WO2021036458A1 - 一种自循环高效生物脱氮装置及其工作方法 - Google Patents
一种自循环高效生物脱氮装置及其工作方法 Download PDFInfo
- Publication number
- WO2021036458A1 WO2021036458A1 PCT/CN2020/098067 CN2020098067W WO2021036458A1 WO 2021036458 A1 WO2021036458 A1 WO 2021036458A1 CN 2020098067 W CN2020098067 W CN 2020098067W WO 2021036458 A1 WO2021036458 A1 WO 2021036458A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zone
- sludge
- area
- aerobic
- water
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
- C02F3/305—Nitrification and denitrification treatment characterised by the denitrification
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/006—Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/301—Aerobic and anaerobic treatment in the same reactor
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/308—Biological phosphorus removal
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F2001/007—Processes including a sedimentation step
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2203/00—Apparatus and plants for the biological treatment of water, waste water or sewage
- C02F2203/006—Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/20—Activated sludge processes using diffusers
- C02F3/208—Membrane aeration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the invention relates to the fields of environmental protection and sewage treatment, and more specifically, it is suitable for the denitrification and dephosphorization of domestic sewage with a low carbon to nitrogen ratio, and relates to a self-circulating high-efficiency biological denitrification device and a working method thereof.
- Nitrogen and phosphorus are the main factors that cause eutrophication of water bodies.
- the mainstream treatment processes such as: A/O process, A 2 /O process, OD series and SBR series, and various biofilm processes and membrane bioreactor processes are all It is necessary to create a suitable dissolved oxygen environment, cultivate dominant microbial flora, and design an economical reflux ratio to achieve the effect of biological denitrification and denitrification.
- the prior art denitrification reaction generally adopts a combination of a denitrification reactor and a secondary settling tank in series.
- Both the circulating water pipe and the circulating mud pipe of the reactor are equipped with a circulating pump, or a water pump is used for reflux, which is a traditional method and does not save energy.
- the denitrification reactor of the reactor requires the maintenance of a micro-oxygen environment, and the dissolved oxygen is controlled at 0.6-0.8 mg/L.
- the accuracy of the existing instruments is difficult to control, and the aeration and stirring strength is insufficient, and sludge sludge is inevitable.
- the Chinese patent with the publication number CN106242050B discloses a vertical internal circulation integrated sewage treatment equipment, which includes a stripping zone, an aerobic zone, an anoxic zone and an anaerobic zone arranged in sequence from top to bottom.
- the above-mentioned scheme will be anaerobic.
- Anoxic, aerobic and sedimentation reactors with different functions are stacked vertically, and a three-phase separator is installed in the anaerobic zone and anoxic zone, and a circulating pump is installed between the three-phase separator and the bottom of the anaerobic zone.
- a gas stripping zone is set on the top of the aerobic, and a packing zone is set on the top of the sloping plate sedimentation zone.
- the above scheme still uses the existing conventional technology of circulating pump water circulation, which is more energy-consuming.
- this technology has the following problems: in order to ensure that the sludge in the anaerobic zone and anoxic zone is in suspension, it is necessary to increase the internal reactor
- the rising flow rate can increase the slenderness ratio of the reactor or increase the internal circulation in order to maintain a certain rising flow rate. If the slenderness ratio is increased, potential safety hazards will increase; if the internal circulation is increased, energy consumption will increase.
- the ceramsite filler layer is arranged above the inclined plate layer, which is very easy to block. The patented technology does not mention countermeasures to delay the blockage of the filler.
- the purpose of the present invention is to provide a self-circulating high-efficiency biological denitrification device and its working method, which have the advantages of more abundant biological flow, full utilization of carbon sources in sewage, and use of residual pressure of aeration to return and save energy.
- a self-circulating high-efficiency biological denitrification device including a tank body, the tank body is arranged with aerobic zone, anoxic zone, and sedimentation tank water distribution from bottom to top. Zone, sludge zone, mud-water separation zone and effluent steady flow zone, the aerobic zone and the anoxic zone are located on the same level, the aerobic zone is located inside the anoxic zone, the aerobic zone and the anoxic zone are provided A vertical intermediate partition wall, the bottom of the intermediate partition wall is provided with a through hole;
- the water distribution area of the sedimentation tank includes a sedimentation tank water inlet diversion tube located in the center of the tank body.
- a water distributor is arranged between the bottom of the sedimentation tank water inlet diversion tube and the top of the aerobic zone, and the water distributor is round. Butterfly-shaped jet water distributor;
- the water distributor includes a water inlet pipe connected to the outside of the pool body and a plurality of groups of water distribution pipes distributed in a divergent shape, and each group of the water distribution pipes passes through the intermediate partition wall;
- the inlet diversion cylinder of the sedimentation tank is connected with baffles distributed in the aerobic zone, anaerobic zone, and sludge zone.
- the baffles are used for three-phase separation and return flow.
- the baffles include three In the section, the top plate is inclined to separate the water distribution area and the aerobic area of the sedimentation tank.
- the middle section of the inclined plate separates the sedimentation tank sludge bucket and the anoxic area, and the angle with the horizontal plane is 55°.
- Backflow joint the sludge area is located on the upper part of the inclined plate in the middle section of the deflector, and there is a sludge backflow joint between the vertical section and the outer wall of the tank;
- the bottom of the aerobic zone is provided with an aerator for providing backflow power, and the aerator is connected with an air inlet pipe located outside the tank body.
- the aerator realizes the backflow of the nitrated liquid through the exhaust pressure of the aeration.
- the aerator realizes the return of sludge through negative pressure suction formed by aeration.
- the sewage is evenly distributed to the anoxic zone through the water distributor, and is fully mixed with the returning nitrification liquid in the aerobic zone through the aerator at the bottom of the aerobic zone, and denitrification and denitrification occurs in the anoxic zone.
- the top of the aerobic zone and the anoxic zone form a nitrification liquid return seam through the deflector.
- the return power is the tail gas from the aeration in the aerobic zone.
- the anoxic zone and the sludge zone form a sludge return seam through the deflector.
- the return power is good.
- the negative pressure suction formed by aeration in the oxygen zone causes the sludge to accumulate in the sludge zone.
- the top plate of the deflector and the horizontal plane are set at an angle.
