WO2021033241A1 - Robot control system - Google Patents

Robot control system Download PDF

Info

Publication number
WO2021033241A1
WO2021033241A1 PCT/JP2019/032308 JP2019032308W WO2021033241A1 WO 2021033241 A1 WO2021033241 A1 WO 2021033241A1 JP 2019032308 W JP2019032308 W JP 2019032308W WO 2021033241 A1 WO2021033241 A1 WO 2021033241A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
detection device
position detection
control system
reflector
Prior art date
Application number
PCT/JP2019/032308
Other languages
French (fr)
Japanese (ja)
Inventor
真行 菅野
一功 尾▲さこ▼
哲也 赤木
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to PCT/JP2019/032308 priority Critical patent/WO2021033241A1/en
Priority to JP2021541363A priority patent/JPWO2021033241A1/ja
Publication of WO2021033241A1 publication Critical patent/WO2021033241A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices

Definitions

  • the present disclosure relates to robot control systems, reflectors, wireless communication devices, and wireless transmitters.
  • Patent Document 1 discloses a robot system that stops a robot when an external force applied to the robot exceeds a predetermined limit value.
  • stopping the cooperative robot when the external force applied to the cooperative robot exceeds a predetermined limit value means stopping the cooperative robot after the cooperative robot comes into contact with the worker, thus ensuring the safety of the worker. There was a problem that it could not be secured sufficiently.
  • An object of the present invention is to provide a robot control system, a reflector, a wireless communication device, and a wireless transmission device that can solve the above problems, prevent a decrease in production efficiency, and ensure the safety of workers.
  • the robot control system is A reflector that is attached to the human body and reflects electromagnetic waves, A position detection device that transmits the electromagnetic wave, receives the reflected wave from the reflector, and detects the position of the reflector based on the received reflected wave.
  • a robot control system including a robot that performs a predetermined robot operation in an area including at least a part of the area in which the human body enters. The robot controls the robot operation according to the position of the reflector detected by the position detection device.
  • the robot control system is A position detector that transmits the first electromagnetic wave and A wireless communication device that is attached to the human body, receives the first electromagnetic wave transmitted from the position detection device, and transmits a second electromagnetic wave in response to the received first electromagnetic wave.
  • a robot control system including a robot that performs a predetermined robot operation in an area including at least a part of the area in which the human body enters.
  • the position detecting device receives a second electromagnetic wave transmitted from the wireless communication device, detects the position of the wireless communication device based on the received second electromagnetic wave, and determines the position of the wireless communication device.
  • the robot controls the robot operation according to the position of the wireless communication device detected by the position detection device.
  • the robot control system is A wireless transmitter that is attached to the human body and transmits electromagnetic waves, A position detection device that receives an electromagnetic wave transmitted from the wireless transmission device and detects the position of the wireless transmission device based on the received electromagnetic wave.
  • a robot control system including a robot that performs a predetermined robot operation in an area including at least a part of the area in which the human body enters. The robot controls the robot operation according to the position of the wireless transmission device detected by the position detection device.
  • the robot control system reflector, wireless communication device, and wireless transmission device according to the present disclosure, it is possible to prevent a decrease in production efficiency and ensure the safety of workers.
  • FIG. 1 is an overall configuration diagram showing an overall configuration example of the robot control system 100 according to the present disclosure.
  • the robot control system 100 includes a position detection device 120 using a three-dimensional electromagnetic wave radar, a reflector 110 that reflects an electromagnetic wave transmitted from the position detection device 120, and a robot 140.
  • the reflector 110 contains a reflective material such as a metal film that reflects electromagnetic waves, and has a shape that can be attached to the hand of an operator 160, for example.
  • the reflector 110 has a glove-like shape or is attached to a glove.
  • the robot 140 is an industrial robot that performs predetermined robot operations such as bolting, bonding, welding, assembling, picking, packing, and quality inspection on the work 170 to be manufactured.
  • the robot 140 performs the robot operation in cooperation with the worker 160 or in an area common to the work area of the worker 160, and is called, for example, a cooperative robot or a cooperative robot.
  • the worker 160 works on the workbench 150 in cooperation with the robot 140.
  • the robot 140 performs the robot operation in an area including at least a part of the area in which the worker 160 enters.
  • the robot 140 Since the robot 140 performs the robot operation in cooperation with the worker 160, the robot 140 is arranged in the vicinity of the worker 160, for example, within the reach of the worker 160. In such a case, it is necessary to prevent an accident or the like caused by the worker 160 coming into contact with the robot 140.
  • the cooperative robot is controlled based on the position of the torso and feet, the worker's hands can be detected.
  • the cooperative robot stops even though it is sufficiently far from the cooperative robot, and the work becomes inefficient.
  • the cooperative robot may not stop even though the hand is in contact with the cooperative robot, and there is a problem that the safety of the operator cannot be ensured.
  • the robot control system 100 solves the above-mentioned problems by including the reflector 110.
  • the reflector 110 is attached to the hand of the worker 160.
  • the intensity of the electromagnetic wave reflected from the hand of the worker 160 becomes stronger as compared with the case of FIG. 2A, as shown in FIG. 2B. .. This makes it possible to detect the position of the hand of the worker 160.
  • FIG. 3 is a block diagram illustrating the configuration of the robot control system 100 according to the first embodiment.
  • the robot control system 100 includes a reflector 110, a position detection device 120, and a robot 140.
  • the position detection device 120 has an ID signal generator 122 that generates a signal (hereinafter, referred to as “ID signal”) including identification information (hereinafter, referred to as “ID information”), and a radio carrier wave according to the ID signal.
  • ID signal a signal
  • ID information identification information
  • a modulation transmission circuit 123 that outputs a radio signal by modulating the radio signal, a transmission antenna 121 that transmits the radio signal, and a directional control unit 124 that controls the directivity of the transmission antenna 121 are provided.
  • FIG. 4 is a schematic view showing a configuration example of the transmitting antenna 121 of FIG.
  • the transmitting antenna 121 is, for example, a two-dimensional array antenna in which a plurality of antennas 121a are arranged two-dimensionally at predetermined intervals.
  • the directivity control unit 124 controls the phase of each radio signal transmitted from each antenna 121a to control the directivity of the transmission beam transmitted from the transmission antenna 121.
  • the directivity control unit 124 may control not only the phase of the radio signal but also the amplitude.
  • the directivity control unit 124 controls the directivity of the transmitted beam so that the transmitted beam scans in a predetermined three-dimensional space at a constant cycle.
  • the position detecting device 120 further includes a receiving antenna 125.
  • the radio signal transmitted from the transmitting antenna 121 of the position detecting device 120 is reflected by the reflector 110 and received by the receiving antenna 125.
  • the position detection device 120 further includes a low noise amplifier 126 that amplifies the received signal with low noise, and a mixer 127.
  • the mixer 127 mixes the amplified reception signal with the radio carrier wave from the modulation transmission circuit 123, and outputs the mixed signal.
  • the mixed signal output from the mixer 127 is input to a low-pass filter (hereinafter, referred to as “LPF”) 128, and unnecessary high-frequency components are removed. In this way, a baseband signal including ID information is obtained.
  • LPF low-pass filter
  • the baseband signal output from the LPF128 is input to the AD converter 129 and converted into a digital signal.
  • the digital signal output from the AD converter 129 is input to the position detection unit 130.
  • the position detection unit 130 detects the position of the reflector 110, for example, by the following procedure.
  • Acquire ID information included in the received digital signal (2) Based on the received digital signal, the receiving antenna 125 detects the time t1 when the reflected wave including the ID information is received.
  • Information about the direction in which the transmission beam including the ID information is transmitted is acquired from the directivity control unit 124.
  • Information about the time t2 at which the transmission beam including the ID information is transmitted is acquired from the directivity control unit 124.
  • a point separated from the transmitting antenna 121 by a distance (t1-t2) ⁇ c / 2 in the direction acquired in (3) is detected as the position of the reflector 110.
  • c is the speed of light.
  • the directivity control unit 124 and the position detection unit 130 are composed of an information processing circuit including, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • the directivity control unit 124 and the position detection unit 130 perform the above-mentioned directivity control and position detection by, for example, interpreting and executing the program expanded in the RAM by the CPU.
  • the position detection device 120 further includes a communication interface (hereinafter, referred to as “communication I / F”) 131.
  • the position detection unit 130 of the position detection device 120 transmits information including the detected position of the reflector 110 to the robot 140 via the communication I / F 131.
  • the communication I / F 131 includes an interface circuit for enabling communication connection between the position detection device 120 and the robot 140.
  • the communication I / F 131 communicates according to standards such as IEEE802.3, IEEE802.11 or Wi-Fi, LTE, 3G, 4G, and 5G.
  • the communication I / F 131 may be an interface that communicates according to standards such as USB (Universal Serial Bus), HDMI (High Definition Multimedia Interface), IEEE 1394, and Bluetooth.
  • the robot 140 includes a communication I / F 141, a control unit 142, and an arm 143.
  • the communication I / F 141 of the robot 140 includes an interface circuit for enabling a communication connection between the robot 140 and the position detection device 120, and has the same configuration as the communication I / F 131 of the position detection device 120.
  • the control unit 142 of the robot 140 is composed of an information processing circuit including, for example, a CPU, RAM, ROM, etc., and controls the entire robot 140.
  • the control unit 142 operates the arm 143 by interpreting and executing the program expanded in the RAM by the CPU.
  • the arm 143 of the robot 140 is a movable unit driven by the control unit 142. Under the control of the control unit 142, the arm 143 performs operations such as bolting, bonding, welding, assembling, picking, packing, and quality inspection on the work 170 (see FIG. 1) to be manufactured.
  • the control unit 142 of the robot 140 receives information including the position of the reflector 110 from the position detection device 120 via the communication I / F 141.
  • the control unit 142 of the robot 140 performs control for avoiding contact between the arm 143 and the operator 160 according to the position of the reflector 110. For example, when the reflector 110 is within the range of motion of a predetermined robot, the control unit 142 performs a safety ensuring operation such as stopping the arm 143 and reducing the operating speed of the arm 143.
  • the control unit 142 of the robot 140 may detect the position of the arm 143.
  • the control unit 142 controls to avoid contact between the arm 143 and the operator 160 according to the distance between the reflector 110 and the arm 143 of the robot 140.
  • the control unit 142 may perform the above safety ensuring operation when the distance between the reflector 110 and the arm 143 is less than a predetermined threshold value.
  • FIG. 5 is a schematic view showing an example of the configuration of the reflector 110 of FIG.
  • the reflector 110 is a metal film attached to the surface of the glove 101.
  • the reflector 110 may be provided with irregularities for scattering electromagnetic waves.
  • the configuration of the reflector 110 may be any one that can be attached to the hand of the worker 160, and is not limited to the one shown in FIG.
  • FIG. 6 is a schematic view showing another example of the configuration of the reflector 110 of FIG.
  • the reflector 110 is a metal body attached to the wristband and is attached to the wrist of the worker 160.
  • the robot 140 can be controlled based on the position of the reflector 110 mounted on the hand of the worker 160. Therefore, the robot 140 is not stopped even though the hand of the worker 160 is sufficiently separated from the robot 140, and the decrease in production efficiency can be prevented. Further, it is possible to prevent the robot 140 from stopping even though the hand of the worker 160 is in contact with the robot 140, and the safety of the worker 160 can be ensured.
  • the robot control system 100 uses an electromagnetic wave radar having robustness, it is possible to accurately detect the position even when the factory is filled with steam, for example.
  • FIG. 7 is a block diagram illustrating the configuration of the robot control system 200 according to the second embodiment.
  • the robot control system 200 of FIG. 7 includes a beacon signal generator 210 in place of the reflector 110 of the robot control system 100 of FIG.
  • the beacon signal generator 210 is an example of the "wireless communication device" of the present disclosure.
  • the beacon signal generator 210 has a configuration that can be worn on the wrist of the operator 160, similar to the reflector 110 shown in FIG. 6, for example.
  • the beacon signal generator 210 different from the first embodiment will be described.
  • FIG. 8 is a block diagram showing a configuration example of the beacon signal generator 210 of FIG.
  • the beacon signal generator 210 includes a receiving antenna 211, a low noise amplifier 212 that amplifies the received signal, a local oscillator 213 that generates a signal of a predetermined frequency, and a mixer 214.
  • the predetermined frequency is set to the same frequency as the radio signal transmitted from the transmitting antenna 121 of the position detecting device 120 of FIG. 7.
  • the received signal amplified by the low noise amplifier 212 and the signal output from the local oscillator 213 are input to the mixer 214.
  • the mixer 214 mixes and outputs these input signals.
  • the signal output from the mixer 214 is input to the LPF215, and unnecessary high frequency components are removed. As a result, a baseband signal including ID information can be obtained.
  • the baseband signal output from LPF215 is input to the AD converter 216 and converted into a digital signal.
  • the digital signal output from the AD converter 216 is input to the ID signal detection unit 217.
  • the ID signal detection unit 217 detects whether or not the ID information included in the input digital signal matches the ID information unique to the beacon signal generator 210 (hereinafter, referred to as "unique ID information").
  • the unique ID information is stored in the memory 218 in advance.
  • the ID signal detection unit 217 reads the unique ID information from the memory 218, detects whether or not the read unique ID information matches the ID information included in the input digital signal, and outputs a detection result signal indicating the detection result. It is output to the beacon signal generation unit 219.
