WO2021031995A1 - Method and apparatus for handling harq feedback - Google Patents
Method and apparatus for handling harq feedback Download PDFInfo
- Publication number
- WO2021031995A1 WO2021031995A1 PCT/CN2020/109132 CN2020109132W WO2021031995A1 WO 2021031995 A1 WO2021031995 A1 WO 2021031995A1 CN 2020109132 W CN2020109132 W CN 2020109132W WO 2021031995 A1 WO2021031995 A1 WO 2021031995A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pucch
- harq feedback
- harq
- uci
- pssch
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1854—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1671—Details of the supervisory signal the supervisory signal being transmitted together with control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
Definitions
- the present disclosure is related to wireless communication, and more particularly, to a method for handling hybrid automatic repeat request (HARQ) feedback in cellular wireless communication networks.
- HARQ hybrid automatic repeat request
- 5G fifth generation
- NR New Radio
- the 5G NR system is designed to provide flexibility and configurability to optimize the network services and types, accommodating various use cases such as enhanced Mobile Broadband (eMBB) , massive Machine-Type Communication (mMTC) , and Ultra-Reliable and Low-Latency Communication (URLLC) .
- eMBB enhanced Mobile Broadband
- mMTC massive Machine-Type Communication
- URLLC Ultra-Reliable and Low-Latency Communication
- the present disclosure is directed to a method for handling HARQ feedback in cellular wireless communication networks.
- a method for wireless communication performed by a UE includes: receiving, from a base station (BS) , a first physical downlink control channel (PDCCH) that schedules a physical downlink shared channel (PDSCH) and a first physical uplink control channel (PUCCH) , the first PUCCH being used for transmitting a first hybrid automatic repeat request (HARQ) feedback associated with the PDSCH; receiving, from the BS, a second PDCCH that schedules a physical sidelink shared channel (PSSCH) and a second PUCCH, the second PUCCH being used for transmitting a second HARQ feedback associated with the PSSCH, and the second PUCCH overlapping the first PUCCH in a time domain; and transmitting, to the BS, uplink control information (UCI) in one of the first PUCCH and the second PUCCH; wherein a part of at least one of the first HARQ feedback and the second HARQ feedback is discarded in the UCI.
- BS base station
- PDCCH physical downlink control
- a UE includes one or more non-transitory computer-readable media containing computer-executable instructions embodied therein and at least one processor coupled to the one or more non-transitory computer-readable media.
- the at least one processor is configured to execute the computer-executable instructions to: receive, from a BS, a first PDCCH that schedules a PDSCH and a first PUCCH, the first PUCCH being used for transmitting a first HARQ feedback associated with the PDSCH; receive, from the BS, a second PDCCH that schedules a PSSCH and a second PUCCH, the second PUCCH being used for transmitting a second HARQ feedback associated with the PSSCH, and the second PUCCH overlapping the first PUCCH in a time domain; and transmit, to the BS, UCI in one of the first PUCCH and the second PUCCH; wherein a part of at least one of the first HARQ feedback and the second HARQ feedback is
- Fig. 1 is a diagram illustrating an example SL resource allocation mode according to an example implementation of the present disclosure.
- Fig. 2 is a diagram illustrating another example SL resource allocation mode according to an example implementation of the present disclosure.
- Fig. 3 is a flowchart of a method performed by a UE for handling HARQ feedback according to an example implementation of the present disclosure.
- Fig. 4 is a diagram illustrating an example PUCCH conflict scenario according to an example implementation of the present disclosure.
- Fig. 5 is a diagram illustrating another example PUCCH conflict scenario according to an example implementation of the present disclosure.
- Fig. 6 is a block diagram illustrating a node for wireless communication in accordance with various aspects of the present disclosure.
- the phrases “in one implementation, ” or “in some implementations, ” may each refer to one or more of the same or different implementations.
- the term “coupled” is defined as connected whether directly or indirectly through intervening components and is not necessarily limited to physical connections.
- the term “comprising” means “including, but not necessarily limited to” and specifically indicates open-ended inclusion or membership in the so-described combination, group, series or equivalent.
- the expression “at least one of A, B and C” or “at least one of the following: A, B and C” means “only A, or only B, or only C, or any combination of A, B and C. ”
- system and “network” may be used interchangeably.
- the term “and/or” is only an association relationship for describing associated objects and represents that multiple relationships may exist such that A and/or B may indicate that A exists alone, A and B exist at the same time, or B exists alone.
- the character “/” generally represents that the associated objects are in an “or” relationship.
- any network function (s) or algorithm (s) disclosed may be implemented by hardware, software or a combination of software and hardware.
- Disclosed functions may correspond to modules which may be software, hardware, firmware, or any combination thereof.
- a software implementation may include computer executable instructions stored on a computer readable medium such as memory or other type of storage devices.
- a computer readable medium such as memory or other type of storage devices.
- One or more microprocessors or general-purpose computers with communication processing capability may be programmed with corresponding executable instructions and perform the disclosed network function (s) or algorithm (s) .
- the microprocessors or general-purpose computers may include Applications Specific Integrated Circuitry (ASIC) , programmable logic arrays, and/or using one or more Digital Signal Processor (DSPs) .
- ASIC Applications Specific Integrated Circuitry
- DSP Digital Signal Processor
- some of the present disclosure is directed to software installed and executing on computer hardware, alternative implementations as firmware or as hardware or combination of hardware and software are well within the scope of the present disclosure.
- the computer readable medium includes but is not limited to Random Access Memory (RAM) , Read Only Memory (ROM) , Erasable Programmable Read-Only Memory (EPROM) , Electrically Erasable Programmable Read-Only Memory (EEPROM) , flash memory, Compact Disc Read-Only Memory (CD-ROM) , magnetic cassettes, magnetic tape, magnetic disk storage, or any other equivalent medium capable of storing computer-readable instructions.
- RAM Random Access Memory
- ROM Read Only Memory
- EPROM Erasable Programmable Read-Only Memory
- EEPROM Electrically Erasable Programmable Read-Only Memory
- flash memory Compact Disc Read-Only Memory (CD-ROM)
- CD-ROM Compact Disc Read-Only Memory
- magnetic cassettes magnetic tape
- magnetic disk storage or any other equivalent medium capable of storing computer-readable instructions.
- a radio communication network architecture such as a Long Term Evolution (LTE) system, an LTE-Advanced (LTE-A) system, an LTE-Advanced Pro system, or a 5G NR Radio Access Network (RAN) typically includes at least one base station (BS) , at least one UE, and one or more optional network elements that provide connection within a network.
- the UE communicates with the network such as a Core Network (CN) , an Evolved Packet Core (EPC) network, an Evolved Universal Terrestrial RAN (E-UTRAN) , a 5G Core (5GC) , or an internet via a RAN established by one or more BSs.
- CN Core Network
- EPC Evolved Packet Core
- E-UTRAN Evolved Universal Terrestrial RAN
- 5GC 5G Core
- a UE may include but is not limited to a mobile station, a mobile terminal or device, or a user communication radio terminal.
- the UE may be portable radio equipment that includes but is not limited to a mobile phone, a tablet, a wearable device, a sensor, a vehicle, or a Personal Digital Assistant (PDA) with wireless communication capability.
- PDA Personal Digital Assistant
- the UE is configured to receive and transmit signals over an air interface to one or more cells in a RAN.
- the BS may be configured to provide communication services according to at least a Radio Access Technology (RAT) such as Worldwide Interoperability for Microwave Access (WiMAX) , Global System for Mobile communications (GSM) that is often referred to as 2G, GSM Enhanced Data rates for GSM Evolution (EDGE) RAN (GERAN) , General Packet Radio Service (GPRS) , Universal Mobile Telecommunication System (UMTS) that is often referred to as 3G based on basic wideband-code division multiple access (W-CDMA) , high-speed packet access (HSPA) , LTE, LTE-A, evolved LTE (eLTE) that is LTE connected to 5GC, NR (often referred to as 5G) , and/or LTE-A Pro.
- RAT Radio Access Technology
- WiMAX Worldwide Interoperability for Microwave Access
- GSM Global System for Mobile communications
- EDGE GSM Enhanced Data rates for GSM Evolution
- GERAN GSM Enhanced Data rates for GSM Evolution
- the BS may include but is not limited to a node B (NB) in the UMTS, an evolved node B (eNB) in LTE or LTE-A, a radio network controller (RNC) in UMTS, a BS controller (BSC) in the GSM/GERAN, a ng-eNB in an E-UTRA BS in connection with 5GC, a next generation Node B (gNB) in the 5G-RAN, or any other apparatus capable of controlling radio communication and managing radio resources within a cell.
- the BS may serve one or more UEs via a radio interface.
- the BS is operable to provide radio coverage to a specific geographical area using a plurality of cells forming the RAN.
- the BS supports the operations of the cells.
- Each cell is operable to provide services to at least one UE within its radio coverage.
- Each cell (often referred to as a serving cell) provides services to serve one or more UEs within its radio coverage such that each cell schedules the downlink (DL) and optionally uplink (UL) resources to at least one UE within its radio coverage for DL and optionally UL packet transmissions.
- the BS can communicate with one or more UEs in the radio communication system via the plurality of cells.
- a cell may allocate sidelink (SL) resources for supporting Proximity Service (ProSe) or Vehicle to Everything (V2X) service. Each cell may have overlapped coverage areas with other cells.
- SL sidelink
- ProSe Proximity Service
- V2X Vehicle to Everything
- the frame structure for NR supports flexible configurations for accommodating various next generation (e.g., 5G) communication requirements such as Enhanced Mobile Broadband (eMBB) , Massive Machine Type Communication (mMTC) , and Ultra-Reliable and Low-Latency Communication (URLLC) , while fulfilling high reliability, high data rate and low latency requirements.
- 5G next generation
- eMBB Enhanced Mobile Broadband
- mMTC Massive Machine Type Communication
- URLLC Ultra-Reliable and Low-Latency Communication
- OFDM Orthogonal Frequency-Division Multiplexing
- 3GPP 3rd Generation Partnership Project
- the scalable OFDM numerology such as adaptive sub-carrier spacing, channel bandwidth, and Cyclic Prefix (CP) may also be used.
- coding schemes Two coding schemes are considered for NR, specifically Low-Density Parity-Check (LDPC) code and Polar Code.
- LDPC Low-Density Parity-Check
- the coding scheme adaption may be configured based on channel conditions and/or service applications.
- a transmission time interval (TTI) of a single NR frame includes DL transmission data, a guard period, and UL transmission data
- the respective portions of the DL transmission data, the guard period, and the UL transmission data may be configured based on the network dynamics of NR.
- SL resources may also be provided in an NR frame to support ProSe services or V2X services.
- PRB physical resource block
- RRC radio resource control
- SL-RRC RRC signaling transmitted on SL channel
- SIB-SL System Information Block transmitted on SL channel
- MIB-SL Master Information Block transmitted on SL channel
- Uplink control information which may include SR, HARQ, and CSI feedback
- a BS e.g., a gNB
- a transmitter UE also referred to as Tx UE
- the Rx UE may send HARQ feedback to the Tx UE.
- the HARQ feedback may be a one-bit signal indicating acknowledgement (ACK) or negative acknowledgement (NACK) .
- the HARQ feedback may also be referred to as HARQ-ACK information in the present disclosure.
