoxyethylene nonylphenyl ether, sodium alphaolefin sulfonate, long chain alkyl amino acids, amine oxides, alkylamines, fourth A tertiary ammonium salt, an aminocarboxylic acid, a phosphonic acid, a polyvalent carboxylic acid, a condensed phosphoric acid and the like can be added. Further, a dispersant can also be used if necessary.
  • dispersant examples include sodium polyacrylate, sucrose fatty acid ester, glycerin fatty acid ester, acrylic acid-maleic acid copolymer ammonium salt, methacrylic acid-naphthoxypolyethylene glycol acrylate copolymer, and methacrylic acid-polyethylene glycol.
  • monomethacrylate copolymer ammonium salt polyethylene glycol monoacrylate and the like. These can be used alone or in combination of two or more. Further, the timing of addition may be before or after the synthetic reaction.
  • Such additives can be added in an amount of preferably 0.001 to 20%, more preferably 0.1 to 10%, based on the inorganic particles.
  • the reaction can be a batch reaction or a continuous reaction. In general, it is preferable to carry out the batch reaction step because of the convenience of discharging the residue after the reaction.
  • the scale of the reaction is not particularly limited, but the reaction may be carried out on a scale of 100 L or less, or may be reacted on a scale of more than 100 L.
  • the size of the reaction vessel may be, for example, about 10 L to 100 L, or about 100 L to 1000 L.
  • the reaction can be controlled by the conductivity of the reaction solution and the reaction time, and specifically, the time during which the reactant stays in the reaction vessel can be adjusted and controlled.
  • the reaction can be controlled by stirring the reaction solution in the reaction vessel or making the reaction a multi-step reaction.
  • the composite fiber which is a reaction product since the composite fiber which is a reaction product is obtained as a suspension, it may be stored in a storage tank or subjected to treatments such as concentration, dehydration, pulverization, classification, aging and dispersion as necessary. can do. These can be carried out by a known process, and may be appropriately determined in consideration of application, energy efficiency and the like.
  • the concentration / dehydration treatment is performed using a centrifugal dehydrator, a sedimentation concentrator, or the like.
  • this centrifugal dehydrator include a decanter, a screw decanter, and the like.
  • a pressurized dehydrator such as a filter press, a drum filter, a belt press, or a tube press
  • a vacuum drum dehydrator such as an Oliver filter can be preferably used to prepare a calcium carbonate cake.
  • a crushing method a ball mill, a sand grinder mill, an impact mill, a high pressure homogenizer, a low pressure homogenizer, a dyno mill, an ultrasonic mill, a kanda grinder, an attritor, a stone mill, a vibration mill, a cutter mill, a jet mill, a breaker, and a beating machine , Short-screw extruder, twin-screw extruder, ultrasonic stirrer, household juicer mixer and the like.
  • Examples of the classification method include a sieve such as a mesh, an outward type or inward type slit or round hole screen, a vibration screen, a heavy foreign matter cleaner, a lightweight foreign matter cleaner, a reverse cleaner, and a sieving tester.
  • Examples of the dispersion method include a high-speed disperser and a low-speed kneader.
  • the composite fiber in the present invention can be blended with a filler or a pigment in a suspension state without being completely dehydrated, but it can also be dried into a powder.
  • the dryer in this case is also not particularly limited, but for example, an air flow dryer, a band dryer, a spray dryer, or the like can be preferably used.
  • the composite fiber of the present invention can be modified by a known method.
  • the surface can be made hydrophobic to enhance miscibility with a resin or the like.
  • water is used for preparing a suspension, and as this water, ordinary tap water, industrial water, groundwater, well water, etc. can be used, as well as ion-exchanged water, distilled water, and super water. Pure water, industrial wastewater, and water obtained when separating and dehydrating the reaction solution can be preferably used.
  • the reaction solution in the reaction vessel can be circulated and used.
  • the reaction efficiency is increased and it becomes easy to obtain a desired complex of inorganic particles and fibers.
  • the inorganic particles to be composited with the fiber are not particularly limited, but are preferably water-insoluble or sparingly soluble inorganic particles. Since the synthesis of inorganic particles may be carried out in an aqueous system and the fiber composite may be used in an aqueous system, it is preferable that the inorganic particles are insoluble or sparingly soluble in water.
  • the inorganic particles referred to here refer to compounds of metal elements or non-metal elements.
  • the compound of a metal element, a metal cation (e.g., Na +, Ca 2+, Mg 2+, Al 3+, Ba 2+ , etc.) and anions (e.g., O 2-, OH -, CO 3 2-, PO 4 3-, SO 4 2-, NO 3 -, Si 2 O 3 2-, SiO 3 2-, Cl -, F -, S 2- , etc.) is Deki linked by ionic bonds, generally referred to as inorganic salts Say something.
  • the compound of the non-metal element is silicic acid (SiO 2 ) or the like.
  • At least a part of the inorganic particles is a metal salt of calcium, magnesium or barium, or at least a part of the inorganic particles is a metal salt of silicic acid or aluminum, or titanium, copper, silver, iron, manganese. , Cerium or zinc-containing metal particles are preferred.
  • the method for synthesizing these inorganic particles can be a known method, and either a gas-liquid method or a liquid-liquid method may be used.
  • a gas-liquid method there is a carbon dioxide gas method.
  • magnesium carbonate can be synthesized by reacting magnesium hydroxide with carbon dioxide gas.
  • the liquid-liquid method include reacting an acid (hydrochloric acid, sulfuric acid, etc.) with a base (sodium hydroxide, potassium hydroxide, etc.) by neutralization, reacting an inorganic salt with an acid or base, or combining inorganic salts with each other. Examples include a method of reacting.
  • barium sulfate is obtained by reacting barium hydroxide with sulfuric acid
  • aluminum hydroxide is obtained by reacting aluminum sulfate with sodium hydroxide
  • calcium and aluminum are obtained by reacting calcium carbonate with aluminum sulfate.
  • Complex inorganic particles can be obtained. Further, when synthesizing the inorganic particles in this way, any metal or non-metal compound can coexist in the reaction solution, and in this case, those metals or non-metal compounds are efficiently incorporated into the inorganic particles.
  • calcium carbonate in the case of synthesizing calcium carbonate, for example, calcium carbonate can be synthesized by a carbon dioxide gas method, a soluble salt reaction method, a lime / soda method, a soda method, or the like, and in a preferred embodiment, calcium carbonate is produced by the carbon dioxide gas method. Synthesize.
  • lime (lime) is used as a calcium source, and a slaked step of adding water to slaked lime CaO to obtain slaked lime Ca (OH) 2 and carbon dioxide CO 2 in slaked lime.
  • Calcium carbonate is synthesized by a carbon dioxide step of blowing in to obtain calcium carbonate CaCO 3.
  • a suspension of slaked lime prepared by adding water to quicklime may be passed through a screen to remove low-solubility lime grains contained in the suspension.
  • slaked lime may be directly used as a calcium source.
  • the carbonation reaction can also be carried out in the presence of cavitation bubbles.
  • the solid content concentration of the aqueous suspension of slaked lime is preferably 0.1 to 40% by weight, more preferably 0.5 to 30% by weight, still more preferably 1 to 20%. It is about% by weight. If the solid content concentration is low, the reaction efficiency is low and the production cost is high, and if the solid content concentration is too high, the fluidity is poor and the reaction efficiency is low. In the present invention, since calcium carbonate is synthesized in the presence of cavitation bubbles, the reaction solution and carbon dioxide gas can be suitably mixed even if a suspension (slurry) having a high solid content concentration is used.
  • slaked lime As the aqueous suspension containing slaked lime, those generally used for calcium carbonate synthesis can be used.
  • slaked lime is mixed with water to prepare, or quicklime (calcium oxide) is dissolved (digested) with water.
  • quicklime calcium oxide
  • the conditions for reconstitution are not particularly limited, but for example, the concentration of CaO can be 0.05% by weight or more, preferably 1% by weight or more, and the temperature can be 20 to 100 ° C., preferably 30 to 100 ° C. ..
  • the average residence time in the scavenging reaction tank (slaker) is also not particularly limited, but can be, for example, 5 minutes to 5 hours, preferably 2 hours or less.
  • the slaker may be a batch type or a continuous type.
  • the carbonation reaction tank (carbonator) and the scavenging reaction tank (slaker) may be separated, or one reaction tank may be used as the carbonation reaction tank and the scavenging reaction tank. Good.
  • the Ca ion concentration in the reaction vessel is preferably 0.01 mol / L or more and less than 0.20 mol / L. If it is less than 0.01 mol / L, the reaction is difficult to proceed, and if it is 0.20 mol / L or more, inorganic particles liberated in the suspension are easily synthesized.
  • the pulp concentration is preferably 0.5% or more and less than 4.0%. If it is less than 0.5%, the frequency of collision of the raw materials with the fibers decreases, so that the reaction does not proceed easily, and if it is 4.0% or more, a uniform complex cannot be obtained due to poor stirring.
  • the amount of CO 2 supplied per hour is preferably 0.001 mol / min or more and less than 0.060 mol / min per 1 L of the reaction solution. If it is less than 0.001 mol / min, the reaction is difficult to proceed, and if it is 0.060 mol / min or more, inorganic particles liberated in the suspension are likely to be synthesized.
  • magnesium carbonate When synthesizing magnesium carbonate, the method for synthesizing magnesium carbonate can be a known method.
  • magnesium hydroxide can be synthesized from magnesium hydroxide and carbon dioxide gas
  • basic magnesium carbonate can be synthesized from magnesium hydroxide via normal magnesium carbonate.
  • Magnesium carbonate can be obtained from magnesium bicarbonate, normal magnesium carbonate, basic magnesium carbonate, etc. by a synthetic method, but it is particularly preferable that the magnesium carbonate according to the fiber composite of the present invention is a basic magnesium carbonate. This is because magnesium carbonate has relatively low stability, and normal magnesium carbonate, which is a columnar (needle-shaped) crystal, may be difficult to fix to the fiber.
  • by chemically reacting with basic magnesium carbonate in the presence of fibers it is possible to obtain a fiber composite of magnesium carbonate and fibers whose surface is coated in a scaly shape or the like.
  • the reaction solution in the reaction vessel can be circulated and used.
  • the reaction efficiency is increased and it becomes easy to obtain desired inorganic particles.
  • a gas such as carbon dioxide (carbon dioxide) can be blown into the reaction vessel and mixed with the reaction solution.
  • carbon dioxide gas can be supplied to the reaction solution without a gas supply device such as a fan or a blower, and the carbon dioxide gas is refined by cavitation bubbles, so that the reaction can be efficiently performed. ..
  • the carbon dioxide concentration of the gas containing carbon dioxide is not particularly limited, but a higher carbon dioxide concentration is preferable. Further, the amount of carbon dioxide gas introduced into the injector is not limited and can be appropriately selected.
  • the gas containing carbon dioxide of the present invention may be a substantially pure carbon dioxide gas or a mixture with another gas.
  • a gas containing an inert gas such as air or nitrogen can be used as the gas containing carbon dioxide.
  • the gas containing carbon dioxide in addition to carbon dioxide gas (carbon dioxide gas), exhaust gas discharged from an incinerator of a papermaking factory, a coal boiler, a heavy oil boiler, or the like can be suitably used as the carbon dioxide-containing gas.
  • a carbonation reaction can be carried out using carbon dioxide generated from the lime firing step.
  • magnesium carbonate as a raw material in the reaction solution (Mg ion, CO 3 ion) is at a high concentration, and if more is high temperature, but easily proceeds nucleation reactions, to produce a composite fiber, the Under such conditions, nuclei are not easily fixed to the cellulose fibers, and inorganic particles released in the suspension are easily synthesized. Therefore, in order to produce a composite fiber in which magnesium carbonate is tightly bound, it is necessary to appropriately control the nucleation reaction. Specifically, this can be achieved by optimizing the concentrations of Mg ions and pulp and gradual supply of CO 2 per hour.
  • the Mg ion concentration in the reaction vessel is preferably 0.0001 mol / L or more and less than 0.20 mol / L. If it is less than 0.0001 mol / L, the reaction is difficult to proceed, and if it is 0.20 mol / L or more, the inorganic particles liberated in the suspension are easily synthesized.
  • the pulp concentration is preferably 0.5% or more and less than 4.0%. If it is less than 0.5%, the frequency of collision of the raw materials with the fibers decreases, so that the reaction does not proceed easily, and if it is 4.0% or more, a uniform complex cannot be obtained due to poor stirring.
  • the amount of CO 2 supplied per hour is preferably 0.001 mol / min or more and less than 0.060 mol / min per 1 L of the reaction solution. If it is less than 0.001 mol / min, the reaction is difficult to proceed, and if it is 0.060 mol / min or more, inorganic particles liberated in the suspension are likely to be synthesized.
  • Barium sulfate When synthesizing barium sulfate, it is an ionic crystalline compound consisting of barium ions represented by barium sulfate (BaSO 4 ) and sulfate ions, often in the form of plates or columns, and is sparingly soluble in water. is there. Pure barium sulfate is a colorless crystal, but when it contains impurities such as iron, manganese, strontium, and calcium, it becomes yellowish brown or blackish gray and becomes translucent. It can be obtained as a natural mineral, but it can also be synthesized by a chemical reaction. In particular, synthetic products produced by chemical reactions are used for pharmaceutical purposes (X-ray contrast agents), and are also widely used in paints, plastics, storage batteries, etc. by applying their chemically stable properties.
  • barium sulfate barium sulfate
  • BaSO 4 barium sulfate
  • sulfate ions often in the form of plates or columns, and is sparingly
  • a complex of barium sulfate and fiber can be produced by synthesizing barium sulfate in a solution in the presence of fiber.
  • a method of reacting an acid (sulfuric acid or the like) with a base by neutralization a method of reacting an inorganic salt with an acid or a base, or a method of reacting inorganic salts with each other can be mentioned.
  • barium sulfate can be obtained by reacting barium hydroxide with sulfuric acid or aluminum sulfate, or barium chloride can be added to an aqueous solution containing a sulfate to precipitate barium sulfate.
  • barium sulfate as a raw material in the solution (Ba ions, SO 4 ions) is in a high concentration and the higher is the high temperature, but easily proceeds nucleation reaction, when manufacturing composite fibers, such Under such conditions, the nuclei are not easily fixed to the cellulose fibers, and the inorganic particles released in the suspension are easily synthesized. Therefore, in order to produce a composite fiber in which barium sulfate is tightly bound, it is necessary to appropriately control the nucleation reaction. Specifically, this can be achieved by optimizing the concentration of Ba ions and pulp and gradual supply of SO 4 ions per hour.
  • the Ba ion concentration in the reaction vessel is preferably 0.01 mol / L or more and less than 0.20 mol / L. If it is less than 0.01 mol / L, the reaction is difficult to proceed, and if it is 0.20 mol / L or more, inorganic particles liberated in the suspension are easily synthesized.
  • the pulp concentration is preferably 0.5% or more and less than 4.0%. If it is less than 0.5%, the frequency of collision of the raw materials with the fibers decreases, so that the reaction does not proceed easily, and if it is 4.0% or more, a uniform complex cannot be obtained due to poor stirring.
  • Supply amount per time of SO 4 ions is desirably less than the reaction solution 1L per 0.005 mol / min or more 0.080 mol / min. If it is less than 0.001 mol / min, the reaction is difficult to proceed, and if it is 0.080 mol / min or more, inorganic particles liberated in the suspension are likely to be synthesized.
  • Hydrotalcite When synthesizing hydrotalcite, a known method can be used for synthesizing hydrotalcite. For example, the fibers are immersed in a carbonate aqueous solution containing carbonate ions constituting an intermediate layer and an alkaline solution (sodium hydroxide, etc.) in a reaction vessel, and then an acid solution (divalent metal ions and trivalent metal ions constituting the basic layer) is immersed. (Aqueous metal salt solution containing metal ions) is added, and the temperature, pH, etc. are controlled to synthesize hydrotalcite by a co-precipitation reaction.
  • the fibers are immersed in an acid solution (a metal salt aqueous solution containing divalent metal ions and trivalent metal ions constituting the basic layer), and then a carbonate aqueous solution containing carbonate ions constituting the intermediate layer.
  • Hydrotalcite can also be synthesized by dropping an alkaline solution (sodium hydroxide or the like) and controlling the temperature, pH, etc. by a co-precipitation reaction.
  • an alkaline solution sodium hydroxide or the like
  • the reaction at normal pressure is common, there is also a method of obtaining it by a hydrothermal reaction using an autoclave or the like (Japanese Patent Laid-Open No. 60-6619).
  • various chlorides, sulfides, glass oxides, and sulfates of magnesium, zinc, barium, calcium, iron, copper, cobalt, nickel, and manganese are used as sources of divalent metal ions constituting the basic layer.
  • divalent metal ions constituting the basic layer can be used.
  • various chlorides, sulfides, glass oxides and sulfates of aluminum, iron, chromium and gallium can be used.
  • carbonate ion, nitrate ion, chloride ion, sulfate ion, phosphate ion and the like can be used as the interlayer anion.
  • carbonate ions are used as interlayer anions
  • sodium carbonate is used as a source.
  • sodium carbonate can be replaced with a gas containing carbon dioxide (carbon dioxide gas), and may be substantially pure carbon dioxide gas or a mixture with other gases.
  • exhaust gas emitted from an incinerator, a coal boiler, a heavy oil boiler, or the like in a paper mill can be suitably used as a carbon dioxide-containing gas.
  • a carbonation reaction can be carried out using carbon dioxide generated from the lime firing step.
  • CO 3 ion concentration in the reaction vessel preferably less than 0.01 mol / L or more 0.80 mol / L. If it is less than 0.01 mol / L, the reaction is difficult to proceed, and if it is 0.80 mol / L or more, inorganic particles liberated in the suspension are likely to be synthesized.
  • the pulp concentration is preferably 0.5% or more and less than 4.0%. If it is less than 0.5%, the frequency of collision of the raw materials with the fibers decreases, so that the reaction does not proceed easily, and if it is 4.0% or more, a uniform complex cannot be obtained due to poor stirring.
  • the amount of metal ions supplied per hour depends on the type of metal, but in the case of Mg ions, for example, it is preferably 0.001 mol / min or more and less than 0.010 mol / min per 1 L of the reaction solution, and 0.001 mol / min or more and 0. More preferably less than .005 mol / min. If it is less than 0.001 mol / min, the reaction is difficult to proceed, and if it is 0.010 mol / min or more, inorganic particles liberated in the suspension are likely to be synthesized.
  • the method for synthesizing alumina and / or silica can be a known method.
  • an alkaline silicate is added for synthesis. It is possible to synthesize by using an alkali silicate as a starting material and adding either one or more of an inorganic acid or an aluminum salt, but it is more produced when an inorganic acid and / or an aluminum salt is used as a starting material. Good fixation of substances to fibers.
  • the inorganic acid is not particularly limited, and for example, sulfuric acid, hydrochloric acid, nitric acid and the like can be used. Of these, sulfuric acid is particularly preferable from the viewpoint of cost and handling.
  • the aluminum salt include sulfate band, aluminum chloride, polyaluminum chloride, alum, potassium alum and the like, and among them, the sulfate band can be preferably used.
  • the alkali silicate include sodium silicate and potassium silicate, but sodium silicate is preferable because it is easily available.
  • silica and / or alumina are synthesized on the fiber while maintaining the pH of the reaction solution containing the fiber at 4.6 or less. Is preferable. Although the details of the reason why a composite fiber having a well-coated fiber surface is obtained by this are not completely clarified, the ionization rate to trivalent aluminum ions is increased by keeping the pH low. It is considered that a composite fiber having a high coverage and fixing rate can be obtained.
  • the amount of silicate ions and aluminum ions to be added per hour is preferably 0.001 mol / min or more, more preferably 0.01 mol / min or more, and 0.5 mol / min or more per 1 L of the reaction solution. Less than min is desirable, less than 0.050 mol / min is more desirable. If it is less than 0.001 mol / min, the reaction is difficult to proceed, and if it is 0.050 mol / min or more, inorganic particles liberated in the suspension are likely to be synthesized.
  • the average primary particle diameter of the inorganic particles in the composite fiber of the present invention can be, for example, 1.5 ⁇ m or less, but the average primary particle diameter can also be 1200 nm or less or 900 nm or less. Further, the average primary particle size can be 200 nm or less or 150 nm or less. Further, the average primary particle diameter of the inorganic particles can be 10 nm or more. The average primary particle size can be measured by electron micrograph.
  • Aluminum hydroxide is an ionic crystalline compound composed of an aluminum ion represented by Al (OH) 3 and a hydroxide ion, and is often in a granular form and is sparingly soluble in water. Synthetic products produced by chemical reactions are used as pharmaceuticals and adsorbents, and are also used as flame-retardant agents and non-combustible agents by utilizing the property of releasing water when heated.
  • a composite of aluminum hydroxide and fiber can be produced by synthesizing aluminum hydroxide in a solution in the presence of fiber.
  • a method of reacting an acid (sulfuric acid or the like) with a base by neutralization, a method of reacting an inorganic salt with an acid or a base, or a method of reacting inorganic salts with each other can be mentioned.
  • aluminum hydroxide can be obtained by reacting sodium hydroxide with aluminum sulfate, or aluminum chloride can be added to an aqueous solution containing an alkali salt to precipitate aluminum hydroxide.
  • the nuclei are not easily fixed to the cellulose fibers, and the inorganic particles released in the suspension are easily synthesized. Therefore, in order to produce a composite fiber in which aluminum hydroxide is tightly bound, it is necessary to appropriately control the nucleation reaction. Specifically, this can be achieved by optimizing the concentrations of OH ions and pulp and slackening the supply amount of Al ions per hour.
  • the OH ion concentration in the reaction vessel is preferably 0.01 mol / L or more and less than 0.50 mol / L.
  • the pulp concentration is preferably 0.5% or more and less than 4.0%. If it is less than 0.5%, the frequency of collision of the raw materials with the fibers decreases, so that the reaction does not proceed easily, and if it is 4.0% or more, a uniform complex cannot be obtained due to poor stirring.
  • the amount of Al ions supplied per hour is preferably 0.001 mol / min or more and less than 0.050 mol / min per 1 L of the reaction solution. If it is less than 0.001 mol / min, the reaction is difficult to proceed, and if it is 0.050 mol / min or more, inorganic particles liberated in the suspension are likely to be synthesized.
  • the composite fiber used in the present invention is a composite of cellulose fiber and inorganic particles.
  • cellulose fibers constituting the composite for example, not only natural cellulose fibers but also regenerated fibers (semi-synthetic fibers) such as rayon and lyocell and synthetic fibers can be used without limitation.
  • raw materials for cellulose fibers include pulp fibers (wood pulp and non-wood pulp), cellulose nanofibers, bacterial cellulose, animal-derived cellulose such as squirrel, and algae. Wood pulp is produced by pulping wood raw materials. Just do it.
  • Wood raw materials include red pine, black pine, todo pine, spruce, beni pine, larch, fir, tsuga, sugi, cypress, larch, shirabe, spruce, hiba, douglas fur, hemlock, white fur, spruce, balsam fur, cedar, pine, Conifers such as merkushimatsu and radiata pine, and their mixed materials, beech, hippo, cypress, nara, tab, shii, white hippo, larch, poplar, fir, doroyanagi, eucalyptus, mangrove, lauan, acacia and other broadleaf trees and their mixture.
  • the material is exemplified.
  • the method of pulping a natural material such as a wood raw material is not particularly limited, and a pulping method generally used in the paper industry is exemplified.
  • Wood pulp can be classified by the pulping method, for example, chemical pulp that has been vaporized by methods such as the craft method, sulfite method, soda method, and polysulfide method; mechanical pulp obtained by pulping with mechanical force such as a refiner and grinder; chemicals. Examples thereof include semi-chemical pulp; used paper pulp; and deinked pulp obtained by pulping by mechanical force after pretreatment with.
  • the wood pulp may be in an unbleached (before bleaching) state or in a bleached (after bleaching) state.
  • non-wood-derived pulp examples include cotton, hemp, sisal hemp, Manila hemp, flax, straw, bamboo, bagus, kenaf, sugar cane, corn, rice straw, kozo, and mitsumata.
  • the pulp fiber may be either unbeaten or beaten, and may be selected according to the physical characteristics of the complex sheet, but beating is preferable. This can be expected to improve the sheet strength and promote the fixation of inorganic particles.
  • these cellulose raw materials are further treated to carry out powdered cellulose, chemically modified cellulose such as oxidized cellulose, and cellulose nanofibers: CNF (microfibrillated cellulose: MFC, TEMPO oxide CNF, phosphoric acid esterified CNF, carboxymethylation). It can also be used as CNF, machine crushed CNF, etc.).
  • the powdered cellulose used in the present invention has a constant particle size having a rod-like shape and is produced by, for example, a method of purifying and drying an undecomposed residue obtained after acid-hydrolyzing selected pulp, pulverizing and sieving.
  • Crystalline cellulose powder having a distribution may be used, or commercially available products such as KC Flock (manufactured by Nippon Paper Co., Ltd.), Theoras (manufactured by Asahi Kasei Chemicals), and Abyssel (manufactured by FMC) may be used.
  • the degree of polymerization of cellulose in powdered cellulose is preferably about 100 to 1500
  • the degree of crystallinity of powdered cellulose by X-ray diffraction is preferably 70 to 90%
  • the volume average particle diameter by a laser diffraction type particle size distribution measuring device Is preferably 500 nm or more and 100 ⁇ m or less.
  • the cellulose oxide used in the present invention can be obtained by oxidizing in water with an oxidizing agent in the presence of, for example, an N-oxyl compound and a compound selected from the group consisting of bromide, iodide or a mixture thereof. it can.
  • an oxidizing agent in the presence of, for example, an N-oxyl compound and a compound selected from the group consisting of bromide, iodide or a mixture thereof. it can.
  • the cellulose nanofiber the method of defibrating the above-mentioned cellulose raw material is used.
  • a defibration method for example, an aqueous suspension of chemically modified cellulose such as cellulose or oxidized cellulose is mechanically ground or beaten with a refiner, a high-pressure homogenizer, a grinder, a uniaxial or multiaxial kneader, a bead mill or the like.
  • Cellulose nanofibers may be produced by combining one or more of the above methods.
  • the fiber diameter of the produced cellulose nanofibers can be confirmed by observation with an electron microscope or the like, and is preferably in the range of 5 nm to 300 nm, for example.
  • an arbitrary compound may be further added and reacted with the cellulose nanofibers to modify the hydroxyl groups. it can.
  • Functional groups to be modified include acetyl group, ester group, ether group, ketone group, formyl group, benzoyl group, acetal, hemiacetal, oxime, isonitrile, allene, thiol group, urea group, cyano group, nitro group and azo group.
  • Hydrogen in these substituents may be substituted with a functional group such as a hydroxyl group or a carboxy group. Further, a part of the alkyl group may have an unsaturated bond.
  • the compound used for introducing these functional groups is not particularly limited, and for example, a compound having a phosphoric acid-derived group, a compound having a carboxylic acid-derived group, a compound having a sulfuric acid-derived group, and a sulfonic acid-derived compound. Examples thereof include a compound having a group of, a compound having an alkyl group, a compound having a group derived from amine, and the like.
  • the compound having a phosphoric acid group is not particularly limited, and examples thereof include phosphoric acid, lithium dihydrogen phosphate which is a lithium salt of phosphoric acid, dilithium hydrogen phosphate, trilithium phosphate, lithium pyrophosphate, and lithium polyphosphate. .. Further, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium polyphosphate, which are sodium salts of phosphoric acid, can be mentioned. Further, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium polyphosphate, which are potassium salts of phosphoric acid, can be mentioned.
  • ammonium dihydrogen phosphate diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, ammonium polyphosphate, etc., which are ammonium salts of phosphoric acid
  • phosphoric acid, sodium salt of phosphoric acid, potassium salt of phosphoric acid, and ammonium salt of phosphoric acid are preferable, and sodium dihydrogen phosphate is preferable from the viewpoint of high efficiency of introduction of phosphoric acid group and easy industrial application.
  • Disodium hydrogen phosphate is more preferable, but it is not particularly limited.
  • the compound having a carboxyl group is not particularly limited, and examples thereof include dicarboxylic acid compounds such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, and itaconic acid, and tricarboxylic acid compounds such as citric acid and aconitic acid. ..
  • the acid anhydride of the compound having a carboxyl group is not particularly limited, and examples thereof include acid anhydrides of dicarboxylic acid compounds such as maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, and itaconic anhydride. Be done.
  • the derivative of the compound having a carboxyl group is not particularly limited, and examples thereof include an imide of an acid anhydride of a compound having a carboxyl group and a derivative of an acid anhydride of a compound having a carboxyl group.
  • the imide of the acid anhydride of the compound having a carboxyl group is not particularly limited, and examples thereof include an imide of a dicarboxylic acid compound such as maleimide, succinateimide, and phthalateimide.
  • the derivative of the acid anhydride of the compound having a carboxyl group is not particularly limited.
  • At least a part of hydrogen atoms of the acid anhydride of a compound having a carboxyl group are substituents (for example, alkyl group, phenyl group, etc.).
  • substituents for example, alkyl group, phenyl group, etc.
  • the cellulose nanofibers may be modified in such a way that the compound to be modified physically adsorbs to the cellulose nanofibers without being chemically bonded.
  • the compound that is physically adsorbed include a surfactant and the like, and any of anionic, cationic and nonionic compounds may be used. If the above modification is performed before defibration and / or pulverization of cellulose, these functional groups can be eliminated after defibration and / or pulverization to return to the original hydroxyl group. By applying the above modifications, it is possible to promote the defibration of the cellulose nanofibers and to facilitate mixing with various substances when the cellulose nanofibers are used.
  • the fibers shown above may be used alone or in combination of two or more.
  • the fibrous material recovered from the wastewater of a paper mill may be supplied to the carbonation reaction of the present invention.
  • various composite particles can be synthesized, and fibrous particles and the like can be synthesized in terms of shape.
  • a substance that is incorporated into inorganic particles as a product to form composite particles can be used.
  • fibers such as pulp fibers are used, but in addition to these, these substances are further incorporated by synthesizing inorganic particles in a solution containing inorganic particles, organic particles, polymers and the like. It is possible to produce composite particles.
  • the fiber length of the fiber to be composited is not particularly limited, but for example, the average fiber length can be about 0.1 ⁇ m to 15 mm, and may be 1 ⁇ m to 12 mm, 100 ⁇ m to 10 mm, 400 ⁇ m to 8 mm, or the like. Of these, in the present invention, the average fiber length is preferably 400 ⁇ m or more (0.4 mm or more).
  • the average fiber diameter of the fibers to be composited is not particularly limited, but for example, the average fiber diameter can be about 1 nm to 100 ⁇ m, and may be 500 nm to 100 ⁇ m, 1 ⁇ m to 90 ⁇ m, 3 ⁇ m to 50 ⁇ m, 5 ⁇ m to 30 ⁇ m, or the like. Of these, in the present invention, it is preferable that the average fiber diameter is 500 nm or more because the production efficiency in the subsequent process can be improved.
  • the average fiber length and average fiber diameter of the fiber can be measured by a fiber length measuring device.
  • the fiber length measuring device include Valmet Fractionator (manufactured by Valmet).
  • the composite fiber is preferably used in an amount such that 15% or more of the fiber surface is covered with inorganic particles.
  • the weight ratio of the fiber to the inorganic particles is 5/95 to 95/5. It can be 10/90 to 90/10, 20/80 to 80/20, 30/70 to 70/30, 40/60 to 60/40.
  • the composite fiber according to the present invention has 15% or more of the fiber surface coated with inorganic particles, and if the surface of the cellulose fiber is coated with such an area ratio, the feature caused by the inorganic particles is large. On the other hand, the features due to the fiber surface become smaller.
  • the composite fiber according to the present invention can be used in various shapes, for example, powder, pellets, molds, aqueous suspensions, pastes, sheets, boards, blocks, and other shapes. Further, it is also possible to form a molded product such as a mold or particles / pellets by using a composite fiber as a main component together with other materials.
  • the dryer for drying into powder is not particularly limited, but for example, an air flow dryer, a band dryer, a spray dryer, or the like can be preferably used.
  • the composite fiber according to the present invention can be used for various purposes, for example, paper, fiber, cellulose-based composite material, filter material, paint, plastic or other resin, rubber, elastomer, ceramic, glass, tire, building.
  • Materials (asphalt, asbestos, cement, boards, concrete, bricks, tiles, plywood, fiberboards, ceiling materials, wall materials, flooring materials, roofing materials, etc.), furniture, various carriers (catalyst carriers, pharmaceutical carriers, pesticide carriers, microorganisms, etc.) Carriers, etc.), adsorbents (impurity removal, deodorization, dehumidification, etc.), antibacterial materials, antiviral agents, wrinkle inhibitors, clay, abrasives, friction materials, modifiers, repair materials, heat insulating materials, heat resistant materials, heat dissipation Materials, moisture-proof materials, water-repellent materials, water-resistant materials, light-shielding materials, sealants, shield materials, insect repellents, adhesives, medical materials, paste materials, discoloration inhibitor
  • adsorbents antibacterial materials, antiviral agents, friction materials, radiation shielding materials, flame-retardant materials, building materials, and heat insulating materials are preferable.
  • the composite fiber of the present invention may be applied to papermaking applications, for example, printing paper, newspaper, inkjet paper, PPC paper, kraft paper, high-quality paper, coated paper, finely coated paper, wrapping paper, thin leaf paper, and high-quality color.
  • the present invention it is possible to obtain a composite of inorganic particles having a small primary particle diameter and a narrow particle size distribution and fibers, which is different from the conventional inorganic filler having a particle diameter of more than 2 ⁇ m. It is possible to exert the characteristics. Furthermore, unlike the case where the inorganic particles are simply blended with the fiber, if the inorganic particles are complexed with the fiber, not only the inorganic particles can be easily retained on the sheet, but also the sheet is uniformly dispersed without agglomeration. Obtainable. It has been clarified from the results of electron microscopic observation that the inorganic particles in the present invention are formed not only on the outer surface of the fiber and inside the lumen but also on the inside of the microfibril in a preferable embodiment.
  • particles generally called inorganic filler and organic filler can be used in combination.
  • an inorganic filler calcium carbonate (light calcium carbonate, heavy calcium carbonate), magnesium carbonate, barium carbonate, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, zinc hydroxide, clay (kaolin, calcined kaolin, deramikaolin).
  • Organic fillers include urea-formalin resin, polystyrene resin, phenolic resin, microhollow particles, acrylamide composites, wood-derived substances (fine fibers, microfibril fibers, powdered kenaf), modified insolubilized starch, ungelatinized starch, etc. Can be mentioned.
  • the fibers include not only natural fibers such as cellulose, but also synthetic fibers artificially synthesized from raw materials such as petroleum, recycled fibers (semi-synthetic fibers) such as rayon and lyocell, and inorganic fibers without limitation. Can be used.
  • natural fibers include protein-based fibers such as wool, silk thread and collagen fiber, and composite sugar chain-based fibers such as chitin / chitosan fiber and alginic acid fiber.
  • cellulosic raw material include pulp fibers (wood pulp and non-wood pulp), bacterial cellulose, animal-derived cellulose such as squirrel, and algae. Wood pulp may be produced by pulping the wood raw material.
  • Wood raw materials include red pine, black pine, todo pine, spruce, beni pine, larch, fir, tsuga, sugi, cypress, larch, shirabe, spruce, hiba, douglas fur, hemlock, white fur, spruce, balsam fur, cedar, pine, Conifers such as merkushimatsu and radiata pine, and their mixed materials, beech, hippo, cypress, nara, tab, shii, white hippo, larch, poplar, fir, doroyanagi, eucalyptus, mangrove, lauan, acacia and other broadleaf trees and their mixture.
  • the material is exemplified.
  • the method for pulping a wood raw material is not particularly limited, and a pulping method generally used in the paper industry is exemplified.
  • Wood pulp can be classified by the pulping method, for example, chemical pulp that has been vaporized by methods such as the craft method, sulfite method, soda method, and polysulfide method; mechanical pulp obtained by pulping with mechanical force such as a refiner and grinder; chemicals. Examples thereof include semi-chemical pulp; used paper pulp; and deinked pulp obtained by pulping by mechanical force after pretreatment with.
  • the wood pulp may be in an unbleached (before bleaching) state or in a bleached (after bleaching) state.
  • non-wood-derived pulp examples include cotton, hemp, sisal hemp, Manila hemp, flax, straw, bamboo, bagus, kenaf, sugar cane, corn, rice straw, kozo, and mitsumata.
  • the wood pulp and non-wood pulp may be either unbeaten or beaten.
  • these cellulose raw materials are further treated to carry out powdered cellulose, chemically modified cellulose such as oxidized cellulose, and cellulose nanofibers: CNF (microfibrillated cellulose: MFC, TEMPO oxide CNF, phosphoric acid esterified CNF, carboxymethylation). It can also be used as CNF, machine crushed CNF).
  • Examples of synthetic fibers include polyester, polyamide, polyolefin and acrylic fibers
  • examples of semi-synthetic fibers include rayon and acetate
  • examples of inorganic fibers include glass fibers, carbon fibers and various metal fibers. Regarding the above, these may be used alone or in combination of two or more types.
  • the average particle size, shape, etc. of the inorganic particles constituting the composite fiber of the present invention can be confirmed by observation with an electron microscope. Furthermore, by adjusting the conditions for synthesizing the inorganic particles, the inorganic particles having various sizes and shapes can be complexed with the fibers.
  • the above-mentioned composite fiber can be molded into various molded products (body).
  • body molded products
  • the composite fiber of the present invention is made into a sheet, a sheet having a high ash content can be easily obtained. Further, the obtained sheets can be pasted together to form a multi-layer sheet.
  • Examples of the paper machine (paper machine) used for sheet production include a long net paper machine, a circular net paper machine, a gap former, a hybrid former, a rotoformer, a multi-layer paper machine, and a known paper machine that combines the paper making methods of these devices. Can be mentioned.
  • the press line pressure in the paper machine and the calendar line pressure when the calendar processing is performed in the subsequent stage can be set within a range that does not affect the operability and the performance of the composite fiber sheet.
  • starch, various polymers, pigments and mixtures thereof may be applied to the formed sheet by impregnation or coating.
  • paper strength enhancer paper strength enhancer
  • paper strength agents include urea formaldehyde resin, melamine formaldehyde resin, polyamide, polyamine, epichlorohydrin resin, vegetable gum, latex, polyethyleneimine, glyoxal, gum, mannogalactanpolyethyleneimine, polyacrylamide resin, and polyvinylamine.
  • Polyvinyl alcohol and the like composite polymers or copolymers composed of two or more kinds selected from the above resins; starch and processed starch; carboxymethyl cellulose, guar gum, urea resin and the like.
  • the amount of the paper strength agent added is not particularly limited.
  • a high molecular polymer or an inorganic substance can be added in order to promote the fixation of the filler to the fiber and to improve the yield of the filler and the fiber.
  • a coagulant polyethyleneimine and modified polyethyleneimine containing a tertiary and / or quaternary ammonium group, polyalkyleneimine, dicyandiamide polymer, polyamine, polyamine / epiclohydrin polymer, and dialkyldialyl quaternary ammonium monomer, dialkyl.
  • Aminoalkyl acrylates, dialkylaminoalkylmethacrylates, dialkylaminoalkylacrylamides, dialkylaminoalkylmethacrylate and acrylamide polymers polymers consisting of monoamines and epihalohydrins, polymers with polyvinylamine and vinylamine moieties, and cations such as mixtures thereof.
  • a cation-rich amphoteric polymer in which an anionic group such as a carboxyl group or a sulfone group is copolymerized in the molecule of the polymer, or a mixture of a cationic polymer and an anionic or amphoteric polymer is used. be able to.
  • a cationic or anionic or amphoteric polyacrylamide-based substance can be used as the retention agent.
  • a yield system called a so-called dual polymer in which at least one or more cation or anionic polymers are used in combination, can be applied, and at least one or more anionic bentonite, colloidal silica, polysilicic acid, etc. can be applied.
  • It is a multi-component yield system that uses one or more of inorganic fine particles such as polysilicic acid or polysilicate microgels and their aluminum modified products, and organic fine particles with a particle size of 100 ⁇ m or less, which are so-called micropolymers cross-linked and polymerized with acrylamide. May be good.
  • the polyacrylamide-based substance used alone or in combination has a weight average molecular weight of 2 million daltons or more by the ultimate viscosity method, a good yield can be obtained, preferably 5 million daltons or more, more preferably. Can obtain a very high yield when it is the above-mentioned acrylamide-based substance of 10 million daltons or more and less than 30 million daltons.
  • the form of this polyacrylamide-based substance may be an emulsion type or a solution type.
  • the specific composition is not particularly limited as long as the substance contains an acrylamide monomer unit as a structural unit, and is, for example, a copolymer of a quaternary ammonium salt of an acrylic acid ester and acrylamide, or acrylamide. And an acrylate ester are copolymerized with each other, and then a quaternary ammonium salt is mentioned.
  • the cationic charge density of the cationic polyacrylamide-based substance is not particularly limited.
  • inorganic particles such as drainage improver, internal sizing agent, pH adjuster, defoamer, pitch control agent, slime control agent, bulking agent, calcium carbonate, kaolin, talc, silica, etc. (so-called) Filling fee) and the like.
  • the amount of each additive used is not particularly limited.
  • the basic weight of the sheet (basis weight: weight per square meter) can be adjusted as appropriate according to the purpose, but when used as a building material, for example, 60 to 1200 g / m 2 is strong and at the time of manufacture. It is good because the drying load is low. Further, the basis weight of the sheet can be 1200 g / m 2 or more, for example, 2000 to 110000 g / m 2 .
  • a molding method other than sheeting For example, a method called a pulp mold in which a raw material is poured into a mold and suction-dehydrated / dried, or a method of spreading and drying on the surface of a molded product such as resin or metal is used. After that, molded products having various shapes can be obtained by a method of peeling from the base material or the like. Further, it can be mixed with a resin and molded into a plastic shape, or it can be mixed with cement or rubber and used as a reinforcing material. Further, it can be formed into a board shape or a block shape by pressure / heat press molding which is generally used for making an inorganic board such as cement or gypsum.
  • the sheet can be bent or rolled up, but can be made into a board if more strength is required. It can also be molded into a block shape, which is a thick mass, and can be molded into, for example, a rectangular parallelepiped or a cube.
  • organic substances such as polymers and various inorganic substances such as pigments may be added to the molded product of the complex later.
  • Printing can be applied to the molded product produced by the product of the present invention.
  • This printing method is not particularly limited, but for example, offset printing, silk screen printing, screen printing, gravure printing, micro gravure printing, flexo printing, typographic printing, sticker printing, form printing, on-demand printing, fanniquet. It can be performed by a known method such as shear roll printing or inkjet printing.
  • ink jet printing is preferable because it is not necessary to prepare a block copy unlike offset printing, and it is relatively easy to increase the size of an inkjet printer, so that printing on a large sheet is also possible.
  • flexographic printing can be suitably used for molded products having relatively large surface irregularities, it can also be suitably used when molded into a shape such as a board, a mold, or a block.
  • the type of the pattern of the printed image formed by printing is not particularly limited, and for example, a wood grain pattern, a stone grain pattern, a cloth grain pattern, an abstract pattern, a geometric pattern, characters, symbols, or a combination thereof, etc. It is optional, and may be a solid color.
  • aluminum sulfate (4-fold diluted aqueous solution of sulfate band stock solution, 67.2 g) was added dropwise at 1.1 g / min. After completion of the dropping, stirring was continued for 30 minutes as it was to obtain Sample 2.
  • sample 6 Fig. 6, mixture of inorganic particles and cellulose fibers
  • sample 6 barium sulfate particle slurry Concentration 3.0%
  • Water was added and stirred to obtain a mixed slurry of barium sulfate and cellulose fibers.
  • Composite fiber of silica / alumina and cellulose fiber 910 g of 0.5% pulp slurry (NBKP, CSF: 360 mL, average fiber length: about 1.7 mm, average fiber diameter: about 18 ⁇ m) was placed in a 2 L resin container and stirred with a laboratory mixer (600 rpm).
  • Composite fiber of hydrotalcite and cellulose fiber (Sample C1, FIG. 15)
  • a solution for synthesizing hydrotalcite (HT) a mixed aqueous solution (acid solution) of sulfonyl 4 (Fujifilm Wako Pure Chemical Industries, Ltd.) and Al 2 (SO 4 ) 3 (Fujifilm Wako Pure Chemical Industries, Ltd.) was prepared.
  • the concentration of sulfonyl 4 is 0.6M
  • the concentration of Al 2 (SO 4 ) 3 is 0.1M.
  • Composite fiber of calcium carbonate and cellulose fiber (Sample D1, FIG. 17) Aqueous suspension containing calcium hydroxide (slaked lime: Ca (OH) 2 , 100 g, Fujifilm Wako Pure Chemical Industries, Ltd.) and powdered cellulose (KC Flock TM W-06MG, manufactured by Nippon Paper Co., Ltd., average particle size: 6 ⁇ m, 100 g) 10 L of liquid was prepared. This aqueous suspension was placed in a 40 L volume sealing device, carbon dioxide gas was blown into the reaction vessel to generate cavitation, and composite fibers of calcium carbonate fine particles and fibers were synthesized by the carbon dioxide gas method.
  • calcium hydroxide slaked lime: Ca (OH) 2 , 100 g, Fujifilm Wako Pure Chemical Industries, Ltd.
  • KC Flock TM W-06MG powdered cellulose
  • the reaction temperature was about 15 ° C.
  • the carbon dioxide gas was supplied from a commercially available liquefied gas
  • the amount of carbon dioxide gas blown was 3 L / min
  • the reaction was stopped when the pH of the reaction solution reached about 7 (before the reaction).
  • the pH of is about 12.8).
  • cavitation bubbles were generated in the reaction vessel by circulating the reaction solution and injecting it into the reaction vessel. Specifically, the reaction solution was injected at high pressure through a nozzle (nozzle diameter: 1.5 mm) to generate cavitation bubbles.
  • the jet velocity was about 70 m / s
  • the inlet pressure (upstream pressure) was 7 MPa
  • the outlet pressure (downstream pressure) was 0.3 MPa.
  • Sample D2 FIG. 18
  • Composite fibers were synthesized in the same manner as in Sample D1 except that the powdered cellulose used was W-100G (manufactured by Nippon Paper Industries, average particle size: 37 ⁇ m) and the amount of carbon dioxide gas blown was 20 L / min.
  • the residue is dried in an oven (105 ° C., 2 hours), and the ash content is measured to measure the inorganic particles in the composite fiber. The weight ratio of was measured.
  • the values measured by Valmet Fractionator are described as the fiber length.
  • the solid content concentration of the slurry was adjusted to 0.1 to 0.3%, and the water temperature in the apparatus was adjusted to 25 ° C. ⁇ 1 ° C. for the measurement.
  • a fiber classification analyzer (Valmet Fractionator) was used as a method for automatically classifying a sample into a plurality of fractions under certain conditions.
  • This device flows pulp slurry into a tube with a length of about 100 m at a constant temperature and constant velocity, separates long fibers into fine fibers / fillers according to the hydrodynamic size, and then automatically performs five fractions (FR1) according to the outflow time.
  • FR1 Long / short fiber
  • FR4 ⁇ 5 Fine fiber / filler
  • the complex sample (3 g in terms of solid content) was diluted with water so that the solid content concentration was 0.3%, and about 250 g each was poured into a fiber classification analyzer in 3 portions. Fractions fractionated under the outflow conditions were collected (water temperature at the time of classification 25 ⁇ 1 ° C.).
  • the recovered FR4 was allowed to stand in a bucket for several hours to allow the fibers to settle, and after removing the supernatant, the particle size distribution (Mastersizer 3000, manufactured by Malvern) was measured by a wet method.
  • ⁇ Particle size distribution> The numerical value of "(D50-D10) / D50” was calculated from D10 (cumulative particle size of 10%) and D50 (cumulative particle size of 50%) in the volume-based particle size distribution measured as described above. The smaller this value is, the narrower the particle size distribution of the sample is, which means that the inorganic substance is firmly fixed on the fiber surface.
  • the composite fiber samples 1 to 3 and 9 are only the composite fiber samples 4, 7, 8, 10 to 12, and the inorganic particles. It was found that the dehydration rate was faster than that of Sample 5 and Mixture Sample 6. It is considered that this is because the composite fiber samples 1 to 3 and 9 have relatively few fine particles that affect the drainage. If the drainage is good, the drying process can be shortened and alleviated, which leads to an improvement in productivity (reducing the frequency of paper breaks and increasing the speed of paper making) when manufacturing sheets, and particularly thick sheets are manufactured. It can be said that the effect is great in some cases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Paper (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

