WO2021027235A1 - Infant amblyopia electrocerebral objective detector - Google Patents

Infant amblyopia electrocerebral objective detector Download PDF

Info

Publication number
WO2021027235A1
WO2021027235A1 PCT/CN2019/128994 CN2019128994W WO2021027235A1 WO 2021027235 A1 WO2021027235 A1 WO 2021027235A1 CN 2019128994 W CN2019128994 W CN 2019128994W WO 2021027235 A1 WO2021027235 A1 WO 2021027235A1
Authority
WO
WIPO (PCT)
Prior art keywords
eeg
module
amblyopia
virtual reality
management
Prior art date
Application number
PCT/CN2019/128994
Other languages
French (fr)
Chinese (zh)
Inventor
徐光华
郑小伟
王云云
梁仍昊
刘洋
韩丞丞
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201910734032.7 priority Critical
Priority to CN201910734032.7A priority patent/CN110547760A/en
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2021027235A1 publication Critical patent/WO2021027235A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/378Visual stimuli

Abstract

An infant amblyopia electrocerebral objective detector, comprising a virtual reality glasses module (1), an eye tracker module (2), a wireless electrocerebral collecting platform module (3), and a data analysis and management system module (4), wherein the virtual reality glasses module (1) achieves vision dividing displaying of double eyes, and provides a means for vision dividing displaying of stimulation patterns in an amblyopia detection process; the eye tracker module (2) detects an eyeball direction of an infant in the detection process in real time, so that effectiveness of a visual stimulation paradigm (16) is ensured; the wireless electrocerebral collecting platform module (3) integrates data transmission and an electrocerebral signal amplification chip, so that collection and transmission of electrocerebral data are achieved; and the data analysis and management system module (4) analyzes the electrocerebral data, a detection result of the electrocerebral data is displayed in real time and shared with a doctor and a patient. A visual-induced potential technology, a virtual reality display technology, and an eye tracker tracking technology are integrated, and starting from the root cause of formation of amblyopia, amblyopia objective detection can be performed. The present invention is easy and fast in operation, high in applicability, and has objective and quantitative indicators.