  • the beacon signal generation unit 219 When the detection result signal that the ID information included in the input digital signal and the unique ID information match is input, the beacon signal generation unit 219 generates a signal including the unique ID information and causes the modulation transmission circuit 221 to generate a signal. Output.
  • the unique ID information is stored in the memory 220 in advance. Although the memory 218 and the memory 220 are shown as separate objects in FIG. 8, the functions of the memory 218 and the memory 220 may be realized by one memory.
  • the modulation transmission circuit 221 generates and outputs a radio signal by modulating the radio carrier wave according to the signal including the input unique ID information.
  • the radio carrier may be input from the local oscillator 213 to the modulation transmission circuit 221. Alternatively, the radio carrier may be generated by the beacon signal generator 219.
  • the radio signal output from the modulation transmission circuit 221 is transmitted from the transmission antenna 222 to the position detection device 120.
  • the receiving antenna 125 of the position detecting device 120 of FIG. 7 receives the radio signal transmitted from the transmitting antenna 222 of the beacon signal generating device 210.
  • the position detection device 120 can detect the position of the beacon signal generation unit 219 in the same procedure as in the first embodiment.
  • the robot control system 200 since the robot control system 200 according to the present embodiment includes a beacon signal generator 210 that transmits a radio signal to the position detection device 120 using the transmission antenna 222, the position detection device 120 from the beacon signal generator 210 is stably provided. A radio signal is transmitted to. Therefore, in addition to the operation and effect of the robot control system 100 according to the first embodiment, the robot control system 200 has an effect of being able to accurately detect the position of the hand of the beacon signal generator 210 and the worker 160.
  • FIG. 9 is a block diagram illustrating the configuration of the robot control system 300 according to the third embodiment.
  • the robot control system 300 of FIG. 9 differs from the robot control system 100 of FIG. 3 in the following points.
  • a continuous wave (Continuous Wave, hereinafter referred to as “CW”) transmitter 310 is provided instead of the reflector 110.
  • CW Continuous Wave
  • a position detection device 320 is provided instead of the position detection device 120. The differences will be described below.
  • FIG. 10 is a block diagram showing a configuration example of the CW transmitter 310 of FIG.
  • the CW transmitter 310 is an example of the "wireless transmitter" of the present disclosure.
  • the CW transmitter 310 has a configuration that can be worn on the wrist of the worker 160, similar to the reflector 110 shown in FIG. 6, for example.
  • the CW transmitter 310 sends the oscillator 311 that generates the signal of frequency f, the power amplifier 312 that amplifies the generated signal and outputs the radio signal, and the radio signal output from the power amplifier 312 to the position detection device 320. It includes a transmitting antenna 313 for transmitting.
  • the position detection device 320 includes a reception antenna 325, a directivity control unit 124, a low noise amplifier 126, a local oscillator 326, a mixer 127, a BPF 328, an AD converter 129, and a position detection unit 330. And communication I / F 131.
  • the receiving antenna 325 receives the radio signal transmitted from the CW transmitter 310.
  • the receiving antenna 325 is, for example, a two-dimensional array antenna in which a plurality of antennas are arranged in two dimensions, and has the same configuration as the transmitting antenna 121 of FIG.
  • the directivity of the receiving antenna 325 is controlled by the directivity control unit 124.
  • the low noise amplifier 126 amplifies the received signal and outputs it to the mixer 127.
  • the local oscillator 326 generates a signal of frequency f + ⁇ f and outputs it to the mixer 127.
  • the mixer 127 mixes the signal of the frequency f from the low noise amplifier 126 and the signal of the frequency f + ⁇ f from the local oscillator 326, and the signal of the frequency (f + ⁇ f) ⁇ f is referred to as a bandpass filter (hereinafter, “BPF”). .) Output to 328.
  • the BPF 328 transmits only the beat signal having the beat frequency ⁇ f among the signals input from the mixer 127.
  • the beat signal output from the BPF 328 is input to the AD converter 129 and converted into a digital signal.
  • the digital signal output from the AD converter 129 is input to the position detection unit 330.
  • the position detection unit 330 detects the position of the CW transmitter 310 based on the digital signal received from the AD converter 129 and the directivity information possessed by the directivity control unit 124. For example, when the position detection unit 330 receives a digital signal from the AD converter 129, the position detection unit 330 acquires information about the directivity of the receiving antenna 325 at that time from the directivity control unit 124, and the direction and distance indicated by the information. Detects that there is a CW transmitter 310 in.
  • the robot control system 300 since the robot control system 300 according to the present embodiment includes a CW transmitter 310 that transmits a radio signal to the position detection device 320 using the transmission antenna 313, the CW transmitter 310 stably wirelessly transmits the radio signal to the position detection device 320. A signal is transmitted. Therefore, the robot control system 300 has an effect of being able to accurately detect the position of the hand of the CW transmitter 310 and the worker 160 in addition to the effect of the robot control system 100 according to the first embodiment.
  • the position detection device 120 including the transmitting antenna 121 and the receiving antenna 125 separately has been described.
  • the present disclosure is not limited to this, and the position detection device 120 may include one antenna that both transmits and receives radio signals.
  • a changeover switch for switching transmission / reception, a circulator, or the like is used.
  • the transmitting antenna 121 is composed of a two-dimensional array antenna in which a plurality of antennas 121a are arranged in two dimensions, as shown in FIG.
  • the present disclosure is not limited to this.
  • the transmitting antenna 121 may be composed of a one-dimensional array antenna in which a plurality of antennas are arranged in a straight line.
  • the transmitting antenna 121 may be composed of one antenna element.
  • a position detection device 120 using an electromagnetic wave radar that modulates and transmits a radio carrier wave according to an ID signal has been described.
  • the modulation method used for the electromagnetic wave radar may be another continuous wave method or a pulse method.
  • the electromagnetic wave radar may be a pulse radar using a pulse modulation method.
  • the position detecting device 320 is configured by using the BPF 328.
  • the present disclosure is not limited to this, and the position detecting device 320 may include, for example, an LPF instead of the BPF 328.
  • Electromagnetic wave radar includes radio wave radar. Since the radio wave radar is cheaper than LIDAR (Light Detection and Ranging) using laser light, the above effects can be realized at a relatively low cost, which is necessary for introducing the robot control system 100. The cost can be reduced.
  • LIDAR Light Detection and Ranging
  • the position detection device 120 including the transmitting antenna 121 that scans the transmitting beam and the receiving antenna 125 that receives the radio signal has been described.
  • the receiving antenna 125 may be a two-dimensional array antenna in which a plurality of antennas are arranged two-dimensionally at predetermined intervals, similar to the transmitting antenna 121 shown in FIG.
  • the receiving antenna 125 may be composed of a one-dimensional array antenna in which a plurality of antennas are arranged in a straight line.
  • the position detection unit 130 measures the arrival direction of the radio signal by independently controlling the amplitude and phase of the reception signal of each antenna constituting the reception antenna 125 to perform beamforming. As a result, the position detection unit 130 can measure the reflection position of the electromagnetic wave, that is, the position of the reflector 110.
  • the position detection device 320 including the directivity control unit 124 that controls the directivity of the receiving antenna 325 has been described.
  • the present disclosure is not limited to this.
  • the position detection device 320 does not include the directional control unit 124, and the position detection unit 330 determines the reflection position of the electromagnetic wave based on the amplitude information and the phase information included in the digital signal output from the AD converter 129. That is, the position of the reflector 110 may be measured.
  • the receiving antenna 325 does not need to be scan-controlled, and three-dimensional information can be obtained based on the amplitude information and the phase information.
  • the directivity control unit 154 that controls the directivity of the beam by controlling the phase or amplitude of each antenna constituting the transmitting antenna 121 and the receiving antenna 125 has been described.
  • the present disclosure is not limited to this.
  • the directivity control unit 154 may scan the transmission beam by physically moving the transmission antenna 121 and the reception antenna 125 by mechanically rotating them.
  • a reflector (110) that is attached to the human body (160) and reflects electromagnetic waves
  • a position detection device (120) that transmits the electromagnetic wave, receives a reflected wave from the reflector (110), and detects the position of the reflector (110) based on the received reflected wave.
  • a robot control system (100) including a robot (140) that performs a predetermined robot operation in an area including at least a part of the area in which the human body (160) enters.
  • the robot (140) is a robot control system (100) that controls the robot operation according to the position of the reflector (110) detected by the position detection device (120).
  • the robot (140) When the position of the reflector (110) detected by the position detection device (120) is outside a predetermined area around the robot (140), the robot operation is performed. When the position of the reflector (110) detected by the position detection device (120) is within the predetermined region, the robot operation may be stopped or the speed of the robot operation may be reduced. Good.
  • the robot (140) Further detecting the position of the robot (140), When the distance between the position of the reflector (110) detected by the position detection device (120) and the position of the robot (140) detected by the robot (140) is equal to or greater than a predetermined threshold value, the above. Perform robot movement, When the distance is less than a predetermined threshold value, the robot operation may be stopped, the speed of the robot operation may be reduced, or the robot may operate in a direction away from the position of the reflector (110).
  • the position detection device (120) may be a radio wave radar.
  • Another aspect of the present disclosure is a reflector (110) of any of the above aspects.
  • a wireless communication device (210) that is attached to a human body (160) receives a first electromagnetic wave transmitted from the position detection device (120), and transmits a second electromagnetic wave in response to the received first electromagnetic wave.
  • a robot control system (200) including a robot (140) that performs a predetermined robot operation in an area including at least a part of the area in which the human body (160) enters.
  • the position detecting device (120) receives a second electromagnetic wave transmitted from the wireless communication device (210), detects the position of the wireless communication device (210) based on the received second electromagnetic wave, and determines the position of the wireless communication device (210).
  • the robot (140) may control the robot operation according to the position of the wireless communication device (210) detected by the position detection device (120).
  • the robot (140) When the position of the wireless communication device (210) detected by the position detection device (120) is outside a predetermined area around the robot (140), the robot operation is performed. When the position of the wireless communication device (210) detected by the position detection device (120) is within the predetermined area, the robot operation is stopped or the speed of the robot operation is reduced. May be good.
  • the robot (140) Further detecting the position of the robot (140), When the distance between the position of the wireless communication device (210) detected by the position detection device (120) and the position of the robot (140) detected by the robot (140) is equal to or greater than a predetermined threshold value. Perform the robot operation When the distance is less than a predetermined threshold value, the robot operation may be stopped, the speed of the robot operation may be reduced, or the robot may operate in a direction away from the position of the wireless communication device (210).
  • Another aspect of the present disclosure is the wireless communication device (210) of any of the above aspects.
  • a wireless transmitter (310) that is attached to the human body (160) and transmits electromagnetic waves
  • a position detection device (320) that receives an electromagnetic wave transmitted from the wireless transmission device (310) and detects the position of the wireless transmission device (310) based on the received electromagnetic wave.
  • a robot control system (300) including a robot (140) that performs a predetermined robot operation in an area including at least a part of the area in which the human body (160) enters.
  • the robot (140) is a robot control system (300) that controls the robot operation according to the position of the wireless transmission device (310) detected by the position detection device (320).
  • the robot (140) When the position of the wireless transmission device (310) detected by the position detection device (320) is outside a predetermined area around the robot (140), the robot operation is performed. When the position of the wireless transmission device (310) detected by the position detection device (320) is within the predetermined region, the robot operation is stopped or the speed of the robot operation is reduced. You may.
  • the robot (140) Further detecting the position of the robot (140), When the distance between the position of the wireless transmission device (310) detected by the position detection device (320) and the position of the robot (140) detected by the robot (140) is equal to or greater than a predetermined threshold value. Perform the robot operation When the distance is less than a predetermined threshold value, the robot operation may be stopped, the speed of the robot operation may be reduced, or the robot may operate in a direction away from the position of the wireless transmission device (310).
  • Another aspect of the present disclosure is the wireless transmitter (310) of any of the above aspects.
  • Robot control system 110 Reflector 120 Position detection device 121 Transmission antenna 122 Signal generator 123 Modulation transmission circuit 124 Directional control unit 125 Reception antenna 126 Low noise amplifier 127 Mixer 128 LPF 129 AD converter 130 Position detector 131 Communication I / F 140 Robot 142 Control unit 143 Arm 150 Workbench 160 Worker 170 Work

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

A robot control system (100) comprises: a reflector (110) that is attached to a human body (160) and reflects electromagnetic waves; a position detection device (120) that transmits electromagnetic waves, receives the reflected waves from the reflector (110), and detects the position of the reflector (110) on the basis of the received reflected waves; and a robot (140) that performs predetermined robot operation within an area including at least a portion of the area that the human body (160) enters. The robot (140) controls the robot operation according to the position of the reflector detected by the position detection device (120).