The present invention addresses the problem of providing a composite fiber in which the surfaces of cellulose fibers are firmly covered with numerous inorganic particles. In the present invention, (D50-D10)/D50 calculated from particle size distribution of (a) or (b) is used as an index, making it possible to produce an excellent composite fiber comprising cellulose fibers and inorganic particles. (a) A filtered liquid obtained by filtering an aqueous suspension liquid of the composite fiber with 0.1% solid content concentration through a 60 mesh sieve (aperture 250 μm); and (b) when an aqueous suspension liquid of the composite fiber with 0.3% solid content concentration is analyzed with a fiber classification analysis device, under a condition of a flow rate of 5.7 L/min, a water temperature of 25±1°C, and a total outflow of 22 L, a fraction corresponding to outflow (L) of 18.51 to 19.50, outflow time (sec) of 37.4 to 48.0.

Description

セルロース繊維と無機粒子の複合繊維およびその製造方法Composite fiber of cellulose fiber and inorganic particles and its manufacturing method
 本発明は、セルロース繊維と無機粒子の複合繊維およびその製造方法に関する。 The present invention relates to a composite fiber of cellulose fiber and inorganic particles and a method for producing the same.
 木質繊維を始めとする繊維は、その表面の官能基などに基づいて種々の特性を発揮するが、用途によっては表面を改質する必要が生じる場合もあり、これまで、繊維を表面改質する技術が開発されてきている。 Fibers such as wood fibers exhibit various properties based on the functional groups on the surface, but depending on the application, it may be necessary to modify the surface, and so far, the fibers have been surface-modified. Technology is being developed.
 例えば、セルロース繊維などの繊維上に無機粒子を析出させる技術について、特許文献1には、結晶質の炭酸カルシウムが繊維上に機械的に結合した複合体が記載されている。また、特許文献2には、パルプ懸濁液中で炭酸ガス法により炭酸カルシウムを析出させることによって、パルプと炭酸カルシウムの複合体を製造する技術が記載されている。 For example, regarding a technique for precipitating inorganic particles on a fiber such as a cellulose fiber, Patent Document 1 describes a complex in which crystalline calcium carbonate is mechanically bonded onto the fiber. Further, Patent Document 2 describes a technique for producing a composite of pulp and calcium carbonate by precipitating calcium carbonate in a pulp suspension by a carbon dioxide gas method.
特開平06-158585号公報Japanese Unexamined Patent Publication No. 06-158585 米国特許第5679220号U.S. Pat. No. 5,679,220
 セルロースの繊維表面を無機粒子で被覆した従来の複合繊維は、セルロース繊維と無機粒子の結着強度が十分でなく、セルロース繊維に被覆している無機粒子量が少なかったり、セルロース繊維から無機粒子が脱落してしまったりすることがあった。このような状況に鑑み、本発明の課題は、セルロース繊維表面が多くの無機粒子で強く被覆された複合繊維を提供することである。 In the conventional composite fiber in which the surface of the cellulose fiber is coated with inorganic particles, the binding strength between the cellulose fiber and the inorganic particle is not sufficient, the amount of the inorganic particle coated on the cellulose fiber is small, or the inorganic particle is formed from the cellulose fiber. Sometimes it dropped out. In view of such a situation, an object of the present invention is to provide a composite fiber in which the surface of the cellulose fiber is strongly coated with many inorganic particles.
 本発明は、これに制限されるものでないが、以下の発明を包含する。
[1] セルロース繊維と無機粒子の複合繊維を製造する方法であって、
 セルロース繊維を含む溶液において無機粒子を合成して複合繊維を得る工程と、
 下記の(a)または(b):
(a) 固形分濃度0.1%の複合繊維の水性懸濁液を、60メッシュ(目開き250μm)の篩で濾過処理した濾液、
(b) 固形分濃度0.3%の複合繊維の水性懸濁液を、流速5.7L/min、水温25±1℃、全流出量22Lの条件で繊維分級分析装置を用いて分級処理したときの、流出量(L)18.51~19.50、流出時間(sec)37.4~48.0に相当する画分、
の粒度分布を測定して(D50-D10)/D50を算出すること、
を含む、上記方法。
[2] (D50-D10)/D50が0.85以下となるように複合繊維の水性懸濁液を調整する、[1]に記載の方法。
[3] 前記複合繊維の平均繊維径が、500nm以上である、[1]または[2]に記載の方法。
[4] 前記無機粒子が、カルシウム、マグネシウム、バリウムあるいはアルミニウムの金属塩、チタン、銅あるいは亜鉛を含む金属粒子、またはケイ酸塩を含む、[1]~[3]のいずれかに記載の方法。
[5] [1]~[4]のいずれか方法により得られた複合繊維からシートを形成させる工程を含む、複合繊維シートの製造方法。
[6] セルロース繊維と無機粒子の複合繊維であって、下記の(a)または(b):
(a) 固形分濃度0.1%の複合繊維の水性懸濁液を、60メッシュ(目開き250μm)の篩で濾過処理したときの濾液
(b) 固形分濃度0.3%の複合繊維の水性懸濁液を、流速5.7L/min、水温25±1℃、全流出量22Lの条件で繊維分級分析装置を用いて分級処理したときの、流出量(L)18.51~19.50、流出時間(sec)37.4~48.0に相当する画分、
の粒度分布から算出した(D50-D10)/D50の数値が0.85以下である、上記複合繊維。
[7] 固形分濃度0.1%の複合繊維の水性懸濁液を、60メッシュ(目開き250μm)の篩で処理して篩を通過する、セルロース繊維と無機粒子の複合繊維であって、当該篩を通過した濾液の粒度分布から算出した(D50-D10)/D50の数値が0.85以下である、上記複合繊維。
[8] 固形分濃度0.3%の複合繊維の水性懸濁液を、流速5.7L/min、水温25±1℃、全流出量22Lの条件で繊維分級分析装置を用いて分級処理し、流出量(L)18.51~19.50、流出時間(sec)37.4~48.0に相当する画分から得られる、セルロース繊維と無機粒子の複合繊維であって、当該画分の粒度分布から算出した(D50-D10)/D50の数値が0.85以下である、上記複合繊維。
[9] セルロース繊維と無機粒子の複合繊維を分析する方法であって、下記の(a)または(b):
(a) 固形分濃度0.1%の複合繊維の水性懸濁液を、60メッシュ(目開き250μm)の篩で濾過処理したときの濾液
(b) 固形分濃度0.3%の複合繊維の水性懸濁液を、流速5.7L/min、水温25±1℃、全流出量22Lの条件で繊維分級分析装置を用いて分級処理したときの、流出量(L)18.51~19.50、流出時間(sec)37.4~48.0に相当する画分、
の粒度分布を測定し、(D50-D10)/D50を算出する工程を含む、上記方法。
The present invention is not limited to this, but includes the following inventions.
[1] A method for producing a composite fiber of cellulose fiber and inorganic particles.
The process of synthesizing inorganic particles in a solution containing cellulose fibers to obtain composite fibers,
The following (a) or (b):
(A) A filtrate obtained by filtering an aqueous suspension of composite fibers having a solid content concentration of 0.1% with a sieve of 60 mesh (opening 250 μm).
(B) An aqueous suspension of composite fibers having a solid content concentration of 0.3% was classified using a fiber classification analyzer under the conditions of a flow rate of 5.7 L / min, a water temperature of 25 ± 1 ° C., and a total outflow of 22 L. Fractions corresponding to the outflow amount (L) 18.51 to 19.50 and the outflow time (sec) 37.4 to 48.0.
To calculate (D50-D10) / D50 by measuring the particle size distribution of
The above method, including.
[2] The method according to [1], wherein the aqueous suspension of the composite fiber is adjusted so that (D50-D10) / D50 is 0.85 or less.
[3] The method according to [1] or [2], wherein the average fiber diameter of the composite fiber is 500 nm or more.
[4] The method according to any one of [1] to [3], wherein the inorganic particles contain a metal salt of calcium, magnesium, barium or aluminum, metal particles containing titanium, copper or zinc, or a silicate. ..
[5] A method for producing a composite fiber sheet, which comprises a step of forming a sheet from the composite fibers obtained by any of the methods [1] to [4].
[6] A composite fiber of cellulose fibers and inorganic particles, which has the following (a) or (b):
(A) A filtrate obtained by filtering an aqueous suspension of a composite fiber having a solid content concentration of 0.1% with a sieve having a solid content of 0.3% (b) of a composite fiber having a solid content concentration of 0.3%. When the aqueous suspension was classified using a fiber classification analyzer under the conditions of a flow rate of 5.7 L / min, a water temperature of 25 ± 1 ° C., and a total runoff of 22 L, the runoff (L) 18.51-19. 50, Fraction corresponding to outflow time (sec) 37.4-48.0,
The composite fiber having a value of (D50-D10) / D50 calculated from the particle size distribution of 0.85 or less.
[7] A composite fiber of cellulose fibers and inorganic particles obtained by treating an aqueous suspension of a composite fiber having a solid content concentration of 0.1% with a sieve of 60 mesh (opening 250 μm) and passing through the sieve. The composite fiber having a (D50-D10) / D50 value of 0.85 or less calculated from the particle size distribution of the filtrate that has passed through the sieve.
[8] An aqueous suspension of composite fibers having a solid content concentration of 0.3% was classified using a fiber classification analyzer under the conditions of a flow velocity of 5.7 L / min, a water temperature of 25 ± 1 ° C., and a total outflow of 22 L. , A composite fiber of cellulose fibers and inorganic particles obtained from a fraction corresponding to an outflow amount (L) of 18.51 to 19.50 and an outflow time (sec) of 37.4 to 48.0. The composite fiber having a value of (D50-D10) / D50 calculated from the particle size distribution of 0.85 or less.
[9] A method for analyzing a composite fiber of cellulose fibers and inorganic particles, wherein the following (a) or (b):
(A) A filtrate obtained by filtering an aqueous suspension of a composite fiber having a solid content concentration of 0.1% with a sieve having a solid content of 0.3% (b) of a composite fiber having a solid content concentration of 0.3%. When the aqueous suspension was classified using a fiber classification analyzer under the conditions of a flow rate of 5.7 L / min, a water temperature of 25 ± 1 ° C., and a total runoff of 22 L, the runoff (L) 18.51-19. 50, Fraction corresponding to outflow time (sec) 37.4-48.0,
The above method, which comprises the step of measuring the particle size distribution of (D50-D10) / D50 and calculating (D50-D10) / D50.
 本発明によれば、セルロース繊維表面が多くの無機粒子で強く被覆され、かつ脱水やシート化等の後工程での生産効率を向上できる複合繊維を得ることができる。 According to the present invention, it is possible to obtain a composite fiber in which the surface of the cellulose fiber is strongly coated with many inorganic particles and the production efficiency in a post-process such as dehydration or sheet formation can be improved.
 従来の複合繊維よりも無機粒子とセルロース繊維が強く結着しているため、脱水やシート化などにおいて無機粒子が脱落しにくく(後工程での無機粒子の歩留りに優れており)、かつ小粒径の遊離粒子が少ないために濾水性も良好である。脱水性や濾水性の向上は、各種製品の生産性(脱水スピードや抄速アップ)向上につながることはもちろん、機能性をもつ無機粒子が脱落しにくいため、本発明は複合繊維を材料とした製品などの機能性向上にもつながる。 Since the inorganic particles and the cellulose fibers are more strongly bound than the conventional composite fiber, the inorganic particles are less likely to fall off during dehydration or sheet formation (excellent in the yield of the inorganic particles in the subsequent process), and the particles are small. Since there are few free particles with a diameter, the drainage is also good. Improvement of dehydration and drainage leads to improvement of productivity (dehydration speed and speed of extraction) of various products, and also functional inorganic particles are hard to fall off. Therefore, the present invention uses composite fibers as a material. It also leads to improved functionality of products.
サンプル1の電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample 1 (magnification: 3000 times). サンプル2の電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample 2 (magnification: 3000 times). サンプル3の電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample 3 (magnification: 3000 times). サンプル4の電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample 4 (magnification: 3000 times). サンプル5の電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample 5 (magnification: 3000 times). サンプル6の電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample 6 (magnification: 3000 times). サンプル7の電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample 7 (magnification: 3000 times). サンプル8の電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample 8 (magnification: 3000 times). サンプル9の電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample 9 (magnification: 3000 times). サンプル10の電子顕微鏡写真である(左:3000倍、右:10000倍)。It is an electron micrograph of sample 10 (left: 3000 times, right: 10000 times). サンプル11の電子顕微鏡写真である(左:3000倍、右:10000倍)。It is an electron micrograph of sample 11 (left: 3000 times, right: 10000 times). サンプル12の電子顕微鏡写真である(左:3000倍、右:10000倍)。It is an electron micrograph of sample 12 (left: 3000 times, right: 10000 times). サンプルAの電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample A (magnification: 3000 times). サンプルBの電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample B (magnification: 3000 times). サンプルC1の電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample C1 (magnification: 3000 times). サンプルC2の電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample C2 (magnification: 3000 times). サンプルD1の電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample D1 (magnification: 3000 times). サンプルD2の電子顕微鏡写真である(倍率:3000倍)。It is an electron micrograph of sample D2 (magnification: 3000 times).
 本発明は、セルロース繊維表面が無機粒子で強く被覆された複合繊維(複合体)に関する。好ましい態様において、本発明に係る複合繊維は、繊維表面の15%以上が無機粒子によって被覆されている。 The present invention relates to a composite fiber (composite) in which the surface of the cellulose fiber is strongly coated with inorganic particles. In a preferred embodiment, the composite fiber according to the present invention has 15% or more of the fiber surface coated with inorganic particles.
 本発明に係る複合繊維は、単に繊維と無機粒子が混在しているのではなく、水素結合などによって繊維と無機粒子が結着しているので、無機粒子が繊維から脱落することが少ない。複合体における繊維と無機粒子の結着の強さは、一般的には、灰分歩留(%、すなわち、シートの灰分÷離解前の複合体の灰分×100)といった数値によって評価することができる。具体的には、複合体を水に分散させて固形分濃度0.2%に調整してJIS P 8220-1:2012に規定される標準離解機で5分間離解後、JIS P 8222:1998に従って150メッシュのワイヤーを用いてシート化した際の灰分歩留を評価に用いることができる。しかし、本発明では複合繊維を分級することにより、従来の方法では結着の強さが十分に評価できなかったものについて、結着の強い良好な複合繊維を評価することができる。 In the composite fiber according to the present invention, the fiber and the inorganic particle are not simply mixed, but the fiber and the inorganic particle are bound by a hydrogen bond or the like, so that the inorganic particle is less likely to fall off from the fiber. The strength of binding of fibers and inorganic particles in a complex can generally be evaluated by a numerical value such as ash yield (%, that is, sheet ash ÷ complex ash before dissociation × 100). .. Specifically, the complex is dispersed in water, adjusted to a solid content concentration of 0.2%, dissociated with a standard disintegrator specified in JIS P 820-1: 2012 for 5 minutes, and then according to JIS P 8222: 1998. The ash yield when sheeted using a 150 mesh wire can be used for evaluation. However, in the present invention, by classifying the composite fiber, it is possible to evaluate a good composite fiber having a strong binding even if the strength of the binding cannot be sufficiently evaluated by the conventional method.
 本発明においては、セルロース繊維と無機粒子の複合繊維について、下記の(a)または(b)の粒度分布を分析することによって、複合粒子を適切に評価することができる。
(a) 固形分濃度0.1%の複合繊維の水性懸濁液を、60メッシュ(目開き250μm)の篩で濾過処理した濾液
(b) 固形分濃度0.3%の複合繊維の水性懸濁液を、流速5.7L/min、水温25±1℃、全流出量22Lの条件で繊維分級分析装置を用いて分級処理したときの、流出量(L)18.51~19.50、流出時間(sec)37.4~48.0に相当する画分
In the present invention, the composite particles of the cellulose fibers and the composite fibers of the inorganic particles can be appropriately evaluated by analyzing the particle size distribution of (a) or (b) below.
(A) A filtrate obtained by filtering an aqueous suspension of a composite fiber having a solid content concentration of 0.1% with a sieve of 60 mesh (opening 250 μm) (b) An aqueous suspension of a composite fiber having a solid content concentration of 0.3%. When the turbid liquid was classified using a fiber classification analyzer under the conditions of a flow velocity of 5.7 L / min, a water temperature of 25 ± 1 ° C., and a total outflow amount of 22 L, the outflow amount (L) 18.51 to 19.50, Fraction corresponding to outflow time (sec) 37.4-48.0
 具体的には、上記の(a)または(b)の体積基準の粒度分布から算出される(D50-D10)/D50の数値を指標とすることができる。ここで、D10およびD50は体積基準の粒度分布から測定される粒子径であり、D10は累積10%の粒子径、D50は累積50%の粒子径である。(D50-D10)/D50の数値が小さいほどサンプルの粒度分布が狭いことを意味しており、繊維表面に無機物が強固に定着していることを示す。好ましい態様において、(D50-D10)/D50の数値は0.85以下である。 Specifically, the numerical value of (D50-D10) / D50 calculated from the volume-based particle size distribution of (a) or (b) above can be used as an index. Here, D10 and D50 are particle diameters measured from a volume-based particle size distribution, D10 is a cumulative 10% particle diameter, and D50 is a cumulative 50% particle diameter. The smaller the value of (D50-D10) / D50, the narrower the particle size distribution of the sample, indicating that the inorganic substance is firmly fixed on the fiber surface. In a preferred embodiment, the value of (D50-D10) / D50 is 0.85 or less.
 複合繊維の合成
 本発明において、セルロース繊維などの繊維を含む溶液中で無機粒子を合成することによって複合繊維を合成することができる。繊維表面が、無機粒子の析出における好適な場となり、複合繊維を合成しやすいためである。複合繊維の合成方法としては、例えば、繊維と無機粒子の前駆体を含む溶液を開放型の反応槽中で撹拌、混合して複合体を合成しても良いし、繊維と無機粒子の前駆体を含む水性懸濁液を反応容器内に噴射することによって合成してもよい。後述するが、無機物の前駆体の水性懸濁液を反応容器内に噴射する際に、キャビテーション気泡を発生させ、その存在下で無機粒子を合成してもよい。無機粒子は、それぞれ、公知の反応によってセルロース繊維上に合成することができる。
Synthesis of Composite Fibers In the present invention, composite fibers can be synthesized by synthesizing inorganic particles in a solution containing fibers such as cellulose fibers. This is because the fiber surface serves as a suitable field for the precipitation of inorganic particles, and it is easy to synthesize composite fibers. As a method for synthesizing the composite fiber, for example, a solution containing a precursor of the fiber and the inorganic particle may be stirred and mixed in an open reaction tank to synthesize the composite, or a precursor of the fiber and the inorganic particle may be synthesized. It may be synthesized by injecting an aqueous suspension containing the above into a reaction vessel. As will be described later, when an aqueous suspension of an inorganic precursor is injected into the reaction vessel, cavitation bubbles may be generated and inorganic particles may be synthesized in the presence of the cavitation bubbles. Each of the inorganic particles can be synthesized on the cellulose fiber by a known reaction.
 一般的に、無機粒子の生成は、クラスター状態(集まる原子・分子数が少ない段階で、集合と離散を繰り返す)から、核(クラスターから安定な集合状態に移行し、臨界サイズ以上になると捕まった原子・分子が離散しなくなる)、そして成長(核に新たな原子・分子が集まり粒子が大きくなる)の過程を経ることが知られており、原料濃度や反応温度が高いほど、核生成が起こりやすいと言われている。本願発明の複合繊維は、主に原料濃度、パルプの叩解度(比表面積)、繊維を含む溶液の粘性、添加薬品の濃度および添加スピード、反応温度、撹拌スピードを調整することで、繊維上に効率的に核を結着させ、かつ粒子成長を促すことにより、セルロース繊維表面が無機粒子で強く被覆された複合繊維を得ることができる。 In general, the formation of inorganic particles is captured when the size of inorganic particles exceeds the critical size after shifting from the cluster state (repeating aggregation and dispersal at the stage where the number of atoms and molecules gathered is small) to the nucleus (from the cluster to the stable assembly state). It is known that atoms and molecules do not disperse) and grow (new atoms and molecules gather in the nucleus and the particles become larger), and the higher the raw material concentration and reaction temperature, the more nucleation occurs. It is said to be easy. The composite fiber of the present invention is mainly produced on the fiber by adjusting the raw material concentration, the beating degree (specific surface area) of the pulp, the viscosity of the solution containing the fiber, the concentration and addition speed of the added chemicals, the reaction temperature, and the stirring speed. By efficiently binding nuclei and promoting particle growth, it is possible to obtain a composite fiber in which the surface of the cellulose fiber is strongly coated with inorganic particles.
 本発明においては、反応容器内にキャビテーション気泡を生じさせるような条件で液体を噴射してもよいし、キャビテーション気泡を生じさせないような条件で噴射してもよい。また、反応容器はいずれの場合においても圧力容器であることが好ましい。なお、本発明における圧力容器とは0.005MPa以上の圧力をかけることのできる容器のことである。キャビテーション気泡を生じさせないような条件の場合、圧力容器内の圧力は、静圧で0.005MPa以上0.9MPa以下であることが好ましい。 In the present invention, the liquid may be sprayed under conditions that generate cavitation bubbles in the reaction vessel, or may be sprayed under conditions that do not generate cavitation bubbles. Further, the reaction vessel is preferably a pressure vessel in any case. The pressure vessel in the present invention is a vessel capable of applying a pressure of 0.005 MPa or more. Under conditions that do not generate cavitation bubbles, the pressure in the pressure vessel is preferably 0.005 MPa or more and 0.9 MPa or less in static pressure.
 (キャビテーション気泡)
 本発明に係る複合繊維を合成する場合、キャビテーション気泡の存在下で無機粒子を析出させることができる。本発明においてキャビテーションとは、流体の流れの中で圧力差により短時間に泡の発生と消滅が起きる物理現象であり、空洞現象とも言われる。キャビテーションによって生じる気泡(キャビテーション気泡)は、流体の中で圧力がごく短時間だけ飽和蒸気圧より低くなったとき、液体中に存在する100ミクロン以下のごく微小な「気泡核」を核として生じる。
(Cavitation bubbles)
When synthesizing the composite fiber according to the present invention, inorganic particles can be precipitated in the presence of cavitation bubbles. In the present invention, cavitation is a physical phenomenon in which bubbles are generated and disappear in a short time due to a pressure difference in a fluid flow, and is also called a cavity phenomenon. Bubbles generated by cavitation (cavitation bubbles) are generated as nuclei of very small "bubble nuclei" of 100 microns or less existing in a liquid when the pressure in the fluid becomes lower than the saturated vapor pressure for a very short time.
 本発明においてキャビテーション気泡は、公知の方法によって反応容器内に発生させることができる。例えば、流体を高圧で噴射することによってキャビテーション気泡を発生させること、流体内で高速で攪拌することによってキャビテーションを発生させること、流体内で爆発を生じさせることによってキャビテーションを発生させること、超音波振動子によってキャビテーションを発生させること(バイブトラリー・キャビテーション)などが考えられる。 In the present invention, cavitation bubbles can be generated in the reaction vessel by a known method. For example, cavitation bubbles are generated by injecting a fluid at high pressure, cavitation is generated by stirring at high speed in the fluid, cavitation is generated by causing an explosion in the fluid, and ultrasonic vibration. It is conceivable that cavitation is generated by the child (vibration fluid cavitation).
 本発明においては、原料などの反応溶液をそのまま噴射液体として用いてキャビテーションを発生させることもできるし、反応容器内に何らかの流体を噴射してキャビテーション気泡を発生させることもできる。液体噴流が噴流をなす流体は、流動状態であれば液体、気体、粉体やパルプ等の固体の何れでもよく、またそれらの混合物であってもよい。更に必要であれば上記の流体に、新たな流体として、炭酸ガスなど、別の流体を加えることができる。上記流体と新たな流体は、均一に混合して噴射してもよいが、別個に噴射してもよい。 In the present invention, a reaction solution such as a raw material can be used as it is as an injection liquid to generate cavitation, or some fluid can be injected into the reaction vessel to generate cavitation bubbles. The fluid formed by the liquid jet may be a liquid, a gas, a solid such as powder or pulp, or a mixture thereof as long as it is in a fluid state. Further, if necessary, another fluid such as carbon dioxide gas can be added to the above fluid as a new fluid. The above fluid and the new fluid may be uniformly mixed and injected, or may be injected separately.
 液体噴流とは、液体または液体の中に固体粒子や気体が分散あるいは混在する流体の噴流であり、パルプや無機粒子の原料スラリーや気泡を含む液体噴流のことをいう。ここで云う気体は、キャビテーションによる気泡を含んでいてもよい。 A liquid jet is a jet of a liquid or a fluid in which solid particles or gas are dispersed or mixed in the liquid, and is a liquid jet containing a raw material slurry or bubbles of pulp or inorganic particles. The gas referred to here may contain bubbles due to cavitation.
 キャビテーションは液体が加速され、局所的な圧力がその液体の蒸気圧より低くなったときに発生するため、流速及び圧力が特に重要となる。このことから、キャビテーション状態を表わす基本的な無次元数、キャビテーション数(Cavitation Number)σは、0.001以上0.5以下であることが望ましく、0.003以上0.2以下であることが好ましく、0.01以上0.1以下であることが特に好ましい。キャビテーション数σが0.001未満である場合、キャビテーション気泡が崩壊する時の周囲との圧力差が低いため効果が小さくなり、0.5より大である場合は、流れの圧力差が低くキャビテーションが発生し難くなる。 Cavitation occurs when the liquid is accelerated and the local pressure becomes lower than the vapor pressure of the liquid, so the flow velocity and pressure are especially important. From this, it is desirable that the basic dimensionless number representing the cavitation state, the cavitation number σ, is 0.001 or more and 0.5 or less, and 0.003 or more and 0.2 or less. It is preferable, and it is particularly preferable that it is 0.01 or more and 0.1 or less. When the cavitation number σ is less than 0.001, the effect is small because the pressure difference with the surroundings when the cavitation bubble collapses is small, and when it is larger than 0.5, the pressure difference of the flow is low and the cavitation is It becomes difficult to occur.