- the Tx UE may report HARQ feedback (also referred to as SL HARQ feedback) via Uu link to the BS.
- HARQ feedback also referred to as SL HARQ feedback
- the Tx UE may indicate to the BS a need for retransmission of the transmitted TB by using the SL HARQ feedback. Since the HARQ feedback is transmitted via Uu link, the UE may use PUCCH and/or physical uplink shared channel (PUSCH) to transmit HARQ bits.
- HARQ feedback also referred to as SL HARQ feedback
- PUSCH physical uplink shared channel
- a HARQ codebook may be associated with two values K0 and K1.
- the value K0 may be in an information element (IE) PDSCH-TimeDomainResourceAllocationList.
- the value K1 may be in an IE dl-DataToUL-ACK.
- K0 may be an offset between the DL slot in which the PDCCH for DL scheduling is received and the DL slot in which PDSCH data is scheduled.
- K1 may be an offset between the DL slot in which the data is scheduled on PDSCH and the UL slot in which the HARQ feedback for the scheduled PDSCH data needs to be sent.
- downlink control information (DCI) in SL resource allocation mode 1 may contain resource allocation information about physical sidelink control channel (PSCCH) and/or physical sidelink shared channel (PSSCH) .
- PSCCH physical sidelink control channel
- PSSCH physical sidelink shared channel
- Fig. 1 is a diagram 100 illustrating an example SL resource allocation mode according to an example implementation of the present disclosure.
- the UE may receive DCI (e.g., DCI_SL) in PDCCH 102 that schedules PSCCH 104, which may carry sidelink control information (SCI) that schedules PSSCH 106.
- PDCCH 102 may also schedule PUCCH 108, which may be used for transmitting, to a BS, HARQ feedback associated with the PSSCH 106.
- the parameter K0_1 may indicate a time offset between the PDCCH 102 and the PSCCH 104.
- the parameter K0_2 may indicate a time offset between the PSCCH 104 and the PSSCH 106.
- the parameter K1_SL may indicate a time offset between the PDCCH 102 and the PUCCH 108.
- Fig. 2 is a diagram 200 illustrating another example SL resource allocation mode according to an example implementation of the present disclosure.
- the UE may receive DCI (e.g., DCI_SL) in PDCCH 202 that schedules PSSCH 206.
- the PDCCH 202 may also schedule PUCCH 208, which may be used for transmitting, to a BS, HARQ feedback associated with the PSSCH 206.
- the parameter K0_SL may indicate a time offset between the PDCCH 202 and the PSSCH 206.
- the parameter K1_SL may indicate a time offset between the PDCCH 202 and the PUCCH 208.
- the PSSCH candidate may be excluded from a PSSCH candidate list.
- Remaining PSSCH candidates may be denoted as valid PSSCH candidates.
- the parameter K0_2 may indicate a time offset between PSCCH and PSSCH.
- the UE may receive SCI in slot n, and the PSSCH candidate may be in slot n+0, slot n+1, slot n+2, or slot n+3, where n is an integer.
- the UE may exclude a PSSCH candidate scheduled by the SCI from a PSSCH candidate list if the PSSCH candidate overlaps with a DL/FL symbol.
- the PSSCH candidate may be excluded from a PSSCH candidate list.
- Remaining PSSCH candidates may be denoted as valid PSSCH candidates.
- the parameter K0_SL may indicate a time offset between PDCCH and PSSCH.
- the UE may receive DCI_SL in slot n, and the PSSCH candidate may be in slot n+0, slot n+1, slot n+2, or slot n+3, where n is an integer.
- the UE may exclude a PSSCH candidate scheduled by the DCI_SL from a PSSCH candidate list if the PSSCH candidate overlaps with a DL/FL symbol.
- the PSCCH candidate may be excluded from a PSCCH candidate list.
- Remaining PSCCH candidates may be denoted as valid PSCCH candidates.
- the parameter K0_1 may indicate a time offset between PDCCH and PSCCH.
- the UE may receive DCI_SL in slot n, and the PSCCH candidate may be in slot n+0, slot n+1, slot n+2, or slot n+3, where n is an integer.
- the UE may exclude a PSCCH candidate scheduled by the DCI_SL from a PSCCH candidate list if the PSCCH candidate overlaps with a DL/FL symbol.
- Case 1-2 generating HARQ codebook according to sl-DataToUL-ACK and/or PSSCH time domain resource allocation
- the UE may report SL HARQ-ACK information in a PUCCH associated with only one (or X, X being a positive integer) PSSCH for all PSSCH candidates.
- the UE may expect to only receive one PSSCH successfully before the UE reports the SL HARQ feedback.
- the value X may be reported by UE capability.
- the UE may transmit, to the BS, a UE capability that indicates a maximum number of bits in the SL HARQ feedback.
- the UE may receive a message that indicates whether a HARQ codebook type for SL transmission is semi-static or dynamic.
- there may be a new IE SL-HARQ-ACK-Codebook contained in RRC/SL-RRC/SIB/SIB-SL/MIB-SL.
- the IE SL-HARQ-ACK-Codebook may indicate SL HARQ-ACK codebook is either semi-static or dynamic.
- the IE SL-HARQ-ACK-Codebook may be configured per resource pool (e.g., resource pool for scheduled PSCCH and/or PSSCH) , per bandwidth part (BWP) (e.g., DL BWP, SL BWP, UL BWP) , per anchor carrier, per cell, per cell group (e.g., master cell group, secondary cell group) , or per UE.
- BWP bandwidth part
- anchor carrier per cell
- per cell group e.g., master cell group, secondary cell group
- the IE SL-HARQ-ACK-Codebook may be valid in specific area, which may be indicated by an IE systemInformationAreaID, a list of (physical) cell identities, zones, ranges, etc.
- the IE HARQ-ACK-Codebook may indicate an SL HARQ codebook type.
- An example data structure of the IE SL-HARQ-ACK-Codebook may be provided as follows. In one implementation, if the IE SL-HARQ-ACK-Codebook is not configured, the default value may be “semi-static” or “dynamic. ”
- the SL HARQ codebook type may be the same as the HARQ codebook type of a cell that contains scheduling information (e.g., DCI_SL) .
- a HARQ codebook type of a HARQ feedback associated with PSSCH scheduled by a BS may be the same as a HARQ codebook type configured by the BS for transmitting HARQ feedback associated with PDSCH.
- the UE may be configured to perform SL transmission on cell #0.
- the HARQ codebook type associated with PDSCH on cell #0 may be dynamic.
- an IE pdsch-HARQ-ACK-Codebook of cell #0 may indicate that HARQ codebook type on cell #0 is “dynamic codebook.
- the UE may expect to generate a dynamic HARQ codebook for SL transmission. That is, the UE may expect that SCI or DCI_SL indicates a downlink assignment index for SL (e.g., SL_DAI) for the dynamic SL HARQ codebook.
- SL_DAI downlink assignment index for SL
- SL HARQ codebook type may be included in UE capability.
- the UE may inform the BS whether it supports dynamic/semi-static/both HARQ codebook type for SL operation.
- Fig. 3 is a flowchart of a method 300 performed by a UE for handling HARQ feedback according to an example implementation of the present disclosure.
- the UE may receive, from a BS, a first PDCCH that schedules a PDSCH and a first PUCCH.
- the first PUCCH may be used for transmitting a first HARQ feedback associated with the PDSCH.
- the first HARQ feedback may be also referred to as HARQ feedback for PDSCH, DL HARQ feedback, or Uu HARQ feedback.
- the UE may receive, from the BS, a second PDCCH that schedules a PSSCH and a second PUCCH.
- the second PUCCH may be used for transmitting a second HARQ feedback associated with the PSSCH.
- the second HARQ feedback may be also referred to as HARQ feedback for PSSCH or SL HARQ feedback.
- the second PUCCH overlaps the first PUCCH in a time domain (also referred to as PUCCH conflict) .
- the second PUCCH and the first PUCCH may be different, and the second PUCCH may partially or fully overlap the first PUCCH in the time domain.
- the second PUCCH may be the same as the first PUCCH. That is, the UE may be indicated to transmit the first HARQ feedback and the second HARQ feedback in the same PUCCH resource.
- the UE may transmit, to the BS, UCI in one of the first PUCCH and the second PUCCH, where a part of at least one of the first HARQ feedback and the second HARQ feedback is discarded in the UCI.
- the UE may multiplex the first HARQ feedback with the second HARQ feedback in one of the first PUCCH and the second PUCCH.
- the UE may discard part of the first HARQ feedback and/or part of the second HARQ feedback when multiplexing the first HARQ feedback with the second HARQ feedback.
- the UE may drop/discard (part of) the first HARQ feedback in the UCI.
- the UE may drop/discard (part of) the second HARQ feedback in the UCI.
- the UCI may include only one of the first HARQ feedback and the second HARQ feedback.
- Fig. 4 is a diagram 400 illustrating an example PUCCH conflict scenario according to an example implementation of the present disclosure.
- the UE may receive, from a BS, a first PDCCH 402 that schedules a PDSCH 404 and a first PUCCH 406.
- the first PUCCH 406 may be used for transmitting a first HARQ feedback associated with the PDSCH 404.
- the UE may receive, from the BS, a second PDCCH 412 that schedules a PSSCH 414 and a second PUCCH 416.
- the second PUCCH 416 may be used for transmitting a second HARQ feedback associated with the PSSCH 414.
- the second PUCCH 416 overlaps the first PUCCH 406 in a time domain.
- the UE may transmit, to the BS, UCI in one of the first PUCCH 406 and the second PUCCH 416, where a part of at least one of the first HARQ feedback and the second HARQ feedback is discarded in
- Fig. 5 is a diagram 500 illustrating another example PUCCH conflict scenario according to an example implementation of the present disclosure.
- the first PUCCH in action 302 in Fig. 3 and the second PUCCH in action 304 in Fig. 3 are the same, represented as PUCCH 506 in Fig. 5.
- the UE may receive, from a BS, a first PDCCH 502 that schedules a PDSCH 504 and a PUCCH 506.
- the PUCCH 506 may be used for transmitting a first HARQ feedback associated with the PDSCH 504.
- the UE may receive, from the BS, a second PDCCH 512 that schedules a PSSCH 514 and the PUCCH 506.
- the PUCCH 506 may be used for transmitting a second HARQ feedback associated with the PSSCH 514.
- the UE may transmit, to the BS, UCI in the PUCCH 506, where a part of at least one of the first HARQ feedback and the second HARQ feedback is discarded in the UCI.
- the UE may receive a message that indicates a dedicated resource for the SL HARQ feedback.
- there may be a new IE SL-PUCCHresource contained in RRC/SL-RRC/SIB/SIB-SL, which indicates PUCCH resource (s) dedicated for the SL HARQ feedback.
- the PUCCH resource dedicated for the SL HARQ feedback may not overlap with PUCCH resource for UCI (e.g., including DL HARQ feedback) in the time/frequency domain.
- the UE may determine that the SL HARQ feedback can be multiplexed with UCI (e.g., including DL HARQ feedback) on PUCCH resource.
- UCI e.g., including DL HARQ feedback
- An example data structure of the IE SL-PUCCHresource is provided as follows:
- the IE SL-PUCCHresource may indicate PUCCH resource dedicated for the SL HARQ feedback.
- the UE does not expect that time/frequency domain resource of any PUCCH resource indicated by the IE SL-PUCCHresource overlaps with PUCCH resource for UCI.