Description

ロボット制御システムRobot control system
 本開示は、ロボット制御システム、反射体、無線通信装置、及び無線送信装置に関する。 The present disclosure relates to robot control systems, reflectors, wireless communication devices, and wireless transmitters.
 工場等の製造現場において、ワークの製造作業を作業者と協働して行う産業ロボットが利用されている。産業ロボットを利用する場合、作業者が産業ロボットに接触すること等による事故を防止しつつ、産業ロボットが頻繁に停止して生産効率を低下させることのないようにする必要がある。そのため、作業者と産業ロボットとの間に柵を配置する場合があった。しかしながら、柵を介して作業者と産業ロボットとの協働作業を行うのは非効率であるという問題があった。 Industrial robots that perform work manufacturing work in collaboration with workers are used at manufacturing sites such as factories. When using an industrial robot, it is necessary to prevent accidents caused by a worker coming into contact with the industrial robot, and to prevent the industrial robot from being frequently stopped to reduce production efficiency. Therefore, a fence may be placed between the worker and the industrial robot. However, there is a problem that it is inefficient to carry out collaborative work between the worker and the industrial robot through the fence.
 そこで、近年では、柵を配置することなく、作業者と共通の領域内で作業を行う協調ロボットが利用されている。このような協調ロボットについて、作業者が協調ロボットの可動域の中に入ったときには、協調ロボットを停止させ、又はその動作速度を制限する技術が提案されている。例えば、特許文献1は、ロボットにかかる外力が所定の制限値を超えた場合に、ロボットを停止させるロボットシステムを開示している。 Therefore, in recent years, cooperative robots that work in a common area with workers without arranging fences have been used. With respect to such a cooperative robot, a technique has been proposed in which the cooperative robot is stopped or its operating speed is limited when the worker enters the range of motion of the cooperative robot. For example, Patent Document 1 discloses a robot system that stops a robot when an external force applied to the robot exceeds a predetermined limit value.
特許第6316909号公報Japanese Patent No. 6316909
 しかしながら、協調ロボットにかかる外力が所定の制限値を超えた場合に協調ロボットを停止させることは、協調ロボットと作業者とが接触した後に協調ロボットを停止させることであるため、作業者の安全を十分に確保できないという課題があった。 However, stopping the cooperative robot when the external force applied to the cooperative robot exceeds a predetermined limit value means stopping the cooperative robot after the cooperative robot comes into contact with the worker, thus ensuring the safety of the worker. There was a problem that it could not be secured sufficiently.
 本発明の目的は、以上の課題を解決し、生産効率の低下を防止し、作業者の安全を確保できるロボット制御システム、反射体、無線通信装置、及び無線送信装置を提供することにある。 An object of the present invention is to provide a robot control system, a reflector, a wireless communication device, and a wireless transmission device that can solve the above problems, prevent a decrease in production efficiency, and ensure the safety of workers.
 本開示の一態様に係るロボット制御システムは、
 人体に装着され、電磁波を反射する反射体と、
 前記電磁波を送信し、前記反射体からの反射波を受信し、受信した前記反射波に基づいて前記反射体の位置を検出する位置検出装置と、
 前記人体が進入する領域のうちの少なくとも一部を含む領域内において、所定のロボット動作を行うロボットとを備えるロボット制御システムであって、
 前記ロボットは、前記位置検出装置によって検出された反射体の位置に応じて、前記ロボット動作を制御する。
The robot control system according to one aspect of the present disclosure is
A reflector that is attached to the human body and reflects electromagnetic waves,
A position detection device that transmits the electromagnetic wave, receives the reflected wave from the reflector, and detects the position of the reflector based on the received reflected wave.
A robot control system including a robot that performs a predetermined robot operation in an area including at least a part of the area in which the human body enters.
The robot controls the robot operation according to the position of the reflector detected by the position detection device.
 本開示の他の態様に係るロボット制御システムは、
 第1の電磁波を送信する位置検出装置と、
 人体に装着され、前記位置検出装置から送信された第1の電磁波を受信し、受信した第1の電磁波に応じて第2の電磁波を送信する無線通信装置と、
 前記人体が進入する領域のうちの少なくとも一部を含む領域内において、所定のロボット動作を行うロボットとを備えるロボット制御システムであって、
 前記位置検出装置は、前記無線通信装置から送信された第2の電磁波を受信し、受信した第2の電磁波に基づいて前記無線通信装置の位置を検出し、
 前記ロボットは、前記位置検出装置によって検出された無線通信装置の位置に応じて、前記ロボット動作を制御する。
The robot control system according to another aspect of the present disclosure is
A position detector that transmits the first electromagnetic wave and
A wireless communication device that is attached to the human body, receives the first electromagnetic wave transmitted from the position detection device, and transmits a second electromagnetic wave in response to the received first electromagnetic wave.
A robot control system including a robot that performs a predetermined robot operation in an area including at least a part of the area in which the human body enters.
The position detecting device receives a second electromagnetic wave transmitted from the wireless communication device, detects the position of the wireless communication device based on the received second electromagnetic wave, and determines the position of the wireless communication device.
The robot controls the robot operation according to the position of the wireless communication device detected by the position detection device.
 本開示のさらに他の態様に係るロボット制御システムは、
 人体に装着され、電磁波を送信する無線送信装置と、
 前記無線送信装置から送信された電磁波を受信し、受信した電磁波に基づいて前記無線送信装置の位置を検出する位置検出装置と、
 前記人体が進入する領域のうちの少なくとも一部を含む領域内において、所定のロボット動作を行うロボットとを備えるロボット制御システムであって、
 前記ロボットは、前記位置検出装置によって検出された前記無線送信装置の位置に応じて、前記ロボット動作を制御する。
The robot control system according to still another aspect of the present disclosure is
A wireless transmitter that is attached to the human body and transmits electromagnetic waves,
A position detection device that receives an electromagnetic wave transmitted from the wireless transmission device and detects the position of the wireless transmission device based on the received electromagnetic wave.
A robot control system including a robot that performs a predetermined robot operation in an area including at least a part of the area in which the human body enters.
The robot controls the robot operation according to the position of the wireless transmission device detected by the position detection device.
 本開示に係るロボット制御システム、反射体、無線通信装置、及び無線送信装置によれば、生産効率の低下を防止し、作業者の安全を確保することができる。 According to the robot control system, reflector, wireless communication device, and wireless transmission device according to the present disclosure, it is possible to prevent a decrease in production efficiency and ensure the safety of workers.
本開示に係るロボット制御システムの全体構成例を示す全体構成図である。It is an overall configuration diagram which shows the overall configuration example of the robot control system which concerns on this disclosure. 図1のロボット制御システムの作用効果の一例を説明するためのグラフである。It is a graph for demonstrating an example of the action effect of the robot control system of FIG. 図1のロボット制御システムの作用効果の一例を説明するためのグラフである。It is a graph for demonstrating an example of the action effect of the robot control system of FIG. 実施形態1に係るロボット制御システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the robot control system which concerns on Embodiment 1. 図3の送信アンテナの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the transmitting antenna of FIG. 図3の反射体の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the reflector of FIG. 図3の反射体の構成の他の例を示す模式図である。It is a schematic diagram which shows another example of the structure of the reflector of FIG. 実施形態2に係るロボット制御システムの構成例を示すブロック図である。It is a block diagram which shows the configuration example of the robot control system which concerns on Embodiment 2. 図7のビーコン信号発生装置の構成例を示すブロック図である。It is a block diagram which shows the configuration example of the beacon signal generator of FIG. 実施形態3に係るロボット制御システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the robot control system which concerns on Embodiment 3. 図9のCW送信装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the CW transmission apparatus of FIG.
 以下、添付の図面を参照して本開示に係るロボット制御システムの実施形態を説明する。なお、以下の各実施形態において、同一又は同様の構成要素については同一の符号を付している。 Hereinafter, embodiments of the robot control system according to the present disclosure will be described with reference to the attached drawings. In each of the following embodiments, the same or similar components are designated by the same reference numerals.
(適用例)
 本開示に係るロボット制御システム100を適用可能な一例について、図1を参照して説明する。図1は、本開示に係るロボット制御システム100の全体構成例を示す全体構成図である。
(Application example)
An example to which the robot control system 100 according to the present disclosure can be applied will be described with reference to FIG. FIG. 1 is an overall configuration diagram showing an overall configuration example of the robot control system 100 according to the present disclosure.
 図1において、ロボット制御システム100は、3次元電磁波レーダを用いた位置検出装置120と、位置検出装置120から送信された電磁波を反射する反射体110と、ロボット140とを含む。 In FIG. 1, the robot control system 100 includes a position detection device 120 using a three-dimensional electromagnetic wave radar, a reflector 110 that reflects an electromagnetic wave transmitted from the position detection device 120, and a robot 140.
 反射体110は、例えば電磁波を反射する金属膜等の反射材料を含み、例えば作業者160の手に装着できるような形状を有する。例えば、反射体110は、手袋様の形状を有し、又は手袋に取り付けられる。 The reflector 110 contains a reflective material such as a metal film that reflects electromagnetic waves, and has a shape that can be attached to the hand of an operator 160, for example. For example, the reflector 110 has a glove-like shape or is attached to a glove.
 ロボット140は、製造対象であるワーク170に対して、例えばボルト締め、接着、溶接、組立て、ピッキング、梱包、及び品質検査等の所定のロボット動作を行う産業用ロボットである。ロボット140は、作業者160と協働して、又は作業者160の作業領域と共通する領域内で、当該ロボット動作を行うものであり、例えば協調ロボット又は協働ロボットと呼ばれる。作業者160は、ロボット140と協働して、作業台150上で作業を行う。ロボット140は、作業者160が進入する領域のうちの少なくとも一部を含む領域内において、ロボット動作を行う。 The robot 140 is an industrial robot that performs predetermined robot operations such as bolting, bonding, welding, assembling, picking, packing, and quality inspection on the work 170 to be manufactured. The robot 140 performs the robot operation in cooperation with the worker 160 or in an area common to the work area of the worker 160, and is called, for example, a cooperative robot or a cooperative robot. The worker 160 works on the workbench 150 in cooperation with the robot 140. The robot 140 performs the robot operation in an area including at least a part of the area in which the worker 160 enters.
 ロボット140は、作業者160と協働してロボット動作を行うため、作業者160に近接して、例えば作業者160の手が届く範囲内に、配置される。このような場合、作業者160がロボット140に接触することによる事故等を防止する必要がある。 Since the robot 140 performs the robot operation in cooperation with the worker 160, the robot 140 is arranged in the vicinity of the worker 160, for example, within the reach of the worker 160. In such a case, it is necessary to prevent an accident or the like caused by the worker 160 coming into contact with the robot 140.
 従来技術においては、事故防止のために、作業者と産業ロボットとの間に柵を配置することが行われていた。しかしながら、柵を介して作業者と産業ロボットとの協働作業を行うのは非効率であるという問題があった。また、柵を配置するには広いスペースが必要であり、狭い工場には産業ロボットを配置できないという問題があった。さらに、柵の配置には時間と費用がかかるという問題もあった。 In the prior art, a fence was placed between the worker and the industrial robot in order to prevent accidents. However, there is a problem that it is inefficient to carry out collaborative work between the worker and the industrial robot through the fence. In addition, a large space is required to arrange the fence, and there is a problem that an industrial robot cannot be arranged in a narrow factory. Further, there is a problem that the arrangement of the fence is time-consuming and expensive.
 そこで、近年では、柵を配置せず、例えば作業者が協調ロボットの可動域の中に入った場合に、協調ロボットを停止させ、又はその動作速度を制限する技術が提案されている。しかしながら、電磁波レーダを用いた位置検出装置によって作業台上の作業者の手の位置を検出しようとしても、図2Aに示すように、作業者の手によって反射された電磁波の強度は、作業台によって反射された電磁波の強度に比べて著しく弱い。そのため、作業者の手からの反射波が作業台からの反射波に埋もれてしまい、手の位置を検出することは困難であった。 Therefore, in recent years, a technique has been proposed in which a fence is not arranged and, for example, when a worker enters the range of motion of the cooperative robot, the cooperative robot is stopped or its operation speed is limited. However, even if an attempt is made to detect the position of the worker's hand on the workbench by a position detection device using an electromagnetic wave radar, as shown in FIG. 2A, the intensity of the electromagnetic wave reflected by the worker's hand depends on the workbench. It is significantly weaker than the intensity of the reflected electromagnetic wave. Therefore, the reflected wave from the worker's hand is buried in the reflected wave from the workbench, and it is difficult to detect the position of the hand.
 また、作業者の手ではなく、他の方法を利用して胴や足を検出することは比較的容易であるが、胴や足の位置に基づいて協調ロボットを制御すると、作業者の手が協調ロボットから十分に離れているのに協調ロボットが停止し、作業が非効率になる問題がある。また、手が協調ロボットに接触しているにもかかわらず協調ロボットが停止しない場合もあり、作業者の安全が確保できない問題もある。 Also, it is relatively easy to detect the torso and feet using other methods than the worker's hands, but if the cooperative robot is controlled based on the position of the torso and feet, the worker's hands can be detected. There is a problem that the cooperative robot stops even though it is sufficiently far from the cooperative robot, and the work becomes inefficient. In addition, the cooperative robot may not stop even though the hand is in contact with the cooperative robot, and there is a problem that the safety of the operator cannot be ensured.
 そこで、本開示に係るロボット制御システム100は、反射体110を含むことにより、上記の課題を解決する。作業時には、反射体110は、作業者160の手に装着される。これにより、作業者160の手に装着された反射体110の効果により、作業者160の手から反射された電磁波の強度は、図2Bに示すように、図2Aの場合と比較して強くなる。これにより、作業者160の手の位置を検出することが可能になる。 Therefore, the robot control system 100 according to the present disclosure solves the above-mentioned problems by including the reflector 110. At the time of work, the reflector 110 is attached to the hand of the worker 160. As a result, due to the effect of the reflector 110 attached to the hand of the worker 160, the intensity of the electromagnetic wave reflected from the hand of the worker 160 becomes stronger as compared with the case of FIG. 2A, as shown in FIG. 2B. .. This makes it possible to detect the position of the hand of the worker 160.