 また、ノズルまたはオリフィス管を通じて噴射液を噴射してキャビテーションを発生させる際には、噴射液の圧力(上流側圧力)は0.01MPa以上30MPa以下であることが望ましく、0.7MPa以上20MPa以下であることが好ましく、2MPa以上15MPa以下がより好ましい。上流側圧力が0.01MPa未満では下流側圧力との間で圧力差を生じ難く作用効果は小さい。また、30MPaより高い場合、特殊なポンプ及び圧力容器を必要とし、消費エネルギーが大きくなることからコスト的に不利である。一方、容器内の圧力(下流側圧力)は静圧で0.005MPa以上0.9MPa以下が好ましい。
また、容器内の圧力と噴射液の圧力との比は0.001~0.5の範囲が好ましい。
Further, when injecting the injection liquid through a nozzle or an orifice pipe to generate cavitation, the pressure of the injection liquid (upstream pressure) is preferably 0.01 MPa or more and 30 MPa or less, and 0.7 MPa or more and 20 MPa or less. It is preferably 2 MPa or more and 15 MPa or less more preferably. If the upstream pressure is less than 0.01 MPa, a pressure difference with the downstream pressure is unlikely to occur and the effect is small. Further, if it is higher than 30 MPa, a special pump and a pressure vessel are required, and energy consumption becomes large, which is disadvantageous in terms of cost. On the other hand, the pressure inside the container (downstream pressure) is preferably 0.005 MPa or more and 0.9 MPa or less in static pressure.
The ratio of the pressure in the container to the pressure of the injection liquid is preferably in the range of 0.001 to 0.5.
 本発明において、キャビテーション気泡が発生しないような条件で噴射液を噴射して無機粒子を合成することもできる。具体的には、噴射液の圧力(上流側圧力)を2MPa以下、好ましくは1MPa以下とし、噴射液の圧力(下流側圧力)を開放し、0.05MPa以下とすることがより好ましい。 In the present invention, it is also possible to synthesize inorganic particles by injecting a jet solution under conditions that do not generate cavitation bubbles. Specifically, it is more preferable that the pressure of the injection liquid (upstream side pressure) is 2 MPa or less, preferably 1 MPa or less, and the pressure of the injection liquid (downstream side pressure) is released to 0.05 MPa or less.
 噴射液の噴流の速度は1m/秒以上200m/秒以下の範囲であることが望ましく、20m/秒以上100m/秒以下の範囲であることが好ましい。噴流の速度が1m/秒未満である場合、圧力低下が低く、キャビテーションが発生し難いため、その効果は弱い。一方、200m/秒より大きい場合、高圧を要し特別な装置が必要であり、コスト的に不利である。 The jet velocity of the jet liquid is preferably in the range of 1 m / sec or more and 200 m / sec or less, and preferably in the range of 20 m / sec or more and 100 m / sec or less. When the jet velocity is less than 1 m / sec, the pressure drop is low and cavitation is unlikely to occur, so the effect is weak. On the other hand, if it is larger than 200 m / sec, high pressure is required and a special device is required, which is disadvantageous in terms of cost.
 本発明におけるキャビテーション発生場所は、無機粒子を合成する反応容器内に発生させればよい。また、ワンパスで処理することも可能であるが、必要回数だけ循環することもできる。さらに複数の発生手段を用いて並列で、あるいは順列で処理することができる。 The place where cavitation is generated in the present invention may be generated in a reaction vessel for synthesizing inorganic particles. It is also possible to process with one pass, but it is also possible to circulate as many times as necessary. Furthermore, it can be processed in parallel or in a permutation using a plurality of generating means.
 キャビテーションを発生させるための液体の噴射は、大気開放の容器の中でなされても良いが、キャビテーションをコントロールするために圧力容器の中でなされるのが好ましい。 The injection of the liquid for generating cavitation may be performed in a container open to the atmosphere, but it is preferably performed in a pressure vessel to control cavitation.
 液体噴射によってキャビテーションを発生させる場合、反応溶液の固形分濃度は30重量%以下であることが好ましく、20重量%以下がより好ましい。このような濃度であると、キャビテーション気泡を反応系に均一に作用させやすくなるためである。また、反応溶液である消石灰の水性懸濁液は、反応効率の点から、固形分濃度が0.1重量%以上であることが好ましい。 When cavitation is generated by liquid injection, the solid content concentration of the reaction solution is preferably 30% by weight or less, more preferably 20% by weight or less. This is because such a concentration makes it easy for the cavitation bubbles to act uniformly on the reaction system. Further, the aqueous suspension of slaked lime, which is a reaction solution, preferably has a solid content concentration of 0.1% by weight or more from the viewpoint of reaction efficiency.
 本発明において例えば炭酸カルシウムとセルロース繊維との複合体を合成する場合、反応液のpHは、反応開始時は塩基性側であるが炭酸化反応が進行するにしたがって中性に変化する。したがって、反応液のpHをモニターすることによって反応を制御することができる。 In the present invention, for example, when synthesizing a complex of calcium carbonate and cellulose fibers, the pH of the reaction solution is on the basic side at the start of the reaction, but changes to neutral as the carbonation reaction progresses. Therefore, the reaction can be controlled by monitoring the pH of the reaction solution.
 本発明では、液体の噴射圧力を高めることで、噴射液の流速が増大し、これに伴って圧力が低下し、より強力なキャビテーションが発生させることができる。また、反応容器内の圧力を加圧することで、キャビテーション気泡が崩壊する領域の圧力が高くなり、気泡と周囲の圧力差が大きくなるため気泡は激しく崩壊し衝撃力を大きくすることができる。更には導入する炭酸ガスの溶解と分散を促進することができる。反応温度は0℃以上90℃以下であることが好ましく、特に10℃以上60℃以下であることが好ましい。一般には、融点と沸点の中間点で衝撃力が最大となると考えられることから、水性溶液の場合、50℃前後が好適であるが、それ以下の温度であっても、蒸気圧の影響を受けないため、上記の範囲であれば高い効果が得られる。 In the present invention, by increasing the injection pressure of the liquid, the flow velocity of the injection liquid increases, and the pressure decreases accordingly, so that stronger cavitation can be generated. Further, by pressurizing the pressure in the reaction vessel, the pressure in the region where the cavitation bubbles collapse increases, and the pressure difference between the bubbles and the surroundings increases, so that the bubbles collapse violently and the impact force can be increased. Furthermore, it is possible to promote the dissolution and dispersion of the carbon dioxide gas to be introduced. The reaction temperature is preferably 0 ° C. or higher and 90 ° C. or lower, and particularly preferably 10 ° C. or higher and 60 ° C. or lower. Generally, it is considered that the impact force is maximized at the midpoint between the melting point and the boiling point. Therefore, in the case of an aqueous solution, about 50 ° C. is preferable, but even if the temperature is lower than that, it is affected by the vapor pressure. Therefore, a high effect can be obtained within the above range.
 本発明の複合繊維を製造する際には、さらに公知の各種助剤を添加することができる。例えば、キレート剤を添加することができ、具体的には、クエン酸、リンゴ酸、酒石酸などのポリヒドロキシカルボン酸、シュウ酸などのジカルボン酸、グルコン酸などの糖酸、イミノ二酢酸、エチレンジアミン四酢酸などのアミノポリカルボン酸およびそれらのアルカリ金属塩、ヘキサメタリン酸、トリポリリン酸などのポリリン酸のアルカリ金属塩、グルタミン酸、アスパラギン酸などのアミノ酸およびこれらのアルカリ金属塩、アセチルアセトン、アセト酢酸メチル、アセト酢酸アリルなどのケトン類、ショ糖などの糖類、ソルビトールなどのポリオールが挙げられる。また、表面処理剤としてパルミチン酸、ステアリン酸等の飽和脂肪酸、オレイン酸、リノール酸等の不飽和脂肪酸、脂環族カルボン酸、アビエチン酸等の樹脂酸、それらの塩やエステルおよびエーテル、アルコール系活性剤、ソルビタン脂肪酸エステル類、アミド系やアミン系界面活性剤、ポリオキシアルキレンアルキルエーテル類、ポリオキシエチレンノニルフェニルエーテル、アルファオレフィンスルホン酸ナトリウム、長鎖アルキルアミノ酸、アミンオキサイド、アルキルアミン、第四級アンモニウム塩、アミノカルボン酸、ホスホン酸、多価カルボン酸、縮合リン酸などを添加することができる。また、必要に応じ分散剤を用いることもできる。この分散剤としては、例えば、ポリアクリル酸ナトリウム、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、アクリル酸-マレイン酸共重合体アンモニウム塩、メタクリル酸-ナフトキシポリエチレングリコールアクリレート共重合体、メタクリル酸-ポリエチレングリコールモノメタクリレート共重合体アンモニウム塩、ポリエチレングリコールモノアクリレートなどがある。これらを単独または複数組み合わせて使用することができる。また、添加のタイミングは合成反応の前でも後でも良い。このような添加剤は、無機粒子に対して、好ましくは0.001~20%、より好ましくは0.1~10%の量で添加することができる。
また、本発明において反応はバッチ反応とすることもでき、連続反応とすることもできる。一般に、反応後の残存物を排出する便利さから、バッチ反応工程を行うことが好ましい。反応のスケールは特に制限されないが、100L以下のスケールで反応させてもよいし、100L超のスケールで反応させてもよい。反応容器の大きさは、例えば、10L~100L程度とすることもできるし、100L~1000L程度としてもよい。
When producing the composite fiber of the present invention, various known auxiliaries can be further added. For example, a chelating agent can be added, specifically, polyhydroxycarboxylic acids such as citric acid, malic acid and tartaric acid, dicarboxylic acids such as oxalic acid, sugar acids such as gluconic acid, iminodiacetic acid and ethylenediamine tetra. Amino polycarboxylic acids such as acetic acid and alkali metal salts thereof, alkali metal salts of polyphosphates such as hexametaphosphate and tripolyphosphate, amino acids such as glutamic acid and aspartic acid and alkali metal salts thereof, acetylacetone, methyl acetate acetate, acetacetic acid. Examples thereof include ketones such as allyl, sugars such as sucrose, and polyols such as sorbitol. In addition, as a surface treatment agent, saturated amino acids such as palmitic acid and stearic acid, unsaturated amino acids such as oleic acid and linoleic acid, resin acids such as alicyclic carboxylic acid and avietic acid, salts, esters and ethers thereof, and alcohol-based surfactants. Activators, sorbitan fatty acid esters, amide and amine surfactants, polyoxyalkylene alkyl ethers, polyoxyethylene nonylphenyl ether, sodium alphaolefin sulfonate, long chain alkyl amino acids, amine oxides, alkylamines, fourth A tertiary ammonium salt, an aminocarboxylic acid, a phosphonic acid, a polyvalent carboxylic acid, a condensed phosphoric acid and the like can be added. Further, a dispersant can also be used if necessary. Examples of the dispersant include sodium polyacrylate, sucrose fatty acid ester, glycerin fatty acid ester, acrylic acid-maleic acid copolymer ammonium salt, methacrylic acid-naphthoxypolyethylene glycol acrylate copolymer, and methacrylic acid-polyethylene glycol. There are monomethacrylate copolymer ammonium salt, polyethylene glycol monoacrylate and the like. These can be used alone or in combination of two or more. Further, the timing of addition may be before or after the synthetic reaction. Such additives can be added in an amount of preferably 0.001 to 20%, more preferably 0.1 to 10%, based on the inorganic particles.
Further, in the present invention, the reaction can be a batch reaction or a continuous reaction. In general, it is preferable to carry out the batch reaction step because of the convenience of discharging the residue after the reaction. The scale of the reaction is not particularly limited, but the reaction may be carried out on a scale of 100 L or less, or may be reacted on a scale of more than 100 L. The size of the reaction vessel may be, for example, about 10 L to 100 L, or about 100 L to 1000 L.
 また、反応液の電導度や反応時間によって反応を制御することができ、具体的には、反応物が反応槽に滞留する時間を調整して制御することができる。その他、本発明においては、反応槽の反応液を攪拌したり、反応を多段反応としたりすることによって反応を制御することもできる。 Further, the reaction can be controlled by the conductivity of the reaction solution and the reaction time, and specifically, the time during which the reactant stays in the reaction vessel can be adjusted and controlled. In addition, in the present invention, the reaction can be controlled by stirring the reaction solution in the reaction vessel or making the reaction a multi-step reaction.
 本発明においては、反応生成物である複合繊維が懸濁液として得られるため、必要に応じて、貯蔵タンクに貯蔵したり、濃縮、脱水、粉砕、分級、熟成、分散などの処理を行ったりすることができる。これらは公知の工程によることができ、用途やエネルギー効率などを考慮して適宜決定すればよい。例えば濃縮・脱水処理は、遠心脱水機、沈降濃縮機などを用いて行われる。この遠心脱水機の例としては、デカンター、スクリューデカンターなどが挙げられる。濾過機や脱水機を用いる場合についてもその種類に特に制限はなく、一般的なものを使用することができるが、例えば、フィルタープレス、ドラムフィルター、ベルトプレス、チューブプレス等の加圧型脱水機、オリバーフィルター等の真空ドラム脱水機などを好適に用いて炭酸カルシウムケーキとすることができる。粉砕の方法としては、ボールミル、サンドグラインダーミル、インパクトミル、高圧ホモジナイザー、低圧ホモジナイザー、ダイノーミル、超音波ミル、カンダグラインダ、アトライタ、石臼型ミル、振動ミル、カッターミル、ジェットミル、離解機、叩解機、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等が挙げられる。分級の方法としては、メッシュ等の篩、アウトワード型もしくはインワード型のスリットもしくは丸穴スクリーン、振動スクリーン、重量異物クリーナー、軽量異物クリーナー、リバースクリーナー、篩分け試験機等が挙げられる。分散の方法としては、高速ディスパーザー、低速ニーダーなどが挙げられる。 In the present invention, since the composite fiber which is a reaction product is obtained as a suspension, it may be stored in a storage tank or subjected to treatments such as concentration, dehydration, pulverization, classification, aging and dispersion as necessary. can do. These can be carried out by a known process, and may be appropriately determined in consideration of application, energy efficiency and the like. For example, the concentration / dehydration treatment is performed using a centrifugal dehydrator, a sedimentation concentrator, or the like. Examples of this centrifugal dehydrator include a decanter, a screw decanter, and the like. There is no particular limitation on the type of filter or dehydrator, and general ones can be used. For example, a pressurized dehydrator such as a filter press, a drum filter, a belt press, or a tube press can be used. A vacuum drum dehydrator such as an Oliver filter can be preferably used to prepare a calcium carbonate cake. As a crushing method, a ball mill, a sand grinder mill, an impact mill, a high pressure homogenizer, a low pressure homogenizer, a dyno mill, an ultrasonic mill, a kanda grinder, an attritor, a stone mill, a vibration mill, a cutter mill, a jet mill, a breaker, and a beating machine , Short-screw extruder, twin-screw extruder, ultrasonic stirrer, household juicer mixer and the like. Examples of the classification method include a sieve such as a mesh, an outward type or inward type slit or round hole screen, a vibration screen, a heavy foreign matter cleaner, a lightweight foreign matter cleaner, a reverse cleaner, and a sieving tester. Examples of the dispersion method include a high-speed disperser and a low-speed kneader.
 本発明における複合繊維は、完全に脱水せずに懸濁液の状態で填料や顔料に配合することもできるが、乾燥して粉体とすることもできる。この場合の乾燥機についても特に制限はないが、例えば、気流乾燥機、バンド乾燥機、噴霧乾燥機などを好適に使用することができる。 The composite fiber in the present invention can be blended with a filler or a pigment in a suspension state without being completely dehydrated, but it can also be dried into a powder. The dryer in this case is also not particularly limited, but for example, an air flow dryer, a band dryer, a spray dryer, or the like can be preferably used.
 本発明の複合繊維は、公知の方法によって改質することが可能である。例えば、ある態様においては、その表面を疎水化し、樹脂などとの混和性を高めたりすることが可能である。 The composite fiber of the present invention can be modified by a known method. For example, in some embodiments, the surface can be made hydrophobic to enhance miscibility with a resin or the like.
 本発明においては、懸濁液の調製などに水を使用するが、この水としては、通常の水道水、工業用水、地下水、井戸水などを用いることができる他、イオン交換水や蒸留水、超純水、工業廃水、反応液を分離・脱水する際に得られる水を好適に用いることできる。 In the present invention, water is used for preparing a suspension, and as this water, ordinary tap water, industrial water, groundwater, well water, etc. can be used, as well as ion-exchanged water, distilled water, and super water. Pure water, industrial wastewater, and water obtained when separating and dehydrating the reaction solution can be preferably used.
 また本発明においては、反応槽の反応液を循環させて使用することができる。このように反応液を循環させて、溶液の撹拌を促すことにより、反応効率を上げ、所望の無機粒子と繊維の複合体を得ることが容易になる。 Further, in the present invention, the reaction solution in the reaction vessel can be circulated and used. By circulating the reaction solution in this way and promoting the stirring of the solution, the reaction efficiency is increased and it becomes easy to obtain a desired complex of inorganic particles and fibers.
 無機粒子
 本発明において、繊維と複合化する無機粒子は特に制限されないが、水に不溶性または難溶性の無機粒子であることが好ましい。無機粒子の合成を水系で行う場合があり、また、繊維複合体を水系で使用することもあるため、無機粒子が水に不溶性または難溶性であると好ましい。
Inorganic particles In the present invention, the inorganic particles to be composited with the fiber are not particularly limited, but are preferably water-insoluble or sparingly soluble inorganic particles. Since the synthesis of inorganic particles may be carried out in an aqueous system and the fiber composite may be used in an aqueous system, it is preferable that the inorganic particles are insoluble or sparingly soluble in water.
 ここで言う無機粒子とは、金属元素もしくは非金属元素の化合物のことを言う。金属元素の化合物とは、金属の陽イオン(例えば、Na、Ca2+、Mg2+、Al3+、Ba2+など)と陰イオン(例えば、O2-、OH、CO 2-、PO 3-、SO 2-、NO-、Si 2-、SiO 2-、Cl、F、S2-など)がイオン結合によって結合してできた、一般に無機塩と呼ばれるものを言う。非金属元素の化合物とは、ケイ酸(SiO)などである。本発明において、無機粒子の少なくとも一部が、カルシウム、マグネシウムまたはバリウムの金属塩、または、無機粒子の少なくとも一部が、ケイ酸、またはアルミニウムの金属塩、あるいはチタン、銅、銀、鉄、マンガン、セリウムまたは亜鉛を含む金属粒子であることが好ましい。 The inorganic particles referred to here refer to compounds of metal elements or non-metal elements. The compound of a metal element, a metal cation (e.g., Na +, Ca 2+, Mg 2+, Al 3+, Ba 2+ , etc.) and anions (e.g., O 2-, OH -, CO 3 2-, PO 4 3-, SO 4 2-, NO 3 -, Si 2 O 3 2-, SiO 3 2-, Cl -, F -, S 2- , etc.) is Deki linked by ionic bonds, generally referred to as inorganic salts Say something. The compound of the non-metal element is silicic acid (SiO 2 ) or the like. In the present invention, at least a part of the inorganic particles is a metal salt of calcium, magnesium or barium, or at least a part of the inorganic particles is a metal salt of silicic acid or aluminum, or titanium, copper, silver, iron, manganese. , Cerium or zinc-containing metal particles are preferred.
 これら無機粒子の合成法は公知の方法によることができ、気液法と液液法のいずれでも良い。気液法の一例としては炭酸ガス法があり、例えば水酸化マグネシウムと炭酸ガスを反応させることで、炭酸マグネシウムを合成することができる。液液法の例としては、酸(塩酸、硫酸など)と塩基(水酸化ナトリウムや水酸化カリウムなど)を中和によって反応させたり、無機塩と酸もしくは塩基を反応させたり、無機塩同士を反応させたりする方法が挙げられる。例えば、水酸化バリウムと硫酸を反応させることで硫酸バリウムを得たり、硫酸アルミニウムと水酸化ナトリウムを反応させることで水酸化アルミニウムを得たり、炭酸カルシウムと硫酸アルミニウムを反応させることでカルシウムとアルミニウムが複合化した無機粒子を得ることができる。また、このようにして無機粒子を合成する際、反応液中に任意の金属や非金属化合物を共存させることもでき、この場合はそれらの金属もしくは非金属化合物が無機粒子中に効率よく取り込まれ、複合化できる。例えば、炭酸カルシウムにリン酸を添加してリン酸カルシウムを合成する際に、二酸化チタンを反応液中に共存させることで、リン酸カルシウムとチタンの複合粒子を得ることができる。 The method for synthesizing these inorganic particles can be a known method, and either a gas-liquid method or a liquid-liquid method may be used. As an example of the gas-liquid method, there is a carbon dioxide gas method. For example, magnesium carbonate can be synthesized by reacting magnesium hydroxide with carbon dioxide gas. Examples of the liquid-liquid method include reacting an acid (hydrochloric acid, sulfuric acid, etc.) with a base (sodium hydroxide, potassium hydroxide, etc.) by neutralization, reacting an inorganic salt with an acid or base, or combining inorganic salts with each other. Examples include a method of reacting. For example, barium sulfate is obtained by reacting barium hydroxide with sulfuric acid, aluminum hydroxide is obtained by reacting aluminum sulfate with sodium hydroxide, and calcium and aluminum are obtained by reacting calcium carbonate with aluminum sulfate. Complex inorganic particles can be obtained. Further, when synthesizing the inorganic particles in this way, any metal or non-metal compound can coexist in the reaction solution, and in this case, those metals or non-metal compounds are efficiently incorporated into the inorganic particles. , Can be compounded. For example, when phosphoric acid is added to calcium carbonate to synthesize calcium phosphate, titanium dioxide is allowed to coexist in the reaction solution to obtain composite particles of calcium phosphate and titanium.
 (炭酸カルシウム)
 炭酸カルシウムを合成する場合であれば、例えば、炭酸ガス法、可溶性塩反応法、石灰・ソーダ法、ソーダ法などによって炭酸カルシウムを合成することができ、好ましい態様において、炭酸ガス法によって炭酸カルシウムを合成する。
(Calcium carbonate)
In the case of synthesizing calcium carbonate, for example, calcium carbonate can be synthesized by a carbon dioxide gas method, a soluble salt reaction method, a lime / soda method, a soda method, or the like, and in a preferred embodiment, calcium carbonate is produced by the carbon dioxide gas method. Synthesize.
 一般に、炭酸ガス法によって炭酸カルシウムを製造する場合、カルシウム源として石灰(ライム)が使用され、生石灰CaOに水を加えて消石灰Ca(OH)を得る消和工程と、消石灰に炭酸ガスCOを吹き込んで炭酸カルシウムCaCOを得る炭酸化工程とによって炭酸カルシウムが合成される。この際、生石灰に水を加えて調製した消石灰の懸濁液をスクリーンに通して、懸濁液中に含まれる低溶解性の石灰粒を除去してもよい。また、消石灰を直接カルシウム源としてもよい。本発明において炭酸ガス法によって炭酸カルシウムを合成する場合、キャビテーション気泡の存在下で炭酸化反応を行うこともできる。 Generally, when calcium carbonate is produced by the carbon dioxide method, lime (lime) is used as a calcium source, and a slaked step of adding water to slaked lime CaO to obtain slaked lime Ca (OH) 2 and carbon dioxide CO 2 in slaked lime. Calcium carbonate is synthesized by a carbon dioxide step of blowing in to obtain calcium carbonate CaCO 3. At this time, a suspension of slaked lime prepared by adding water to quicklime may be passed through a screen to remove low-solubility lime grains contained in the suspension. Further, slaked lime may be directly used as a calcium source. When calcium carbonate is synthesized by the carbon dioxide gas method in the present invention, the carbonation reaction can also be carried out in the presence of cavitation bubbles.
 炭酸ガス法によって炭酸カルシウムを合成する場合、消石灰の水性懸濁液の固形分濃度は、好ましくは0.1~40重量%、より好ましくは0.5~30重量%、さらに好ましくは1~20重量%程度である。固形分濃度が低いと反応効率が低く、製造コストが高くなり、固形分濃度が高すぎると流動性が悪くなり、反応効率が落ちる。本発明においては、キャビテーション気泡の存在下で炭酸カルシウムを合成するため、固形分濃度の高い懸濁液(スラリー)を用いても、反応液と炭酸ガスを好適に混合することができる。 When calcium carbonate is synthesized by the carbon dioxide method, the solid content concentration of the aqueous suspension of slaked lime is preferably 0.1 to 40% by weight, more preferably 0.5 to 30% by weight, still more preferably 1 to 20%. It is about% by weight. If the solid content concentration is low, the reaction efficiency is low and the production cost is high, and if the solid content concentration is too high, the fluidity is poor and the reaction efficiency is low. In the present invention, since calcium carbonate is synthesized in the presence of cavitation bubbles, the reaction solution and carbon dioxide gas can be suitably mixed even if a suspension (slurry) having a high solid content concentration is used.
 消石灰を含む水性懸濁液としては、炭酸カルシウム合成に一般に用いられるものを使用でき、例えば、消石灰を水に混合して調製したり、生石灰(酸化カルシウム)を水で消和(消化)したりして調製することができる。消和する際の条件は特に制限されないが、例えば、CaOの濃度は0.05重量%以上、好ましくは1重量%以上、温度は20~100℃、好ましくは30~100℃とすることができる。また、消和反応槽(スレーカー)での平均滞留時間も特に制限されないが、例えば、5分~5時間とすることができ、2時間以内とすることが好ましい。当然であるが、スレーカーはバッチ式であっても連続式であってもよい。なお、本発明においては炭酸化反応槽(カーボネーター)と消和反応槽(スレーカー)とを別々にしてもよく、また、1つの反応槽を炭酸化反応槽および消和反応槽として用いてもよい。 As the aqueous suspension containing slaked lime, those generally used for calcium carbonate synthesis can be used. For example, slaked lime is mixed with water to prepare, or quicklime (calcium oxide) is dissolved (digested) with water. Can be prepared. The conditions for reconstitution are not particularly limited, but for example, the concentration of CaO can be 0.05% by weight or more, preferably 1% by weight or more, and the temperature can be 20 to 100 ° C., preferably 30 to 100 ° C. .. The average residence time in the scavenging reaction tank (slaker) is also not particularly limited, but can be, for example, 5 minutes to 5 hours, preferably 2 hours or less. As a matter of course, the slaker may be a batch type or a continuous type. In the present invention, the carbonation reaction tank (carbonator) and the scavenging reaction tank (slaker) may be separated, or one reaction tank may be used as the carbonation reaction tank and the scavenging reaction tank. Good.
