WO2021024421A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2021024421A1
WO2021024421A1 PCT/JP2019/031147 JP2019031147W WO2021024421A1 WO 2021024421 A1 WO2021024421 A1 WO 2021024421A1 JP 2019031147 W JP2019031147 W JP 2019031147W WO 2021024421 A1 WO2021024421 A1 WO 2021024421A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
blower
target point
temperature
rotation speed
Prior art date
Application number
PCT/JP2019/031147
Other languages
French (fr)
Japanese (ja)
Inventor
薦正 田辺
弘志 ▲廣▼▲崎▼
淳一 岡崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/031147 priority Critical patent/WO2021024421A1/en
Priority to JP2021538625A priority patent/JP7209846B2/en
Publication of WO2021024421A1 publication Critical patent/WO2021024421A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner that has a blower that blows air into an air-conditioned space and controls the blower.
  • Patent Document 1 As an example of a conventional air conditioner, an air conditioner that detects the direction of the human body by using an infrared sensor and changes the wind direction according to the position of the human body has been proposed (see, for example, Patent Document 1).
  • the air conditioner of Patent Document 1 sends wind to the human body by controlling the vertical wind direction and the horizontal wind direction according to the position of the human body detected by the infrared sensor.
  • the air conditioner disclosed in Patent Document 1 detects the direction of the human body, changes the angles of the vertical wind direction plate and the left and right wind direction plates based on the direction, and blows out the wind from the air outlet of the indoor unit.
  • the wind does not always reach the place where people are. For example, if the installation height of the indoor unit of the air conditioner is higher than the design value, the distance from the air outlet to the floor surface becomes long. In this case, the wind may not reach the floor surface and may not reach the position of a person, which impairs the comfort of the indoor environment.
  • the present invention has been made to solve the above problems, and provides an air conditioner with improved comfort in the indoor environment.
  • the air conditioner according to the present invention includes a housing in which a suction port and an air outlet are formed, a blower provided in the housing, which sucks indoor air from the suction port and blows it out from the air outlet, and the inside of the housing.
  • a heat exchanger that exchanges heat between the air sucked from the suction port and the refrigerant, a non-contact temperature sensor that detects the temperature distribution of the space in the room, and the rotation speed of the blower are controlled. It has a control device, and the control device determines whether or not the air blown from the blower has reached the target point from the information of the temperature distribution detected by the non-contact type temperature sensor. It has a degree determining means and an air volume setting means for setting the rotation speed of the blower so that the air blown from the blower reaches a target point.
  • the rotation speed of the blower is set so that the airflow reaches the target point. Therefore, the comfort of the indoor environment can be improved.
  • FIG. It is a refrigerant circuit diagram which shows one configuration example of the air conditioner which concerns on Embodiment 1.
  • FIG. It is an external perspective view which shows an example of the indoor unit shown in FIG. It is a front view of the indoor unit shown in FIG. It is a figure which shows typically the cross section when the indoor unit shown in FIG. 3 is cut by the AA part.
  • FIG. It is a schematic diagram which shows that the horizontal direction of an airflow is changed by changing the angle of the 1st wind direction plate shown in FIG.
  • FIG. 7 It is a schematic diagram which shows that the vertical direction of an airflow is changed by changing the angle of the 2nd wind direction plate shown in FIG. 7. It is a figure which shows an example of the vertical range of the temperature distribution detected by the non-contact type temperature sensor shown in FIG. It is a figure which shows an example of the horizontal range of the temperature distribution detected by the non-contact type temperature sensor shown in FIG. It is a functional block diagram which shows one configuration example of the control device shown in FIG. It is an image diagram which shows an example of the case where the sensor output analysis means shown in FIG. 11 displays the temperature distribution detected by the non-contact type temperature sensor on a two-dimensional image. FIG. 5 is an image diagram showing another example in which the sensor output analysis means shown in FIG.
  • FIG. 11 displays the temperature distribution detected by the non-contact temperature sensor on a two-dimensional image. It is an image diagram which shows an example of the case where the sensor output analysis means shown in FIG. 11 divides the temperature distribution of the floor surface detected by the non-contact type sensor into a plurality of sections. It is a flowchart which shows an example of the operation procedure of the air conditioner of Embodiment 1. It is a schematic diagram for demonstrating the procedure shown in FIG. It is a flowchart which shows another example of the operation procedure of the air conditioner of Embodiment 1. It is a functional block diagram which shows one configuration example of the control device in the air conditioner of Embodiment 2. It is a flowchart which shows an example of the operation procedure of the air conditioner of Embodiment 2.
  • FIG. 1 is a refrigerant circuit diagram showing a configuration example of an air conditioner according to the first embodiment.
  • the air conditioner 10 has an outdoor unit 20 that generates a heat source and an indoor unit 30 that is installed on the side that uses the generated heat source.
  • the indoor unit 30 harmonizes the air in the air-conditioned space.
  • the outdoor unit 20 includes a compressor 21, a four-way valve 22, a heat source side heat exchanger 23, an expansion valve 24, and a blower 25.
  • the indoor unit 30 includes a heat exchanger 2, a blower 3, and a control device 50.
  • the compressor 21 compresses and discharges the refrigerant to be sucked.
  • the compressor 21 is, for example, an inverter type compressor whose capacity can be changed.
  • the four-way valve 22 changes the flow direction of the refrigerant flowing through the refrigerant circuit 40.
  • the expansion valve 24 decompresses and expands the refrigerant.
  • the expansion valve 24 is, for example, an electronic expansion valve.
  • FIG. 1 shows a case where the control device 50 is provided in the indoor unit 30, it may be provided in the outdoor unit 20.
  • FIG. 1 schematically shows the case where the blowers 3 and 25 are propeller fans, but these blowers are not limited to propeller fans.
  • FIG. 2 is an external perspective view showing an example of the indoor unit shown in FIG.
  • FIG. 3 is a front view of the indoor unit shown in FIG.
  • FIG. 4 is a diagram schematically showing a cross section of the indoor unit shown in FIG. 3 when cut at the AA portion.
  • the indoor unit 30 is installed in a room that is a space subject to air conditioning.
  • the indoor unit 30 has a housing 60 in which a heat exchanger 2, a blower 3, and a control device 50 are built.
  • a suction port 1 for sucking air from the room is provided in the upper part of the housing 60.
  • An outlet 6 for blowing air into the room is provided at the lower part of the housing 60.
  • An air passage 13 connecting the suction port 1 and the air outlet 6 is formed in the housing 60.
  • FIG. 4 shows a case where a part of the configuration inside the housing 60 is viewed from the side instead of the cross section.
  • the configuration example shown in FIG. 4 shows the case where the blower 3 is a cross-flow fan, but the blower 3 is not limited to the cross-flow fan.
  • the blower 3 may be any means as long as it can blow out the air sucked from the suction port 1 to the air outlet 6.
  • the blower 3 may be a propeller fan or a sirocco fan. The blower 3 sucks in the indoor air from the suction port 1, and blows out the conditioned air after the sucked air exchanges heat with the refrigerant in the heat exchanger 2 through the air outlet 6.
  • the heat exchanger 2 has a shape that surrounds the front surface and the upper surface of the blower 3.
  • the heat exchanger 2 is, for example, a fin tube type heat exchanger.
  • the heat exchanger 2 has a refrigerant pipe and a plurality of fins. Each of the plurality of fins is orthogonal to the refrigerant pipe. A plurality of fins are arranged in parallel at intervals.
  • the heat exchanger 2 generates conditioned air by exchanging heat with the refrigerant from the air taken into the housing 60 from the room by the blower 3.
  • the heat exchanger 2 functions as an evaporator when the air conditioner 10 performs a cooling operation, and cools the air in the room.
  • the heat exchanger 2 functions as a condenser when the air conditioner 10 performs a heating operation, and heats the air in the room.
  • the indoor unit 30 is provided with a first wind direction plate 4 and a second wind direction plate 5 for adjusting the wind direction of the air blown out from the air outlet 6.
  • the first wind direction plate 4 is installed in the middle of the air passage 13 from the blower 3 to the air outlet 6 or within a certain distance from the air outlet 6.
  • the first wind direction plate 4 adjusts the wind direction of the air blown out from the outlet 6 in the horizontal direction (the direction of the Y-axis arrow and the opposite direction).
  • the second wind direction plate 5 is installed within a certain distance from the air outlet 6.
  • the second wind direction plate 5 adjusts the wind direction of the air blown out from the outlet 6 in the vertical direction (the direction indicated by the Z-axis arrow and the opposite direction).
  • the second wind direction plate 5 has a front blade 5a arranged in the front and a rear blade 5b arranged in the rear, which are located at different positions in the front-rear direction (X-axis arrow direction and the opposite direction). And have.
  • FIG. 5 is an external schematic view showing a configuration example of the first wind direction plate shown in FIG.
  • the indoor unit 30 is provided with a first wind direction plate driving unit 34 that changes the angle of the first wind direction plate 4.
  • the first wind direction plate 4 has a plurality of blades 4a to 4d arranged at intervals along the horizontal direction (Y-axis arrow direction).
  • the blades 4a to 4d are connected to each other by a fixed shaft 71 and a movable shaft 72.
  • the blades 4a to 4d are connected to the first wind direction plate drive unit 34 via the movable shaft 72.
  • a groove that meshes with the gear is formed on the lower surface side of the movable shaft 72.
  • the first wind direction plate drive unit 34 has a disk 73 in contact with the movable shaft 72, a stepping motor 74, and a belt 75 connecting the rotating shaft of the stepping motor 74 and the disk 73.
  • a gear that meshes with the groove of the movable shaft 72 is formed on the surface of the disk 73 that comes into contact with the movable shaft 72.
  • the stepping motor 74 is connected to the control device 50 via a signal line (not shown). When the rotation shaft of the stepping motor 74 rotates, the rotation is transmitted to the disk 73 via the belt 75.
  • the movable shaft 72 moves in the horizontal direction. As the movable shaft 72 moves in the horizontal direction, the angles of the blades 4a to 4c with respect to the direction of the X-axis arrow change.
  • FIG. 6 is a schematic view showing that the horizontal direction of the airflow is changed by changing the angle of the first wind direction plate shown in FIG.
  • FIG. 6 shows the blades 4a to 4d seen through when the indoor unit 30 is viewed from above.
  • the front direction (X-axis arrow direction) of the indoor unit 30 is defined as the horizontal reference Hax
  • the angles of the blades 4a to 4d of the first wind direction plate 4 are defined as ⁇ h.
  • the direction of the airflow ad1 at the angle ⁇ h2 is indicated by a solid arrow
  • the direction of the airflow ad2 at an angle ⁇ h1 is indicated by a broken line arrow.
  • the sign of the angle ⁇ h1 is positive, and the sign of the angle ⁇ h2 is negative.
  • FIG. 7 is an external schematic view showing a configuration example of the second wind direction plate shown in FIG.
  • the indoor unit 30 is provided with a second wind direction plate driving unit 35 that changes the angle of the second wind direction plate 5.
  • a rotating shaft 81a parallel to the Y-axis direction is attached to the front blade 5a
  • a rotating shaft 81b parallel to the Y-axis direction is attached to the rear blade 5b.
  • the rotating shafts 81a and 81b are connected to the second wind direction plate driving unit 35.
  • the second wind direction plate drive unit 35 includes a disk 82a connected to the rotating shaft 81a, a disk 82b connected to the rotating shaft 81b, a stepping motor 83, a rotating shaft of the stepping motor 83, and the disks 82a and 82b.
  • the stepping motor 83 is connected to the control device 50 via a signal line (not shown).
  • the rotation shaft of the stepping motor 83 rotates, the rotation is transmitted to the disks 82a and 82b via the belt 84.
  • the tip side of the front blade 5a opposite to the rotating shaft 81a moves in the vertical direction (Z-axis arrow direction).
  • the tip side of the rear blade 5b opposite to the rotating shaft 81b moves in the vertical direction.
  • the angle of the front blade 5a with respect to the direction of the X-axis arrow changes.
  • the angle of the rear blade 5b in the direction of the X-axis arrow changes.
  • FIG. 8 is a schematic view showing that the vertical direction of the airflow is changed by changing the angle of the second wind direction plate shown in FIG.
  • the front blade 5a is shown in an enlarged manner, and the rear blade 5b is omitted.
  • the downward direction of the indoor unit 30 (the direction opposite to the Z-axis arrow) is defined as the vertical reference VAX, and the angles of the front blades 5a and the rear blades 5b shown in FIG. 7 are ⁇ h.
  • the direction of the airflow ad3 at the angle ⁇ v1 is indicated by a solid arrow
  • the direction of the airflow ad4 at an angle ⁇ v2 is indicated by a broken line arrow.
  • FIG. 5 shows a case where the number of blades 4a to 4d of the first wind direction plate 4 is 4, but the number of blades is not limited to 4.
  • the number of the first wind direction plates 4 may be one, or may be a plurality of plates other than four.
  • the position of the first wind direction plate 4 and the number and position of the second wind direction plates 5 are not limited to the cases shown in FIGS. 2 to 4.
  • the number of the second wind direction plates 5 is not limited to two, and may be one or three or more.
  • the first wind direction plate 4 and the second wind direction plate 5 are intended to adjust the direction in which air is blown out from the air outlet 6, and the number and position of these can be freely determined by design.
  • the mechanism for changing the angle of the first wind direction plate 4 is not limited to the case of the configuration described with reference to FIGS. 5 and 6.
  • a link mechanism may be used as a mechanism for converting the rotational operation of the stepping motor 74 into a change in the angle of the first wind direction plate 4.
  • the mechanism for changing the angle of the second wind direction plate 5 is not limited to the configuration described with reference to FIGS. 7 and 8.
  • a link mechanism may be used as a mechanism for converting the rotational operation of the stepping motor 83 into a change in the angle of the second wind direction plate 5.
  • the means for transmitting the rotation of the stepping motor 83 to the rotating shafts 81a and 81b is not limited to the belt 84, but may be a gear.
  • the indoor unit 30 is provided with a non-contact temperature sensor 7 that detects the temperature distribution in the indoor space.
  • the non-contact temperature sensor 7 is, for example, a thermopile type infrared sensor.
  • the non-contact temperature sensor 7 may be a bolometer type infrared sensor.
  • the non-contact temperature sensor 7 is not limited to an infrared sensor, and may be any sensor that can measure the temperature distribution on the floor surface.
  • the temperature distribution detected by the non-contact temperature sensor 7 is used to determine the degree of arrival of the air flow, which is the flow of air blown from the indoor unit 30, on the floor surface.
  • the human body may be detected from the temperature distribution detected by the non-contact temperature sensor 7.
  • FIG. 9 is a diagram showing an example of the vertical range of the temperature distribution detected by the non-contact temperature sensor shown in FIG. Similar to FIG. 8, the angle with respect to the vertical reference Vax is ⁇ v.
  • FIG. 10 is a diagram showing an example of the horizontal range of the temperature distribution detected by the non-contact temperature sensor shown in FIG. Similar to FIG. 6, the angle with respect to the horizontal reference Hax is set to ⁇ h.
  • the non-contact temperature sensor 7 has a certain range of an angle ⁇ v in the vertical direction and a horizontal direction with respect to the direction of the wall facing the indoor unit 30 (X-axis arrow direction). The temperature distribution in the room is measured within a certain range of the angle ⁇ h.
  • each of the compressor 21, the four-way valve 22, the expansion valve 24, and the blower 25 is connected to the control device 50 via a signal line. Further, although not shown in FIGS. 1 to 5, each of the blower 3, the first wind direction plate drive unit 34, the second wind direction plate drive unit 35, and the non-contact temperature sensor 7 via the control device 50 and the signal line. Be connected.
  • the connection between each of these devices and sensors and the control device 50 is not limited to wired, and may be wireless.
  • FIG. 11 is a functional block diagram showing a configuration example of the control device shown in FIG.
  • the control device 50 is, for example, a microcomputer. As shown in FIG. 1, the control device 50 has a memory 51 for storing a program and a CPU (Central Processing Unit) 52 for executing processing according to the program.
  • the memory 51 is, for example, a flash memory and a non-volatile memory such as an EEPROM (Electrically Erasable Programmable Read Only Memory).
  • the control device 50 includes the refrigeration cycle control means 101, the sensor output analysis means 102, the target point temperature acquisition means 103, the reachability determination means 104, the air volume setting means 105, and the blower control means. It has 106 and.
  • the refrigerating cycle control means 101 When the CPU 52 executes the program stored in the memory 51, the refrigerating cycle control means 101, the sensor output analysis means 102, the target point temperature acquisition means 103, the reachability determination means 104, the air volume setting means 105, and the blower control means 106 are configured. Will be done.
  • the sensor output analysis means 102 receives the detected value from the non-contact temperature sensor 7 and analyzes the received detected value.
  • FIG. 12 is an image diagram showing an example of a case where the sensor output analysis means shown in FIG. 11 displays the temperature distribution detected by the non-contact temperature sensor on a two-dimensional image. For illustration purposes, the boundaries between each of the walls, floors and ceilings and the other parts are shown by broken lines in FIG. In reality, since the thermal conductivity of each material of the wall, floor, and ceiling is different, the sensor output analysis means 102 detects each boundary by image-analyzing the detected value of the non-contact temperature sensor 7.
  • the image Img1 shown in FIG. 12 is a case of heating operation, and indicates that the higher the density of the dot pattern, the higher the temperature. This is because warm air tends to stay closer to the ceiling than the floor FL. Since the temperature of the floor FL is low, the dot pattern is not displayed. Of the floor surface FL, the temperature of the floor surface portion fsp to which warm air is blown from the indoor unit 30 is higher than the temperature of the other portion of the floor surface FL. In the case of heating operation, the airflow reaching the floor FL diffuses in a shape similar to an ellipse. From this, the sensor output analysis means 102 performs image analysis processing on the image Img1 shown in FIG.
  • the image processing technique is, for example, the Hough transform.
  • FIG. 13 is an image diagram showing another example in which the sensor output analysis means shown in FIG. 11 displays the temperature distribution detected by the non-contact temperature sensor on a two-dimensional image.
  • the sensor output analysis means 102 performs an image analysis process on the image Img2 shown in FIG. 13 to extract the human body bsp from the difference between the surface temperature of the human body bsp and the temperature of the floor surface FL.
  • FIG. 14 is an image diagram showing an example in which the sensor output analysis means shown in FIG. 11 divides the temperature distribution of the floor surface detected by the non-contact type sensor into a plurality of sections.
  • the floor surface is divided into a plurality of parts in the direction of the X-axis arrow, and the floor surface is also divided into a plurality of parts in the direction of the Y-axis arrow.
  • the case where the floor surface is divided into 18 or more sections is shown.
  • the area of one compartment is, for example, 1 to 3 m 2 .
  • the section AR23 having a dot pattern circle is defined.
  • the coordinates are (2,3).
  • the sensor output analysis means 102 associates the floor surface temperature detected by the non-contact temperature sensor 7 with the coordinates for each of the plurality of compartments.
  • the area directly below the indoor unit 30 is an area where the non-contact temperature sensor 7 cannot detect the temperature.
  • the sensor output analysis means 102 associates the floor surface temperature detected by the non-contact temperature sensor 7 with the coordinates for each of the plurality of sections shown in FIG.
  • the sensor output analysis means 102 may store the analysis result in the memory 51.
  • the positions of the floor surface portion fsp and the human body bsp detected by the sensor output analysis means 102 are determined by the refrigeration cycle control means 101, the target point temperature acquisition means 103, and the air volume. It is commonly recognized among the setting means 105.
  • the refrigeration cycle control means 101 controls the four-way valve 22 according to the operation mode of the air conditioner 10.
  • the refrigeration cycle control means 101 controls the operating frequency of the compressor 21, the opening degree of the expansion valve 24, and the rotation speed R of the blower 25 based on the detected value received from the sensor output analysis means 102 and the set temperature.
  • the refrigeration cycle control means 101 has the operating frequency of the compressor 21, the opening degree of the expansion valve 24, and the blower so that the room temperature estimated from the detection value received from the sensor output analysis means 102 approaches the set temperature.
  • the rotation speed R of 25 is controlled.
  • the set temperature is set by the user in the control device 50 via a remote controller (not shown). Further, when the air volume is input to the control device 50 by the user via a remote controller (not shown), the refrigeration cycle control means 101 may instruct the input air volume to the air volume setting means 105.
  • the refrigeration cycle control means 101 determines a target point for reaching the airflow blown out from the outlet 6.
  • the direction of the target point as seen from the indoor unit 30 is specified by, for example, the angle ⁇ h described with reference to FIG. 6 and the angle ⁇ v described with reference to FIG. 8 with reference to the non-contact temperature sensor 7.
  • the target point is not limited to an arbitrary point on the floor surface, and may be an area having a certain area as in each section shown in FIG.
  • the refrigeration cycle control means 101 controls the first wind direction plate drive unit 34 to adjust the angle of the first wind direction plate 4 so that the direction of the airflow blown out from the air outlet 6 faces the target point, and the second wind direction.
  • the plate drive unit 35 is controlled to adjust the angle of the second wind direction plate 5.
  • the refrigeration cycle control means 101 notifies the target point temperature acquisition means 103 of the information of the target point. Further, the refrigerating cycle control means 101 instructs the air volume setting means 105 of the determined reference rotation speed Rs as the initial value of the air volume of the blower 3 at the start of the operation of the air conditioner 10.
  • the reference rotation speed Rs is stored in the memory 51 shown in FIG.
  • the reference rotation speed Rs is, for example, the rotation speed at which the air flow physically reaches the center of the floor surface in a space having a floor area where the air conditioner 10 can harmonize the air by design.
  • the target point is, for example, a section where a person is present among the plurality of sections shown in FIG.
  • the target point When a person with a low sensible temperature is in the room during the heating operation of the air conditioner 10, if the section where the person with a low sensible temperature is located is set as the target point, the person who felt cold can feel warm quickly. Because it becomes.
  • the target point may be a section in which no person is present among the plurality of sections shown in FIG. If there is a person who has a high sensible temperature during the heating operation of the air conditioner 10, the person who feels warm will feel hot by setting the section where there is no person as the target point. You can prevent that.
  • the selection criteria of the target point may be described in the program executed by the CPU 52 shown in FIG. 1, or may be set by the user via a remote controller (not shown in the figure).
  • the target point temperature acquisition means 103 acquires the temperature of the floor surface of the target point at which the airflow blown out from the air outlet 6 reaches from the analysis result of the sensor output analysis means 102.
  • the target point temperature acquisition means 103 acquires the temperature of a certain region around the target point on the floor surface from the analysis result of the sensor output analysis means 102.
  • the fixed area around the target point is, for example, one of the plurality of sections shown in FIG.
  • the target point temperature acquisition means 103 compares the temperature of the floor surface in one section at regular intervals, and the floor in a place where the temperature difference between the temperature of the previous cycle and the temperature of the current cycle is equal to or more than a constant value.
  • the average value of the surface temperature may be calculated, and the calculated average value may be used as the floor surface temperature at the target point.
  • the reach determination means 104 calculates the reach of the airflow to the target point based on the floor surface temperature analyzed by the sensor output analysis means 102, and determines whether or not the airflow has reached the target point from the reach. ..
  • the determination of the degree of achievement may be a relative evaluation or an absolute evaluation. A specific example in the case of relative evaluation will be described.
  • the reachability determining means 104 determines whether or not the temperature difference ⁇ Tf is larger than the threshold value Tth after a certain period of time from the start of blowing out the airflow. When the temperature difference ⁇ Tf is equal to or less than the threshold value Tth, the reachability determining means 104 determines that the airflow has not reached the target point. On the other hand, when the temperature difference ⁇ Tf is larger than the threshold value Tth, the reachability determining means 104 determines that the airflow has reached the target point.
  • the threshold value Tth is stored in the memory 51 shown in FIG.
  • the achievement determination means 104 determines whether or not the floor surface temperature Tf of the section at the target point is larger than the design value Tg determined with respect to the temperature of the entire floor surface. Determine if it has been reached.
  • the temperature of the entire floor surface is, for example, the average value Tave of the floor surface temperature of the plurality of sections shown in FIG.
  • the degree of achievement is represented by the temperature difference ⁇ Tbs between the floor surface temperature Tf and the average value Tave.
  • the reachability determining means 104 determines whether or not the temperature difference ⁇ Tbs is larger than the design value Tg after a certain period of time from the start of blowing out the airflow.
  • the reachability determining means 104 determines that the airflow has not reached the target point.
  • the design value Tg is stored in the memory 51.
  • the degree of achievement is not limited to the temperature difference ⁇ Tf and the temperature difference ⁇ Tbs, and may be calculated by another method as long as it is a value indicating the degree of arrival of the airflow with reference to the floor surface temperature.
  • the degree of achievement may be a value (Tf / Tg) obtained by dividing the floor surface temperature Tf at the target point by the design value Tg.
  • the air volume setting means 105 sets the rotation speed of the blower 3 based on the determination result by the reachability determination means 104. For example, when the airflow has not reached the target point as a result of the determination by the reachability determining means 104, the airflow setting means 105 sets the rotation speed R to a value larger than the current set value by a constant value ⁇ R. The air volume setting means 105 notifies the blower control means 106 of the set rotation speed R. On the other hand, when the airflow has reached the target point as a result of the determination by the arrival degree determining means 104, the air volume setting means 105 maintains the rotation speed R at the current set value.
  • the air volume setting means 105 may change the rotation speed R stepwise according to the degree of arrival.
  • the reference rotation speed Rs is, for example, the rotation speed at which the air flow physically reaches the center of the floor surface in a space having a floor area where the air conditioner 10 can harmonize the air by design.
  • the air volume setting means 105 may notify the blower control means 106 of the instructed rotation speed R when the instruction of the rotation speed R is input from the refrigeration cycle control means 101. Furthermore, the airflow may not physically reach the target point due to furniture installed indoors. Therefore, in order to prevent the air volume of the blower 3 from being unnecessarily increased, an upper limit value Rmax may be set for the rotation speed R of the blower 3.
  • the blower control means 106 drives the blower 3 at the rotation speed R set by the air volume setting means 105.
  • the configuration of the blower drive unit including the motor for driving the blower 3 is omitted from the figure, and the description of the control of the blower drive unit is omitted.
  • FIG. 15 is a flowchart showing an example of the operation procedure of the air conditioner according to the first embodiment.
  • FIG. 16 is a schematic diagram for explaining the procedure shown in FIG.
  • the case where the air conditioner 10 performs the heating operation and the reachability determining means 104 determines the reachability of the airflow by absolute evaluation will be described.
  • the target point temperature acquisition means 103 acquires the floor surface temperature Tf of the target point at which the airflow blown out from the air outlet 6 reaches from the analysis result of the sensor output analysis means 102 (step S101).
  • the reachability determining means 104 calculates the temperature difference ⁇ Tbs between the floor surface temperature Tf and the average value Tave of the floor surface temperature. Then, the achievement determination means 104 determines whether or not the temperature difference ⁇ Tbs is larger than the design value Tg (step S102). When the temperature difference ⁇ Tbs is larger than the design value Tg, the reachability determining means 104 determines that the airflow has reached the target point, and ends the process.
  • the reachability determining means 104 determines that the airflow has not reached the target point.
  • the dashed arrow shown in FIG. 16 schematically shows the airflow that has not reached the target point.
  • FIG. 16 shows that the airflow indicated by the broken line arrow has not reached the target point indicated by the dot pattern.
  • the height at which the indoor unit 30 is installed is higher than the height planned in the design.
  • an indoor unit of an air conditioner for home use may be installed in a room with a high ceiling such as a distribution warehouse.
  • Another possible cause is that there is a cold air pool near the floor.
  • the air volume setting means 105 increases the rotation speed R of the blower 3 by a constant value ⁇ R from the reference rotation speed Rs when the airflow does not reach the target point as a result of the determination of the arrival degree determination means 104 in step S102.
  • Step S103 The blower control means 106 drives the blower 3 at the rotation speed R set by the air volume setting means 105 in step S103.
  • the achievement determination means 104 determines whether or not the temperature difference ⁇ Tbs is larger than the design value Tg. As a result of the determination in step S102, if the temperature difference ⁇ Tbs is equal to or less than the design value Tg, the process of step S103 is executed again.