- the UE may multiplex the SL HARQ feedback with UCI (e.g., including DL HARQ feedback) on the PUCCH resource for the UCI.
- the UE may receive a message that indicates whether the SL HARQ feedback can be multiplexed with UCI (e.g., including DL HARQ feedback) in a single PUCCH.
- UCI e.g., including DL HARQ feedback
- there may be a new IE SL-UCI-MUX contained in RRC/SIB/SIB-SL/SL-RRC, which indicates whether or not the UE can multiplex UCI (e.g., including DL HARQ feedback) with the SL HARQ feedback.
- the UE may determine that the SL HARQ feedback can be multiplexed with the UCI (e.g., including DL HARQ feedback) on the PUCCH resource. In another implementation, if the IE SL-UCI-MUX is not present in RRC/SIB/SIB-SL/SL-RRC, the UE may determine that the SL HARQ feedback cannot be multiplexed with the UCI (e.g., including DL HARQ feedback) on the PUCCH resource.
- the IE SL-UCI-MUX may indicate whether or not the UE can multiplex UCI with the SL HARQ feedback.
- the IE SL-UCI-MUX may be a one-bit indicator, having a value of either true or false. In one implementation, if the IE SL-UCI-MUX is not configured, the UE may multiplex the SL HARQ feedback with the UCI by default.
- the UE may receive a message that indicates whether the SL HARQ feedback can be multiplexed in a PUSCH.
- there may be a new IE SL-onPUSCH contained in RRC/SIB/SIB-SL/SL-RRC, which indicates whether or not the UE can transmit the SL HARQ feedback on PUSCH, for example, when PUCCH resource contains the SL HARQ feedback that overlaps with the PUSCH.
- the UE may determine that the SL HARQ feedback can be transmitted on the PUSCH.
- the IE SL-onPUSCH is not present in RRC/SIB/SIB-SL/SL-RRC, the UE may determine that the SL HARQ feedback cannot be transmitted on the PUSCH.
- the IE SL-onPUSCH may indicate whether or not the UE can transmit the SL HARQ feedback on PUSCH.
- the IE SL-onPUSCH may be a one-bit indicator, having a value of either true or false. In one implementation, if the IE SL-onPUSCH is not configured, the UE may not transmit the SL HARQ feedback on PUSCH.
- the UE may transmit the PUSCH and drop the SL HARQ feedback when the PUCCH resource of the SL HARQ feedback overlaps with the PUSCH. For example, if the UE is indicated to transmit the SL HARQ feedback in slot n+8 by DCI_SL in slot n, and the UE is indicated to transmit the PUSCH in slot n+8 by a DCI format 0_1 in slot n+4, the UE may drop the SL HARQ feedback and transmit only the PUSCH on slot n+8 when the IE SL-onPUSCH has a value of “false. ”
- the UE may transmit the SL HARQ feedback and drop the PUSCH when the PUCCH resource for the SL HARQ feedback overlaps with the PUSCH.
- the ability to multiplex UCI with SL HARQ feedback may be included in a UE capability.
- the UE may inform the BS whether it supports multiplexing UCI with the SL HARQ feedback.
- the UE may transmit, to the BS, a UE capability that indicates whether the UE supports multiplexing UCI (e.g., including DL HARQ feedback) with the SL HARQ feedback.
- IE for-SL-HARQ contained in PUCCH resource/PUCCH resource set configuration (e.g., IE PUCCHresource) in RRC/SIB.
- the IE for-SL-HARQ may be a one-bit indicator, having a value of either true or false.
- the PUCCH resource/PUCCH resources contained in the PUCCH resource set may contain SL HARQ feedback if the IE for-SL-HARQ has a value of “true. ”
- An example data structure of an IE PUCCHresource is provided as follows:
- the IE for-SL-HARQ may indicate whether or not the SL HARQ feedback can be transmitted on the PUCCH resource. In one implementation, if the IE for-SL-HARQ is not configured, the UE may not transmit the SL HARQ feedback on the PUCCH.
- the UE may perform a prioritization procedure according to a prioritization rule and a payload size of the first PUCCH or the second PUCCH to determine the UCI in action 306 in Fig. 3.
- the first PUCCH may be further used for transmitting an SR and a CSI report.
- the first HARQ feedback may include HARQ control information for a first service type (e.g., eMBB) and HARQ control information for a second service type (e.g., URLLC) .
- the prioritization rule may indicate a prioritization order of the HARQ control information for the first service type, the HARQ control information for the second service type, the SR, and the CSI report.
- a payload size of a PUCCH resource (e.g., the first PUCCH 406 in Fig. 4, the second PUCCH 416 in Fig. 4, or the PUCCH 506 in Fig. 5) cannot contain all SL HARQ feedback and UCI (which may include DL HARQ feedback, SR, CSI) bits
- UCI which may include DL HARQ feedback, SR, CSI
- the priority order may be URLLC HARQ > eMBB HARQ > SL HARQ > SR > CSI part I > CSI part II.
- the greater-than sign may be used to indicate priority order in the present disclosure.
- URLLC HARQ > eMBB HARQ means URLLC HARQ has higher priority than eMBB HARQ. It should be noted that eMBB and URLLC here refer to the eMBB service and the URLLC service via the Uu interface.
- the UE may differentiate eMBB service from URLLC service on the Uu interface in several ways.
- the UE may treat data in PDSCH as the URLLC service when there is an indicator contained in the scheduling DCI.
- the UE may treat data in PDSCH as the URLLC service according to a DCI format.
- the UE may treat data in PDSCH as the URLLC service according to sub-slot numerology for HARQ feedback.
- the UE may treat data in PDSCH as the URLLC service according to a radio network temporary identifier (RNTI) .
- the UE may treat data in PDSCH as the URLLC service according to a modulation and coding scheme (MCS) table for the PDSCH.
- MCS modulation and coding scheme
- a UE may be indicated to transmit SL HARQ feedback on PUCCH resource #3 and the UE may be also indicated to transmit Uu HARQ feedback and CSI feedback on the PUCCH resource #3.
- the priority order may be URLLC HARQ > eMBB HARQ > SL HARQ > SR > CSI part I > CSI part II.
- the UE may drop the CSI feedback first and then drop SL HARQ feedback bits until ⁇ O_SL_ACK + O_ACK + O_CSI + O_CRC ⁇ is less than the payload size of the PUCCH resource #3.
- the payload size of the PUCCH resource may be related to the number of PRBs, the number of symbols, modulation and/or code rate.
- the second PDCCH may contain SCI that schedules the PSSCH (e.g., the PSSCH 414 in Fig. 4, or the PSSCH 514 in Fig. 5) and includes a priority indicator of the second HARQ feedback.
- the priority of the SL HARQ feedback may depend on a priority information indicator (e.g., ProSe per-packet priority (PPPP) ) in the scheduling SCI.
- PPPP ProSe per-packet priority
- a priority indicator having a smaller value may indicate a higher priority.
- there may be an index configured in RRC signaling for UCI of eMBB (e.g., eMBB HARQ feedback, eMBB SR, or eMBB CSI feedback) .
- the index may indicate a threshold for dropping the UCI of eMBB. If the priority indicator in the scheduling SCI has a value less than the configured index for the UCI of eMBB, the UE may drop the UCI for eMBB. Otherwise, the UE may drop the SL HARQ feedback.
- a UE is configured with an index (e.g., “3” ) for dropping eMBB UCI, and PPPP in SCI or DCI_SL is “2” .
- the UE may drop the eMBB UCI if the PUCCH resource for the eMBB UCI overlaps the PUCCH resource for the SL HARQ feedback that is associated with the PSSCH scheduled by the SCI or the DCI_SL.
- there may be an index configured in RRC signaling for UCI of URLLC (e.g., URLLC HARQ feedback, URLLC SR, or URLLC CSI feedback) .
- the index may indicate a threshold for dropping the UCI of URLLC. If the priority indicator in the scheduling SCI has a value less than the configured index for the UCI of URLLC, the UE may drop the UCI for URLLC. Otherwise, UE may drop the SL HARQ feedback.
- SL HARQ feedback and UCI may be independently reported.
- one of the first HARQ feedback and the second HARQ feedback may be discarded in the UCI in action 306.
- the UCI may include only one of the first HARQ feedback and the second HARQ feedback.
- the priority order may be PUCCH resource containing URLLC HARQ > PUCCH resource containing eMBB HARQ > PUCCH resource containing SL HARQ > PUCCH resource containing SR > PUCCH resource containing CSI part I > PUCCH resource containing CSI part II.
- a UE may be indicated to transmit SL HARQ feedback on SL-PUCCH resource #3 in the 10 th and 11 th symbols of the slot n and the UE may be also indicated to transmit Uu HARQ feedback and CSI feedback on PUCCH resource #2 in the 9 th and 10 th symbols of the slot n.
- the priority order may be URLLC HARQ > eMBB HARQ > SL HARQ > SR > CSI part I > CSI part II. Since the SL-PUCCH resource #3 partially overlaps the PUCCH resource #2, the UE may drop the SL-PUCCH resource #3 for the SL HARQ feedback and only transmit the PUCCH resource #2 for the Uu HARQ feedback in the slot n.
- the second PDCCH (e.g., the second PDCCH 412 in Fig. 4, or the second PDCCH 512 in Fig. 5) may contain SCI that schedules the PSSCH (e.g., the PSSCH 414 in Fig. 4, or the PSSCH 514 in Fig. 5) and includes a priority indicator of the second HARQ feedback.
- the priority of the SL HARQ feedback may depend on a priority information indicator (e.g., PPPP) in the scheduling SCI.
- the priority of a PUCCH resource may depend on the highest priority of UCI contained in the PUCCH resource.
- a priority indicator having a smaller value may indicate a higher priority.
- there may be an index configured in RRC signaling for UCI of eMBB (e.g., eMBB HARQ feedback, eMBB SR, or eMBB CSI feedback) .
- the index may indicate a threshold for dropping the UCI of eMBB. If the priority indicator in the scheduling SCI has a value less than the configured index for the UCI of eMBB, the UE may drop the UCI for eMBB.
- there may be an index configured in RRC signaling for UCI of URLLC (e.g., URLLC HARQ feedback, URLLC SR, or URLLC CSI feedback) .
- the index may indicate a threshold for dropping the UCI of URLLC. If the priority indicator in the scheduling SCI has a value less than the configured index for the UCI of URLLC, the UE may drop the UCI for URLLC.
- a UE is configured with an index (e.g., “3” ) for dropping URLLC UCI, and PPPP in SCI or DCI_SL is “2” .
- the UE may drop the URLLC UCI if the PUCCH resource for the URLLC UCI overlaps with the PUCCH resource for the SL HARQ feedback that is associated with the PSSCH scheduled by the SCI or the DCI_SL.
- Fig. 6 is a block diagram illustrating a node 600 for wireless communication according to the present disclosure.
- the node 600 may include a transceiver 620, a processor 628, a memory 634, one or more presentation components 638, and at least one antenna 636.
- the node 600 may also include an RF spectrum band module, a BS communications module, a network communications module, and a system communications management module, Input /Output (I/O) ports, I/O components, and a power supply (not shown) .
- I/O Input /Output
- the node 600 may be a UE or a BS that performs various functions disclosed with reference to Figs. 1 through 5.