 炭酸カルシウムの合成では、反応液中の原料(Caイオン、COイオン)が高濃度であるほど、また、高温条件であるほど、核形成反応が進みやすいが、複合繊維を製造する場合、このような条件下では、セルロース繊維に核が定着されにくく、懸濁液中で遊離した無機粒子が合成されやすい。従って、炭酸カルシウムが強固に結着した複合繊維を製造するには、核形成反応を適切に制御することが必要となる。具体的には、Caイオンおよびパルプ濃度の適正化と、COの時間当たりの供給量を緩やかにすることで、これを達成できる。例えば、反応容器中のCaイオン濃度は、0.01mol/L以上0.20mol/L未満が好ましい。0.01mol/L未満だと反応が進行しにくく、0.20mol/L以上では懸濁液中で遊離した無機粒子が合成されやすい。パルプ濃度は、0.5%以上4.0%未満が好ましい。0.5%未満では繊維に原料が衝突する頻度が減るため、反応が進行しにくく、4.0%以上では攪拌不良から均一な複合体を得ることができない。COの時間当たりの供給量は、反応溶液1Lあたり0.001mol/min以上0.060mol/min未満が望ましい。0.001mol/min未満であると反応が進行しにくく、0.060mol/min以上では懸濁液中で遊離した無機粒子が合成されやすい。 In the synthesis of calcium carbonate, as the raw material in the reaction mixture (Ca ion, CO 3 ion) is at a high concentration, and if more is high temperature, but easily proceeds nucleation reactions, to produce a composite fiber, the Under such conditions, nuclei are not easily fixed to the cellulose fibers, and inorganic particles released in the suspension are easily synthesized. Therefore, in order to produce a composite fiber in which calcium carbonate is tightly bound, it is necessary to appropriately control the nucleation reaction. Specifically, this can be achieved by optimizing the Ca ion and pulp concentrations and by slackening the amount of CO 2 supplied per hour. For example, the Ca ion concentration in the reaction vessel is preferably 0.01 mol / L or more and less than 0.20 mol / L. If it is less than 0.01 mol / L, the reaction is difficult to proceed, and if it is 0.20 mol / L or more, inorganic particles liberated in the suspension are easily synthesized. The pulp concentration is preferably 0.5% or more and less than 4.0%. If it is less than 0.5%, the frequency of collision of the raw materials with the fibers decreases, so that the reaction does not proceed easily, and if it is 4.0% or more, a uniform complex cannot be obtained due to poor stirring. The amount of CO 2 supplied per hour is preferably 0.001 mol / min or more and less than 0.060 mol / min per 1 L of the reaction solution. If it is less than 0.001 mol / min, the reaction is difficult to proceed, and if it is 0.060 mol / min or more, inorganic particles liberated in the suspension are likely to be synthesized.
 (炭酸マグネシウム)
 炭酸マグネシウムを合成する場合、炭酸マグネシウムの合成方法は、公知の方法によることができる。例えば、水酸化マグネシウムと炭酸ガスから重炭酸マグネシウムを合成し、重炭酸マグネシウムから正炭酸マグネシウムを経て塩基性炭酸マグネシウムを合成することができる。炭酸マグネシウムは合成方法によって重炭酸マグネシウム、正炭酸マグネシウム、塩基性炭酸マグネシウムなどを得ることができるが、本発明の繊維複合体に係る炭酸マグネシウムは、塩基性炭酸マグネシムにすることが特に好ましい。なぜならば、重炭酸マグネシウムは安定性が比較的低く、柱状(針状)結晶である正炭酸マグネシウムは繊維へ定着しにくい場合があるためである。一方、繊維の存在下で塩基性炭酸マグネシウムにまで化学反応させることで、繊維表面をうろこ状などに被覆した炭酸マグネシウムと繊維の繊維複合体を得ることができる。
(Magnesium carbonate)
When synthesizing magnesium carbonate, the method for synthesizing magnesium carbonate can be a known method. For example, magnesium hydroxide can be synthesized from magnesium hydroxide and carbon dioxide gas, and basic magnesium carbonate can be synthesized from magnesium hydroxide via normal magnesium carbonate. Magnesium carbonate can be obtained from magnesium bicarbonate, normal magnesium carbonate, basic magnesium carbonate, etc. by a synthetic method, but it is particularly preferable that the magnesium carbonate according to the fiber composite of the present invention is a basic magnesium carbonate. This is because magnesium carbonate has relatively low stability, and normal magnesium carbonate, which is a columnar (needle-shaped) crystal, may be difficult to fix to the fiber. On the other hand, by chemically reacting with basic magnesium carbonate in the presence of fibers, it is possible to obtain a fiber composite of magnesium carbonate and fibers whose surface is coated in a scaly shape or the like.
 また本発明においては、反応槽の反応液を循環させて使用することができる。このように反応液を循環させて、反応液と炭酸ガスとの接触を増やすことにより、反応効率を上げ、所望の無機粒子を得ることが容易になる。 Further, in the present invention, the reaction solution in the reaction vessel can be circulated and used. By circulating the reaction solution in this way and increasing the contact between the reaction solution and carbon dioxide gas, the reaction efficiency is increased and it becomes easy to obtain desired inorganic particles.
 本発明においては、二酸化炭素(炭酸ガス)などのガスが反応容器に吹き込まれ、反応液と混合することができる。本発明によれば、ファン、ブロワなどの気体供給装置がなくとも炭酸ガスを反応液に供給することができ、しかも、キャビテーション気泡によって炭酸ガスが微細化されるため反応を効率よく行うことができる。 In the present invention, a gas such as carbon dioxide (carbon dioxide) can be blown into the reaction vessel and mixed with the reaction solution. According to the present invention, carbon dioxide gas can be supplied to the reaction solution without a gas supply device such as a fan or a blower, and the carbon dioxide gas is refined by cavitation bubbles, so that the reaction can be efficiently performed. ..
 本発明において、二酸化炭素を含む気体の二酸化炭素濃度に特に制限はないが、二酸化炭素濃度が高い方が好ましい。また、インジェクターに導入する炭酸ガスの量に制限はなく適宜選択することができる。 In the present invention, the carbon dioxide concentration of the gas containing carbon dioxide is not particularly limited, but a higher carbon dioxide concentration is preferable. Further, the amount of carbon dioxide gas introduced into the injector is not limited and can be appropriately selected.
 本発明の二酸化炭素を含む気体は、実質的に純粋な二酸化炭素ガスでもよく、他のガスとの混合物であってもよい。例えば、二酸化炭素ガスの他に、空気、窒素などの不活性ガスを含む気体を、二酸化炭素を含む気体として用いることができる。また、二酸化炭素を含む気体としては、二酸化炭素ガス(炭酸ガス)の他、製紙工場の焼却炉、石炭ボイラー、重油ボイラーなどから排出される排ガスを二酸化炭素含有気体として好適に用いることができる。その他にも、石灰焼成工程から発生する二酸化炭素を用いて炭酸化反応を行うこともできる。 The gas containing carbon dioxide of the present invention may be a substantially pure carbon dioxide gas or a mixture with another gas. For example, in addition to carbon dioxide gas, a gas containing an inert gas such as air or nitrogen can be used as the gas containing carbon dioxide. As the gas containing carbon dioxide, in addition to carbon dioxide gas (carbon dioxide gas), exhaust gas discharged from an incinerator of a papermaking factory, a coal boiler, a heavy oil boiler, or the like can be suitably used as the carbon dioxide-containing gas. In addition, a carbonation reaction can be carried out using carbon dioxide generated from the lime firing step.
 炭酸マグネシウムの合成では、反応液中の原料(Mgイオン、COイオン)が高濃度であるほど、また、高温条件であるほど、核形成反応が進みやすいが、複合繊維を製造する場合、このような条件下では、セルロース繊維に核が定着されにくく、懸濁液中で遊離した無機粒子が合成されやすい。従って、炭酸マグネシウムが強固に結着した複合繊維を製造するには、核形成反応を適切に制御することが必要となる。具体的には、Mgイオンおよびパルプ濃度の適正化と、COの時間当たりの供給量を緩やかにすることで、これを達成できる。例えば、反応容器中のMgイオン濃度は、0.0001mol/L以上0.20mol/L未満が好ましい。0.0001mol/L未満だと反応が進行しにくく、0.20mol/L以上では懸濁液中で遊離した無機粒子が合成されやすい。パルプ濃度は、0.5%以上4.0%未満が好ましい。0.5%未満では繊維に原料が衝突する頻度が減るため、反応が進行しにくく、4.0%以上では攪拌不良から均一な複合体を得ることができない。COの時間当たりの供給量は、反応溶液1Lあたり0.001mol/min以上0.060mol/min未満が望ましい。0.001mol/min未満であると反応が進行しにくく、0.060mol/min以上では懸濁液中で遊離した無機粒子が合成されやすい。 In the synthesis of magnesium carbonate, as a raw material in the reaction solution (Mg ion, CO 3 ion) is at a high concentration, and if more is high temperature, but easily proceeds nucleation reactions, to produce a composite fiber, the Under such conditions, nuclei are not easily fixed to the cellulose fibers, and inorganic particles released in the suspension are easily synthesized. Therefore, in order to produce a composite fiber in which magnesium carbonate is tightly bound, it is necessary to appropriately control the nucleation reaction. Specifically, this can be achieved by optimizing the concentrations of Mg ions and pulp and gradual supply of CO 2 per hour. For example, the Mg ion concentration in the reaction vessel is preferably 0.0001 mol / L or more and less than 0.20 mol / L. If it is less than 0.0001 mol / L, the reaction is difficult to proceed, and if it is 0.20 mol / L or more, the inorganic particles liberated in the suspension are easily synthesized. The pulp concentration is preferably 0.5% or more and less than 4.0%. If it is less than 0.5%, the frequency of collision of the raw materials with the fibers decreases, so that the reaction does not proceed easily, and if it is 4.0% or more, a uniform complex cannot be obtained due to poor stirring. The amount of CO 2 supplied per hour is preferably 0.001 mol / min or more and less than 0.060 mol / min per 1 L of the reaction solution. If it is less than 0.001 mol / min, the reaction is difficult to proceed, and if it is 0.060 mol / min or more, inorganic particles liberated in the suspension are likely to be synthesized.
 (硫酸バリウム)
 硫酸バリウムを合成する場合、硫酸バリウム(BaSO)で表されるバリウムイオンと硫酸イオンからなるイオン結晶性の化合物であり、板状あるいは柱状の形態であることが多く、水には難溶性である。純粋な硫酸バリウムは無色の結晶であるが、鉄、マンガン、ストロンチウム、カルシウムなどの不純物を含むと黄褐色または黒灰色を呈し、半透明となる。天然の鉱物としても得られるが、化学反応によって合成することもできる。特に、化学反応による合成品は医薬用(X線造影剤)に用いられるほか、化学的に安定な性質を応用して塗料、プラスチック、蓄電池等に広く使用されている。
(Barium sulfate)
When synthesizing barium sulfate, it is an ionic crystalline compound consisting of barium ions represented by barium sulfate (BaSO 4 ) and sulfate ions, often in the form of plates or columns, and is sparingly soluble in water. is there. Pure barium sulfate is a colorless crystal, but when it contains impurities such as iron, manganese, strontium, and calcium, it becomes yellowish brown or blackish gray and becomes translucent. It can be obtained as a natural mineral, but it can also be synthesized by a chemical reaction. In particular, synthetic products produced by chemical reactions are used for pharmaceutical purposes (X-ray contrast agents), and are also widely used in paints, plastics, storage batteries, etc. by applying their chemically stable properties.
 本発明においては、繊維の存在下で、溶液中で硫酸バリウムを合成することによって、硫酸バリウムと繊維の複合体を製造することができる。例えば、酸(硫酸など)と塩基を中和によって反応させたり、無機塩と酸もしくは塩基を反応させたり、無機塩同士を反応させたりする方法が挙げられる。例えば、水酸化バリウムと硫酸もしくは硫酸アルミニウムを反応させることで硫酸バリウムを得たり、硫酸塩の含まれる水溶液中に塩化バリウムを加えて硫酸バリウムを沈殿させたりすることができる。 In the present invention, a complex of barium sulfate and fiber can be produced by synthesizing barium sulfate in a solution in the presence of fiber. For example, a method of reacting an acid (sulfuric acid or the like) with a base by neutralization, a method of reacting an inorganic salt with an acid or a base, or a method of reacting inorganic salts with each other can be mentioned. For example, barium sulfate can be obtained by reacting barium hydroxide with sulfuric acid or aluminum sulfate, or barium chloride can be added to an aqueous solution containing a sulfate to precipitate barium sulfate.
 硫酸バリウムの合成では、溶液中の原料(Baイオン、SOイオン)が高濃度であるほど、また、高温条件であるほど、核形成反応が進みやすいが、複合繊維を製造する場合、このような条件下では、セルロース繊維に核が定着されにくく、懸濁液中で遊離した無機粒子が合成されやすい。従って、硫酸バリウムが強固に結着した複合繊維を製造するには、核形成反応を適切に制御することが必要となる。具体的には、Baイオンおよびパルプ濃度の適正化と、SOイオンの時間当たりの供給量を緩やかにすることで、これを達成できる。例えば、反応容器中のBaイオン濃度は、0.01mol/L以上0.20mol/L未満が好ましい。0.01mol/L未満だと反応が進行しにくく、0.20mol/L以上では懸濁液中で遊離した無機粒子が合成されやすい。パルプ濃度は、0.5%以上4.0%未満が好ましい。0.5%未満では繊維に原料が衝突する頻度が減るため、反応が進行しにくく、4.0%以上では攪拌不良から均一な複合体を得ることができない。SOイオンの時間当たりの供給量は、反応溶液1Lあたり0.005mol/min以上0.080mol/min未満が望ましい。0.001mol/min未満であると反応が進行しにくく、0.080mol/min以上では懸濁液中で遊離した無機粒子が合成されやすい。 In the synthesis of barium sulfate, as a raw material in the solution (Ba ions, SO 4 ions) is in a high concentration and the higher is the high temperature, but easily proceeds nucleation reaction, when manufacturing composite fibers, such Under such conditions, the nuclei are not easily fixed to the cellulose fibers, and the inorganic particles released in the suspension are easily synthesized. Therefore, in order to produce a composite fiber in which barium sulfate is tightly bound, it is necessary to appropriately control the nucleation reaction. Specifically, this can be achieved by optimizing the concentration of Ba ions and pulp and gradual supply of SO 4 ions per hour. For example, the Ba ion concentration in the reaction vessel is preferably 0.01 mol / L or more and less than 0.20 mol / L. If it is less than 0.01 mol / L, the reaction is difficult to proceed, and if it is 0.20 mol / L or more, inorganic particles liberated in the suspension are easily synthesized. The pulp concentration is preferably 0.5% or more and less than 4.0%. If it is less than 0.5%, the frequency of collision of the raw materials with the fibers decreases, so that the reaction does not proceed easily, and if it is 4.0% or more, a uniform complex cannot be obtained due to poor stirring. Supply amount per time of SO 4 ions is desirably less than the reaction solution 1L per 0.005 mol / min or more 0.080 mol / min. If it is less than 0.001 mol / min, the reaction is difficult to proceed, and if it is 0.080 mol / min or more, inorganic particles liberated in the suspension are likely to be synthesized.
 (ハイドロタルサイト)
 ハイドロタルサイトを合成する場合、ハイドロタルサイトの合成方法は公知の方法によることができる。例えば、反応容器内に中間層を構成する炭酸イオンを含む炭酸塩水溶液とアルカリ溶液(水酸化ナトリウムなど)に繊維を浸漬し、次いで、酸溶液(基本層を構成する二価金属イオン及び三価金属イオンとを含む金属塩水溶液)を添加し、温度、pHなどを制御して共沈反応により、ハイドロタルサイトを合成する。また、反応容器内において、酸溶液(基本層を構成する二価金属イオン及び三価金属イオンを含む金属塩水溶液)に繊維を浸漬し、次いで、中間層を構成する炭酸イオンを含む炭酸塩水溶液とアルカリ溶液(水酸化ナトリウム等)を滴下し、温度、pH等を制御して共沈反応により、ハイドロタルサイトを合成することもできる。常圧での反応が一般的ではるが、それ以外にも、オートクレーブなどを使用しての水熱反応により得る方法もある(特開昭60-6619号公報)。
(Hydrotalcite)
When synthesizing hydrotalcite, a known method can be used for synthesizing hydrotalcite. For example, the fibers are immersed in a carbonate aqueous solution containing carbonate ions constituting an intermediate layer and an alkaline solution (sodium hydroxide, etc.) in a reaction vessel, and then an acid solution (divalent metal ions and trivalent metal ions constituting the basic layer) is immersed. (Aqueous metal salt solution containing metal ions) is added, and the temperature, pH, etc. are controlled to synthesize hydrotalcite by a co-precipitation reaction. Further, in the reaction vessel, the fibers are immersed in an acid solution (a metal salt aqueous solution containing divalent metal ions and trivalent metal ions constituting the basic layer), and then a carbonate aqueous solution containing carbonate ions constituting the intermediate layer. Hydrotalcite can also be synthesized by dropping an alkaline solution (sodium hydroxide or the like) and controlling the temperature, pH, etc. by a co-precipitation reaction. Although the reaction at normal pressure is common, there is also a method of obtaining it by a hydrothermal reaction using an autoclave or the like (Japanese Patent Laid-Open No. 60-6619).
 本発明においては、基本層を構成する二価金属イオンの供給源として、マグネシウム、亜鉛、バリウム、カルシウム、鉄、銅、コバルト、ニッケル、マンガンの各種塩化物、硫化物、硝酸化物、硫酸化物を用いることができる。また、基本層を構成する三価金属イオンの供給源として、アルミニウム、鉄、クロム、ガリウムの各種塩化物、硫化物、硝酸化物、硫酸化物を用いることができる。 In the present invention, various chlorides, sulfides, glass oxides, and sulfates of magnesium, zinc, barium, calcium, iron, copper, cobalt, nickel, and manganese are used as sources of divalent metal ions constituting the basic layer. Can be used. Further, as a source of trivalent metal ions constituting the basic layer, various chlorides, sulfides, glass oxides and sulfates of aluminum, iron, chromium and gallium can be used.
 本発明においては、層間陰イオンとして炭酸イオン、硝酸イオン、塩化物イオン、硫酸イオン、リン酸イオンなどを用いることができる。炭酸イオンを層間陰イオンとする場合、炭酸ナトリウムが供給源として使用される。ただし炭酸ナトリウムは、二酸化炭素(炭酸ガス)を含む気体で代替可能で、実質的に純粋な二酸化炭素ガスや、他のガスとの混合物であってもよい。例えば、製紙工場の焼却炉、石炭ボイラー、重油ボイラーなどから排出される排ガスを二酸化炭素含有気体として好適に用いることができる。その他にも、石灰焼成工程から発生する二酸化炭素を用いて炭酸化反応を行うこともできる。 In the present invention, carbonate ion, nitrate ion, chloride ion, sulfate ion, phosphate ion and the like can be used as the interlayer anion. When carbonate ions are used as interlayer anions, sodium carbonate is used as a source. However, sodium carbonate can be replaced with a gas containing carbon dioxide (carbon dioxide gas), and may be substantially pure carbon dioxide gas or a mixture with other gases. For example, exhaust gas emitted from an incinerator, a coal boiler, a heavy oil boiler, or the like in a paper mill can be suitably used as a carbon dioxide-containing gas. In addition, a carbonation reaction can be carried out using carbon dioxide generated from the lime firing step.
 ハイドロタルサイトの合成では、溶液中の原料(基本層を構成する金属イオン、COイオン等)が高濃度であるほど、また、高温条件であるほど、核形成反応が進みやすいが、このような条件下では、複合繊維を製造する場合、セルロース繊維に核が定着されにくく、懸濁液中で遊離した無機粒子が合成されやすい。従って、ハイドロタルサイトが強固に結着した複合繊維を製造するには、核形成反応を適切に制御することが必要となる。具体的には、COイオンおよびパルプ濃度の適正化と、金属イオンの時間当たりの供給量を緩やかにすることで、これを達成できる。例えば、反応容器中のCOイオン濃度は、0.01mol/L以上0.80mol/L未満が好ましい。0.01mol/L未満だと反応が進行しにくく、0.80mol/L以上では懸濁液中で遊離した無機粒子が合成されやすい。パルプ濃度は、0.5%以上4.0%未満が好ましい。0.5%未満では繊維に原料が衝突する頻度が減るため、反応が進行しにくく、4.0%以上では攪拌不良から均一な複合体を得ることができない。金属イオンの時間当たりの供給量は、金属の種類にもよるが、例えばMgイオンの場合、反応溶液1Lあたり0.001mol/min以上0.010mol/min未満が望ましく、0.001mol/min以上0.005mol/min未満がより望ましい。0.001mol/min未満であると反応が進行しにくく、0.010mol/min以上では懸濁液中で遊離した無機粒子が合成されやすい。 In the synthesis of hydrotalcite, as (metal ions constituting the base layer, CO 3 ion) material in the solution is at a high concentration and the higher is the high temperature, but easily proceeds nucleation reaction, such Under such conditions, when the composite fiber is produced, the nuclei are difficult to be fixed to the cellulose fiber, and the inorganic particles liberated in the suspension are easily synthesized. Therefore, in order to produce a composite fiber in which hydrotalcite is tightly bound, it is necessary to appropriately control the nucleation reaction. Specifically, the optimization of CO 3 ions and pulp concentration, by moderating the supply amount per unit time of the metal ions, this can be achieved. For example, CO 3 ion concentration in the reaction vessel, preferably less than 0.01 mol / L or more 0.80 mol / L. If it is less than 0.01 mol / L, the reaction is difficult to proceed, and if it is 0.80 mol / L or more, inorganic particles liberated in the suspension are likely to be synthesized. The pulp concentration is preferably 0.5% or more and less than 4.0%. If it is less than 0.5%, the frequency of collision of the raw materials with the fibers decreases, so that the reaction does not proceed easily, and if it is 4.0% or more, a uniform complex cannot be obtained due to poor stirring. The amount of metal ions supplied per hour depends on the type of metal, but in the case of Mg ions, for example, it is preferably 0.001 mol / min or more and less than 0.010 mol / min per 1 L of the reaction solution, and 0.001 mol / min or more and 0. More preferably less than .005 mol / min. If it is less than 0.001 mol / min, the reaction is difficult to proceed, and if it is 0.010 mol / min or more, inorganic particles liberated in the suspension are likely to be synthesized.
 (アルミナ/シリカ)
 アルミナおよび/またはシリカを合成する場合、アルミナおよび/またはシリカの合成方法は公知の方法によることができる。反応の出発物質として無機酸もしくはアルミニウム塩のいずれか1つ以上を用いた場合、珪酸アルカリ塩を添加して合成する。出発物質として珪酸アルカリ塩を用い、無機酸もしくはアルミニウム塩のいずれか1つ以上を添加して合成することもできるが、無機酸および/もしくはアルミニウム塩を出発物質として用いた場合の方が、生成物の繊維への定着は良好である。無機酸としては特に限定されるものではなく、例えば、硫酸、塩酸、硝酸等を用いることができる。これらの中でもコストおよびハンドリングの点から硫酸が特に好ましい。アルミニウム塩としては、硫酸バンド、塩化アルミニウム、ポリ塩化アルミニウム、ミョウバン、カリミョウバン等が挙げられ、中でも硫酸バンドを好適に用いることができる。珪酸アルカリ塩としては、珪酸ナトリウムもしくは珪酸カリウムなどが挙げられるが、入手しやすいため珪酸ナトリウムが好適である。珪酸とアルカリのモル比はいずれでも良いが、一般に3号珪酸として流通しているものはSiO2:Na2O=3~3.4:1程度のモル比のものであり、これを好適に用いることができる。
(Alumina / Silica)
When synthesizing alumina and / or silica, the method for synthesizing alumina and / or silica can be a known method. When any one or more of an inorganic acid or an aluminum salt is used as a starting material for the reaction, an alkaline silicate is added for synthesis. It is possible to synthesize by using an alkali silicate as a starting material and adding either one or more of an inorganic acid or an aluminum salt, but it is more produced when an inorganic acid and / or an aluminum salt is used as a starting material. Good fixation of substances to fibers. The inorganic acid is not particularly limited, and for example, sulfuric acid, hydrochloric acid, nitric acid and the like can be used. Of these, sulfuric acid is particularly preferable from the viewpoint of cost and handling. Examples of the aluminum salt include sulfate band, aluminum chloride, polyaluminum chloride, alum, potassium alum and the like, and among them, the sulfate band can be preferably used. Examples of the alkali silicate include sodium silicate and potassium silicate, but sodium silicate is preferable because it is easily available. The molar ratio of silicic acid to alkali may be any, but generally, the one distributed as No. 3 silicic acid has a molar ratio of about SiO2: Na2O = 3 to 3.4: 1, and this can be preferably used. it can.
 本発明においては、シリカおよび/またはアルミナが繊維表面に付着した複合繊維を製造するにあたって、繊維を含む反応液のpHを4.6以下に維持しながら繊維上にシリカおよび/またはアルミナを合成することが好ましい。これによって、繊維表面がよく被覆された複合繊維が得られる理由の詳細は完全には明らかになっていないが、pHを低く維持することによって3価のアルミニウムイオンへの電離率が高くなるため、被覆率や定着率が高い複合繊維が得られると考えられる。 In the present invention, in producing a composite fiber in which silica and / or alumina is attached to the fiber surface, silica and / or alumina are synthesized on the fiber while maintaining the pH of the reaction solution containing the fiber at 4.6 or less. Is preferable. Although the details of the reason why a composite fiber having a well-coated fiber surface is obtained by this are not completely clarified, the ionization rate to trivalent aluminum ions is increased by keeping the pH low. It is considered that a composite fiber having a high coverage and fixing rate can be obtained.
 シリカおよび/またはアルミナ合成では、反応液中の原料(珪酸イオン、アルミニウムイオン)が高濃度であるほど、また、高温条件であるほど、核形成反応が進みやすいが、複合繊維を製造する場合、このような条件下では、セルロース繊維に核が定着されにくく、懸濁液中で遊離した無機粒子が合成されやすい。従って、シリカおよび/またはアルミナが強固に結着した複合繊維を製造するには、核形成反応を適切に制御することが必要となる。具体的には、パルプ濃度の適正化と、添加する珪酸イオン、アルミニウムイオンの時間当たりの供給量を緩やかにすることで、これを達成できる。例えば、パルプ濃度は、0.5%以上4.0%未満が好ましい。0.5%未満では繊維に原料が衝突する頻度が減るため、反応が進行しにくく、4.0%以上では攪拌不良から均一な複合体を得ることができない。添加する珪酸イオン、アルミニウムイオンの時間当たりの供給量は、例えばアルミニウムイオンの場合、反応溶液1Lあたり0.001mol/min以上が望ましく、0.01mol/min以上がより望ましく、また、0.5mol/min未満が望ましく、0.050mol/min未満がより望ましい。0.001mol/min未満であると反応が進行しにくく、0.050mol/min以上では懸濁液中で遊離した無機粒子が合成されやすい。 In silica and / or alumina synthesis, the higher the concentration of raw materials (silicate ions, aluminum ions) in the reaction solution and the higher the temperature conditions, the easier the nucleation reaction proceeds. Under such conditions, nuclei are less likely to be fixed to the cellulose fibers, and inorganic particles liberated in the suspension are likely to be synthesized. Therefore, in order to produce a composite fiber in which silica and / or alumina are tightly bound, it is necessary to appropriately control the nucleation reaction. Specifically, this can be achieved by optimizing the pulp concentration and gradual supply of silicate ions and aluminum ions to be added per hour. For example, the pulp concentration is preferably 0.5% or more and less than 4.0%. If it is less than 0.5%, the frequency of collision of the raw materials with the fibers decreases, so that the reaction does not proceed easily, and if it is 4.0% or more, a uniform complex cannot be obtained due to poor stirring. In the case of aluminum ions, for example, the amount of silicate ions and aluminum ions to be added per hour is preferably 0.001 mol / min or more, more preferably 0.01 mol / min or more, and 0.5 mol / min or more per 1 L of the reaction solution. Less than min is desirable, less than 0.050 mol / min is more desirable. If it is less than 0.001 mol / min, the reaction is difficult to proceed, and if it is 0.050 mol / min or more, inorganic particles liberated in the suspension are likely to be synthesized.