- the angle between the inclined plate of the middle section of the baffle and the horizontal plane is set to be 15°
- the length of the vertical section of the baffle is set to 30cm
- the gap between the outer wall of the baffle and the outer wall of the reactor is set to 3cm.
- an outlet weir is provided on the top edge of the outlet steady flow zone, the outlet weir communicates with an outlet pipe located outside the pool, and the top of the deflector is vertically connected with an air guide tube, and the air guide tube is positioned on the pool body A vent cap is connected to the outside.
- the nitrogen and the exhaust gas after being used in the aerobic zone are released through the air duct, and the air duct is matched with the vent cap to release denitrified nitrogen and the exhaust gas after being used in the aeration zone to prevent the reactor from generating air resistance.
- suspended fillers of optional materials are arranged in the aerobic zone, and the dosage ratio is 50% to 70%.
- the material of the suspended filler selected in the embodiment is polyurethane, the specific surface area reaches 20,000 square meters/m 3 , and the dosage ratio is 15%.
- a filler is arranged in the mud-water separation zone, and the filler is set as an inclined tube or an inclined plate.
- the installation angle of the inclined tube or the inclined plate is 65° ⁇ 70°, and the height is 1.0m ⁇ 1.2m.
- the aerator is a single-hole membrane aerator, and the installation density is 36-64 per square meter.
- the air distribution pipe and the water distribution pipe are made of ABS or UPVC plastic hard pipes;
- the single-hole membrane aerator is made of ABS, which is composed of upper pipe clamps, lower pipe clamps, single-hole membranes, ABS fixed adjustment brackets, etc. composition.
- the pool body material is reinforced concrete, anticorrosive carbon steel, stainless steel plate or plastic plate.
- pool body materials of multiple materials are suitable for different environments and needs.
- the shape of the pool body may be a cylinder, a rectangular parallelepiped, or a cube, and the top view shape of the baffle matches the top view shape of the pool body.
- the pool body shapes of various shapes are suitable for different environments and assembly processing requirements.
- a working method of a self-circulating high-efficiency biological denitrification device includes the steps:
- Sewage distributes water evenly to the anoxic zone through the water distributor, passes through the aerator at the bottom of the aerobic zone, and fully mixes with the return nitrification liquid in the aerobic zone, and denitrification and denitrification occurs in the anoxic zone. After the aerobic zone is used, the exhaust gas is released through the air duct;
- the anoxic zone and the sludge zone form a sludge return seam through the deflector, and the return power is the negative pressure suction formed by aeration in the aerobic zone;
- the sludge accumulates in the sludge area, is filtered by the oblique filler in the mud-water separation area, and drains through the outlet pipe with the steady flow area of the effluent.
- the present invention has lower energy consumption, and the device design utilizes the basic principles of fluid mechanics to realize the return of nitrified liquid and sludge without a return pump, thereby saving energy consumption;
- the present invention adopts a single-hole membrane aerator, aeration is more uniform, the utilization rate of oxygen is improved, the amount of air supply is reduced, and energy consumption is saved;
- the present invention uses a mud-membrane dual system to treat sewage.
- the sludge age of the sludge system is controlled within 5 days, which is conducive to biological phosphorus removal.
- the sludge age of the membrane system is generally about 15 days (aging biofilm will automatically fall off). Conducive to nitration reaction;
- the sedimentation zone is superimposed on the upper part of the bioreactor to reduce the area occupied.
- the structure reduces the restriction on the sludge reflux ratio. The same situation can reduce the width of the reflux slot and reduce the volume.
- Figure 1 is a schematic diagram of the overall structure of this embodiment
- Figure 2 is an upper schematic diagram of the overall structure of this embodiment
- Figure 3 is a schematic diagram of the middle of this embodiment
- Figure 4 is a schematic diagram of the bottom structure of this embodiment.
- a self-circulating high-efficiency biological denitrification device includes a pool body, the pool body material is reinforced concrete, anticorrosive carbon steel, stainless steel plate or plastic plate.
- the shape of the pool body can be a cylinder, a rectangular parallelepiped, and a cube, and the top view shape of the baffle matches the top view shape of the pool body.
- a cylindrical pool body is used, and the top view is circular.
- the tank body is arranged with aerobic zone, anoxic zone, sedimentation tank water distribution zone, sludge zone, mud-water separation zone and steady flow zone from bottom to top.
- the aerobic zone and anoxic zone are located in At the same level, the aerobic zone is located inside the hypoxic zone.
- the aerobic zone and the hypoxic zone are provided with vertical intermediate partition walls.
- the bottom of the intermediate partition wall is provided with through holes.
- the water distribution area of the sedimentation tank includes the sediment located in the center of the tank. There is a water distributor between the bottom of the water inlet diversion cylinder of the sedimentation tank and the top of the aerobic zone.
- the water distributor is a circular butterfly jet water distributor, which is made of glass fiber reinforced plastic, carbon steel (anti-corrosion) or stainless steel.
- the water distributor includes a water inlet pipe connected to the outside of the pool body and multiple sets of water distributors.
- the water distribution pipes are distributed in a diffusive manner. Each group of water distribution pipes passes through the intermediate partition wall.
- This embodiment adopts one water inlet pipe and eight water distribution pipes, which are installed in the center of the tank, at the top of the aerobic zone and the water inlet diversion of the sedimentation tank.
- the sedimentation tank inlet diversion tube is a screen tube, the bottom of which is close to the reactor water inlet and distributor 5, and the top is a solid partition 14 with a height of 1m.
- the inlet diversion tube of the sedimentation tank is connected with baffles distributed in the aerobic zone, anaerobic zone, and sludge zone.
- the baffle is used for three-phase separation and return flow.
- the baffle includes three In the section, the top plate is inclined to separate the water distribution area and the aerobic area of the sedimentation tank.
- the middle section of the inclined plate separates the sedimentation tank sludge bucket and the anoxic area, and the angle with the horizontal plane is 55°.
- the width of the nitrated liquid backflow joint is 30cm
- the material is glass fiber reinforced plastic, anticorrosive carbon steel or stainless steel
- the structure is sieve plate
- the void ratio is 50%.
- the sludge area is located on the upper part of the inclined plate in the middle section of the deflector, and there is a sludge return seam between the vertical section and the outer wall of the tank.
- the bottom of the aerobic zone is equipped with an aerator for providing backflow power.