(実施形態1)
 図3は、実施形態1に係るロボット制御システム100の構成を例示するブロック図である。
(Embodiment 1)
FIG. 3 is a block diagram illustrating the configuration of the robot control system 100 according to the first embodiment.
 図3において、ロボット制御システム100は、反射体110と、位置検出装置120と、ロボット140とを備える。 In FIG. 3, the robot control system 100 includes a reflector 110, a position detection device 120, and a robot 140.
[位置検出装置]
 図3において、位置検出装置120は、識別情報(以下、「ID情報」という。)を含む信号(以下、「ID信号」という。)を生成するID信号発生器122と、ID信号に従って無線搬送波を変調することにより無線信号を出力する変調送信回路123と、無線信号を送信する送信アンテナ121と、送信アンテナ121の指向性を制御する指向性制御部124とを備える。
[Position detector]
In FIG. 3, the position detection device 120 has an ID signal generator 122 that generates a signal (hereinafter, referred to as “ID signal”) including identification information (hereinafter, referred to as “ID information”), and a radio carrier wave according to the ID signal. A modulation transmission circuit 123 that outputs a radio signal by modulating the radio signal, a transmission antenna 121 that transmits the radio signal, and a directional control unit 124 that controls the directivity of the transmission antenna 121 are provided.
 図4は、図3の送信アンテナ121の構成例を示す模式図である。送信アンテナ121は、例えば、複数のアンテナ121aを所定の間隔で2次元に配列した2次元アレイアンテナである。指向性制御部124は、各アンテナ121aから送信される各無線信号の位相をそれぞれ制御して、送信アンテナ121から送信される送信ビームの指向性を制御する。指向性制御部124は、無線信号の位相だけでなく、振幅を制御してもよい。例えば、指向性制御部124は、送信ビームが所定の3次元空間内を一定の周期で走査するように、送信ビームの指向性を制御する。 FIG. 4 is a schematic view showing a configuration example of the transmitting antenna 121 of FIG. The transmitting antenna 121 is, for example, a two-dimensional array antenna in which a plurality of antennas 121a are arranged two-dimensionally at predetermined intervals. The directivity control unit 124 controls the phase of each radio signal transmitted from each antenna 121a to control the directivity of the transmission beam transmitted from the transmission antenna 121. The directivity control unit 124 may control not only the phase of the radio signal but also the amplitude. For example, the directivity control unit 124 controls the directivity of the transmitted beam so that the transmitted beam scans in a predetermined three-dimensional space at a constant cycle.
 図3において、位置検出装置120は、受信アンテナ125をさらに備える。位置検出装置120の送信アンテナ121から送信された無線信号は、反射体110によって反射され、受信アンテナ125によって受信される。 In FIG. 3, the position detecting device 120 further includes a receiving antenna 125. The radio signal transmitted from the transmitting antenna 121 of the position detecting device 120 is reflected by the reflector 110 and received by the receiving antenna 125.
 位置検出装置120は、受信信号を低雑音増幅する低雑音増幅器126と、ミキサ127とをさらに備える。ミキサ127は、増幅された受信信号と、変調送信回路123からの無線搬送波とを混合し、混合後の信号を出力する。ミキサ127から出力された混合後の信号は、ローパスフィルタ(以下、「LPF」という。)128に入力され、不要な高周波成分が取り除かれる。このようにして、ID情報を含むベースバンド信号が得られる。 The position detection device 120 further includes a low noise amplifier 126 that amplifies the received signal with low noise, and a mixer 127. The mixer 127 mixes the amplified reception signal with the radio carrier wave from the modulation transmission circuit 123, and outputs the mixed signal. The mixed signal output from the mixer 127 is input to a low-pass filter (hereinafter, referred to as “LPF”) 128, and unnecessary high-frequency components are removed. In this way, a baseband signal including ID information is obtained.
 LPF128から出力されたベースバンド信号は、AD変換器129に入力され、デジタル信号に変換される。AD変換器129から出力されたデジタル信号は、位置検出部130に入力される。 The baseband signal output from the LPF128 is input to the AD converter 129 and converted into a digital signal. The digital signal output from the AD converter 129 is input to the position detection unit 130.
 位置検出部130は、例えば以下の手順で反射体110の位置を検出する。
(1)受信したデジタル信号に含まれるID情報を取得する。
(2)受信したデジタル信号に基づいて、受信アンテナ125が当該ID情報を含む反射波を受信した時刻t1を検出する。
(3)指向性制御部124から、当該ID情報を含む送信ビームが送信された方向についての情報を取得する。
(4)指向性制御部124から、当該ID情報を含む送信ビームが送信された時刻t2についての情報を取得する。
(5)送信アンテナ121から、(3)で取得された方向に、距離(t1-t2)×c/2だけ離れた点を、反射体110の位置として検出する。ここで、cは、光速である。
The position detection unit 130 detects the position of the reflector 110, for example, by the following procedure.
(1) Acquire ID information included in the received digital signal.
(2) Based on the received digital signal, the receiving antenna 125 detects the time t1 when the reflected wave including the ID information is received.
(3) Information about the direction in which the transmission beam including the ID information is transmitted is acquired from the directivity control unit 124.
(4) Information about the time t2 at which the transmission beam including the ID information is transmitted is acquired from the directivity control unit 124.
(5) A point separated from the transmitting antenna 121 by a distance (t1-t2) × c / 2 in the direction acquired in (3) is detected as the position of the reflector 110. Here, c is the speed of light.
 指向性制御部124及び位置検出部130は、例えばCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含む情報処理回路により構成される。指向性制御部124及び位置検出部130は、例えば、RAMに展開されたプログラムをCPUにより解釈及び実行することにより、前述の指向性制御及び位置検出を行う。 The directivity control unit 124 and the position detection unit 130 are composed of an information processing circuit including, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. The directivity control unit 124 and the position detection unit 130 perform the above-mentioned directivity control and position detection by, for example, interpreting and executing the program expanded in the RAM by the CPU.
 位置検出装置120は、通信インタフェース(以下、「通信I/F」という。)131をさらに備える。位置検出装置120の位置検出部130は、検出した反射体110の位置を含む情報を、通信I/F131を介して、ロボット140に送信する。 The position detection device 120 further includes a communication interface (hereinafter, referred to as “communication I / F”) 131. The position detection unit 130 of the position detection device 120 transmits information including the detected position of the reflector 110 to the robot 140 via the communication I / F 131.
 通信I/F131は、位置検出装置120とロボット140との通信接続を可能とするためのインタフェース回路を含む。通信I/F131は、例えば、IEEE802.3、IEEE802.11又はWi-Fi、LTE、3G、4G、5G等の規格に従って通信を行う。通信I/F131は、USB(Universal Serial Bus)、HDMI(High Definition Multimedia Interface)、IEEE1394、Bluetooth等の規格に従って通信を行うインタフェースであってもよい。 The communication I / F 131 includes an interface circuit for enabling communication connection between the position detection device 120 and the robot 140. The communication I / F 131 communicates according to standards such as IEEE802.3, IEEE802.11 or Wi-Fi, LTE, 3G, 4G, and 5G. The communication I / F 131 may be an interface that communicates according to standards such as USB (Universal Serial Bus), HDMI (High Definition Multimedia Interface), IEEE 1394, and Bluetooth.
[ロボット]
 図3において、ロボット140は、通信I/F141と、制御部142と、アーム143とを備える。
[robot]
In FIG. 3, the robot 140 includes a communication I / F 141, a control unit 142, and an arm 143.
 ロボット140の通信I/F141は、ロボット140と位置検出装置120との通信接続を可能とするためのインタフェース回路を含むものであり、位置検出装置120の通信I/F131と同様の構成を有する。 The communication I / F 141 of the robot 140 includes an interface circuit for enabling a communication connection between the robot 140 and the position detection device 120, and has the same configuration as the communication I / F 131 of the position detection device 120.
 ロボット140の制御部142は、例えばCPU、RAM、ROM等を含む情報処理回路により構成され、ロボット140全体の制御を行う。例えば、制御部142は、RAMに展開されたプログラムをCPUにより解釈及び実行することにより、アーム143を操作する。 The control unit 142 of the robot 140 is composed of an information processing circuit including, for example, a CPU, RAM, ROM, etc., and controls the entire robot 140. For example, the control unit 142 operates the arm 143 by interpreting and executing the program expanded in the RAM by the CPU.
 ロボット140のアーム143は、制御部142によって駆動される可動部である。アーム143は、制御部142による制御に従って、製造対象であるワーク170(図1参照)に対して、例えばボルト締め、接着、溶接、組立て、ピッキング、梱包、及び品質検査等の動作を行う。 The arm 143 of the robot 140 is a movable unit driven by the control unit 142. Under the control of the control unit 142, the arm 143 performs operations such as bolting, bonding, welding, assembling, picking, packing, and quality inspection on the work 170 (see FIG. 1) to be manufactured.
 ロボット140の制御部142は、反射体110の位置を含む情報を、通信I/F141を介して、位置検出装置120から受信する。ロボット140の制御部142は、反射体110の位置に応じて、アーム143と作業者160との接触を避けるための制御を行う。例えば、反射体110が所定のロボットの可動域の中にある場合、制御部142は、アーム143を停止させる、アーム143の動作速度を小さくする等の安全確保動作を行う。 The control unit 142 of the robot 140 receives information including the position of the reflector 110 from the position detection device 120 via the communication I / F 141. The control unit 142 of the robot 140 performs control for avoiding contact between the arm 143 and the operator 160 according to the position of the reflector 110. For example, when the reflector 110 is within the range of motion of a predetermined robot, the control unit 142 performs a safety ensuring operation such as stopping the arm 143 and reducing the operating speed of the arm 143.
 ロボット140の制御部142は、アーム143の位置を検出してもよい。制御部142は、反射体110とロボット140のアーム143との距離に応じて、アーム143と作業者160との接触を避けるための制御を行う。例えば、制御部142は、反射体110とアーム143との距離が所定の閾値未満である場合に、上記の安全確保動作を行ってもよい。 The control unit 142 of the robot 140 may detect the position of the arm 143. The control unit 142 controls to avoid contact between the arm 143 and the operator 160 according to the distance between the reflector 110 and the arm 143 of the robot 140. For example, the control unit 142 may perform the above safety ensuring operation when the distance between the reflector 110 and the arm 143 is less than a predetermined threshold value.
[反射体]
 図5は、図3の反射体110の構成の一例を示す模式図である。反射体110は、手袋101の表面に張り付けられた金属膜である。反射体110には、電磁波を散乱するための凹凸が設けられてもよい。
[Reflector]
FIG. 5 is a schematic view showing an example of the configuration of the reflector 110 of FIG. The reflector 110 is a metal film attached to the surface of the glove 101. The reflector 110 may be provided with irregularities for scattering electromagnetic waves.
 反射体110の構成は、作業者160の手に装着できるものであればよく、図5に示したものに限定されない。図6は、図3の反射体110の構成の他の例を示す模式図である。 The configuration of the reflector 110 may be any one that can be attached to the hand of the worker 160, and is not limited to the one shown in FIG. FIG. 6 is a schematic view showing another example of the configuration of the reflector 110 of FIG.
 図6において、反射体110は、リストバンドに取り付けられた金属体であり、作業者160の手首に装着される。 In FIG. 6, the reflector 110 is a metal body attached to the wristband and is attached to the wrist of the worker 160.
[作用・効果]
 以上説明したように、本実施形態に係るロボット制御システム100によれば、作業者160の手に装着された反射体110の位置に基づいてロボット140を制御できる。したがって、作業者160の手がロボット140から十分に離れているのにロボット140を停止させることはなく、生産効率の低下を防止できる。また、作業者160の手がロボット140に接触しているにもかかわらずロボット140が停止しないという事態を防止でき、作業者160の安全を確保することができる。
[Action / Effect]
As described above, according to the robot control system 100 according to the present embodiment, the robot 140 can be controlled based on the position of the reflector 110 mounted on the hand of the worker 160. Therefore, the robot 140 is not stopped even though the hand of the worker 160 is sufficiently separated from the robot 140, and the decrease in production efficiency can be prevented. Further, it is possible to prevent the robot 140 from stopping even though the hand of the worker 160 is in contact with the robot 140, and the safety of the worker 160 can be ensured.
 また、ロボット制御システム100は、ロバスト性を有する電磁波レーダを利用するため、例えば工場に湯気が充満している場合であっても、精度良く位置検出をすることができる。 Further, since the robot control system 100 uses an electromagnetic wave radar having robustness, it is possible to accurately detect the position even when the factory is filled with steam, for example.
(実施形態2)
 図7は、実施形態2に係るロボット制御システム200の構成を例示するブロック図である。図7のロボット制御システム200は、図3のロボット制御システム100の反射体110に代えて、ビーコン信号発生装置210を備える。ビーコン信号発生装置210は、本開示の「無線通信装置」の一例である。ビーコン信号発生装置210は、例えば図6に示した反射体110と同様に、作業者160の手首に装着可能な構成を有する。以下、実施形態1と異なるビーコン信号発生装置210について説明する。
(Embodiment 2)
FIG. 7 is a block diagram illustrating the configuration of the robot control system 200 according to the second embodiment. The robot control system 200 of FIG. 7 includes a beacon signal generator 210 in place of the reflector 110 of the robot control system 100 of FIG. The beacon signal generator 210 is an example of the "wireless communication device" of the present disclosure. The beacon signal generator 210 has a configuration that can be worn on the wrist of the operator 160, similar to the reflector 110 shown in FIG. 6, for example. Hereinafter, the beacon signal generator 210 different from the first embodiment will be described.
 図8は、図7のビーコン信号発生装置210の構成例を示すブロック図である。 FIG. 8 is a block diagram showing a configuration example of the beacon signal generator 210 of FIG.
 図8において、ビーコン信号発生装置210は、受信アンテナ211と、受信信号を増幅する低雑音増幅器212と、所定の周波数の信号を生成する局部発振器213と、ミキサ214とを備える。ここで、所定の周波数は、図7の位置検出装置120の送信アンテナ121から送信される無線信号と同一の周波数に設定される。 In FIG. 8, the beacon signal generator 210 includes a receiving antenna 211, a low noise amplifier 212 that amplifies the received signal, a local oscillator 213 that generates a signal of a predetermined frequency, and a mixer 214. Here, the predetermined frequency is set to the same frequency as the radio signal transmitted from the transmitting antenna 121 of the position detecting device 120 of FIG. 7.