 一つの好ましい態様として、本発明の複合繊維における無機粒子の平均一次粒子径を、例えば、1.5μm以下とすることができるが、平均一次粒子径を1200nm以下や900nm以下にすることもでき、さらには平均一次粒子径が200nm以下や150nm以下にすることもできる。また、無機粒子の平均一次粒子径は10nm以上とすることも可能である。なお、平均一次粒子径は電子顕微鏡写真で測定することができる。 As one preferred embodiment, the average primary particle diameter of the inorganic particles in the composite fiber of the present invention can be, for example, 1.5 μm or less, but the average primary particle diameter can also be 1200 nm or less or 900 nm or less. Further, the average primary particle size can be 200 nm or less or 150 nm or less. Further, the average primary particle diameter of the inorganic particles can be 10 nm or more. The average primary particle size can be measured by electron micrograph.
 (水酸化アルミニウム)
 水酸化アルミニウムはAl(OH)で表されるアルミニウムイオンと水酸化物イオンからなるイオン結晶性の化合物であり、粒状の形態であることが多く、水には難溶性である。化学反応による合成品は医薬品や吸着剤に用いられるほか、加熱時に水を放出する性質を利用して難燃化剤や不燃化剤として用いられる。
(Aluminum hydroxide)
Aluminum hydroxide is an ionic crystalline compound composed of an aluminum ion represented by Al (OH) 3 and a hydroxide ion, and is often in a granular form and is sparingly soluble in water. Synthetic products produced by chemical reactions are used as pharmaceuticals and adsorbents, and are also used as flame-retardant agents and non-combustible agents by utilizing the property of releasing water when heated.
 本発明においては、繊維の存在下で、溶液中で水酸化アルミニウムを合成することによって、水酸化アルミニウムと繊維の複合体を製造することができる。例えば、酸(硫酸など)と塩基を中和によって反応させたり、無機塩と酸もしくは塩基を反応させたり、無機塩同士を反応させたりする方法が挙げられる。例えば、水酸化ナトリウムと硫酸アルミニウムを反応させることで水酸化アルミウニウムを得たり、アルカリ塩の含まれる水溶液中に塩化アルミニウムを加えて水酸化アルミニウムを沈殿させたりすることができる。 In the present invention, a composite of aluminum hydroxide and fiber can be produced by synthesizing aluminum hydroxide in a solution in the presence of fiber. For example, a method of reacting an acid (sulfuric acid or the like) with a base by neutralization, a method of reacting an inorganic salt with an acid or a base, or a method of reacting inorganic salts with each other can be mentioned. For example, aluminum hydroxide can be obtained by reacting sodium hydroxide with aluminum sulfate, or aluminum chloride can be added to an aqueous solution containing an alkali salt to precipitate aluminum hydroxide.
 水酸化アルミニウムの合成では、溶液中の原料(Alイオン、OHイオン)が高濃度であるほど、また、高温条件であるほど、核形成反応が進みやすいが、複合繊維を製造する場合、このような条件下では、セルロース繊維に核が定着されにくく、懸濁液中で遊離した無機粒子が合成されやすい。従って、水酸化アルミニウムが強固に結着した複合繊維を製造するには、核形成反応を適切に制御することが必要となる。具体的には、OHイオンおよびパルプ濃度の適正化と、Alイオンの時間当たりの供給量を緩やかにすることで、これを達成できる。例えば、反応容器中のOHイオン濃度は、0.01mol/L以上0.50mol/L未満が好ましい。0.01mol/L未満だと反応が進行しにくく、0.50mol/L以上では懸濁液中で遊離した無機粒子が合成されやすい。パルプ濃度は、0.5%以上4.0%未満が好ましい。0.5%未満では繊維に原料が衝突する頻度が減るため、反応が進行しにくく、4.0%以上では攪拌不良から均一な複合体を得ることができない。Alイオンの時間当たりの供給量は、反応溶液1Lあたり0.001mol/min以上0.050mol/min未満が望ましい。0.001mol/min未満であると反応が進行しにくく、0.050mol/min以上では懸濁液中で遊離した無機粒子が合成されやすい。 In the synthesis of aluminum hydroxide, the higher the concentration of the raw materials (Al ion, OH ion) in the solution and the higher the temperature condition, the easier the nucleation reaction proceeds. Under the above conditions, the nuclei are not easily fixed to the cellulose fibers, and the inorganic particles released in the suspension are easily synthesized. Therefore, in order to produce a composite fiber in which aluminum hydroxide is tightly bound, it is necessary to appropriately control the nucleation reaction. Specifically, this can be achieved by optimizing the concentrations of OH ions and pulp and slackening the supply amount of Al ions per hour. For example, the OH ion concentration in the reaction vessel is preferably 0.01 mol / L or more and less than 0.50 mol / L. If it is less than 0.01 mol / L, the reaction is difficult to proceed, and if it is 0.50 mol / L or more, the inorganic particles liberated in the suspension are easily synthesized. The pulp concentration is preferably 0.5% or more and less than 4.0%. If it is less than 0.5%, the frequency of collision of the raw materials with the fibers decreases, so that the reaction does not proceed easily, and if it is 4.0% or more, a uniform complex cannot be obtained due to poor stirring. The amount of Al ions supplied per hour is preferably 0.001 mol / min or more and less than 0.050 mol / min per 1 L of the reaction solution. If it is less than 0.001 mol / min, the reaction is difficult to proceed, and if it is 0.050 mol / min or more, inorganic particles liberated in the suspension are likely to be synthesized.
 セルロース繊維
 本発明で使用する複合繊維は、セルロース繊維と無機粒子とを複合化したものである。複合体を構成するセルロース繊維としては例えば、天然のセルロース繊維はもちろん、レーヨンやリヨセルなどの再生繊維(半合成繊維)や合成繊維などを制限なく使用することができる。セルロース繊維の原料としては、パルプ繊維(木材パルプや非木材パルプ)、セルロースナノファイバー、バクテリアセルロース、ホヤなどの動物由来セルロース、藻類などが例示され、木材パルプは、木材原料をパルプ化して製造すればよい。木材原料としては、アカマツ、クロマツ、トドマツ、エゾマツ、ベニマツ、カラマツ、モミ、ツガ、スギ、ヒノキ、カラマツ、シラベ、トウヒ、ヒバ、ダグラスファー、ヘムロック、ホワイトファー、スプルース、バルサムファー、シーダ、パイン、メルクシマツ、ラジアータパイン等の針葉樹、及びこれらの混合材、ブナ、カバ、ハンノキ、ナラ、タブ、シイ、シラカバ、ハコヤナギ、ポプラ、タモ、ドロヤナギ、ユーカリ、マングローブ、ラワン、アカシア等の広葉樹及びこれらの混合材が例示される。
Cellulose fiber The composite fiber used in the present invention is a composite of cellulose fiber and inorganic particles. As the cellulose fibers constituting the composite, for example, not only natural cellulose fibers but also regenerated fibers (semi-synthetic fibers) such as rayon and lyocell and synthetic fibers can be used without limitation. Examples of raw materials for cellulose fibers include pulp fibers (wood pulp and non-wood pulp), cellulose nanofibers, bacterial cellulose, animal-derived cellulose such as squirrel, and algae. Wood pulp is produced by pulping wood raw materials. Just do it. Wood raw materials include red pine, black pine, todo pine, spruce, beni pine, larch, fir, tsuga, sugi, cypress, larch, shirabe, spruce, hiba, douglas fur, hemlock, white fur, spruce, balsam fur, cedar, pine, Conifers such as merkushimatsu and radiata pine, and their mixed materials, beech, hippo, cypress, nara, tab, shii, white hippo, larch, poplar, fir, doroyanagi, eucalyptus, mangrove, lauan, acacia and other broadleaf trees and their mixture. The material is exemplified.
 木材原料(木質原料)などの天然材料をパルプ化する方法は、特に限定されず、製紙業界で一般に用いられるパルプ化法が例示される。木材パルプはパルプ化法により分類でき、例えば、クラフト法、サルファイト法、ソーダ法、ポリサルファイド法等の方法により蒸解した化学パルプ;リファイナー、グラインダー等の機械力によってパルプ化して得られる機械パルプ;薬品による前処理の後、機械力によるパルプ化を行って得られるセミケミカルパルプ;古紙パルプ;脱墨パルプ等が挙げられる。木材パルプは、未晒(漂白前)の状態であってもよいし、晒(漂白後)の状態であってもよい。 The method of pulping a natural material such as a wood raw material (wood raw material) is not particularly limited, and a pulping method generally used in the paper industry is exemplified. Wood pulp can be classified by the pulping method, for example, chemical pulp that has been vaporized by methods such as the craft method, sulfite method, soda method, and polysulfide method; mechanical pulp obtained by pulping with mechanical force such as a refiner and grinder; chemicals. Examples thereof include semi-chemical pulp; used paper pulp; and deinked pulp obtained by pulping by mechanical force after pretreatment with. The wood pulp may be in an unbleached (before bleaching) state or in a bleached (after bleaching) state.
 非木材由来のパルプとしては、綿、ヘンプ、サイザル麻、マニラ麻、亜麻、藁、竹、バガス、ケナフ、サトウキビ、トウモロコシ、稲わら、楮(こうぞ)、みつまた等が例示される。 Examples of non-wood-derived pulp include cotton, hemp, sisal hemp, Manila hemp, flax, straw, bamboo, bagus, kenaf, sugar cane, corn, rice straw, kozo, and mitsumata.
 パルプ繊維は、未叩解及び叩解のいずれでもよく、複合体シートの物性に応じて選択すればよいが、叩解を行う方が好ましい。これにより、シート強度の向上並びに無機粒子の定着促進が期待できる。 The pulp fiber may be either unbeaten or beaten, and may be selected according to the physical characteristics of the complex sheet, but beating is preferable. This can be expected to improve the sheet strength and promote the fixation of inorganic particles.
 また、これらセルロース原料はさらに処理を施すことで粉末セルロース、酸化セルロースなどの化学変性セルロース、およびセルロースナノファイバー:CNF(ミクロフィブリル化セルロース:MFC、TEMPO酸化CNF、リン酸エステル化CNF、カルボキシメチル化CNF、機械粉砕CNFなど)として使用することもできる。本発明で用いる粉末セルロースとしては、例えば、精選パルプを酸加水分解した後に得られる未分解残渣を精製・乾燥し、粉砕・篩い分けするといった方法により製造される棒軸状である一定の粒径分布を有する結晶性セルロース粉末を用いてもよいし、KCフロック(日本製紙製)、セオラス(旭化成ケミカルズ製)、アビセル(FMC製)などの市販品を用いてもよい。粉末セルロースにおけるセルロースの重合度は好ましくは100~1500程度であり、X線回折法による粉末セルロースの結晶化度は好ましくは70~90%であり、レーザー回折式粒度分布測定装置による体積平均粒子径は好ましくは500nm以上100μm以下である。 Further, these cellulose raw materials are further treated to carry out powdered cellulose, chemically modified cellulose such as oxidized cellulose, and cellulose nanofibers: CNF (microfibrillated cellulose: MFC, TEMPO oxide CNF, phosphoric acid esterified CNF, carboxymethylation). It can also be used as CNF, machine crushed CNF, etc.). The powdered cellulose used in the present invention has a constant particle size having a rod-like shape and is produced by, for example, a method of purifying and drying an undecomposed residue obtained after acid-hydrolyzing selected pulp, pulverizing and sieving. Crystalline cellulose powder having a distribution may be used, or commercially available products such as KC Flock (manufactured by Nippon Paper Co., Ltd.), Theoras (manufactured by Asahi Kasei Chemicals), and Abyssel (manufactured by FMC) may be used. The degree of polymerization of cellulose in powdered cellulose is preferably about 100 to 1500, the degree of crystallinity of powdered cellulose by X-ray diffraction is preferably 70 to 90%, and the volume average particle diameter by a laser diffraction type particle size distribution measuring device. Is preferably 500 nm or more and 100 μm or less.
 本発明で用いる酸化セルロースは、例えばN-オキシル化合物、及び、臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で酸化剤を用いて水中で酸化することで得ることができる。セルロースナノファイバーとしては、上記セルロース原料を解繊する方法が用いられる。解繊方法としては、例えばセルロースや酸化セルロース等の化学変性セルロースの水懸濁液等を、リファイナー、高圧ホモジナイザー、グラインダー、一軸または多軸混練機、ビーズミル等による機械的な磨砕、ないし叩解することにより解繊する方法を使用することができる。上記方法を1種または複数種類組み合わせてセルロースナノファイバーを製造してもよい。製造したセルロースナノファイバーの繊維径は電子顕微鏡観察などで確認することができ、例えば好ましくは5nm~300nmの範囲にある。このセルロースナノファイバーを製造する際、セルロースを解繊及び/又は微細化する前及び/又は後に、任意の化合物をさらに添加してセルロースナノファイバーと反応させ、水酸基が修飾されたものにすることもできる。修飾する官能基としては、アセチル基、エステル基、エーテル基、ケトン基、ホルミル基、ベンゾイル基、アセタール、ヘミアセタール、オキシム、イソニトリル、アレン、チオール基、ウレア基、シアノ基、ニトロ基、アゾ基、アリール基、アラルキル基、アミノ基、アミド基、イミド基、アクリロイル基、メタクリロイル基、プロピオニル基、プロピオロイル基、ブチリル基、2-ブチリル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ウンデカノイル基、ドデカノイル基、ミリストイル基、パルミトイル基、ステアロイル基、ピバロイル基、ベンゾイル基、ナフトイル基、ニコチノイル基、イソニコチノイル基、フロイル基、シンナモイル基等のアシル基、2-メタクリロイルオキシエチルイソシアノイル基等のイソシアネート基、メチル基、エチル基、プロピル基、2-プロピル基、ブチル基、2-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ミリスチル基、パルミチル基、ステアリル基等のアルキル基、オキシラン基、オキセタン基、オキシル基、チイラン基、チエタン基等が挙げられる。これらの置換基の中の水素が水酸基、カルボキシ基等の官能基で置換されても構わない。また、アルキル基の一部が不飽和結合になっていても構わない。これらの官能基を導入するために使用する化合物としては特に限定されず、例えば、リン酸由来の基を有する化合物、カルボン酸由来の基を有する化合物、硫酸由来の基を有する化合物、スルホン酸由来の基を有する化合物、アルキル基を有する化合物、アミン由来の基を有する化合物等が挙げられる。リン酸基を有する化合物としては特に限定されないが、リン酸、リン酸のリチウム塩であるリン酸二水素リチウム、リン酸水素二リチウム、リン酸三リチウム、ピロリン酸リチウム、ポリリン酸リチウムが挙げられる。更にリン酸のナトリウム塩であるリン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、ポリリン酸ナトリウムが挙げられる。更にリン酸のカリウム塩であるリン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、ポリリン酸カリウムが挙げられる。更にリン酸のアンモニウム塩であるリン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、ポリリン酸アンモニウムなどが挙げられる。これらのうち、リン酸基導入の効率が高く、工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩が好ましく、リン酸二水素ナトリウム、リン酸水素二ナトリウムがより好ましいが、特に限定されない。カルボキシル基を有する化合物としては特に限定されないが、マレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸などトリカルボン酸化合物が挙げられる。カルボキシル基を有する化合物の酸無水物としては特に限定されないが、無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。カルボキシル基を有する化合物の誘導体としては特に限定されないが、カルボキシル基を有する化合物の酸無水物のイミド化物、カルボキシル基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシル基を有する化合物の酸無水物のイミド化物としては特に限定されないが、マレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。カルボキシル基を有する化合物の酸無水物の誘導体としては特に限定されない。例えば、ジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等の、カルボキシル基を有する化合物の酸無水物の少なくとも一部の水素原子が置換基(例えば、アルキル基、フェニル基等)で置換されたものが挙げられる。上記カルボン酸由来の基を有する化合物のうち、工業的に適用しやすく、ガス化しやすいことから、無水マレイン酸、無水コハク酸、無水フタル酸が好ましいが、特に限定されない。また、化学的に結合させなくても、修飾する化合物がセルロースナノファイバーに物理的に吸着する形でセルロースナノファイバーを修飾してもよい。物理的に吸着する化合物としては界面活性剤等が挙げられ、アニオン性、カチオン性、ノニオン性いずれを用いてもよい。セルロースを解繊及び/又は粉砕する前に上記の修飾を行った場合、解繊及び/又は粉砕後にこれらの官能基を脱離させ、元の水酸基に戻すこともできる。以上のような修飾を施すことで、セルロースナノファイバーの解繊を促進したり、セルロースナノファイバーを使用する際に種々の物質と混合しやすくしたりすることができる。 The cellulose oxide used in the present invention can be obtained by oxidizing in water with an oxidizing agent in the presence of, for example, an N-oxyl compound and a compound selected from the group consisting of bromide, iodide or a mixture thereof. it can. As the cellulose nanofiber, the method of defibrating the above-mentioned cellulose raw material is used. As a defibration method, for example, an aqueous suspension of chemically modified cellulose such as cellulose or oxidized cellulose is mechanically ground or beaten with a refiner, a high-pressure homogenizer, a grinder, a uniaxial or multiaxial kneader, a bead mill or the like. This makes it possible to use a method of defibrating. Cellulose nanofibers may be produced by combining one or more of the above methods. The fiber diameter of the produced cellulose nanofibers can be confirmed by observation with an electron microscope or the like, and is preferably in the range of 5 nm to 300 nm, for example. When producing the cellulose nanofibers, before and / or after the cellulose is defibrated and / or finely divided, an arbitrary compound may be further added and reacted with the cellulose nanofibers to modify the hydroxyl groups. it can. Functional groups to be modified include acetyl group, ester group, ether group, ketone group, formyl group, benzoyl group, acetal, hemiacetal, oxime, isonitrile, allene, thiol group, urea group, cyano group, nitro group and azo group. , Aryl group, aralkyl group, amino group, amide group, imide group, acryloyl group, methacryloyl group, propionyl group, propioloyl group, butyryl group, 2-butyryl group, pentanoyl group, hexanoyl group, heptanoil group, octanoyl group, nonanoyl group. , Decanoyl group, undecanoyl group, dodecanoyl group, myristoyl group, palmitoyl group, stearoyl group, pivaloyl group, benzoyl group, naphthoyl group, nicotinoyyl group, isonicotinoyl group, floyl group, cinnamoyl group and other acyl groups, 2-methacryloyloxyethyl isothia Isocyanate group such as noyl group, methyl group, ethyl group, propyl group, 2-propyl group, butyl group, 2-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl Examples thereof include an alkyl group such as a group, an undecyl group, a dodecyl group, a myristyl group, a palmityl group and a stearyl group, an oxylan group, an oxetane group, an oxyl group, a thiirane group and a thietan group. Hydrogen in these substituents may be substituted with a functional group such as a hydroxyl group or a carboxy group. Further, a part of the alkyl group may have an unsaturated bond. The compound used for introducing these functional groups is not particularly limited, and for example, a compound having a phosphoric acid-derived group, a compound having a carboxylic acid-derived group, a compound having a sulfuric acid-derived group, and a sulfonic acid-derived compound. Examples thereof include a compound having a group of, a compound having an alkyl group, a compound having a group derived from amine, and the like. The compound having a phosphoric acid group is not particularly limited, and examples thereof include phosphoric acid, lithium dihydrogen phosphate which is a lithium salt of phosphoric acid, dilithium hydrogen phosphate, trilithium phosphate, lithium pyrophosphate, and lithium polyphosphate. .. Further, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium polyphosphate, which are sodium salts of phosphoric acid, can be mentioned. Further, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium polyphosphate, which are potassium salts of phosphoric acid, can be mentioned. Further, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, ammonium polyphosphate, etc., which are ammonium salts of phosphoric acid, can be mentioned. Of these, phosphoric acid, sodium salt of phosphoric acid, potassium salt of phosphoric acid, and ammonium salt of phosphoric acid are preferable, and sodium dihydrogen phosphate is preferable from the viewpoint of high efficiency of introduction of phosphoric acid group and easy industrial application. , Disodium hydrogen phosphate is more preferable, but it is not particularly limited. The compound having a carboxyl group is not particularly limited, and examples thereof include dicarboxylic acid compounds such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, and itaconic acid, and tricarboxylic acid compounds such as citric acid and aconitic acid. .. The acid anhydride of the compound having a carboxyl group is not particularly limited, and examples thereof include acid anhydrides of dicarboxylic acid compounds such as maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, and itaconic anhydride. Be done. The derivative of the compound having a carboxyl group is not particularly limited, and examples thereof include an imide of an acid anhydride of a compound having a carboxyl group and a derivative of an acid anhydride of a compound having a carboxyl group. The imide of the acid anhydride of the compound having a carboxyl group is not particularly limited, and examples thereof include an imide of a dicarboxylic acid compound such as maleimide, succinateimide, and phthalateimide. The derivative of the acid anhydride of the compound having a carboxyl group is not particularly limited. For example, at least a part of hydrogen atoms of the acid anhydride of a compound having a carboxyl group, such as dimethylmaleic acid anhydride, diethylmaleic acid anhydride, diphenylmaleic acid anhydride, etc., are substituents (for example, alkyl group, phenyl group, etc.). ) Replaced by). Among the compounds having a group derived from the carboxylic acid, maleic anhydride, succinic anhydride, and phthalic anhydride are preferable because they are easily applied industrially and easily gasified, but are not particularly limited. Further, the cellulose nanofibers may be modified in such a way that the compound to be modified physically adsorbs to the cellulose nanofibers without being chemically bonded. Examples of the compound that is physically adsorbed include a surfactant and the like, and any of anionic, cationic and nonionic compounds may be used. If the above modification is performed before defibration and / or pulverization of cellulose, these functional groups can be eliminated after defibration and / or pulverization to return to the original hydroxyl group. By applying the above modifications, it is possible to promote the defibration of the cellulose nanofibers and to facilitate mixing with various substances when the cellulose nanofibers are used.
 以上に示した繊維は単独で用いても良いし、複数を混合しても良い。例えば、製紙工場の排水から回収された繊維状物質を本発明の炭酸化反応に供給してもよい。このような物質を反応槽に供給することにより、種々の複合粒子を合成することができ、また、形状的にも繊維状粒子などを合成することができる。 The fibers shown above may be used alone or in combination of two or more. For example, the fibrous material recovered from the wastewater of a paper mill may be supplied to the carbonation reaction of the present invention. By supplying such a substance to the reaction vessel, various composite particles can be synthesized, and fibrous particles and the like can be synthesized in terms of shape.
 本発明においては、繊維の他にも、生成物である無機粒子に取り込まれて複合粒子を生成するような物質を用いることができる。本発明にいては、パルプ繊維を始めとする繊維を使用するが、それ以外にも無機粒子、有機粒子、ポリマーなどを含む溶液中で無機粒子を合成することによって、さらにこれらの物質が取り込まれた複合粒子を製造することが可能である。 In the present invention, in addition to fibers, a substance that is incorporated into inorganic particles as a product to form composite particles can be used. In the present invention, fibers such as pulp fibers are used, but in addition to these, these substances are further incorporated by synthesizing inorganic particles in a solution containing inorganic particles, organic particles, polymers and the like. It is possible to produce composite particles.
 複合化する繊維の繊維長は特に制限されないが、例えば、平均繊維長が0.1μm~15mm程度とすることができ、1μm~12mm、100μm~10mm、400μm~8mmなどとしてもよい。このうち、本発明においては、平均繊維長を400μm以上(0.4mm以上)とすることが好ましい。 The fiber length of the fiber to be composited is not particularly limited, but for example, the average fiber length can be about 0.1 μm to 15 mm, and may be 1 μm to 12 mm, 100 μm to 10 mm, 400 μm to 8 mm, or the like. Of these, in the present invention, the average fiber length is preferably 400 μm or more (0.4 mm or more).
 複合化する繊維の平均繊維径は特に制限されないが、例えば、平均繊維径が1nm~100μm程度とすることができ、500nm~100μm、1μm~90μm、3μm~50μm、5μm~30μmなどとしてもよい。このうち、本発明においては、平均繊維径が500nm以上であると後工程での生産効率を向上できるため好ましい。 The average fiber diameter of the fibers to be composited is not particularly limited, but for example, the average fiber diameter can be about 1 nm to 100 μm, and may be 500 nm to 100 μm, 1 μm to 90 μm, 3 μm to 50 μm, 5 μm to 30 μm, or the like. Of these, in the present invention, it is preferable that the average fiber diameter is 500 nm or more because the production efficiency in the subsequent process can be improved.
 繊維の平均繊維長と平均繊維径は、繊維長測定装置により測定できる。繊維長測定装置としては、例えば、Valmet Fractionator(Valmet社製)が挙げられる。 The average fiber length and average fiber diameter of the fiber can be measured by a fiber length measuring device. Examples of the fiber length measuring device include Valmet Fractionator (manufactured by Valmet).
 複合化する繊維は、繊維表面の15%以上が無機粒子で被覆されるような量で使用することが好ましいが、例えば、繊維と無機粒子の重量比を、5/95~95/5とすることができ、10/90~90/10、20/80~80/20、30/70~70/30、40/60~60/40としてもよい。 The composite fiber is preferably used in an amount such that 15% or more of the fiber surface is covered with inorganic particles. For example, the weight ratio of the fiber to the inorganic particles is 5/95 to 95/5. It can be 10/90 to 90/10, 20/80 to 80/20, 30/70 to 70/30, 40/60 to 60/40.
 本発明に係る複合繊維は、好ましい態様において、繊維表面の15%以上が無機粒子で被覆されており、このような面積率でセルロース繊維表面が被覆されていると無機粒子に起因する特徴が大きく生じるようになる一方、繊維表面に起因する特徴が小さくなる。 In a preferred embodiment, the composite fiber according to the present invention has 15% or more of the fiber surface coated with inorganic particles, and if the surface of the cellulose fiber is coated with such an area ratio, the feature caused by the inorganic particles is large. On the other hand, the features due to the fiber surface become smaller.
 本発明に係る複合繊維は、種々の形状で用いることができ、例えば、粉体、ペレット、モールド、水性懸濁液、ペースト、シート、ボード、ブロック、その他の形状にして用いることができる。また、複合繊維を主成分として他の材料と共にモールドや粒子・ペレットなどの成形体にすることもできる。乾燥して紛体にする場合の乾燥機についても特に制限はないが、例えば、気流乾燥機、バンド乾燥機、噴霧乾燥機などを好適に使用することができる。 The composite fiber according to the present invention can be used in various shapes, for example, powder, pellets, molds, aqueous suspensions, pastes, sheets, boards, blocks, and other shapes. Further, it is also possible to form a molded product such as a mold or particles / pellets by using a composite fiber as a main component together with other materials. The dryer for drying into powder is not particularly limited, but for example, an air flow dryer, a band dryer, a spray dryer, or the like can be preferably used.