- the transceiver 620 has a transmitter 622 (e.g., transmitting/transmission circuitry) and a receiver 624 (e.g., receiving/reception circuitry) and may be configured to transmit and/or receive time and/or frequency resource partitioning information.
- the transceiver 620 may be configured to transmit in different types of subframes and slots including but not limited to usable, non-usable and flexibly usable subframes and slot formats.
- the transceiver 620 may be configured to receive data and control channels.
- the node 600 may include a variety of computer-readable media.
- Computer-readable media may be any available media that may be accessed by the node 600 and include both volatile and non-volatile media, removable and non-removable media.
- the computer-readable media may include computer storage media and communication media.
- Computer storage media include both volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or data.
- Computer storage media include RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices.
- Computer storage media do not include a propagated data signal.
- Communication media typically embody computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and include any information delivery media.
- modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
- Communication media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the previously listed components should also be included within the scope of computer-readable media.
- the memory 634 may include computer-storage media in the form of volatile and/or non-volatile memory.
- the memory 634 may be removable, non-removable, or a combination thereof.
- Example memory includes solid-state memory, hard drives, optical-disc drives, etc.
- the memory 634 may store computer-readable, computer-executable instructions 632 (e.g., software codes) that are configured to cause the processor 628 to perform various disclosed functions with reference to Figs. 1 through 5.
- the instructions 632 may not be directly executable by the processor 628 but be configured to cause the node 600 (e.g., when compiled and executed) to perform various functions disclosed herein.
- the processor 628 may include an intelligent hardware device, e.g., a Central Processing Unit (CPU) , a microcontroller, an ASIC, etc.
- the processor 628 may include memory.
- the processor 628 may process the data 630 and the instructions 632 received from the memory 634, and information transmitted and received via the transceiver 620, the base band communications module, and/or the network communications module. The processor 628 may also process information to be sent to the transceiver 620 for transmission via the antenna 636 to the network communications module for transmission to a core network.
- presentation components 638 present data to a person or another device.
- presentation components 638 include a display device, a speaker, a printing component, and a vibrating component.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A method for wireless communication performed by a UE is provided. The method includes: receiving, from a base station (BS), a first physical downlink control channel (PDCCH) that schedules a physical downlink shared channel (PDSCH) and a first physical uplink control channel (PUCCH), the first PUCCH being used for transmitting a first hybrid automatic repeat request (HARQ) feedback associated with the PDSCH; receiving, from the BS, a second PDCCH that schedules a physical sidelink shared channel (PSSCH) and a second PUCCH, the second PUCCH being used for transmitting a second HARQ feedback associated with the PSSCH, and the second PUCCH overlapping the first PUCCH in a time domain; and transmitting, to the BS, uplink control information (UCI) in one of the first PUCCH and the second PUCCH; wherein a part of at least one of the first HARQ feedback and the second HARQ feedback is discarded in the UCI.
Description
CROSS-REFERENCE TO RELATED APPLICATION (S)
The present disclosure claims the benefit of and priority of provisional U.S. Patent Application Serial No. 62/888,051, filed on August 16, 2019, entitled “Mechanism for HARQ feedback of sidelink resource allocation mode 1” ( “the ’051 provisional” ) . The disclosure of the ’051 provisional is hereby incorporated fully by reference into the present disclosure.
The present disclosure is related to wireless communication, and more particularly, to a method for handling hybrid automatic repeat request (HARQ) feedback in cellular wireless communication networks.
With the tremendous growth in the number of connected devices and the rapid increase in user/network traffic volume, various efforts have been made to improve different aspects of wireless communication for cellular wireless communication systems, such as fifth generation (5G) New Radio (NR) , by improving data rate, latency, reliability and mobility.
The 5G NR system is designed to provide flexibility and configurability to optimize the network services and types, accommodating various use cases such as enhanced Mobile Broadband (eMBB) , massive Machine-Type Communication (mMTC) , and Ultra-Reliable and Low-Latency Communication (URLLC) .
However, as the demand for radio access continues to increase, there exists a need for further improvements in the art.
SUMMARY
The present disclosure is directed to a method for handling HARQ feedback in cellular wireless communication networks.
According to an aspect of the present disclosure, a method for wireless communication performed by a UE is provided. The method includes: receiving, from a base station (BS) , a first physical downlink control channel (PDCCH) that schedules a physical downlink shared channel (PDSCH) and a first physical uplink control channel (PUCCH) , the first PUCCH being used for transmitting a first hybrid automatic repeat request (HARQ) feedback associated with the PDSCH; receiving, from the BS, a second PDCCH that schedules a physical sidelink shared channel (PSSCH) and a second PUCCH, the second PUCCH being used for transmitting a second HARQ feedback associated with the PSSCH, and the second PUCCH overlapping the first PUCCH in a time domain; and transmitting, to the BS, uplink control information (UCI) in one of the first PUCCH and the second PUCCH; wherein a part of at least one of the first HARQ feedback and the second HARQ feedback is discarded in the UCI.
According to another aspect of the present disclosure, a UE is provided that includes one or more non-transitory computer-readable media containing computer-executable instructions embodied therein and at least one processor coupled to the one or more non-transitory computer-readable media. The at least one processor is configured to execute the computer-executable instructions to: receive, from a BS, a first PDCCH that schedules a PDSCH and a first PUCCH, the first PUCCH being used for transmitting a first HARQ feedback associated with the PDSCH; receive, from the BS, a second PDCCH that schedules a PSSCH and a second PUCCH, the second PUCCH being used for transmitting a second HARQ feedback associated with the PSSCH, and the second PUCCH overlapping the first PUCCH in a time domain; and transmit, to the BS, UCI in one of the first PUCCH and the second PUCCH; wherein a part of at least one of the first HARQ feedback and the second HARQ feedback is discarded in the UCI.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying drawings. Various features are not drawn to scale. Dimensions of various features may be arbitrarily increased or reduced for clarity of discussion.
Fig. 1 is a diagram illustrating an example SL resource allocation mode according to an example implementation of the present disclosure.
Fig. 2 is a diagram illustrating another example SL resource allocation mode according to an example implementation of the present disclosure.
Fig. 3 is a flowchart of a method performed by a UE for handling HARQ feedback according to an example implementation of the present disclosure.
Fig. 4 is a diagram illustrating an example PUCCH conflict scenario according to an example implementation of the present disclosure.
Fig. 5 is a diagram illustrating another example PUCCH conflict scenario according to an example implementation of the present disclosure.
Fig. 6 is a block diagram illustrating a node for wireless communication in accordance with various aspects of the present disclosure.
The following description contains specific information related to implementations of the present disclosure. The drawings and their accompanying detailed description are merely directed to implementations.
However, the present disclosure is not limited to these implementations. Other variations and implementations of the present disclosure will be obvious to those skilled in the art.
Unless noted otherwise, like or corresponding elements among the drawings may be indicated by like or corresponding reference numerals. Moreover, the drawings and illustrations in the present disclosure are generally not to scale and are not intended to correspond to actual relative dimensions.
For the purpose of consistency and ease of understanding, like features may be identified (although, in some examples, not shown) by the same numerals in the drawings. However, the features in different implementations may be different in other respects and shall not be narrowly confined to what is shown in the drawings.
The phrases “in one implementation, ” or “in some implementations, ” may each refer to one or more of the same or different implementations. The term “coupled” is defined as connected whether directly or indirectly through intervening components and is not necessarily limited to physical connections. The term “comprising” means “including, but not necessarily limited to” and specifically indicates open-ended inclusion or membership in the so-described combination, group, series or equivalent. The expression “at least one of A, B and C” or “at least one of the following: A, B and C” means “only A, or only B, or only C, or any combination of A, B and C. ”
The terms “system” and “network” may be used interchangeably. The term “and/or” is only an association relationship for describing associated objects and represents that multiple relationships may exist such that A and/or B may indicate that A exists alone, A and B exist at the same time, or B exists alone. The character “/” generally represents that the associated objects are in an “or” relationship.
For the purposes of explanation and non-limitation, specific details such as functional entities, techniques, protocols, and standards are set forth for providing an understanding of the present disclosure. In other examples, detailed description of well-known methods, technologies, systems, and architectures are omitted so as not to obscure the description with unnecessary details.
Persons skilled in the art will recognize that any network function (s) or algorithm (s) disclosed may be implemented by hardware, software or a combination of software and hardware. Disclosed functions may correspond to modules which may be software, hardware, firmware, or any combination thereof.
A software implementation may include computer executable instructions stored on a computer readable medium such as memory or other type of storage devices. One or more microprocessors or general-purpose computers with communication processing capability may be programmed with corresponding executable instructions and perform the disclosed network function (s) or algorithm (s) .
The microprocessors or general-purpose computers may include Applications Specific Integrated Circuitry (ASIC) , programmable logic arrays, and/or using one or more Digital Signal Processor (DSPs) . Although some of the present disclosure is directed to software installed and executing on computer hardware, alternative implementations as firmware or as hardware or combination of hardware and software are well within the scope of the present disclosure. The computer readable medium includes but is not limited to Random Access Memory (RAM) , Read Only Memory (ROM) , Erasable Programmable Read-Only Memory (EPROM) , Electrically Erasable Programmable Read-Only Memory (EEPROM) , flash memory, Compact Disc Read-Only Memory (CD-ROM) , magnetic cassettes, magnetic tape, magnetic disk storage, or any other equivalent medium capable of storing computer-readable instructions.
A radio communication network architecture such as a Long Term Evolution (LTE) system, an LTE-Advanced (LTE-A) system, an LTE-Advanced Pro system, or a 5G NR Radio Access Network (RAN) typically includes at least one base station (BS) , at least one UE, and one or more optional network elements that provide connection within a network. The UE communicates with the network such as a Core Network (CN) , an Evolved Packet Core (EPC) network, an Evolved Universal Terrestrial RAN (E-UTRAN) , a 5G Core (5GC) , or an internet via a RAN established by one or more BSs.
A UE may include but is not limited to a mobile station, a mobile terminal or device, or a user communication radio terminal. The UE may be portable radio equipment that includes but is not limited to a mobile phone, a tablet, a wearable device, a sensor, a vehicle, or a Personal Digital Assistant (PDA) with wireless communication capability. The UE is configured to receive and transmit signals over an air interface to one or more cells in a RAN.
The BS may be configured to provide communication services according to at least a Radio Access Technology (RAT) such as Worldwide Interoperability for Microwave Access (WiMAX) , Global System for Mobile communications (GSM) that is often referred to as 2G, GSM Enhanced Data rates for GSM Evolution (EDGE) RAN (GERAN) , General Packet Radio Service (GPRS) , Universal Mobile Telecommunication System (UMTS) that is often referred to as 3G based on basic wideband-code division multiple access (W-CDMA) , high-speed packet access (HSPA) , LTE, LTE-A, evolved LTE (eLTE) that is LTE connected to 5GC, NR (often referred to as 5G) , and/or LTE-A Pro. However, the scope of the present disclosure is not limited to these protocols.
The BS may include but is not limited to a node B (NB) in the UMTS, an evolved node B (eNB) in LTE or LTE-A, a radio network controller (RNC) in UMTS, a BS controller (BSC) in the GSM/GERAN, a ng-eNB in an E-UTRA BS in connection with 5GC, a next generation Node B (gNB) in the 5G-RAN, or any other apparatus capable of controlling radio communication and managing radio resources within a cell. The BS may serve one or more UEs via a radio interface.