- the aerator is a single-hole membrane aerator, and the installation density is 36-64 per square meter.
- the air distribution pipes and water distribution pipes are made of ABS or UPVC plastic hard pipes;
- the single-hole membrane aerator is made of ABS, and consists of an upper pipe clamp, a lower pipe clamp, a single-hole film, and ABS fixed adjustment brackets.
- the aerator is connected with an air inlet pipe located outside the tank body, the aerator realizes the backflow of the nitrified liquid through the exhaust pressure of the aeration, and the aerator realizes the sludge backflow through the negative pressure suction formed by the aeration.
- the angle between the top plate of the deflector and the horizontal plane is set to 15°
- the angle between the inclined plate of the middle section of the deflector and the horizontal plane is set to 55°
- the length of the vertical section of the deflector is set to 30cm.
- the gap between the outer wall of the reactor is set to 3 cm.
- the outlet weir is connected with an outlet pipe outside the pool
- the top of the baffle plate is vertically connected with an air duct
- the air duct is positioned outside the pool body and connected with ventilation
- the cap, nitrogen and the exhaust gas after passing through the aerobic zone are released through the air duct.
- the air duct is matched with the vent cap to release denitrified nitrogen and the exhaust gas after passing through the aeration zone to prevent the reactor from generating air resistance. Sewage distributes water evenly to the anoxic zone through the water distributor, and fully mixes with the return nitrification liquid in the aerobic zone through the aerator at the bottom of the aerobic zone.
- Denitrification and denitrification occurs in the anoxic zone, and the aerobic zone and anoxic zone
- the top of the zone is formed by a deflector to form a nitrification liquid return seam.
- the return power is the tail gas from the aerobic zone.
- the anoxic zone and the sludge zone form a sludge return seam through the deflector.
- the return power is formed by aeration in the aerobic zone.
- Negative pressure suction the sludge accumulates to the sludge area, is filtered by the oblique filler in the mud-water separation area, and drains through the outlet pipe with the steady flow area of the effluent.
- the aerobic zone is equipped with optional material suspended fillers, and the dosage ratio is 50% to 70%.
- Different suspended fillers can be selected according to different water quality.
- the material of the suspended filler selected in the embodiment is polyurethane, the specific surface area reaches 20,000 square meters/m 3 , and the dosage ratio is 15%.
- the fillers are set as inclined pipes or inclined plates. The installation angle of the inclined pipes or inclined plates is 65° ⁇ 70°, and the height is 1.0m ⁇ 1.2m.
- a working method of a self-circulating high-efficiency biological denitrification device includes the steps:
- Sewage distributes water evenly to the anoxic zone through the water distributor, passes through the aerator at the bottom of the aerobic zone, and fully mixes with the return nitrification liquid in the aerobic zone, and denitrification and denitrification occurs in the anoxic zone. After the aerobic zone is used, the exhaust gas is released through the air duct;
- the anoxic zone and the sludge zone form a sludge return seam through the deflector, and the return power is the negative pressure suction formed by aeration in the aerobic zone;
- the sludge accumulates in the sludge area, is filtered by the oblique filler in the mud-water separation area, and drains through the outlet pipe with the steady flow area of the effluent.
- concentration of S ALK is 280mg/L.
- the water level is 10°C in winter and 10°C in summer.
- the treated effluent meets the Class A standard in the "Emission Standard for Pollutants for Urban Sewage Treatment Plants" (GB 18918-2002), that is, the designed effluent water quality is BOD 5 ⁇ 10mg/L, NH 3 -N ⁇ 5mg/L, TN ⁇ 15mg /L, TP ⁇ 0.5mg/L as an example:
- the aerobic zone 21 filler dosing ratio is 60%, and the aerobic zone 21 filler BOD 5 load is calculated to be 1.2kgBOD 5 /(m 3 ⁇ d), and the pool capacity is 20m 3 , which meets the "Outdoor Drainage Design Code" (GB 50014-2006 2016 Version)
- the contact oxidation process recommended in Article 6.9.11 is the BOD 5 load reference value of 0.2 ⁇ 2.0kgBOD 5 /(m 3 ⁇ d) for the filler during simultaneous carbonization and nitrification. It can be determined that the aerobic zone 21 in this example can meet the nitrification requirements.
- the anoxic zone 20 is calculated according to the activated sludge method, and its volume is 20 m 3 .
- Anoxic zone 20 in summer (calculated water temperature 25°C) operating parameters: sludge concentration is 2.5g/L, denitrification load is 0.045kgNO 3 -N/(kgMLSS ⁇ d), meeting "Outdoor Drainage Design Specification" (GB 50014- 2006 2016 edition)
- the recommended denitrification load in Article 6.6.18 is 0.044 ⁇ 0.088kg NO 3 -N/kg MLSS ⁇ d, indicating that it can meet the requirements of denitrification.
- Anoxic zone 20 in summer (calculated water temperature 10°C) operating parameters: sludge concentration is 5.0g/L, denitrification load is 0.023kgNO 3 -N/(kgMLSS ⁇ d), meeting "Outdoor Drainage Design Code” (GB 50014- 2006 2016 edition)
- the denitrification load recommended in Article 6.6.18 is 0.014 ⁇ 0.028kg NO 3 -N/kg MLSS ⁇ d, indicating that it can meet the requirements of denitrification.
- the sludge concentration can be adjusted by adjusting the sludge discharge volume.