  • the amount of airflow blown out from the indoor unit 30 increases corresponding to the rotation speed R of the blower 3 until the airflow reaches the target point.
  • the airflow reaches the target point indicated by the dot pattern.
  • the air volume setting means 105 increases the rotation speed R of the blower 3 when the airflow reach is equal to or less than the design value, and the airflow reach is greater than the design value.
  • the air volume setting means 105 may perform a process of reducing the rotation speed R of the blower 3. Specifically, the air volume setting means 105 may reduce the rotation speed R of the blower 3 until the value of the difference between the temperature difference ⁇ Tbs and the design value Tg becomes smaller than the determined threshold value Thvi.
  • FIG. 15 shows that the air volume setting means 105 repeats the process of step S103 until the reach of the air flow becomes larger than the design value, but in reality, the air flow is affected by obstacles such as furniture. Reachability may not be greater than the design value. Therefore, even if an upper limit is set for the number of processes in step S103, the air volume setting means 105 counts the number of processes in step S103, and when the count reaches the upper limit, the process of increasing the rotation speed R is stopped. Good. Further, when the upper limit value is set for the number of processes in step S103, when the user stops the operation of the air conditioner 10 and then restarts the air conditioner 10, the air volume setting means 105 restarts the operation. The previously recorded count may be reset. In this case, the air volume setting means 105 counts the number of processes in step S103 from zero. This is because it is conceivable that the user moves the furniture after stopping the operation of the air conditioner 10.
  • FIG. 17 is a flowchart showing another example of the operation procedure of the air conditioner according to the first embodiment.
  • the case where the air conditioner 10 performs the heating operation and the reachability determining means 104 determines the reachability of the airflow by absolute evaluation will be described. It is assumed that the threshold value Thvi of the difference between the temperature difference ⁇ Tbs and the design value Tg is stored in the memory 51. Further, since each of steps S111 and S112 is the same processing as each of steps S101 and S102 described with reference to FIG. 15, detailed description thereof will be omitted here.
  • step S112 when the temperature difference ⁇ Tbs is equal to or less than the design value Tg, the reachability determining means 104 determines that the airflow has not reached the target point.
  • the air volume setting means 105 sets the rotation speed R of the blower 3 to the upper limit value Rmax when the airflow has not reached the target point as a result of the determination of the arrival degree determination means 104 in step S112 (step S113).
  • the blower control means 106 drives the blower 3 at the rotation speed R of the upper limit value Rmax set by the air volume setting means 105 in step S113.
  • the achievement determination means 104 determines whether or not the value of the difference between the temperature difference ⁇ Tbs and the design value Tg is larger than the threshold value Thvi (step S114).
  • the air volume setting means 105 sets the rotation speed R of the blower 3 by a constant value ⁇ R from the current set value. Decrease (step S115).
  • the blower control means 106 drives the blower 3 at the rotation speed R set by the air volume setting means 105 in step S115.
  • the rotation speed R of the blower 3 decreases until the value of the difference between the temperature difference ⁇ Tbs and the design value Tg is larger than 0 and smaller than the threshold value Thvi. In this case, it is not necessary to rotate the blower 3 extra.
  • the angle ⁇ v the direction of the target point with reference to the non-contact temperature sensor 7 is specified by the angle ⁇ v and the angle ⁇ h has been described with reference to FIGS. 6 and 8, but the angle ⁇ v Instead of, the depression angle with respect to the horizontal plane at the position of the non-contact temperature sensor 7 may be used.
  • the air conditioner 10 of the first embodiment is non-contact with a housing 60 in which a suction port 1 and an air outlet 6 are formed and a blower 3 and a heat exchanger 2 are provided, and a temperature distribution in an indoor space is detected. It has a mold temperature sensor 7 and a control device 50 that controls the rotation speed of the blower 3.
  • the control device 50 includes a reachability determining means 104 and an air volume setting means 105.
  • the reachability determining means 104 determines whether or not the air blown out from the blower 3 has reached the target point from the temperature distribution information detected by the non-contact temperature sensor 7.
  • the air volume setting means 105 sets the rotation speed of the blower 3 so that the air blown out from the blower 3 reaches the target point.
  • the rotation speed R of the blower 3 is set so that the airflow reaches the target point. Therefore, it is possible to quickly create an environment in which the air blown out from the indoor unit 30 can reach the floor surface of the target point. As a result, the comfort of the indoor environment can be improved.
  • the degree of arrival of the airflow on the floor surface is determined, and the rotation speed of the blower 3 is corrected based on the degree of arrival.
  • the arrival degree of the airflow is determined and the arrival degree is determined.
  • the rotation speed of the blower 3 is corrected based on the above. Therefore, the airflow blown out from the indoor unit 30 reaches the target point.
  • the airflow blown out from the outlet 6 does not reach the floor surface, the user in the room cannot feel an appropriate temperature change. For example, during heating operation, the user may raise the set temperature in order to obtain comfort. In this case, the air conditioner wastes power.
  • the conditioned air blown out from the indoor unit 30 reaches the floor surface regardless of the indoor environment, and the comfort of the user in the room can be improved. .. Therefore, it is possible to prevent the user from feeling the temperature change before raising the set temperature and wasting power due to the change in the set temperature. As a result, energy consumption can be suppressed.
  • Embodiment 2 the information of the air volume obtained to reach the target point is recorded, and the recorded information can be used for the control of the next air conditioning.
  • the same reference numerals are given to the same configurations as those described in the first embodiment, and detailed description thereof will be omitted.
  • FIG. 18 is a functional block diagram showing a configuration example of a control device in the air conditioner according to the second embodiment.
  • the control device 50a of the second embodiment has an adjustment amount recording means 110 that stores an adjustment amount ⁇ Rm of the rotation speed R set in the blower 3 with respect to the reference rotation speed Rs corresponding to the target point.
  • the adjustment amount recording means 110 is, for example, the memory 51 shown in FIG.
  • the adjustment amount recording means 110 may store the adjustment amount ⁇ Rm of all the target points with each point on the floor surface as the target point, but the recording amount becomes enormous. Therefore, the floor surface may be divided into a plurality of areas in advance in a certain area, and the adjustment amount ⁇ Rm may be recorded in the adjustment amount recording means 110 for each of the plurality of areas. For example, the floor surface is divided into a plurality of areas having an area of 1 m 2 , and the adjustment amount ⁇ Rm is recorded in the adjustment amount recording means 110 for each of the plurality of areas. Further, the adjustment amount ⁇ Rm stored in the adjustment amount recording means 110 is not limited to a value indicating the difference in the rotation speed with respect to the reference rotation speed Rs.
  • the range of the rotation speed is classified into a plurality of ranks, and the adjustment amount for each of the plurality of areas may be recorded in the adjustment amount recording means 110 by the rank number.
  • the case where a certain area to be divided is the section shown in FIG. 14 will be described.
  • the air volume setting means 105 When the air volume setting means 105 receives the information of the target point from the arrival degree determination means 104, the air volume setting means 105 refers to the information stored in the adjustment amount recording means 110 and examines whether or not the adjustment amount ⁇ Rm corresponding to the target point is recorded. .. When the adjustment amount ⁇ Rm corresponding to the target point is recorded in the adjustment amount recording means 110, the air volume setting means 105 reads the information of the rotation speed Rm from the adjustment amount recording means 110, and uses the read adjustment amount ⁇ Rm as the reference rotation speed. The value added to Rs is set to the rotation speed R of the blower 3.
  • the air volume setting means 105 subtracts the reference rotation speed Rs from the rotation speed R to calculate the adjustment amount ⁇ Rm, and calculates the adjustment amount ⁇ Rm. It is recorded in the adjustment amount recording means 110 in association with the target point.
  • the adjustment amount recording means 110 may be a memory provided separately from the memory 51.
  • the adjustment amount recording means 110 may be a volatile memory such as a RAM (Random Access Memory) or a non-volatile memory such as an EEPROM.
  • FIG. 19 is a flowchart showing an example of the operation procedure of the air conditioner according to the second embodiment.
  • the case where the air conditioner 10 performs the heating operation and the reachability determining means 104 determines the reachability of the airflow by absolute evaluation will be described.
  • the adjustment amount ⁇ Rm of the target point is read out (steps S202 to S203 of FIG. 19) and the adjustment amount ⁇ Rm calculated from the set rotation speed R. (Step S206 in FIG. 19) and the process of recording the above are added. Since each of steps S201, S204, and S205 shown in FIG. 19 is the same process as each of steps S101 to S103 described with reference to FIG. 15, detailed description thereof will be omitted here.
  • step S201 when the target point temperature acquisition means 103 is notified of the target point information from the refrigeration cycle control means 101, the target point temperature acquisition means 103 acquires the floor surface temperature Tf from the analysis result of the sensor output analysis means 102.
  • the air volume setting means 105 receives the information of the target point from the arrival degree determination means 104, the air volume setting means 105 refers to the information stored in the adjustment amount recording means 110 and examines whether or not the adjustment amount ⁇ Rm corresponding to the target point is recorded. (Step S202).
  • the air volume setting means 105 may acquire information on the target point from the refrigeration cycle control means 101.
  • step S202 if the adjustment amount ⁇ Rm corresponding to the target point is not recorded in the adjustment amount recording means 110, the air volume setting means 105 proceeds to step S204 and waits for the determination result by the achievement degree determination means 104.
  • the air volume setting means 105 reads out the information of the rotation speed Rm from the adjustment amount recording means 110. Then, the air volume setting means 105 sets the value obtained by adding the read adjustment amount ⁇ Rm to the reference rotation speed Rs to the rotation speed R of the blower 3.
  • the blower control means 106 drives the blower 3 at the rotation speed R set by the air volume setting means 105.
  • the achievement determination means 104 determines whether or not the temperature difference ⁇ Tbs is larger than the design value Tg (step S204).
  • step S204 when the temperature difference ⁇ Tbs is larger than the design value Tg, the air volume setting means 105 records the adjustment amount ⁇ Rm in the adjustment amount recording means 110 in association with the target point (step S206). As a result, the adjustment amount ⁇ Rm of the unrecorded target point is recorded in the adjustment amount recording means 110. Therefore, next time, when the air conditioner 10 blows air toward the same target point, the rotation speed R of the blower 3 is adjusted so that the air flow can reach the target point by using the recorded adjustment amount ⁇ Rm. Can be set.
  • step S206 when the target point of the adjustment amount ⁇ Rm to be recorded is already recorded in the adjustment amount recording means 110, the air volume setting means 105 newly sets the adjustment amount ⁇ Rm stored in the adjustment amount recording means 110. It may be replaced with the calculated adjustment amount ⁇ Rm. In this case, the adjustment amount ⁇ Rm corresponding to the latest operating state of the air conditioner 10 is updated. Therefore, it is possible to make the airflow reach the target point with a more optimum air volume in response to changes in the indoor environment.
  • the air conditioner 10 of the second embodiment has an adjustment amount recording means 110 that stores an adjustment amount ⁇ Rm with respect to a reference rotation speed Rs of the blower 3 corresponding to each of a plurality of target points. Therefore, when the adjustment amount ⁇ Rm corresponding to the target point is recorded in the adjustment amount recording means 110, the air volume setting means 105 uses the recorded adjustment amount ⁇ Rm and the reference rotation speed Rs to set the rotation speed R of the blower 3. Can be set. By reflecting the adjustment amount ⁇ Rm recorded corresponding to the target point in the rotation speed R of the blower 3, the operation can be performed in a state where the airflow reaches a high degree at the initial stage.
  • the second embodiment it is possible to quickly create an air flow having a high degree of reach to the floor surface, so that it is possible to shorten the time until the indoor environment is made comfortable. Further, since the time until the air volume suitable for the indoor environment can be obtained can be shortened, the power consumption can be suppressed and the energy consumption can be suppressed.
  • Embodiment 3 when setting the air volume to reach the target point, the air volume is set in consideration of the buoyancy in the installation height of the indoor unit from the floor surface.
  • the same reference numerals are given to the same configurations as those described in the first embodiment, and detailed description thereof will be omitted.
  • FIG. 20 is a functional block diagram showing a configuration example of a control device in the air conditioner according to the third embodiment.
  • the indoor unit 30 shown in FIG. 2 is conditioned by detecting the room temperature sensor 12 for detecting the room temperature and the conditioned air temperature which is the temperature of the air after heat exchange with the refrigerant in the heat exchanger 2.
  • An air temperature sensor 11 is provided.
  • the conditioned air temperature sensor 11 is, for example, a temperature sensor installed at the outlet 6 and detecting the temperature of the air blown out from the outlet 6.
  • the harmonized air temperature sensor 11 may be a temperature sensor provided in contact with the heat exchanger 2 and detecting the temperature of the air immediately after the heat exchange with the refrigerant in the heat exchanger 2.
  • the room temperature sensor 12 is a temperature sensor that acquires the temperature of the room in which the indoor unit 30 is installed.
  • the room temperature sensor 12 is installed in, for example, the suction port 1.
  • the installation position of the room temperature sensor 12 is not limited to the suction port 1.
  • the position of the room temperature sensor 12 may be determined by a design factor as long as the room temperature sensor 12 can detect the room temperature.
  • the control device 50b is provided with the buoyancy calculation means 107 for calculating the buoyancy in the room and the housing 60 of the indoor unit 30 with reference to the floor surface. It has an estimation means 108 for estimating the height h.
  • the buoyancy calculation means 107 calculates the buoyancy based on the rotation speed R of the blower 3, the room temperature Tr, and the conditioned air temperature Tc. Even when the air volume determined by the rotation speed R of the blower 3 is the same, the higher the conditioned air temperature Tc and the lower the room temperature Tr, the greater the buoyancy. The smaller the temperature difference between the conditioned air temperature Tc and the room temperature Tr, the smaller the buoyancy. This will be described with reference to the schematic diagram shown in FIG. In FIG. 16, when the air volume generated by the blower 3 is the same, if the buoyancy is large, the airflow rises as shown by the broken line arrow, but if the buoyancy is small, the airflow is from the indoor unit 30 as shown by the solid line arrow. Keep the direction of the blowout and head toward the target point of the dot pattern. It can be seen that the greater the buoyancy, the more difficult it is for the airflow to reach the floor surface, and the smaller the effect on the floor surface temperature.
  • the estimation means 108 is based on the buoyancy calculated by the buoyancy calculation means 107, the rotation speed R of the blower 3, and the angle ⁇ v in the direction of the target point with respect to the non-contact temperature sensor 7.
  • the height h from the floor surface is estimated.
  • L be the linear distance from the indoor unit 30 until the airflow reaches the floor surface when the airflow is linearly blown out from the indoor unit 30 in the direction of the angle ⁇ v at the rotation speed R of the blower 3.
  • the linear distance L from the indoor unit 30 to the floor surface is L1.
  • the memory 51 shown in FIG. 1 stores a distance calculation formula for calculating a linear distance L from the angle ⁇ v1 and the rotation speed R of the blower 3. This distance calculation formula is obtained in advance by an experiment.
  • the estimation means 108 can calculate the linear distance L1 using the distance calculation formula and calculate the height h1 by calculating L1 ⁇ cos ⁇ v1.
  • the linear distance L1 can be calculated from the height h1 and the angle ⁇ v1.
  • the reachability determination means 104 has reached the target point. Is determined.
  • the blower 3 is set with the rotation speed R most suitable for the target point. Assuming that the rotation speed R is R1, the estimation means 108 calculates the linear distance L1 by substituting the rotation speed R1 of the blower 3 and the angle ⁇ v1 of the target point into the distance calculation formula, and calculates L1 ⁇ cos ⁇ v1 to obtain a high height. H1 is calculated.
  • the above-mentioned method of calculating the height h is a case where the airflow is linearly blown out from the indoor unit 30 in the direction of the angle ⁇ v1 and the airflow ideally reaches the floor surface.
  • the reach depth of the airflow differs depending on whether the airflow is affected by the buoyancy or not, even if the airflow is the same.
  • the reach depth means the distance vertically downward (in the direction opposite to the Z-axis arrow) with respect to the indoor unit 30 in FIG.
  • the depth of reach of the airflow becomes shallow. Therefore, when the airflow is affected by the buoyancy, the deviation between the height h calculated by the estimation means 108 and the actual height hr may become large.
  • FIG. 22 is a schematic diagram for explaining the influence of the buoyancy of the airflow blown out from the outlet of the indoor unit shown in FIG.
  • the airflow when not affected by buoyancy is indicated by a broken line arrow
  • the airflow when affected by buoyancy is indicated by a solid arrow.
  • FIG. 22 shows an air flow when the rotation speed R of the blower 3, the room temperature Tr, and the conditioned air temperature Tc are the same, and the angles ⁇ v are ⁇ v0, ⁇ v1, and ⁇ v2.
  • the reach depth of the airflow differs depending on the blowing angle with respect to the horizontal plane even if the buoyancy is the same. That is, the larger the angle ⁇ v, the shallower the reach of the airflow, and the smaller the influence on the floor surface temperature.
  • the estimation means 108 may multiply the rotation speed R of the distance calculation formula by a coefficient proportional to the buoyancy.
  • the coefficient is stored in the memory 51 shown in FIG. The coefficient is determined in advance by experiment.
  • the estimation means 108 calculates the straight line distance L by multiplying the rotation speed R of the distance calculation formula by the coefficient proportional to the buoyancy calculated by the buoyancy calculation means 107, and multiplies the calculated straight line distance L by cos ⁇ v to obtain a high value. Calculate h.
  • the estimation means 108 estimates the height h of the housing 60 from the floor surface based on the calculated buoyancy, the rotation speed R of the blower 3, and the angle ⁇ v of the target point.
  • the estimation means 108 records the estimated height h value in the memory 51.
  • the value for correcting the influence of the buoyancy on the straight line distance L is not limited to the coefficient, and may be a correction value added to the straight line distance L calculated from the distance calculation formula.
  • the air volume setting means 105 of the third embodiment sets the initial value of the rotation speed R of the blower 3 by using the height h estimated by the estimation means 108. Specifically, the air volume setting means 105 calculates the linear distance Lx by substituting the height h and the angle ⁇ v of the target point into the above rewriting formula. Subsequently, the air volume setting means 105 obtains the rotation speed R of the newly set target point by substituting the calculated linear distance Lx and the angle ⁇ v into the distance calculation formula and calculating back.
  • the optimum rotation speed R can be set before the blower 3 starts blowing air to the new target point.
  • the air volume setting means 105 can obtain an appropriate rotation speed R faster than finding the optimum rotation speed R stepwise according to the procedure shown in FIG. 15 after setting the reference rotation speed Rs as the initial value. ..
  • an environment in which the airflow can reach the floor surface can be created faster.
  • the air volume setting means 105 uses the estimated height h to rotate the blower 3.
  • the initial value of R may be obtained.
  • FIG. 23 is a flowchart showing an example of the operation procedure of the air conditioner according to the third embodiment.
  • the air conditioner 10 performs the heating operation and the reachability determining means 104 determines the reachability of the airflow by absolute evaluation. Since each of steps S302 to S304 shown in FIG. 23 is the same processing as each of steps S101 to S103 described with reference to FIG. 15, detailed description thereof will be omitted here.
  • the height h1 estimated by the estimation means 108 is stored in the memory 51 shown in FIG.
  • the threshold value hth which is a criterion for determining whether or not to update the height h used for calculating the rotation speed R, is stored in the memory 51.
  • the air volume setting means 105 receives the information of the newly set target point from the refrigeration cycle control means 101.
  • the angle ⁇ v of the newly set target point is set to ⁇ v2.
  • the change of the target point is, for example, when a person in the room moves.
  • the air volume setting means 105 sets the rotation speed R of the blower 3 based on the height h1 read from the memory 51 and the angle ⁇ v2 of the target point (step S301).
  • the blower control means 106 drives the blower 3 at the rotation speed R set by the air volume setting means 105.
  • the target point temperature acquisition means 103 acquires the floor surface temperature Tf of the target point from the analysis result of the sensor output analysis means 102 (step S302).
  • the achievement determination means 104 determines whether or not the temperature difference ⁇ Tbs is larger than the design value Tg (step S303).
  • the reachability determining means 104 determines that the airflow has reached the target point.
  • the estimation means 108 calculates the height h2 of the housing 60 of the indoor unit 30 from the floor surface based on the set rotation speed R, the buoyancy calculated by the buoyancy calculation means 107, and the angle ⁇ v2 of the target point. To do.
  • the estimation means 108 determines whether or not the absolute value of the difference between the already stored height h1 and the newly calculated height h2 is larger than the threshold value hth (step S305).
  • ⁇ hth the estimation means 108 maintains the height h stored in the memory 51 at h1.
  • the result of the determination in step S305 is
  • FIG. 24 is an image diagram showing that the height value stored in the memory shown in FIG. 1 is replaced. This is because the calculated height h2 has changed more than the recorded height h1, and it is considered that the air conditioning environment such as buoyancy has changed. In this way, the height h stored in the memory 51 is updated to an appropriate value according to the indoor environment.
  • the initial value h0 of the height h may be stored in the memory 51.
  • the initial value h0 may be registered in the memory 51 in the manufacturing process of the air conditioner 10, or may be registered in the memory 51 when the air conditioner 10 is installed by the supplier who installs the air conditioner 10. Good. Further, the initial value h0 may be registered in the memory 51 by a user who operates a remote controller (not shown in the figure). After the air conditioner 10 starts operation, the procedure shown in FIG. 23 is performed one or more times, so that the optimum height considering the influence of buoyancy corresponding to the indoor environment in which the air conditioner 10 is installed is taken into consideration. It will be updated to h.
  • the air conditioner 10 of the third embodiment includes a room temperature sensor 12 that detects the room temperature and a conditioned air temperature sensor 11 that detects the conditioned air temperature which is the temperature of the conditioned air after heat exchange with the refrigerant.
  • the control device 50b has a buoyancy calculation means 107 and an estimation means 108.
  • the buoyancy calculation means 107 calculates the buoyancy based on the rotation speed R of the blower 3, the room temperature, and the conditioned air temperature.
  • the estimation means 108 estimates the height h of the housing 60 from the floor surface based on the buoyancy calculated by the buoyancy calculation means 107, the rotation speed R of the blower 3, and the angle ⁇ v of the target point.
  • the air volume setting means 105 obtains the rotation speed R of the blower 3 corresponding to the angle ⁇ v of the new target point with reference to the height h estimated by the estimation means 108.
  • the estimated height h is updated in accordance with the indoor environment. Therefore, when the airflow reaches the newly set target point, the height h suitable for the indoor environment is set. Based on this, the rotation speed R of the blower 3 is set to the initial value. Therefore, the situation where the airflow reaches the floor surface of the target point can be realized more quickly. Further, in the third embodiment, since the height h used for setting the air volume is calculated in consideration of the influence of the buoyancy due to the room temperature and the conditioned air temperature, the air volume is adjusted in consideration of the buoyancy, and the target point is adjusted. Improves the reachability of airflow to the floor.
  • the degree of arrival due to the influence of buoyancy can be corrected, and an environment in which the airflow blown from the indoor unit 30 can reach the floor surface of the target point can be created more quickly.
  • Embodiment 4 Although the buoyancy calculated based on the room temperature Tr and the conditioned air temperature Tc is taken into consideration in the third embodiment, the fourth embodiment is caused by the temperature difference between the ceiling surface temperature and the floor surface temperature in the room. The buoyancy is taken into consideration.
  • the same reference numerals are given to the same configurations as those described in the first and third embodiments, and detailed description thereof will be omitted.
  • FIG. 25 is a functional block diagram showing a configuration example of a control device in the air conditioner of the fourth embodiment.
  • the non-contact temperature sensor 7 also measures the temperature distribution on the ceiling surface.
  • the case where the non-contact type temperature sensor 7 detects the temperature distribution from the floor surface to a certain height in the wall facing the indoor unit 30 has been described with reference to FIGS. 12 and 13.
  • the non-contact temperature sensor 7 may detect the temperature distribution of the ceiling surface as well as the floor surface and the wall separated by the broken line in FIGS. 12 and 13.
  • the buoyancy calculation means 107 of the control device 50c reads out the ceiling surface temperature and the floor surface temperature in the room from the analysis result of the sensor output analysis means 102, and calculates the temperature difference ⁇ Tud between the ceiling surface temperature and the floor surface temperature. Then, the buoyancy calculation means 107 calculates the buoyancy based on the calculated temperature difference ⁇ Tud, the rotation speed R of the blower 3, and the conditioned air temperature Tc.
  • the airflow blown out from the indoor unit 30 receives not only air resistance but also buoyancy from a layer of air having a low temperature near the floor surface, and the degree of reaching the floor surface is lowered.
  • the temperature difference ⁇ Tud is small, the temperature near the ceiling surface and the temperature near the floor surface do not differ significantly. Therefore, the airflow blown out from the indoor unit 30 receives air resistance from a place close to the ceiling toward the floor surface, but does not receive resistance from the low temperature layer, so that the degree of reaching the floor surface is high.
  • the buoyancy calculation means 107 calculates the buoyancy in addition to the resistance to the airflow caused by the temperature difference ⁇ Tud with respect to the buoyancy of the rotation speed R of the blower 3 and the conditioned air temperature Tc described in the third embodiment.
  • the temperature near the ceiling surface and the temperature near the floor surface may be used.
  • a room temperature sensor that detects room temperature may be provided in the suction port 1.
  • the temperature detected by the room temperature sensor can be set to the temperature near the ceiling surface.
  • the operation of the air conditioner 10 of the fourth embodiment is the same as the operation procedure of the third embodiment described with reference to FIG. 23 except for the buoyancy calculation process by the buoyancy calculation means 107. The explanation is omitted.
  • the air conditioner 10 of the fourth embodiment has a conditioned air temperature sensor 11 that detects the conditioned air temperature, which is the temperature of the conditioned air after heat exchange with the refrigerant.
  • the control device 50c has a buoyancy calculating means 107 and an estimating means 108.
  • the buoyancy calculation means 107 has a buoyancy based on the temperature difference ⁇ Tud between the ceiling surface temperature and the floor surface temperature of the indoor space detected by the non-contact temperature sensor 7, the rotation speed R of the blower 3, and the harmonized air temperature. Is calculated.
  • the estimation means 108 estimates the height h of the housing 60 from the floor surface based on the buoyancy calculated by the buoyancy calculation means 107, the rotation speed R of the blower 3, and the angle ⁇ v of the target point.
  • the air volume setting means 105 obtains the rotation speed R of the blower 3 corresponding to the angle ⁇ v of the new target point with reference to the height h estimated by the estimation means 108.
  • the height h in which the indoor unit 30 is installed is estimated in consideration of the buoyancy caused by the temperature difference in the vertical direction of the indoor space, so that the same effect as that of the third embodiment is obtained. Is obtained.
  • the indoor unit 30 may not be installed according to the design value. .. Therefore, even if the design value is registered in the control device as the height h in advance, the air volume set based on the design value may not be suitable for the actual residence.
  • the indoor environment in which the indoor unit 30 is installed also differs from house to house. Even in such a case, in the fourth embodiment, as in the third embodiment, the indoor unit 30 can be formed by estimating the height h from the floor surface to the indoor unit 30 corresponding to the buoyancy. The air volume can be corrected according to the installed environment.
  • the first to fourth embodiments the case where the air conditioner 10 performs the heating operation has been described, but the first to fourth embodiments may be applied to the cooling operation. Further, two or more embodiments may be combined from the first to fourth embodiments.
  • Wind direction plate drive unit 35 second wind direction plate drive unit, 40 refrigerant circuit, 41 refrigerant piping, 50, 50a to 50c control device, 51 memory, 52 CPU, 60 housing, 71 fixed shaft, 72 movable shaft, 73 disk , 74 stepping motor, 75 belt, 81a, 81b rotating shaft, 82a, 82b disk, 83 stepping motor, 84 belt, 101 refrigeration cycle control means, 102 sensor output analysis means, 103 target point temperature acquisition means, 104 reachability determination Means, 105 air volume setting means, 106 blower control means, 107 buoyancy calculation means, 108 estimation means, 110 adjustment amount recording means.