The BS is operable to provide radio coverage to a specific geographical area using a plurality of cells forming the RAN. The BS supports the operations of the cells. Each cell is operable to provide services to at least one UE within its radio coverage.
Each cell (often referred to as a serving cell) provides services to serve one or more UEs within its radio coverage such that each cell schedules the downlink (DL) and optionally uplink (UL) resources to at least one UE within its radio coverage for DL and optionally UL packet transmissions. The BS can communicate with one or more UEs in the radio communication system via the plurality of cells.
A cell may allocate sidelink (SL) resources for supporting Proximity Service (ProSe) or Vehicle to Everything (V2X) service. Each cell may have overlapped coverage areas with other cells.
As discussed previously, the frame structure for NR supports flexible configurations for accommodating various next generation (e.g., 5G) communication requirements such as Enhanced Mobile Broadband (eMBB) , Massive Machine Type Communication (mMTC) , and Ultra-Reliable and Low-Latency Communication (URLLC) , while fulfilling high reliability, high data rate and low latency requirements. The Orthogonal Frequency-Division Multiplexing (OFDM) technology in the 3rd Generation Partnership Project (3GPP) may serve as a baseline for an NR waveform. The scalable OFDM numerology such as adaptive sub-carrier spacing, channel bandwidth, and Cyclic Prefix (CP) may also be used.
Two coding schemes are considered for NR, specifically Low-Density Parity-Check (LDPC) code and Polar Code. The coding scheme adaption may be configured based on channel conditions and/or service applications.
When a transmission time interval (TTI) of a single NR frame includes DL transmission data, a guard period, and UL transmission data, the respective portions of the DL transmission data, the guard period, and the UL transmission data may be configured based on the network dynamics of NR. SL resources may also be provided in an NR frame to support ProSe services or V2X services.
Abbreviations of several terms mentioned in the present disclosure are explained as follows:
CSI: channel state information
PRB: physical resource block
RRC: radio resource control
SR: scheduling request
SL-RRC: RRC signaling transmitted on SL channel
SIB-SL: System Information Block transmitted on SL channel
MIB-SL: Master Information Block transmitted on SL channel
UCI: Uplink control information, which may include SR, HARQ, and CSI feedback
There are multiple resource allocation modes for SL transmission. In resource allocation mode 1, a BS (e.g., a gNB) may schedule SL resource (s) to be used by UE for SL transmission (s) for unicast and groupcast. A transmitter UE (also referred to as Tx UE) may transmit a transport block (TB) to a receiver UE (also referred to as Rx UE) on the SL resource scheduled by the BS. The Rx UE may send HARQ feedback to the Tx UE. The HARQ feedback may be a one-bit signal indicating acknowledgement (ACK) or negative acknowledgement (NACK) . The HARQ feedback may also be referred to as HARQ-ACK information in the present disclosure. In one implementation, the Tx UE may report HARQ feedback (also referred to as SL HARQ feedback) via Uu link to the BS. For example, the Tx UE may indicate to the BS a need for retransmission of the transmitted TB by using the SL HARQ feedback. Since the HARQ feedback is transmitted via Uu link, the UE may use PUCCH and/or physical uplink shared channel (PUSCH) to transmit HARQ bits.
According to the HARQ codebook generation procedure described in 3GPP TS 38.213, a HARQ codebook may be associated with two values K0 and K1. The value K0 may be in an information element (IE) PDSCH-TimeDomainResourceAllocationList. The value K1 may be in an IE dl-DataToUL-ACK. K0 may be an offset between the DL slot in which the PDCCH for DL scheduling is received and the DL slot in which PDSCH data is scheduled. K1 may be an offset between the DL slot in which the data is scheduled on PDSCH and the UL slot in which the HARQ feedback for the scheduled PDSCH data needs to be sent.
In one implementation, downlink control information (DCI) in SL resource allocation mode 1 (e.g., DCI_SL) may contain resource allocation information about physical sidelink control channel (PSCCH) and/or physical sidelink shared channel (PSSCH) . New parameters, such as K0_1, K0_2, K0_SL and K1_SL, may be introduced.
Fig. 1 is a diagram 100 illustrating an example SL resource allocation mode according to an example implementation of the present disclosure. The UE may receive DCI (e.g., DCI_SL) in PDCCH 102 that schedules PSCCH 104, which may carry sidelink control information (SCI) that schedules PSSCH 106. PDCCH 102 may also schedule PUCCH 108, which may be used for transmitting, to a BS, HARQ feedback associated with the PSSCH 106. The parameter K0_1 may indicate a time offset between the PDCCH 102 and the PSCCH 104. The parameter K0_2 may indicate a time offset between the PSCCH 104 and the PSSCH 106. The parameter K1_SL may indicate a time offset between the PDCCH 102 and the PUCCH 108.
Fig. 2 is a diagram 200 illustrating another example SL resource allocation mode according to an example implementation of the present disclosure. The UE may receive DCI (e.g., DCI_SL) in PDCCH 202 that schedules PSSCH 206. The PDCCH 202 may also schedule PUCCH 208, which may be used for transmitting, to a BS, HARQ feedback associated with the PSSCH 206. The parameter K0_SL may indicate a time offset between the PDCCH 202 and the PSSCH 206. The parameter K1_SL may indicate a time offset between the PDCCH 202 and the PUCCH 208.
Case 1: generating HARQ codebook for SL resource allocation mode 1
Case 1-1: excluding PSSCH/PSCCH candidate
In one implementation, if at least one symbol of a PSSCH candidate time resource indicated by SCI is configured as DL or flexible (FL) , the PSSCH candidate may be excluded from a PSSCH candidate list. Remaining PSSCH candidates may be denoted as valid PSSCH candidates. For example, a parameter K0_2 may be configured via RRC signaling as K0_2 = {0, 1, 2, 3} . The parameter K0_2 may indicate a time offset between PSCCH and PSSCH. The UE may receive SCI in slot n, and the PSSCH candidate may be in slot n+0, slot n+1, slot n+2, or slot n+3, where n is an integer. The UE may exclude a PSSCH candidate scheduled by the SCI from a PSSCH candidate list if the PSSCH candidate overlaps with a DL/FL symbol.
In one implementation, if at least one symbol of a PSSCH candidate time resource indicated by DCI_SL is configured as DL/FL, the PSSCH candidate may be excluded from a PSSCH candidate list. Remaining PSSCH candidates may be denoted as valid PSSCH candidates. For example, a parameter K0_SL may be configured via RRC signaling as K0_SL = {0, 1, 2, 3} . The parameter K0_SL may indicate a time offset between PDCCH and PSSCH. The UE may receive DCI_SL in slot n, and the PSSCH candidate may be in slot n+0, slot n+1, slot n+2, or slot n+3, where n is an integer. The UE may exclude a PSSCH candidate scheduled by the DCI_SL from a PSSCH candidate list if the PSSCH candidate overlaps with a DL/FL symbol.
In one implementation, if at least one symbol of a PSCCH candidate time resource indicated by a DCI_SL is configured as DL/FL, the PSCCH candidate may be excluded from a PSCCH candidate list. Remaining PSCCH candidates may be denoted as valid PSCCH candidates. For example, a parameter K0_1 may be configured via RRC as K0_1 = {0, 1, 2, 3} . The parameter K0_1 may indicate a time offset between PDCCH and PSCCH. The UE may receive DCI_SL in slot n, and the PSCCH candidate may be in slot n+0, slot n+1, slot n+2, or slot n+3, where n is an integer. The UE may exclude a PSCCH candidate scheduled by the DCI_SL from a PSCCH candidate list if the PSCCH candidate overlaps with a DL/FL symbol.
Case 1-2: generating HARQ codebook according to sl-DataToUL-ACK and/or PSSCH time domain resource allocation
In one implementation, the UE may report SL HARQ-ACK information in a PUCCH associated with only one (or X, X being a positive integer) PSSCH for all PSSCH candidates. The UE may expect to only receive one PSSCH successfully before the UE reports the SL HARQ feedback. In one implementation, the value X may be reported by UE capability. The UE may transmit, to the BS, a UE capability that indicates a maximum number of bits in the SL HARQ feedback.
Case 2: configuration of SL HARQ codebook type
In one implementation, the UE may receive a message that indicates whether a HARQ codebook type for SL transmission is semi-static or dynamic. In one implementation, there may be a new IE SL-HARQ-ACK-Codebook contained in RRC/SL-RRC/SIB/SIB-SL/MIB-SL. The IE SL-HARQ-ACK-Codebook may indicate SL HARQ-ACK codebook is either semi-static or dynamic.
The IE SL-HARQ-ACK-Codebook may be configured per resource pool (e.g., resource pool for scheduled PSCCH and/or PSSCH) , per bandwidth part (BWP) (e.g., DL BWP, SL BWP, UL BWP) , per anchor carrier, per cell, per cell group (e.g., master cell group, secondary cell group) , or per UE. In one implementation, the IE SL-HARQ-ACK-Codebook may be valid in specific area, which may be indicated by an IE systemInformationAreaID, a list of (physical) cell identities, zones, ranges, etc.
The IE HARQ-ACK-Codebook may indicate an SL HARQ codebook type. An example data structure of the IE SL-HARQ-ACK-Codebook may be provided as follows. In one implementation, if the IE SL-HARQ-ACK-Codebook is not configured, the default value may be “semi-static” or “dynamic. ”
SL-HARQ-ACK-Codebook:: = ENUMERATED {
semi-static, dynamic, all, spare1
}
In one implementation, the SL HARQ codebook type may be the same as the HARQ codebook type of a cell that contains scheduling information (e.g., DCI_SL) . In one implementation, a HARQ codebook type of a HARQ feedback associated with PSSCH scheduled by a BS may be the same as a HARQ codebook type configured by the BS for transmitting HARQ feedback associated with PDSCH. For example, the UE may be configured to perform SL transmission on cell #0. The HARQ codebook type associated with PDSCH on cell #0 may be dynamic. In one implementation, an IE pdsch-HARQ-ACK-Codebook of cell #0 may indicate that HARQ codebook type on cell #0 is “dynamic codebook. ” The UE may expect to generate a dynamic HARQ codebook for SL transmission. That is, the UE may expect that SCI or DCI_SL indicates a downlink assignment index for SL (e.g., SL_DAI) for the dynamic SL HARQ codebook.
In one implementation, SL HARQ codebook type may be included in UE capability. The UE may inform the BS whether it supports dynamic/semi-static/both HARQ codebook type for SL operation.
Case 3: multiplexing UCI and SL HARQ feedback
Fig. 3 is a flowchart of a method 300 performed by a UE for handling HARQ feedback according to an example implementation of the present disclosure. In action 302, the UE may receive, from a BS, a first PDCCH that schedules a PDSCH and a first PUCCH. The first PUCCH may be used for transmitting a first HARQ feedback associated with the PDSCH. The first HARQ feedback may be also referred to as HARQ feedback for PDSCH, DL HARQ feedback, or Uu HARQ feedback.
In action 304, the UE may receive, from the BS, a second PDCCH that schedules a PSSCH and a second PUCCH. The second PUCCH may be used for transmitting a second HARQ feedback associated with the PSSCH. The second HARQ feedback may be also referred to as HARQ feedback for PSSCH or SL HARQ feedback. The second PUCCH overlaps the first PUCCH in a time domain (also referred to as PUCCH conflict) . In one implementation, the second PUCCH and the first PUCCH may be different, and the second PUCCH may partially or fully overlap the first PUCCH in the time domain. In one implementation, the second PUCCH may be the same as the first PUCCH. That is, the UE may be indicated to transmit the first HARQ feedback and the second HARQ feedback in the same PUCCH resource.