- the total volume of the biochemical reaction in the embodiment is 40m 3 , which reduces the pool volume by 50% compared with the ordinary A/O process.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
一种自循环高效生物脱氮装置,其包括池体(4),池体(4)从下至上分别排布有好氧区(21)、缺氧区(20)、沉淀池布水区(15)、污泥区(19)、泥水分离区(16)和出水稳流区(17),沉淀池布水区(15)包括位于池体(4)中心的沉淀池进水导流筒(13),沉淀池进水导流筒(13)底部与好氧区(21)顶部间设有圆形蝶式射流布水器(5),沉淀池进水导流筒(13)连接有分布于好氧区(21)、缺氧区(20)、污泥区(19)的导流板(10),导流板(10)用于三相分离与进行回流,导流板(10)包括三段,形成硝化液回流缝(7)与污泥回流缝(11),好氧区(21)底部设有用于提供回流动力的曝气器(12),曝气器(12)连接有位于池体(4)外部的进气管,曝气器(12)通过曝气的尾气压力实现硝化液回流,曝气器(12)通过曝气形成的负压抽吸实现污泥回流。还公开了一种自循环高效生物脱氮装置的工作方法。
Description
本发明涉及环境保护、污水处理领域,更具体地说,它适用于低碳氮比生活污水的脱氮除磷,涉及到一种自循环高效生物脱氮装置及其工作方法。
氮磷是引起水体富营养化的主要因素,主流处理工艺如:A/O工艺、A
2/O工艺、OD系列和SBR系列,及各类生物膜工艺和膜生物反应器的工艺等工艺均需创造合适的溶解氧环境,培养优势微生物菌群,设计经济的回流比,达到生物反硝化脱氮的效果。
现有技术的脱氮反应一般采用一种脱氮反应器和二沉池水平串联的组合。该反应器的循环水管和循环泥管上均设置了循环泵,或采用水泵回流,属于传统的做法,并不节能。另外,该反应器的脱氮反应器要求维持微氧环境,溶解氧控制在0.6-0.8mg/L,现有的仪表精度很难控制,且曝气搅拌强度不够,污泥淤积不可避免。
公告号为CN106242050B的中国专利公开了一种立式内循环一体化污水处理设备,包括从上而下依次设置的气提区、好氧区、缺氧区和厌氧区,上述方案将厌氧、缺氧、好氧和沉淀等功能不同的反应器垂直叠加,并在厌氧区和缺氧区设置了三相分离器,三相分离器和厌氧区的底部之间设有循环泵,好氧顶部设置了气提区,斜板沉淀区顶部设置了填料区。
上述方案首先依然采用的是现有常规技术的循环泵水流循环,较为耗能,另该技术存在以下问题:为了保证厌氧区和缺氧区的污泥处于悬浮状态,必须增加反应器内部的上升流速,为了维持一定的上升流速可以提高反应器的长细比或增加内部循环量。如增加长细比,安全隐患会增加;如增加内部循环,能耗将会增加。陶粒填料层设置在斜板层的上方,极易堵塞,该专利技术重并没有提及延缓填料堵塞的应对措施。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种自循环高效生物脱氮装置及其工作方法,具有生物向更加丰富、利用污水中的碳源充分、利用曝气剩余压力回流、省去回流泵、节约能源等优点。
本发明的上述目的是通过以下技术方案实现的,一种自循环高效生物脱氮装置,包括池体,所述池体从下至上分别排布有好氧区、缺氧区、沉淀池布水区、污泥区、泥水分离区和出水稳流区,所述好氧区与缺氧区位于同一水平面,所述好氧区位于缺氧区内部,所述好氧区与缺氧区间设有竖直的中间隔墙,所述中间隔墙底部贯穿设有通孔;
所述沉淀池布水区包括位于池体中心的沉淀池进水导流筒,所述沉淀池进水导流筒底部与好氧区顶部间设有布水器,所述布水器为圆形蝶式射流布水器;
所述布水器包括连通池体外部的进水管与多组呈扩散状分布的布水管,各组所述布水管均穿过中间隔墙;
所述沉淀池进水导流筒连接有分布于好氧区、厌氧区、污泥区的导流板,所述导流板用于三相分离与进行回流,所述导流板包括三段,顶板倾斜设置并分隔沉淀池布水区与 好氧区,中段倾斜板分隔沉淀池污泥斗与缺氧区,与水平面夹角55°,中段倾斜板与中间隔墙间设有硝化液回流缝,所述污泥区位于导流板中段倾斜板的上部,竖直段与池体外壁间设有污泥回流缝;
所述好氧区底部设有用于提供回流动力的曝气器,所述曝气器连接有位于池体外部的进气管,所述曝气器通过曝气的尾气压力实现硝化液回流,所述曝气器通过曝气形成的负压抽吸实现污泥回流。
通过采用上述技术方案,污水经过布水器均匀布水至缺氧区,经好氧区底部的曝气器,与好氧区内回流硝化液充分混合,在缺氧区发生反硝化脱氮,好氧区与缺氧区顶部通过导流板形成硝化液回流缝,回流动力为好氧区曝气的尾气,缺氧区与污泥区间通过导流板形成污泥回流缝,回流动力为好氧区曝气形成的负压抽吸,污泥积聚至污泥区,经泥水分离区的斜向填料进行过滤,与出水稳流区通过出水管进行排水,导流板顶板与水平面夹角设为15°,导流板中段倾斜板与水平面设为夹角55°,导流板竖直段长度设为30cm,与反应器外壁间隙设为3cm。通过独特形状的导流板设计与曝气器的配合,实现无需循环泵的回流,节能减排,优化结构。
作为优选,所述出水稳流区顶部边缘设有出水堰,所述出水堰连通有位于池体外的出水管,所述导流板顶部竖直连接有导气管,所述导气管定位于池体外部并连接有通风帽。
通过采用上述技术方案,氮气和经过好氧区利用后的尾气通过导气管释放,导气管与通风帽配合,释放反硝化氮气和经过曝气区利用后的尾气,防止反应器产生气阻。
作为优选,所述好氧区内设有可选材质的悬浮填料,投配比例为50%~70%。
通过采用上述技术方案,可根据不同的水质选用不同的悬浮填料,实施例选用的悬浮填料材质为聚氨酯,比表面积达到20000㎡/m
3,投配比例为15%。
作为优选,所述泥水分离区内设有填料,所述填料设为斜管或斜板。
通过采用上述技术方案,斜管或斜板的安装角度65°~70°,高度1.0m~1.2m。
作为优选,所述曝气器采用单孔膜曝气器,安装密度为每平方米36-64个。
通过采用上述技术方案,其布气分管及布水管采用ABS或UPVC塑料硬管;单孔膜曝气器采用ABS制成,由上管夹、下管夹、单孔膜、ABS固定调节支架等组成。
作为优选,所述池体材料为钢筋混凝土、防腐碳钢、不锈钢板或塑料板。
通过采用上述技术方案,多种材质的池体材料适用于不用环境与需求。
作为优选,所述池体形状可为圆柱体、长方体、正方体,所述导流板俯视形状与池体俯视图形状相配合。
通过采用上述技术方案,多种形状的池体形状适用于不用环境与装配加工需求。
一种自循环高效生物脱氮装置的工作方法,包括步骤:
(1)污水经过布水器均匀布水至缺氧区,经好氧区底部的曝气器,与好氧区内回流硝化液充分混合,在缺氧区发生反硝化脱氮,氮气和经过好氧区利用后的尾气通过导气管释放;
(2)好氧区与缺氧区顶部通过导流板形成硝化液回流缝,回流动力为好氧区曝气的尾气;
(3)缺氧区与污泥区间通过导流板形成污泥回流缝,回流动力为好氧区曝气形成 的负压抽吸;