 本発明に係る複合繊維は、種々の用途に用いることができ、例えば、紙、繊維、セルロース系複合材料、フィルター材料、塗料、プラスチックやその他の樹脂、ゴム、エラストマー、セラミック、ガラス、タイヤ、建築材料(アスファルト、アスベスト、セメント、ボード、コンクリート、れんが、タイル、合板、繊維板、天井材、壁材、床材、屋根材など)、家具、各種担体(触媒担体、医薬担体、農薬担体、微生物担体など)、吸着剤(不純物除去、消臭、除湿など)、抗菌材、抗ウイルス剤、しわ防止剤、粘土、研磨材、摩擦材、改質剤、補修材、断熱材、耐熱材、放熱材、防湿材、撥水材、耐水材、遮光材、シーラント、シールド材、防虫剤、接着剤、医用材料、ペースト材料、変色防止剤、電波吸収材、絶縁材、遮音材、インテリア材、防振材、半導体封止材、放射線遮断材、材料等のあらゆる用途に広く使用することができる。また、前記用途における各種充填剤、コーティング剤などに用いることができる。このうち、吸着剤、抗菌材、抗ウイルス剤、摩擦材、放射線遮蔽材、難燃材料、建築材料、断熱材が好ましい。 The composite fiber according to the present invention can be used for various purposes, for example, paper, fiber, cellulose-based composite material, filter material, paint, plastic or other resin, rubber, elastomer, ceramic, glass, tire, building. Materials (asphalt, asbestos, cement, boards, concrete, bricks, tiles, plywood, fiberboards, ceiling materials, wall materials, flooring materials, roofing materials, etc.), furniture, various carriers (catalyst carriers, pharmaceutical carriers, pesticide carriers, microorganisms, etc.) Carriers, etc.), adsorbents (impurity removal, deodorization, dehumidification, etc.), antibacterial materials, antiviral agents, wrinkle inhibitors, clay, abrasives, friction materials, modifiers, repair materials, heat insulating materials, heat resistant materials, heat dissipation Materials, moisture-proof materials, water-repellent materials, water-resistant materials, light-shielding materials, sealants, shield materials, insect repellents, adhesives, medical materials, paste materials, discoloration inhibitors, radio wave absorbers, insulating materials, sound insulation materials, interior materials, It can be widely used in all applications such as vibration materials, semiconductor encapsulants, radiation blocking materials, and materials. Further, it can be used as various fillers, coating agents and the like in the above-mentioned applications. Of these, adsorbents, antibacterial materials, antiviral agents, friction materials, radiation shielding materials, flame-retardant materials, building materials, and heat insulating materials are preferable.
 本発明の複合繊維は、製紙用途に適用してもよく、例えば、印刷用紙、新聞紙、インクジェット用紙、PPC用紙、クラフト紙、上質紙、コート紙、微塗工紙、包装紙、薄葉紙、色上質紙、キャストコート紙、ノンカーボン紙、ラベル用紙、感熱紙、各種ファンシーペーパー、水溶紙、剥離紙、工程紙、壁紙用原紙、難燃紙(不燃紙)、積層板原紙、プリンテッドエレクトロニクス用紙、バッテリー用セパレータ、クッション紙、トレーシングペーパー、含浸紙、ODP用紙、建材用紙、化粧材用紙、封筒用紙、テープ用紙、熱交換用紙、化繊紙、減菌紙、耐水紙、耐油紙、耐熱紙、光触媒紙、化粧紙(脂取り紙など)、各種衛生紙(トイレットペーパー、ティッシュペーパー、ワイパー、おむつ、生理用品等)、たばこ用紙、板紙(ライナー、中芯原紙、白板紙など)、紙皿原紙、カップ原紙、ベーキング用紙、研磨紙、合成紙などが挙げられる。すなわち、本発明によれば、一次粒子径が小さくかつ粒度分布の狭い無機粒子と繊維との複合体を得ることができるため、2μm超の粒子径を有していた従来の無機填料とは異なった特性を発揮させることができる。更には、単に無機粒子を繊維に単に配合した場合と異なり、無機粒子を繊維と複合体化しておくと、無機粒子がシートに歩留易いだけでなく、凝集せずに均一に分散したシートを得ることができる。本発明における無機粒子は、好ましい態様において、繊維の外表面・ルーメンの内側に定着するだけでなく、ミクロフィブリルの内側にも生成することが電子顕微鏡観察の結果から明らかとなっている。 The composite fiber of the present invention may be applied to papermaking applications, for example, printing paper, newspaper, inkjet paper, PPC paper, kraft paper, high-quality paper, coated paper, finely coated paper, wrapping paper, thin leaf paper, and high-quality color. Paper, cast-coated paper, non-carbon paper, label paper, heat-sensitive paper, various fancy papers, water-soluble paper, release paper, process paper, wallpaper base paper, flame-retardant paper (non-combustible paper), laminated board base paper, printed electronics paper, Battery separator, cushion paper, tracing paper, impregnated paper, ODP paper, building material paper, decorative paper, envelope paper, tape paper, heat exchange paper, synthetic fiber paper, sterilized paper, water resistant paper, oil resistant paper, heat resistant paper, Photocatalyst paper, decorative paper (greasy paper, etc.), various sanitary papers (toilet paper, tissue paper, wipers, diapers, sanitary goods, etc.), tobacco paper, paperboard (liner, core base paper, white paperboard, etc.), paper plate base paper, Examples include cup base paper, baking paper, abrasive paper, and synthetic paper. That is, according to the present invention, it is possible to obtain a composite of inorganic particles having a small primary particle diameter and a narrow particle size distribution and fibers, which is different from the conventional inorganic filler having a particle diameter of more than 2 μm. It is possible to exert the characteristics. Furthermore, unlike the case where the inorganic particles are simply blended with the fiber, if the inorganic particles are complexed with the fiber, not only the inorganic particles can be easily retained on the sheet, but also the sheet is uniformly dispersed without agglomeration. Obtainable. It has been clarified from the results of electron microscopic observation that the inorganic particles in the present invention are formed not only on the outer surface of the fiber and inside the lumen but also on the inside of the microfibril in a preferable embodiment.
 また、本発明係る複合繊維を使用する際には、一般に無機填料及び有機填料と呼ばれる粒子や、各種繊維を併用することができる。例えば、無機填料として、炭酸カルシウム(軽質炭酸カルシウム、重質炭酸カルシウム)、炭酸マグネシウム、炭酸バリウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化亜鉛、クレー(カオリン、焼成カオリン、デラミカオリン)、タルク、酸化亜鉛、ステアリン酸亜鉛、二酸化チタン、ケイ酸ナトリウムと鉱酸から製造されるシリカ(ホワイトカーボン、シリカ/炭酸カルシウム複合体、シリカ/二酸化チタン複合体)、白土、ベントナイト、珪藻土、硫酸カルシウム、ゼオライト、脱墨工程から得られる灰分を再生して利用する無機填料および再生する過程でシリカや炭酸カルシウムと複合体を形成した無機填料などが挙げられる。炭酸カルシウム-シリカ複合物としては、炭酸カルシウムおよび/または軽質炭酸カルシウム-シリカ複合物以外に、ホワイトカーボンのような非晶質シリカを併用しても良い。有機填料としては、尿素-ホルマリン樹脂、ポリスチレン樹脂、フェノール樹脂、微小中空粒子、アクリルアミド複合体、木材由来の物質(微細繊維、ミクロフィブリル繊維、粉体ケナフ)、変性不溶化デンプン、未糊化デンプンなどが挙げられる。繊維としては、セルロースなどの天然繊維はもちろん、石油などの原料から人工的に合成される合成繊維、さらには、レーヨンやリヨセルなどの再生繊維(半合成繊維)、さらには無機繊維などを制限なく使用することができる。天然繊維としては上記の他にウールや絹糸やコラーゲン繊維等の蛋白系繊維、キチン・キトサン繊維やアルギン酸繊維等の複合糖鎖系繊維等が挙げられる。セルロース系の原料としては、パルプ繊維(木材パルプや非木材パルプ)、バクテリアセルロース、ホヤなどの動物由来セルロース、藻類などが例示され、木材パルプは、木材原料をパルプ化して製造すればよい。木材原料としては、アカマツ、クロマツ、トドマツ、エゾマツ、ベニマツ、カラマツ、モミ、ツガ、スギ、ヒノキ、カラマツ、シラベ、トウヒ、ヒバ、ダグラスファー、ヘムロック、ホワイトファー、スプルース、バルサムファー、シーダ、パイン、メルクシマツ、ラジアータパイン等の針葉樹、及びこれらの混合材、ブナ、カバ、ハンノキ、ナラ、タブ、シイ、シラカバ、ハコヤナギ、ポプラ、タモ、ドロヤナギ、ユーカリ、マングローブ、ラワン、アカシア等の広葉樹及びこれらの混合材が例示される。木材原料をパルプ化する方法は、特に限定されず、製紙業界で一般に用いられるパルプ化法が例示される。木材パルプはパルプ化法により分類でき、例えば、クラフト法、サルファイト法、ソーダ法、ポリサルファイド法等の方法により蒸解した化学パルプ;リファイナー、グラインダー等の機械力によってパルプ化して得られる機械パルプ;薬品による前処理の後、機械力によるパルプ化を行って得られるセミケミカルパルプ;古紙パルプ;脱墨パルプ等が挙げられる。木材パルプは、未晒(漂白前)の状態であってもよいし、晒(漂白後)の状態であってもよい。非木材由来のパルプとしては、綿、ヘンプ、サイザル麻、マニラ麻、亜麻、藁、竹、バガス、ケナフ、サトウキビ、トウモロコシ、稲わら、楮(こうぞ)、みつまた等が例示される。木材パルプ及び非木材パルプは、未叩解及び叩解のいずれでもよい。また、これらセルロース原料はさらに処理を施すことで粉末セルロース、酸化セルロースなどの化学変性セルロース、およびセルロースナノファイバー:CNF(ミクロフィブリル化セルロース:MFC、TEMPO酸化CNF、リン酸エステル化CNF、カルボキシメチル化CNF、機械粉砕CNF)として使用することもできる。合成繊維としてはポリエステル、ポリアミド、ポリオレフィン、アクリル繊維、半合繊維としてはレーヨン、アセテートなどが挙げられ、無機繊維としては、ガラス繊維、炭素繊維、各種金属繊維などが挙げられる。以上について、これらは単独でも2種類以上の組み合わせで用いても構わない。 Further, when using the composite fiber according to the present invention, particles generally called inorganic filler and organic filler, and various fibers can be used in combination. For example, as an inorganic filler, calcium carbonate (light calcium carbonate, heavy calcium carbonate), magnesium carbonate, barium carbonate, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, zinc hydroxide, clay (kaolin, calcined kaolin, deramikaolin). ), Tarku, zinc oxide, zinc stearate, titanium dioxide, silica made from sodium silicate and mineral acid (white carbon, silica / calcium carbonate complex, silica / titanium dioxide complex), white clay, bentonite, diatomaceous clay, Examples thereof include calcium sulfate, zeolite, an inorganic filler that regenerates and utilizes ash obtained from the deinking process, and an inorganic filler that forms a complex with silica or calcium carbonate in the process of regeneration. As the calcium carbonate-silica composite, in addition to calcium carbonate and / or a light calcium carbonate-silica composite, amorphous silica such as white carbon may be used in combination. Organic fillers include urea-formalin resin, polystyrene resin, phenolic resin, microhollow particles, acrylamide composites, wood-derived substances (fine fibers, microfibril fibers, powdered kenaf), modified insolubilized starch, ungelatinized starch, etc. Can be mentioned. The fibers include not only natural fibers such as cellulose, but also synthetic fibers artificially synthesized from raw materials such as petroleum, recycled fibers (semi-synthetic fibers) such as rayon and lyocell, and inorganic fibers without limitation. Can be used. In addition to the above, natural fibers include protein-based fibers such as wool, silk thread and collagen fiber, and composite sugar chain-based fibers such as chitin / chitosan fiber and alginic acid fiber. Examples of the cellulosic raw material include pulp fibers (wood pulp and non-wood pulp), bacterial cellulose, animal-derived cellulose such as squirrel, and algae. Wood pulp may be produced by pulping the wood raw material. Wood raw materials include red pine, black pine, todo pine, spruce, beni pine, larch, fir, tsuga, sugi, cypress, larch, shirabe, spruce, hiba, douglas fur, hemlock, white fur, spruce, balsam fur, cedar, pine, Conifers such as merkushimatsu and radiata pine, and their mixed materials, beech, hippo, cypress, nara, tab, shii, white hippo, larch, poplar, fir, doroyanagi, eucalyptus, mangrove, lauan, acacia and other broadleaf trees and their mixture. The material is exemplified. The method for pulping a wood raw material is not particularly limited, and a pulping method generally used in the paper industry is exemplified. Wood pulp can be classified by the pulping method, for example, chemical pulp that has been vaporized by methods such as the craft method, sulfite method, soda method, and polysulfide method; mechanical pulp obtained by pulping with mechanical force such as a refiner and grinder; chemicals. Examples thereof include semi-chemical pulp; used paper pulp; and deinked pulp obtained by pulping by mechanical force after pretreatment with. The wood pulp may be in an unbleached (before bleaching) state or in a bleached (after bleaching) state. Examples of non-wood-derived pulp include cotton, hemp, sisal hemp, Manila hemp, flax, straw, bamboo, bagus, kenaf, sugar cane, corn, rice straw, kozo, and mitsumata. The wood pulp and non-wood pulp may be either unbeaten or beaten. Further, these cellulose raw materials are further treated to carry out powdered cellulose, chemically modified cellulose such as oxidized cellulose, and cellulose nanofibers: CNF (microfibrillated cellulose: MFC, TEMPO oxide CNF, phosphoric acid esterified CNF, carboxymethylation). It can also be used as CNF, machine crushed CNF). Examples of synthetic fibers include polyester, polyamide, polyolefin and acrylic fibers, examples of semi-synthetic fibers include rayon and acetate, and examples of inorganic fibers include glass fibers, carbon fibers and various metal fibers. Regarding the above, these may be used alone or in combination of two or more types.
 本発明の複合繊維を構成する無機粒子の平均粒子径や形状等は、電子顕微鏡による観察により確認することができる。さらに、無機粒子を合成する際の条件を調整することによって、種々の大きさや形状を有する無機粒子を繊維と複合体化することができる。 The average particle size, shape, etc. of the inorganic particles constituting the composite fiber of the present invention can be confirmed by observation with an electron microscope. Furthermore, by adjusting the conditions for synthesizing the inorganic particles, the inorganic particles having various sizes and shapes can be complexed with the fibers.
 複合繊維の形態
 本発明においては、上述の複合繊維を様々な成形物(体)に成形することが可能である。例えば、本発明の複合繊維をシート化すると、高灰分のシートを容易に得ることができる。また、得られたシートを貼り合せて多層シートとすることもできる。
Form of Composite Fiber In the present invention, the above-mentioned composite fiber can be molded into various molded products (body). For example, when the composite fiber of the present invention is made into a sheet, a sheet having a high ash content can be easily obtained. Further, the obtained sheets can be pasted together to form a multi-layer sheet.
 シート製造に用いる抄紙機(抄造機)としては、例えば長網抄紙機、円網抄紙機、ギャップフォーマ、ハイブリッドフォーマ、ロトフォーマー、多層抄紙機、これらの機器の抄紙方式を組合せた公知の抄造機などが挙げられる。抄紙機におけるプレス線圧、後段でカレンダー処理を行う場合のカレンダー線圧は、いずれも操業性や複合繊維シートの性能に支障を来さない範囲内で定めることができる。また、形成されたシートに対して含浸や塗布により澱粉や各種ポリマー、顔料およびそれらの混合物を付与しても良い。 Examples of the paper machine (paper machine) used for sheet production include a long net paper machine, a circular net paper machine, a gap former, a hybrid former, a rotoformer, a multi-layer paper machine, and a known paper machine that combines the paper making methods of these devices. Can be mentioned. The press line pressure in the paper machine and the calendar line pressure when the calendar processing is performed in the subsequent stage can be set within a range that does not affect the operability and the performance of the composite fiber sheet. Further, starch, various polymers, pigments and mixtures thereof may be applied to the formed sheet by impregnation or coating.
 シート化の際には湿潤および/または乾燥紙力剤(紙力増強剤)を添加することができる。これにより、複合繊維シートの強度を向上させることができる。紙力剤としては例えば、尿素ホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ポリアミド、ポリアミン、エピクロロヒドリン樹脂、植物性ガム、ラテックス、ポリエチレンイミン、グリオキサール、ガム、マンノガラクタンポリエチレンイミン、ポリアクリルアミド樹脂、ポリビニルアミン、ポリビニルアルコール等の樹脂;上記樹脂から選ばれる2種以上からなる複合ポリマー又は共重合ポリマー;澱粉及び加工澱粉;カルボキシメチルセルロース、グアーガム、尿素樹脂等が挙げられる。紙力剤の添加量は特に限定されない。 At the time of sheeting, a wet and / or dry paper strength agent (paper strength enhancer) can be added. Thereby, the strength of the composite fiber sheet can be improved. Examples of paper strength agents include urea formaldehyde resin, melamine formaldehyde resin, polyamide, polyamine, epichlorohydrin resin, vegetable gum, latex, polyethyleneimine, glyoxal, gum, mannogalactanpolyethyleneimine, polyacrylamide resin, and polyvinylamine. , Polyvinyl alcohol and the like; composite polymers or copolymers composed of two or more kinds selected from the above resins; starch and processed starch; carboxymethyl cellulose, guar gum, urea resin and the like. The amount of the paper strength agent added is not particularly limited.
 また、填料の繊維への定着を促したり、填料や繊維の歩留を向上させたりするために、高分子ポリマーや無機物を添加することもできる。例えば凝結剤として、ポリエチレンイミンおよび第三級および/または四級アンモニウム基を含む改質ポリエチレンイミン、ポリアルキレンイミン、ジシアンジアミドポリマー、ポリアミン、ポリアミン/エピクロヒドリン重合体、並びにジアルキルジアリル第四級アンモニウムモノマー、ジアルキルアミノアルキルアクリレート、ジアルキルアミノアルキルメタクリレート、ジアルキルアミノアルキルアクリルアミド及びジアルキルアミノアルキルメタクリルアミドとアクリルアミドの重合体、モノアミン類とエピハロヒドリンからなる重合体、ポリビニルアミン及びビニルアミン部を持つ重合体やこれらの混合物などのカチオン性のポリマーに加え、前記ポリマーの分子内にカルボキシル基やスルホン基などのアニオン基を共重合したカチオンリッチな両イオン性ポリマー、カチオン性ポリマーとアニオン性または両イオン性ポリマーとの混合物などを用いることができる。また歩留剤として、カチオン性またはアニオン性、両性ポリアクリルアミド系物質を用いることができる。また、これらに加えて少なくとも一種以上のカチオンやアニオン性のポリマーを併用する、いわゆるデュアルポリマーと呼ばれる歩留りシステムを適用することもでき、少なくとも一種類以上のアニオン性のベントナイトやコロイダルシリカ、ポリ珪酸、ポリ珪酸もしくはポリ珪酸塩ミクロゲルおよびこれらのアルミニウム改質物などの無機微粒子や、アクリルアミドが架橋重合したいわゆるマイクロポリマーといわれる粒径100μm以下の有機系の微粒子を一種以上併用する多成分歩留りシステムであってもよい。特に単独または組合せで使用するポリアクリルアミド系物質が、極限粘度法による重量平均分子量が200万ダルトン以上である場合、良好な歩留りを得ることができ、好ましくは、500万ダルトン以上であり、更に好ましくは1000万ダルトン以上3000万ダルトン未満の上記アクリルアミド系物質である場合に非常に高い歩留りを得ることが出来る。このポリアクリルアミド系物質の形態はエマルジョン型でも溶液型であっても構わない。この具体的な組成としては、該物質中にアクリルアミドモノマーユニットを構造単位として含むものであれば特に限定はないが、例えば、アクリル酸エステルの4級アンモニウム塩とアクリルアミドとの共重合物、あるいはアクリルアミドとアクリル酸エステルを共重合させた後、4級化したアンモニウム塩が挙げられる。該カチオン性ポリアクリルアミド系物質のカチオン電荷密度は特には限定されない。 In addition, a high molecular polymer or an inorganic substance can be added in order to promote the fixation of the filler to the fiber and to improve the yield of the filler and the fiber. For example, as a coagulant, polyethyleneimine and modified polyethyleneimine containing a tertiary and / or quaternary ammonium group, polyalkyleneimine, dicyandiamide polymer, polyamine, polyamine / epiclohydrin polymer, and dialkyldialyl quaternary ammonium monomer, dialkyl. Aminoalkyl acrylates, dialkylaminoalkylmethacrylates, dialkylaminoalkylacrylamides, dialkylaminoalkylmethacrylate and acrylamide polymers, polymers consisting of monoamines and epihalohydrins, polymers with polyvinylamine and vinylamine moieties, and cations such as mixtures thereof. In addition to the sex polymer, a cation-rich amphoteric polymer in which an anionic group such as a carboxyl group or a sulfone group is copolymerized in the molecule of the polymer, or a mixture of a cationic polymer and an anionic or amphoteric polymer is used. be able to. Further, as the retention agent, a cationic or anionic or amphoteric polyacrylamide-based substance can be used. In addition to these, a yield system called a so-called dual polymer, in which at least one or more cation or anionic polymers are used in combination, can be applied, and at least one or more anionic bentonite, colloidal silica, polysilicic acid, etc. can be applied. It is a multi-component yield system that uses one or more of inorganic fine particles such as polysilicic acid or polysilicate microgels and their aluminum modified products, and organic fine particles with a particle size of 100 μm or less, which are so-called micropolymers cross-linked and polymerized with acrylamide. May be good. In particular, when the polyacrylamide-based substance used alone or in combination has a weight average molecular weight of 2 million daltons or more by the ultimate viscosity method, a good yield can be obtained, preferably 5 million daltons or more, more preferably. Can obtain a very high yield when it is the above-mentioned acrylamide-based substance of 10 million daltons or more and less than 30 million daltons. The form of this polyacrylamide-based substance may be an emulsion type or a solution type. The specific composition is not particularly limited as long as the substance contains an acrylamide monomer unit as a structural unit, and is, for example, a copolymer of a quaternary ammonium salt of an acrylic acid ester and acrylamide, or acrylamide. And an acrylate ester are copolymerized with each other, and then a quaternary ammonium salt is mentioned. The cationic charge density of the cationic polyacrylamide-based substance is not particularly limited.
 その他、目的に応じて、濾水性向上剤、内添サイズ剤、pH調整剤、消泡剤、ピッチコントロール剤、スライムコントロール剤、嵩高剤、炭酸カルシウム、カオリン、タルク、シリカなどの無機粒子(いわゆる填料)等が挙げられる。各添加剤の使用量は特に限定されない。 In addition, depending on the purpose, inorganic particles such as drainage improver, internal sizing agent, pH adjuster, defoamer, pitch control agent, slime control agent, bulking agent, calcium carbonate, kaolin, talc, silica, etc. (so-called) Filling fee) and the like. The amount of each additive used is not particularly limited.
 シートの基本重量(坪量:1平方mあたりの重量)は、目的に応じて適宜調整できるが、例えば建材として用いる場合には、60~1200g/mとすると強度が強く、また、製造時の乾燥負荷が低いため良好である。また、シートの坪量は、1200g/m以上とすることもでき、例えば2000~110000g/mとすることもできる。 The basic weight of the sheet (basis weight: weight per square meter) can be adjusted as appropriate according to the purpose, but when used as a building material, for example, 60 to 1200 g / m 2 is strong and at the time of manufacture. It is good because the drying load is low. Further, the basis weight of the sheet can be 1200 g / m 2 or more, for example, 2000 to 110000 g / m 2 .
 シート化以外の成形法を用いることも可能であり、例えば、パルプモールドと呼ばれるように鋳型に原料を流し込んで吸引脱水・乾燥させる方法や、樹脂や金属などの成形物の表面に塗り広げて乾燥後、基材から剥離する方法などによって、種々の形状を有する成形物を得ることができる。また、樹脂を混ぜてプラスチック様に成形することもできるし、セメントやゴムに混ぜて補強材として用いることもできる。また、一般にセメントや石膏などの無機質ボードを作成するのに用いられるような加圧・加熱プレス成形でボード状にしたり、ブロック状に成形したりすることもできる。一般に、シートは、折り曲げたり、巻き取れたりするものであるが、より強度が必要な場合には、ボード状にすることができる。また、厚みのある塊であるブロック状に成形することも可能であり、例えば、直方体や立方体などに成形することができる。 It is also possible to use a molding method other than sheeting. For example, a method called a pulp mold in which a raw material is poured into a mold and suction-dehydrated / dried, or a method of spreading and drying on the surface of a molded product such as resin or metal is used. After that, molded products having various shapes can be obtained by a method of peeling from the base material or the like. Further, it can be mixed with a resin and molded into a plastic shape, or it can be mixed with cement or rubber and used as a reinforcing material. Further, it can be formed into a board shape or a block shape by pressure / heat press molding which is generally used for making an inorganic board such as cement or gypsum. Generally, the sheet can be bent or rolled up, but can be made into a board if more strength is required. It can also be molded into a block shape, which is a thick mass, and can be molded into, for example, a rectangular parallelepiped or a cube.
 以上に示した配合・乾燥・成形において、1種類の複合体のみを用いることもできるし、2種類以上の複合体を混合して用いることもできる。2種類以上の複合体を用いる場合は、予めそれらを混合したものを用いることもできるし、それぞれを配合・乾燥・成形したものを後から混合することもできる。 In the above-mentioned compounding, drying, and molding, only one type of complex can be used, or two or more types of complexes can be mixed and used. When two or more types of complexes are used, those that are mixed in advance can be used, or those that are mixed, dried, and molded can be mixed later.
 また、複合体の成形物に後からポリマーなどの各種有機物や顔料などの各種無機物を付与しても良い。 Further, various organic substances such as polymers and various inorganic substances such as pigments may be added to the molded product of the complex later.
 本発明品で製造した成形物には印刷を施すことができる。この印刷方法は特に限定されるものではいが、例えば、オフセット印刷、シルクスクリーン印刷、スクリーン印刷、グラビア印刷、マイクログラビア印刷、フレキソ印刷、活版印刷、シール印刷、フォーム印刷、オンデマンド印刷、ファニッシャーロール印刷、インクジェット印刷等の公知の方式で行うことができる。この中でもインクジェト印刷は、オフセット印刷のように版下を作製する必要がなく、インクジェットプリンターの大型化が比較的容易であるため、大型シートへの印刷も可能であるため好ましい。また、フレキソ印刷は表面の凹凸が比較的大きい成形物にも好適に印刷できるため、ボードやモールド、ブロックのような形状に成形した際にも好適に用いることができる。 Printing can be applied to the molded product produced by the product of the present invention. This printing method is not particularly limited, but for example, offset printing, silk screen printing, screen printing, gravure printing, micro gravure printing, flexo printing, typographic printing, sticker printing, form printing, on-demand printing, fanniquet. It can be performed by a known method such as shear roll printing or inkjet printing. Among these, ink jet printing is preferable because it is not necessary to prepare a block copy unlike offset printing, and it is relatively easy to increase the size of an inkjet printer, so that printing on a large sheet is also possible. Further, since flexographic printing can be suitably used for molded products having relatively large surface irregularities, it can also be suitably used when molded into a shape such as a board, a mold, or a block.
 また、印刷によって形成される印刷画像の絵柄の種類は特に限定されるものではなく、例えば木目柄、石目柄、布目柄、抽象柄、幾何学模様、文字、記号、又はこれらの組み合わせ等、所望により任意であり、単色無地であってもよい。 Further, the type of the pattern of the printed image formed by printing is not particularly limited, and for example, a wood grain pattern, a stone grain pattern, a cloth grain pattern, an abstract pattern, a geometric pattern, characters, symbols, or a combination thereof, etc. It is optional, and may be a solid color.
 具体的な実験例を挙げて本発明をより詳細に説明するが、本発明は下記の具体例に限定されるものではない。また、本明細書において特に記載しない限り、濃度や部などは重量基準であり、数値範囲はその端点を含むものとして記載される。 The present invention will be described in more detail with reference to specific experimental examples, but the present invention is not limited to the following specific examples. Further, unless otherwise specified in the present specification, the concentration, parts, etc. are based on weight, and the numerical range is described as including the end points thereof.