Abstract

Provided is an air conditioner comprising: a housing having a suction port and a blowing port formed thereon; a blower that is provided in the housing and sucks the air in a room from the suction port and blows out the air from the blowing port; a heat exchanger that is provided in the housing and performs heat exchange between the air sucked from the suction port and a refrigerant; a contactless temperature sensor that detects temperature distribution of spaces in the room; and a control device that controls the number of rotations of the blower. The control device comprises: an achievement degree determination means that determines, on the basis of information of the temperature distribution detected by the contactless temperature sensor, whether or not the air blew out from the blower achieves a target point; and an air volume setting means that sets the number of rotations of the blower so that the air blew out from the blower achieves the target point.

Description

空気調和機Air conditioner
 本発明は、空調対象空間に空気を吹き出す送風機を有し、送風機を制御する空気調和機に関する。 The present invention relates to an air conditioner that has a blower that blows air into an air-conditioned space and controls the blower.
 従来の空気調和機の一例として、赤外線センサを用いて、人体の方向を検知し、人体の位置に対応して風向を変更する空気調和機が提案されている(例えば、特許文献1参照)。特許文献1の空気調和機は、赤外線センサによって検知された人体の位置に対応して、上下風向および左右風向を制御することで、人体に風を送る。 As an example of a conventional air conditioner, an air conditioner that detects the direction of the human body by using an infrared sensor and changes the wind direction according to the position of the human body has been proposed (see, for example, Patent Document 1). The air conditioner of Patent Document 1 sends wind to the human body by controlling the vertical wind direction and the horizontal wind direction according to the position of the human body detected by the infrared sensor.
特許第5218512号公報Japanese Patent No. 5218512
 しかし、特許文献1に開示された空気調和機は、人体の方向を検出し、その方向に基づいて上下風向板および左右風向板の角度を変更し、室内機の吹出口から風を吹き出しているが、人が居る位置に風が届くとは限らない。例えば、空気調和機の室内機の据え付け高さが設計値よりも高い場合、吹出口から床面までの距離が遠くなってしまう。この場合、風が床面まで到達せず、人の位置まで風が届かないことがあり、室内環境の快適性が損なわれる。 However, the air conditioner disclosed in Patent Document 1 detects the direction of the human body, changes the angles of the vertical wind direction plate and the left and right wind direction plates based on the direction, and blows out the wind from the air outlet of the indoor unit. However, the wind does not always reach the place where people are. For example, if the installation height of the indoor unit of the air conditioner is higher than the design value, the distance from the air outlet to the floor surface becomes long. In this case, the wind may not reach the floor surface and may not reach the position of a person, which impairs the comfort of the indoor environment.
 本発明は、上記のような課題を解決するためになされたもので、室内環境の快適性を向上させた空気調和機を提供するものである。 The present invention has been made to solve the above problems, and provides an air conditioner with improved comfort in the indoor environment.
 本発明に係る空気調和機は、吸込口および吹出口が形成された筐体と、前記筐体内に設けられ、室内の空気を前記吸込口から吸い込んで前記吹出口から吹き出す送風機と、前記筐体内に設けられ、前記吸込口から吸い込まれた前記空気と冷媒とを熱交換させる熱交換器と、前記室内の空間の温度分布を検出する非接触型温度センサと、前記送風機の回転数を制御する制御装置と、を有し、前記制御装置は、前記非接触型温度センサによって検出される前記温度分布の情報から目標地点に前記送風機から吹き出された空気が到達しているか否かを判定する到達度判定手段と、前記送風機から吹き出された空気が目標地点に到達するように前記送風機の回転数を設定する風量設定手段と、を有するものである。 The air conditioner according to the present invention includes a housing in which a suction port and an air outlet are formed, a blower provided in the housing, which sucks indoor air from the suction port and blows it out from the air outlet, and the inside of the housing. A heat exchanger that exchanges heat between the air sucked from the suction port and the refrigerant, a non-contact temperature sensor that detects the temperature distribution of the space in the room, and the rotation speed of the blower are controlled. It has a control device, and the control device determines whether or not the air blown from the blower has reached the target point from the information of the temperature distribution detected by the non-contact type temperature sensor. It has a degree determining means and an air volume setting means for setting the rotation speed of the blower so that the air blown from the blower reaches a target point.
 本発明によれば、目標地点に送風機から吹き出された空気が到達しているか否かが判定され、目標地点まで気流が届くように送風機の回転数が設定される。そのため、室内環境の快適性を向上させることができる。 According to the present invention, it is determined whether or not the air blown from the blower has reached the target point, and the rotation speed of the blower is set so that the airflow reaches the target point. Therefore, the comfort of the indoor environment can be improved.
実施の形態1に係る空気調和機の一構成例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows one configuration example of the air conditioner which concerns on Embodiment 1. FIG. 図1に示した室内機の一例を示す外観斜視図である。It is an external perspective view which shows an example of the indoor unit shown in FIG. 図2に示した室内機の正面図である。It is a front view of the indoor unit shown in FIG. 図3に示した室内機をAA部で切ったときの断面を模式的に示す図である。It is a figure which shows typically the cross section when the indoor unit shown in FIG. 3 is cut by the AA part. 図4に示した第1風向板の一構成例を示す外観模式図である。It is an external schematic view which shows one structural example of the 1st wind direction plate shown in FIG. 図5に示した第1風向板の角度を変えることで気流の水平方向を変えることを示す模式図である。It is a schematic diagram which shows that the horizontal direction of an airflow is changed by changing the angle of the 1st wind direction plate shown in FIG. 図4に示した第2風向板の一構成例を示す外観模式図である。It is an external schematic view which shows one structural example of the 2nd wind direction plate shown in FIG. 図7に示した第2風向板の角度を変えることで気流の垂直方向を変えることを示す模式図である。It is a schematic diagram which shows that the vertical direction of an airflow is changed by changing the angle of the 2nd wind direction plate shown in FIG. 7. 図2に示した非接触型温度センサが検出する温度分布の垂直方向の範囲の一例を示す図である。It is a figure which shows an example of the vertical range of the temperature distribution detected by the non-contact type temperature sensor shown in FIG. 図2に示した非接触型温度センサが検出する温度分布の水平方向の範囲の一例を示す図である。It is a figure which shows an example of the horizontal range of the temperature distribution detected by the non-contact type temperature sensor shown in FIG. 図1に示した制御装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the control device shown in FIG. 図11に示したセンサ出力解析手段が非接触型温度センサによって検出された温度分布を2次元画像に表示した場合の一例を示すイメージ図である。It is an image diagram which shows an example of the case where the sensor output analysis means shown in FIG. 11 displays the temperature distribution detected by the non-contact type temperature sensor on a two-dimensional image. 図11に示したセンサ出力解析手段が非接触型温度センサによって検出された温度分布を2次元画像に表示した場合の別の例を示すイメージ図である。FIG. 5 is an image diagram showing another example in which the sensor output analysis means shown in FIG. 11 displays the temperature distribution detected by the non-contact temperature sensor on a two-dimensional image. 図11に示したセンサ出力解析手段が非接触型センサによって検出された床面の温度分布を複数の区画に分割する場合の一例を示すイメージ図である。It is an image diagram which shows an example of the case where the sensor output analysis means shown in FIG. 11 divides the temperature distribution of the floor surface detected by the non-contact type sensor into a plurality of sections. 実施の形態1の空気調和機の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the air conditioner of Embodiment 1. 図15に示す手順を説明するための模式図である。It is a schematic diagram for demonstrating the procedure shown in FIG. 実施の形態1の空気調和機の動作手順の別の例を示すフローチャートである。It is a flowchart which shows another example of the operation procedure of the air conditioner of Embodiment 1. 実施の形態2の空気調和機における制御装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the control device in the air conditioner of Embodiment 2. 実施の形態2の空気調和機の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the air conditioner of Embodiment 2. 実施の形態3の空気調和機における制御装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the control device in the air conditioner of Embodiment 3. 図2に示した非接触型温度センサを基準とした垂直基準からの角度を用いて室内機が設置された高さを算出する方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of calculating the height at which the indoor unit is installed using the angle from the vertical reference with respect to the non-contact type temperature sensor shown in FIG. 図2に示した室内機の吹出口から吹き出される気流の浮力による影響を説明するための模式図である。It is a schematic diagram for demonstrating the influence by the buoyancy of the airflow blown out from the outlet of the indoor unit shown in FIG. 実施の形態3の空気調和機の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the air conditioner of Embodiment 3. 図1に示したメモリに記憶される高さの値が置き換えられることを示すイメージ図である。It is an image diagram which shows that the value of the height stored in the memory shown in FIG. 1 is replaced. 実施の形態4の空気調和機における制御装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the control device in the air conditioner of Embodiment 4.
実施の形態1.
 本実施の形態1の空気調和機の構成を説明する。図1は、実施の形態1に係る空気調和機の一構成例を示す冷媒回路図である。図1に示すように、空気調和機10は、熱源を生成する室外機20と、生成される熱源を利用する側に設置される室内機30とを有する。室内機30は、空調対象空間の空気を調和する。
Embodiment 1.
The configuration of the air conditioner according to the first embodiment will be described. FIG. 1 is a refrigerant circuit diagram showing a configuration example of an air conditioner according to the first embodiment. As shown in FIG. 1, the air conditioner 10 has an outdoor unit 20 that generates a heat source and an indoor unit 30 that is installed on the side that uses the generated heat source. The indoor unit 30 harmonizes the air in the air-conditioned space.
 室外機20は、圧縮機21、四方弁22、熱源側熱交換器23、膨張弁24および送風機25を有する。室内機30は、熱交換器2、送風機3および制御装置50を有する。圧縮機21は、吸入する冷媒を圧縮して吐出する。圧縮機21は、例えば、容量を変更することができるインバータ式圧縮機である。四方弁22は、冷媒回路40を流通する冷媒の流通方向を変更する。膨張弁24は、冷媒を減圧して膨張させる。膨張弁24は、例えば、電子膨張弁である。圧縮機21、熱源側熱交換器23、膨張弁24および熱交換器2が冷媒配管41で接続され、冷媒が循環する冷媒回路40が構成される。図1では、制御装置50が室内機30に設けられている場合を示しているが、室外機20に設けられていてもよい。図1は、送風機3および25を模式的にプロペラファンの場合を示しているが、これらの送風機はプロペラファンに限らない。 The outdoor unit 20 includes a compressor 21, a four-way valve 22, a heat source side heat exchanger 23, an expansion valve 24, and a blower 25. The indoor unit 30 includes a heat exchanger 2, a blower 3, and a control device 50. The compressor 21 compresses and discharges the refrigerant to be sucked. The compressor 21 is, for example, an inverter type compressor whose capacity can be changed. The four-way valve 22 changes the flow direction of the refrigerant flowing through the refrigerant circuit 40. The expansion valve 24 decompresses and expands the refrigerant. The expansion valve 24 is, for example, an electronic expansion valve. The compressor 21, the heat source side heat exchanger 23, the expansion valve 24, and the heat exchanger 2 are connected by a refrigerant pipe 41 to form a refrigerant circuit 40 in which the refrigerant circulates. Although FIG. 1 shows a case where the control device 50 is provided in the indoor unit 30, it may be provided in the outdoor unit 20. FIG. 1 schematically shows the case where the blowers 3 and 25 are propeller fans, but these blowers are not limited to propeller fans.
 図2は、図1に示した室内機の一例を示す外観斜視図である。図3は、図2に示した室内機の正面図である。図4は、図3に示した室内機をAA部で切ったときの断面を模式的に示す図である。室内機30は、空調対象空間となる室内に設置されている。室内機30は、熱交換器2、送風機3および制御装置50が内蔵される筐体60を有する。筐体60の上部には、室内から空気を吸い込む吸込口1が設けられている。筐体60の下部には、室内に空気を吹き出す吹出口6が設けられている。筐体60内には、吸込口1と吹出口6とをつなぐ風路13が形成される。図4では、説明のために、筐体60内の構成の一部について、断面の代わりに、側面から見た場合を示している。 FIG. 2 is an external perspective view showing an example of the indoor unit shown in FIG. FIG. 3 is a front view of the indoor unit shown in FIG. FIG. 4 is a diagram schematically showing a cross section of the indoor unit shown in FIG. 3 when cut at the AA portion. The indoor unit 30 is installed in a room that is a space subject to air conditioning. The indoor unit 30 has a housing 60 in which a heat exchanger 2, a blower 3, and a control device 50 are built. A suction port 1 for sucking air from the room is provided in the upper part of the housing 60. An outlet 6 for blowing air into the room is provided at the lower part of the housing 60. An air passage 13 connecting the suction port 1 and the air outlet 6 is formed in the housing 60. For the sake of explanation, FIG. 4 shows a case where a part of the configuration inside the housing 60 is viewed from the side instead of the cross section.
 図4に示す構成例は、送風機3がクロスフローファンの場合を示しているが、送風機3はクロスフローファンに限らない。送風機3は、吸込口1から吸い込んだ空気を吹出口6へ吹き出すことができる手段であればよい。送風機3は、プロペラファンであってもよく、シロッコファンであってもよい。送風機3は、吸込口1から室内の空気を吸い込み、吸い込まれた空気が熱交換器2において冷媒と熱交換を行った後の調和空気を、吹出口6を介して室内に吹き出す。 The configuration example shown in FIG. 4 shows the case where the blower 3 is a cross-flow fan, but the blower 3 is not limited to the cross-flow fan. The blower 3 may be any means as long as it can blow out the air sucked from the suction port 1 to the air outlet 6. The blower 3 may be a propeller fan or a sirocco fan. The blower 3 sucks in the indoor air from the suction port 1, and blows out the conditioned air after the sucked air exchanges heat with the refrigerant in the heat exchanger 2 through the air outlet 6.
 図4に示すように、熱交換器2は、送風機3の前面および上面を囲むような形状を有する。熱交換器2は、例えば、フィンチューブ式熱交換器である。熱交換器2は、冷媒配管と、複数枚のフィンとを有する。複数枚のフィンのそれぞれは冷媒配管に直交している。複数枚のフィンは間隔を空けて並列に配置されている。熱交換器2は、送風機3によって室内から筐体60内に取り込まれた空気を冷媒と熱交換させて調和空気を生成する。熱交換器2は、空気調和機10が冷房運転を行う場合、蒸発器として機能し、室内の空気を冷却する。熱交換器2は、空気調和機10が暖房運転を行う場合、凝縮器として機能し、室内の空気を加熱する。 As shown in FIG. 4, the heat exchanger 2 has a shape that surrounds the front surface and the upper surface of the blower 3. The heat exchanger 2 is, for example, a fin tube type heat exchanger. The heat exchanger 2 has a refrigerant pipe and a plurality of fins. Each of the plurality of fins is orthogonal to the refrigerant pipe. A plurality of fins are arranged in parallel at intervals. The heat exchanger 2 generates conditioned air by exchanging heat with the refrigerant from the air taken into the housing 60 from the room by the blower 3. The heat exchanger 2 functions as an evaporator when the air conditioner 10 performs a cooling operation, and cools the air in the room. The heat exchanger 2 functions as a condenser when the air conditioner 10 performs a heating operation, and heats the air in the room.
 図2~図4に示すように、室内機30には、吹出口6から吹き出される空気の風向を調整する第1風向板4および第2風向板5が設けられている。第1風向板4は、風路13のうち、送風機3から吹出口6に至る風路の途中、または吹出口6から一定の距離の範囲に設置されている。第1風向板4は、吹出口6から吹き出される空気の風向を水平方向(Y軸矢印方向とその反対方向)に調整する。第2風向板5は、吹出口6から一定の距離の範囲に設置されている。第2風向板5は、吹出口6から吹き出される空気の風向を垂直方向(Z軸矢印方向とその反対方向)に調整する。図4に示す構成例では、第2風向板5は、前後方向(X軸矢印方向とその反対方向)の位置が異なる、前方に配置された前方羽根5aと、後方に配置された後方羽根5bとを有する。 As shown in FIGS. 2 to 4, the indoor unit 30 is provided with a first wind direction plate 4 and a second wind direction plate 5 for adjusting the wind direction of the air blown out from the air outlet 6. The first wind direction plate 4 is installed in the middle of the air passage 13 from the blower 3 to the air outlet 6 or within a certain distance from the air outlet 6. The first wind direction plate 4 adjusts the wind direction of the air blown out from the outlet 6 in the horizontal direction (the direction of the Y-axis arrow and the opposite direction). The second wind direction plate 5 is installed within a certain distance from the air outlet 6. The second wind direction plate 5 adjusts the wind direction of the air blown out from the outlet 6 in the vertical direction (the direction indicated by the Z-axis arrow and the opposite direction). In the configuration example shown in FIG. 4, the second wind direction plate 5 has a front blade 5a arranged in the front and a rear blade 5b arranged in the rear, which are located at different positions in the front-rear direction (X-axis arrow direction and the opposite direction). And have.
 図5は、図4に示した第1風向板の一構成例を示す外観模式図である。室内機30には、第1風向板4の角度を変更する第1風向板駆動部34が設けられている。図5に示すように、第1風向板4は、水平方向(Y軸矢印方向)に沿って間隔を空けて配置された複数の羽根4a~4dを有する。羽根4a~4dは固定軸71および可動軸72で互いに接続されている。羽根4a~4dは可動軸72を介して第1風向板駆動部34と接続されている。可動軸72の下面側には歯車と噛み合う溝が形成されている。 FIG. 5 is an external schematic view showing a configuration example of the first wind direction plate shown in FIG. The indoor unit 30 is provided with a first wind direction plate driving unit 34 that changes the angle of the first wind direction plate 4. As shown in FIG. 5, the first wind direction plate 4 has a plurality of blades 4a to 4d arranged at intervals along the horizontal direction (Y-axis arrow direction). The blades 4a to 4d are connected to each other by a fixed shaft 71 and a movable shaft 72. The blades 4a to 4d are connected to the first wind direction plate drive unit 34 via the movable shaft 72. A groove that meshes with the gear is formed on the lower surface side of the movable shaft 72.
 第1風向板駆動部34は、可動軸72と接する円板73と、ステッピングモータ74と、ステッピングモータ74の回転軸と円板73とを接続するベルト75とを有する。円板73の可動軸72と接触する面には、可動軸72の溝と噛み合う歯車が形成されている。ステッピングモータ74は図に示さない信号線を介して制御装置50と接続されている。ステッピングモータ74の回転軸が回転すると、その回転がベルト75を介して円板73に伝達する。円板73が回転すると、可動軸72が水平方向に移動する。可動軸72が水平方向に移動することで、X軸矢印方向に対する羽根4a~4cの方向の角度が変わる。 The first wind direction plate drive unit 34 has a disk 73 in contact with the movable shaft 72, a stepping motor 74, and a belt 75 connecting the rotating shaft of the stepping motor 74 and the disk 73. A gear that meshes with the groove of the movable shaft 72 is formed on the surface of the disk 73 that comes into contact with the movable shaft 72. The stepping motor 74 is connected to the control device 50 via a signal line (not shown). When the rotation shaft of the stepping motor 74 rotates, the rotation is transmitted to the disk 73 via the belt 75. When the disk 73 rotates, the movable shaft 72 moves in the horizontal direction. As the movable shaft 72 moves in the horizontal direction, the angles of the blades 4a to 4c with respect to the direction of the X-axis arrow change.
 図6は、図5に示した第1風向板の角度を変えることで気流の水平方向を変えることを示す模式図である。図6は、説明のために、室内機30を上から見下ろしたとき、透視した羽根4a~4dを示している。室内機30の正面方向(X軸矢印方向)を水平基準Haxとして、第1風向板4の羽根4a~4dの角度をθhとする。図6では、角度θh2のときの気流ad1の方向を実線の矢印で示し、角度θh1のときの気流ad2の方向を破線の矢印で示している。角度θh1の符号をプラスとし、角度θh2の符号をマイナスとする。 FIG. 6 is a schematic view showing that the horizontal direction of the airflow is changed by changing the angle of the first wind direction plate shown in FIG. For the sake of explanation, FIG. 6 shows the blades 4a to 4d seen through when the indoor unit 30 is viewed from above. The front direction (X-axis arrow direction) of the indoor unit 30 is defined as the horizontal reference Hax, and the angles of the blades 4a to 4d of the first wind direction plate 4 are defined as θh. In FIG. 6, the direction of the airflow ad1 at the angle θh2 is indicated by a solid arrow, and the direction of the airflow ad2 at an angle θh1 is indicated by a broken line arrow. The sign of the angle θh1 is positive, and the sign of the angle θh2 is negative.
 図7は、図4に示した第2風向板の一構成例を示す外観模式図である。室内機30には、第2風向板5の角度を変更する第2風向板駆動部35が設けられている。図6に示すように、Y軸方向に平行な回転軸81aが前方羽根5aに取り付けられ、Y軸方向に平行な回転軸81bが後方羽根5bに取り付けられている。回転軸81aおよび81bは第2風向板駆動部35と接続されている。 FIG. 7 is an external schematic view showing a configuration example of the second wind direction plate shown in FIG. The indoor unit 30 is provided with a second wind direction plate driving unit 35 that changes the angle of the second wind direction plate 5. As shown in FIG. 6, a rotating shaft 81a parallel to the Y-axis direction is attached to the front blade 5a, and a rotating shaft 81b parallel to the Y-axis direction is attached to the rear blade 5b. The rotating shafts 81a and 81b are connected to the second wind direction plate driving unit 35.
 第2風向板駆動部35は、回転軸81aと接続された円板82aと、回転軸81bと接続された円板82bと、ステッピングモータ83と、ステッピングモータ83の回転軸と円板82aおよび82bとを接続するベルト84とを有する。ステッピングモータ83は図に示さない信号線を介して制御装置50と接続されている。ステッピングモータ83の回転軸が回転すると、その回転がベルト84を介して円板82aおよび82bに伝達する。回転軸81aが回転すると、前方羽根5aの回転軸81aとは反対の先端側が垂直方向(Z軸矢印方向)に移動する。回転軸81bが回転すると、後方羽根5bの回転軸81bとは反対の先端側が垂直方向に移動する。前方羽根5aの先端側が垂直方向に移動することで、X軸矢印方向に対する前方羽根5aの方向の角度が変わる。後方羽根5bの先端側が垂直方向に移動することで、X軸矢印方向に対する後方羽根5bの方向の角度が変わる。 The second wind direction plate drive unit 35 includes a disk 82a connected to the rotating shaft 81a, a disk 82b connected to the rotating shaft 81b, a stepping motor 83, a rotating shaft of the stepping motor 83, and the disks 82a and 82b. Has a belt 84 to connect with. The stepping motor 83 is connected to the control device 50 via a signal line (not shown). When the rotation shaft of the stepping motor 83 rotates, the rotation is transmitted to the disks 82a and 82b via the belt 84. When the rotating shaft 81a rotates, the tip side of the front blade 5a opposite to the rotating shaft 81a moves in the vertical direction (Z-axis arrow direction). When the rotating shaft 81b rotates, the tip side of the rear blade 5b opposite to the rotating shaft 81b moves in the vertical direction. By moving the tip side of the front blade 5a in the vertical direction, the angle of the front blade 5a with respect to the direction of the X-axis arrow changes. By moving the tip side of the rear blade 5b in the vertical direction, the angle of the rear blade 5b in the direction of the X-axis arrow changes.
 図8は、図7に示した第2風向板の角度を変えることで気流の垂直方向を変えることを示す模式図である。図8は、説明のために、図7に示した第2風向板5のうち、前方羽根5aを拡大して示し、後方羽根5bを示すことを省略している。室内機30の下方向(Z軸矢印の反対方向)を垂直基準Vaxとして、図7に示した前方羽根5aおよび後方羽根5bの角度をθhとする。図8では、角度θv1のときの気流ad3の方向を実線の矢印で示し、角度θv2のときの気流ad4の方向を破線の矢印で示している。 FIG. 8 is a schematic view showing that the vertical direction of the airflow is changed by changing the angle of the second wind direction plate shown in FIG. In FIG. 8, for the sake of explanation, of the second wind direction plate 5 shown in FIG. 7, the front blade 5a is shown in an enlarged manner, and the rear blade 5b is omitted. The downward direction of the indoor unit 30 (the direction opposite to the Z-axis arrow) is defined as the vertical reference VAX, and the angles of the front blades 5a and the rear blades 5b shown in FIG. 7 are θh. In FIG. 8, the direction of the airflow ad3 at the angle θv1 is indicated by a solid arrow, and the direction of the airflow ad4 at an angle θv2 is indicated by a broken line arrow.