(4)污泥积聚至污泥区,经泥水分离区的斜向填料进行过滤,与出水稳流区通过出水管进行排水。
综上所述,本发明的有益效果有:
1、本发明能耗更低,装置设计利用流体力学的基本原理,在没有回流泵的情况下,实现硝化液和污泥的回流,节省能耗;
2、本发明在采用了单孔膜曝气器,曝气更加均匀,提高了氧的利用率,减少供气量,节省能耗;
3、本发明采用了泥-膜双系统处理污水,泥系统的污泥龄控制在5d以内,有利于生物除磷,膜系统的污泥龄一般在15d左右(老化生物膜会自动脱落),有利于硝化反应;
4、本发明将沉淀区叠加于生物反应器上部,减少占地面积,同时本结构减少了对污泥回流比的限制,相同情况可减少回流缝的宽度,减少体积。
图1为本实施例的整体结构的示意图;
图2为本实施例的整体结构的上部示意图;
图3为本实施例的中部示意图;
图4为本实施例的底部结构示意图。
附图标记:1、进水管;2、出水管;3、进气管;4、池体;5、布水器;6、布水管;7、硝化液回流缝;8、导气管;9、通风帽;10、导流板;11、污泥回流缝;12、曝气器;13、沉淀池进水导流筒;14、导流筒隔板;15、沉淀池布水区;16、泥水分离区;17、出水稳流区;18、出水堰;19、污泥区;20、缺氧区;21、好氧区;22、反应器池壁;23、中间隔墙。
下面结合附图详细说明本发明的具体实施方式。
实施例1:如图1所示,一种自循环高效生物脱氮装置,包括池体,池体材料为钢筋混凝土、防腐碳钢、不锈钢板或塑料板。多种材质的池体材料适用于不用环境与需求。池体形状可为圆柱体、长方体、正方体,导流板俯视形状与池体俯视图形状相配合。本实施例采用圆柱形的池体,俯视图为圆形。
如图1所示,池体从下至上分别排布有好氧区、缺氧区、沉淀池布水区、污泥区、泥水分离区和出水稳流区,好氧区与缺氧区位于同一水平面,好氧区位于缺氧区内部,好氧区与缺氧区间设有竖直的中间隔墙,中间隔墙底部贯穿设有通孔,沉淀池布水区包括位于池体中心的沉淀池进水导流筒,沉淀池进水导流筒底部与好氧区顶部间设有布水器。
如图1、图3所示,布水器为圆形蝶式射流布水器,其材质为玻璃钢、碳钢(防腐)或不锈钢,布水器包括连通池体外部的进水管与多组呈扩散状分布的布水管,各组布水管均穿过中间隔墙,本实施例采用一个进水管和八个布水管,安装于池体正中心,位于好氧区顶部和沉淀池进水导流筒的底部,沉淀池进水导流筒为筛管,其底部紧靠反应器进水布水器5,顶部为实心隔板14,高度为1m。
如图1所示,沉淀池进水导流筒连接有分布于好氧区、厌氧区、污泥区的导流板,导 流板用于三相分离与进行回流,导流板包括三段,顶板倾斜设置并分隔沉淀池布水区与好氧区,中段倾斜板分隔沉淀池污泥斗与缺氧区,与水平面夹角55°,中段倾斜板与中间隔墙间设有硝化液回流缝,硝化液回流缝宽度为30cm,材质为玻璃钢、防腐碳钢或不锈钢,构造形式为筛板,空隙率50%。污泥区位于导流板中段倾斜板的上部,竖直段与池体外壁间设有污泥回流缝。
如图1所示,好氧区底部设有用于提供回流动力的曝气器,曝气器采用单孔膜曝气器,安装密度为每平方米36-64个。其布气分管及布水管采用ABS或UPVC塑料硬管;单孔膜曝气器采用ABS制成,由上管夹、下管夹、单孔膜、ABS固定调节支架等组成。曝气器连接有位于池体外部的进气管,曝气器通过曝气的尾气压力实现硝化液回流,曝气器通过曝气形成的负压抽吸实现污泥回流。本实施例设定的最优方案,导流板顶板与水平面夹角设为15°,导流板中段倾斜板与水平面设为夹角55°,导流板竖直段长度设为30cm,与反应器外壁间隙设为3cm。
如图1所示,出水稳流区顶部边缘设有出水堰,出水堰连通有位于池体外的出水管,导流板顶部竖直连接有导气管,导气管定位于池体外部并连接有通风帽,氮气和经过好氧区利用后的尾气通过导气管释放,导气管与通风帽配合,释放反硝化氮气和经过曝气区利用后的尾气,防止反应器产生气阻。污水经过布水器均匀布水至缺氧区,经好氧区底部的曝气器,与好氧区内回流硝化液充分混合,在缺氧区发生反硝化脱氮,好氧区与缺氧区顶部通过导流板形成硝化液回流缝,回流动力为好氧区曝气的尾气,缺氧区与污泥区间通过导流板形成污泥回流缝,回流动力为好氧区曝气形成的负压抽吸,污泥积聚至污泥区,经泥水分离区的斜向填料进行过滤,与出水稳流区通过出水管进行排水,通过独特形状的导流板设计与曝气器的配合,实现无需循环泵的回流,节能减排,优化结构。
如图1、图2、图4所示,好氧区内设有可选材质的悬浮填料,投配比例为50%~70%。可根据不同的水质选用不同的悬浮填料,实施例选用的悬浮填料材质为聚氨酯,比表面积达到20000㎡/m
3,投配比例为15%。泥水分离区内设有填料,填料设为斜管或斜板,斜管或斜板的安装角度65°~70°,高度1.0m~1.2m。
一种自循环高效生物脱氮装置的工作方法,包括步骤:
(1)污水经过布水器均匀布水至缺氧区,经好氧区底部的曝气器,与好氧区内回流硝化液充分混合,在缺氧区发生反硝化脱氮,氮气和经过好氧区利用后的尾气通过导气管释放;
(2)好氧区与缺氧区顶部通过导流板形成硝化液回流缝,回流动力为好氧区曝气的尾气;
(3)缺氧区与污泥区间通过导流板形成污泥回流缝,回流动力为好氧区曝气形成的负压抽吸;
(4)污泥积聚至污泥区,经泥水分离区的斜向填料进行过滤,与出水稳流区通过出水管进行排水。
以处理150m
3/d生活污水,进水水质CODcr浓度250mg/L,BOD
5浓度150mg/L,N
k(凯氏氮)浓度30mg/L,TP浓度5mg/L,TSS浓度250mg/L,碱度S
ALK浓度280mg/L。冬季水位10℃,夏季水温10℃。处理出水达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)中的一级A标准,即设计出水水质为BOD
5≤10mg/L,NH
3-N≤5mg/L,TN≤15mg/L,TP≤0.5mg/L为例:
好氧区21填料投配比60%,计算好氧区21填料BOD
5负荷1.2kgBOD
5/(m
3·d),池容为20m
3,满足《室外排水设计规范》(GB 50014-2006 2016版)第6.9.11条推荐的接触氧化工艺同时碳化和硝化时填料的BOD
5负荷参考值0.2~2.0kgBOD
5/(m
3·d),可以判定本例好氧区21可以满足硝化要求。
缺氧区20按活性污泥法计算,其容积为20m
3。
缺氧区20夏季(计算水温25℃)运行参数:污泥浓度为2.5g/L,反硝化负荷为0.045kgNO
3-N/(kgMLSS·d),满足《室外排水设计规范》(GB 50014-2006 2016版)第6.6.18条推荐的反硝化负荷0.044~0.088kg NO
3-N/kg MLSS·d,说明可满足反硝化要求。
缺氧区20夏季(计算水温10℃)运行参数:污泥浓度为5.0g/L,反硝化负荷为0.023kgNO
3-N/(kgMLSS·d),满足《室外排水设计规范》(GB 50014-2006 2016版)第6.6.18条推荐的反硝化负荷0.014~0.028kg NO
3-N/kg MLSS·d,说明可满足反硝化要求。
污泥浓度可通过调整排泥量调整。
实施例生化反应总容积40m