 実験1.複合体の合成
 1-1.硫酸Baとセルロース繊維との複合繊維
 (サンプル1、図1)
 1%のパルプスラリー(LBKP、CSF=450mL、平均繊維長:約0.7mm、平均繊維径:約19μm)436gと水酸化バリウム八水和物(日本化学工業)18.8gをスリーワンモーター(500rpm)で混合後、硫酸アルミニウム(硫酸バンド原液、25.8g)を0.4g/minで滴下した。滴下終了後、そのまま30分間攪拌を継続してサンプル1を得た。
Experiment 1. Composite synthesis 1-1. Composite fiber of barium sulfate and cellulose fiber (Sample 1, FIG. 1)
3 One Motor (500 rpm) 1% pulp slurry (LBKP, CSF = 450 mL, average fiber length: about 0.7 mm, average fiber diameter: about 19 μm) 436 g and barium hydroxide octahydrate (Nippon Kagaku Kogyo) 18.8 g ), Then aluminum sulfate (sulfate band stock solution, 25.8 g) was added dropwise at 0.4 g / min. After completion of the dropping, stirring was continued for 30 minutes as it was to obtain Sample 1.
 (サンプル2、図2)
 1.7%のパルプスラリー(LBKP、CSF=450mL、平均繊維長:約0.7mm、平均繊維径:約19μm)533gと水酸化バリウム八水和物(日本化学工業)12.4gをスリーワンモーター(667rpm)で混合後、硫酸アルミニウム(硫酸バンド原液の4倍希釈水溶液、67.2g)を1.1g/minで滴下した。滴下終了後、そのまま30分間攪拌を継続してサンプル2を得た。
(Sample 2, Fig. 2)
Three-One Motor with 1.7% pulp slurry (LBKP, CSF = 450 mL, average fiber length: about 0.7 mm, average fiber diameter: about 19 μm) 533 g and barium hydroxide octahydrate (Nippon Kagaku Kogyo) 12.4 g After mixing at (667 rpm), aluminum sulfate (4-fold diluted aqueous solution of sulfate band stock solution, 67.2 g) was added dropwise at 1.1 g / min. After completion of the dropping, stirring was continued for 30 minutes as it was to obtain Sample 2.
 (サンプル3、図3)
 1%のパルプスラリー(NBKP、CSF=425mL、平均繊維長:約1.7mm、平均繊維径:約26μm)437gと水酸化バリウム八水和物(日本化学工業)18.8gをスリーワンモーター(500rpm)で混合後、硫酸アルミニウム(硫酸バンド原液、26.1g)を0.4g/minで滴下した。滴下終了後、そのまま30分間攪拌を継続してサンプル3を得た。
(Sample 3, Fig. 3)
3 One Motor (500 rpm) 1% pulp slurry (NBKP, CSF = 425 mL, average fiber length: about 1.7 mm, average fiber diameter: about 26 μm) 437 g and barium hydroxide octahydrate (Nippon Kagaku Kogyo) 18.8 g ), Then aluminum sulfate (sulfate band stock solution, 26.1 g) was added dropwise at 0.4 g / min. After completion of the dropping, stirring was continued for 30 minutes as it was to obtain Sample 3.
 (サンプル4、図4)
 1%のパルプスラリー(LBKP、CSF=450mL、平均繊維長:約0.7mm、平均繊維径:約19μm)436gと水酸化バリウム八水和物(日本化学工業)18.8gをスリーワンモーター(500rpm)で混合後、硫酸アルミニウム(硫酸バンド原液、25.8g)を1.0g/minで滴下した。滴下終了後、そのまま30分間攪拌を継続して複合体スラリーを得た。
(Sample 4, Fig. 4)
3 One Motor (500 rpm) 1% pulp slurry (LBKP, CSF = 450 mL, average fiber length: about 0.7 mm, average fiber diameter: about 19 μm) 436 g and barium hydroxide octahydrate (Nippon Kagaku Kogyo) 18.8 g ), Then aluminum sulfate (sulfate band stock solution, 25.8 g) was added dropwise at 1.0 g / min. After completion of the dropping, stirring was continued for 30 minutes as it was to obtain a complex slurry.
 (サンプル5、図5、無機粒子のみ)
 2L容器に水437gと水酸化バリウム八水和物(日本化学工業、18.8g)をスリーワンモーター(500rpm)で混合後、硫酸アルミニウム(硫酸バンド原液、25.8g)を1.0g/minで滴下した。滴下終了後、そのまま30分間攪拌を継続して硫酸バリウム粒子のサンプルを得た。
(Sample 5, Fig. 5, inorganic particles only)
After mixing 437 g of water and barium hydroxide octahydrate (Nippon Chemical Industrial Co., Ltd., 18.8 g) in a 2 L container with a three-one motor (500 rpm), add aluminum sulfate (sulfate band stock solution, 25.8 g) at 1.0 g / min. Dropped. After completion of the dropping, stirring was continued for 30 minutes as it was to obtain a sample of barium sulfate particles.
 (サンプル6、図6、無機粒子とセルロース繊維の混合物)
 1%のパルプスラリー(LBKP、CSF=450mL、平均繊維長:約0.7mm、平均繊維径:約19μm)120gにサンプル6の硫酸バリウム粒子スラリー(濃度3.0%)121gを混合してから水を加えて攪拌し、硫酸バリウムとセルロース繊維の混合スラリーを得た。
(Sample 6, Fig. 6, mixture of inorganic particles and cellulose fibers)
After mixing 121 g of sample 6 barium sulfate particle slurry (concentration 3.0%) with 120 g of 1% pulp slurry (LBKP, CSF = 450 mL, average fiber length: about 0.7 mm, average fiber diameter: about 19 μm). Water was added and stirred to obtain a mixed slurry of barium sulfate and cellulose fibers.
 (サンプル7、図7)
 1%のパルプスラリー(LBKP/NBKP=8/2、平均繊維長:約1.2mm、平均繊維径:約14μm)500gと水酸化バリウム八水和物(富士フイルム和光純薬)5.82gをスリーワンモーター(1000rpm)で混合後、硫酸(富士フイルム和光純薬、2.1g)を0.8g/minで滴下した。滴下終了後、そのまま30分間攪拌を継続して複合体スラリーのサンプルを得た。
(Sample 7, Fig. 7)
500 g of 1% pulp slurry (LBKP / NBKP = 8/2, average fiber length: about 1.2 mm, average fiber diameter: about 14 μm) and 5.82 g of barium hydroxide octahydrate (Fujifilm Wako Pure Chemical Industries, Ltd.) After mixing with a three-one motor (1000 rpm), sulfuric acid (Fujifilm Wako Pure Chemical Industries, Ltd., 2.1 g) was added dropwise at 0.8 g / min. After completion of the dropping, stirring was continued for 30 minutes as it was to obtain a sample of the complex slurry.
 (サンプル8、図8)
 1%のパルプスラリー(LBKP/NBKP=8/2、平均繊維長:約1.2mm、平均繊維径:約14μm)500gと水酸化バリウム八水和物(富士フイルム和光純薬)5.82gをスリーワンモーター(1000rpm)で混合後、硫酸(富士フイルム和光純薬、2.1g)を63.0g/minで滴下した。滴下終了後、そのまま30分間攪拌を継続して複合体スラリーのサンプルを得た。
(Sample 8, Fig. 8)
500 g of 1% pulp slurry (LBKP / NBKP = 8/2, average fiber length: about 1.2 mm, average fiber diameter: about 14 μm) and 5.82 g of barium hydroxide octahydrate (Fujifilm Wako Pure Chemical Industries, Ltd.) After mixing with a three-one motor (1000 rpm), sulfuric acid (Fujifilm Wako Pure Chemical Industries, Ltd., 2.1 g) was added dropwise at 63.0 g / min. After completion of the dropping, stirring was continued for 30 minutes as it was to obtain a sample of the complex slurry.
 (サンプル9、図9)
 1%のパルプスラリー(LBKP/NBKP=8/2、平均繊維長:約1.2mm、平均繊維径:約14μm)500gと水酸化バリウム八水和物(富士フイルム和光純薬)5.82gをスリーワンモーター(1000rpm)で混合後、硫酸(富士フイルム和光純薬、2%水溶液を88g)を8.0g/minで滴下した。滴下終了後、そのまま30分間攪拌を継続して複合体スラリーのサンプルを得た。
(Sample 9, Fig. 9)
500 g of 1% pulp slurry (LBKP / NBKP = 8/2, average fiber length: about 1.2 mm, average fiber diameter: about 14 μm) and 5.82 g of barium hydroxide octahydrate (Fujifilm Wako Pure Chemical Industries, Ltd.) After mixing with a three-one motor (1000 rpm), sulfuric acid (Fujifilm Wako Pure Chemical Industries, Ltd., 2% aqueous solution (88 g)) was added dropwise at 8.0 g / min. After completion of the dropping, stirring was continued for 30 minutes as it was to obtain a sample of the complex slurry.
 (サンプル10、図10)
 1%のパルプスラリー(LBKP/NBKP=8/2、カナダ標準濾水度CSF=約80mL、平均繊維長:1.21mm、500g)と水酸化バリウム八水和物(和光純薬、5.82g)をスリーワンモーター(1000rpm)で撹拌しながら混合後、硫酸(和光純薬、2%水溶液を88g)をペリスターポンプで8g/minで滴下した。滴下終了後、そのまま30分間撹拌を継続してサンプルを得た。電子顕微鏡によって観察したところ、板状の硫酸バリウムが繊維表面に自己定着し、繊維表面を覆っている様子が確認された(硫酸バリウム粒子の一次粒子径:200~1500nm、硫酸バリウム粒子の平均一次粒子径:500nm)。
(Sample 10, FIG. 10)
1% pulp slurry (LBKP / NBKP = 8/2, Canadian standard drainage CSF = about 80 mL, average fiber length: 1.21 mm, 500 g) and barium hydroxide octahydrate (Wako Pure Chemicals, 5.82 g) ) Was mixed with stirring by a three-one motor (1000 rpm), and then sulfuric acid (88 g of Wako pure drug, 2% aqueous solution) was added dropwise at 8 g / min with a perister pump. After completion of the dropping, stirring was continued for 30 minutes as it was to obtain a sample. When observed with an electron microscope, it was confirmed that the plate-shaped barium sulfate self-fixed on the fiber surface and covered the fiber surface (primary particle size of barium sulfate particles: 200 to 1500 nm, average primary of barium sulfate particles). Particle size: 500 nm).
 (サンプル11、図11)
 1%のパルプスラリー(LBKP、CSF=500mL、平均繊維長:約0.7mm、1300g)と水酸化バリウム八水和物(和光純薬、57g)をスリーワンモーター(800rpm)で撹拌しながら混合後、硫酸アルミニウム(硫酸バンド、77g)をペリスターポンプで2g/minで滴下した。滴下終了後、そのまま30分間撹拌を継続してサンプルを得た。電子顕微鏡によって観察したところ、板状の硫酸バリウムが繊維表面に自己定着し、繊維表面を覆っている様子が確認された(硫酸バリウム粒子の一次粒子径:20~800nm、硫酸バリウム粒子の平均一次粒子径:100nm)。
(Sample 11, FIG. 11)
After mixing 1% pulp slurry (LBKP, CSF = 500 mL, average fiber length: about 0.7 mm, 1300 g) and barium hydroxide octahydrate (Wako Pure Chemical, 57 g) with stirring with a three-one motor (800 rpm). , Aluminum sulfate (sulfate band, 77 g) was added dropwise at 2 g / min with a perister pump. After completion of the dropping, stirring was continued for 30 minutes as it was to obtain a sample. When observed with an electron microscope, it was confirmed that the plate-shaped barium sulfate self-fixed on the fiber surface and covered the fiber surface (primary particle size of barium sulfate particles: 20 to 800 nm, average primary of barium sulfate particles). Particle size: 100 nm).
 (サンプル12、図12)
 容器(マシンチェスト、容積:4m)に2%のパルプスラリー(LBKP/NBKP=8/2、CSF=390mL、平均繊維長:約1.3mm、固形分25kg)と水酸化バリウム八水和物(日本化学工業、75kg)を投入して混合後、ペリスターポンプを用いて硫酸アルミニウム(硫酸バンド、98kg)を約500g/minで滴下した。滴下終了後、そのまま30分間撹拌を継続してサンプルを得た。電子顕微鏡によって観察したところ、板状の硫酸バリウムが繊維表面に自己定着し、繊維表面を覆っている様子が確認された(硫酸バリウム粒子の一次粒子径:50~1000nm、硫酸バリウム粒子の平均一次粒子径:80nm)。
(Sample 12, FIG. 12)
2% pulp slurry (LBKP / NBKP = 8/2, CSF = 390 mL, average fiber length: about 1.3 mm, solid content 25 kg) and barium hydroxide octahydrate in a container (machine chest, volume: 4 m 3) (Nippon Chemical Industrial Co., Ltd., 75 kg) was added and mixed, and then aluminum sulfate (sulfate band, 98 kg) was added dropwise at about 500 g / min using a perister pump. After completion of the dropping, stirring was continued for 30 minutes as it was to obtain a sample. When observed with an electron microscope, it was confirmed that the plate-shaped barium sulfate self-fixed on the fiber surface and covered the fiber surface (primary particle size of barium sulfate particles: 50 to 1000 nm, average primary of barium sulfate particles). Particle size: 80 nm).
 1-2.水酸化Alとセルロース繊維との複合繊維
 (サンプルA、図13)
 1%のパルプスラリー(LBKP、CSF=450mL、平均繊維長:約0.7mm、平均繊維径:約19μm)437gと水酸化ナトリウム(富士フイルム和光純薬)4.8gをスリーワンモーター(500rpm)で混合後、硫酸アルミニウム(硫酸バンド原液、25.8g)を0.8g/minで滴下した。滴下終了後、30分間、反応液を撹拌し、約3倍量の水を用いて水洗して塩を除去してサンプルAを得た。
1-2. Composite fiber of Al hydroxide and cellulose fiber (Sample A, FIG. 13)
1% pulp slurry (LBKP, CSF = 450 mL, average fiber length: about 0.7 mm, average fiber diameter: about 19 μm) 437 g and sodium hydroxide (Fujifilm Wako Pure Chemical Industries, Ltd.) 4.8 g with a three-one motor (500 rpm) After mixing, aluminum sulfate (sulfate band stock solution, 25.8 g) was added dropwise at 0.8 g / min. After completion of the dropping, the reaction solution was stirred for 30 minutes and washed with about 3 times the amount of water to remove the salt to obtain Sample A.
 1-3.シリカ/アルミナとセルロース繊維との複合繊維
 (サンプルB、図14)
 0.5%のパルプスラリー(NBKP、CSF:360mL、平均繊維長:約1.7mm、平均繊維径:約18μm)910gを2L容の樹脂製容器に入れ、ラボミキサーで撹拌した(600rpm)。この水性懸濁液に硫酸アルミニウム(硫酸バンド原液)をpH=3.8になるまで約4分間滴下した後、硫酸アルミニウム(硫酸バンド、156g)とケイ酸ナトリウム水溶液(富士フイルム和光純薬、濃度8%、265g)をpH=4を維持するよう同時に約60分間滴下した。滴下にはペリスターポンプを使用し、反応温度は約25℃であった。その後、ケイ酸ナトリウム水溶液のみ(富士フイルム和光純薬、濃度8%、200g)を約80分間滴下し、pH=7.3に調整し、複合体スラリーのサンプルを得た。
1-3. Composite fiber of silica / alumina and cellulose fiber (Sample B, FIG. 14)
910 g of 0.5% pulp slurry (NBKP, CSF: 360 mL, average fiber length: about 1.7 mm, average fiber diameter: about 18 μm) was placed in a 2 L resin container and stirred with a laboratory mixer (600 rpm). Aluminum sulfate (sulfate band stock solution) was added dropwise to this aqueous suspension for about 4 minutes until pH = 3.8, and then aluminum sulfate (sulfate band, 156 g) and an aqueous sodium silicate solution (Fujifilm Wako Pure Chemical Industries, Ltd., concentration) were added. 8%, 265 g) was added dropwise simultaneously for about 60 minutes to maintain pH = 4. A perister pump was used for dropping, and the reaction temperature was about 25 ° C. Then, only the sodium silicate aqueous solution (Fujifilm Wako Pure Chemical Industries, Ltd., concentration 8%, 200 g) was added dropwise for about 80 minutes to adjust the pH to 7.3 to obtain a sample of the complex slurry.
 1-4.ハイドロタルサイトとセルロース繊維との複合繊維
 (サンプルC1、図15)
 ハイドロタルサイト(HT)を合成するための溶液として、MgSO(富士フイルム和光純薬)およびAl(SO(富士フイルム和光純薬)の混合水溶液(酸溶液)を調製した。MgSOの濃度は0.6M、Al(SOの濃度は0.1Mである。
1-4. Composite fiber of hydrotalcite and cellulose fiber (Sample C1, FIG. 15)
As a solution for synthesizing hydrotalcite (HT), a mixed aqueous solution (acid solution) of sulfonyl 4 (Fujifilm Wako Pure Chemical Industries, Ltd.) and Al 2 (SO 4 ) 3 (Fujifilm Wako Pure Chemical Industries, Ltd.) was prepared. The concentration of sulfonyl 4 is 0.6M, and the concentration of Al 2 (SO 4 ) 3 is 0.1M.
 2.0%のパルプスラリー(NBKP、CSF=270mL、平均繊維長:約1.8mm、平均繊維径:約19μm)2250gに水酸化ナトリウム(富士フイルム和光純薬)88.6gと炭酸ナトリウム(富士フイルム和光純薬)を14.8g加え、スリーワンモーター(650rpm)で混合後、50℃に保ちながら酸溶液1362gを4.7g/minで滴下した。滴下終了後、30分間、反応液を撹拌し、約3倍量の水を用いて水洗して塩を除去してサンプルを得た。 2.0% pulp slurry (NBKP, CSF = 270 mL, average fiber length: about 1.8 mm, average fiber diameter: about 19 μm) 2250 g, 88.6 g of sodium hydroxide (Fujifilm Wako Pure Chemical Industries, Ltd.) and sodium carbonate (Fuji) 14.8 g of (Film Wako Pure Chemical Industries, Ltd.) was added, mixed with a three-one motor (650 rpm), and then 1362 g of an acid solution was added dropwise at 4.7 g / min while maintaining the temperature at 50 ° C. After completion of the dropping, the reaction solution was stirred for 30 minutes and washed with about 3 times the amount of water to remove salts to obtain a sample.
 (サンプルC2、図16)
 1.6%のパルプスラリー(NBKP、CSF=690mL、平均繊維長:約1.9mm、平均繊維径:約19μm)2281gに水酸化ナトリウム(富士フイルム和光純薬)88.6gと炭酸ナトリウム(富士フイルム和光純薬)を14.8g加え、スリーワンモーター(650rpm)で混合後、50℃に保ちながら酸溶液1322gを4.6g/minで滴下した。滴下終了後、30分間、反応液を撹拌し、約3倍量の水を用いて水洗して塩を除去した上で、濾紙で吸引脱水してサンプルを得た(固形分濃度:約35%)。
(Sample C2, FIG. 16)
1.6% pulp slurry (NBKP, CSF = 690 mL, average fiber length: about 1.9 mm, average fiber diameter: about 19 μm) 2281 g, sodium hydroxide (Fuji Film Wako Pure Chemical Industries, Ltd.) 88.6 g and sodium carbonate (Fuji) 14.8 g of (Film Wako Pure Chemical Industries, Ltd.) was added, mixed with a three-one motor (650 rpm), and then 1322 g of an acid solution was added dropwise at 4.6 g / min while maintaining the temperature at 50 ° C. After completion of the dropping, the reaction solution was stirred for 30 minutes, washed with water using about 3 times the amount of water to remove salt, and then suction-dehydrated with a filter paper to obtain a sample (solid content concentration: about 35%). ).
 1-5.炭酸カルシウムとセルロース繊維との複合繊維
 (サンプルD1、図17)
 水酸化カルシウム(消石灰:Ca(OH)、100g、富士フイルム和光純薬)と粉末セルロース(KCフロック(商標)W-06MG、日本製紙製、平均粒子径:6μm、100g)を含む水性懸濁液10Lを準備した。この水性懸濁液を、40L容の密閉装置に入れ、反応容器中に炭酸ガスを吹き込んでキャビテーションを発生させ、炭酸ガス法によって炭酸カルシウム微粒子と繊維との複合繊維を合成した。反応温度は約15℃、炭酸ガスは市販の液化ガスを供給源とし、炭酸ガスの吹き込み量は3L/minであり、反応液のpHが約7になった段階で反応を停止した(反応前のpHは約12.8)。
1-5. Composite fiber of calcium carbonate and cellulose fiber (Sample D1, FIG. 17)
Aqueous suspension containing calcium hydroxide (slaked lime: Ca (OH) 2 , 100 g, Fujifilm Wako Pure Chemical Industries, Ltd.) and powdered cellulose (KC Flock ™ W-06MG, manufactured by Nippon Paper Co., Ltd., average particle size: 6 μm, 100 g) 10 L of liquid was prepared. This aqueous suspension was placed in a 40 L volume sealing device, carbon dioxide gas was blown into the reaction vessel to generate cavitation, and composite fibers of calcium carbonate fine particles and fibers were synthesized by the carbon dioxide gas method. The reaction temperature was about 15 ° C., the carbon dioxide gas was supplied from a commercially available liquefied gas, the amount of carbon dioxide gas blown was 3 L / min, and the reaction was stopped when the pH of the reaction solution reached about 7 (before the reaction). The pH of is about 12.8).
 複合繊維の合成においては、反応溶液を循環させて反応容器内に噴射することよって、反応容器内にキャビテーション気泡を発生させた。具体的には、ノズル(ノズル径:1.5mm)を介して高圧で反応溶液を噴射してキャビテーション気泡を発生させた。噴流速度は約70m/sであり、入口圧力(上流圧)は7MPa、出口圧力(下流圧)は0.3MPaだった。 In the synthesis of composite fibers, cavitation bubbles were generated in the reaction vessel by circulating the reaction solution and injecting it into the reaction vessel. Specifically, the reaction solution was injected at high pressure through a nozzle (nozzle diameter: 1.5 mm) to generate cavitation bubbles. The jet velocity was about 70 m / s, the inlet pressure (upstream pressure) was 7 MPa, and the outlet pressure (downstream pressure) was 0.3 MPa.
 (サンプルD2、図18)
 用いる粉末セルロースをW-100G(日本製紙製、平均粒子径:37μm)とし、炭酸ガスの吹き込み量を20L/minとした以外は、サンプルD1と同様にして複合繊維を合成した。
(Sample D2, FIG. 18)
Composite fibers were synthesized in the same manner as in Sample D1 except that the powdered cellulose used was W-100G (manufactured by Nippon Paper Industries, average particle size: 37 μm) and the amount of carbon dioxide gas blown was 20 L / min.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実験2.複合体サンプルの評価
 2-1.被覆率などの評価
 得られた複合体サンプルをそれぞれエタノールで洗浄後、電子顕微鏡によって観察をした。その結果、いずれのサンプルにおいても繊維表面を無機物質が覆い、自己定着している様子が観察された。各複合体サンプルの被覆率を表に示すが、いずれも被覆率は15%以上だった。
Experiment 2. Evaluation of complex sample 2-1. Evaluation of coverage, etc. Each of the obtained complex samples was washed with ethanol and then observed with an electron microscope. As a result, it was observed that the fiber surface was covered with an inorganic substance and self-fixed in all the samples. The coverage of each complex sample is shown in the table, and the coverage was 15% or more in each case.
 また、得られた複合繊維のスラリー(固形分換算で3g)を濾紙で吸引濾過した後、残渣をオーブンで乾燥し(105℃、2時間)、灰分を測定することによって、複合繊維における無機粒子の重量比率を測定した。 Further, after suction-filtering the obtained composite fiber slurry (3 g in terms of solid content) with a filter paper, the residue is dried in an oven (105 ° C., 2 hours), and the ash content is measured to measure the inorganic particles in the composite fiber. The weight ratio of was measured.
 繊維の平均繊維長と平均繊維径は、Valmet Fractionatorで測定した値を繊維長として記載した。繊維長を測定する際には、スラリーの固形分濃度を0.1~0.3%に調製し、装置内の水温が25℃±1℃になるよう調整して測定した。 For the average fiber length and average fiber diameter of the fibers, the values measured by Valmet Fractionator are described as the fiber length. When measuring the fiber length, the solid content concentration of the slurry was adjusted to 0.1 to 0.3%, and the water temperature in the apparatus was adjusted to 25 ° C. ± 1 ° C. for the measurement.
 2-2.篩分け/自動分級による評価
 <複合体サンプルの篩分け>
 合成したスラリー中の粗大な粒子を除去するために、メッシュフィルターによるろ過を行った。得られた複合体サンプル(固形分換算で1g)を固形分濃度が0.1%となるように水で希釈し、懸濁液0.2リットルを、60メッシュ(目開き250μm)の篩ですべて濾過し、0.6リットルの水で洗浄した。次いで、濾過後の濾液について、湿式法にて粒度分布(マスターサイザー3000、Malvern社製)を測定した。
2-2. Evaluation by sieving / automatic classification <Sieving of complex samples>
Filtration with a mesh filter was performed to remove coarse particles in the synthesized slurry. The obtained complex sample (1 g in terms of solid content) was diluted with water so that the solid content concentration was 0.1%, and 0.2 liter of the suspension was sieved through a 60 mesh (opening 250 μm) sieve. All were filtered and washed with 0.6 liters of water. Next, the particle size distribution (Mastersizer 3000, manufactured by Malvern) was measured for the filtered filtrate after filtration by a wet method.
 <複合体サンプルの自動分級>
 また、篩分けとは別に、サンプルを一定条件で自動的に複数の画分に分級する方法として、繊維分級分析装置(Valmet Fractionator)を用いた。この装置は、パルプスラリーを長さ100mほどのチューブに等温等速で流し、流体力学的大きさに準じて長繊維から微細繊維/填料に分離した後、流出時間によって自動で5つのフラクション(FR1~3:長・短繊維、FR4~5:微細繊維/填料)に分級できる装置である。
<Automatic classification of complex samples>
In addition to sieving, a fiber classification analyzer (Valmet Fractionator) was used as a method for automatically classifying a sample into a plurality of fractions under certain conditions. This device flows pulp slurry into a tube with a length of about 100 m at a constant temperature and constant velocity, separates long fibers into fine fibers / fillers according to the hydrodynamic size, and then automatically performs five fractions (FR1) according to the outflow time. ~ 3: Long / short fiber, FR4 ~ 5: Fine fiber / filler).
 具体的には、複合体サンプル(固形分換算で3g)を固形分濃度が0.3%となるように水で希釈し、約250gずつ3回に分けて繊維分級分析装置に流し、以下の流出条件で分画した画分を回収した(分級時の水温25±1℃)。 Specifically, the complex sample (3 g in terms of solid content) was diluted with water so that the solid content concentration was 0.3%, and about 250 g each was poured into a fiber classification analyzer in 3 portions. Fractions fractionated under the outflow conditions were collected (water temperature at the time of classification 25 ± 1 ° C.).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 回収したFR4について、バケツに数時間静置して繊維分を沈降させ、上清を除いた後に湿式法にて粒度分布(マスターサイザー3000、Malvern製)を測定した。 The recovered FR4 was allowed to stand in a bucket for several hours to allow the fibers to settle, and after removing the supernatant, the particle size distribution (Mastersizer 3000, manufactured by Malvern) was measured by a wet method.
 <粒度分布>
 上記のようにして測定した体積基準の粒度分布におけるD10(累積10%の粒子径)およびD50(累積50%の粒子径)から、「(D50-D10)/D50」の数値を算出した。この値が小さいほどサンプルの粒度分布が狭いことを意味しており、繊維表面に無機物が強固に定着していることを示す。
<Particle size distribution>
The numerical value of "(D50-D10) / D50" was calculated from D10 (cumulative particle size of 10%) and D50 (cumulative particle size of 50%) in the volume-based particle size distribution measured as described above. The smaller this value is, the narrower the particle size distribution of the sample is, which means that the inorganic substance is firmly fixed on the fiber surface.
 2-3.シート化における歩留評価
 得られた複合体サンプル(サンプル1~12およびサンプルA)から、JIS P 8222:2015に準じて150メッシュのワイヤーを用いて坪量100g/mとなるよう手抄きシートを作製し、得られたシートの坪量から紙料歩留を算出した。
〇:70%以上
△:50%以上70%未満
×:50%未満
2-3. Yield evaluation in sheeting From the obtained composite samples (Samples 1 to 12 and Sample A), hand-cut to a basis weight of 100 g / m 2 using a 150 mesh wire according to JIS P 8222: 2015. A sheet was prepared, and the paper yield was calculated from the basis weight of the obtained sheet.
〇: 70% or more Δ: 50% or more and less than 70% ×: less than 50%
 2-4.濾水性の評価
 得られた複合体サンプル(サンプル1~12およびサンプルA)を固形分濃度が0.1%となるように水で希釈し、全固形分のうち、無機物の固形分が0.15gとなるように調製したスラリーを20mmHgの減圧下でメンブレンフィルター(0.8μm)に通したときの通過時間を測定した。
◎:2分未満
〇:2分以上4分未満
△:4分以上6分未満
×:6分以上
2-4. Evaluation of drainage The obtained complex samples (Samples 1 to 12 and Sample A) were diluted with water so that the solid content concentration was 0.1%, and the solid content of the inorganic substance was 0. The transit time when the slurry prepared to be 15 g was passed through a membrane filter (0.8 μm) under a reduced pressure of 20 mmHg was measured.
⊚: Less than 2 minutes 〇: 2 minutes or more and less than 4 minutes △: 4 minutes or more and less than 6 minutes ×: 6 minutes or more
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表から明らかなように、分級後の濾液のD50が比較的大きい複合繊維サンプル1~3および9は、サンプル4~8と比較して、シート化時の歩留が高いことがわかった。これは、シートに機能性無機粒子を高配合できることを示しており、生産効率が良いことに加え、シートの機能性品質の点においても優れていると言える。 As is clear from the table, it was found that the composite fiber samples 1 to 3 and 9 having a relatively large D50 of the filtrate after classification had a higher yield at the time of sheeting as compared with the samples 4 to 8. This indicates that functional inorganic particles can be highly blended in the sheet, and it can be said that the sheet is excellent in terms of functional quality in addition to high production efficiency.
 また、同等量の無機粒子を配合したシートを作製する場合を想定した濾水性の評価において、複合繊維サンプル1~3および9は、複合繊維サンプル4、7、8、10~12、無機粒子のみのサンプル5および混合体サンプル6と比較して脱水速度が速いことがわかった。これは、複合繊維サンプル1~3および9では、濾水性に影響を与える微細粒子が比較的少ないためと考えられる。濾水性が良好であると、乾燥工程の短縮・緩和することが出来るため、シートなどを製造する際の生産性向上(断紙頻度減、抄速アップ)につながり、特に厚物シートを製造する場合に効果が大きいと言える。
 