Description

一种幼儿弱视脑电客观检测仪An EEG objective detector for children with amblyopia 技术领域Technical field
本发明涉及脑机接口及眼科检查中弱视检测技术领域,具体涉及一种幼儿弱视脑电客观检测仪。The invention relates to the technical field of brain-computer interface and amblyopia detection in ophthalmological examinations, in particular to an EEG objective detector for children with amblyopia.
背景技术Background technique
幼儿视觉神经发育失调导致视觉系统异常,进而形成弱视。全球弱视的发病率高达3%-5%,其主要症状表现为矫正后的最佳视力低于正常值。造成弱视的因素有斜视、屈光不正和形觉剥夺等。单眼异常和双眼间的抑制是弱视形成的两种机制。在发育期间的单眼异常造成弱视眼竞争视路的能力下降,视觉功能主要由对侧眼支配。而近年来的研究表明弱视间的双眼抑制阻止了眼睛的正常融合和感知。因此,弱视是视觉神经发育出现异常,表现在视觉功能受限。The developmental disorder of the visual nerve in young children leads to abnormalities in the visual system, leading to amblyopia. The global incidence of amblyopia is as high as 3%-5%, and its main symptom is that the corrected best vision is lower than normal. The factors that cause amblyopia include strabismus, refractive error, and form deprivation. Monocular abnormality and inhibition between the two eyes are two mechanisms of amblyopia. Monocular abnormality during development causes a decline in the ability of the amblyopic eye to compete for the visual path, and the visual function is mainly dominated by the contralateral eye. Recent studies have shown that binocular suppression in amblyopia prevents normal fusion and perception of the eyes. Therefore, amblyopia is an abnormality in the development of the optic nerve, which is manifested in limited visual function.
现有的弱视检测方法,包括从视力、立体视、融合视等方面进行主观心理物理学检测,不能从根本出发直接进行检测,错失了弱视修复治疗的关键期。脑机接口技术,特别是皮层脑电技术,不依赖于人的主观判断,可直接从弱视形成的根本原因出发,采集视觉区脑电,应用视觉诱发电位技术,实现弱视的客观检测。Existing methods for detecting amblyopia include subjective psychophysical testing in terms of visual acuity, stereopsis, fusion vision, etc. They cannot be tested directly from the ground up, and miss the critical period of amblyopia repair treatment. Brain-computer interface technology, especially cortical EEG technology, does not rely on human subjective judgments. It can directly start from the root cause of amblyopia, collect visual area EEG, and apply visual evoked potential technology to achieve objective detection of amblyopia.
发明内容Summary of the invention
为了克服上述现有技术的缺点,本发明的目的在于提供了一种幼儿弱视脑电客观检测仪,集成视觉诱发电位技术、虚拟现实显示技术、眼动仪追踪技术于一体,从弱视形成的根本原因出发,可进行弱视的客观检测。操作简单快捷,适用性强,且指标客观定量。In order to overcome the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide an EEG objective detector for children with amblyopia, which integrates visual evoked potential technology, virtual reality display technology, and eye tracker tracking technology. Starting from the cause, objective detection of amblyopia can be carried out. The operation is simple and fast, the applicability is strong, and the indicators are objective and quantitative.
为了达到上述目的,本发明采用的技术方案是:In order to achieve the above objective, the technical solution adopted by the present invention is:
一种幼儿弱视脑电客观检测仪,包括虚拟现实眼镜模块1、眼动仪模块2、无线脑电采集平台模块3和数据分析与管理系统模块4,虚拟现实眼镜模块1实现双眼的分视显示,为弱视检测过程中的刺激图案分视显示提供了手段;眼动仪模块2实时检测幼儿检测过程中的眼球方向,保证视觉刺激范式的有效性;无线脑电采集平台模块3集成数据传输与脑电信号放大芯片,实现脑电数据的采集与传输;数据分析与管理系统模块4进行脑电数据的分析,其检测结果实时显示与并与医生和患者共享。An EEG objective detector for children with amblyopia, including a virtual reality glasses module 1, an eye tracker module 2, a wireless EEG acquisition platform module 3, and a data analysis and management system module 4. The virtual reality glasses module 1 realizes split-vision display of both eyes , Provides a means for the visual display of the stimulus pattern in the process of amblyopia detection; the eye tracker module 2 detects the eyeball direction of the child in the detection process in real time to ensure the effectiveness of the visual stimulation paradigm; the wireless EEG acquisition platform module 3 integrates data transmission and The EEG signal amplification chip realizes the collection and transmission of EEG data; the data analysis and management system module 4 analyzes EEG data, and its detection results are displayed in real time and shared with doctors and patients.