3,比普通A/O工艺减少池容50%。
本发明创造并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下,还可做出同等变型或替换,这些变形或替换包括沉淀(不论何种形式的沉淀池)+气浮(不论何种形式的气浮池)的所有形式,即先沉淀后气浮。这些同等的变型或替换均包含在本申请专利所限定的思想范围与保护范围内。
Claims (8)
- 一种自循环高效生物脱氮装置,其特征在于:包括池体,所述池体从下至上分别排布有好氧区、缺氧区、沉淀池布水区、污泥区、泥水分离区和出水稳流区,所述好氧区与缺氧区位于同一水平面,所述好氧区位于缺氧区内部,所述好氧区与缺氧区间设有竖直的中间隔墙,所述中间隔墙底部贯穿设有通孔;所述沉淀池布水区包括位于池体中心的沉淀池进水导流筒,所述沉淀池进水导流筒底部与好氧区顶部间设有布水器,所述布水器为圆形蝶式射流布水器;所述布水器包括连通池体外部的进水管与多组呈扩散状分布的布水管,各组所述布水管均穿过中间隔墙;所述沉淀池进水导流筒连接有分布于好氧区、厌氧区、污泥区的导流板,所述导流板用于三相分离与进行回流,所述导流板包括三段,顶板倾斜设置并分隔沉淀池布水区与好氧区,中段倾斜板分隔沉淀池污泥斗与缺氧区,与水平面夹角55°,中段倾斜板与中间隔墙间设有硝化液回流缝,所述污泥区位于导流板中段倾斜板的上部,竖直段与池体外壁间设有污泥回流缝;所述好氧区底部设有用于提供回流动力的曝气器,所述曝气器连接有位于池体外部的进气管,所述曝气器通过曝气的尾气压力实现硝化液回流,所述曝气器通过曝气形成的负压抽吸实现污泥回流。
- 根据权利要求1所述的一种自循环高效生物脱氮装置,其特征在于:所述出水稳流区顶部边缘设有出水堰,所述出水堰连通有位于池体外的出水管,所述导流板顶部竖直连接有导气管,所述导气管定位于池体外部并连接有通风帽。
- 根据权利要求1所述的一种自循环高效生物脱氮装置,其特征在于:所述好氧区内设有可选材质的悬浮填料,投配比例为50%~70%。
- 根据权利要求1所述的一种自循环高效生物脱氮装置,其特征在于:所述泥水分离区内设有填料,所述填料设为斜管或斜板。
- 根据权利要求1所述的一种自循环高效生物脱氮装置,其特征在于:所述曝气器采用单孔膜曝气器,安装密度为每平方米36-64个。
- 根据权利要求1所述的一种自循环高效生物脱氮装置,其特征在于:所述池体材料为钢筋混凝土、防腐碳钢、不锈钢板或塑料板。
- 根据权利要求1所述的一种自循环高效生物脱氮装置,其特征在于:所述池体形状可为圆柱体、长方体、正方体,所述导流板俯视形状与池体俯视图形状相配合。
- 一种自循环高效生物脱氮装置的工作方法,包括步骤:(1)污水经过布水器均匀布水至缺氧区,经好氧区底部的曝气器,与好氧区内回流硝化液充分混合,在缺氧区发生反硝化脱氮,氮气和经过好氧区利用后的尾气通过导气管释放;(2)好氧区与缺氧区顶部通过导流板形成硝化液回流缝,回流动力为好氧区曝气的尾气;(3)缺氧区与污泥区间通过导流板形成污泥回流缝,回流动力为好氧区曝气形成的负压抽吸;(4)污泥积聚至污泥区,经泥水分离区的斜向填料进行过滤,与出水稳流区通过出水管进行排水。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/638,922 US11548801B2 (en) | 2019-08-30 | 2020-06-24 | Efficient self-circulation biological denitrification device and working method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910817874.9 | 2019-08-30 | ||
CN201910817874.9A CN110776099B (zh) | 2019-08-30 | 2019-08-30 | 一种自循环高效生物脱氮装置及其工作方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021036458A1 true WO2021036458A1 (zh) | 2021-03-04 |
Family
ID=69383328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/098067 WO2021036458A1 (zh) | 2019-08-30 | 2020-06-24 | 一种自循环高效生物脱氮装置及其工作方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11548801B2 (zh) |
CN (1) | CN110776099B (zh) |
WO (1) | WO2021036458A1 (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112919634A (zh) * | 2021-03-05 | 2021-06-08 | 山东泰能环保工程有限公司 | 一种自循环生物膜脱氮污水处理设备 |
CN113479997A (zh) * | 2021-08-18 | 2021-10-08 | 沈阳慕宝环保科技有限公司 | 复合式微曝气增氧水质改善生态治理系统 |
CN113480009A (zh) * | 2021-08-23 | 2021-10-08 | 浙江开创环保科技股份有限公司 | 膜曝气污水处理系统 |
CN113620430A (zh) * | 2021-08-06 | 2021-11-09 | 江苏龙腾工程设计股份有限公司 | 一种智能曝气式浮料模块生物滞留池 |
CN113716698A (zh) * | 2021-10-08 | 2021-11-30 | 清研环境科技股份有限公司 | 多点进水竖流a/rpir技术的污水处理装置 |
CN113943082A (zh) * | 2021-11-08 | 2022-01-18 | 中机国际工程设计研究院有限责任公司 | 餐厨垃圾废水处理系统 |
CN113968617A (zh) * | 2021-06-25 | 2022-01-25 | 北京绿恒科技有限公司 | 倒置式多向流好氧颗粒污泥水处理装置 |
CN113968623A (zh) * | 2021-06-25 | 2022-01-25 | 北京绿恒科技有限公司 | 倒置式双环流微动力好氧颗粒污泥水处理装置 |
CN114133033A (zh) * | 2021-10-21 | 2022-03-04 | 山东智博格瑞环保科技有限公司 | 一种内循环短程反硝化滤池及其处理污水的方法 |
CN114604970A (zh) * | 2022-05-11 | 2022-06-10 | 北京博汇特环保科技股份有限公司 | 改良型a2o生化反应系统及污水处理方法 |