In action 306, the UE may transmit, to the BS, UCI in one of the first PUCCH and the second PUCCH, where a part of at least one of the first HARQ feedback and the second HARQ feedback is discarded in the UCI. In one implementation, the UE may multiplex the first HARQ feedback with the second HARQ feedback in one of the first PUCCH and the second PUCCH. In one implementation, the UE may discard part of the first HARQ feedback and/or part of the second HARQ feedback when multiplexing the first HARQ feedback with the second HARQ feedback. In one implementation, the UE may drop/discard (part of) the first HARQ feedback in the UCI. In one implementation, the UE may drop/discard (part of) the second HARQ feedback in the UCI. In one implementation, the UCI may include only one of the first HARQ feedback and the second HARQ feedback.
Fig. 4 is a diagram 400 illustrating an example PUCCH conflict scenario according to an example implementation of the present disclosure. The UE may receive, from a BS, a first PDCCH 402 that schedules a PDSCH 404 and a first PUCCH 406. The first PUCCH 406 may be used for transmitting a first HARQ feedback associated with the PDSCH 404. The UE may receive, from the BS, a second PDCCH 412 that schedules a PSSCH 414 and a second PUCCH 416. The second PUCCH 416 may be used for transmitting a second HARQ feedback associated with the PSSCH 414. The second PUCCH 416 overlaps the first PUCCH 406 in a time domain. The UE may transmit, to the BS, UCI in one of the first PUCCH 406 and the second PUCCH 416, where a part of at least one of the first HARQ feedback and the second HARQ feedback is discarded in the UCI.
Fig. 5 is a diagram 500 illustrating another example PUCCH conflict scenario according to an example implementation of the present disclosure. In this example, the first PUCCH in action 302 in Fig. 3 and the second PUCCH in action 304 in Fig. 3 are the same, represented as PUCCH 506 in Fig. 5. The UE may receive, from a BS, a first PDCCH 502 that schedules a PDSCH 504 and a PUCCH 506. The PUCCH 506 may be used for transmitting a first HARQ feedback associated with the PDSCH 504. The UE may receive, from the BS, a second PDCCH 512 that schedules a PSSCH 514 and the PUCCH 506. The PUCCH 506 may be used for transmitting a second HARQ feedback associated with the PSSCH 514. The UE may transmit, to the BS, UCI in the PUCCH 506, where a part of at least one of the first HARQ feedback and the second HARQ feedback is discarded in the UCI.
In one implementation, the UE may receive a message that indicates a dedicated resource for the SL HARQ feedback. In one implementation, there may be a new IE SL-PUCCHresource contained in RRC/SL-RRC/SIB/SIB-SL, which indicates PUCCH resource (s) dedicated for the SL HARQ feedback. In one implementation, the PUCCH resource dedicated for the SL HARQ feedback may not overlap with PUCCH resource for UCI (e.g., including DL HARQ feedback) in the time/frequency domain. In one implementation, if the IE SL-PUCCHresource is not present in RRC/SL-RRC/SIB/SIB-SL, the UE may determine that the SL HARQ feedback can be multiplexed with UCI (e.g., including DL HARQ feedback) on PUCCH resource.
An example data structure of the IE SL-PUCCHresource is provided as follows:
The IE SL-PUCCHresource may indicate PUCCH resource dedicated for the SL HARQ feedback. In one implementation, the UE does not expect that time/frequency domain resource of any PUCCH resource indicated by the IE SL-PUCCHresource overlaps with PUCCH resource for UCI. In one implementation, if the IE SL-PUCCHresource is not configured, the UE may multiplex the SL HARQ feedback with UCI (e.g., including DL HARQ feedback) on the PUCCH resource for the UCI.
In one implementation, the UE may receive a message that indicates whether the SL HARQ feedback can be multiplexed with UCI (e.g., including DL HARQ feedback) in a single PUCCH. In one implementation, there may be a new IE SL-UCI-MUX contained in RRC/SIB/SIB-SL/SL-RRC, which indicates whether or not the UE can multiplex UCI (e.g., including DL HARQ feedback) with the SL HARQ feedback. In one implementation, if the IE SL-UCI-MUX is not present in RRC/SIB/SIB-SL/SL-RRC, the UE may determine that the SL HARQ feedback can be multiplexed with the UCI (e.g., including DL HARQ feedback) on the PUCCH resource. In another implementation, if the IE SL-UCI-MUX is not present in RRC/SIB/SIB-SL/SL-RRC, the UE may determine that the SL HARQ feedback cannot be multiplexed with the UCI (e.g., including DL HARQ feedback) on the PUCCH resource.
The IE SL-UCI-MUX may indicate whether or not the UE can multiplex UCI with the SL HARQ feedback. The IE SL-UCI-MUX may be a one-bit indicator, having a value of either true or false. In one implementation, if the IE SL-UCI-MUX is not configured, the UE may multiplex the SL HARQ feedback with the UCI by default.
In one implementation, the UE may receive a message that indicates whether the SL HARQ feedback can be multiplexed in a PUSCH. In one implementation, there may be a new IE SL-onPUSCH contained in RRC/SIB/SIB-SL/SL-RRC, which indicates whether or not the UE can transmit the SL HARQ feedback on PUSCH, for example, when PUCCH resource contains the SL HARQ feedback that overlaps with the PUSCH. In one implementation, if the IE SL-onPUSCH is not present in RRC/SIB/SIB-SL/SL-RRC, the UE may determine that the SL HARQ feedback can be transmitted on the PUSCH. In another implementation, if the IE SL-onPUSCH is not present in RRC/SIB/SIB-SL/SL-RRC, the UE may determine that the SL HARQ feedback cannot be transmitted on the PUSCH.
The IE SL-onPUSCH may indicate whether or not the UE can transmit the SL HARQ feedback on PUSCH. The IE SL-onPUSCH may be a one-bit indicator, having a value of either true or false. In one implementation, if the IE SL-onPUSCH is not configured, the UE may not transmit the SL HARQ feedback on PUSCH.
In one implementation, if the UE does not support transmission of the SL HARQ feedback on the PUSCH, the UE may transmit the PUSCH and drop the SL HARQ feedback when the PUCCH resource of the SL HARQ feedback overlaps with the PUSCH. For example, if the UE is indicated to transmit the SL HARQ feedback in slot n+8 by DCI_SL in slot n, and the UE is indicated to transmit the PUSCH in slot n+8 by a DCI format 0_1 in slot n+4, the UE may drop the SL HARQ feedback and transmit only the PUSCH on slot n+8 when the IE SL-onPUSCH has a value of “false. ”
In one implementation, if the UE supports transmission of the SL HARQ feedback on the PUSCH, the UE may transmit the SL HARQ feedback and drop the PUSCH when the PUCCH resource for the SL HARQ feedback overlaps with the PUSCH.
In one implementation, the ability to multiplex UCI with SL HARQ feedback may be included in a UE capability. The UE may inform the BS whether it supports multiplexing UCI with the SL HARQ feedback. In one implementation, the UE may transmit, to the BS, a UE capability that indicates whether the UE supports multiplexing UCI (e.g., including DL HARQ feedback) with the SL HARQ feedback.
In one implementation, there may be a new IE for-SL-HARQ contained in PUCCH resource/PUCCH resource set configuration (e.g., IE PUCCHresource) in RRC/SIB. The IE for-SL-HARQ may be a one-bit indicator, having a value of either true or false. The PUCCH resource/PUCCH resources contained in the PUCCH resource set may contain SL HARQ feedback if the IE for-SL-HARQ has a value of “true. ”
An example data structure of an IE PUCCHresource is provided as follows:
The IE for-SL-HARQ may indicate whether or not the SL HARQ feedback can be transmitted on the PUCCH resource. In one implementation, if the IE for-SL-HARQ is not configured, the UE may not transmit the SL HARQ feedback on the PUCCH.
Referring to the method 300 shown in Fig. 3, in one implementation, the UE may perform a prioritization procedure according to a prioritization rule and a payload size of the first PUCCH or the second PUCCH to determine the UCI in action 306 in Fig. 3. In one implementation, the first PUCCH may be further used for transmitting an SR and a CSI report. The first HARQ feedback may include HARQ control information for a first service type (e.g., eMBB) and HARQ control information for a second service type (e.g., URLLC) . The prioritization rule may indicate a prioritization order of the HARQ control information for the first service type, the HARQ control information for the second service type, the SR, and the CSI report.
In one implementation, if a payload size of a PUCCH resource (e.g., the first PUCCH 406 in Fig. 4, the second PUCCH 416 in Fig. 4, or the PUCCH 506 in Fig. 5) cannot contain all SL HARQ feedback and UCI (which may include DL HARQ feedback, SR, CSI) bits, there may be a priority rule to decide which information may be transmitted on the PUCCH resource and which information may be dropped/discarded. In one implementation, the priority order may be URLLC HARQ > eMBB HARQ > SL HARQ > SR > CSI part I > CSI part II. The greater-than sign may be used to indicate priority order in the present disclosure. For example, URLLC HARQ > eMBB HARQ means URLLC HARQ has higher priority than eMBB HARQ. It should be noted that eMBB and URLLC here refer to the eMBB service and the URLLC service via the Uu interface.
The UE may differentiate eMBB service from URLLC service on the Uu interface in several ways. In one implementation, the UE may treat data in PDSCH as the URLLC service when there is an indicator contained in the scheduling DCI. In one implementation, the UE may treat data in PDSCH as the URLLC service according to a DCI format. In one implementation, the UE may treat data in PDSCH as the URLLC service according to sub-slot numerology for HARQ feedback. In one implementation, the UE may treat data in PDSCH as the URLLC service according to a radio network temporary identifier (RNTI) . In one implementation, the UE may treat data in PDSCH as the URLLC service according to a modulation and coding scheme (MCS) table for the PDSCH.
For example, a UE may be indicated to transmit SL HARQ feedback on PUCCH resource #3 and the UE may be also indicated to transmit Uu HARQ feedback and CSI feedback on the PUCCH resource #3. The priority order may be URLLC HARQ > eMBB HARQ > SL HARQ > SR > CSI part I > CSI part II. If {the number of SL HARQ feedback bits (O_SL_ACK) + the number of Uu HARQ feedback bits (O_ACK) + the number of CSI feedback bits (O_CSI) +the total number of CRC bits for SL HARQ, Uu HARQ and CSI feedback (O_CRC) } is greater than the payload size of the PUCCH resource #3, the UE may drop the CSI feedback first and then drop SL HARQ feedback bits until {O_SL_ACK + O_ACK + O_CSI + O_CRC} is less than the payload size of the PUCCH resource #3. The payload size of the PUCCH resource may be related to the number of PRBs, the number of symbols, modulation and/or code rate.
In one implementation, the second PDCCH (e.g., the second PDCCH 412 in Fig. 4, or the second PDCCH 512 in Fig. 5) may contain SCI that schedules the PSSCH (e.g., the PSSCH 414 in Fig. 4, or the PSSCH 514 in Fig. 5) and includes a priority indicator of the second HARQ feedback. The priority of the SL HARQ feedback may depend on a priority information indicator (e.g., ProSe per-packet priority (PPPP) ) in the scheduling SCI. In one implementation, a priority indicator having a smaller value may indicate a higher priority.