Further, in the evaluation of drainage assuming the case of producing a sheet containing the same amount of inorganic particles, the composite fiber samples 1 to 3 and 9 are only the composite fiber samples 4, 7, 8, 10 to 12, and the inorganic particles. It was found that the dehydration rate was faster than that of Sample 5 and Mixture Sample 6. It is considered that this is because the composite fiber samples 1 to 3 and 9 have relatively few fine particles that affect the drainage. If the drainage is good, the drying process can be shortened and alleviated, which leads to an improvement in productivity (reducing the frequency of paper breaks and increasing the speed of paper making) when manufacturing sheets, and particularly thick sheets are manufactured. It can be said that the effect is great in some cases.

Claims (9)

  1.  セルロース繊維と無機粒子の複合繊維を製造する方法であって、
     セルロース繊維を含む溶液において無機粒子を合成して複合繊維を得る工程と、
     下記の(a)または(b):
    (a) 固形分濃度0.1%の複合繊維の水性懸濁液を、60メッシュ(目開き250μm)の篩で濾過処理した濾液、
    (b) 固形分濃度0.3%の複合繊維の水性懸濁液を、流速5.7L/min、水温25±1℃、全流出量22Lの条件で繊維分級分析装置を用いて分級処理したときの、流出量(L)18.51~19.50、流出時間(sec)37.4~48.0に相当する画分、
    の粒度分布を測定して(D50-D10)/D50を算出すること、
    を含む、上記方法。
    A method for producing composite fibers of cellulose fibers and inorganic particles.
    The process of synthesizing inorganic particles in a solution containing cellulose fibers to obtain composite fibers,
    The following (a) or (b):
    (A) A filtrate obtained by filtering an aqueous suspension of composite fibers having a solid content concentration of 0.1% with a sieve of 60 mesh (opening 250 μm).
    (B) An aqueous suspension of composite fibers having a solid content concentration of 0.3% was classified using a fiber classification analyzer under the conditions of a flow rate of 5.7 L / min, a water temperature of 25 ± 1 ° C., and a total outflow of 22 L. Fractions corresponding to the outflow amount (L) 18.51 to 19.50 and the outflow time (sec) 37.4 to 48.0.
    To calculate (D50-D10) / D50 by measuring the particle size distribution of
    The above method, including.
  2.  (D50-D10)/D50が0.85以下となるように複合繊維の水性懸濁液を調整する、請求項1に記載の方法。 The method according to claim 1, wherein the aqueous suspension of the composite fiber is prepared so that (D50-D10) / D50 is 0.85 or less.
  3.  前記複合繊維の平均繊維径が、500nm以上である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the average fiber diameter of the composite fiber is 500 nm or more.
  4.  前記無機粒子が、カルシウム、マグネシウム、バリウムあるいはアルミニウムの金属塩、チタン、銅あるいは亜鉛を含む金属粒子、またはケイ酸塩を含む、請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the inorganic particles contain a metal salt of calcium, magnesium, barium or aluminum, metal particles containing titanium, copper or zinc, or a silicate.
  5.  請求項1~4のいずれか方法により得られた複合繊維からシートを形成させる工程を含む、複合繊維シートの製造方法。 A method for producing a composite fiber sheet, which comprises a step of forming a sheet from the composite fiber obtained by any of the methods 1 to 4.
  6.  セルロース繊維と無機粒子の複合繊維であって、下記の(a)または(b):
    (a) 固形分濃度0.1%の複合繊維の水性懸濁液を、60メッシュ(目開き250μm)の篩で濾過処理したときの濾液
    (b) 固形分濃度0.3%の複合繊維の水性懸濁液を、流速5.7L/min、水温25±1℃、全流出量22Lの条件で繊維分級分析装置を用いて分級処理したときの、流出量(L)18.51~19.50、流出時間(sec)37.4~48.0に相当する画分、
    の粒度分布から算出した(D50-D10)/D50の数値が0.85以下である、上記複合繊維。
    It is a composite fiber of a cellulose fiber and an inorganic particle, and is described in (a) or (b) below:
    (A) A filtrate obtained by filtering an aqueous suspension of a composite fiber having a solid content concentration of 0.1% with a sieve having a solid content of 0.3% (b) of a composite fiber having a solid content concentration of 0.3%. When the aqueous suspension was classified using a fiber classification analyzer under the conditions of a flow rate of 5.7 L / min, a water temperature of 25 ± 1 ° C., and a total runoff of 22 L, the runoff (L) 18.51-19. 50, Fraction corresponding to outflow time (sec) 37.4-48.0,
    The composite fiber having a value of (D50-D10) / D50 calculated from the particle size distribution of 0.85 or less.
  7.  固形分濃度0.1%の複合繊維の水性懸濁液を、60メッシュ(目開き250μm)の篩で処理して篩を通過する、セルロース繊維と無機粒子の複合繊維であって、
     当該篩を通過した濾液の粒度分布から算出した(D50-D10)/D50の数値が0.85以下である、上記複合繊維。
    A composite fiber of cellulose fibers and inorganic particles obtained by treating an aqueous suspension of a composite fiber having a solid content concentration of 0.1% with a sieve of 60 mesh (opening 250 μm) and passing through the sieve.
    The composite fiber having a (D50-D10) / D50 value of 0.85 or less calculated from the particle size distribution of the filtrate that has passed through the sieve.
  8.  固形分濃度0.3%の複合繊維の水性懸濁液を、流速5.7L/min、水温25±1℃、全流出量22Lの条件で繊維分級分析装置を用いて分級処理し、流出量(L)18.51~19.50、流出時間(sec)37.4~48.0に相当する画分から得られる、セルロース繊維と無機粒子の複合繊維であって、
     当該画分の粒度分布から算出した(D50-D10)/D50の数値が0.85以下である、上記複合繊維。
    An aqueous suspension of composite fibers having a solid content concentration of 0.3% was classified using a fiber classification analyzer under the conditions of a flow rate of 5.7 L / min, a water temperature of 25 ± 1 ° C., and a total outflow amount of 22 L, and the outflow amount was obtained. (L) 18.51 to 19.50, a composite fiber of cellulose fibers and inorganic particles obtained from a fraction corresponding to an outflow time (sec) of 37.4 to 48.0.
    The composite fiber having a value of (D50-D10) / D50 calculated from the particle size distribution of the fraction of 0.85 or less.
  9.  セルロース繊維と無機粒子の複合繊維を分析する方法であって、下記の(a)または(b):
    (a) 固形分濃度0.1%の複合繊維の水性懸濁液を、60メッシュ(目開き250μm)の篩で濾過処理したときの濾液
    (b) 固形分濃度0.3%の複合繊維の水性懸濁液を、流速5.7L/min、水温25±1℃、全流出量22Lの条件で繊維分級分析装置を用いて分級処理したときの、流出量(L)18.51~19.50、流出時間(sec)37.4~48.0に相当する画分、
    の粒度分布を測定し、(D50-D10)/D50を算出する工程を含む、上記方法。
     
    A method for analyzing a composite fiber of cellulose fibers and inorganic particles, wherein the following (a) or (b):
    (A) A filtrate obtained by filtering an aqueous suspension of a composite fiber having a solid content concentration of 0.1% with a sieve having a solid content of 0.3% (b) of a composite fiber having a solid content concentration of 0.3%. When the aqueous suspension was classified using a fiber classification analyzer under the conditions of a flow rate of 5.7 L / min, a water temperature of 25 ± 1 ° C., and a total runoff of 22 L, the runoff (L) 18.51-19. 50, Fraction corresponding to outflow time (sec) 37.4-48.0,
    The above method comprising the step of measuring the particle size distribution of (D50-D10) / D50 and calculating (D50-D10) / D50.
PCT/JP2020/033627 2019-09-06 2020-09-04 Composite fiber comprising cellulose fiber and inorganic particles, and manufacturing method for same WO2021045198A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/636,278 US20220290373A1 (en) 2019-09-06 2020-09-04 Complex fibers of cellulose fibers with inorganic particles and processes for preparing them
EP20861180.6A EP4026946A4 (en) 2019-09-06 2020-09-04 Composite fiber comprising cellulose fiber and inorganic particles, and manufacturing method for same
CN202080053008.8A CN114144553A (en) 2019-09-06 2020-09-04 Composite fiber of cellulose fiber and inorganic particle and method for producing same
JP2020567177A JP7123178B2 (en) 2019-09-06 2020-09-04 Composite fiber of cellulose fiber and inorganic particles and method for producing the same
JP2022109386A JP2022133416A (en) 2019-09-06 2022-07-07 Composite fiber of cellulose fiber and inorganic particle, and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-163073 2019-09-06
JP2019163073 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021045198A1 true WO2021045198A1 (en) 2021-03-11

Family

ID=74853270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033627 WO2021045198A1 (en) 2019-09-06 2020-09-04 Composite fiber comprising cellulose fiber and inorganic particles, and manufacturing method for same

Country Status (5)

Country Link
US (1) US20220290373A1 (en)
EP (1) EP4026946A4 (en)
JP (2) JP7123178B2 (en)
CN (1) CN114144553A (en)
WO (1) WO2021045198A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023192172A1 (en) * 2022-03-31 2023-10-05 Specialty Minerals (Michigan) Inc. Composite fibers and methods of making the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679220A (en) 1995-01-19 1997-10-21 International Paper Company Process for enhanced deposition and retention of particulate filler on papermaking fibers
WO2015152283A1 (en) * 2014-03-31 2015-10-08 日本製紙株式会社 Calcium-carbonate-microparticle/fiber composite and manufacturing method therefor
WO2018180699A1 (en) * 2017-03-31 2018-10-04 日本製紙株式会社 Method for manufacturing inorganic particle composite fiber sheet
WO2018198884A1 (en) * 2017-04-27 2018-11-01 日本製紙株式会社 Method for producing inorganic particle composite fibers
WO2019065270A1 (en) * 2017-09-27 2019-04-04 日本製紙株式会社 Multilayer sheet, and method for producing same
WO2019159943A1 (en) * 2018-02-13 2019-08-22 日本製紙株式会社 Flame-retardant composite fiber and method for producing same
WO2019163659A1 (en) * 2018-02-21 2019-08-29 日本製紙株式会社 Fiber composite and method for manufacturing same
WO2019203344A1 (en) * 2018-04-20 2019-10-24 日本製紙株式会社 Composite fiber of cellulose fiber and inorganic particles, and manufacturing method for same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20105128A (en) * 2010-02-10 2011-08-11 Kemira Oyj Process for making a pigment-fiber composite
EP2609250B1 (en) * 2010-08-25 2016-08-17 Solenis Technologies Cayman, L.P. Method for increasing the advantages of starch in pulped cellulosic material in the production of paper and paperboard
WO2017043585A1 (en) * 2015-09-08 2017-03-16 日本製紙株式会社 Complex of calcium phosphate particles and fibers, and method for producing said complex
US11339529B2 (en) * 2015-09-30 2022-05-24 Nippon Paper Industries Co., Ltd. Complexes of cellulose fibers and inorganic particles
CA3032385A1 (en) * 2016-08-10 2018-02-15 Nippon Paper Industries Co., Ltd. Complexes of hydrotalcites and fibers
CN110023558A (en) * 2016-11-28 2019-07-16 日本制纸株式会社 The complex of fiber and inorganic particulate
CN107605387B (en) * 2017-08-17 2020-10-30 东华大学 Ultraviolet-proof nanofiber composite screen window and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679220A (en) 1995-01-19 1997-10-21 International Paper Company Process for enhanced deposition and retention of particulate filler on papermaking fibers
WO2015152283A1 (en) * 2014-03-31 2015-10-08 日本製紙株式会社 Calcium-carbonate-microparticle/fiber composite and manufacturing method therefor
WO2018180699A1 (en) * 2017-03-31 2018-10-04 日本製紙株式会社 Method for manufacturing inorganic particle composite fiber sheet
WO2018198884A1 (en) * 2017-04-27 2018-11-01 日本製紙株式会社 Method for producing inorganic particle composite fibers
WO2019065270A1 (en) * 2017-09-27 2019-04-04 日本製紙株式会社 Multilayer sheet, and method for producing same
WO2019159943A1 (en) * 2018-02-13 2019-08-22 日本製紙株式会社 Flame-retardant composite fiber and method for producing same
WO2019163659A1 (en) * 2018-02-21 2019-08-29 日本製紙株式会社 Fiber composite and method for manufacturing same
WO2019203344A1 (en) * 2018-04-20 2019-10-24 日本製紙株式会社 Composite fiber of cellulose fiber and inorganic particles, and manufacturing method for same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023192172A1 (en) * 2022-03-31 2023-10-05 Specialty Minerals (Michigan) Inc. Composite fibers and methods of making the same

Also Published As

Publication number Publication date
US20220290373A1 (en) 2022-09-15
CN114144553A (en) 2022-03-04
JPWO2021045198A1 (en) 2021-09-27
JP7123178B2 (en) 2022-08-22
EP4026946A1 (en) 2022-07-13
EP4026946A4 (en) 2023-08-30
JP2022133416A (en) 2022-09-13

Similar Documents

Publication Publication Date Title
JP6820971B2 (en) Fiber composite and its manufacturing method
WO2017057154A1 (en) Compound material of cellulose fibers and inorganic particles
WO2019159943A1 (en) Flame-retardant composite fiber and method for producing same
JP6833699B2 (en) Complex of calcium phosphate fine particles and fiber, and its manufacturing method
JP2021011674A (en) Composite fibers of cellulose fibers and inorganic particles and manufacturing method thereof
JP2018119220A (en) Processed paper
JP6778788B2 (en) Manufacturing method of inorganic particle composite fiber sheet
JP7065563B2 (en) Flame-retardant material
JP2019137948A (en) Flame resistant composite fiber and manufacturing method therefor
JP6843641B2 (en) Radiation blocking material
JP2020165058A (en) Manufacturing method of composite
JP2017066578A (en) Composite of barium sulfate and filament and production method thereof
WO2021045198A1 (en) Composite fiber comprising cellulose fiber and inorganic particles, and manufacturing method for same
JP2019049063A (en) Composite fiber of metal ferrocyanide compound and fiber and method for producing the same
JP2021025177A (en) Flame-retardant composite fiber and method for producing the same
JP2021025003A (en) Flame-retardant composite fiber and method for producing the same
JP2018090939A (en) Complex of fiber and inorganic particle
JP2021025181A (en) Flame-retardant composite fiber and method for producing the same
JP2021075599A (en) Flame-retardant material containing composite fiber and method for producing the same
WO2021054312A1 (en) Granules containing composite fibers composed of fibers and inorganic particles
JP2021161561A (en) Method for preparing composite fiber of cellulose fiber and inorganic particle
JP2022156677A (en) Method for storing composite fibers of fibers and inorganic particles
JP2023150971A (en) Preparation method of composite fiber of cellulose fiber and inorganic particle
JP2022097493A (en) Flame-retardant material
JP2022056827A (en) Wastewater treatment method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020567177

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020861180

Country of ref document: EP

Effective date: 20220406