 ミキサ214には、低雑音増幅器212によって増幅された受信信号と、局部発振器213から出力された信号とが入力される。ミキサ214は、これらの入力信号を混合して出力する。ミキサ214から出力された信号は、LPF215に入力され、不要な高周波成分が取り除かれる。これにより、ID情報を含むベースバンド信号を得ることができる。 The received signal amplified by the low noise amplifier 212 and the signal output from the local oscillator 213 are input to the mixer 214. The mixer 214 mixes and outputs these input signals. The signal output from the mixer 214 is input to the LPF215, and unnecessary high frequency components are removed. As a result, a baseband signal including ID information can be obtained.
 LPF215から出力されたベースバンド信号は、AD変換器216に入力され、デジタル信号に変換される。AD変換器216から出力されたデジタル信号は、ID信号検出部217に入力される。 The baseband signal output from LPF215 is input to the AD converter 216 and converted into a digital signal. The digital signal output from the AD converter 216 is input to the ID signal detection unit 217.
 ID信号検出部217は、入力されたデジタル信号に含まれるID情報が、ビーコン信号発生装置210に固有のID情報(以下、「固有ID情報」という。)と一致するか否かを検出する。固有ID情報は、メモリ218に予め格納されている。ID信号検出部217は、メモリ218から固有ID情報を読み込み、読み込んだ固有ID情報が入力されたデジタル信号に含まれるID情報と一致するか否かを検出し、検出結果を示す検出結果信号をビーコン信号発生部219に出力する。 The ID signal detection unit 217 detects whether or not the ID information included in the input digital signal matches the ID information unique to the beacon signal generator 210 (hereinafter, referred to as "unique ID information"). The unique ID information is stored in the memory 218 in advance. The ID signal detection unit 217 reads the unique ID information from the memory 218, detects whether or not the read unique ID information matches the ID information included in the input digital signal, and outputs a detection result signal indicating the detection result. It is output to the beacon signal generation unit 219.
 ビーコン信号発生部219は、入力されたデジタル信号に含まれるID情報と固有ID情報とが一致するという検出結果信号が入力された場合、固有ID情報を含む信号を生成し、変調送信回路221に出力する。固有ID情報は、メモリ220に予め格納されている。図8では、メモリ218とメモリ220とを別のものとして図示したが、メモリ218及びメモリ220の機能は、1つのメモリによって実現されてもよい。 When the detection result signal that the ID information included in the input digital signal and the unique ID information match is input, the beacon signal generation unit 219 generates a signal including the unique ID information and causes the modulation transmission circuit 221 to generate a signal. Output. The unique ID information is stored in the memory 220 in advance. Although the memory 218 and the memory 220 are shown as separate objects in FIG. 8, the functions of the memory 218 and the memory 220 may be realized by one memory.
 変調送信回路221は、入力された固有ID情報を含む信号に従って無線搬送波を変調することにより無線信号を生成して出力する。無線搬送波は、局部発振器213から変調送信回路221に入力されてもよい。あるいは、無線搬送波は、ビーコン信号発生部219によって生成されてもよい。変調送信回路221から出力された無線信号は、送信アンテナ222から位置検出装置120に送信される。 The modulation transmission circuit 221 generates and outputs a radio signal by modulating the radio carrier wave according to the signal including the input unique ID information. The radio carrier may be input from the local oscillator 213 to the modulation transmission circuit 221. Alternatively, the radio carrier may be generated by the beacon signal generator 219. The radio signal output from the modulation transmission circuit 221 is transmitted from the transmission antenna 222 to the position detection device 120.
 図7の位置検出装置120の受信アンテナ125は、ビーコン信号発生装置210の送信アンテナ222から送信された無線信号を受信する。位置検出装置120は、実施形態1と同様の手順でビーコン信号発生部219の位置を検出することができる。 The receiving antenna 125 of the position detecting device 120 of FIG. 7 receives the radio signal transmitted from the transmitting antenna 222 of the beacon signal generating device 210. The position detection device 120 can detect the position of the beacon signal generation unit 219 in the same procedure as in the first embodiment.
 本実施の形態に係るロボット制御システム200は、送信アンテナ222を用いて無線信号を位置検出装置120に送信するビーコン信号発生装置210を備えるため、安定してビーコン信号発生装置210から位置検出装置120に無線信号が送信される。そのため、ロボット制御システム200は、実施の形態1に係るロボット制御システム100の作用効果に加えて、精度良くビーコン信号発生装置210ひいては作業者160の手の位置を検出できる作用効果を有する。 Since the robot control system 200 according to the present embodiment includes a beacon signal generator 210 that transmits a radio signal to the position detection device 120 using the transmission antenna 222, the position detection device 120 from the beacon signal generator 210 is stably provided. A radio signal is transmitted to. Therefore, in addition to the operation and effect of the robot control system 100 according to the first embodiment, the robot control system 200 has an effect of being able to accurately detect the position of the hand of the beacon signal generator 210 and the worker 160.
(実施形態3)
 図9は、実施形態3に係るロボット制御システム300の構成を例示するブロック図である。図9のロボット制御システム300は、図3のロボット制御システム100に比較して以下の点が異なる。
(1)反射体110に代えて、連続波(Continuous Wave、以下「CW」という。)送信機310を備える。
(2)位置検出装置120に代えて、位置検出装置320を備える。
 以下、相違点について説明する。
(Embodiment 3)
FIG. 9 is a block diagram illustrating the configuration of the robot control system 300 according to the third embodiment. The robot control system 300 of FIG. 9 differs from the robot control system 100 of FIG. 3 in the following points.
(1) Instead of the reflector 110, a continuous wave (Continuous Wave, hereinafter referred to as “CW”) transmitter 310 is provided.
(2) A position detection device 320 is provided instead of the position detection device 120.
The differences will be described below.
 図10は、図9のCW送信機310の構成例を示すブロック図である。CW送信機310は、本開示の「無線送信装置」の一例である。CW送信機310は、例えば図6に示した反射体110と同様に、作業者160の手首に装着可能な構成を有する。CW送信機310は、周波数fの信号を生成する発振器311と、生成された信号を増幅して無線信号を出力する電力増幅器312と、電力増幅器312から出力された無線信号を位置検出装置320に送信する送信アンテナ313とを備える。 FIG. 10 is a block diagram showing a configuration example of the CW transmitter 310 of FIG. The CW transmitter 310 is an example of the "wireless transmitter" of the present disclosure. The CW transmitter 310 has a configuration that can be worn on the wrist of the worker 160, similar to the reflector 110 shown in FIG. 6, for example. The CW transmitter 310 sends the oscillator 311 that generates the signal of frequency f, the power amplifier 312 that amplifies the generated signal and outputs the radio signal, and the radio signal output from the power amplifier 312 to the position detection device 320. It includes a transmitting antenna 313 for transmitting.
 図9において、位置検出装置320は、受信アンテナ325と、指向性制御部124と、低雑音増幅器126と、局部発振器326と、ミキサ127と、BPF328と、AD変換器129と、位置検出部330と、通信I/F131とを備える。 In FIG. 9, the position detection device 320 includes a reception antenna 325, a directivity control unit 124, a low noise amplifier 126, a local oscillator 326, a mixer 127, a BPF 328, an AD converter 129, and a position detection unit 330. And communication I / F 131.
 受信アンテナ325は、CW送信機310から送信された無線信号を受信する。受信アンテナ325は、例えば、複数のアンテナを2次元に配列した2次元アレイアンテナであり、図4の送信アンテナ121と同様の構成を有する。受信アンテナ325の指向性は、指向性制御部124によって制御される。 The receiving antenna 325 receives the radio signal transmitted from the CW transmitter 310. The receiving antenna 325 is, for example, a two-dimensional array antenna in which a plurality of antennas are arranged in two dimensions, and has the same configuration as the transmitting antenna 121 of FIG. The directivity of the receiving antenna 325 is controlled by the directivity control unit 124.
 低雑音増幅器126は、受信信号を増幅してミキサ127に出力する。局部発振器326は、周波数f+Δfの信号を生成してミキサ127に出力する。ミキサ127は、低雑音増幅器126からの周波数fの信号と、局部発振器326からの周波数f+Δfの信号とを混合して、周波数(f+Δf)±fの信号をバンドパスフィルタ(以下、「BPF」という。)328に出力する。BPF328は、ミキサ127から入力された信号のうち、ビート周波数Δfのビート信号のみを透過させる。 The low noise amplifier 126 amplifies the received signal and outputs it to the mixer 127. The local oscillator 326 generates a signal of frequency f + Δf and outputs it to the mixer 127. The mixer 127 mixes the signal of the frequency f from the low noise amplifier 126 and the signal of the frequency f + Δf from the local oscillator 326, and the signal of the frequency (f + Δf) ± f is referred to as a bandpass filter (hereinafter, “BPF”). .) Output to 328. The BPF 328 transmits only the beat signal having the beat frequency Δf among the signals input from the mixer 127.
 BPF328から出力されたビート信号は、AD変換器129に入力され、デジタル信号に変換される。AD変換器129から出力されたデジタル信号は、位置検出部330に入力される。 The beat signal output from the BPF 328 is input to the AD converter 129 and converted into a digital signal. The digital signal output from the AD converter 129 is input to the position detection unit 330.
 位置検出部330は、AD変換器129から受信したデジタル信号と、指向性制御部124が有する指向性情報とに基づいて、CW送信機310の位置を検出する。例えば、位置検出部330は、AD変換器129からデジタル信号を受信した場合、指向性制御部124から、その時点における受信アンテナ325の指向性についての情報を取得し、当該情報が示す方向及び距離にCW送信機310があることを検出する。 The position detection unit 330 detects the position of the CW transmitter 310 based on the digital signal received from the AD converter 129 and the directivity information possessed by the directivity control unit 124. For example, when the position detection unit 330 receives a digital signal from the AD converter 129, the position detection unit 330 acquires information about the directivity of the receiving antenna 325 at that time from the directivity control unit 124, and the direction and distance indicated by the information. Detects that there is a CW transmitter 310 in.
 本実施の形態に係るロボット制御システム300は、送信アンテナ313を用いて無線信号を位置検出装置320に送信するCW送信機310を備えるため、安定してCW送信機310から位置検出装置320に無線信号が送信される。そのため、ロボット制御システム300は、実施の形態1に係るロボット制御システム100の作用効果に加えて、精度良くCW送信機310ひいては作業者160の手の位置を検出できる作用効果を有する。 Since the robot control system 300 according to the present embodiment includes a CW transmitter 310 that transmits a radio signal to the position detection device 320 using the transmission antenna 313, the CW transmitter 310 stably wirelessly transmits the radio signal to the position detection device 320. A signal is transmitted. Therefore, the robot control system 300 has an effect of being able to accurately detect the position of the hand of the CW transmitter 310 and the worker 160 in addition to the effect of the robot control system 100 according to the first embodiment.
(変形例)
 以上、本開示の実施形態を詳細に説明したが、前述までの説明はあらゆる点において本開示の例示に過ぎない。本開示の範囲を逸脱することなく種々の改良や変形を行うことができる。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略する。以下の変形例は適宜組み合わせることができる。
(Modification example)
Although the embodiments of the present disclosure have been described in detail above, the above description is merely an example of the present disclosure in all respects. Various improvements and modifications can be made without departing from the scope of the present disclosure. For example, the following changes can be made. In the following, the same reference numerals will be used for the same components as those in the above embodiment, and the same points as in the above embodiment will be omitted as appropriate. The following modifications can be combined as appropriate.
<変形例1>
 実施形態1及び実施形態2においては、図3及び図7に示したように、送信アンテナ121と受信アンテナ125とを別個に備えた位置検出装置120について説明した。しかしながら、本開示はこれに限定されず、位置検出装置120は、無線信号の送信及び受信の両方を行う1つのアンテナを備えるものであってもよい。この場合、例えば、送受信を切り替える切替スイッチや、サーキュレータ等が利用される。
<Modification example 1>
In the first and second embodiments, as shown in FIGS. 3 and 7, the position detection device 120 including the transmitting antenna 121 and the receiving antenna 125 separately has been described. However, the present disclosure is not limited to this, and the position detection device 120 may include one antenna that both transmits and receives radio signals. In this case, for example, a changeover switch for switching transmission / reception, a circulator, or the like is used.
<変形例2>
 実施形態1及び実施形態2においては、図4に示したように、送信アンテナ121が複数のアンテナ121aを2次元に配列した2次元アレイアンテナで構成されることを説明した。しかしながら、本開示はこれに限定されない。例えば、送信アンテナ121は、複数のアンテナを一直線に配列した1次元アレイアンテナで構成されてもよい。また、送信アンテナ121は、1つのアンテナ素子で構成されてもよい。
<Modification 2>
In the first and second embodiments, it has been described that the transmitting antenna 121 is composed of a two-dimensional array antenna in which a plurality of antennas 121a are arranged in two dimensions, as shown in FIG. However, the present disclosure is not limited to this. For example, the transmitting antenna 121 may be composed of a one-dimensional array antenna in which a plurality of antennas are arranged in a straight line. Further, the transmitting antenna 121 may be composed of one antenna element.
<変形例3>
 実施形態1及び実施形態2においては、図3及び図7に示したように、ID信号に従って無線搬送波を変調して送信する電磁波レーダを用いた位置検出装置120について説明した。しかしながら、本開示はこれに限定されず、電磁波レーダに用いられる変調方式は、他の連続波方式及びパルス方式であってもよい。例えば、電磁波レーダは、パルス変調方式を用いたパルスレーダであってもよい。
<Modification example 3>
In the first and second embodiments, as shown in FIGS. 3 and 7, a position detection device 120 using an electromagnetic wave radar that modulates and transmits a radio carrier wave according to an ID signal has been described. However, the present disclosure is not limited to this, and the modulation method used for the electromagnetic wave radar may be another continuous wave method or a pulse method. For example, the electromagnetic wave radar may be a pulse radar using a pulse modulation method.
<変形例4>
 実施形態3においては、図9に示したように、位置検出装置320はBPF328を用いて構成されている。しかしながら、本開示はこれに限定されず、位置検出装置320は、BPF328に代えて例えばLPFを備えてもよい。
<Modification example 4>
In the third embodiment, as shown in FIG. 9, the position detecting device 320 is configured by using the BPF 328. However, the present disclosure is not limited to this, and the position detecting device 320 may include, for example, an LPF instead of the BPF 328.
<変形例5>
 実施形態1~3において、電磁波レーダについて説明した。電磁波レーダは、電波レーダを含む。電波レーダは、レーザ光を用いたLIDAR(Light Detection and Ranging)に比べて安価であるため、上記の作用効果を比較的安価に実現することができ、ロボット制御システム100を導入するために必要なコストを低減できる。
<Modification 5>