所述的虚拟现实眼镜模块1采用虚拟现实场景的双眼分视显示技术,使得呈现于双眼的刺激范式的时间频率不同,从视觉输入上造成双眼差异,以便于在脑电中进行特征标定与进一步分析;同时,设计多种颜色的刺激范式组。The virtual reality glasses module 1 adopts the binocular split display technology of the virtual reality scene, so that the time frequency of the stimulation paradigm presented to the binocular is different, and the binocular difference is caused from the visual input, so as to facilitate the feature calibration in the EEG and further Analyze; at the same time, design a multi-color stimulation paradigm group.
所述的虚拟现实眼镜模块1两侧设有耳机14,实现听觉信息的输入。Earphones 14 are provided on both sides of the virtual reality glasses module 1 to realize the input of auditory information.
所述的眼动仪模块2由一个近红外光源17与两个摄像镜头12组成,近红外光源17使用户眼睛的角膜和瞳孔上产成反射图像,然后使用两个图像传感器采集眼睛与反射的图像,使用图像处理算法和一个三维眼球模型精确地计算出眼睛在空间中的位置和视线位置,跟踪眼球位置,保证刺激的有效性。The eye tracker module 2 is composed of a near-infrared light source 17 and two camera lenses 12. The near-infrared light source 17 produces a reflection image on the cornea and pupil of the user's eye, and then uses two image sensors to collect the eye and the reflection Images, using image processing algorithms and a three-dimensional eyeball model to accurately calculate the position of the eye in space and the position of the line of sight, tracking the eyeball position, and ensuring the effectiveness of stimulation.
所述的近红外光源17、两个摄像镜头12分别插入虚拟现实眼镜模块1中用于固定其的近红外光源固定凹槽8、摄像镜头固定凹槽7内,使得眼动仪模块2与虚拟现实眼镜模块1结合为一个整体。The near-infrared light source 17 and the two camera lenses 12 are respectively inserted into the near-infrared light source fixing groove 8 and the camera lens fixing groove 7 for fixing the virtual reality glasses module 1, so that the eye tracker module 2 and the virtual reality The reality glasses module 1 is integrated as a whole.
所述的无线脑电采集平台模块3由无线脑电头盔帽19、脑电信号放大器20、脑电信号发射器18、前额电极15、接地电极13、枕叶视觉区脑电电极10组成;无线脑电头盔帽19与虚拟现实眼镜模块1通过连接头带9相连,连接头带9伸 缩可调,无线脑电头盔帽19集成六个枕叶视觉区脑电电极10,枕叶视觉区脑电电极10结合作为参考的前额电极15与接地电极13,实时采集脑电信号,通过脑电信号放大器20进行信号的初始放大处理,再由脑电信号发射器18传输脑电信号于数据分析与管理系统模块4。The wireless EEG acquisition platform module 3 is composed of a wireless EEG helmet 19, an EEG signal amplifier 20, an EEG signal transmitter 18, a forehead electrode 15, a ground electrode 13, and an occipital lobe visual area EEG electrode 10; The EEG helmet cap 19 is connected to the virtual reality glasses module 1 through the connecting headband 9, which is adjustable in expansion and contraction, and the wireless EEG helmet cap 19 integrates six occipital lobe visual area EEG electrodes 10, occipital lobe visual area EEG The electrode 10 combines the forehead electrode 15 and the ground electrode 13 as a reference to collect EEG signals in real time. The EEG signal amplifier 20 is used for initial signal amplification, and then the EEG signal transmitter 18 transmits the EEG signals for data analysis and management. System module 4.
所述的无线脑电头盔帽19尺寸根据5岁幼儿标准尺寸设计。The size of the wireless EEG helmet 19 is designed according to the standard size of a 5-year-old child.
所述的数据分析与管理系统模块4由脑电信号接收器5、数据分析与管理系统6组成;脑电信号接收器5与脑电信号发射器18通讯,接收来自其的脑电信号;数据分析与管理系统6对信号进行预处理、特征提取并进行分类,得出弱视客观检测结果;再对患者信息、脑电数据、检测参数和弱视结果等信息进行统一分类管理,患者信息和弱视结果与患者共享。The data analysis and management system module 4 is composed of an EEG signal receiver 5 and a data analysis and management system 6. The EEG signal receiver 5 communicates with the EEG signal transmitter 18 to receive EEG signals therefrom; data The analysis and management system 6 preprocesses the signal, extracts features, and classifies the signal to obtain objective detection results for amblyopia; then conducts unified classification management of patient information, EEG data, detection parameters, and amblyopia results, patient information and amblyopia results Share with patients.