In one implementation, there may be an index configured in RRC signaling for UCI of eMBB (e.g., eMBB HARQ feedback, eMBB SR, or eMBB CSI feedback) . The index may indicate a threshold for dropping the UCI of eMBB. If the priority indicator in the scheduling SCI has a value less than the configured index for the UCI of eMBB, the UE may drop the UCI for eMBB. Otherwise, the UE may drop the SL HARQ feedback.
For example, a UE is configured with an index (e.g., “3” ) for dropping eMBB UCI, and PPPP in SCI or DCI_SL is “2” . The UE may drop the eMBB UCI if the PUCCH resource for the eMBB UCI overlaps the PUCCH resource for the SL HARQ feedback that is associated with the PSSCH scheduled by the SCI or the DCI_SL.
In one implementation, there may be an index configured in RRC signaling for UCI of URLLC (e.g., URLLC HARQ feedback, URLLC SR, or URLLC CSI feedback) . The index may indicate a threshold for dropping the UCI of URLLC. If the priority indicator in the scheduling SCI has a value less than the configured index for the UCI of URLLC, the UE may drop the UCI for URLLC. Otherwise, UE may drop the SL HARQ feedback.
In one implementation, SL HARQ feedback and UCI (e.g., including DL HARQ feedback) may be independently reported. Referring to the method 300 shown in Fig. 3, in one implementation, one of the first HARQ feedback and the second HARQ feedback may be discarded in the UCI in action 306. The UCI may include only one of the first HARQ feedback and the second HARQ feedback.
In one implementation, if the time/frequency domain of a PUCCH resource for SL HARQ feedback overlaps a PUCCH resource for DL HARQ feedback, there may be a priority rule to decide which information may be transmitted on the PUCCH resource. In one implementation, the priority order may be PUCCH resource containing URLLC HARQ > PUCCH resource containing eMBB HARQ > PUCCH resource containing SL HARQ > PUCCH resource containing SR > PUCCH resource containing CSI part I > PUCCH resource containing CSI part II.
For example, a UE may be indicated to transmit SL HARQ feedback on SL-PUCCH resource #3 in the 10
th and 11
th symbols of the slot n and the UE may be also indicated to transmit Uu HARQ feedback and CSI feedback on PUCCH resource #2 in the 9
th and 10
th symbols of the slot n. The priority order may be URLLC HARQ > eMBB HARQ > SL HARQ > SR > CSI part I > CSI part II. Since the SL-PUCCH resource #3 partially overlaps the PUCCH resource #2, the UE may drop the SL-PUCCH resource #3 for the SL HARQ feedback and only transmit the PUCCH resource #2 for the Uu HARQ feedback in the slot n.
In one implementation, the second PDCCH (e.g., the second PDCCH 412 in Fig. 4, or the second PDCCH 512 in Fig. 5) may contain SCI that schedules the PSSCH (e.g., the PSSCH 414 in Fig. 4, or the PSSCH 514 in Fig. 5) and includes a priority indicator of the second HARQ feedback. The priority of the SL HARQ feedback may depend on a priority information indicator (e.g., PPPP) in the scheduling SCI. In one implementation, the priority of a PUCCH resource may depend on the highest priority of UCI contained in the PUCCH resource. In one implementation, a priority indicator having a smaller value may indicate a higher priority.
In one implementation, there may be an index configured in RRC signaling for UCI of eMBB (e.g., eMBB HARQ feedback, eMBB SR, or eMBB CSI feedback) . The index may indicate a threshold for dropping the UCI of eMBB. If the priority indicator in the scheduling SCI has a value less than the configured index for the UCI of eMBB, the UE may drop the UCI for eMBB.
In one implementation, there may be an index configured in RRC signaling for UCI of URLLC (e.g., URLLC HARQ feedback, URLLC SR, or URLLC CSI feedback) . The index may indicate a threshold for dropping the UCI of URLLC. If the priority indicator in the scheduling SCI has a value less than the configured index for the UCI of URLLC, the UE may drop the UCI for URLLC.
For example, a UE is configured with an index (e.g., “3” ) for dropping URLLC UCI, and PPPP in SCI or DCI_SL is “2” . The UE may drop the URLLC UCI if the PUCCH resource for the URLLC UCI overlaps with the PUCCH resource for the SL HARQ feedback that is associated with the PSSCH scheduled by the SCI or the DCI_SL.
Fig. 6 is a block diagram illustrating a node 600 for wireless communication according to the present disclosure. As illustrated in Fig. 6, the node 600 may include a transceiver 620, a processor 628, a memory 634, one or more presentation components 638, and at least one antenna 636. The node 600 may also include an RF spectrum band module, a BS communications module, a network communications module, and a system communications management module, Input /Output (I/O) ports, I/O components, and a power supply (not shown) .
Each of the components may directly or indirectly communicate with each other over one or more buses 640. The node 600 may be a UE or a BS that performs various functions disclosed with reference to Figs. 1 through 5.
The transceiver 620 has a transmitter 622 (e.g., transmitting/transmission circuitry) and a receiver 624 (e.g., receiving/reception circuitry) and may be configured to transmit and/or receive time and/or frequency resource partitioning information. The transceiver 620 may be configured to transmit in different types of subframes and slots including but not limited to usable, non-usable and flexibly usable subframes and slot formats. The transceiver 620 may be configured to receive data and control channels.
The node 600 may include a variety of computer-readable media. Computer-readable media may be any available media that may be accessed by the node 600 and include both volatile and non-volatile media, removable and non-removable media.
The computer-readable media may include computer storage media and communication media. Computer storage media include both volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or data.
Computer storage media include RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices. Computer storage media do not include a propagated data signal. Communication media typically embody computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and include any information delivery media.
The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. Communication media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the previously listed components should also be included within the scope of computer-readable media.
The memory 634 may include computer-storage media in the form of volatile and/or non-volatile memory. The memory 634 may be removable, non-removable, or a combination thereof.
Example memory includes solid-state memory, hard drives, optical-disc drives, etc. As illustrated in Fig. 6, the memory 634 may store computer-readable, computer-executable instructions 632 (e.g., software codes) that are configured to cause the processor 628 to perform various disclosed functions with reference to Figs. 1 through 5. Alternatively, the instructions 632 may not be directly executable by the processor 628 but be configured to cause the node 600 (e.g., when compiled and executed) to perform various functions disclosed herein.
The processor 628 (e.g., having processing circuitry) may include an intelligent hardware device, e.g., a Central Processing Unit (CPU) , a microcontroller, an ASIC, etc. The processor 628 may include memory.
The processor 628 may process the data 630 and the instructions 632 received from the memory 634, and information transmitted and received via the transceiver 620, the base band communications module, and/or the network communications module. The processor 628 may also process information to be sent to the transceiver 620 for transmission via the antenna 636 to the network communications module for transmission to a core network.
One or more presentation components 638 present data to a person or another device. Examples of presentation components 638 include a display device, a speaker, a printing component, and a vibrating component.
In view of the present disclosure, it is obvious that various techniques may be used for implementing the concepts in the present disclosure without departing from the scope of those concepts. Moreover, while the concepts have been disclosed with specific reference to certain implementations, a person of ordinary skill in the art may recognize that changes may be made in form and detail without departing from the scope of those concepts.
As such, the described implementations are to be considered in all respects as illustrative and not restrictive. It should also be understood that the present disclosure is not limited to the particular implementations disclosed and many rearrangements, modifications, and substitutions are possible without departing from the scope of the present disclosure.
Claims (20)
- A user equipment (UE) comprising:one or more non-transitory computer-readable media containing computer-executable instructions embodied therein; andat least one processor coupled to the one or more non-transitory computer-readable media, the at least one processor configured to execute the computer-executable instructions to:receive, from a base station (BS) , a first physical downlink control channel (PDCCH) that schedules a physical downlink shared channel (PDSCH) and a first physical uplink control channel (PUCCH) , the first PUCCH being used for transmitting a first hybrid automatic repeat request (HARQ) feedback associated with the PDSCH;receive, from the BS, a second PDCCH that schedules a physical sidelink shared channel (PSSCH) and a second PUCCH, the second PUCCH being used for transmitting a second HARQ feedback associated with the PSSCH, and the second PUCCH overlapping the first PUCCH in a time domain; andtransmit, to the BS, uplink control information (UCI) in one of the first PUCCH and the second PUCCH;wherein a part of at least one of the first HARQ feedback and the second HARQ feedback is discarded in the UCI.
- The UE of claim 1, wherein the first PUCCH is the same as the second PUCCH.
- The UE of claim 1, wherein the at least one processor is further configured to execute the computer-executable instructions to:receive a message that indicates a dedicated resource for the second HARQ feedback.
- The UE of claim 1, wherein the at least one processor is further configured to execute the computer-executable instructions to:receive a message that indicates whether the first HARQ feedback can be multiplexed with the second HARQ feedback in a single PUCCH.
- The UE of claim 1, wherein the at least one processor is further configured to execute the computer-executable instructions to:receive a message that indicates whether the second HARQ feedback can be multiplexed in a physical uplink shared channel (PUSCH) .
- The UE of claim 1, wherein the at least one processor is further configured to execute the computer-executable instructions to:transmit, to the BS, a UE capability that indicates whether the UE supports multiplexing the first HARQ feedback with the second HARQ feedback.
- The UE of claim 1, wherein the at least one processor is further configured to execute the computer-executable instructions to:perform a prioritization procedure according to a prioritization rule and a payload size of the first PUCCH or the second PUCCH to determine the UCI.
- The UE of claim 7, wherein the second PDCCH contains sidelink control information (SCI) that schedules the PSSCH and includes a priority indicator of the second HARQ feedback.
- The UE of claim 7, wherein the first PUCCH is further used for transmitting a scheduling request (SR) and a channel state information (CSI) report, the first HARQ feedback includes HARQ control information for a first service type and HARQ control information for a second service type, and the prioritization rule indicates a prioritization order of the HARQ control information for the first service type, the HARQ control information for the second service type, the SR, and the CSI report.
- The UE of claim 1, wherein the UCI includes only one of the first HARQ feedback and the second HARQ feedback.
- The UE of claim 1, wherein the at least one processor is further configured to execute the computer-executable instructions to:receive a message that indicates whether a HARQ codebook type of the second HARQ feedback is semi-static or dynamic.
- The UE of claim 1, wherein a HARQ codebook type of the second HARQ feedback is the same as a HARQ codebook type configured by the BS for transmitting the first HARQ feedback.
- The UE of claim 1, wherein the at least one processor is further configured to execute the computer-executable instructions to:transmit, to the BS, a UE capability that indicates a maximum number of bits in the second HARQ feedback.
- A method for wireless communication performed by a user equipment (UE) , the method comprising:receiving, from a base station (BS) , a first physical downlink control channel (PDCCH) that schedules a physical downlink shared channel (PDSCH) and a first physical uplink control channel (PUCCH) , the first PUCCH being used for transmitting a first hybrid automatic repeat request (HARQ) feedback associated with the PDSCH;receiving, from the BS, a second PDCCH that schedules a physical sidelink shared channel (PSSCH) and a second PUCCH, the second PUCCH being used for transmitting a second HARQ feedback associated with the PSSCH, and the second PUCCH overlapping the first PUCCH in a time domain; andtransmitting, to the BS, uplink control information (UCI) in one of the first PUCCH and the second PUCCH;wherein a part of at least one of the first HARQ feedback and the second HARQ feedback is discarded in the UCI.