The electromagnetic wave radar has been described in the first to third embodiments. Electromagnetic wave radar includes radio wave radar. Since the radio wave radar is cheaper than LIDAR (Light Detection and Ranging) using laser light, the above effects can be realized at a relatively low cost, which is necessary for introducing the robot control system 100. The cost can be reduced.
<変形例6>
 実施形態1及び実施形態2においては、送信ビームを走査する送信アンテナ121と、無線信号を受信する受信アンテナ125とを備える位置検出装置120について説明した。しかしながら、本開示はこれに限定されない。例えば、受信アンテナ125は、図4に示した送信アンテナ121と同様に、複数のアンテナを所定の間隔で2次元に配列した2次元アレイアンテナであってもよい。受信アンテナ125は、複数のアンテナを一直線に配列した1次元アレイアンテナで構成されてもよい。
<Modification 6>
In the first and second embodiments, the position detection device 120 including the transmitting antenna 121 that scans the transmitting beam and the receiving antenna 125 that receives the radio signal has been described. However, the present disclosure is not limited to this. For example, the receiving antenna 125 may be a two-dimensional array antenna in which a plurality of antennas are arranged two-dimensionally at predetermined intervals, similar to the transmitting antenna 121 shown in FIG. The receiving antenna 125 may be composed of a one-dimensional array antenna in which a plurality of antennas are arranged in a straight line.
 本変形例においては、位置検出部130は、受信アンテナ125を構成する各アンテナの受信信号の振幅及び位相を独立に制御してビームフォーミングを行うことにより、無線信号の到来方向を測定する。これにより、位置検出部130は、電磁波の反射位置、すなわち反射体110の位置を測定することができる。 In this modification, the position detection unit 130 measures the arrival direction of the radio signal by independently controlling the amplitude and phase of the reception signal of each antenna constituting the reception antenna 125 to perform beamforming. As a result, the position detection unit 130 can measure the reflection position of the electromagnetic wave, that is, the position of the reflector 110.
<変形例7>
 実施形態3においては、受信アンテナ325の指向性を制御する指向性制御部124を備える位置検出装置320について説明した。しかしながら、本開示はこれに限定されない。例えば、位置検出装置320は、指向性制御部124を備えず、位置検出部330は、AD変換器129から出力されたデジタル信号に含まれる振幅情報及び位相情報に基づいて、電磁波の反射位置、すなわち反射体110の位置を測定するものであってもよい。この場合、受信アンテナ325は、走査制御される必要はなく、振幅情報及び位相情報に基づいて3次元情報を得ることができる。
<Modification 7>
In the third embodiment, the position detection device 320 including the directivity control unit 124 that controls the directivity of the receiving antenna 325 has been described. However, the present disclosure is not limited to this. For example, the position detection device 320 does not include the directional control unit 124, and the position detection unit 330 determines the reflection position of the electromagnetic wave based on the amplitude information and the phase information included in the digital signal output from the AD converter 129. That is, the position of the reflector 110 may be measured. In this case, the receiving antenna 325 does not need to be scan-controlled, and three-dimensional information can be obtained based on the amplitude information and the phase information.
<変形例8>
 上記の実施形態及び変形例においては、送信アンテナ121及び受信アンテナ125を構成するの各アンテナの位相又は振幅を制御してビームの指向性を制御する指向性制御部154について説明した。しかしながら、本開示はこれに限定されない。例えば、指向性制御部154は、送信アンテナ121及び受信アンテナ125を機械的に回転させるなどして物理的に動かして送信ビームの走査を行うものであってもよい。
<Modification 8>
In the above-described embodiment and modification, the directivity control unit 154 that controls the directivity of the beam by controlling the phase or amplitude of each antenna constituting the transmitting antenna 121 and the receiving antenna 125 has been described. However, the present disclosure is not limited to this. For example, the directivity control unit 154 may scan the transmission beam by physically moving the transmission antenna 121 and the reception antenna 125 by mechanically rotating them.
(付記)
 以下、本開示に係る各種態様を付記する。
(Additional note)
Hereinafter, various aspects of the present disclosure will be added.
 本開示の一態様は、
 人体(160)に装着され、電磁波を反射する反射体(110)と、
 前記電磁波を送信し、前記反射体(110)からの反射波を受信し、受信した前記反射波に基づいて前記反射体(110)の位置を検出する位置検出装置(120)と、
 前記人体(160)が進入する領域のうちの少なくとも一部を含む領域内において、所定のロボット動作を行うロボット(140)とを備えるロボット制御システム(100)であって、
 前記ロボット(140)は、前記位置検出装置(120)によって検出された反射体(110)の位置に応じて、前記ロボット動作を制御するロボット制御システム(100)である。
One aspect of the disclosure is
A reflector (110) that is attached to the human body (160) and reflects electromagnetic waves,
A position detection device (120) that transmits the electromagnetic wave, receives a reflected wave from the reflector (110), and detects the position of the reflector (110) based on the received reflected wave.
A robot control system (100) including a robot (140) that performs a predetermined robot operation in an area including at least a part of the area in which the human body (160) enters.
The robot (140) is a robot control system (100) that controls the robot operation according to the position of the reflector (110) detected by the position detection device (120).
 ロボット制御システム(100)において、
 前記ロボット(140)は、
   前記位置検出装置(120)によって検出された反射体(110)の位置が前記ロボット(140)の周囲の所定の領域の外にある場合、前記ロボット動作を行い、
   前記位置検出装置(120)によって検出された反射体(110)の位置が前記所定の領域の中にある場合、前記ロボット動作を停止し、又は前記ロボット動作の速度を小さくするものであってもよい。
In the robot control system (100)
The robot (140)
When the position of the reflector (110) detected by the position detection device (120) is outside a predetermined area around the robot (140), the robot operation is performed.
When the position of the reflector (110) detected by the position detection device (120) is within the predetermined region, the robot operation may be stopped or the speed of the robot operation may be reduced. Good.
 ロボット制御システム(100)において、
 前記ロボット(140)は、
   前記ロボット(140)の位置をさらに検出し、
   前記位置検出装置(120)によって検出された前記反射体(110)の位置と、前記ロボット(140)によって検出された前記ロボット(140)の位置との距離が所定の閾値以上である場合、前記ロボット動作を行い、
   前記距離が所定の閾値未満である場合、前記ロボット動作を停止し、前記ロボット動作の速度を小さくし、又は前記反射体(110)の位置から離れる方向に動作するものであってもよい。
In the robot control system (100)
The robot (140)
Further detecting the position of the robot (140),
When the distance between the position of the reflector (110) detected by the position detection device (120) and the position of the robot (140) detected by the robot (140) is equal to or greater than a predetermined threshold value, the above. Perform robot movement,
When the distance is less than a predetermined threshold value, the robot operation may be stopped, the speed of the robot operation may be reduced, or the robot may operate in a direction away from the position of the reflector (110).
 ロボット制御システム(100)において、
 前記位置検出装置(120)は、電波レーダであってもよい。
In the robot control system (100)
The position detection device (120) may be a radio wave radar.
 本開示の他の態様は、上記の態様のいずれかの反射体(110)である。 Another aspect of the present disclosure is a reflector (110) of any of the above aspects.
 本開示の他の態様は、
 第1の電磁波を送信する位置検出装置(120)と、
 人体(160)に装着され、前記位置検出装置(120)から送信された第1の電磁波を受信し、受信した第1の電磁波に応じて第2の電磁波を送信する無線通信装置(210)と、
 前記人体(160)が進入する領域のうちの少なくとも一部を含む領域内において、所定のロボット動作を行うロボット(140)とを備えるロボット制御システム(200)であって、
 前記位置検出装置(120)は、前記無線通信装置(210)から送信された第2の電磁波を受信し、受信した第2の電磁波に基づいて前記無線通信装置(210)の位置を検出し、
 前記ロボット(140)は、前記位置検出装置(120)によって検出された無線通信装置(210)の位置に応じて、前記ロボット動作を制御するものであってもよい。
Other aspects of the disclosure include
A position detection device (120) that transmits the first electromagnetic wave, and
A wireless communication device (210) that is attached to a human body (160), receives a first electromagnetic wave transmitted from the position detection device (120), and transmits a second electromagnetic wave in response to the received first electromagnetic wave. ,
A robot control system (200) including a robot (140) that performs a predetermined robot operation in an area including at least a part of the area in which the human body (160) enters.
The position detecting device (120) receives a second electromagnetic wave transmitted from the wireless communication device (210), detects the position of the wireless communication device (210) based on the received second electromagnetic wave, and determines the position of the wireless communication device (210).
The robot (140) may control the robot operation according to the position of the wireless communication device (210) detected by the position detection device (120).
 ロボット制御システム(200)において、
 前記ロボット(140)は、
   前記位置検出装置(120)によって検出された無線通信装置(210)の位置が前記ロボット(140)の周囲の所定の領域の外にある場合、前記ロボット動作を行い、
   前記位置検出装置(120)によって検出された無線通信装置(210)の位置が前記所定の領域の中にある場合、前記ロボット動作を停止し、又は前記ロボット動作の速度を小さくするものであってもよい。
In the robot control system (200)
The robot (140)
When the position of the wireless communication device (210) detected by the position detection device (120) is outside a predetermined area around the robot (140), the robot operation is performed.
When the position of the wireless communication device (210) detected by the position detection device (120) is within the predetermined area, the robot operation is stopped or the speed of the robot operation is reduced. May be good.
 ロボット制御システム(200)において、
 前記ロボット(140)は、
   前記ロボット(140)の位置をさらに検出し、
   前記位置検出装置(120)によって検出された前記無線通信装置(210)の位置と、前記ロボット(140)によって検出された前記ロボット(140)の位置との距離が所定の閾値以上である場合、前記ロボット動作を行い、
   前記距離が所定の閾値未満である場合、前記ロボット動作を停止し、前記ロボット動作の速度を小さくし、又は前記無線通信装置(210)の位置から離れる方向に動作するものであってもよい。
In the robot control system (200)
The robot (140)
Further detecting the position of the robot (140),
When the distance between the position of the wireless communication device (210) detected by the position detection device (120) and the position of the robot (140) detected by the robot (140) is equal to or greater than a predetermined threshold value. Perform the robot operation
When the distance is less than a predetermined threshold value, the robot operation may be stopped, the speed of the robot operation may be reduced, or the robot may operate in a direction away from the position of the wireless communication device (210).
 本開示の他の態様は、上記の態様のいずれかの無線通信装置(210)である。 Another aspect of the present disclosure is the wireless communication device (210) of any of the above aspects.
 本開示の他の態様は、
 人体(160)に装着され、電磁波を送信する無線送信装置(310)と、
 前記無線送信装置(310)から送信された電磁波を受信し、受信した電磁波に基づいて前記無線送信装置(310)の位置を検出する位置検出装置(320)と、
 前記人体(160)が進入する領域のうちの少なくとも一部を含む領域内において、所定のロボット動作を行うロボット(140)とを備えるロボット制御システム(300)であって、
 前記ロボット(140)は、前記位置検出装置(320)によって検出された前記無線送信装置(310)の位置に応じて、前記ロボット動作を制御するロボット制御システム(300)である。
Other aspects of the disclosure include
A wireless transmitter (310) that is attached to the human body (160) and transmits electromagnetic waves,
A position detection device (320) that receives an electromagnetic wave transmitted from the wireless transmission device (310) and detects the position of the wireless transmission device (310) based on the received electromagnetic wave.
A robot control system (300) including a robot (140) that performs a predetermined robot operation in an area including at least a part of the area in which the human body (160) enters.
The robot (140) is a robot control system (300) that controls the robot operation according to the position of the wireless transmission device (310) detected by the position detection device (320).
 ロボット制御システム(300)において、
 前記ロボット(140)は、
   前記位置検出装置(320)によって検出された前記無線送信装置(310)の位置が前記ロボット(140)の周囲の所定の領域の外にある場合、前記ロボット動作を行い、
   前記位置検出装置(320)によって検出された前記無線送信装置(310)の位置が前記所定の領域の中にある場合、前記ロボット動作を停止し、又は前記ロボット動作の速度を小さくするものであってもよい。
In the robot control system (300)
The robot (140)
When the position of the wireless transmission device (310) detected by the position detection device (320) is outside a predetermined area around the robot (140), the robot operation is performed.
When the position of the wireless transmission device (310) detected by the position detection device (320) is within the predetermined region, the robot operation is stopped or the speed of the robot operation is reduced. You may.
 ロボット制御システム(300)において、
 前記ロボット(140)は、
   前記ロボット(140)の位置をさらに検出し、
   前記位置検出装置(320)によって検出された前記無線送信装置(310)の位置と、前記ロボット(140)によって検出された前記ロボット(140)の位置との距離が所定の閾値以上である場合、前記ロボット動作を行い、
   前記距離が所定の閾値未満である場合、前記ロボット動作を停止し、前記ロボット動作の速度を小さくし、又は前記無線送信装置(310)の位置から離れる方向に動作するものであってもよい。
In the robot control system (300)
The robot (140)
Further detecting the position of the robot (140),
When the distance between the position of the wireless transmission device (310) detected by the position detection device (320) and the position of the robot (140) detected by the robot (140) is equal to or greater than a predetermined threshold value. Perform the robot operation
When the distance is less than a predetermined threshold value, the robot operation may be stopped, the speed of the robot operation may be reduced, or the robot may operate in a direction away from the position of the wireless transmission device (310).
 本開示の他の態様は、上記の態様のいずれかの無線送信装置(310)である。 Another aspect of the present disclosure is the wireless transmitter (310) of any of the above aspects.
100 ロボット制御システム
110 反射体
120 位置検出装置
121 送信アンテナ
122 信号発生器
123 変調送信回路
124 指向性制御部
125 受信アンテナ
126 低雑音増幅器
127 ミキサ
128 LPF
129 AD変換器
130 位置検出部
131 通信I/F
140 ロボット
142 制御部
143 アーム
150 作業台
160 作業者
170 ワーク
100 Robot control system 110 Reflector 120 Position detection device 121 Transmission antenna 122 Signal generator 123 Modulation transmission circuit 124 Directional control unit 125 Reception antenna 126 Low noise amplifier 127 Mixer 128 LPF
129 AD converter 130 Position detector 131 Communication I / F
140 Robot 142 Control unit 143 Arm 150 Workbench 160 Worker 170 Work