与背景技术相比,本发明具有的有益效果是:Compared with the background technology, the present invention has the following beneficial effects:
本发明从弱视形成的根本原因出发,应用脑机接口技术,集成虚拟现实分视显示技术、眼动仪追踪技术及数据库管理技术,可在短时间内实现了快速、无损地幼儿弱视脑电客观量化检测,为幼儿弱视早期筛查提供全新的手段。Starting from the fundamental cause of amblyopia, the present invention applies brain-computer interface technology, integrates virtual reality split-vision display technology, eye tracker tracking technology and database management technology, and can realize fast and non-destructive young children’s amblyopia EEG objective in a short time Quantitative testing provides a new method for early screening of children with amblyopia.
附图说明Description of the drawings
图1为本发明的结构示意图。Figure 1 is a schematic diagram of the structure of the present invention.
图2为本发明眼动仪模块、虚拟现实眼镜模块和无线脑电采集平台模块的分解图。Fig. 2 is an exploded view of the eye tracker module, virtual reality glasses module and wireless EEG acquisition platform module of the present invention.
图3为虚拟现实场景的双眼分视显示技术的示意图。Fig. 3 is a schematic diagram of the binocular split display technology of a virtual reality scene.
图4为多种颜色视觉刺激范式组示意图。Figure 4 is a schematic diagram of a multi-color visual stimulation paradigm group.
图5为无线脑电采集平台模块的后侧视图。Figure 5 is a rear side view of the wireless EEG acquisition platform module.
具体实施方式detailed description
下面结合附图对本发明做详细描述。The present invention will be described in detail below in conjunction with the drawings.
如图1所示,一种幼儿弱视脑电客观检测仪,包括虚拟现实眼镜模块1、眼动仪模块2、无线脑电采集平台模块3和数据分析与管理系统模块4,虚拟现实眼镜模块1实现双眼的分视显示,为弱视检测过程中的刺激图案分视显示提供了手段;针对幼儿多动且注意力不集中的特点,眼动仪模块2实时检测幼儿检测过程中的眼球方向,保证视觉刺激范式的有效性;无线脑电采集平台模块3方便操作,集成数据传输与脑电信号采集功能,实现脑电数据的采集与传输;数据分析与管理系统模块4进行脑电数据的分析,其检测实时显示与并与医生和患者共享。As shown in Figure 1, an EEG objective detector for children with amblyopia includes a virtual reality glasses module 1, an eye tracker module 2, a wireless EEG acquisition platform module 3, a data analysis and management system module 4, and a virtual reality glasses module 1. Realize the split display of both eyes, which provides a means for the split display of stimulus patterns in the process of amblyopia detection; for the children's hyperactive and inattentive characteristics, the eye tracker module 2 detects the eyeball direction of the children in real time during the detection process to ensure The effectiveness of the visual stimulation paradigm; the wireless EEG acquisition platform module 3 is easy to operate, integrates data transmission and EEG signal acquisition functions to realize EEG data collection and transmission; Data analysis and management system module 4 performs EEG data analysis, Its detection is displayed in real time and shared with doctors and patients.
如图2、3所示,所述的虚拟现实眼镜模块1从弱视多发于单眼且双眼发育不协调的根本原因出发,采用虚拟现实场景的双眼分视显示技术,使得呈现于双眼的刺激范式16的时间频率不同,从视觉输入上造成双眼差异,以便于在脑电中进行特征标定与分析;如图4所示,为了吸引幼儿的注意力,设计多种颜色的刺激范式组,以便于利用视觉刺激诱发脑电信号;如图2所示,位于虚拟现实眼镜模块1两侧的耳机14,实现听觉信息的输入,使检测过程更具有沉浸性和乐趣性;总开关11位于虚拟现实眼镜模块1右侧。As shown in Figures 2 and 3, the virtual reality glasses module 1 starts from the root cause that amblyopia occurs in one eye and the development of the two eyes is not coordinated, and uses the binocular split display technology of the virtual reality scene to make the stimulus paradigm presented in both eyes 16 The time frequency is different, and the visual input is caused by the difference between the eyes, which is convenient for feature calibration and analysis in the EEG; as shown in Figure 4, in order to attract the attention of young children, a multi-color stimulation paradigm set is designed for easy use Visual stimuli induce EEG signals; as shown in Figure 2, the earphones 14 located on both sides of the virtual reality glasses module 1 realize the input of auditory information, making the detection process more immersive and fun; the master switch 11 is located in the virtual reality glasses module 1Right side.