 なお、図5は、第1風向板4の羽根4a~4dの枚数が4枚の場合を示しているが、羽根の枚数は4枚に限らない。第1風向板4の枚数が1枚であってもよく、4枚以外の複数であってもよい。第1風向板4の位置および第2風向板5の枚数および位置は、図2~図4に示す場合に限定されない。第2風向板5の枚数は2枚に限らず、1枚であってもよく、3枚以上であってもよい。第1風向板4および第2風向板5は、吹出口6から空気が吹き出される方向を調整することを目的としており、これらの枚数および位置は、設計によって自由に定めることができる。さらに、第1風向板4の角度を変更する機構は図5および図6を参照して説明した構成の場合に限らない。ステッピングモータ74の回転動作を第1風向板4の角度の変更に変換する機構に、例えば、リンク機構を用いてもよい。第2風向板5の角度を変更する機構についても図7および図8を参照して説明した構成に限らない。ステッピングモータ83の回転動作を第2風向板5の角度の変更に変換する機構に、例えば、リンク機構を用いてもよい。ステッピングモータ83の回転を回転軸81aおよび81bに伝達する手段は、ベルト84に限らず、ギヤであってもよい。 Note that FIG. 5 shows a case where the number of blades 4a to 4d of the first wind direction plate 4 is 4, but the number of blades is not limited to 4. The number of the first wind direction plates 4 may be one, or may be a plurality of plates other than four. The position of the first wind direction plate 4 and the number and position of the second wind direction plates 5 are not limited to the cases shown in FIGS. 2 to 4. The number of the second wind direction plates 5 is not limited to two, and may be one or three or more. The first wind direction plate 4 and the second wind direction plate 5 are intended to adjust the direction in which air is blown out from the air outlet 6, and the number and position of these can be freely determined by design. Further, the mechanism for changing the angle of the first wind direction plate 4 is not limited to the case of the configuration described with reference to FIGS. 5 and 6. For example, a link mechanism may be used as a mechanism for converting the rotational operation of the stepping motor 74 into a change in the angle of the first wind direction plate 4. The mechanism for changing the angle of the second wind direction plate 5 is not limited to the configuration described with reference to FIGS. 7 and 8. For example, a link mechanism may be used as a mechanism for converting the rotational operation of the stepping motor 83 into a change in the angle of the second wind direction plate 5. The means for transmitting the rotation of the stepping motor 83 to the rotating shafts 81a and 81b is not limited to the belt 84, but may be a gear.
 図2に示すように、室内機30には、室内の空間の温度分布を検出する非接触型温度センサ7が設けられている。非接触型温度センサ7は、例えば、サーモパイル方式の赤外線センサである。非接触型温度センサ7は、ボロメータ方式の赤外線センサであってもよい。非接触型温度センサ7は、赤外線センサに限らず、床面の温度分布を測定できるセンサであればよい。非接触型温度センサ7が検出する温度分布は、室内機30から吹き出される空気の流れである気流の床面への到達度を判定するために利用される。後述するが、非接触型温度センサ7が検出する温度分布から人体を検出してもよい。 As shown in FIG. 2, the indoor unit 30 is provided with a non-contact temperature sensor 7 that detects the temperature distribution in the indoor space. The non-contact temperature sensor 7 is, for example, a thermopile type infrared sensor. The non-contact temperature sensor 7 may be a bolometer type infrared sensor. The non-contact temperature sensor 7 is not limited to an infrared sensor, and may be any sensor that can measure the temperature distribution on the floor surface. The temperature distribution detected by the non-contact temperature sensor 7 is used to determine the degree of arrival of the air flow, which is the flow of air blown from the indoor unit 30, on the floor surface. As will be described later, the human body may be detected from the temperature distribution detected by the non-contact temperature sensor 7.
 図9は、図2に示した非接触型温度センサが検出する温度分布の垂直方向の範囲の一例を示す図である。図8と同様に、垂直基準Vaxに対する角度をθvとする。図10は、図2に示した非接触型温度センサが検出する温度分布の水平方向の範囲の一例を示す図である。図6と同様に、水平基準Haxに対する角度をθhとする。非接触型温度センサ7は、図9および図10に示すように、室内機30が対向する壁の方向(X軸矢印方向)に対して、垂直方向の角度θvの一定の範囲と、水平方向の角度θhの一定の範囲とにおける室内の温度分布を測定する。 FIG. 9 is a diagram showing an example of the vertical range of the temperature distribution detected by the non-contact temperature sensor shown in FIG. Similar to FIG. 8, the angle with respect to the vertical reference Vax is θv. FIG. 10 is a diagram showing an example of the horizontal range of the temperature distribution detected by the non-contact temperature sensor shown in FIG. Similar to FIG. 6, the angle with respect to the horizontal reference Hax is set to θh. As shown in FIGS. 9 and 10, the non-contact temperature sensor 7 has a certain range of an angle θv in the vertical direction and a horizontal direction with respect to the direction of the wall facing the indoor unit 30 (X-axis arrow direction). The temperature distribution in the room is measured within a certain range of the angle θh.
 図1に示していないが、圧縮機21、四方弁22、膨張弁24および送風機25のそれぞれは制御装置50と信号線を介して接続される。また、図1~図5に示していないが、送風機3、第1風向板駆動部34、第2風向板駆動部35および非接触型温度センサ7のそれぞれは制御装置50と信号線を介して接続される。これらの機器およびセンサのそれぞれと制御装置50との接続は、有線に限らず、無線であってもよい。 Although not shown in FIG. 1, each of the compressor 21, the four-way valve 22, the expansion valve 24, and the blower 25 is connected to the control device 50 via a signal line. Further, although not shown in FIGS. 1 to 5, each of the blower 3, the first wind direction plate drive unit 34, the second wind direction plate drive unit 35, and the non-contact temperature sensor 7 via the control device 50 and the signal line. Be connected. The connection between each of these devices and sensors and the control device 50 is not limited to wired, and may be wireless.
 図11は、図1に示した制御装置の一構成例を示す機能ブロック図である。制御装置50は、例えば、マイクロコンピュータである。図1に示すように、制御装置50は、プログラムを記憶するメモリ51と、プログラムにしたがって処理を実行するCPU(Central Processing Unit)52とを有する。メモリ51は、例えば、フラッシュメモリおよびEEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性メモリである。図11に示すように、制御装置50は、冷凍サイクル制御手段101と、センサ出力解析手段102と、目標地点温度取得手段103と、到達度判定手段104と、風量設定手段105と、送風機制御手段106とを有する。メモリ51が記憶するプログラムをCPU52が実行することで、冷凍サイクル制御手段101、センサ出力解析手段102、目標地点温度取得手段103、到達度判定手段104、風量設定手段105および送風機制御手段106が構成される。 FIG. 11 is a functional block diagram showing a configuration example of the control device shown in FIG. The control device 50 is, for example, a microcomputer. As shown in FIG. 1, the control device 50 has a memory 51 for storing a program and a CPU (Central Processing Unit) 52 for executing processing according to the program. The memory 51 is, for example, a flash memory and a non-volatile memory such as an EEPROM (Electrically Erasable Programmable Read Only Memory). As shown in FIG. 11, the control device 50 includes the refrigeration cycle control means 101, the sensor output analysis means 102, the target point temperature acquisition means 103, the reachability determination means 104, the air volume setting means 105, and the blower control means. It has 106 and. When the CPU 52 executes the program stored in the memory 51, the refrigerating cycle control means 101, the sensor output analysis means 102, the target point temperature acquisition means 103, the reachability determination means 104, the air volume setting means 105, and the blower control means 106 are configured. Will be done.
 センサ出力解析手段102は、非接触型温度センサ7から検出値を受け取り、受け取った検出値を解析する。図12は、図11に示したセンサ出力解析手段が非接触型温度センサによって検出された温度分布を2次元画像に表示した場合の一例を示すイメージ図である。説明のために、図12において、壁、床および天井のそれぞれと他の部分との境を破線で示している。実際には、壁、床および天井の各材料の熱の伝導率が異なるため、センサ出力解析手段102は、非接触型温度センサ7の検出値を画像解析することで、各境を検出する。 The sensor output analysis means 102 receives the detected value from the non-contact temperature sensor 7 and analyzes the received detected value. FIG. 12 is an image diagram showing an example of a case where the sensor output analysis means shown in FIG. 11 displays the temperature distribution detected by the non-contact temperature sensor on a two-dimensional image. For illustration purposes, the boundaries between each of the walls, floors and ceilings and the other parts are shown by broken lines in FIG. In reality, since the thermal conductivity of each material of the wall, floor, and ceiling is different, the sensor output analysis means 102 detects each boundary by image-analyzing the detected value of the non-contact temperature sensor 7.
 図12に示す画像Img1は、暖房運転の場合であり、ドット模様の密度が高いほど温度が高いことを示している。暖かい空気は、床面FLよりも天井に近い側に滞留する傾向があるからである。床面FLは温度が低いため、ドット模様が表示されていない。床面FLのうち、室内機30から温風が吹き付けられている床面部分fspの温度は、床面FLの他の部分の温度よりも高くなっている。暖房運転の場合、床面FLに到達する気流は楕円に類似した形に拡散する。このことから、センサ出力解析手段102は、図12に示す画像Img1に画像解析処理を行って楕円形を抽出し、抽出した楕円形を気流の到達位置と判定する。気流の到達点は楕円形上の中心点としてよい。画像処理技術は、例えば、Hough変換である。 The image Img1 shown in FIG. 12 is a case of heating operation, and indicates that the higher the density of the dot pattern, the higher the temperature. This is because warm air tends to stay closer to the ceiling than the floor FL. Since the temperature of the floor FL is low, the dot pattern is not displayed. Of the floor surface FL, the temperature of the floor surface portion fsp to which warm air is blown from the indoor unit 30 is higher than the temperature of the other portion of the floor surface FL. In the case of heating operation, the airflow reaching the floor FL diffuses in a shape similar to an ellipse. From this, the sensor output analysis means 102 performs image analysis processing on the image Img1 shown in FIG. 12 to extract an ellipse, and determines that the extracted ellipse is the arrival position of the air flow. The arrival point of the airflow may be the center point on the ellipse. The image processing technique is, for example, the Hough transform.
 図13は、図11に示したセンサ出力解析手段が非接触型温度センサによって検出された温度分布を2次元画像に表示した場合の別の例を示すイメージ図である。図13において、ドット模様の密度が高い部分ほど温度が高いことを示すことは、図12と同様である。図13に示すように、センサ出力解析手段102は、図13に示す画像Img2に画像解析処理を行って、人体bspの表面温度と床面FLの温度との違いから人体bspを抽出する。 FIG. 13 is an image diagram showing another example in which the sensor output analysis means shown in FIG. 11 displays the temperature distribution detected by the non-contact temperature sensor on a two-dimensional image. In FIG. 13, it is the same as in FIG. 12 that the higher the density of the dot pattern, the higher the temperature. As shown in FIG. 13, the sensor output analysis means 102 performs an image analysis process on the image Img2 shown in FIG. 13 to extract the human body bsp from the difference between the surface temperature of the human body bsp and the temperature of the floor surface FL.
 図14は、図11に示したセンサ出力解析手段が非接触型センサによって検出された床面の温度分布を複数の区画に分割する場合の一例を示すイメージ図である。図14の破線に示すように、X軸矢印方向に床面が複数に分割され、Y軸矢印方向にも床面が複数に分割されている。図14に示す例では、床面が18個以上の区画に分割されている場合を示す。1つの区画の面積は、例えば、1~3mである。図14に示すAR11側の室内の角部を原点として、各区画の座標を、X軸方向の区画の番号とY軸方向の区画の番号とで定義すると、ドット模様の丸がある区画AR23の座標は(2,3)となる。センサ出力解析手段102は、複数の区画毎に、非接触型温度センサ7によって検出された床面温度を座標に対応づける。図14において、室内機30の直下の領域は非接触型温度センサ7が温度を検出できないエリアである。 FIG. 14 is an image diagram showing an example in which the sensor output analysis means shown in FIG. 11 divides the temperature distribution of the floor surface detected by the non-contact type sensor into a plurality of sections. As shown by the broken line in FIG. 14, the floor surface is divided into a plurality of parts in the direction of the X-axis arrow, and the floor surface is also divided into a plurality of parts in the direction of the Y-axis arrow. In the example shown in FIG. 14, the case where the floor surface is divided into 18 or more sections is shown. The area of one compartment is, for example, 1 to 3 m 2 . When the coordinates of each section are defined by the number of the section in the X-axis direction and the number of the section in the Y-axis direction with the corner of the room on the AR11 side shown in FIG. 14 as the origin, the section AR23 having a dot pattern circle is defined. The coordinates are (2,3). The sensor output analysis means 102 associates the floor surface temperature detected by the non-contact temperature sensor 7 with the coordinates for each of the plurality of compartments. In FIG. 14, the area directly below the indoor unit 30 is an area where the non-contact temperature sensor 7 cannot detect the temperature.
 センサ出力解析手段102は、図14に示した複数の区画毎に、非接触型温度センサ7によって検出された床面温度を座標に対応づける。センサ出力解析手段102は、解析結果をメモリ51に記憶させてもよい。床面を複数の区画に分割して座標を割り当てることで、センサ出力解析手段102によって検出される床面部分fspおよび人体bspの位置が、冷凍サイクル制御手段101、目標地点温度取得手段103および風量設定手段105の間で共通認識される。 The sensor output analysis means 102 associates the floor surface temperature detected by the non-contact temperature sensor 7 with the coordinates for each of the plurality of sections shown in FIG. The sensor output analysis means 102 may store the analysis result in the memory 51. By dividing the floor surface into a plurality of sections and assigning coordinates, the positions of the floor surface portion fsp and the human body bsp detected by the sensor output analysis means 102 are determined by the refrigeration cycle control means 101, the target point temperature acquisition means 103, and the air volume. It is commonly recognized among the setting means 105.
 冷凍サイクル制御手段101は、空気調和機10の運転モードに対応して四方弁22を制御する。冷凍サイクル制御手段101は、センサ出力解析手段102から受け取る検出値と設定温度とに基づいて、圧縮機21の運転周波数、膨張弁24の開度、および送風機25の回転数Rを制御する。具体的には、冷凍サイクル制御手段101は、センサ出力解析手段102から受け取る検出値から推定される室温が設定温度に近づくように、圧縮機21の運転周波数、膨張弁24の開度、および送風機25の回転数Rを制御する。設定温度は、図に示さないリモートコントローラを介して制御装置50にユーザによって設定される。また、図に示さないリモートコントローラを介して風量がユーザによって制御装置50に入力される場合、冷凍サイクル制御手段101は、入力された風量を風量設定手段105に指示してもよい。 The refrigeration cycle control means 101 controls the four-way valve 22 according to the operation mode of the air conditioner 10. The refrigeration cycle control means 101 controls the operating frequency of the compressor 21, the opening degree of the expansion valve 24, and the rotation speed R of the blower 25 based on the detected value received from the sensor output analysis means 102 and the set temperature. Specifically, the refrigeration cycle control means 101 has the operating frequency of the compressor 21, the opening degree of the expansion valve 24, and the blower so that the room temperature estimated from the detection value received from the sensor output analysis means 102 approaches the set temperature. The rotation speed R of 25 is controlled. The set temperature is set by the user in the control device 50 via a remote controller (not shown). Further, when the air volume is input to the control device 50 by the user via a remote controller (not shown), the refrigeration cycle control means 101 may instruct the input air volume to the air volume setting means 105.
 また、冷凍サイクル制御手段101は、センサ出力解析手段102から受け取る解析結果を受け取ると、吹出口6から吹き出される気流を到達させる目標地点を決める。室内機30から見た目標地点の方向は、例えば、非接触型温度センサ7を基準として、図6で説明した角度θhおよび図8で説明した角度θvで特定される。目標地点は、床面の任意の点の場合に限らず、図14に示す各区画のように、一定の面積を有する領域であってもよい。冷凍サイクル制御手段101は、吹出口6から吹き出される気流の方向が目標地点に向くように、第1風向板駆動部34を制御して第1風向板4の角度を調整し、第2風向板駆動部35を制御して第2風向板5の角度を調整する。冷凍サイクル制御手段101は、目標地点の情報を目標地点温度取得手段103に通知する。また、冷凍サイクル制御手段101は、空気調和機10の運転開始時に、送風機3の風量の初期値として、決められた基準回転数Rsを風量設定手段105に指示する。基準回転数Rsは図1に示したメモリ51に記憶されている。基準回転数Rsは、例えば、設計上、空気調和機10が空気調和できる床面積の空間において、床面の中央に物理的に気流が到達する回転数である。 Further, when the refrigeration cycle control means 101 receives the analysis result received from the sensor output analysis means 102, the refrigeration cycle control means 101 determines a target point for reaching the airflow blown out from the outlet 6. The direction of the target point as seen from the indoor unit 30 is specified by, for example, the angle θh described with reference to FIG. 6 and the angle θv described with reference to FIG. 8 with reference to the non-contact temperature sensor 7. The target point is not limited to an arbitrary point on the floor surface, and may be an area having a certain area as in each section shown in FIG. The refrigeration cycle control means 101 controls the first wind direction plate drive unit 34 to adjust the angle of the first wind direction plate 4 so that the direction of the airflow blown out from the air outlet 6 faces the target point, and the second wind direction. The plate drive unit 35 is controlled to adjust the angle of the second wind direction plate 5. The refrigeration cycle control means 101 notifies the target point temperature acquisition means 103 of the information of the target point. Further, the refrigerating cycle control means 101 instructs the air volume setting means 105 of the determined reference rotation speed Rs as the initial value of the air volume of the blower 3 at the start of the operation of the air conditioner 10. The reference rotation speed Rs is stored in the memory 51 shown in FIG. The reference rotation speed Rs is, for example, the rotation speed at which the air flow physically reaches the center of the floor surface in a space having a floor area where the air conditioner 10 can harmonize the air by design.
 目標地点は、例えば、図14に示した複数の区画のうち、人が居る区画である。空気調和機10の暖房運転中に、体感温度の低い人が室内に居る場合、体感温度の低い人が居る区画が目標地点に設定されると、寒いと感じていた人が早く暖かく感じられるようになるからである。また、目標地点は、図14に示した複数の区画のうち、人が居ない区画であってもよい。空気調和機10の暖房運転中に、体感温度の高くなっている人が居る場合、人が居ない区画が目標地点に設定されることで、暖かいと感じている人が暑いと感じるようになることを防ぐことができる。目標地点の選択基準は、図1に示したCPU52が実行するプログラムに記述されていてもよく、図に示さないリモートコントローラを介してユーザが設定してもよい。 The target point is, for example, a section where a person is present among the plurality of sections shown in FIG. When a person with a low sensible temperature is in the room during the heating operation of the air conditioner 10, if the section where the person with a low sensible temperature is located is set as the target point, the person who felt cold can feel warm quickly. Because it becomes. Further, the target point may be a section in which no person is present among the plurality of sections shown in FIG. If there is a person who has a high sensible temperature during the heating operation of the air conditioner 10, the person who feels warm will feel hot by setting the section where there is no person as the target point. You can prevent that. The selection criteria of the target point may be described in the program executed by the CPU 52 shown in FIG. 1, or may be set by the user via a remote controller (not shown in the figure).
 目標地点温度取得手段103は、吹出口6から吹き出される気流を到達させる目標地点の床面の温度をセンサ出力解析手段102の解析結果から取得する。目標地点温度取得手段103は、センサ出力解析手段102の解析結果から床面の目標地点周辺の一定領域の温度を取得する。目標地点周辺の一定領域は、例えば、図14に示した複数の区画のうち、1つの区画である。目標地点温度取得手段103は、1つの区画内で、一定の周期で床面の温度を比較し、前回の周期の温度と今回の周期の温度との温度差が一定値以上である場所の床面温度の平均値を算出し、算出した平均値を目標地点の床面温度としてもよい。 The target point temperature acquisition means 103 acquires the temperature of the floor surface of the target point at which the airflow blown out from the air outlet 6 reaches from the analysis result of the sensor output analysis means 102. The target point temperature acquisition means 103 acquires the temperature of a certain region around the target point on the floor surface from the analysis result of the sensor output analysis means 102. The fixed area around the target point is, for example, one of the plurality of sections shown in FIG. The target point temperature acquisition means 103 compares the temperature of the floor surface in one section at regular intervals, and the floor in a place where the temperature difference between the temperature of the previous cycle and the temperature of the current cycle is equal to or more than a constant value. The average value of the surface temperature may be calculated, and the calculated average value may be used as the floor surface temperature at the target point.
 到達度判定手段104は、センサ出力解析手段102によって解析された床面温度に基づいて気流の目標地点への到達度を算出し、到達度から気流が目標地点に到達したか否かを判定する。到達度の判定は、相対評価であってもよく、絶対評価であってもよい。相対評価の場合の具体例を説明する。空気調和機10が暖房運転を行う場合、到達度判定手段104は、目標地点の区画の床面温度Tfと目標地点以外の区画の床面温度Tfoとの温度差ΔTf(=Tf-Tfo)を、到達度として算出する。到達度判定手段104は、気流の吹き出し開始から一定時間後に、温度差ΔTfが閾値Tthより大きいか否かを判定する。温度差ΔTfが閾値Tth以下である場合、到達度判定手段104は、気流が目標地点に到達していないと判定する。一方、温度差ΔTfが閾値Tthより大きい場合、到達度判定手段104は、気流が目標地点に到達していると判定する。閾値Tthは図1に示したメモリ51に記憶されている。 The reach determination means 104 calculates the reach of the airflow to the target point based on the floor surface temperature analyzed by the sensor output analysis means 102, and determines whether or not the airflow has reached the target point from the reach. .. The determination of the degree of achievement may be a relative evaluation or an absolute evaluation. A specific example in the case of relative evaluation will be described. When the air conditioner 10 performs the heating operation, the achievement determination means 104 determines the temperature difference ΔTf (= Tf−Tfo) between the floor temperature Tf of the section at the target point and the floor temperature Tfo of the section other than the target point. , Calculated as the degree of achievement. The reachability determining means 104 determines whether or not the temperature difference ΔTf is larger than the threshold value Tth after a certain period of time from the start of blowing out the airflow. When the temperature difference ΔTf is equal to or less than the threshold value Tth, the reachability determining means 104 determines that the airflow has not reached the target point. On the other hand, when the temperature difference ΔTf is larger than the threshold value Tth, the reachability determining means 104 determines that the airflow has reached the target point. The threshold value Tth is stored in the memory 51 shown in FIG.