CN115536131A (zh) * | 2022-08-02 | 2022-12-30 | 中国石油化工股份有限公司 | 一种升流式多级内循环低氧曝气生物反应器 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110776099B (zh) | 2019-08-30 | 2021-11-23 | 中清生态环境(宁波)有限公司 | 一种自循环高效生物脱氮装置及其工作方法 |
CN111875058B (zh) * | 2020-07-17 | 2021-05-14 | 同济大学 | 一种双泥法生物强化污水处理装置 |
CN114590893B (zh) * | 2020-12-04 | 2023-06-30 | 中国石油天然气集团有限公司 | 稀土尾水的脱氮装置 |
CN112624509A (zh) * | 2020-12-22 | 2021-04-09 | 湖南军信环保股份有限公司 | 一种基于厌氧氨氧化的废水高效脱氮系统和方法 |
CN112537888A (zh) * | 2020-12-28 | 2021-03-23 | 麦王环境技术股份有限公司 | 一种一体式沉淀内置深水曝气生物反应器 |
CN114368832A (zh) * | 2021-12-16 | 2022-04-19 | 深圳市清泉水业股份有限公司 | 一种缺氧生物澄清池及其处理方法 |
CN114315037B (zh) * | 2021-12-30 | 2022-08-23 | 哈尔滨工业大学 | 一种外加电场的倒置a2/o-gdmbr一体化村镇污水处理装置及方法 |
CN115196748B (zh) * | 2022-07-08 | 2023-06-23 | 贵州楚天两江环境股份有限公司 | 一种升流式污水处理工艺及污水处理设备 |
CN116282673A (zh) * | 2023-02-24 | 2023-06-23 | 中冶华天工程技术有限公司 | 一种新型农村污水处理一体化装置 |
CN116477763B (zh) * | 2023-06-25 | 2023-09-08 | 成都理工大学 | 好氧-厌氧严格分区的一体化成套污水处理装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2246296C (fr) * | 1996-02-16 | 2004-10-19 | Degremont | Reacteur pour l'elimination biologique de la pollution organique des eaux |
US20100133158A1 (en) * | 2000-10-02 | 2010-06-03 | The University Of Western Ontario | Liquid-solid circulating fluidized bed waste water treatment system for simultaneous carbon, nitrogen and phosphorus removal |
CN103395874A (zh) * | 2013-07-15 | 2013-11-20 | 上海师范大学 | 一种折流式内循环生物膜反应器的改良结构 |
CN103435155A (zh) * | 2013-06-04 | 2013-12-11 | 深圳市地大东江环境研究院 | 低能耗、智能化立体生态自回流循环硝化方法及装置 |
CN110776099A (zh) * | 2019-08-30 | 2020-02-11 | 中清生态环境(宁波)有限公司 | 一种自循环高效生物脱氮装置及其工作方法 |
CN210505759U (zh) * | 2019-08-30 | 2020-05-12 | 中清生态环境(宁波)有限公司 | 一种自循环高效生物脱氮装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1178866C (zh) * | 2002-04-16 | 2004-12-08 | 刘润海 | 厌氧/好氧一体化超深层曝气废水生物脱氮方法及其装置 |
CN1176860C (zh) * | 2002-10-31 | 2004-11-24 | 大连理工大学 | 一种包括回用的厌氧-兼氧-好氧一体化污水处理设备及方法 |
US7008538B2 (en) * | 2003-08-20 | 2006-03-07 | Kasparian Kaspar A | Single vessel multi-zone wastewater bio-treatment system |
MX366434B (es) * | 2012-03-02 | 2019-06-26 | Xavier Valdes Simancas Francisco | Bioreactor combinado para el tratamiento de aguas residuales, mediante procesos anaerobios, aerobios y anoxicos de degradación de materia orgánica con sistema separador de zonas y captación de biogás, natas y lodos. |
CN104445798B (zh) * | 2013-12-10 | 2017-09-29 | 中国环境科学研究院 | 垂直式污水处理设备和方法 |
CN106242050B (zh) | 2016-07-27 | 2019-04-02 | 广州鹏凯环境科技股份有限公司 | 一种立式内循环一体化污水处理设备 |
CN106830315B (zh) * | 2017-01-17 | 2020-07-14 | 崔炜 | 一种有机废水耦合式一体化处理装置 |
-
2019
- 2019-08-30 CN CN201910817874.9A patent/CN110776099B/zh active Active
-
2020
- 2020-06-24 US US17/638,922 patent/US11548801B2/en active Active
- 2020-06-24 WO PCT/CN2020/098067 patent/WO2021036458A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2246296C (fr) * | 1996-02-16 | 2004-10-19 | Degremont | Reacteur pour l'elimination biologique de la pollution organique des eaux |
US20100133158A1 (en) * | 2000-10-02 | 2010-06-03 | The University Of Western Ontario | Liquid-solid circulating fluidized bed waste water treatment system for simultaneous carbon, nitrogen and phosphorus removal |