如图2、3所示,所述的眼动仪模块2由一个近红外光源17与两个摄像镜头12组成,近红外光源17、两个摄像镜头12分别插入虚拟现实眼镜模块1中用于固定其的近红外光源固定凹槽8、摄像镜头固定凹槽7内,使得眼动仪模块2与虚拟现实眼镜模块1结合为一个整体,便于操作;近红外光源17使用户眼睛的角膜和瞳孔上产成反射图像,使用两个摄像镜头12采集眼睛与反射的图像;使用图像处理算法和一个三维眼球模型精确地计算出眼睛在空间中的位置和视线位置,跟踪眼球位置,保证刺激的有效性。As shown in Figures 2 and 3, the eye tracker module 2 is composed of a near-infrared light source 17 and two camera lenses 12. The near-infrared light source 17 and the two camera lenses 12 are respectively inserted into the virtual reality glasses module 1 for The near-infrared light source fixing groove 8 and the camera lens fixing groove 7 are fixed, so that the eye tracker module 2 and the virtual reality glasses module 1 are integrated as a whole, which is convenient for operation; the near-infrared light source 17 makes the cornea and pupil of the user's eye The reflected image is produced, and two camera lenses 12 are used to collect the images of the eyes and the reflection; the image processing algorithm and a three-dimensional eyeball model are used to accurately calculate the position of the eye in space and the position of the line of sight, and track the eyeball position to ensure effective stimulation Sex.
如图2、3、5所示,所述的无线脑电采集平台模块3由无线脑电头盔帽19、脑电信号放大器20、脑电信号发射器18、前额电极15、接地电极13、枕叶视觉区脑电电极10组成;无线脑电头盔帽19尺寸根据5岁幼儿标准尺寸设计,其与虚拟现实眼镜模块1通过连接头带9相连,连接头带9伸缩可调,能够贴合不同大小的头型,满足了个体头部尺寸的差异性;无线脑电头盔帽19既可以起到固定的作用,又集成六个枕叶视觉区脑电电极10(POz、PO3、Po4、Oz、O1和O2),枕叶视觉区脑电电极10结合作为参考的前额电极15(Fpz)与接地电极13(A1,A2),实时采集脑电信号,通过脑电信号放大器20进行信号的初始放大处理,再由脑电信号发射器18传输脑电信号于数据分析与管理系统模块4。As shown in Figures 2, 3, and 5, the wireless EEG acquisition platform module 3 consists of a wireless EEG helmet cap 19, an EEG signal amplifier 20, an EEG signal transmitter 18, a forehead electrode 15, a ground electrode 13, and a pillow The size of the wireless EEG helmet cap 19 is designed according to the standard size of 5-year-old children. It is connected to the virtual reality glasses module 1 through the connection headband 9, which can be stretched and adjusted, and can fit differently. The size of the head shape satisfies the difference of individual head size; the wireless EEG helmet cap 19 can not only play a fixed role, but also integrates six occipital visual area EEG electrodes 10 (POz, PO3, Po4, Oz, O1 and O2), the EEG electrode 10 in the occipital visual area combines the forehead electrode 15 (Fpz) and the ground electrode 13 (A1, A2) as a reference to collect the EEG signal in real time, and perform the initial amplification of the signal through the EEG signal amplifier 20 After processing, the EEG signal transmitter 18 transmits the EEG signal to the data analysis and management system module 4.
如图1所示,所述的数据分析与管理系统模块4由脑电信号接收器5、数据分析与管理系统6组成;脑电信号接收器5与脑电信号发射器18通讯,接收来自其的脑电信号;数据分析与管理系统6对信号进行预处理、特征提取并进行分类,得出弱视客观检测结果;再对患者信息、脑电数据、检测参数和弱视结果等信息进行统一分类管理,患者信息和弱视结果与患者共享。As shown in Figure 1, the data analysis and management system module 4 is composed of an EEG signal receiver 5 and a data analysis and management system 6. The EEG signal receiver 5 communicates with the EEG signal transmitter 18 and receives The data analysis and management system 6 preprocesses the signals, extracts features, and classifies the signals to obtain objective detection results of amblyopia; then conducts unified classification management on patient information, EEG data, detection parameters, and amblyopia results , Patient information and amblyopia results are shared with patients.