 絶対評価の場合の具体例を説明する。空気調和機10が暖房運転を行う場合、到達度判定手段104は、目標地点の区画の床面温度Tfが床面全体の温度に対して決められた設計値Tgより大きいか否かで気流が到達したか否かを判定する。床面全体の温度は、例えば、図14に示した複数の区画の床面温度の平均値Taveである。この場合、到達度は、床面温度Tfと平均値Taveとの温度差ΔTbsで表される。到達度判定手段104は、気流の吹き出し開始から一定時間後に、温度差ΔTbsが設計値Tgより大きいか否かを判定する。温度差ΔTbsが設計値Tg以下である場合、到達度判定手段104は、気流が目標地点に到達していないと判定する。一方、温度差ΔTbsが設計値Tgより大きい場合、到達度判定手段104は、気流が目標地点に到達していると判定する。設計値Tgはメモリ51に記憶されている。到達度は、温度差ΔTfおよび温度差ΔTbsに限らず、床面温度を基準として気流の到達度を示す値であれば、他の方法で算出されるものであってもよい。例えば、到達度は、目標地点の床面温度Tfを設計値Tgで除算した値(Tf/Tg)であってもよい。 Explain a specific example in the case of absolute evaluation. When the air conditioner 10 performs the heating operation, the achievement determination means 104 determines whether or not the floor surface temperature Tf of the section at the target point is larger than the design value Tg determined with respect to the temperature of the entire floor surface. Determine if it has been reached. The temperature of the entire floor surface is, for example, the average value Tave of the floor surface temperature of the plurality of sections shown in FIG. In this case, the degree of achievement is represented by the temperature difference ΔTbs between the floor surface temperature Tf and the average value Tave. The reachability determining means 104 determines whether or not the temperature difference ΔTbs is larger than the design value Tg after a certain period of time from the start of blowing out the airflow. When the temperature difference ΔTbs is equal to or less than the design value Tg, the reachability determining means 104 determines that the airflow has not reached the target point. On the other hand, when the temperature difference ΔTbs is larger than the design value Tg, the reachability determining means 104 determines that the airflow has reached the target point. The design value Tg is stored in the memory 51. The degree of achievement is not limited to the temperature difference ΔTf and the temperature difference ΔTbs, and may be calculated by another method as long as it is a value indicating the degree of arrival of the airflow with reference to the floor surface temperature. For example, the degree of achievement may be a value (Tf / Tg) obtained by dividing the floor surface temperature Tf at the target point by the design value Tg.
 風量設定手段105は、到達度判定手段104による判定結果に基づいて送風機3の回転数を設定する。例えば、到達度判定手段104による判定の結果、気流が目標地点に到達していない場合、風量設定手段105は、回転数Rを現在の設定値よりも一定値ΔRだけ大きくした値に設定する。風量設定手段105は、設定した回転数Rを送風機制御手段106に通知する。一方、到達度判定手段104による判定の結果、気流が目標地点に到達している場合、風量設定手段105は、回転数Rを現在の設定値に維持する。風量設定手段105は、回転数Rの設定値を変更する際、到達度に対応して、段階的に回転数Rを変化させてもよい。基準回転数Rsは、例えば、設計上、空気調和機10が空気調和できる床面積の空間において、床面の中央に物理的に気流が到達する回転数である。 The air volume setting means 105 sets the rotation speed of the blower 3 based on the determination result by the reachability determination means 104. For example, when the airflow has not reached the target point as a result of the determination by the reachability determining means 104, the airflow setting means 105 sets the rotation speed R to a value larger than the current set value by a constant value ΔR. The air volume setting means 105 notifies the blower control means 106 of the set rotation speed R. On the other hand, when the airflow has reached the target point as a result of the determination by the arrival degree determining means 104, the air volume setting means 105 maintains the rotation speed R at the current set value. When changing the set value of the rotation speed R, the air volume setting means 105 may change the rotation speed R stepwise according to the degree of arrival. The reference rotation speed Rs is, for example, the rotation speed at which the air flow physically reaches the center of the floor surface in a space having a floor area where the air conditioner 10 can harmonize the air by design.
 また、風量設定手段105は、冷凍サイクル制御手段101から回転数Rの指示が入力されると、指示された回転数Rを送風機制御手段106に通知してもよい。さらに、室内に設置された家具などによって気流が目標地点に物理的に届かない場合がある。そのため、送風機3の風量が無駄に上がってしまうことを防ぐために、送風機3の回転数Rに上限値Rmaxが設定されていてもよい。 Further, the air volume setting means 105 may notify the blower control means 106 of the instructed rotation speed R when the instruction of the rotation speed R is input from the refrigeration cycle control means 101. Furthermore, the airflow may not physically reach the target point due to furniture installed indoors. Therefore, in order to prevent the air volume of the blower 3 from being unnecessarily increased, an upper limit value Rmax may be set for the rotation speed R of the blower 3.
 送風機制御手段106は、風量設定手段105によって設定された回転数Rで送風機3を駆動させる。本実施の形態1では、送風機3の駆動をするモータを含む送風機駆動部の構成を図に示すことを省略し、送風機駆動部の制御に関する説明を省略する。 The blower control means 106 drives the blower 3 at the rotation speed R set by the air volume setting means 105. In the first embodiment, the configuration of the blower drive unit including the motor for driving the blower 3 is omitted from the figure, and the description of the control of the blower drive unit is omitted.
 次に、本実施の形態1の空気調和機10の動作を説明する。図15は、実施の形態1の空気調和機の動作手順の一例を示すフローチャートである。図16は、図15に示す手順を説明するための模式図である。ここでは、空気調和機10が暖房運転を行い、到達度判定手段104が絶対評価で気流の到達度を判定する場合で説明する。 Next, the operation of the air conditioner 10 of the first embodiment will be described. FIG. 15 is a flowchart showing an example of the operation procedure of the air conditioner according to the first embodiment. FIG. 16 is a schematic diagram for explaining the procedure shown in FIG. Here, the case where the air conditioner 10 performs the heating operation and the reachability determining means 104 determines the reachability of the airflow by absolute evaluation will be described.
 目標地点温度取得手段103は、吹出口6から吹き出される気流を到達させる目標地点の床面温度Tfをセンサ出力解析手段102の解析結果から取得する(ステップS101)。到達度判定手段104は、床面温度Tfと床面温度の平均値TAveとの温度差ΔTbsを算出する。そして、到達度判定手段104は、温度差ΔTbsが設計値Tgより大きいか否かを判定する(ステップS102)。温度差ΔTbsが設計値Tgより大きい場合、到達度判定手段104は、気流が目標地点に到達していると判定し、処理を終了する。 The target point temperature acquisition means 103 acquires the floor surface temperature Tf of the target point at which the airflow blown out from the air outlet 6 reaches from the analysis result of the sensor output analysis means 102 (step S101). The reachability determining means 104 calculates the temperature difference ΔTbs between the floor surface temperature Tf and the average value Tave of the floor surface temperature. Then, the achievement determination means 104 determines whether or not the temperature difference ΔTbs is larger than the design value Tg (step S102). When the temperature difference ΔTbs is larger than the design value Tg, the reachability determining means 104 determines that the airflow has reached the target point, and ends the process.
 一方、ステップS102の判定の結果、温度差ΔTbsが設計値Tg以下である場合、到達度判定手段104は、気流が目標地点に到達していないと判定する。図16に示す破線の矢印は、目標地点に到達していない気流を模式的に示したものである。図16は、破線の矢印で示す気流がドット模様で示す目標地点に到達していないことを示している。気流が目標地点に到達しない原因の一つとして、風量が足りないことが考えられる。その他の原因として、室内機30の設置されている高さが設計で予定されている高さより高いことが考えられる。例えば、家庭用の空気調和機の室内機が、物流倉庫のように天井の高い部屋に設置される場合である。また、別の原因として、床面近くに冷気だまりがあることが考えられる。さらに、別の原因として、第2風向板5の角度が水平に近いことが考えられる。 On the other hand, as a result of the determination in step S102, when the temperature difference ΔTbs is equal to or less than the design value Tg, the reachability determining means 104 determines that the airflow has not reached the target point. The dashed arrow shown in FIG. 16 schematically shows the airflow that has not reached the target point. FIG. 16 shows that the airflow indicated by the broken line arrow has not reached the target point indicated by the dot pattern. One of the reasons why the airflow does not reach the target point is that the airflow is insufficient. Another possible cause is that the height at which the indoor unit 30 is installed is higher than the height planned in the design. For example, an indoor unit of an air conditioner for home use may be installed in a room with a high ceiling such as a distribution warehouse. Another possible cause is that there is a cold air pool near the floor. Further, as another cause, it is considered that the angle of the second wind direction plate 5 is close to horizontal.
 風量設定手段105は、ステップS102における到達度判定手段104の判定の結果、気流が目標地点に到達していない場合、送風機3の回転数Rを基準回転数Rsよりも一定値ΔRだけ増加させる(ステップS103)。送風機制御手段106は、ステップS103において風量設定手段105が設定した回転数Rで送風機3を駆動させる。その後、ステップS102に戻り、到達度判定手段104は、温度差ΔTbsが設計値Tgより大きいか否かを判定する。ステップS102の判定の結果、温度差ΔTbsが設計値Tg以下である場合、再び、ステップS103の処理が実行される。このようにして、気流が目標地点に到達するまで送風機3の回転数Rに対応して、室内機30から吹き出される気流の風量が大きくなる。その結果、図16の実線の矢印に示すように、気流がドット模様で示す目標地点に到達する。 The air volume setting means 105 increases the rotation speed R of the blower 3 by a constant value ΔR from the reference rotation speed Rs when the airflow does not reach the target point as a result of the determination of the arrival degree determination means 104 in step S102. Step S103). The blower control means 106 drives the blower 3 at the rotation speed R set by the air volume setting means 105 in step S103. After that, returning to step S102, the achievement determination means 104 determines whether or not the temperature difference ΔTbs is larger than the design value Tg. As a result of the determination in step S102, if the temperature difference ΔTbs is equal to or less than the design value Tg, the process of step S103 is executed again. In this way, the amount of airflow blown out from the indoor unit 30 increases corresponding to the rotation speed R of the blower 3 until the airflow reaches the target point. As a result, as shown by the solid arrow in FIG. 16, the airflow reaches the target point indicated by the dot pattern.
 なお、図15を参照して説明した手順では、風量設定手段105は、気流の到達度が設計値以下の場合、送風機3の回転数Rを増加させ、気流の到達度が設計値より大きい場合、回転数Rを変更しない場合で説明したが、この場合に限らない。例えば、気流の到達度が設計値を大幅に超えている場合、風量設定手段105は、送風機3の回転数Rを減少させる処理を行ってもよい。具体的には、温度差ΔTbsと設計値Tgとの差の値が決められた閾値Thviより小さくなるまで、風量設定手段105は、送風機3の回転数Rを減少させてもよい。 In the procedure described with reference to FIG. 15, the air volume setting means 105 increases the rotation speed R of the blower 3 when the airflow reach is equal to or less than the design value, and the airflow reach is greater than the design value. , The case where the rotation speed R is not changed has been described, but the present invention is not limited to this case. For example, when the reach of the airflow greatly exceeds the design value, the air volume setting means 105 may perform a process of reducing the rotation speed R of the blower 3. Specifically, the air volume setting means 105 may reduce the rotation speed R of the blower 3 until the value of the difference between the temperature difference ΔTbs and the design value Tg becomes smaller than the determined threshold value Thvi.
 また、図15は、気流の到達度が設計値より大きくなるまで風量設定手段105がステップS103の処理を繰り返し行うことを示しているが、実際には、家具などの障害物の影響によって気流の到達度が設計値より大きくならない場合もある。そのため、ステップS103の処理の回数に上限値を設け、風量設定手段105がステップS103の処理の回数をカウントし、カウント数が上限値に達したら、回転数Rを増加させる処理を停止してもよい。さらに、ステップS103の処理の回数に上限値を設けた場合、ユーザが空気調和機10の運転を停止させた後、空気調和機10を再び、起動させたとき、風量設定手段105は、運転再開前に記録したカウント数をリセットしてもよい。この場合、風量設定手段105は、ステップS103の処理の回数をゼロからカウントする。ユーザが空気調和機10の運転を停止させた後、家具を移動させている場合も考えられるからである。 Further, FIG. 15 shows that the air volume setting means 105 repeats the process of step S103 until the reach of the air flow becomes larger than the design value, but in reality, the air flow is affected by obstacles such as furniture. Reachability may not be greater than the design value. Therefore, even if an upper limit is set for the number of processes in step S103, the air volume setting means 105 counts the number of processes in step S103, and when the count reaches the upper limit, the process of increasing the rotation speed R is stopped. Good. Further, when the upper limit value is set for the number of processes in step S103, when the user stops the operation of the air conditioner 10 and then restarts the air conditioner 10, the air volume setting means 105 restarts the operation. The previously recorded count may be reset. In this case, the air volume setting means 105 counts the number of processes in step S103 from zero. This is because it is conceivable that the user moves the furniture after stopping the operation of the air conditioner 10.
 次に、本実施の形態1の空気調和機10の別の動作を説明する。図17は、実施の形態1の空気調和機の動作手順の別の例を示すフローチャートである。空気調和機10が暖房運転を行い、到達度判定手段104が絶対評価で気流の到達度を判定する場合で説明する。温度差ΔTbsと設計値Tgとの差の閾値Thviがメモリ51に記憶されているものとする。また、ステップS111およびS112のそれぞれは、図15を参照して説明したステップS101およびS102のそれぞれと同様な処理であるため、ここでは、その詳細な説明を省略する。 Next, another operation of the air conditioner 10 of the first embodiment will be described. FIG. 17 is a flowchart showing another example of the operation procedure of the air conditioner according to the first embodiment. The case where the air conditioner 10 performs the heating operation and the reachability determining means 104 determines the reachability of the airflow by absolute evaluation will be described. It is assumed that the threshold value Thvi of the difference between the temperature difference ΔTbs and the design value Tg is stored in the memory 51. Further, since each of steps S111 and S112 is the same processing as each of steps S101 and S102 described with reference to FIG. 15, detailed description thereof will be omitted here.
 ステップS112の判定の結果、温度差ΔTbsが設計値Tg以下である場合、到達度判定手段104は、気流が目標地点に到達していないと判定する。風量設定手段105は、ステップS112における到達度判定手段104の判定の結果、気流が目標地点に到達していない場合、送風機3の回転数Rを上限値Rmaxに設定する(ステップS113)。送風機制御手段106は、ステップS113において風量設定手段105が設定した上限値Rmaxの回転数Rで送風機3を駆動させる。 As a result of the determination in step S112, when the temperature difference ΔTbs is equal to or less than the design value Tg, the reachability determining means 104 determines that the airflow has not reached the target point. The air volume setting means 105 sets the rotation speed R of the blower 3 to the upper limit value Rmax when the airflow has not reached the target point as a result of the determination of the arrival degree determination means 104 in step S112 (step S113). The blower control means 106 drives the blower 3 at the rotation speed R of the upper limit value Rmax set by the air volume setting means 105 in step S113.
 ステップS113の後、到達度判定手段104は、温度差ΔTbsと設計値Tgとの差の値が閾値Thviより大きいか否かを判定する(ステップS114)。ステップS114の判定の結果、温度差ΔTbsと設計値Tgとの差の値が閾値Thvi以上である場合、風量設定手段105は、送風機3の回転数Rを現在の設定値よりも一定値ΔRだけ減少させる(ステップS115)。送風機制御手段106は、ステップS115において風量設定手段105が設定した回転数Rで送風機3を駆動させる。温度差ΔTbsと設計値Tgとの差の値が0より大きく、かつ閾値Thviより小さくなるまで、送風機3の回転数Rが小さくなる。この場合、送風機3を余分に回転させなくてすむ。 After step S113, the achievement determination means 104 determines whether or not the value of the difference between the temperature difference ΔTbs and the design value Tg is larger than the threshold value Thvi (step S114). As a result of the determination in step S114, when the value of the difference between the temperature difference ΔTbs and the design value Tg is equal to or greater than the threshold value Thvi, the air volume setting means 105 sets the rotation speed R of the blower 3 by a constant value ΔR from the current set value. Decrease (step S115). The blower control means 106 drives the blower 3 at the rotation speed R set by the air volume setting means 105 in step S115. The rotation speed R of the blower 3 decreases until the value of the difference between the temperature difference ΔTbs and the design value Tg is larger than 0 and smaller than the threshold value Thvi. In this case, it is not necessary to rotate the blower 3 extra.
 なお、本実施の形態1では、図6及び図8を参照して、非接触型温度センサ7を基準とした目標地点の方向を角度θvおよび角度θhで特定する場合で説明したが、角度θvの代わりに非接触型温度センサ7の位置の水平面を基準とした俯角を用いてもよい。 In the first embodiment, the case where the direction of the target point with reference to the non-contact temperature sensor 7 is specified by the angle θv and the angle θh has been described with reference to FIGS. 6 and 8, but the angle θv Instead of, the depression angle with respect to the horizontal plane at the position of the non-contact temperature sensor 7 may be used.
 本実施の形態1の空気調和機10は、吸込口1および吹出口6が形成され、送風機3および熱交換器2が設けられた筐体60と、室内の空間の温度分布を検出する非接触型温度センサ7と、送風機3の回転数を制御する制御装置50とを有する。制御装置50は、到達度判定手段104と、風量設定手段105とを有する。到達度判定手段104は、非接触型温度センサ7が検出する温度分布の情報から目標地点に送風機3から吹き出された空気が到達しているか否かを判定する。風量設定手段105は、送風機3から吹き出された空気が目標地点に到達するように送風機3の回転数を設定する。 The air conditioner 10 of the first embodiment is non-contact with a housing 60 in which a suction port 1 and an air outlet 6 are formed and a blower 3 and a heat exchanger 2 are provided, and a temperature distribution in an indoor space is detected. It has a mold temperature sensor 7 and a control device 50 that controls the rotation speed of the blower 3. The control device 50 includes a reachability determining means 104 and an air volume setting means 105. The reachability determining means 104 determines whether or not the air blown out from the blower 3 has reached the target point from the temperature distribution information detected by the non-contact temperature sensor 7. The air volume setting means 105 sets the rotation speed of the blower 3 so that the air blown out from the blower 3 reaches the target point.
 本実施の形態1によれば、目標地点に送風機3から吹き出された空気が到達しているか否かが判定され、目標地点まで気流が届くように送風機3の回転数Rが設定される。そのため、室内機30から吹き出された空気が目標地点の床面に到達できる環境をより早く作ることができる。その結果、室内環境の快適性を向上させることができる。 According to the first embodiment, it is determined whether or not the air blown from the blower 3 has reached the target point, and the rotation speed R of the blower 3 is set so that the airflow reaches the target point. Therefore, it is possible to quickly create an environment in which the air blown out from the indoor unit 30 can reach the floor surface of the target point. As a result, the comfort of the indoor environment can be improved.
 本実施の形態1では、室内機30の据え付け位置が設計値よりも高い場合であっても、気流の床面への到達度が判定され、到達度に基づいて送風機3の回転数が補正される。また、本実施の形態1では、室内機30から吹き出された気流が室内の冷気だまり、または浮力の影響を受け床面に到達しない場合であっても、気流の到達度が判定され、到達度に基づいて送風機3の回転数が補正される。そのため、室内機30から吹き出された気流が目標地点に到達する。 In the first embodiment, even when the installation position of the indoor unit 30 is higher than the design value, the degree of arrival of the airflow on the floor surface is determined, and the rotation speed of the blower 3 is corrected based on the degree of arrival. To. Further, in the first embodiment, even when the airflow blown out from the indoor unit 30 does not reach the floor surface due to the influence of the cold air pool in the room or the buoyancy, the arrival degree of the airflow is determined and the arrival degree is determined. The rotation speed of the blower 3 is corrected based on the above. Therefore, the airflow blown out from the indoor unit 30 reaches the target point.
 吹出口6から吹き出された気流が床面まで到達しない場合、室内にいるユーザが適切な温度変化を感じることができない。例えば、暖房運転中であれば、ユーザは、快適性を得ようとして設定温度を上げてしまうことがある。この場合、空気調和機が無駄に電力を消費してしまうことになる。これに対して、本実施の形態1では、室内の環境によらず、室内機30から吹き出された調和空気が床面まで届くようになり、室内に居るユーザの快適性を向上させることができる。そのため、ユーザが設定温度を上げてしまう前に温度変化を感じ、設定温度の変更による無駄に電力を消費してしまうことを防げる。その結果、消費エネルギーを抑えることができる。 If the airflow blown out from the outlet 6 does not reach the floor surface, the user in the room cannot feel an appropriate temperature change. For example, during heating operation, the user may raise the set temperature in order to obtain comfort. In this case, the air conditioner wastes power. On the other hand, in the first embodiment, the conditioned air blown out from the indoor unit 30 reaches the floor surface regardless of the indoor environment, and the comfort of the user in the room can be improved. .. Therefore, it is possible to prevent the user from feeling the temperature change before raising the set temperature and wasting power due to the change in the set temperature. As a result, energy consumption can be suppressed.
実施の形態2.
 本実施の形態2は、目標地点に気流を到達させるために求めた風量の情報を記録して、記録した情報を次の空気調和の制御に利用できるようにしたものである。本実施の形態2では、実施の形態1で説明した構成と同一の構成について同一の符号を付し、その詳細な説明を省略する。
Embodiment 2.
In the second embodiment, the information of the air volume obtained to reach the target point is recorded, and the recorded information can be used for the control of the next air conditioning. In the second embodiment, the same reference numerals are given to the same configurations as those described in the first embodiment, and detailed description thereof will be omitted.
 本実施の形態2の空気調和機10の構成を説明する。図18は、実施の形態2の空気調和機における制御装置の一構成例を示す機能ブロック図である。本実施の形態2の制御装置50aは、目標地点に対応して、送風機3に設定する回転数Rの基準回転数Rsに対する調整量ΔRmを記憶する調整量記録手段110を有する。調整量記録手段110は、例えば、図1に示したメモリ51である。 The configuration of the air conditioner 10 of the second embodiment will be described. FIG. 18 is a functional block diagram showing a configuration example of a control device in the air conditioner according to the second embodiment. The control device 50a of the second embodiment has an adjustment amount recording means 110 that stores an adjustment amount ΔRm of the rotation speed R set in the blower 3 with respect to the reference rotation speed Rs corresponding to the target point. The adjustment amount recording means 110 is, for example, the memory 51 shown in FIG.
 調整量記録手段110は、床面の各点を目標地点として全ての目標地点の調整量ΔRmを記憶してもよいが、記録量が膨大になる。そのため、床面が一定の領域で予め複数に区切られ、複数の領域毎に調整量ΔRmが調整量記録手段110に記録されてもよい。例えば、床面が1mの面積の領域で複数に区切られ、複数の領域毎に調整量ΔRmが調整量記録手段110に記録される。また、調整量記録手段110が記憶する調整量ΔRmは、基準回転数Rsに対する回転数の差分を示す値に限らない。回転数の範囲が複数のランクに分類され、ランクの番号で複数の領域毎の調整量が調整量記録手段110に記録されてもよい。以下では、区切られる一定の領域が図14に示した区画の場合で説明する。 The adjustment amount recording means 110 may store the adjustment amount ΔRm of all the target points with each point on the floor surface as the target point, but the recording amount becomes enormous. Therefore, the floor surface may be divided into a plurality of areas in advance in a certain area, and the adjustment amount ΔRm may be recorded in the adjustment amount recording means 110 for each of the plurality of areas. For example, the floor surface is divided into a plurality of areas having an area of 1 m 2 , and the adjustment amount ΔRm is recorded in the adjustment amount recording means 110 for each of the plurality of areas. Further, the adjustment amount ΔRm stored in the adjustment amount recording means 110 is not limited to a value indicating the difference in the rotation speed with respect to the reference rotation speed Rs. The range of the rotation speed is classified into a plurality of ranks, and the adjustment amount for each of the plurality of areas may be recorded in the adjustment amount recording means 110 by the rank number. In the following, the case where a certain area to be divided is the section shown in FIG. 14 will be described.