CN103435155A (zh) * | 2013-06-04 | 2013-12-11 | 深圳市地大东江环境研究院 | 低能耗、智能化立体生态自回流循环硝化方法及装置 |
CN103395874A (zh) * | 2013-07-15 | 2013-11-20 | 上海师范大学 | 一种折流式内循环生物膜反应器的改良结构 |
CN110776099A (zh) * | 2019-08-30 | 2020-02-11 | 中清生态环境(宁波)有限公司 | 一种自循环高效生物脱氮装置及其工作方法 |
CN210505759U (zh) * | 2019-08-30 | 2020-05-12 | 中清生态环境(宁波)有限公司 | 一种自循环高效生物脱氮装置 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112919634A (zh) * | 2021-03-05 | 2021-06-08 | 山东泰能环保工程有限公司 | 一种自循环生物膜脱氮污水处理设备 |
CN113968617A (zh) * | 2021-06-25 | 2022-01-25 | 北京绿恒科技有限公司 | 倒置式多向流好氧颗粒污泥水处理装置 |
CN113968623A (zh) * | 2021-06-25 | 2022-01-25 | 北京绿恒科技有限公司 | 倒置式双环流微动力好氧颗粒污泥水处理装置 |
CN113968617B (zh) * | 2021-06-25 | 2023-09-19 | 北京绿恒科技有限公司 | 倒置式多向流好氧颗粒污泥水处理装置 |
CN113620430A (zh) * | 2021-08-06 | 2021-11-09 | 江苏龙腾工程设计股份有限公司 | 一种智能曝气式浮料模块生物滞留池 |
CN113479997A (zh) * | 2021-08-18 | 2021-10-08 | 沈阳慕宝环保科技有限公司 | 复合式微曝气增氧水质改善生态治理系统 |
CN113480009A (zh) * | 2021-08-23 | 2021-10-08 | 浙江开创环保科技股份有限公司 | 膜曝气污水处理系统 |
CN113716698A (zh) * | 2021-10-08 | 2021-11-30 | 清研环境科技股份有限公司 | 多点进水竖流a/rpir技术的污水处理装置 |
CN114133033A (zh) * | 2021-10-21 | 2022-03-04 | 山东智博格瑞环保科技有限公司 | 一种内循环短程反硝化滤池及其处理污水的方法 |
CN113943082A (zh) * | 2021-11-08 | 2022-01-18 | 中机国际工程设计研究院有限责任公司 | 餐厨垃圾废水处理系统 |
CN114604970A (zh) * | 2022-05-11 | 2022-06-10 | 北京博汇特环保科技股份有限公司 | 改良型a2o生化反应系统及污水处理方法 |
CN115536131A (zh) * | 2022-08-02 | 2022-12-30 | 中国石油化工股份有限公司 | 一种升流式多级内循环低氧曝气生物反应器 |
Also Published As
Publication number | Publication date |
---|---|
US20220298042A1 (en) | 2022-09-22 |
CN110776099A (zh) | 2020-02-11 |
CN110776099B (zh) | 2021-11-23 |
US11548801B2 (en) | 2023-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021036458A1 (zh) | 一种自循环高效生物脱氮装置及其工作方法 | |
CN106315853B (zh) | 一种氧化沟膜生物反应器及其污水处理工艺和应用 | |
CN104003522B (zh) | 一种改进型分段进水多段a/o脱氮系统 | |
CN214781015U (zh) | 一种同心结构的一体化污水处理装置 | |
CN110590083A (zh) | 一种基于mabr的泥膜污水处理装置及方法 | |
CN104512963A (zh) | 一种一体式多级同时硝化反硝化生物膜系统脱氮方法及装置 | |
CN107151053A (zh) | 一种缺氧‑厌氧‑缺氧‑好氧‑膜组件处理装置 | |
CN202246337U (zh) | 一种多级同步反硝化高效生物脱氮系统 | |
WO2020211525A1 (zh) | 一种应用生物倍增和流化床工艺的集成式一体化污水处理罐 | |
CN210505759U (zh) | 一种自循环高效生物脱氮装置 | |
CN209835881U (zh) | 一种适合农村分散式户用型一体化污水处理装置 | |
CN108996827B (zh) | 一种基于甲烷氧化的污水厂尾水深度脱氮装置 | |
CN102010062B (zh) | 双环沟mbr废水处理系统 | |
CN201914974U (zh) | 双环沟mbr废水处理系统 | |
CN111977782A (zh) | 浸没式hebr生物反应器、污水处理系统及方法 | |
CN209906446U (zh) | 一种基于圆形罐体的一体化污水深度处理装置 | |
CN209835753U (zh) | 一种污水高效脱氮的生物膜反应器 | |
CN202322548U (zh) | 厌氧、缺氧、好氧与生物模反应器浮艇曝气的组合装置 | |
CN111960618A (zh) | 一种沿海地区达准ⅳ类水的叠拼污水处理设备及方法 | |
CN111559837A (zh) | 一种垃圾渗滤液生化处理系统及工艺 | |
CN216614183U (zh) | 污水处理系统 | |
CN203866153U (zh) | 一种城市污水改良a2/o强化脱氮除磷处理装置 | |
CN216687842U (zh) | 一种高氨氮污水深度除总氮处理的一体化装置 | |
CN109292980A (zh) | 一种级数可调的多级ao-mbbr工艺污水处理装置及方法 | |
CN210915757U (zh) | 一种基于mabr的泥膜污水处理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20856872 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20856872 Country of ref document: EP Kind code of ref document: A1 |