Claims (8)

  1. 一种幼儿弱视脑电客观检测仪,其特征在于:包括虚拟现实眼镜模块(1)、眼动仪模块(2)、无线脑电采集平台模块(3)和数据分析与管理系统模块(4),虚拟现实眼镜模块(1)实现双眼的分视显示,为弱视检测过程中的刺激图案分视显示提供了手段;眼动仪模块(2)实时检测幼儿检测过程中的眼球方向,保证视觉刺激范式的有效性;无线脑电采集平台模块(3)集成数据传输与脑电信号放大芯片,实现脑电数据的采集与传输;数据分析与管理系统模块(4)进行脑电数据的分析,其检测结果实时显示与并与医生和患者共享。An EEG objective detector for children with amblyopia, which is characterized by comprising a virtual reality glasses module (1), an eye tracker module (2), a wireless EEG acquisition platform module (3) and a data analysis and management system module (4) , The virtual reality glasses module (1) realizes the split display of the eyes, which provides a means for the split display of the stimulus pattern in the process of amblyopia detection; the eye tracker module (2) real-time detection of the eyeball direction of the child during the detection process to ensure visual stimulation The effectiveness of the paradigm; the wireless EEG acquisition platform module (3) integrates data transmission and EEG signal amplification chips to realize the acquisition and transmission of EEG data; the data analysis and management system module (4) performs EEG data analysis, and The test results are displayed in real time and shared with doctors and patients.
  2. 根据权利要求1所述的一种幼儿弱视脑电客观检测仪,其特征在于:所述的虚拟现实眼镜模块(1)采用虚拟现实场景的双眼分视显示技术,使得呈现于双眼的刺激范式的时间频率不同,从视觉输入上造成双眼差异,以便于在脑电中进行特征标定与进一步分析;同时,设计多种颜色的刺激范式组。An EEG objective detector for children with amblyopia according to claim 1, characterized in that: the virtual reality glasses module (1) adopts the binocular split display technology of the virtual reality scene, so that the stimulation paradigm presented in the binocular The time frequency is different, resulting in the visual input difference between the eyes, so that the feature calibration and further analysis in the EEG; at the same time, design a multi-color stimulation paradigm set.
  3. 根据权利要求1所述的一种幼儿弱视脑电客观检测仪,其特征在于:所述的虚拟现实眼镜模块(1)两侧设有耳机(14),实现听觉信息的输入。An EEG objective detector for children with amblyopia according to claim 1, characterized in that: earphones (14) are arranged on both sides of the virtual reality glasses module (1) to realize the input of auditory information.
  4. 根据权利要求1所述的一种幼儿弱视脑电客观检测仪,其特征在于:所述的眼动仪模块(2)由一个近红外光源(17)与两个摄像镜头(12)组成,近红外光源(17)使用户眼睛的角膜和瞳孔上产成反射图像,然后使用两个图像传感器采集眼睛与反射的图像,使用图像处理算法和一个三维眼球模型精确地计算出眼睛在空间中的位置和视线位置,跟踪眼球位置,保证刺激的有效性。An EEG objective detector for children with amblyopia according to claim 1, characterized in that: the eye tracker module (2) is composed of a near-infrared light source (17) and two camera lenses (12). The infrared light source (17) produces a reflection image on the cornea and pupil of the user's eye, and then two image sensors are used to collect the image of the eye and the reflection, and the image processing algorithm and a three-dimensional eyeball model are used to accurately calculate the position of the eye in space And the line of sight position, tracking the eyeball position, to ensure the effectiveness of stimulation.