 風量設定手段105は、到達度判定手段104から目標地点の情報を受け取ると、調整量記録手段110が記憶する情報を参照し、目標地点に対応する調整量ΔRmが記録されているか否かを調べる。目標地点に対応する調整量ΔRmが調整量記録手段110に記録されている場合、風量設定手段105は、調整量記録手段110から回転数Rmの情報を読み出し、読み出した調整量ΔRmを基準回転数Rsに加算した値を送風機3の回転数Rに設定する。さらに、風量設定手段105は、調整量が記録されていない目標地点について回転数Rを設定すると、回転数Rから基準回転数Rsを減算して調整量ΔRmを算出し、算出した調整量ΔRmを目標地点と対応づけて調整量記録手段110に記録する。 When the air volume setting means 105 receives the information of the target point from the arrival degree determination means 104, the air volume setting means 105 refers to the information stored in the adjustment amount recording means 110 and examines whether or not the adjustment amount ΔRm corresponding to the target point is recorded. .. When the adjustment amount ΔRm corresponding to the target point is recorded in the adjustment amount recording means 110, the air volume setting means 105 reads the information of the rotation speed Rm from the adjustment amount recording means 110, and uses the read adjustment amount ΔRm as the reference rotation speed. The value added to Rs is set to the rotation speed R of the blower 3. Further, when the rotation speed R is set for the target point where the adjustment amount is not recorded, the air volume setting means 105 subtracts the reference rotation speed Rs from the rotation speed R to calculate the adjustment amount ΔRm, and calculates the adjustment amount ΔRm. It is recorded in the adjustment amount recording means 110 in association with the target point.
 なお、調整量記録手段110はメモリ51とは別に設けられたメモリであってもよい。調整量記録手段110は、RAM(Ramdom Access Memory)などの揮発性メモリであってもよく、EEPROMなどの不揮発性メモリであってもよい。 The adjustment amount recording means 110 may be a memory provided separately from the memory 51. The adjustment amount recording means 110 may be a volatile memory such as a RAM (Random Access Memory) or a non-volatile memory such as an EEPROM.
 次に、本実施の形態2の空気調和機10の動作を説明する。図19は、実施の形態2の空気調和機の動作手順の一例を示すフローチャートである。ここでは、空気調和機10が暖房運転を行い、到達度判定手段104が絶対評価で気流の到達度を判定する場合で説明する。 Next, the operation of the air conditioner 10 of the second embodiment will be described. FIG. 19 is a flowchart showing an example of the operation procedure of the air conditioner according to the second embodiment. Here, the case where the air conditioner 10 performs the heating operation and the reachability determining means 104 determines the reachability of the airflow by absolute evaluation will be described.
 本実施の形態2では、図15に示したフローと比べると、目標地点の調整量ΔRmを読み出す処理(図19のステップS202~S203)と、設定後の回転数Rから算出される調整量ΔRmを記録する処理(図19のステップS206)とが追加されている。図19に示すステップS201、S204およびS205のそれぞれは、図15を参照して説明したステップS101~S103のそれぞれと同様な処理であるため、ここでは、その詳細な説明を省略する。 In the second embodiment, as compared with the flow shown in FIG. 15, the adjustment amount ΔRm of the target point is read out (steps S202 to S203 of FIG. 19) and the adjustment amount ΔRm calculated from the set rotation speed R. (Step S206 in FIG. 19) and the process of recording the above are added. Since each of steps S201, S204, and S205 shown in FIG. 19 is the same process as each of steps S101 to S103 described with reference to FIG. 15, detailed description thereof will be omitted here.
 ステップS201において、目標地点温度取得手段103は、冷凍サイクル制御手段101から目標地点の情報が通知されると、センサ出力解析手段102の解析結果から床面温度Tfを取得する。風量設定手段105は、到達度判定手段104から目標地点の情報を受け取ると、調整量記録手段110が記憶する情報を参照し、目標地点に対応する調整量ΔRmが記録されているか否かを調べる(ステップS202)。風量設定手段105は、冷凍サイクル制御手段101から目標地点の情報を取得してもよい。 In step S201, when the target point temperature acquisition means 103 is notified of the target point information from the refrigeration cycle control means 101, the target point temperature acquisition means 103 acquires the floor surface temperature Tf from the analysis result of the sensor output analysis means 102. When the air volume setting means 105 receives the information of the target point from the arrival degree determination means 104, the air volume setting means 105 refers to the information stored in the adjustment amount recording means 110 and examines whether or not the adjustment amount ΔRm corresponding to the target point is recorded. (Step S202). The air volume setting means 105 may acquire information on the target point from the refrigeration cycle control means 101.
 ステップS202の判定の結果、目標地点に対応する調整量ΔRmが調整量記録手段110に記録されていない場合、風量設定手段105は、ステップS204に進み、到達度判定手段104による判定結果を待つ。一方、ステップS202の判定の結果、目標地点に対応する調整量ΔRmが調整量記録手段110に記録されている場合、風量設定手段105は、調整量記録手段110から回転数Rmの情報を読み出す。そして、風量設定手段105は、読み出した調整量ΔRmを基準回転数Rsに加算した値を送風機3の回転数Rに設定する。送風機制御手段106は、風量設定手段105が設定した回転数Rで送風機3を駆動させる。その後、到達度判定手段104は、温度差ΔTbsが設計値Tgより大きいか否かを判定する(ステップS204)。 As a result of the determination in step S202, if the adjustment amount ΔRm corresponding to the target point is not recorded in the adjustment amount recording means 110, the air volume setting means 105 proceeds to step S204 and waits for the determination result by the achievement degree determination means 104. On the other hand, as a result of the determination in step S202, when the adjustment amount ΔRm corresponding to the target point is recorded in the adjustment amount recording means 110, the air volume setting means 105 reads out the information of the rotation speed Rm from the adjustment amount recording means 110. Then, the air volume setting means 105 sets the value obtained by adding the read adjustment amount ΔRm to the reference rotation speed Rs to the rotation speed R of the blower 3. The blower control means 106 drives the blower 3 at the rotation speed R set by the air volume setting means 105. After that, the achievement determination means 104 determines whether or not the temperature difference ΔTbs is larger than the design value Tg (step S204).
 ステップS204の判定の結果、温度差ΔTbsが設計値Tgより大きい場合、風量設定手段105は、目標地点に対応づけて調整量ΔRmを調整量記録手段110に記録する(ステップS206)。これにより、記録されていない目標地点の調整量ΔRmが調整量記録手段110に記録される。そのため、次回、空気調和機10は、同じ目標地点に向けて空気を吹き出す際、記録された調整量ΔRmを用いて、気流が目標地点に到達し得る風量になるように送風機3の回転数Rを設定できる。 As a result of the determination in step S204, when the temperature difference ΔTbs is larger than the design value Tg, the air volume setting means 105 records the adjustment amount ΔRm in the adjustment amount recording means 110 in association with the target point (step S206). As a result, the adjustment amount ΔRm of the unrecorded target point is recorded in the adjustment amount recording means 110. Therefore, next time, when the air conditioner 10 blows air toward the same target point, the rotation speed R of the blower 3 is adjusted so that the air flow can reach the target point by using the recorded adjustment amount ΔRm. Can be set.
 また、ステップS206において、風量設定手段105は、記録しようとした調整量ΔRmの目標地点が既に調整量記録手段110に記録されている場合、調整量記録手段110が記憶する調整量ΔRmを新たに算出した調整量ΔRmに置き換えてもよい。この場合、空気調和機10の最新の運転状態に対応した調整量ΔRmに更新される。そのため、室内の環境の変化に対応して、より最適な風量で目標地点に気流を到達させることができる。 Further, in step S206, when the target point of the adjustment amount ΔRm to be recorded is already recorded in the adjustment amount recording means 110, the air volume setting means 105 newly sets the adjustment amount ΔRm stored in the adjustment amount recording means 110. It may be replaced with the calculated adjustment amount ΔRm. In this case, the adjustment amount ΔRm corresponding to the latest operating state of the air conditioner 10 is updated. Therefore, it is possible to make the airflow reach the target point with a more optimum air volume in response to changes in the indoor environment.
 本実施の形態2の空気調和機10は、複数の目標地点のそれぞれに対応して、送風機3の基準回転数Rsに対する調整量ΔRmを記憶する調整量記録手段110を有する。そのため、風量設定手段105は、目標地点に対応する調整量ΔRmが調整量記録手段110に記録されていると、記録された調整量ΔRmおよび基準回転数Rsを用いて送風機3の回転数Rを設定することができる。目標地点に対応して記録された調整量ΔRmを送風機3の回転数Rに反映させることで、初期段階で気流の到達度が高い状態で運転を行うことができる。 The air conditioner 10 of the second embodiment has an adjustment amount recording means 110 that stores an adjustment amount ΔRm with respect to a reference rotation speed Rs of the blower 3 corresponding to each of a plurality of target points. Therefore, when the adjustment amount ΔRm corresponding to the target point is recorded in the adjustment amount recording means 110, the air volume setting means 105 uses the recorded adjustment amount ΔRm and the reference rotation speed Rs to set the rotation speed R of the blower 3. Can be set. By reflecting the adjustment amount ΔRm recorded corresponding to the target point in the rotation speed R of the blower 3, the operation can be performed in a state where the airflow reaches a high degree at the initial stage.
 本実施の形態2によれば、床面への到達度の高い気流を早く作りだすことができるので、室内環境を快適にするまでの時間を短くすることができる。また、室内環境に適した風量が得られるまでの時間が短縮できるので、電力消費量が抑制され、消費エネルギーを抑制することができる。 According to the second embodiment, it is possible to quickly create an air flow having a high degree of reach to the floor surface, so that it is possible to shorten the time until the indoor environment is made comfortable. Further, since the time until the air volume suitable for the indoor environment can be obtained can be shortened, the power consumption can be suppressed and the energy consumption can be suppressed.
実施の形態3.
 本実施の形態3は、目標地点に気流を到達させる風量を設定する際、室内機の床面からの設置高さに浮力を考慮して風量を設定するものである。本実施の形態3では、実施の形態1で説明した構成と同一の構成について同一の符号を付し、その詳細な説明を省略する。
Embodiment 3.
In the third embodiment, when setting the air volume to reach the target point, the air volume is set in consideration of the buoyancy in the installation height of the indoor unit from the floor surface. In the third embodiment, the same reference numerals are given to the same configurations as those described in the first embodiment, and detailed description thereof will be omitted.
 本実施の形態3の空気調和機10の構成を説明する。図20は、実施の形態3の空気調和機における制御装置の一構成例を示す機能ブロック図である。本実施の形態3では、図2に示した室内機30に、室温を検出する室温センサ12と、熱交換器2において冷媒と熱交換した後の空気の温度である調和空気温度を検出する調和空気温度センサ11とが設けられている。 The configuration of the air conditioner 10 of the third embodiment will be described. FIG. 20 is a functional block diagram showing a configuration example of a control device in the air conditioner according to the third embodiment. In the third embodiment, the indoor unit 30 shown in FIG. 2 is conditioned by detecting the room temperature sensor 12 for detecting the room temperature and the conditioned air temperature which is the temperature of the air after heat exchange with the refrigerant in the heat exchanger 2. An air temperature sensor 11 is provided.
 調和空気温度センサ11は、例えば、吹出口6に設置され、吹出口6から吹き出される空気の温度を検出する温度センサである。調和空気温度センサ11は、熱交換器2に接触して設けられ、熱交換器2で冷媒と熱交換した直後の空気の温度を検出する温度センサであってもよい。室温センサ12は、室内機30が設置された室内の温度を取得する温度センサである。室温センサ12は、例えば、吸込口1に設置される。室温センサ12の設置位置は吸込口1に限らない。室温センサ12が室温を検出できる位置であれば、室温センサ12の位置は設計要因で定めてもよい。 The conditioned air temperature sensor 11 is, for example, a temperature sensor installed at the outlet 6 and detecting the temperature of the air blown out from the outlet 6. The harmonized air temperature sensor 11 may be a temperature sensor provided in contact with the heat exchanger 2 and detecting the temperature of the air immediately after the heat exchange with the refrigerant in the heat exchanger 2. The room temperature sensor 12 is a temperature sensor that acquires the temperature of the room in which the indoor unit 30 is installed. The room temperature sensor 12 is installed in, for example, the suction port 1. The installation position of the room temperature sensor 12 is not limited to the suction port 1. The position of the room temperature sensor 12 may be determined by a design factor as long as the room temperature sensor 12 can detect the room temperature.
 また、本実施の形態3では、図20に示すように、制御装置50bは、室内における浮力を算出する浮力算出手段107と、床面を基準として室内機30の筐体60が設置されている高さhを推定する推定手段108とを有する。 Further, in the third embodiment, as shown in FIG. 20, the control device 50b is provided with the buoyancy calculation means 107 for calculating the buoyancy in the room and the housing 60 of the indoor unit 30 with reference to the floor surface. It has an estimation means 108 for estimating the height h.
 浮力算出手段107は、送風機3の回転数Rと、室温Trと、調和空気温度Tcとに基づいて浮力を算出する。送風機3の回転数Rで決まる風量が同じ場合でも、調和空気温度Tcが高く、室温Trが低いほど、浮力は大きくなる。調和空気温度Tcと室温Trとの温度差が小さいほど、浮力は小さくなる。このことを、図16に示した模式図で説明する。図16において、送風機3によって生成される風量が同じ場合、浮力が大きいと、気流は破線矢印に示すように舞い上がってしまうが、浮力が小さければ、気流は実線矢印に示すように室内機30から吹き出された方向を維持してドット模様の目標地点に向う。浮力が大きいほど、気流が床面に到達しにくくなり、床面温度への影響が小さくなることがわかる。 The buoyancy calculation means 107 calculates the buoyancy based on the rotation speed R of the blower 3, the room temperature Tr, and the conditioned air temperature Tc. Even when the air volume determined by the rotation speed R of the blower 3 is the same, the higher the conditioned air temperature Tc and the lower the room temperature Tr, the greater the buoyancy. The smaller the temperature difference between the conditioned air temperature Tc and the room temperature Tr, the smaller the buoyancy. This will be described with reference to the schematic diagram shown in FIG. In FIG. 16, when the air volume generated by the blower 3 is the same, if the buoyancy is large, the airflow rises as shown by the broken line arrow, but if the buoyancy is small, the airflow is from the indoor unit 30 as shown by the solid line arrow. Keep the direction of the blowout and head toward the target point of the dot pattern. It can be seen that the greater the buoyancy, the more difficult it is for the airflow to reach the floor surface, and the smaller the effect on the floor surface temperature.
 推定手段108は、浮力算出手段107によって算出された浮力と、送風機3の回転数Rと、非接触型温度センサ7を基準とした目標地点の方向の角度θvとに基づいて、筐体60の床面からの高さhを推定する。図21は、図2に示した非接触型温度センサを基準とした垂直基準からの角度を用いて室内機が設置された高さを算出する方法を説明するための模式図である。説明を簡単にするために、ここでは、目標地点の角度θhがθh=0とする。図21を参照して、高さhを算出する方法の一例を説明する。はじめに、気流に対する浮力の影響を考慮しない場合で説明する。 The estimation means 108 is based on the buoyancy calculated by the buoyancy calculation means 107, the rotation speed R of the blower 3, and the angle θv in the direction of the target point with respect to the non-contact temperature sensor 7. The height h from the floor surface is estimated. FIG. 21 is a schematic diagram for explaining a method of calculating the height at which the indoor unit is installed by using the angle from the vertical reference with respect to the non-contact type temperature sensor shown in FIG. In order to simplify the explanation, here, the angle θh of the target point is set to θh = 0. An example of a method of calculating the height h will be described with reference to FIG. First, the case where the influence of buoyancy on the airflow is not considered will be described.
 送風機3の回転数Rで、角度θvの方向に室内機30から気流が直線的に吹き出されたとき、気流が室内機30から床面に到達するまでの直線距離をLとする。具体例として、送風機3の回転数R1で角度θv=θv1の場合に、室内機30から床面までの直線距離LをL1とする。このときの高さh1は、h1=L1×cosθv1で表される。図1に示したメモリ51が、角度θv1および送風機3の回転数Rから直線距離Lを算出する距離算出式を記憶している。この距離算出式は、実験によって予め求められる。推定手段108は、送風機3の回転数R1および目標地点の角度θv1がわかれば、距離算出式を用いて直線距離L1を算出し、L1×cosθv1を計算することで高さh1を算出できる。h1=L1×cosθv1の式は、L1=h1/cosθv1に書き換えられる。この書き換え式を用いれば、高さh1および角度θv1から、直線距離L1を算出できる。 Let L be the linear distance from the indoor unit 30 until the airflow reaches the floor surface when the airflow is linearly blown out from the indoor unit 30 in the direction of the angle θv at the rotation speed R of the blower 3. As a specific example, when the rotation speed R1 of the blower 3 and the angle θv = θv1, the linear distance L from the indoor unit 30 to the floor surface is L1. The height h1 at this time is represented by h1 = L1 × cosθv1. The memory 51 shown in FIG. 1 stores a distance calculation formula for calculating a linear distance L from the angle θv1 and the rotation speed R of the blower 3. This distance calculation formula is obtained in advance by an experiment. If the rotation speed R1 of the blower 3 and the angle θv1 of the target point are known, the estimation means 108 can calculate the linear distance L1 using the distance calculation formula and calculate the height h1 by calculating L1 × cosθv1. The equation of h1 = L1 × cosθv1 is rewritten as L1 = h1 / cosθv1. By using this rewriting formula, the linear distance L1 can be calculated from the height h1 and the angle θv1.
 例えば、実施の形態1において、図15を参照して説明したステップS102の判定の結果、温度差ΔTbsが設計値Tgより大きい場合、到達度判定手段104は、気流が目標地点に到達していると判定する。このとき、送風機3には、目標地点に最も適した回転数Rが設定されている。その回転数RをR1とすると、推定手段108は、送風機3の回転数R1および目標地点の角度θv1を距離算出式に代入して直線距離L1を算出し、L1×cosθv1を計算して、高さh1を算出する。 For example, in the first embodiment, when the temperature difference ΔTbs is larger than the design value Tg as a result of the determination in step S102 described with reference to FIG. 15, the reachability determination means 104 has reached the target point. Is determined. At this time, the blower 3 is set with the rotation speed R most suitable for the target point. Assuming that the rotation speed R is R1, the estimation means 108 calculates the linear distance L1 by substituting the rotation speed R1 of the blower 3 and the angle θv1 of the target point into the distance calculation formula, and calculates L1 × cosθv1 to obtain a high height. H1 is calculated.
 しかし、上述した、高さhの算出方法は、角度θv1の方向に室内機30から気流が直線的に吹き出され、理想的に気流が床面に到達する場合である。気流が浮力の影響を受ける場合と受けない場合とでは、図16を参照して説明したように、同じ風量でも、気流の到達深度が異なる。到達深度は、図16において、室内機30を基準として垂直下方(Z軸矢印と反対方向)の距離を意味する。気流が浮力の影響を受けると、気流の到達深度が浅くなってしまう。そのため、気流が浮力の影響を受けると、推定手段108によって算出される高さhと実際の高さhrとのずれが大きくなってしまうことがある。 However, the above-mentioned method of calculating the height h is a case where the airflow is linearly blown out from the indoor unit 30 in the direction of the angle θv1 and the airflow ideally reaches the floor surface. As described with reference to FIG. 16, the reach depth of the airflow differs depending on whether the airflow is affected by the buoyancy or not, even if the airflow is the same. The reach depth means the distance vertically downward (in the direction opposite to the Z-axis arrow) with respect to the indoor unit 30 in FIG. When the airflow is affected by buoyancy, the depth of reach of the airflow becomes shallow. Therefore, when the airflow is affected by the buoyancy, the deviation between the height h calculated by the estimation means 108 and the actual height hr may become large.
 図22は、図2に示した室内機の吹出口から吹き出される気流の浮力による影響を説明するための模式図である。図22では、浮力の影響がない場合の気流を破線の矢印で示し、浮力の影響を受ける場合の気流を実線の矢印で示す。図22は、送風機3の回転数R、室温Trおよび調和空気温度Tcが同一の条件で、角度θvがθv0、θv1およびθv2の場合の気流を示す。θv2>θv1>θv0の関係であり、θv0=0である。 FIG. 22 is a schematic diagram for explaining the influence of the buoyancy of the airflow blown out from the outlet of the indoor unit shown in FIG. In FIG. 22, the airflow when not affected by buoyancy is indicated by a broken line arrow, and the airflow when affected by buoyancy is indicated by a solid arrow. FIG. 22 shows an air flow when the rotation speed R of the blower 3, the room temperature Tr, and the conditioned air temperature Tc are the same, and the angles θv are θv0, θv1, and θv2. The relationship is θv2> θv1> θv0, and θv0 = 0.
 図22に示すように、角度θv=θv0のとき、垂直下方に気流が吹き出されるが、気流は浮力の影響で床面まで到達できない。角度θvが図21に示した角度θv1と同じ場合、気流は破線矢印の方向に吹き出されるが、角度θv0の場合の到達深度に到達する前に舞い上がってしまっている。さらに、角度θvが角度θv2の場合、気流は角度θv1よりも高い位置で舞い上がってしまっている。 As shown in FIG. 22, when the angle θv = θv0, the airflow is blown vertically downward, but the airflow cannot reach the floor surface due to the influence of buoyancy. When the angle θv is the same as the angle θv1 shown in FIG. 21, the airflow is blown out in the direction of the broken line arrow, but it has soared before reaching the reach depth at the angle θv0. Further, when the angle θv is the angle θv2, the airflow has soared at a position higher than the angle θv1.
 その理由を説明する。室内機30から角度θvの向きに吹き出される気流の風速をVとすると、水平方向(X軸矢印方向)の風速Vhは、Vh=V×sinθvで表され、垂直下方(Z軸矢印と反対方向)の風速Vvは、Vv=V×cosθvで表される。角度θvがθv0=0のとき、Vh=0、Vv=Vとなり、風速Vが全て垂直下方の成分になることがわかる。一方、これらの式から、角度θvが大きいほど、Vvが小さくなり、Vhが大きくなることがわかる。そのため、角度θvが大きいほど、気流が浮力に逆らって垂直下方に進めなくなり、到達深度が浅くなる。 Explain the reason. Assuming that the wind speed of the airflow blown from the indoor unit 30 in the direction of the angle θv is V, the wind speed Vh in the horizontal direction (X-axis arrow direction) is represented by Vh = V × sinθv, which is vertically downward (opposite to the Z-axis arrow). The wind speed Vv in the direction) is represented by Vv = V × cos θv. When the angle θv is θv0 = 0, Vh = 0 and Vv = V, and it can be seen that all the wind speeds V are vertically downward components. On the other hand, from these equations, it can be seen that the larger the angle θv, the smaller Vv and the larger Vh. Therefore, as the angle θv is larger, the airflow cannot advance vertically downward against the buoyancy, and the reach depth becomes shallower.
 図22を参照して説明したように、気流の到達深度は、浮力が同じでも、水平面に対する吹き出し角度によって異なる。つまり、角度θvが大きいほど、気流の到達深度は浅くなり、床面温度への影響が小さくなる。 As explained with reference to FIG. 22, the reach depth of the airflow differs depending on the blowing angle with respect to the horizontal plane even if the buoyancy is the same. That is, the larger the angle θv, the shallower the reach of the airflow, and the smaller the influence on the floor surface temperature.
 角度θvおよび回転数Rの条件が同じでも、床面温度は、浮力によって温度が上がりにくくなる。そのため、浮力の影響を受ける気流を床面に到達させるには、送風機3の回転数Rを、浮力の影響を受けない場合よりも大きくする必要がある。実施の形態1の図15を参照して説明した手順において、気流が浮力の影響を受けている場合、風量設定手段105によって設定された回転数Rは理想状態の回転数よりも浮力に比例して大きな値になると考えられる。 Even if the conditions of the angle θv and the rotation speed R are the same, the floor surface temperature is unlikely to rise due to buoyancy. Therefore, in order for the airflow affected by the buoyancy to reach the floor surface, it is necessary to increase the rotation speed R of the blower 3 as compared with the case where the airflow is not affected by the buoyancy. In the procedure described with reference to FIG. 15 of the first embodiment, when the airflow is affected by the buoyancy, the rotation speed R set by the air volume setting means 105 is proportional to the buoyancy rather than the rotation speed in the ideal state. It is thought that it will be a large value.