- The method of claim 14, further comprising:receiving a message that indicates a dedicated resource for the second HARQ feedback.
- The method of claim 14, further comprising:receiving a message that indicates whether the first HARQ feedback can be multiplexed with the second HARQ feedback in a single PUCCH.
- The method of claim 14, further comprising:receiving a message that indicates whether the second HARQ feedback can be multiplexed in a physical uplink shared channel (PUSCH) .
- The method of claim 14, further comprising:transmitting, to the BS, a UE capability that indicates whether the UE supports multiplexing the first HARQ feedback with the second HARQ feedback.
- The method of claim 14, further comprising:performing a prioritization procedure according to a prioritization rule and a payload size of the first PUCCH or the second PUCCH to determine the UCI, wherein the second PDCCH contains sidelink control information (SCI) that schedules the PSSCH and includes a priority indicator of the second HARQ feedback.
- The method of claim 14, wherein the UCI includes only one of the first HARQ feedback and the second HARQ feedback.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20854684.6A EP4014659A4 (en) | 2019-08-16 | 2020-08-14 | Method and apparatus for handling harq feedback |
US17/628,399 US20220271868A1 (en) | 2019-08-16 | 2020-08-14 | Method and apparatus for transmitting harq feedback |
CN202080054762.3A CN114208371B (en) | 2019-08-16 | 2020-08-14 | Method and user equipment for transmitting HARQ feedback |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962888051P | 2019-08-16 | 2019-08-16 | |
US62/888,051 | 2019-08-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021031995A1 true WO2021031995A1 (en) | 2021-02-25 |
Family
ID=74659962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/109132 WO2021031995A1 (en) | 2019-08-16 | 2020-08-14 | Method and apparatus for handling harq feedback |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220271868A1 (en) |
EP (1) | EP4014659A4 (en) |
CN (1) | CN114208371B (en) |
WO (1) | WO2021031995A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022206635A1 (en) * | 2021-04-01 | 2022-10-06 | 华为技术有限公司 | Information sending method and apparatus, and information receiving method and apparatus |
WO2023130493A1 (en) * | 2022-01-07 | 2023-07-13 | Apple Inc. | Support for harq feedback enhancements |
WO2023134648A1 (en) * | 2022-01-11 | 2023-07-20 | 大唐移动通信设备有限公司 | Channel multiplexing transmission method and apparatus |
WO2023159537A1 (en) * | 2022-02-28 | 2023-08-31 | Qualcomm Incorporated | Sidelink feedback messaging |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11652582B2 (en) * | 2019-11-04 | 2023-05-16 | Qualcomm Incorporated | Acknowledgment feedback techniques in sidelink wireless communications |
CN112822775A (en) * | 2019-11-15 | 2021-05-18 | 索尼公司 | Electronic device, wireless communication method, and computer-readable storage medium |
US20230117601A1 (en) * | 2020-06-03 | 2023-04-20 | Ntt Docomo, Inc. | Terminal, communication method and communication system |
US11716753B2 (en) * | 2021-01-26 | 2023-08-01 | Qualcomm Incorporated | Feedback methods for subband full duplex systems |
WO2022186629A1 (en) * | 2021-03-03 | 2022-09-09 | 엘지전자 주식회사 | Ue operation method related to psfch and pucch transmission in sidelink in wireless communication system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150358138A1 (en) * | 2013-08-09 | 2015-12-10 | Mediatek Inc. | Physical Resource Allocation for UL Control Channels in Adaptive TDD Systems |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10194423B2 (en) * | 2012-09-28 | 2019-01-29 | Lg Electronics Inc. | Uplink transmission method and uplink transmission device |
US9503837B2 (en) * | 2012-10-08 | 2016-11-22 | Lg Electronics Inc. | Method and apparatus for performing HARQ process in wireless communication system |
CN108924960B (en) * | 2014-01-24 | 2022-09-06 | 索尼公司 | User equipment, base station and method for device-to-device communication |
WO2015152581A1 (en) * | 2014-03-30 | 2015-10-08 | 엘지전자(주) | Method for transmitting/receiving downlink control information in wireless communication system supporting device-to-device communication and apparatus therefor |
CN105553612B (en) * | 2015-12-10 | 2019-10-25 | 上海华为技术有限公司 | A kind of transmission method of D2D communication link and base station and terminal |
US11082994B2 (en) * | 2016-04-01 | 2021-08-03 | Lg Electronics Inc. | Method for V2X communication performed by means of terminal in wireless communication system and terminal using same |
US20190190662A1 (en) * | 2016-05-11 | 2019-06-20 | Lg Electronics Inc. | Method and apparatus for improving downlink broadcast for v2v communication in wireless communication system |
WO2018084610A1 (en) * | 2016-11-03 | 2018-05-11 | 엘지전자(주) | Method for transmitting uplink channel in wireless communication system, and apparatus therefor |
CN108616339B (en) * | 2016-12-12 | 2021-02-12 | 普天信息技术有限公司 | Method for determining SC-PTM feedback resource in V2X communication system |
JP6701445B2 (en) * | 2017-10-26 | 2020-05-27 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | Physical uplink control channel (PUCCH) resource allocation |
JP7278391B2 (en) * | 2019-01-21 | 2023-05-19 | エルジー エレクトロニクス インコーポレイティド | Method for transmitting sidelink HARQ feedback in a wireless communication system |
KR102659985B1 (en) * | 2019-01-21 | 2024-04-24 | 엘지전자 주식회사 | How to transmit sidelink HARQ feedback in a wireless communication system |
WO2021029663A1 (en) * | 2019-08-15 | 2021-02-18 | 엘지전자 주식회사 | Method and device for reporting information about sl harq feedback in nr v2x |
WO2021034779A1 (en) * | 2019-08-16 | 2021-02-25 | Hyukjin Chae | Sidelink feedback reporting in a wireless network |
US20220321308A1 (en) * | 2019-10-03 | 2022-10-06 | Hannibal Ip Llc | Methods and apparatuses for harq codebook construction |
WO2021091340A1 (en) * | 2019-11-07 | 2021-05-14 | Lg Electronics Inc. | Method and apparatus for transmitting psfch in nr v2x |
US11546937B2 (en) * | 2019-11-08 | 2023-01-03 | Huawei Technologies Co., Ltd. | System and method for reservation and resource selection for sidelink communication |
US20210289529A1 (en) * | 2020-03-16 | 2021-09-16 | Qualcomm Incorporated | Resource allocation for sidelink-assisted uplink transmission |
WO2021223693A1 (en) * | 2020-05-06 | 2021-11-11 | Shanghai Langbo Communication Technology Company Limited | Method and device in a node for wireless communication |
WO2023212075A1 (en) * | 2022-04-26 | 2023-11-02 | Interdigital Patent Holdings, Inc. | Methods, architectures, apparatuses and systems directed to hybrid automatic repeat request (harq) operations for sidelink communications in unlicensed spectrum |
-
2020
- 2020-08-14 CN CN202080054762.3A patent/CN114208371B/en active Active
- 2020-08-14 US US17/628,399 patent/US20220271868A1/en active Pending
- 2020-08-14 WO PCT/CN2020/109132 patent/WO2021031995A1/en unknown
- 2020-08-14 EP EP20854684.6A patent/EP4014659A4/en not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150358138A1 (en) * | 2013-08-09 | 2015-12-10 | Mediatek Inc. | Physical Resource Allocation for UL Control Channels in Adaptive TDD Systems |
Non-Patent Citations (5)
Title |
---|
ERICSSON: "Handling collisions of sTTI and TTI in UL", 3GPP DRAFT; R1-1708841 HANDLING COLLISIONS OF STTI AND TTI IN UL, vol. RAN WG1, 6 May 2017 (2017-05-06), Hangzhou P R China, pages 1 - 6, XP051262708 * |
HUAWEI; HISILICON: "Discussion on HARQ support for NR sidelink", 3GPP DRAFT; R2-1907414 DISCUSSION ON HARQ SUPPORT FOR NR SIDELINK, vol. RAN WG2, 17 May 2019 (2019-05-17), Reno, USA, pages 1 - 6, XP051711696 * |
HUAWEI; HISILICON: "Sidelink resource allocation mode 1", 3GPP DRAFT; R1-1910055, vol. RAN WG1, 8 October 2019 (2019-10-08), Chongqing, China, pages 1 - 19, XP051788862 * |
HUAWEI; HISILICON: "Sidelink resource allocation mode 1", 3GPP DRAFT; R1-1911883, vol. RAN WG1, 9 November 2019 (2019-11-09), Reno, USA, pages 1 - 24, XP051823065 * |
See also references of EP4014659A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022206635A1 (en) * | 2021-04-01 | 2022-10-06 | 华为技术有限公司 | Information sending method and apparatus, and information receiving method and apparatus |
CN115189826A (en) * | 2021-04-01 | 2022-10-14 | 华为技术有限公司 | Information sending method, receiving method and device |
WO2023130493A1 (en) * | 2022-01-07 | 2023-07-13 | Apple Inc. | Support for harq feedback enhancements |
WO2023134648A1 (en) * | 2022-01-11 | 2023-07-20 | 大唐移动通信设备有限公司 | Channel multiplexing transmission method and apparatus |
WO2023159537A1 (en) * | 2022-02-28 | 2023-08-31 | Qualcomm Incorporated | Sidelink feedback messaging |
Also Published As
Publication number | Publication date |
---|---|
EP4014659A1 (en) | 2022-06-22 |
EP4014659A4 (en) | 2023-07-19 |
CN114208371A (en) | 2022-03-18 |
CN114208371B (en) | 2024-05-07 |
US20220271868A1 (en) | 2022-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021031995A1 (en) | Method and apparatus for handling harq feedback | |
US11974311B2 (en) | Method and apparatus for configuring priority of UCI | |
US10749637B2 (en) | Methods and devices for aperiodic uplink transmission | |
US11375483B2 (en) | Method and apparatus for multiplexing UCI | |
US11678328B2 (en) | Method of multiplexing uplink control information and related device | |
EP2720428B1 (en) | Method and device for information transmission in wireless communication system | |
WO2021063405A1 (en) | Methods and apparatuses for harq codebook construction | |
US20230051867A1 (en) | Method related to physical uplink control channel cell switching and user equipment | |
WO2022083782A1 (en) | Transmitting hybrid automatic repeat request acknowledgement in next generation networks | |
US11800523B2 (en) | User equipment and method for configuring PUCCH resources | |
US20230050524A1 (en) | Method and device for performing logical-channel-based prioritization | |
US12028888B2 (en) | Transmitting hybrid automatic repeat request acknowledgement in next generation networks | |
WO2023051830A1 (en) | Method of physical uplink control channel transmission and related device | |
WO2024067833A1 (en) | Method, user equipment, and base station for cg pusch transmissions | |
WO2022083770A1 (en) | Method of monitoring physical downlink control channel and related device | |
WO2023208074A1 (en) | Method for configuring downlink control information monitoring and terminal device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20854684 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020854684 Country of ref document: EP Effective date: 20220316 |