  5. 根据权利要求4所述的一种幼儿弱视脑电客观检测仪,其特征在于:所述的近红外光源(17)、两个摄像镜头(12)分别插入虚拟现实眼镜模块(1)中的近红外光源固定凹槽(8)、摄像镜头固定凹槽(7)内,使得眼动仪模块(2) 与虚拟现实眼镜模块(1)结合为一个整体。An EEG objective detector for children with amblyopia according to claim 4, wherein the near-infrared light source (17) and the two camera lenses (12) are respectively inserted into the near-infrared glasses module (1). In the infrared light source fixing groove (8) and the camera lens fixing groove (7), the eye tracker module (2) and the virtual reality glasses module (1) are combined as a whole.
  6. 根据权利要求1所述的一种幼儿弱视脑电客观检测仪,其特征在于:所述的无线脑电采集平台模块(3)由无线脑电头盔帽(19)、脑电信号放大器(20)、脑电信号发射器(18)、前额电极(15)、接地电极(13)、枕叶视觉区脑电电极(10)组成;无线脑电头盔帽(19)与虚拟现实眼镜模块(1)通过连接头带(9)相连,连接头带(9)伸缩可调,无线脑电头盔帽(19)集成六个枕叶视觉区脑电电极(10),枕叶视觉区脑电电极(10)结合作为参考的前额电极(15)与接地电极(13),实时采集脑电信号,通过脑电信号放大器(20)进行信号的初始放大处理,再由脑电信号发射器(18)传输脑电信号于数据分析与管理系统模块(4)。An EEG objective detector for children with amblyopia according to claim 1, wherein the wireless EEG acquisition platform module (3) consists of a wireless EEG helmet (19) and an EEG signal amplifier (20). , EEG signal transmitter (18), forehead electrode (15), ground electrode (13), occipital lobe visual area EEG electrode (10); wireless EEG helmet cap (19) and virtual reality glasses module (1) It is connected by connecting the headband (9), the connecting headband (9) is adjustable and retractable, the wireless EEG helmet cap (19) integrates six occipital vision area EEG electrodes (10), occipital vision area EEG electrodes (10) ) Combine the forehead electrode (15) and the ground electrode (13) as a reference to collect EEG signals in real time. The signals are initially amplified by the EEG signal amplifier (20), and then the EEG signal transmitter (18) transmits the brain The electrical signal is in the data analysis and management system module (4).
  7. 根据权利要求6所述的一种幼儿弱视脑电客观检测仪,其特征在于:所述的无线脑电头盔帽(19)尺寸根据5岁幼儿标准尺寸设计。An EEG objective detector for children with amblyopia according to claim 6, wherein the size of the wireless EEG helmet cap (19) is designed according to the standard size of a 5-year-old child.
  8. 根据权利要求1所述的一种幼儿弱视脑电客观检测仪,其特征在于:所述的数据分析与管理系统模块(4)由脑电信号接收器(5)、数据分析与管理系统(6)组成;脑电信号接收器(5)与脑电信号发射器(18)通讯,接收来自其的脑电信号;数据分析与管理系统(6)对信号进行预处理、特征提取并进行分类,得出弱视客观检测结果;再对患者信息、脑电数据、检测参数和弱视结果信息进行统一分类管理,患者信息和弱视结果与患者共享。An EEG objective detector for children with amblyopia according to claim 1, wherein the data analysis and management system module (4) consists of an EEG signal receiver (5), a data analysis and management system (6) ) Composition; the EEG signal receiver (5) communicates with the EEG signal transmitter (18) to receive EEG signals from it; the data analysis and management system (6) performs preprocessing, feature extraction and classification of the signals, Obtain objective detection results of amblyopia; then perform unified classification management on patient information, EEG data, detection parameters and amblyopia result information, and share patient information and amblyopia results with patients.
PCT/CN2019/128994 2019-08-09 2019-12-27 Infant amblyopia electrocerebral objective detector WO2021027235A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910734032.7 2019-08-09
CN201910734032.7A CN110547760A (en) 2019-08-09 2019-08-09 infant amblyopia electroencephalogram objective detector