Claims (13)

  1.  人体に装着され、電磁波を反射する反射体と、
     前記電磁波を送信し、前記反射体からの反射波を受信し、受信した前記反射波に基づいて前記反射体の位置を検出する位置検出装置と、
     前記人体が進入する領域のうちの少なくとも一部を含む領域内において、所定のロボット動作を行うロボットとを備えるロボット制御システムであって、
     前記ロボットは、前記位置検出装置によって検出された反射体の位置に応じて、前記ロボット動作を制御するロボット制御システム。
    A reflector that is attached to the human body and reflects electromagnetic waves,
    A position detection device that transmits the electromagnetic wave, receives the reflected wave from the reflector, and detects the position of the reflector based on the received reflected wave.
    A robot control system including a robot that performs a predetermined robot operation in an area including at least a part of the area in which the human body enters.
    The robot is a robot control system that controls the robot operation according to the position of a reflector detected by the position detection device.
  2.  前記ロボットは、
       前記位置検出装置によって検出された反射体の位置が前記ロボットの周囲の所定の領域の外にある場合、前記ロボット動作を行い、
       前記位置検出装置によって検出された反射体の位置が前記所定の領域の中にある場合、前記ロボット動作を停止し、又は前記ロボット動作の速度を小さくする請求項1に記載のロボット制御システム。
    The robot
    When the position of the reflector detected by the position detection device is outside a predetermined area around the robot, the robot operation is performed.
    The robot control system according to claim 1, wherein when the position of the reflector detected by the position detection device is within the predetermined region, the robot operation is stopped or the speed of the robot operation is reduced.
  3.  前記ロボットは、
       前記ロボットの位置をさらに検出し、
       前記位置検出装置によって検出された前記反射体の位置と、前記ロボットによって検出された前記ロボットの位置との距離が所定の閾値以上である場合、前記ロボット動作を行い、
       前記距離が所定の閾値未満である場合、前記ロボット動作を停止し、前記ロボット動作の速度を小さくし、又は前記反射体の位置から離れる方向に動作する請求項1又は2に記載のロボット制御システム。
    The robot
    Further detect the position of the robot and
    When the distance between the position of the reflector detected by the position detection device and the position of the robot detected by the robot is equal to or greater than a predetermined threshold value, the robot operation is performed.
    The robot control system according to claim 1 or 2, wherein when the distance is less than a predetermined threshold value, the robot operation is stopped, the speed of the robot operation is reduced, or the robot operates in a direction away from the position of the reflector. ..
  4.  前記位置検出装置は、電波レーダである請求項1~3のいずれかに記載のロボット制御システム。 The robot control system according to any one of claims 1 to 3, wherein the position detection device is a radio wave radar.
  5.  請求項1~4のいずれかに記載の反射体。 The reflector according to any one of claims 1 to 4.
  6.  第1の電磁波を送信する位置検出装置と、
     人体に装着され、前記位置検出装置から送信された第1の電磁波を受信し、受信した第1の電磁波に応じて第2の電磁波を送信する無線通信装置と、
     前記人体が進入する領域のうちの少なくとも一部を含む領域内において、所定のロボット動作を行うロボットとを備えるロボット制御システムであって、
     前記位置検出装置は、前記無線通信装置から送信された第2の電磁波を受信し、受信した第2の電磁波に基づいて前記無線通信装置の位置を検出し、
     前記ロボットは、前記位置検出装置によって検出された無線通信装置の位置に応じて、前記ロボット動作を制御するロボット制御システム。
    A position detector that transmits the first electromagnetic wave and
    A wireless communication device that is attached to the human body, receives the first electromagnetic wave transmitted from the position detection device, and transmits a second electromagnetic wave in response to the received first electromagnetic wave.
    A robot control system including a robot that performs a predetermined robot operation in an area including at least a part of the area in which the human body enters.
    The position detecting device receives a second electromagnetic wave transmitted from the wireless communication device, detects the position of the wireless communication device based on the received second electromagnetic wave, and determines the position of the wireless communication device.
    The robot is a robot control system that controls the robot operation according to the position of the wireless communication device detected by the position detection device.
  7.  前記ロボットは、
       前記位置検出装置によって検出された無線通信装置の位置が前記ロボットの周囲の所定の領域の外にある場合、前記ロボット動作を行い、
       前記位置検出装置によって検出された無線通信装置の位置が前記所定の領域の中にある場合、前記ロボット動作を停止し、又は前記ロボット動作の速度を小さくする請求項6に記載のロボット制御システム。
    The robot
    When the position of the wireless communication device detected by the position detection device is outside a predetermined area around the robot, the robot operation is performed.
    The robot control system according to claim 6, wherein when the position of the wireless communication device detected by the position detection device is within the predetermined area, the robot operation is stopped or the speed of the robot operation is reduced.
  8.  前記ロボットは、
       前記ロボットの位置をさらに検出し、
       前記位置検出装置によって検出された前記無線通信装置の位置と、前記ロボットによって検出された前記ロボットの位置との距離が所定の閾値以上である場合、前記ロボット動作を行い、
       前記距離が所定の閾値未満である場合、前記ロボット動作を停止し、前記ロボット動作の速度を小さくし、又は前記無線通信装置の位置から離れる方向に動作する請求項6又は7に記載のロボット制御システム。
    The robot
    Further detect the position of the robot and
    When the distance between the position of the wireless communication device detected by the position detection device and the position of the robot detected by the robot is equal to or greater than a predetermined threshold value, the robot operation is performed.
    The robot control according to claim 6 or 7, wherein when the distance is less than a predetermined threshold value, the robot operation is stopped, the speed of the robot operation is reduced, or the robot operation operates in a direction away from the position of the wireless communication device. system.
  9.  請求項6~8のいずれかに記載の無線通信装置。 The wireless communication device according to any one of claims 6 to 8.
  10.  人体に装着され、電磁波を送信する無線送信装置と、
     前記無線送信装置から送信された電磁波を受信し、受信した電磁波に基づいて前記無線送信装置の位置を検出する位置検出装置と、
     前記人体が進入する領域のうちの少なくとも一部を含む領域内において、所定のロボット動作を行うロボットとを備えるロボット制御システムであって、
     前記ロボットは、前記位置検出装置によって検出された前記無線送信装置の位置に応じて、前記ロボット動作を制御するロボット制御システム。
    A wireless transmitter that is attached to the human body and transmits electromagnetic waves,
    A position detection device that receives an electromagnetic wave transmitted from the wireless transmission device and detects the position of the wireless transmission device based on the received electromagnetic wave.
    A robot control system including a robot that performs a predetermined robot operation in an area including at least a part of the area in which the human body enters.
    The robot is a robot control system that controls the robot operation according to the position of the wireless transmission device detected by the position detection device.
  11.  前記ロボットは、
       前記位置検出装置によって検出された前記無線送信装置の位置が前記ロボットの周囲の所定の領域の外にある場合、前記ロボット動作を行い、
       前記位置検出装置によって検出された前記無線送信装置の位置が前記所定の領域の中にある場合、前記ロボット動作を停止し、又は前記ロボット動作の速度を小さくする請求項10に記載のロボット制御システム。
    The robot
    When the position of the wireless transmission device detected by the position detection device is outside a predetermined area around the robot, the robot operation is performed.
    The robot control system according to claim 10, wherein when the position of the wireless transmission device detected by the position detection device is within the predetermined region, the robot operation is stopped or the speed of the robot operation is reduced. ..
  12.  前記ロボットは、
       前記ロボットの位置をさらに検出し、
       前記位置検出装置によって検出された前記無線送信装置の位置と、前記ロボットによって検出された前記ロボットの位置との距離が所定の閾値以上である場合、前記ロボット動作を行い、
       前記距離が所定の閾値未満である場合、前記ロボット動作を停止し、前記ロボット動作の速度を小さくし、又は前記無線送信装置の位置から離れる方向に動作する請求項10又は11に記載のロボット制御システム。
    The robot
    Further detect the position of the robot and
    When the distance between the position of the wireless transmission device detected by the position detection device and the position of the robot detected by the robot is equal to or greater than a predetermined threshold value, the robot operation is performed.
    The robot control according to claim 10 or 11, wherein when the distance is less than a predetermined threshold value, the robot operation is stopped, the speed of the robot operation is reduced, or the robot operation operates in a direction away from the position of the wireless transmission device. system.
  13.  請求項10~12のいずれかに記載の無線送信装置。 The wireless transmitter according to any one of claims 10 to 12.
PCT/JP2019/032308 2019-08-19 2019-08-19 Robot control system WO2021033241A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/032308 WO2021033241A1 (en) 2019-08-19 2019-08-19 Robot control system
JP2021541363A JPWO2021033241A1 (en) 2019-08-19 2019-08-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032308 WO2021033241A1 (en) 2019-08-19 2019-08-19 Robot control system

Publications (1)

Publication Number Publication Date
WO2021033241A1 true WO2021033241A1 (en) 2021-02-25

Family

ID=74660619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032308 WO2021033241A1 (en) 2019-08-19 2019-08-19 Robot control system

Country Status (2)

Country Link
JP (1) JPWO2021033241A1 (en)
WO (1) WO2021033241A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173886A (en) * 1985-01-30 1986-08-05 株式会社東芝 Industrial robot
JPS61244493A (en) * 1985-04-24 1986-10-30 株式会社東芝 Robot device
JPH09272096A (en) * 1996-04-04 1997-10-21 Nissan Motor Co Ltd Safety device for production facility
JP2004243427A (en) * 2003-02-12 2004-09-02 Yaskawa Electric Corp Robot control device and robot control method
JP2006043862A (en) * 2004-08-09 2006-02-16 Honda Motor Co Ltd Man-machine work system
JP2007129420A (en) * 2005-11-02 2007-05-24 Tokyo Denki Univ Radar reflector
US20070297890A1 (en) * 2004-06-24 2007-12-27 Abb Ab Industrial Robot System with a Portable Operator Control Device
JP2016087785A (en) * 2014-11-07 2016-05-23 コマウ・ソシエタ・ペル・アチオニComau Societa Per Azioni Industrial robot and control method for the same
JP2017080845A (en) * 2015-10-28 2017-05-18 株式会社デンソーウェーブ Robot control system
JP2018130793A (en) * 2017-02-15 2018-08-23 オムロン株式会社 Monitoring system, monitoring device, and monitoring method
JP2019069509A (en) * 2017-10-06 2019-05-09 ピルツ ゲーエムベーハー アンド コー.カーゲー Safety system for protecting cooperative work between human, robot and machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234732A (en) * 1996-03-01 1997-09-09 Mitsubishi Cable Ind Ltd Safety device of roll kneader
JP5050579B2 (en) * 2007-03-09 2012-10-17 株式会社デンソーウェーブ Robot control system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173886A (en) * 1985-01-30 1986-08-05 株式会社東芝 Industrial robot
JPS61244493A (en) * 1985-04-24 1986-10-30 株式会社東芝 Robot device
JPH09272096A (en) * 1996-04-04 1997-10-21 Nissan Motor Co Ltd Safety device for production facility
JP2004243427A (en) * 2003-02-12 2004-09-02 Yaskawa Electric Corp Robot control device and robot control method
US20070297890A1 (en) * 2004-06-24 2007-12-27 Abb Ab Industrial Robot System with a Portable Operator Control Device
JP2006043862A (en) * 2004-08-09 2006-02-16 Honda Motor Co Ltd Man-machine work system
JP2007129420A (en) * 2005-11-02 2007-05-24 Tokyo Denki Univ Radar reflector
JP2016087785A (en) * 2014-11-07 2016-05-23 コマウ・ソシエタ・ペル・アチオニComau Societa Per Azioni Industrial robot and control method for the same
JP2017080845A (en) * 2015-10-28 2017-05-18 株式会社デンソーウェーブ Robot control system
JP2018130793A (en) * 2017-02-15 2018-08-23 オムロン株式会社 Monitoring system, monitoring device, and monitoring method
JP2019069509A (en) * 2017-10-06 2019-05-09 ピルツ ゲーエムベーハー アンド コー.カーゲー Safety system for protecting cooperative work between human, robot and machine

Also Published As

Publication number Publication date
JPWO2021033241A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
US20190361109A1 (en) High precision time of flight measurement system for industrial automation
JP2018522232A (en) High precision time-of-flight measurement system for industrial automation
JP4741365B2 (en) Object detection sensor
AU2015218535B2 (en) Proximity detection system with concurrent RF and magnetic fields
US20080018879A1 (en) Beacon to measure distance, positioning system using the same, and method of measuring distance
CN205880217U (en) Rotation type range radar
US20160363663A1 (en) High precision time of flight measurement system for industrial automation
US11558729B2 (en) Safety system and method
US11892551B2 (en) Safety system
US20210232102A1 (en) Safety system and method for localizing a person or object in a monitored zone using a safety system
US20220016782A1 (en) Radio-frequency systems and methods for co-localization of multiple devices and/or people
CN102299753B (en) Method for constructing wireless communication equipment to obtain motion sensing function
WO2021033241A1 (en) Robot control system
CN116520293A (en) Laser radar detection method and device and laser radar
JP2006105723A (en) Radio tag position detecting system and device, and radio tag
JP2011107102A (en) Autonomous movement support system and control method therefor
WO2014050055A1 (en) Wireless sensor device
EP3844581B1 (en) A method for achieving traceability of a tool operation
WO2018079268A1 (en) Signal processing device, radar apparatus, and signal processing method
JP3391284B2 (en) Radar equipment
Kokert et al. Indoor localization system based on galvanometer-laser-scanning for numerous mobile tags (GaLocate)
JP5483836B2 (en) Radar information transmission system and radar apparatus therefor
CN110919642A (en) Ultrasonic obstacle avoidance device, robot system and method for controlling robot to avoid obstacle
JP4007707B2 (en) Obstacle detection device for railway
JP6973821B1 (en) Distance measuring device and distance measuring method using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541363

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942455

Country of ref document: EP

Kind code of ref document: A1