 そこで、推定手段108は、高さhを算出する際、浮力に比例する係数を距離算出式の回転数Rに乗算してもよい。係数は、図1に示したメモリ51に記憶されている。係数は実験によって予め求められる。推定手段108は、浮力算出手段107によって算出された浮力に比例する係数を距離算出式の回転数Rに乗算して直線距離Lを算出し、算出した直線距離Lをcosθvと乗算することで高さhを算出する。このようにして、推定手段108は、算出される浮力と、送風機3の回転数Rと、目標地点の角度θvとに基づいて、筐体60の床面からの高さhを推定する。推定手段108は推定した高さhの値をメモリ51に記録する。なお、直線距離Lに対する浮力の影響を補正する値は、係数の場合に限らず、距離算出式から算出される直線距離Lに加算される補正値であってもよい。 Therefore, when calculating the height h, the estimation means 108 may multiply the rotation speed R of the distance calculation formula by a coefficient proportional to the buoyancy. The coefficient is stored in the memory 51 shown in FIG. The coefficient is determined in advance by experiment. The estimation means 108 calculates the straight line distance L by multiplying the rotation speed R of the distance calculation formula by the coefficient proportional to the buoyancy calculated by the buoyancy calculation means 107, and multiplies the calculated straight line distance L by cosθv to obtain a high value. Calculate h. In this way, the estimation means 108 estimates the height h of the housing 60 from the floor surface based on the calculated buoyancy, the rotation speed R of the blower 3, and the angle θv of the target point. The estimation means 108 records the estimated height h value in the memory 51. The value for correcting the influence of the buoyancy on the straight line distance L is not limited to the coefficient, and may be a correction value added to the straight line distance L calculated from the distance calculation formula.
 本実施の形態3の風量設定手段105は、目標地点が変更されたとき、推定手段108によって推定された高さhを利用して、送風機3の回転数Rの初期値を設定する。具体的には、風量設定手段105は、高さhおよび目標地点の角度θvを上記の書き換え式に代入して直線距離Lxを算出する。続いて、風量設定手段105は、算出した直線距離Lxと角度θvとを距離算出式に代入して逆算することで、新たに設定された目標地点の回転数Rを求める。 When the target point is changed, the air volume setting means 105 of the third embodiment sets the initial value of the rotation speed R of the blower 3 by using the height h estimated by the estimation means 108. Specifically, the air volume setting means 105 calculates the linear distance Lx by substituting the height h and the angle θv of the target point into the above rewriting formula. Subsequently, the air volume setting means 105 obtains the rotation speed R of the newly set target point by substituting the calculated linear distance Lx and the angle θv into the distance calculation formula and calculating back.
 この場合、送風機3が新たな目標地点に送風を開始する前に、最適な回転数Rを設定することができる。風量設定手段105は、初期値に基準回転数Rsを設定してから図15に示す手順にしたがって段階的に最適な回転数Rを求めるよりも、より早く適切な回転数Rを求めることができる。その結果、気流が床面に到達できる環境をより早く作り出すことができる。なお、目標地点が変更される場合に限らず、空気調和機10が停止した状態から運転を開始するときに、風量設定手段105は、推定された高さhを利用して送風機3の回転数Rの初期値を求めてもよい。 In this case, the optimum rotation speed R can be set before the blower 3 starts blowing air to the new target point. The air volume setting means 105 can obtain an appropriate rotation speed R faster than finding the optimum rotation speed R stepwise according to the procedure shown in FIG. 15 after setting the reference rotation speed Rs as the initial value. .. As a result, an environment in which the airflow can reach the floor surface can be created faster. Not only when the target point is changed, but also when the operation is started from the state where the air conditioner 10 is stopped, the air volume setting means 105 uses the estimated height h to rotate the blower 3. The initial value of R may be obtained.
 次に、本実施の形態3の空気調和機10の動作を説明する。図23は、実施の形態3の空気調和機の動作手順の一例を示すフローチャートである。ここでは、空気調和機10が暖房運転を行い、到達度判定手段104が絶対評価で気流の到達度を判定する場合で説明する。図23に示すステップS302~S304のそれぞれは、図15を参照して説明したステップS101~S103のそれぞれと同様な処理であるため、ここでは、その詳細な説明を省略する。また、推定手段108によって推定された高さh1が図1に示したメモリ51に記憶されているものとする。また、回転数Rの算出に用いる高さhを更新するか否かの判定基準となる閾値hthがメモリ51に記憶されているものとする。 Next, the operation of the air conditioner 10 according to the third embodiment will be described. FIG. 23 is a flowchart showing an example of the operation procedure of the air conditioner according to the third embodiment. Here, the case where the air conditioner 10 performs the heating operation and the reachability determining means 104 determines the reachability of the airflow by absolute evaluation will be described. Since each of steps S302 to S304 shown in FIG. 23 is the same processing as each of steps S101 to S103 described with reference to FIG. 15, detailed description thereof will be omitted here. Further, it is assumed that the height h1 estimated by the estimation means 108 is stored in the memory 51 shown in FIG. Further, it is assumed that the threshold value hth, which is a criterion for determining whether or not to update the height h used for calculating the rotation speed R, is stored in the memory 51.
 風量設定手段105は、新たに設定された目標地点の情報を冷凍サイクル制御手段101から受け取る。ここでは、新たに設定された目標地点の角度θvをθv2とする。目標地点の変更とは、例えば、室内に居る人が移動した場合である。風量設定手段105は、メモリ51から読み出した高さh1と目標地点の角度θv2とに基づいて送風機3の回転数Rを設定する(ステップS301)。送風機制御手段106は、風量設定手段105が設定した回転数Rで送風機3を駆動させる。続いて、目標地点温度取得手段103は、目標地点の床面温度Tfをセンサ出力解析手段102の解析結果から取得する(ステップS302)。その後、到達度判定手段104は、温度差ΔTbsが設計値Tgより大きいか否かを判定する(ステップS303)。 The air volume setting means 105 receives the information of the newly set target point from the refrigeration cycle control means 101. Here, the angle θv of the newly set target point is set to θv2. The change of the target point is, for example, when a person in the room moves. The air volume setting means 105 sets the rotation speed R of the blower 3 based on the height h1 read from the memory 51 and the angle θv2 of the target point (step S301). The blower control means 106 drives the blower 3 at the rotation speed R set by the air volume setting means 105. Subsequently, the target point temperature acquisition means 103 acquires the floor surface temperature Tf of the target point from the analysis result of the sensor output analysis means 102 (step S302). After that, the achievement determination means 104 determines whether or not the temperature difference ΔTbs is larger than the design value Tg (step S303).
 ステップS303の判定の結果、温度差ΔTbsが設計値Tgより大きい場合、到達度判定手段104は、気流が目標地点に到達していると判定する。推定手段108は、設定された回転数Rと、浮力算出手段107によって算出された浮力と、目標地点の角度θv2とに基づいて室内機30の筐体60の床面からの高さh2を算出する。 As a result of the determination in step S303, when the temperature difference ΔTbs is larger than the design value Tg, the reachability determining means 104 determines that the airflow has reached the target point. The estimation means 108 calculates the height h2 of the housing 60 of the indoor unit 30 from the floor surface based on the set rotation speed R, the buoyancy calculated by the buoyancy calculation means 107, and the angle θv2 of the target point. To do.
 さらに、推定手段108は、既に記憶されている高さh1と新たに算出された高さh2との差の絶対値が閾値hthより大きいか否かを判定する(ステップS305)。|h2-h1|≦hthである場合、推定手段108は、メモリ51に記憶させる高さhをh1に維持する。一方、ステップS305の判定の結果、|h2-h1|>hthである場合、推定手段108は、メモリ51に記憶させる高さhをh1からh2に置き換える。図24は、図1に示したメモリに記憶される高さの値が置き換えられることを示すイメージ図である。算出される高さh2が記録されているh1よりも大きく変化しており、浮力など空調環境が変化していると考えられるからである。このようにして、メモリ51に記憶される高さhが室内環境に対応して適切な値に更新される。 Further, the estimation means 108 determines whether or not the absolute value of the difference between the already stored height h1 and the newly calculated height h2 is larger than the threshold value hth (step S305). When | h2-h1 | ≦ hth, the estimation means 108 maintains the height h stored in the memory 51 at h1. On the other hand, when the result of the determination in step S305 is | h2-h1 |> hth, the estimation means 108 replaces the height h stored in the memory 51 with h1 to h2. FIG. 24 is an image diagram showing that the height value stored in the memory shown in FIG. 1 is replaced. This is because the calculated height h2 has changed more than the recorded height h1, and it is considered that the air conditioning environment such as buoyancy has changed. In this way, the height h stored in the memory 51 is updated to an appropriate value according to the indoor environment.
 なお、高さhの初期値h0がメモリ51に記憶されていてもよい。例えば、初期値h0は、空気調和機10の製造過程でメモリ51に登録されてもよく、空気調和機10を設置する業者によって空気調和機10が設置される際にメモリ51に登録されてもよい。また、図に示さないリモートコントローラを操作するユーザによって初期値h0がメモリ51に登録されてもよい。空気調和機10が運転を開始した後、図23に示した手順が1回以上行われることで、空気調和機10が設置された室内の環境に対応する浮力の影響が考慮された最適な高さhに更新される。 Note that the initial value h0 of the height h may be stored in the memory 51. For example, the initial value h0 may be registered in the memory 51 in the manufacturing process of the air conditioner 10, or may be registered in the memory 51 when the air conditioner 10 is installed by the supplier who installs the air conditioner 10. Good. Further, the initial value h0 may be registered in the memory 51 by a user who operates a remote controller (not shown in the figure). After the air conditioner 10 starts operation, the procedure shown in FIG. 23 is performed one or more times, so that the optimum height considering the influence of buoyancy corresponding to the indoor environment in which the air conditioner 10 is installed is taken into consideration. It will be updated to h.
 本実施の形態3の空気調和機10は、室温を検出する室温センサ12と、冷媒と熱交換した後の調和空気の温度である調和空気温度を検出する調和空気温度センサ11と有する。また、制御装置50bは、浮力算出手段107と、推定手段108とを有する。浮力算出手段107は、送風機3の回転数Rと、室温と、調和空気温度とに基づいて浮力を算出する。推定手段108は、浮力算出手段107によって算出された浮力と、送風機3の回転数Rと、目標地点の角度θvとに基づいて筐体60の床面からの高さhを推定する。風量設定手段105は、新たに目標地点が設定されると、推定手段108によって推定された高さhを基準として、新たな目標地点の角度θvに対応して送風機3の回転数Rを求める。 The air conditioner 10 of the third embodiment includes a room temperature sensor 12 that detects the room temperature and a conditioned air temperature sensor 11 that detects the conditioned air temperature which is the temperature of the conditioned air after heat exchange with the refrigerant. Further, the control device 50b has a buoyancy calculation means 107 and an estimation means 108. The buoyancy calculation means 107 calculates the buoyancy based on the rotation speed R of the blower 3, the room temperature, and the conditioned air temperature. The estimation means 108 estimates the height h of the housing 60 from the floor surface based on the buoyancy calculated by the buoyancy calculation means 107, the rotation speed R of the blower 3, and the angle θv of the target point. When the target point is newly set, the air volume setting means 105 obtains the rotation speed R of the blower 3 corresponding to the angle θv of the new target point with reference to the height h estimated by the estimation means 108.
 本実施の形態3によれば、推定される高さhが室内環境に対応して更新されるため、新たに設定された目標地点に気流を到達させる際、室内環境に適した高さhを基に送風機3の回転数Rが初期値に設定される。そのため、気流が目標地点の床面に到達する状況をより早く実現できる。また、本実施の形態3では、風量設定に用いられる高さhが室温および調和空気温度による浮力の影響を考慮して算出されているため、浮力を考慮した風量調整が行われ、目標地点の床面への気流の到達性が向上する。 According to the third embodiment, the estimated height h is updated in accordance with the indoor environment. Therefore, when the airflow reaches the newly set target point, the height h suitable for the indoor environment is set. Based on this, the rotation speed R of the blower 3 is set to the initial value. Therefore, the situation where the airflow reaches the floor surface of the target point can be realized more quickly. Further, in the third embodiment, since the height h used for setting the air volume is calculated in consideration of the influence of the buoyancy due to the room temperature and the conditioned air temperature, the air volume is adjusted in consideration of the buoyancy, and the target point is adjusted. Improves the reachability of airflow to the floor.
 本実施の形態3によれば、浮力の影響による到達度を補正し、室内機30から吹き出された気流が目標地点の床面に到達できる環境をより早く作ることができる。その結果、室内空間をユーザに対して快適にできる状況が増えるだけでなく、電力が無駄に消費されることを抑制する状況が増え、消費エネルギーを抑えることができる。 According to the third embodiment, the degree of arrival due to the influence of buoyancy can be corrected, and an environment in which the airflow blown from the indoor unit 30 can reach the floor surface of the target point can be created more quickly. As a result, not only the situation where the indoor space can be made comfortable for the user increases, but also the situation where the wasteful consumption of electric power is suppressed increases, and the energy consumption can be suppressed.
実施の形態4.
 実施の形態3では室温Trおよび調和空気温度Tcに基づいて算出される浮力を考慮する場合で説明したが、本実施の形態4は、室内の天井面温度および床面温度との温度差に起因する浮力を考慮するものである。本実施の形態4では、実施の形態1および3で説明した構成と同一の構成について同一の符号を付し、その詳細な説明を省略する。
Embodiment 4.
Although the buoyancy calculated based on the room temperature Tr and the conditioned air temperature Tc is taken into consideration in the third embodiment, the fourth embodiment is caused by the temperature difference between the ceiling surface temperature and the floor surface temperature in the room. The buoyancy is taken into consideration. In the fourth embodiment, the same reference numerals are given to the same configurations as those described in the first and third embodiments, and detailed description thereof will be omitted.
 本実施の形態4の空気調和機10の構成を説明する。図25は、実施の形態4の空気調和機における制御装置の一構成例を示す機能ブロック図である。本実施の形態4では、非接触型温度センサ7は、天井面の温度分布も測定する。実施の形態1では、図12および図13を参照して、非接触型温度センサ7が室内機30に対向する壁のうち、床面から一定の高さまで温度分布を検出する場合で説明した。非接触型温度センサ7は、図12および図13において、破線で区切られた床面および壁だけでなく、天井面の温度分布を検出してもよい。 The configuration of the air conditioner 10 of the fourth embodiment will be described. FIG. 25 is a functional block diagram showing a configuration example of a control device in the air conditioner of the fourth embodiment. In the fourth embodiment, the non-contact temperature sensor 7 also measures the temperature distribution on the ceiling surface. In the first embodiment, the case where the non-contact type temperature sensor 7 detects the temperature distribution from the floor surface to a certain height in the wall facing the indoor unit 30 has been described with reference to FIGS. 12 and 13. The non-contact temperature sensor 7 may detect the temperature distribution of the ceiling surface as well as the floor surface and the wall separated by the broken line in FIGS. 12 and 13.
 制御装置50cの浮力算出手段107は、センサ出力解析手段102の解析結果から室内の天井面温度および床面温度を読み出し、天井面温度と床面温度との温度差ΔTudを算出する。そして、浮力算出手段107は、算出した温度差ΔTudと、送風機3の回転数Rと、調和空気温度Tcとに基づいて浮力を算出する。 The buoyancy calculation means 107 of the control device 50c reads out the ceiling surface temperature and the floor surface temperature in the room from the analysis result of the sensor output analysis means 102, and calculates the temperature difference ΔTud between the ceiling surface temperature and the floor surface temperature. Then, the buoyancy calculation means 107 calculates the buoyancy based on the calculated temperature difference ΔTud, the rotation speed R of the blower 3, and the conditioned air temperature Tc.
 温度差ΔTudが大きい場合、例えば、天井面付近の温度が高く、床面付近の温度が低い場合を考える。この場合、室内機30から吹き出される気流は、空気抵抗だけでなく、床面付近の低い温度の空気の層から浮力を受け、床面への到達度が低くなる。一方、温度差ΔTudが小さい場合、天井面付近の温度と床面付近の温度とが大きく変わらない。そのため、室内機30から吹き出される気流は天井に近いところから床面の方向にかけて、空気抵抗を受けるが、温度の低い層による抵抗を受けないので、床面への到達度が高くなる。浮力算出手段107は、温度差ΔTudに起因する気流への抵抗を、実施の形態3で説明した、送風機3の回転数Rおよび調和空気温度Tcの浮力に対する性質に加えて、浮力を計算する。 Consider the case where the temperature difference ΔTud is large, for example, the temperature near the ceiling surface is high and the temperature near the floor surface is low. In this case, the airflow blown out from the indoor unit 30 receives not only air resistance but also buoyancy from a layer of air having a low temperature near the floor surface, and the degree of reaching the floor surface is lowered. On the other hand, when the temperature difference ΔTud is small, the temperature near the ceiling surface and the temperature near the floor surface do not differ significantly. Therefore, the airflow blown out from the indoor unit 30 receives air resistance from a place close to the ceiling toward the floor surface, but does not receive resistance from the low temperature layer, so that the degree of reaching the floor surface is high. The buoyancy calculation means 107 calculates the buoyancy in addition to the resistance to the airflow caused by the temperature difference ΔTud with respect to the buoyancy of the rotation speed R of the blower 3 and the conditioned air temperature Tc described in the third embodiment.
 なお、浮力の計算に天井面温度および床面温度を用いる場合で説明したが、天井面付近の温度および床面付近の温度であってもよい。例えば、吸込口1に室温を検出する室温センサを設けてもよい。この場合、室温センサが検出する温度を天井面付近の温度とすることができる。 Although the case where the ceiling surface temperature and the floor surface temperature are used for the calculation of the buoyancy has been described, the temperature near the ceiling surface and the temperature near the floor surface may be used. For example, a room temperature sensor that detects room temperature may be provided in the suction port 1. In this case, the temperature detected by the room temperature sensor can be set to the temperature near the ceiling surface.
 本実施の形態4の空気調和機10の動作は、浮力算出手段107による浮力計算処理を除いて、図23を参照して説明した実施の形態3の動作手順と同様になるため、その詳細な説明を省略する。 The operation of the air conditioner 10 of the fourth embodiment is the same as the operation procedure of the third embodiment described with reference to FIG. 23 except for the buoyancy calculation process by the buoyancy calculation means 107. The explanation is omitted.
 本実施の形態4の空気調和機10は、冷媒と熱交換した後の調和空気の温度である調和空気温度を検出する調和空気温度センサ11を有する。制御装置50cは、浮力算出手段107と、推定手段108とを有する。浮力算出手段107は、非接触型温度センサ7によって検出される室内の空間の天井面温度と床面温度との温度差ΔTudと、送風機3の回転数Rと、調和空気温度とに基づいて浮力を算出する。推定手段108は、浮力算出手段107によって算出された浮力と、送風機3の回転数Rと、目標地点の角度θvとに基づいて筐体60の床面からの高さhを推定する。風量設定手段105は、新たに目標地点が設定されると、推定手段108によって推定された高さhを基準として、新たな目標地点の角度θvに対応して送風機3の回転数Rを求める。 The air conditioner 10 of the fourth embodiment has a conditioned air temperature sensor 11 that detects the conditioned air temperature, which is the temperature of the conditioned air after heat exchange with the refrigerant. The control device 50c has a buoyancy calculating means 107 and an estimating means 108. The buoyancy calculation means 107 has a buoyancy based on the temperature difference ΔTud between the ceiling surface temperature and the floor surface temperature of the indoor space detected by the non-contact temperature sensor 7, the rotation speed R of the blower 3, and the harmonized air temperature. Is calculated. The estimation means 108 estimates the height h of the housing 60 from the floor surface based on the buoyancy calculated by the buoyancy calculation means 107, the rotation speed R of the blower 3, and the angle θv of the target point. When the target point is newly set, the air volume setting means 105 obtains the rotation speed R of the blower 3 corresponding to the angle θv of the new target point with reference to the height h estimated by the estimation means 108.
 本実施の形態4によれば、室内空間の垂直方向の温度差に起因する浮力を考慮して室内機30が設置された高さhが推定されることで、実施の形態3と同様な効果が得られる。 According to the fourth embodiment, the height h in which the indoor unit 30 is installed is estimated in consideration of the buoyancy caused by the temperature difference in the vertical direction of the indoor space, so that the same effect as that of the third embodiment is obtained. Is obtained.
 空気調和機10の設計段階では、床面から吹出口6までの高さhについて設計値が設定されるが、実際の住居においては、設計値通りに室内機30が据え付けられていないケースがある。そのため、高さhとして設計値を制御装置に予め登録していても、設計値を元に設定される風量が実際の住居に適していないことがある。また、室内機30が設置される室内の環境も住居毎に異なる。このような場合であっても、本実施の形態4では、実施の形態3と同様に、浮力に対応して床面から室内機30までの高さhを推定することで、室内機30が据え付けられている環境に応じて風量を補正することができる。 At the design stage of the air conditioner 10, a design value is set for the height h from the floor surface to the air outlet 6, but in an actual residence, the indoor unit 30 may not be installed according to the design value. .. Therefore, even if the design value is registered in the control device as the height h in advance, the air volume set based on the design value may not be suitable for the actual residence. In addition, the indoor environment in which the indoor unit 30 is installed also differs from house to house. Even in such a case, in the fourth embodiment, as in the third embodiment, the indoor unit 30 can be formed by estimating the height h from the floor surface to the indoor unit 30 corresponding to the buoyancy. The air volume can be corrected according to the installed environment.
 なお、実施の形態1~4では、空気調和機10が暖房運転を行う場合で説明したが、実施の形態1~4を冷房運転の場合に適用してもよい。また、実施の形態1~4のうち、2つ以上の実施の形態を組み合わせてもよい。 In the first to fourth embodiments, the case where the air conditioner 10 performs the heating operation has been described, but the first to fourth embodiments may be applied to the cooling operation. Further, two or more embodiments may be combined from the first to fourth embodiments.
 1 吸込口、2 熱交換器、3 送風機、4 第1風向板、4a~4d 羽根、5 第2風向板、5a 前方羽根、5b 後方羽根、6 吹出口、7 非接触型温度センサ、10 空気調和機、11 調和空気温度センサ、12 室温センサ、13 風路、20 室外機、21 圧縮機、22 四方弁、23 熱源側熱交換器、24 膨張弁、25 送風機、30 室内機、34 第1風向板駆動部、35 第2風向板駆動部、40 冷媒回路、41 冷媒配管、50、50a~50c 制御装置、51 メモリ、52 CPU、60 筐体、71 固定軸、72 可動軸、73 円板、74 ステッピングモータ、75 ベルト、81a、81b 回転軸、82a、82b 円板、83 ステッピングモータ、84 ベルト、101 冷凍サイクル制御手段、102 センサ出力解析手段、103 目標地点温度取得手段、104 到達度判定手段、105 風量設定手段、106 送風機制御手段、107 浮力算出手段、108 推定手段、110 調整量記録手段。 1 suction port, 2 heat exchanger, 3 blower, 4 1st air direction plate, 4a-4d blades, 5 2nd air direction plate, 5a front blade, 5b rear blade, 6 outlet, 7 non-contact type temperature sensor, 10 air Harmonizer, 11 Harmonized air temperature sensor, 12 Room temperature sensor, 13 Air passage, 20 Outdoor unit, 21 Compressor, 22 Four-way valve, 23 Heat source side heat exchanger, 24 Expansion valve, 25 Blower, 30 Indoor unit, 34 No. 1 Wind direction plate drive unit, 35 second wind direction plate drive unit, 40 refrigerant circuit, 41 refrigerant piping, 50, 50a to 50c control device, 51 memory, 52 CPU, 60 housing, 71 fixed shaft, 72 movable shaft, 73 disk , 74 stepping motor, 75 belt, 81a, 81b rotating shaft, 82a, 82b disk, 83 stepping motor, 84 belt, 101 refrigeration cycle control means, 102 sensor output analysis means, 103 target point temperature acquisition means, 104 reachability determination Means, 105 air volume setting means, 106 blower control means, 107 buoyancy calculation means, 108 estimation means, 110 adjustment amount recording means.

Claims (5)

  1.  吸込口および吹出口が形成された筐体と、
     前記筐体内に設けられ、室内の空気を前記吸込口から吸い込んで前記吹出口から吹き出す送風機と、
     前記筐体内に設けられ、前記吸込口から吸い込まれた前記空気と冷媒とを熱交換させる熱交換器と、
     前記室内の空間の温度分布を検出する非接触型温度センサと、
     前記送風機の回転数を制御する制御装置と、を有し、
     前記制御装置は、
     前記非接触型温度センサによって検出される前記温度分布の情報から目標地点に前記送風機から吹き出された空気が到達しているか否かを判定する到達度判定手段と、
     前記送風機から吹き出された空気が目標地点に到達するように前記送風機の回転数を設定する風量設定手段と、
    を有する空気調和機。
    A housing with a suction port and an outlet,
    A blower provided in the housing, which sucks indoor air from the suction port and blows it out from the air outlet.
    A heat exchanger provided in the housing and for heat exchange between the air sucked from the suction port and the refrigerant.
    A non-contact temperature sensor that detects the temperature distribution in the indoor space,
    It has a control device for controlling the rotation speed of the blower.
    The control device is
    A reachability determining means for determining whether or not the air blown from the blower has reached the target point from the temperature distribution information detected by the non-contact temperature sensor.
    An air volume setting means for setting the rotation speed of the blower so that the air blown from the blower reaches the target point, and
    Air conditioner with.
  2.  前記制御装置は、複数の前記目標地点のそれぞれに対応して、前記送風機の基準回転数に対する調整量を記憶する調整量記録手段を有し、
     前記風量設定手段は、
     前記目標地点に対応する前記調整量が前記調整量記録手段に記録されていると、記録された前記調整量および前記基準回転数を用いて前記送風機の回転数を設定する、
     請求項1に記載の空気調和機。
    The control device has an adjustment amount recording means for storing an adjustment amount with respect to a reference rotation speed of the blower corresponding to each of the plurality of target points.
    The air volume setting means
    When the adjustment amount corresponding to the target point is recorded in the adjustment amount recording means, the rotation speed of the blower is set using the recorded adjustment amount and the reference rotation speed.
    The air conditioner according to claim 1.
  3.  室温を検出する室温センサと、
     前記熱交換器において冷媒と熱交換した後の空気の温度である調和空気温度を検出する調和空気温度センサと、をさらに有し、
     前記制御装置は、
     前記送風機の回転数と、前記室温と、前記調和空気温度とに基づいて浮力を算出する浮力算出手段と、
     前記浮力算出手段によって算出された浮力と、前記送風機の回転数と、前記非接触型温度センサを基準とした前記目標地点の方向を示す角度とに基づいて前記筐体の床面からの高さを推定する推定手段と、を有し、
     前記風量設定手段は、
     新たに前記目標地点が設定されると、前記推定手段によって推定された前記高さを基準として、新たな前記目標地点の前記角度に対応して前記送風機の回転数を求める、
     請求項1に記載の空気調和機。
    A room temperature sensor that detects room temperature and
    Further, the heat exchanger further includes a conditioned air temperature sensor that detects the conditioned air temperature, which is the temperature of the air after heat exchange with the refrigerant.
    The control device is
    A buoyancy calculating means for calculating buoyancy based on the number of revolutions of the blower, the room temperature, and the conditioned air temperature.
    The height of the housing from the floor surface based on the buoyancy calculated by the buoyancy calculating means, the rotation speed of the blower, and the angle indicating the direction of the target point with reference to the non-contact temperature sensor. Has an estimation means to estimate,
    The air volume setting means
    When the target point is newly set, the rotation speed of the blower is obtained according to the angle of the new target point with reference to the height estimated by the estimation means.
    The air conditioner according to claim 1.
  4.  前記熱交換器において冷媒と熱交換した後の空気の温度である調和空気温度を検出する調和空気温度センサをさらに有し、
     前記制御装置は、
     前記非接触型温度センサによって検出される前記室内の空間の天井面温度と床面温度との温度差と、前記送風機の回転数と、前記調和空気温度とに基づいて浮力を算出する浮力算出手段と、
     前記浮力算出手段によって算出された浮力と、前記送風機の回転数と、前記非接触型温度センサを基準とした前記目標地点の方向を示す角度とに基づいて前記筐体の床面からの高さを推定する推定手段と、を有し、
     前記風量設定手段は、
     新たに前記目標地点が設定されると、前記推定手段によって推定された前記高さを基準として、新たな前記目標地点の前記角度に対応して前記送風機の回転数を求める、
     請求項1に記載の空気調和機。
    Further having a conditioned air temperature sensor for detecting the conditioned air temperature which is the temperature of the air after heat exchange with the refrigerant in the heat exchanger.
    The control device is
    A buoyancy calculation means for calculating buoyancy based on the temperature difference between the ceiling surface temperature and the floor surface temperature of the indoor space detected by the non-contact type temperature sensor, the rotation speed of the blower, and the harmonized air temperature. When,
    The height of the housing from the floor surface based on the buoyancy calculated by the buoyancy calculating means, the rotation speed of the blower, and the angle indicating the direction of the target point with reference to the non-contact temperature sensor. Has an estimation means to estimate,
    The air volume setting means
    When the target point is newly set, the rotation speed of the blower is obtained according to the angle of the new target point with reference to the height estimated by the estimation means.
    The air conditioner according to claim 1.
  5.  前記制御装置は、前記推定手段によって推定される前記高さを初期値として記憶するメモリをさらに有し、
     前記推定手段は、
     前記新たな目標地点の前記角度に対応して新たに推定された前記高さと、前記初期値との差が決められた閾値より大きい場合、前記新たに推定された高さを前記初期値の代わりに前記メモリに記憶させる、
     請求項3または4に記載の空気調和機。
    The control device further has a memory for storing the height estimated by the estimation means as an initial value.
    The estimation means
    When the difference between the newly estimated height corresponding to the angle of the new target point and the initial value is larger than the determined threshold value, the newly estimated height is used instead of the initial value. To be stored in the memory
    The air conditioner according to claim 3 or 4.
PCT/JP2019/031147 2019-08-07 2019-08-07 Air conditioner WO2021024421A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/031147 WO2021024421A1 (en) 2019-08-07 2019-08-07 Air conditioner
JP2021538625A JP7209846B2 (en) 2019-08-07 2019-08-07 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031147 WO2021024421A1 (en) 2019-08-07 2019-08-07 Air conditioner

Publications (1)

Publication Number Publication Date
WO2021024421A1 true WO2021024421A1 (en) 2021-02-11

Family

ID=74504013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031147 WO2021024421A1 (en) 2019-08-07 2019-08-07 Air conditioner

Country Status (2)

Country Link
JP (1) JP7209846B2 (en)
WO (1) WO2021024421A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109312A (en) * 1992-09-25 1994-04-19 Hitachi Ltd Air-conditioning machine
JP2009168428A (en) * 2007-12-21 2009-07-30 Panasonic Corp Air conditioner
JP2012102926A (en) * 2010-11-09 2012-05-31 Daikin Industries Ltd Air conditioner
JP2012251707A (en) * 2011-06-02 2012-12-20 Fujitsu General Ltd Ceiling-embedded type air conditioner
WO2016143122A1 (en) * 2015-03-12 2016-09-15 三菱電機株式会社 Air conditioner
WO2017203584A1 (en) * 2016-05-23 2017-11-30 三菱電機株式会社 Air conditioner
WO2018150535A1 (en) * 2017-02-17 2018-08-23 三菱電機株式会社 Indoor unit and air conditioning device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311591A (en) * 1997-05-15 1998-11-24 Matsushita Electric Ind Co Ltd Control device of air-conditioning equipment
JPH11190550A (en) * 1997-10-20 1999-07-13 Sekisui Chem Co Ltd Air-conditioner
JP5140705B2 (en) 2010-07-08 2013-02-13 新菱冷熱工業株式会社 Control system for floor blowing air conditioning equipment, control method therefor, and control program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109312A (en) * 1992-09-25 1994-04-19 Hitachi Ltd Air-conditioning machine
JP2009168428A (en) * 2007-12-21 2009-07-30 Panasonic Corp Air conditioner
JP2012102926A (en) * 2010-11-09 2012-05-31 Daikin Industries Ltd Air conditioner
JP2012251707A (en) * 2011-06-02 2012-12-20 Fujitsu General Ltd Ceiling-embedded type air conditioner
WO2016143122A1 (en) * 2015-03-12 2016-09-15 三菱電機株式会社 Air conditioner
WO2017203584A1 (en) * 2016-05-23 2017-11-30 三菱電機株式会社 Air conditioner
WO2018150535A1 (en) * 2017-02-17 2018-08-23 三菱電機株式会社 Indoor unit and air conditioning device

Also Published As

Publication number Publication date
JP7209846B2 (en) 2023-01-20
JPWO2021024421A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP5847034B2 (en) Air conditioner
JP6790220B2 (en) Indoor unit and air conditioner
JP6375520B2 (en) Air conditioner
EP1985936B1 (en) Air Conditioner and Control Method thereof
JP5819271B2 (en) Air conditioner
KR102168705B1 (en) Method for controlling a ceiling type air conditioner
JP6596269B2 (en) Air conditioner
EP3499141B1 (en) Air conditioner
JP7055218B2 (en) Air conditioner, air conditioner control method and program
JP6167305B2 (en) Air conditioner
JP6072561B2 (en) Air conditioning system
JP6091348B2 (en) Air conditioner
JP7199597B2 (en) Air conditioning system and method for controlling air conditioner
KR101253239B1 (en) Air conditioner
AU2004286118B2 (en) Air conditioner and control method thereof
JPWO2018229923A1 (en) Air conditioner indoor unit
JP7086219B2 (en) Air conditioners, control devices, air conditioning systems, air conditioning control methods and programs
JP7206684B2 (en) Environmental control system and air conditioner
JP7321283B2 (en) Control devices, air conditioners and air conditioning systems
WO2021024421A1 (en) Air conditioner
JPWO2018078709A1 (en) Air conditioning system, air conditioning control device, air conditioning method and program
WO2021024422A1 (en) Air conditioner
JP6921318B2 (en) Indoor unit of air conditioner
JP7150176B2 (en) Indoor unit of air conditioner
JP6851483B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538625

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940781

Country of ref document: EP

Kind code of ref document: A1