Publications (1)

Publication Number Publication Date
WO2021027235A1 true WO2021027235A1 (en) 2021-02-18

Family

ID=68737336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128994 WO2021027235A1 (en) 2019-08-09 2019-12-27 Infant amblyopia electrocerebral objective detector

Country Status (2)

Country Link
CN (1) CN110547760A (en)
WO (1) WO2021027235A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110547760A (en) * 2019-08-09 2019-12-10 西安交通大学 infant amblyopia electroencephalogram objective detector
CN112842261B (en) * 2020-12-30 2021-12-28 西安交通大学 Intelligent evaluation system for three-dimensional spontaneous movement of infant based on complex network

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012044261A1 (en) * 2010-09-29 2012-04-05 The Office Of National Telecommunications Commission System and method for ssvep based control of electrical devices
CN106037627A (en) * 2016-05-20 2016-10-26 上海青研科技有限公司 Full-automatic visual acuity examination method and device for infants
CN107463249A (en) * 2017-06-29 2017-12-12 南京航空航天大学 Show the brain machine interface system and control method of VEP based on VR heads
CN109222970A (en) * 2018-07-09 2019-01-18 司法鉴定科学研究院 The equipment of eyesight objective evaluation and the detection system of visual evoked potential and method
CN109271020A (en) * 2018-08-23 2019-01-25 西安交通大学 A kind of stable state vision inducting brain-machine interface method of evaluating performance based on eye movement tracking
CN109645955A (en) * 2019-01-31 2019-04-19 北京大学第三医院(北京大学第三临床医学院) Based on VR and eye movement the Multifunctional visual sense function detection device tracked and method
CN109717828A (en) * 2018-10-24 2019-05-07 中国医学科学院生物医学工程研究所 A kind of perimetry devices and detection method
CN110547760A (en) * 2019-08-09 2019-12-10 西安交通大学 infant amblyopia electroencephalogram objective detector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7578795B2 (en) * 2001-08-07 2009-08-25 Diopsys, Inc. System and method for vision examination utilizing fault detection
CN1903150A (en) * 2006-05-10 2007-01-31 上海迪康医学生物技术有限公司 Method for treating amblyopia of childhood hy variation of space frequency threshold
CN100466964C (en) * 2007-03-20 2009-03-11 重庆大学 System and method for separating binocular vision induced potentials
CN105138818B (en) * 2015-07-23 2019-02-05 西安交通大学 In conjunction with the amblyopia assisting in diagnosis and treatment system of pattern reversal visual evoked potentioals
CN205866721U (en) * 2016-05-20 2017-01-11 上海青研科技有限公司 Full -automatic visual acuity test device of infant
US20180132751A1 (en) * 2016-11-14 2018-05-17 Medisim, Ltd. Automatic system and method for evaluating and treating visual health
CN106774847A (en) * 2016-11-24 2017-05-31 天津大学 3D vision P300 Speller systems based on virtual reality technology
CN106919256A (en) * 2017-02-27 2017-07-04 深圳市金立通信设备有限公司 A kind of method and terminal of protection terminal user's eye health
CN108133189B (en) * 2017-12-22 2020-05-01 苏州大学 Hospital waiting information display method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012044261A1 (en) * 2010-09-29 2012-04-05 The Office Of National Telecommunications Commission System and method for ssvep based control of electrical devices
CN106037627A (en) * 2016-05-20 2016-10-26 上海青研科技有限公司 Full-automatic visual acuity examination method and device for infants
CN107463249A (en) * 2017-06-29 2017-12-12 南京航空航天大学 Show the brain machine interface system and control method of VEP based on VR heads
CN109222970A (en) * 2018-07-09 2019-01-18 司法鉴定科学研究院 The equipment of eyesight objective evaluation and the detection system of visual evoked potential and method
CN109271020A (en) * 2018-08-23 2019-01-25 西安交通大学 A kind of stable state vision inducting brain-machine interface method of evaluating performance based on eye movement tracking
CN109717828A (en) * 2018-10-24 2019-05-07 中国医学科学院生物医学工程研究所 A kind of perimetry devices and detection method
CN109645955A (en) * 2019-01-31 2019-04-19 北京大学第三医院(北京大学第三临床医学院) Based on VR and eye movement the Multifunctional visual sense function detection device tracked and method
CN110547760A (en) * 2019-08-09 2019-12-10 西安交通大学 infant amblyopia electroencephalogram objective detector

Also Published As

Publication number Publication date
CN110547760A (en) 2019-12-10

Similar Documents

Publication Publication Date Title
CN106037627B (en) A kind of full-automatic eyesight exam method of infant and device
US9380938B2 (en) System and methods for documenting and recording of the pupillary red reflex test and corneal light reflex screening of the eye in infants and young children
Maurer chapter 1: Infant Visual Perception: Methods of Study
WO2021027235A1 (en) Infant amblyopia electrocerebral objective detector
US7625087B2 (en) Pupillometers
Holder et al. International Federation of Clinical Neurophysiology: recommendations for visual system testing
EP0530184B1 (en) Method and apparatus for use in alpha training of a patient
EP2467053B1 (en) Apparatus and method for automatically determining a strabismus angle
RU2634682C1 (en) Portable device for visual functions examination
WO2005084526A1 (en) Retina function optical measuring method and instrument
Roig et al. Pupil detection and tracking for analysis of fixational eye micromovements
WO2018218048A1 (en) Oculometric neurological examination (one) appliance
CN205866721U (en) Full -automatic visual acuity test device of infant
CN101474061B (en) Contact type eyeground imaging system
CN211704590U (en) Integrated eye and brain visual function imaging system
Yagi Nystagmus as a sign of labyrinthine disorders-three-dimensional analysis of nystagmus
Buquet et al. Quantitative assessment of the static properties of the oculo-motor system by the photo-oculographic technique
Menacker Visual function in children with developmental disabilities
US20200405172A1 (en) Device for exploring the visual system
CN210842988U (en) Fundus image stereoscopic inspection optical system
Wiyor et al. Empirical evaluation of visual fatigue from display alignment errors using cerebral hemodynamic responses
CN211460224U (en) Eye patch for collecting eyeball movement and head movement in real time
Murray Saccadic vector optokinetic perimetry: a technique and system for automated static perimetry in children using eye tracking
KR100796355B1 (en) Near infrared slit lamp
Feng et al. Visual Function Examination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE