WO2021019977A1 - Washing machine - Google Patents

Washing machine Download PDF

Info

Publication number
WO2021019977A1
WO2021019977A1 PCT/JP2020/024939 JP2020024939W WO2021019977A1 WO 2021019977 A1 WO2021019977 A1 WO 2021019977A1 JP 2020024939 W JP2020024939 W JP 2020024939W WO 2021019977 A1 WO2021019977 A1 WO 2021019977A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
overload
detection unit
low
Prior art date
Application number
PCT/JP2020/024939
Other languages
French (fr)
Japanese (ja)
Inventor
昊 孫
中尾 浩
亀田 晃史
冉 王
高橋 新
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080052720.6A priority Critical patent/CN114144552A/en
Publication of WO2021019977A1 publication Critical patent/WO2021019977A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/42Safety arrangements, e.g. for stopping rotation of the receptacle upon opening of the casing door
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F33/40Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry of centrifugal separation of water from the laundry
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/44Current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • This disclosure relates to a washing machine.
  • This washing machine is provided with a water tank, a rotary tank rotatably arranged inside the water tank, a motor for rotating the rotary tank, and a control circuit for controlling the motor and the like.
  • the motor is composed of a rotor having a ring-shaped permanent magnet and a stator having a three-phase winding, and a thermistor which is a temperature detecting means is arranged in the vicinity of the winding of the stator.
  • the control circuit detects the temperature of the winding of the stator by the voltage of the thermistor (see, for example, Patent Document 1).
  • the present disclosure provides a washing machine that improves the safety of the motor with an inexpensive configuration.
  • the washing machine in the present disclosure includes a rotary tub, a motor that rotationally drives the rotary tub, an inverter circuit that converts a direct current into an alternating current to drive the motor, and a current detector that detects the current flowing through the motor. Be prepared.
  • a low-pass filter unit that performs low-pass filter processing on the current detected by the current detection unit and outputs the low-pass filtered value as the processed current value, and an overload detection unit that detects the overload state of the motor. It includes a control unit that transmits a motor drive command to the inverter circuit and controls the motor through the front inverter circuit.
  • the overload detection unit determines the overload state of the motor based on the processed current value output by the low-pass filter unit, and the control unit determines the overload state of the motor based on the determination result of the overload detection unit. Controls rotational drive.
  • the washing machine in the present disclosure improves the safety of the motor due to its inexpensive configuration.
  • FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a washing machine according to the first embodiment.
  • FIG. 2 is a block diagram showing a circuit configuration of the washing machine according to the first embodiment.
  • FIG. 3 is a characteristic diagram of the motor winding temperature at each current value of the motor of the washing machine according to the first embodiment.
  • FIG. 4 is a flowchart of the overload state detection process of the motor of the washing machine according to the first embodiment.
  • FIG. 5 is a flowchart of the inverter control process of the motor of the washing machine according to the first embodiment.
  • FIG. 6 is a diagram showing the relationship between the motor current (after low-pass filter processing) of the washing machine and the motor drive command according to the first embodiment.
  • FIG. 7 is a flowchart of the inverter control process of the motor of the washing machine according to the second embodiment.
  • FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a washing machine according to the first embodiment.
  • a water tank 2 formed in a bottomed cylindrical shape is elastically supported by a suspension structure (not shown).
  • the water tank 2 is supported by tilting its axial direction downward from the front side (left side in FIG. 1) to the back side (right side in FIG. 1).
  • a rotary tank 3 formed in a bottomed cylindrical shape is rotatably arranged.
  • a donut-shaped fluid balancer 15 is arranged on the front side of the rotary tank 3.
  • the fluid balancer 15 is divided into a plurality of storage chambers (not shown) by a plurality of partition plates provided in the circumferential direction, and each partition plate is formed with a communication hole.
  • a liquid having a large specific gravity, such as calcium chloride, is stored inside the fluid balancer 15. Liquid can move from one storage chamber to the next through the communication holes. If the laundry inside the rotary tub 3 is biased during the washing operation, an eccentric load is generated on the rotary tub 3. The liquid moves to the opposite side of the eccentric load to correct the deviation of the center of gravity and reduce the vibration noise of the rotary tank 3.
  • a clothes entrance 4 leading to the opening end of the rotary tub 3 is formed on the front side of the washing machine main body 1, and the clothes entrance 4 is covered with a door 5 so as to be openable and closable.
  • the user can put in and take out the laundry in the rotary tub 3 through the clothes entrance 4 with the door 5 open.
  • An operation display panel 10 which is an input setting unit 25 (see FIG. 2) is provided on the upper part of the front surface of the washing machine main body 1 which is above the clothes entrance 4. The user can set a desired driving course by operating the operation display panel 10.
  • the motor 7 is arranged in the lower part of the water tank 2.
  • the motor 7 is connected to a rotation center shaft 17 provided at the lower bottom of the rotary tank 3 via a pulley 14 and a belt 16.
  • the rotational driving force of the motor 7 is transmitted to the rotary tank 3 via the pulley 14 and the belt 16 to rotate the rotary tank 3 in the forward or reverse direction.
  • the water injection pipe 8 is connected to the upper part of the water tank 2, and the drainage pipe 9 is connected to the lower part of the water tank 2.
  • a water supply valve 27 and a drain valve 28 are provided in the water injection pipe line 8 and the drainage pipe line 9 so as to be openable and closable. By opening the water supply valve 27 and the drain valve 28, water injection and drainage into the water tank 2 are executed.
  • FIG. 2 is a block diagram showing a circuit configuration of the washing machine according to the first embodiment.
  • the circuit for driving the motor 7 is provided with a rectifier 21, a choke coil 22, and a smoothing capacitor 23.
  • the AC voltage of the commercial power supply 20 is rectified by the rectifier 21.
  • the rectified AC power is converted into a DC voltage by a smoothing circuit including a choke coil 22 and a smoothing capacitor 23. Therefore, the converted DC voltage is applied to the inverter circuit 24.
  • the inverter circuit 24 is composed of a three-phase full-bridge inverter circuit composed of six power switching semiconductors 24a to 24f and an antiparallel diode.
  • the inverter circuit 24 is composed of an insulated gate bipolar transistor (IGBT), an antiparallel diode, and an intelligent power module (hereinafter referred to as IPM) incorporating a drive circuit and a protection circuit thereof.
  • IPM intelligent power module
  • a motor 7 is connected to the output terminal of the inverter circuit 24. Further, the inverter circuit 24 controls the operation of the water supply valve 27, the drain valve 28, the blower fan 12, and the heat pump 29 by the load drive unit 26 based on the operation instruction and the monitoring information.
  • the motor 7 is a brushless motor.
  • the motor 7 includes a permanent magnet constituting a rotor, a stator, and a rotor position detecting unit composed of three Hall ICs, Hall IC30a, Hall IC30b, and Hall IC30c.
  • the Hall IC 30a, Hall IC 30b, and Hall IC 30c detect a position output reference signal for each 60 degree electric angle from the relative position (rotor position) between the permanent magnet and the stator.
  • the current detecting means in the present embodiment is composed of a shunt resistor (not shown) and is provided in the inverter circuit 24.
  • the current detecting means detects the motor currents Iu, Iv, and Iw of the motor 7.
  • the control unit 31 is composed of a microcomputer, an inverter control timer (PWM timer) built in the microcomputer, a high-speed A / D conversion circuit, a memory circuit (ROM, RAM), and the like.
  • the control unit 31 detects the electric angle from the output signals of the hall IC 30a, the hall IC 30b, and the hall IC 30c that constitute the rotor position detection unit. Further, the control unit 31 performs 3-phase / 2-phase dq conversion that decomposes the current component Id corresponding to the magnetic flux and the current component Iq corresponding to the torque, and 3 the voltage component Vd corresponding to the magnetic flux and the voltage component Vq corresponding to the torque.
  • the 2-phase / 3-phase dq inverse conversion that converts the phase motor drive control voltage Vu, Vv, Vw is performed, and the switching of the IGBT of the drive circuit 32 is PWM-controlled according to the 3-phase motor drive control voltage Vu, Vv, Vw.
  • the control unit 31 controls energization of the windings 7a, 7b, and 7c, which are the three-phase windings of the stator, and rotates the motor 7 at a required rotation speed.
  • the microcomputer of the control unit 31 plays the roles of the low-pass filter processing unit 33 and the overload detection unit 34. The detailed operation of the low-pass filter processing unit 33 and the overload detection unit 34 will be described later.
  • the user opens the door 5, puts the laundry and the detergent into the rotary tub 3, and operates the operation display panel 10 which is the input setting unit 25 to start the operation.
  • the control unit 31 opens the water supply valve 27 and injects water into the water tank 2.
  • the control unit 31 closes the water supply valve 27 and starts the washing operation.
  • control unit 31 rotates the rotary tank 3 by rotationally driving the motor 7.
  • the laundry housed in the rotary tub 3 is lifted in the rotational direction by the stirring protrusions as the rotary tub 3 rotates, and is dropped from an appropriate height position and stirred. In this way, in the washing operation, the dirt is removed by tapping the laundry by lifting and dropping it.
  • control unit 31 When a predetermined time elapses in the washing operation, the control unit 31 opens the drain valve 28 and discharges the dirty washing liquid from the drain pipe line 9. Subsequently, the control unit 31 dehydrates the washing liquid contained in the laundry by a dehydrating operation of rotating the rotary tub 3 at high speed.
  • FIG. 3 is a characteristic diagram of the motor winding temperature at each current value of the motor of the washing machine according to the first embodiment.
  • the motor winding temperature is the temperature of the windings 7a, 7b, and 7c, which are three-phase windings.
  • the horizontal axis represents the operating time and the vertical axis represents the motor winding temperature, and the change in the motor winding temperature at each current value is shown.
  • Each current value is set to a predetermined value so as to decrease in the order of motor current A, motor current B, motor current C, and motor current D.
  • the motor winding temperature rises in proportion to the square of the motor current value, and after a certain period of time, the motor winding temperature saturates. If this saturation temperature exceeds the heat resistant temperature of the motor winding, the motor winding may burn out. Therefore, it is necessary to control the motor current value so that the motor winding temperature does not exceed the heat resistant temperature.
  • the current value at which the winding saturation temperature may exceed the heat resistant temperature of the motor winding is experimentally measured in advance, and a predetermined threshold value is set based on the current value.
  • a predetermined time elapses while the motor current value exceeds a predetermined threshold value, it is defined as a motor overload state.
  • FIG. 4 is a flowchart of the overload state detection process of the washing machine motor according to the first embodiment
  • FIG. 5 is a flowchart of the inverter control process of the washing machine motor according to the first embodiment.
  • control unit 31 starts the overload state detection process (step S101) and also starts the inverter control process shown in FIG.
  • the two processes are performed independently in parallel, and are repeatedly executed at their respective time intervals.
  • step S101 when the overload state detection process is started (step S101), the overload detection unit 34 performs a low-pass filter process of the motor current value (step S102).
  • the change between the previous motor current value and the current motor current value is calculated, the change is reduced by a constant ratio, and the change is added to the previously detected current.
  • These processes are arithmetically processed by the low-pass filter processing unit 33, which is a microcomputer.
  • the current value that flows when the motor is started becomes a large current value momentarily and gradually converges to a constant value.
  • the time constant of the low-pass filter is set to a time (for example, 10 seconds) that is substantially equivalent to the ON time of the motor drive.
  • the overload detection unit 34 compares the motor current value after the low-pass filter processing with the threshold value ⁇ to determine whether the motor is in the overload state (step S103).
  • step S103 when the motor current value is less than ⁇ (steps S103, No), or when the motor current value is ⁇ or more and the predetermined time t1 has not elapsed (steps S103, No), the overload state detection process (Step S107).
  • the overload state detection process Step S107.
  • step S103 when the predetermined time t1 elapses with the motor current value being ⁇ or more (step S103, Yes), the overload detection unit 34 sets the motor overload state, that is, the motor is in the overload state. If there is, it is set (step S104).
  • the motor winding temperature may exceed the heat resistant temperature. Therefore, the motor winding must be allowed to cool until the motor current value after the low-pass filter processing becomes equal to or less than a predetermined value.
  • the threshold value ⁇ which is one-third of the threshold value ⁇ , is provided, and if the motor current value is equal to or less than the threshold value ⁇ , it is determined that the motor is not in the overloaded state.
  • the overload detection unit 34 compares the motor current value after the low-pass filter processing with the threshold value ⁇ (step S105). In step S105, if the motor current value exceeds the threshold value ⁇ (steps S105, No), the overload state detection process ends (step S107).
  • step S105 if the motor current value is equal to or less than the threshold value ⁇ (step S105, Yes), the motor overload state is cleared, that is, the determination that the motor is overloaded state is canceled (step S106). After that, the overload state detection process is terminated (step S107).
  • the control unit 31 starts the inverter control process (step S201).
  • the control unit 31 causes the drive circuit 32 to PWM control the switching of the IGBT by issuing a motor drive command (step S202).
  • the motor 7 rotationally drives the rotary tank 3 based on the motor drive command.
  • step S203 When the motor overload state is set in step S203 (step S203, Yes), the control unit 31 stops the PWM output in the drive circuit 32 (step S204). After that, the inverter control process is terminated (step S205). If the motor overload state is not set (step S203, No), the inverter control process ends (step S205).
  • FIG. 6 is a diagram showing the relationship between the motor current (after low-pass filter processing) of the washing machine and the motor drive command in the first embodiment.
  • the horizontal axis is the operating time
  • the left vertical axis is the motor current value after low-pass filter processing
  • the right vertical axis is the motor drive command.
  • the stirring period during washing is set to 1 cycle for 10 seconds in the ON state and 1 second in the OFF state, and the stirring operation is performed while flipping left and right for each cycle.
  • the motor current value after the low-pass filter processing rises while vibrating up and down when stirring is ON, and gradually decreases when stirring is OFF.
  • the motor overload state is set in the overload state detection process shown in FIG. 4 (step S104)
  • the PWM output is stopped in the inverter control process shown in FIG. 5 (step S204). Since the motor current does not flow during the period when the PWM output is stopped, the motor current value after the low-pass filter processing gradually decreases.
  • the motor current value after the low-pass filter processing takes longer to decrease as the motor current value increases. Therefore, when the motor current value is large, the time until the motor current value becomes the threshold value ⁇ or less becomes long, and as a result, the period during which the motor drive is stopped becomes long. As a result, even if the motor current value suddenly rises by the time t1 elapses in a state where the motor current value is equal to or higher than the threshold value ⁇ , the cooling time becomes longer according to the motor current value, so that the motor winding The temperature can be lowered more reliably.
  • step S106 When the motor current value after the low-pass filter processing falls below the threshold value ⁇ , the motor overload state is cleared in the overload state detection process shown in FIG. 4 (step S106). Then, the PMW output is restarted in the inverter control process shown in FIG. 5 (step S202).
  • the motor safety function can be realized at a lower cost than before by detecting the motor overload state based on the motor current after the low-pass filter processing and suppressing the motor winding temperature within the heat resistant temperature.
  • the drum-type washing machine has a rotary tub 3, a motor 7 that rotationally drives the rotary tub 3, an inverter circuit 24 that converts a direct current into an alternating current and drives the motor 7, and a motor 7. It includes a current detection unit that detects a current. Further, the low-pass filter processing unit 33 that performs low-pass filter processing on the current detected by the current detection unit and outputs the low-pass filtered value as the processed current value, and the overload detection that detects the overload state of the motor 7. A unit 34 and a control unit 31 that transmits a motor drive command to the inverter circuit 24 and controls the motor 7 through the inverter circuit 24 are provided.
  • the overload detection unit 34 determines that the motor 7 is in an overload state based on the processed current value output by the low-pass filter processing unit 33, and the control unit 31 determines that the overload detection unit 34 is in an overload state.
  • the rotational drive of the motor 7 is controlled based on the determination result.
  • the overload detection unit 34 states that the motor 7 is in an overload state when a predetermined time elapses in a state where the processed current value is ⁇ or more, which is the first value.
  • the motor overload state may be released when it is determined that the current value is present and the processed current value is ⁇ , which is a second value smaller than ⁇ , which is the first value.
  • the washing machine according to the second embodiment is different from the washing machine 100 according to the first embodiment in the inverter control process during the dehydration operation.
  • the second embodiment will be described with reference to the same reference numerals for the same configurations as those of the first embodiment.
  • FIG. 7 is a flowchart of the inverter control process of the motor of the washing machine according to the second embodiment.
  • the control unit 31 starts the inverter control process (step S301).
  • the control unit 31 determines whether or not the PWM output stop history is set, that is, whether or not the history of stopping due to the motor overload state is set in the previous inverter control process (step S302). ..
  • the PWM output stop history is set (step S302, Yes)
  • a motor drive command is transmitted so that the rotation speed of the motor 7 decreases (step S303). For example, when an overload state is detected when the dehydration rotation speed is 1400 rpm, the dehydration rotation speed is reduced to 1300 rpm in the next inverter control process.
  • step S304 the control unit 31 clears the PWM output stop history, that is, cancels the history of stopping due to the motor overload state in the previous inverter control process (step S304).
  • step S305 the drive circuit 32 outputs PWM according to the motor drive command received from the control unit 31 (step S305).
  • step 306 the control unit 31 refers to the motor overload state (S306).
  • the motor overload state is set (step S306, Yes)
  • the PWM output is stopped in the drive circuit 32 (step S307)
  • the PWM output stop history is set (step S308).
  • the inverter control process is terminated (step S309).
  • the next inverter control process is started (step S301).
  • step S301 to S309 the rotation speed of the motor 7 is adjusted so that the motor current value becomes equal to or less than the overload current value.
  • the weakening magnetic flux is controlled according to the increase in the motor-induced voltage, so the motor current increases as the rotation speed increases. Therefore, by adjusting the rotation speed of the motor 7, it is possible to effectively suppress an excessive rise in the motor winding temperature.
  • the drum-type washing machine has a rotary tub 3, a motor 7 that rotationally drives the rotary tub 3, an inverter circuit 24 that converts a direct current into an alternating current and drives the motor 7, and a motor 7. It includes a current detection unit that detects a current. Further, the low-pass filter processing unit 33 that performs low-pass filter processing on the current detected by the current detection unit and outputs the low-pass filtered value as the processed current value, and the overload detection that detects the overload state of the motor 7. A unit 34 and a control unit 31 that transmits a motor drive command to the inverter circuit 24 and controls the motor 7 through the inverter circuit 24 are provided.
  • the overload detection unit 34 determines that the motor 7 is in the overload state based on the processed current value output by the low-pass filter processing unit 33, and the control unit 31 determines that the motor 7 is in the overload state, and the control unit 31 is in the overload state in the dehydration operation. If is, the rotation speed of the motor 7 is reduced.
  • the rotary tub type washing machine has been described as an example of the washing machine.
  • the washing machine may be any one in which the rotary tub is rotationally driven by a motor. Therefore, the washing machine is not limited to the drum type washing machine, and may be a vertical type washing machine or a two-tank type washing machine.
  • the IGBT has been described as an example of the power switching semiconductor.
  • the power switching semiconductor may be composed of a metal oxide film semiconductor field effect transistor (MOSFET) or the like.
  • the shunt resistance has been described as an example of the current detection unit.
  • the rotor position detection unit 30 that detects the rotor position based on the output reference signals H1 to H3 by the Hall IC has been described.
  • the rotor position detection unit is not limited to the one using the Hall IC.
  • the rotor position detection unit may detect the rotor position by calculation from the phase current of the motor and the three-phase motor drive control voltage.
  • the arithmetic processing in the microcomputer has been described as an example of the low-pass filter unit, but the present invention is not limited to this.
  • a low-pass filter configuration may be realized on the circuit by using a resistor and a capacitor as the low-pass filter unit.
  • the change amount between the previous motor current value and the current motor current value is calculated, and the change amount is reduced by a constant ratio. Then, the configuration added to the previously detected current was explained.
  • the low-pass filter processing is not limited to this method. For example, a simple moving average value may be used.
  • the low-pass filter processing (S102) performed as a part of the overload state detection processing has been described as an example of the low-pass filter processing.
  • the timing of executing the low-pass filter processing is not limited to step 102, and may be executed independently of the overload state detection processing.
  • the threshold value ⁇ which is one-third of the threshold value ⁇ , has been described as a reference value for determining that the motor is not in an overloaded state.
  • the reference value is not limited to one-third of the threshold value ⁇ as long as it can be determined that the motor is not overloaded.
  • the control of the rotary drive of the motor in the motor overload state is not limited to the stop of the drive.
  • the stirring time during washing may be changed, the ON state time may be shortened, and the OFF state time may be lengthened.
  • the method of controlling the rotational drive of the motor is not limited to the drive stop of the motor 7 in the motor overload state, and may be the stop of the washing operation. For example, when it is determined that the motor is overloaded a predetermined number of times or more, it may be determined that the motor 7 has an abnormality. If it is determined that the motor 7 has an abnormality, the washing operation may be stopped to notify the abnormality.
  • the present disclosure is applicable to a device for rotationally driving a rotary tank with a motor. Specifically, the present disclosure is applicable to vertical washing machines, drum-type washing machines, two-tank washing machines, and the like.

Abstract

This drum-type washing machine comprises: a rotary tub; a motor (7) which rotationally drives the rotary tub; an inverter circuit (24) which converts direct current into alternating current and drives the motor (7); and a current detection unit which detects the current flowing through the motor (7). The drum-type washing machine further comprises: a low-pass filter processing unit (33) which performs low-pass filter processing on the current detected by the current detection unit and outputs the low-pass filtered value as a processed current value; an overload detection unit (34) which detects the overload state of the motor (7); and a control unit (31) which transmits a motor drive command to the inverter circuit (24) and controls the motor (7) through the inverter circuit (24). Further, the overload detection unit (34) determines the overload state of the motor (7) on the basis of the processed current value output by the low-pass filter processing unit (33), and the control unit (31) controls the rotational drive of the motor (7) on the basis of the determination result of the overload detection unit (34).

Description

洗濯機Washing machine
 本開示は、洗濯機に関する。 This disclosure relates to a washing machine.
 従来、サーミスタによりステータの巻線の温度を検知する洗濯機が提案されている。 Conventionally, a washing machine that detects the temperature of the winding of the stator with a thermistor has been proposed.
 この洗濯機は、水槽と、水槽の内部に回転自在に配設された回転槽と、回転槽を回転駆動させるモータと、モータ等を制御する制御回路と、を備える。モータは、リング状の永久磁石を有するロータと、3相巻線を有するステータと、により構成されており、ステータの巻線の近傍には、温度検知手段であるサーミスタが配設されている。制御回路は、サーミスタの電圧により、ステータの巻線の温度を検知する(例えば、特許文献1参照)。 This washing machine is provided with a water tank, a rotary tank rotatably arranged inside the water tank, a motor for rotating the rotary tank, and a control circuit for controlling the motor and the like. The motor is composed of a rotor having a ring-shaped permanent magnet and a stator having a three-phase winding, and a thermistor which is a temperature detecting means is arranged in the vicinity of the winding of the stator. The control circuit detects the temperature of the winding of the stator by the voltage of the thermistor (see, for example, Patent Document 1).
特開平11-239688号公報JP-A-11-239688
 しかしながら、サーミスタ等の部品は高価であり、製造原価が高くなるという課題があった。 However, parts such as thermistors are expensive, and there is a problem that the manufacturing cost is high.
 本開示は、安価な構成によりモータの安全性を向上させる洗濯機を提供する。 The present disclosure provides a washing machine that improves the safety of the motor with an inexpensive configuration.
 本開示における洗濯機は、回転槽と、回転槽を回転駆動させるモータと、直流電流を交流電流に変換し、モータを駆動するインバータ回路と、モータに流れる電流を検出する電流検出部と、を備える。また、電流検出部により検出された電流をローパスフィルタ処理し、ローパスフィルタ処理された値を処理後の電流値として出力するローパスフィルタ部と、モータの過負荷状態を検知する過負荷検知部と、インバータ回路にモータ駆動指令を送信し、前インバータ回路を通じてモータを制御する制御部と、を備える。さらに、過負荷検知部は、ローパスフィルタ部により出力された処理後の電流値に基づいて、モータの過負荷状態を判定し、制御部は、過負荷検知部の判定結果に基づいて、モータの回転駆動を制御する。 The washing machine in the present disclosure includes a rotary tub, a motor that rotationally drives the rotary tub, an inverter circuit that converts a direct current into an alternating current to drive the motor, and a current detector that detects the current flowing through the motor. Be prepared. In addition, a low-pass filter unit that performs low-pass filter processing on the current detected by the current detection unit and outputs the low-pass filtered value as the processed current value, and an overload detection unit that detects the overload state of the motor. It includes a control unit that transmits a motor drive command to the inverter circuit and controls the motor through the front inverter circuit. Further, the overload detection unit determines the overload state of the motor based on the processed current value output by the low-pass filter unit, and the control unit determines the overload state of the motor based on the determination result of the overload detection unit. Controls rotational drive.
 本開示における洗濯機は、安価な構成によりモータの安全性を向上させる。 The washing machine in the present disclosure improves the safety of the motor due to its inexpensive configuration.
図1は、第1の実施の形態における洗濯機の概略構成を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a washing machine according to the first embodiment. 図2は、第1の実施の形態における洗濯機の回路構成を示すブロック図である。FIG. 2 is a block diagram showing a circuit configuration of the washing machine according to the first embodiment. 図3は、第1の実施の形態における洗濯機のモータの各電流値におけるモータ巻線温度の特性図である。FIG. 3 is a characteristic diagram of the motor winding temperature at each current value of the motor of the washing machine according to the first embodiment. 図4は、第1の実施の形態における洗濯機のモータの過負荷状態検知処理のフローチャートである。FIG. 4 is a flowchart of the overload state detection process of the motor of the washing machine according to the first embodiment. 図5は、第1の実施の形態における洗濯機のモータのインバータ制御処理のフローチャートである。FIG. 5 is a flowchart of the inverter control process of the motor of the washing machine according to the first embodiment. 図6は、第1の実施の形態における洗濯機のモータ電流(ローパスフィルタ処理後)とモータ駆動指令の関係図である。FIG. 6 is a diagram showing the relationship between the motor current (after low-pass filter processing) of the washing machine and the motor drive command according to the first embodiment. 図7は、第2の実施の形態における洗濯機のモータのインバータ制御処理のフローチャートである。FIG. 7 is a flowchart of the inverter control process of the motor of the washing machine according to the second embodiment.
 以下、図面を参照しながら、実施の形態を詳細に説明する。なお、添付図面及び以下の説明によって本発明が限定されるものではない。 Hereinafter, embodiments will be described in detail with reference to the drawings. The present invention is not limited by the accompanying drawings and the following description.
 (第1の実施の形態)
 以下、図1~図6を用いて、第1の実施の形態を説明する。
(First Embodiment)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 6.
 (洗濯機の基本構成)
 図1は、第1の実施の形態における洗濯機の概略構成を示す縦断面図である。
(Basic configuration of washing machine)
FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a washing machine according to the first embodiment.
 図1に示すように、洗濯機本体1の内部には、有底円筒形に形成された水槽2がサスペンション構造(図示せず)により弾性支持されている。水槽2は、その軸心方向を正面側(図1の左側)から背面側(図1の右側)に向けて下向きに傾斜させて支持されている。水槽2の内部には、有底円筒形に形成された回転槽3が回転自在に配設されている。回転槽3の内壁面には、洗濯水を回転槽3の内外に通過させる通水孔6と、衣類撹拌用の攪拌突起(図示せず)と、が複数形成されている。 As shown in FIG. 1, inside the washing machine main body 1, a water tank 2 formed in a bottomed cylindrical shape is elastically supported by a suspension structure (not shown). The water tank 2 is supported by tilting its axial direction downward from the front side (left side in FIG. 1) to the back side (right side in FIG. 1). Inside the water tank 2, a rotary tank 3 formed in a bottomed cylindrical shape is rotatably arranged. On the inner wall surface of the rotary tub 3, a plurality of water passage holes 6 for passing washing water to the inside and outside of the rotary tub 3 and a plurality of stirring protrusions (not shown) for stirring clothes are formed.
 回転槽3の正面側には、ドーナツ状の流体バランサ15が配設されている。流体バランサ15は、周方向に複数設けられた仕切り板により複数の貯留室(図示せず)に区切られており、それぞれの仕切り板には連通孔が形成されている。流体バランサ15の内部には、例えば塩化カルシウム等の、比重の大きな液体が貯留されている。液体は、連通孔を通じて、ある貯留室から隣の貯留室へと移動できる。洗濯運転時において回転槽3の内部の洗濯物に偏りが生じると、回転槽3に偏心荷重が生じる。液体は、偏心荷重の反対側に移動することで重心の偏りを補正し、回転槽3の振動騒音を低減させる。 A donut-shaped fluid balancer 15 is arranged on the front side of the rotary tank 3. The fluid balancer 15 is divided into a plurality of storage chambers (not shown) by a plurality of partition plates provided in the circumferential direction, and each partition plate is formed with a communication hole. A liquid having a large specific gravity, such as calcium chloride, is stored inside the fluid balancer 15. Liquid can move from one storage chamber to the next through the communication holes. If the laundry inside the rotary tub 3 is biased during the washing operation, an eccentric load is generated on the rotary tub 3. The liquid moves to the opposite side of the eccentric load to correct the deviation of the center of gravity and reduce the vibration noise of the rotary tank 3.
 洗濯機本体1の正面側には、回転槽3の開口端に通じる衣類出入口4が形成されており、衣類出入口4は、扉5により開閉自在に覆われている。使用者は、扉5を開けた状態で、衣類出入口4を通じて回転槽3内に洗濯物を出し入れできる。衣類出入口4の上方である洗濯機本体1の前面上部には、入力設定部25(図2参照)である操作表示パネル10が設けられている。使用者は、操作表示パネル10を操作することにより、所望の運転コースを設定できる。 A clothes entrance 4 leading to the opening end of the rotary tub 3 is formed on the front side of the washing machine main body 1, and the clothes entrance 4 is covered with a door 5 so as to be openable and closable. The user can put in and take out the laundry in the rotary tub 3 through the clothes entrance 4 with the door 5 open. An operation display panel 10 which is an input setting unit 25 (see FIG. 2) is provided on the upper part of the front surface of the washing machine main body 1 which is above the clothes entrance 4. The user can set a desired driving course by operating the operation display panel 10.
 モータ7は、水槽2の下部に配設されている。モータ7は、プーリ14及びベルト16を介して、回転槽3の下底部に設けられた回転中心軸17と連結されている。モータ7の回転駆動力は、プーリ14及びベルト16を介して回転槽3に伝達され、回転槽3を正転又は逆転方向に回転させる。 The motor 7 is arranged in the lower part of the water tank 2. The motor 7 is connected to a rotation center shaft 17 provided at the lower bottom of the rotary tank 3 via a pulley 14 and a belt 16. The rotational driving force of the motor 7 is transmitted to the rotary tank 3 via the pulley 14 and the belt 16 to rotate the rotary tank 3 in the forward or reverse direction.
 注水管路8は、水槽2の上部に配管接続され、排水管路9は、水槽2の下部に配管接続されている。注水管路8及び排水管路9には、給水弁27及び排水弁28が開閉可能に設けられている。給水弁27及び排水弁28をそれぞれ開放することで、水槽2内への注水及び排水が実行される。 The water injection pipe 8 is connected to the upper part of the water tank 2, and the drainage pipe 9 is connected to the lower part of the water tank 2. A water supply valve 27 and a drain valve 28 are provided in the water injection pipe line 8 and the drainage pipe line 9 so as to be openable and closable. By opening the water supply valve 27 and the drain valve 28, water injection and drainage into the water tank 2 are executed.
 (モータ駆動装置の構成)
 図2は、第1の実施の形態における洗濯機の回路構成を示すブロック図である。
(Composition of motor drive device)
FIG. 2 is a block diagram showing a circuit configuration of the washing machine according to the first embodiment.
 図2に示すように、モータ7を駆動する回路には、整流器21と、チョークコイル22と、平滑コンデンサ23と、が設けられている。商用電源20の交流電圧は、整流器21より整流される。整流された交流電力は、チョークコイル22及び平滑コンデンサ23からなる平滑回路により直流電圧に変換される。従って、インバータ回路24には、変換された直流電圧が加えられる。 As shown in FIG. 2, the circuit for driving the motor 7 is provided with a rectifier 21, a choke coil 22, and a smoothing capacitor 23. The AC voltage of the commercial power supply 20 is rectified by the rectifier 21. The rectified AC power is converted into a DC voltage by a smoothing circuit including a choke coil 22 and a smoothing capacitor 23. Therefore, the converted DC voltage is applied to the inverter circuit 24.
 インバータ回路24は、6個のパワースイッチング半導体24a~24fと逆並列ダイオードよりなる3相フルブリッジインバータ回路により構成されている。本実施の形態においては、インバータ回路24を絶縁ゲートバイポーラトランジスタ(IGBT)と逆並列ダイオード及びその駆動回路と保護回路を内蔵したインテリジェントパワーモジュール(以下、IPMという)で構成している。インバータ回路24の出力端子には、モータ7が接続されている。また、インバータ回路24は、運転指示や監視情報に基づいて、負荷駆動部26により給水弁27、排水弁28、送風ファン12、ヒートポンプ29の動作を制御する。 The inverter circuit 24 is composed of a three-phase full-bridge inverter circuit composed of six power switching semiconductors 24a to 24f and an antiparallel diode. In the present embodiment, the inverter circuit 24 is composed of an insulated gate bipolar transistor (IGBT), an antiparallel diode, and an intelligent power module (hereinafter referred to as IPM) incorporating a drive circuit and a protection circuit thereof. A motor 7 is connected to the output terminal of the inverter circuit 24. Further, the inverter circuit 24 controls the operation of the water supply valve 27, the drain valve 28, the blower fan 12, and the heat pump 29 by the load drive unit 26 based on the operation instruction and the monitoring information.
 モータ7は、ブラシレスモータである。モータ7は、回転子を構成する永久磁石と、固定子と、3つのホールIC、ホールIC30a、ホールIC30b、及びホールIC30cにより構成されたロータ位置検出部と、を備えている。ホールIC30a、ホールIC30b、及びホールIC30cは、永久磁石と固定子との相対位置(回転子位置)から、電気角60度ごとの位置出力基準信号を検出する。 The motor 7 is a brushless motor. The motor 7 includes a permanent magnet constituting a rotor, a stator, and a rotor position detecting unit composed of three Hall ICs, Hall IC30a, Hall IC30b, and Hall IC30c. The Hall IC 30a, Hall IC 30b, and Hall IC 30c detect a position output reference signal for each 60 degree electric angle from the relative position (rotor position) between the permanent magnet and the stator.
 本実施の形態における電流検出手段は、シャント抵抗(図示せず)により構成されており、インバータ回路24に設けられている。電流検出手段は、モータ7のモータ電流Iu、Iv、Iwを検出する。 The current detecting means in the present embodiment is composed of a shunt resistor (not shown) and is provided in the inverter circuit 24. The current detecting means detects the motor currents Iu, Iv, and Iw of the motor 7.
 制御部31は、マイクロコンピュータと、マイクロコンピュータに内蔵したインバータ制御タイマー(PWMタイマー)、高速A/D変換回路、メモリ回路(ROM、RAM)等より構成されている。制御部31は、ロータ位置検出部を構成するホールIC30a、ホールIC30b、及びホールIC30cの出力信号より電気角を検知する。さらに、制御部31は、磁束に対応した電流成分Idとトルクに対応した電流成分Iqに分解する3相/2相dq変換、磁束に対応した電圧成分Vdとトルクに対応した電圧成分Vqを3相モータ駆動制御電圧Vu、Vv、Vwに変換する2相/3相dq逆変換を行い、3相モータ駆動制御電圧Vu、Vv、Vwに応じて駆動回路32のIGBTのスイッチングをPWM制御する。これにより、制御部31は、固定子の3相巻線である巻線7a、巻線7b、巻線7cに対する通電を制御し、モータ7を所要回転数で回転させる。 The control unit 31 is composed of a microcomputer, an inverter control timer (PWM timer) built in the microcomputer, a high-speed A / D conversion circuit, a memory circuit (ROM, RAM), and the like. The control unit 31 detects the electric angle from the output signals of the hall IC 30a, the hall IC 30b, and the hall IC 30c that constitute the rotor position detection unit. Further, the control unit 31 performs 3-phase / 2-phase dq conversion that decomposes the current component Id corresponding to the magnetic flux and the current component Iq corresponding to the torque, and 3 the voltage component Vd corresponding to the magnetic flux and the voltage component Vq corresponding to the torque. The 2-phase / 3-phase dq inverse conversion that converts the phase motor drive control voltage Vu, Vv, Vw is performed, and the switching of the IGBT of the drive circuit 32 is PWM-controlled according to the 3-phase motor drive control voltage Vu, Vv, Vw. As a result, the control unit 31 controls energization of the windings 7a, 7b, and 7c, which are the three-phase windings of the stator, and rotates the motor 7 at a required rotation speed.
 本実施の形態では、制御部31のマイクロコンピュータが、ローパスフィルタ処理部33、及び過負荷検知部34の役割を果たしている。ローパスフィルタ処理部33、及び過負荷検知部34の詳細な動作については、後述する。 In the present embodiment, the microcomputer of the control unit 31 plays the roles of the low-pass filter processing unit 33 and the overload detection unit 34. The detailed operation of the low-pass filter processing unit 33 and the overload detection unit 34 will be described later.
 (洗濯運転の基本動作)
 使用者は、扉5を開いて回転槽3内に洗濯物及び洗剤を投入し、入力設定部25である操作表示パネル10を操作して運転を開始させる。運転が開始すると、制御部31は、給水弁27を開いて水槽2内に注水する。所定水位に達すると、制御部31は、給水弁27を閉じて洗い動作を開始する。
(Basic operation of washing operation)
The user opens the door 5, puts the laundry and the detergent into the rotary tub 3, and operates the operation display panel 10 which is the input setting unit 25 to start the operation. When the operation starts, the control unit 31 opens the water supply valve 27 and injects water into the water tank 2. When the predetermined water level is reached, the control unit 31 closes the water supply valve 27 and starts the washing operation.
 洗い動作において、制御部31は、モータ7を回転駆動させることにより回転槽3を回転させる。回転槽3内に収容された洗濯物は、回転槽3の回転に伴い、攪拌突起により回転方向に持ち上げられ、適当な高さ位置から落下して攪拌される。このように、洗い動作においては、洗濯物を持ち上げて落下させる叩き洗いにより汚れが取り除かれる。 In the washing operation, the control unit 31 rotates the rotary tank 3 by rotationally driving the motor 7. The laundry housed in the rotary tub 3 is lifted in the rotational direction by the stirring protrusions as the rotary tub 3 rotates, and is dropped from an appropriate height position and stirred. In this way, in the washing operation, the dirt is removed by tapping the laundry by lifting and dropping it.
 洗い動作において所定の時間が経過すると、制御部31は、排水弁28を開いて排水管路9から汚れた洗濯液を排出する。続いて、制御部31は、回転槽3を高速回転させる脱水動作により洗濯物に含まれた洗濯液を脱水する。 When a predetermined time elapses in the washing operation, the control unit 31 opens the drain valve 28 and discharges the dirty washing liquid from the drain pipe line 9. Subsequently, the control unit 31 dehydrates the washing liquid contained in the laundry by a dehydrating operation of rotating the rotary tub 3 at high speed.
 (モータ電流値とモータ巻線温度の関係)
 回転槽3に衣類を過剰に収容した場合、回転槽3の回転動作中において衣類がねじれ又はかみこみを起こし、モータ7に過剰な負荷がかかるという課題があった。モータ7に過剰な負荷がかかった状態、即ちモータ過負荷状態においては、モータ7に流れる電流値、即ちモータ電流値が、通常の洗濯運転時におけるモータ電流値よりも高くなる。
(Relationship between motor current value and motor winding temperature)
When the clothes are excessively stored in the rotary tank 3, there is a problem that the clothes are twisted or bitten during the rotation operation of the rotary tank 3 and an excessive load is applied to the motor 7. In a state where the motor 7 is overloaded, that is, in a motor overloaded state, the current value flowing through the motor 7, that is, the motor current value becomes higher than the motor current value during normal washing operation.
 図3は、第1の実施の形態における洗濯機のモータの各電流値におけるモータ巻線温度の特性図である。 FIG. 3 is a characteristic diagram of the motor winding temperature at each current value of the motor of the washing machine according to the first embodiment.
 モータ巻線温度とは、3相巻線である巻線7a、巻線7b、巻線7cの温度である。図3において、横軸は運転時間、縦軸はモータ巻線温度を示しており、各電流値におけるモータ巻線温度の変化を示している。各電流値は、モータ電流A、モータ電流B、モータ電流C、モータ電流Dの順に小さくなるように所定の値に設定されている。 The motor winding temperature is the temperature of the windings 7a, 7b, and 7c, which are three-phase windings. In FIG. 3, the horizontal axis represents the operating time and the vertical axis represents the motor winding temperature, and the change in the motor winding temperature at each current value is shown. Each current value is set to a predetermined value so as to decrease in the order of motor current A, motor current B, motor current C, and motor current D.
 一般的に、モータ巻線温度は、モータ電流値の2乗に比例して上昇し、一定時間が経過すると、モータ巻線温度は飽和する。この飽和温度がモータ巻線の耐熱温度を超えている場合、モータ巻線は焼損する虞がある。従って、モータ巻線温度が耐熱温度を超えないようにモータ電流値を制御する必要がある。 Generally, the motor winding temperature rises in proportion to the square of the motor current value, and after a certain period of time, the motor winding temperature saturates. If this saturation temperature exceeds the heat resistant temperature of the motor winding, the motor winding may burn out. Therefore, it is necessary to control the motor current value so that the motor winding temperature does not exceed the heat resistant temperature.
 本実施の形態では、巻線飽和温度がモータ巻線の耐熱温度を超える可能性がある電流値を予め実験的に計測し、その電流値に基づいて所定の閾値を設定している。モータ電流値が所定の閾値を上回った状態で所定時間が経過した場合、モータ過負荷状態であると定義する。 In the present embodiment, the current value at which the winding saturation temperature may exceed the heat resistant temperature of the motor winding is experimentally measured in advance, and a predetermined threshold value is set based on the current value. When a predetermined time elapses while the motor current value exceeds a predetermined threshold value, it is defined as a motor overload state.
 (過負荷状態検知処理及びインバータ制御処理)
 図4は、第1の実施の形態における洗濯機のモータの過負荷状態検知処理のフローチャート、図5は、第1の実施の形態における洗濯機のモータのインバータ制御処理のフローチャートである。
(Overload state detection processing and inverter control processing)
FIG. 4 is a flowchart of the overload state detection process of the washing machine motor according to the first embodiment, and FIG. 5 is a flowchart of the inverter control process of the washing machine motor according to the first embodiment.
 洗濯運転において、制御部31は、過負荷状態検知処理を開始するとともに(ステップS101)、図5に示すインバータ制御処理を開始する。なお、二つの処理は平行して独立に行われており、それぞれの時間間隔で繰り返し実行される。 In the washing operation, the control unit 31 starts the overload state detection process (step S101) and also starts the inverter control process shown in FIG. The two processes are performed independently in parallel, and are repeatedly executed at their respective time intervals.
 初めに、過負荷状態検知処理について説明する。 First, the overload state detection process will be explained.
 図4に示すように、過負荷検知部34は、過負荷状態検知処理を開始すると(ステップS101)、モータ電流値のローパスフィルタ処理を行う(ステップS102)。 As shown in FIG. 4, when the overload state detection process is started (step S101), the overload detection unit 34 performs a low-pass filter process of the motor current value (step S102).
 本実施の形態におけるローパスフィルタ処理は、前回のモータ電流値と今回のモータ電流値との変化分を算出し、変化分を一定比率で低減して前回検出した電流に足し合わせている。これらの処理は、マイクロコンピュータであるローパスフィルタ処理部33で演算処理されている。一般に、モータ起動時に流れる電流値は、瞬間的に大きな電流値となり、徐々に一定値に収束していくことが知られている。ローパスフィルタ処理を行うことで、モータ電流値の計測値から入力電流による成分を取り除き、瞬間的に大きな電流が流れることによる過負荷状態の誤検知を抑制できる。なお、ローパスフィルタの時定数は、モータ駆動のON時間と略同等の時間(例えば、10秒)に設定している。 In the low-pass filter processing in the present embodiment, the change between the previous motor current value and the current motor current value is calculated, the change is reduced by a constant ratio, and the change is added to the previously detected current. These processes are arithmetically processed by the low-pass filter processing unit 33, which is a microcomputer. In general, it is known that the current value that flows when the motor is started becomes a large current value momentarily and gradually converges to a constant value. By performing the low-pass filter processing, the component due to the input current can be removed from the measured value of the motor current value, and the false detection of the overload state due to the instantaneous large current flowing can be suppressed. The time constant of the low-pass filter is set to a time (for example, 10 seconds) that is substantially equivalent to the ON time of the motor drive.
 次に、過負荷検知部34は、ローパスフィルタ処理後のモータ電流値と閾値αとを比較して、モータ過負荷状態であるか判定する(ステップS103)。S103において、モータ電流値がαを下回った場合(ステップS103,No)、又はモータ電流値がα以上の状態で所定時間t1が経過していない場合(ステップS103,No)、過負荷状態検知処理を終了する(ステップS107)。これにより、モータ電流値が瞬間的にα以上の値となった場合にモータ過負荷状態と誤検知することを抑止する。 Next, the overload detection unit 34 compares the motor current value after the low-pass filter processing with the threshold value α to determine whether the motor is in the overload state (step S103). In S103, when the motor current value is less than α (steps S103, No), or when the motor current value is α or more and the predetermined time t1 has not elapsed (steps S103, No), the overload state detection process (Step S107). As a result, when the motor current value momentarily becomes α or more, it is possible to prevent erroneous detection of a motor overload state.
 ステップS103において、モータ電流値がα以上の状態で所定時間t1が経過した場合、(ステップS103,Yes)、過負荷検知部34は、モータ過負荷状態をセット、即ち、モータは過負荷状態であると設定する(ステップS104)。 In step S103, when the predetermined time t1 elapses with the motor current value being α or more (step S103, Yes), the overload detection unit 34 sets the motor overload state, that is, the motor is in the overload state. If there is, it is set (step S104).
 前述の通り、モータ過負荷状態においては、モータ巻線温度が耐熱温度を超える虞がある。従って、ローパスフィルタ処理後のモータ電流値が所定値以下になるまで、モータ巻線を放冷しなければならない。本実施の形態では、閾値αの三分の一の値である閾値βが設けられており、モータ電流値が閾値β以下となればモータ過負荷状態ではないと判定される。 As mentioned above, in the motor overload state, the motor winding temperature may exceed the heat resistant temperature. Therefore, the motor winding must be allowed to cool until the motor current value after the low-pass filter processing becomes equal to or less than a predetermined value. In the present embodiment, the threshold value β, which is one-third of the threshold value α, is provided, and if the motor current value is equal to or less than the threshold value β, it is determined that the motor is not in the overloaded state.
 過負荷検知部34は、ローパスフィルタ処理後のモータ電流値と閾値βとを比較する(ステップS105)。ステップS105において、モータ電流値が閾値βを上回れば(ステップS105,No)、過負荷状態検知処理を終了する(ステップS107)。 The overload detection unit 34 compares the motor current value after the low-pass filter processing with the threshold value β (step S105). In step S105, if the motor current value exceeds the threshold value β (steps S105, No), the overload state detection process ends (step S107).
 ステップS105において、モータ電流値が閾値β以下であれば(ステップS105,Yes)、モータ過負荷状態をクリア、即ち、モータ過負荷状態であるとの判定を解除する(ステップS106)。その後、過負荷状態検知処理を終了する(ステップS107)。 In step S105, if the motor current value is equal to or less than the threshold value β (step S105, Yes), the motor overload state is cleared, that is, the determination that the motor is overloaded state is canceled (step S106). After that, the overload state detection process is terminated (step S107).
 次に、インバータ制御処理について説明する。 Next, the inverter control process will be described.
 図5に示すように、制御部31は、インバータ制御処理を開始する(ステップS201)。制御部31は、モータ駆動指令を出すことにより、駆動回路32にIGBTのスイッチングをPWM制御させる(ステップS202)。これにより、モータ7は、モータ駆動指令に基づいて回転槽3を回転駆動させる。 As shown in FIG. 5, the control unit 31 starts the inverter control process (step S201). The control unit 31 causes the drive circuit 32 to PWM control the switching of the IGBT by issuing a motor drive command (step S202). As a result, the motor 7 rotationally drives the rotary tank 3 based on the motor drive command.
 ステップS203において、モータ過負荷状態がセットされている場合(ステップS203,Yes)、制御部31は、駆動回路32にPWMの出力を停止させる(ステップS204)。その後、インバータ制御処理を終了する(ステップS205)。モータ過負荷状態がセットされていない場合(ステップS203,No)、インバータ制御処理を終了する(ステップS205)。 When the motor overload state is set in step S203 (step S203, Yes), the control unit 31 stops the PWM output in the drive circuit 32 (step S204). After that, the inverter control process is terminated (step S205). If the motor overload state is not set (step S203, No), the inverter control process ends (step S205).
 続いて、本実施例におけるモータ電流値(ローパスフィルタ処理後)とモータ駆動指令の特性について説明する。 Next, the characteristics of the motor current value (after low-pass filter processing) and the motor drive command in this embodiment will be described.
 図6は、第1の実施の形態における洗濯機のモータ電流(ローパスフィルタ処理後)とモータ駆動指令の関係図である。横軸は運転時間、左縦軸はローパスフィルタ処理後のモータ電流値、右縦軸はモータ駆動指令である。 FIG. 6 is a diagram showing the relationship between the motor current (after low-pass filter processing) of the washing machine and the motor drive command in the first embodiment. The horizontal axis is the operating time, the left vertical axis is the motor current value after low-pass filter processing, and the right vertical axis is the motor drive command.
 洗濯時の攪拌時限は、ON状態で10秒間、及びOFF状態で1秒間、を1サイクルとし、サイクル毎に左右反転しながら攪拌動作を行う。このとき、ローパスフィルタ処理後のモータ電流値は、攪拌ON時には上下に振動しながら上昇し、攪拌OFF時には徐々に低下する。図4に示す過負荷状態検知処理においてモータ過負荷状態がセットされる(ステップS104)と、図5に示すインバータ制御処理においてPWM出力が停止される(ステップS204)。PWM出力が停止されている期間においては、モータ電流が流れないため、ローパスフィルタ処理後のモータ電流値は徐々に低下する。 The stirring period during washing is set to 1 cycle for 10 seconds in the ON state and 1 second in the OFF state, and the stirring operation is performed while flipping left and right for each cycle. At this time, the motor current value after the low-pass filter processing rises while vibrating up and down when stirring is ON, and gradually decreases when stirring is OFF. When the motor overload state is set in the overload state detection process shown in FIG. 4 (step S104), the PWM output is stopped in the inverter control process shown in FIG. 5 (step S204). Since the motor current does not flow during the period when the PWM output is stopped, the motor current value after the low-pass filter processing gradually decreases.
 ローパスフィルタ処理後のモータ電流値は、モータ電流値が大きくなるに従って、電流値の低下にかかる時間が長くなることが知られている。従って、モータ電流値が大きい場合には、モータ電流値が閾値β以下となるまでの時間が長くなり、結果としてモータ駆動が停止されている期間が長くなる。これにより、モータ電流値が閾値α以上の状態において所定時間t1が経過するまでにモータ電流値が急上昇した場合であっても、モータ電流値に応じて放冷時間が長くなるため、モータ巻線温度をより確実に低下させることができる。 It is known that the motor current value after the low-pass filter processing takes longer to decrease as the motor current value increases. Therefore, when the motor current value is large, the time until the motor current value becomes the threshold value β or less becomes long, and as a result, the period during which the motor drive is stopped becomes long. As a result, even if the motor current value suddenly rises by the time t1 elapses in a state where the motor current value is equal to or higher than the threshold value α, the cooling time becomes longer according to the motor current value, so that the motor winding The temperature can be lowered more reliably.
 ローパスフィルタ処理後のモータ電流値が閾値βを下回ると、図4に示す過負荷状態検知処理においてモータ過負荷状態がクリアされる(ステップS106)。すると、図5に示すインバータ制御処理においてPMW出力が再開される(ステップS202)。 When the motor current value after the low-pass filter processing falls below the threshold value β, the motor overload state is cleared in the overload state detection process shown in FIG. 4 (step S106). Then, the PMW output is restarted in the inverter control process shown in FIG. 5 (step S202).
 以上の通り、ローパスフィルタ処理後のモータ電流に基づいてモータ過負荷状態を検知し、モータ巻線温度を耐熱温度以内に抑制することで、従来よりも安価にモータの安全機能を実現できる。 As described above, the motor safety function can be realized at a lower cost than before by detecting the motor overload state based on the motor current after the low-pass filter processing and suppressing the motor winding temperature within the heat resistant temperature.
 (作用等)
 本実施の形態におけるドラム式洗濯機は、回転槽3と、回転槽3を回転駆動させるモータ7と、直流電流を交流電流に変換し、モータ7を駆動するインバータ回路24と、モータ7に流れる電流を検出する電流検出部と、を備える。また、電流検出部により検出された電流をローパスフィルタ処理し、ローパスフィルタ処理された値を処理後の電流値として出力するローパスフィルタ処理部33と、モータ7の過負荷状態を検知する過負荷検知部34と、インバータ回路24にモータ駆動指令を送信し、インバータ回路24を通じてモータ7を制御する制御部31と、を備える。
(Action, etc.)
The drum-type washing machine according to this embodiment has a rotary tub 3, a motor 7 that rotationally drives the rotary tub 3, an inverter circuit 24 that converts a direct current into an alternating current and drives the motor 7, and a motor 7. It includes a current detection unit that detects a current. Further, the low-pass filter processing unit 33 that performs low-pass filter processing on the current detected by the current detection unit and outputs the low-pass filtered value as the processed current value, and the overload detection that detects the overload state of the motor 7. A unit 34 and a control unit 31 that transmits a motor drive command to the inverter circuit 24 and controls the motor 7 through the inverter circuit 24 are provided.
 さらに、過負荷検知部34は、ローパスフィルタ処理部33により出力された処理後の電流値に基づいて、モータ7が過負荷状態であると判定し、制御部31は、過負荷検知部34の判定結果に基づいて、モータ7の回転駆動を制御する。 Further, the overload detection unit 34 determines that the motor 7 is in an overload state based on the processed current value output by the low-pass filter processing unit 33, and the control unit 31 determines that the overload detection unit 34 is in an overload state. The rotational drive of the motor 7 is controlled based on the determination result.
 この構成により、温度ヒューズやサーミスタ等の別部品を設けることなく、モータ電流値の変化からモータ巻線温度の上昇を検知できる。従って、モータ巻線温度が過剰に上昇することを抑制し、安価にモータの安全性を実現できる。 With this configuration, it is possible to detect an increase in the motor winding temperature from changes in the motor current value without installing separate parts such as a thermal fuse and thermistor. Therefore, it is possible to suppress the excessive rise in the motor winding temperature and realize the safety of the motor at low cost.
 また、本実施の形態のように、過負荷検知部34は、処理後の電流値が第1の値であるα以上である状態において所定時間が経過した場合に、モータ7が過負荷状態であると判定し、処理後の電流値が第1の値であるαよりも小さい第2の値であるβである場合に、モータ過負荷状態を解除してもよい。 Further, as in the present embodiment, the overload detection unit 34 states that the motor 7 is in an overload state when a predetermined time elapses in a state where the processed current value is α or more, which is the first value. The motor overload state may be released when it is determined that the current value is present and the processed current value is β, which is a second value smaller than α, which is the first value.
 この構成により、モータ7が過負荷状態であると判定されて駆動停止した時から、モータ電流値がβを下回るまでの時間は、モータ電流値が大きくなるに従って長くなる。そのため、巻線温度が高くなる可能性が高い場合には、放熱時間を長く取ることができるので、安価にモータの安全性を実現できる。 With this configuration, the time from when the motor 7 is determined to be in the overload state and the drive is stopped until the motor current value falls below β becomes longer as the motor current value increases. Therefore, when the winding temperature is likely to be high, the heat dissipation time can be long, so that the safety of the motor can be realized at low cost.
 (第2の実施の形態)
 第2の実施の形態にかかる洗濯機は、脱水動作時のインバータ制御処理において、第1の実施の形態にかかる洗濯機100と異なる。以下、第1の実施の形態と同様の構成については同様の符号を用いて、第2の実施の形態を説明する。
(Second Embodiment)
The washing machine according to the second embodiment is different from the washing machine 100 according to the first embodiment in the inverter control process during the dehydration operation. Hereinafter, the second embodiment will be described with reference to the same reference numerals for the same configurations as those of the first embodiment.
 図7は、第2の実施の形態における洗濯機のモータのインバータ制御処理のフローチャートである。 FIG. 7 is a flowchart of the inverter control process of the motor of the washing machine according to the second embodiment.
 制御部31は、インバータ制御処理を開始する(ステップS301)。制御部31は、PWM出力停止履歴がセットされているか否か、即ち、前回のインバータ制御処理においてモータ過負荷状態に起因して停止したという履歴が設定されているか否か判定する(ステップS302)。PWM出力停止履歴がセットされている場合(ステップS302、Yes)、モータ7の回転数が下がるようにモータ駆動指令を送信する(ステップS303)。例えば、脱水回転数が1400rpmである場合に過負荷状態を検知したときは、次回のインバータ制御処理において脱水回転数を1300rpmに下げる。 The control unit 31 starts the inverter control process (step S301). The control unit 31 determines whether or not the PWM output stop history is set, that is, whether or not the history of stopping due to the motor overload state is set in the previous inverter control process (step S302). .. When the PWM output stop history is set (step S302, Yes), a motor drive command is transmitted so that the rotation speed of the motor 7 decreases (step S303). For example, when an overload state is detected when the dehydration rotation speed is 1400 rpm, the dehydration rotation speed is reduced to 1300 rpm in the next inverter control process.
 ステップS304において、制御部31は、PWM出力停止履歴をクリアする、即ち、前回のインバータ制御処理においてモータ過負荷状態に起因して停止したという履歴を解除する(ステップS304)。 In step S304, the control unit 31 clears the PWM output stop history, that is, cancels the history of stopping due to the motor overload state in the previous inverter control process (step S304).
 ステップS305において、駆動回路32は、制御部31から受信したモータ駆動指令に従ってPWM出力を行う(ステップS305)。 In step S305, the drive circuit 32 outputs PWM according to the motor drive command received from the control unit 31 (step S305).
 ステップ306において、制御部31はモータ過負荷状態を参照する(S306)。モータ過負荷状態がセットされている場合(ステップS306,Yes)には、駆動回路32にPWM出力を停止させ(ステップS307)、PWM出力停止履歴をセットする(ステップS308)。その後、インバータ制御処理を終了する(ステップS309)。所定時間が経過すると、次回のインバータ制御処理が開始される(ステップS301)。 In step 306, the control unit 31 refers to the motor overload state (S306). When the motor overload state is set (step S306, Yes), the PWM output is stopped in the drive circuit 32 (step S307), and the PWM output stop history is set (step S308). After that, the inverter control process is terminated (step S309). When the predetermined time elapses, the next inverter control process is started (step S301).
 以上のインバータ制御処理(ステップS301~ステップS309)の繰り返しにより、モータ電流値が過負荷電流値以下となるように、モータ7の回転数を調整する。 By repeating the above inverter control processes (steps S301 to S309), the rotation speed of the motor 7 is adjusted so that the motor current value becomes equal to or less than the overload current value.
 特に、脱水動作においては、モータ誘起電圧の上昇に合わせて弱め磁束制御を行っているため、回転数が上昇するにつれてモータ電流が増加する。従って、モータ7の回転数を調整することにより、モータ巻線温度が過剰に上昇することを効果的に抑制できる。 In particular, in the dehydration operation, the weakening magnetic flux is controlled according to the increase in the motor-induced voltage, so the motor current increases as the rotation speed increases. Therefore, by adjusting the rotation speed of the motor 7, it is possible to effectively suppress an excessive rise in the motor winding temperature.
 (作用等)
 本実施の形態におけるドラム式洗濯機は、回転槽3と、回転槽3を回転駆動させるモータ7と、直流電流を交流電流に変換し、モータ7を駆動するインバータ回路24と、モータ7に流れる電流を検出する電流検出部と、を備える。また、電流検出部により検出された電流をローパスフィルタ処理し、ローパスフィルタ処理された値を処理後の電流値として出力するローパスフィルタ処理部33と、モータ7の過負荷状態を検知する過負荷検知部34と、インバータ回路24にモータ駆動指令を送信し、インバータ回路24を通じてモータ7を制御する制御部31と、を備える。さらに、過負荷検知部34は、ローパスフィルタ処理部33により出力された処理後の電流値に基づいて、モータ7が過負荷状態であると判定し、制御部31は、脱水動作において過負荷状態である場合、モータ7の回転数を低下させる。
(Action, etc.)
The drum-type washing machine according to this embodiment has a rotary tub 3, a motor 7 that rotationally drives the rotary tub 3, an inverter circuit 24 that converts a direct current into an alternating current and drives the motor 7, and a motor 7. It includes a current detection unit that detects a current. Further, the low-pass filter processing unit 33 that performs low-pass filter processing on the current detected by the current detection unit and outputs the low-pass filtered value as the processed current value, and the overload detection that detects the overload state of the motor 7. A unit 34 and a control unit 31 that transmits a motor drive command to the inverter circuit 24 and controls the motor 7 through the inverter circuit 24 are provided. Further, the overload detection unit 34 determines that the motor 7 is in the overload state based on the processed current value output by the low-pass filter processing unit 33, and the control unit 31 determines that the motor 7 is in the overload state, and the control unit 31 is in the overload state in the dehydration operation. If is, the rotation speed of the motor 7 is reduced.
 この構成により、回転数が上昇するにつれてモータ電流が増加する脱水動作において、モータ7の回転数を調整することにより、モータ巻線温度が過剰に上昇することを効果的に抑制できる。 With this configuration, in the dehydration operation in which the motor current increases as the rotation speed increases, it is possible to effectively suppress an excessive increase in the motor winding temperature by adjusting the rotation speed of the motor 7.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、第1実施の形態及び第2の実施の形態を説明した。しかしながら、本開示における技術は、これに限定されない。
(Other embodiments)
As described above, the first embodiment and the second embodiment have been described as examples of the techniques disclosed in the present application. However, the techniques in this disclosure are not limited to this.
 そこで、以下、他の実施の形態を例示する。 Therefore, other embodiments will be illustrated below.
 第1の実施の形態及び第2の実施の形態では、洗濯機の一例として回転槽式洗濯機を説明した。しかし、洗濯機は、回転槽をモータにより回転駆動させるものであればよい。従って、洗濯機は、ドラム式洗濯機に限定されず、縦型洗濯機又は二槽式洗濯機であってもよい。 In the first embodiment and the second embodiment, the rotary tub type washing machine has been described as an example of the washing machine. However, the washing machine may be any one in which the rotary tub is rotationally driven by a motor. Therefore, the washing machine is not limited to the drum type washing machine, and may be a vertical type washing machine or a two-tank type washing machine.
 第1の実施の形態及び第2の実施の形態では、パワースイッチング半導体の一例として、IGBTを説明した。パワースイッチング半導体は、金属酸化膜半導体電界効果トランジスタ(MOSFET)などで構成してもよい。 In the first embodiment and the second embodiment, the IGBT has been described as an example of the power switching semiconductor. The power switching semiconductor may be composed of a metal oxide film semiconductor field effect transistor (MOSFET) or the like.
 第1の実施の形態及び第2の実施の形態では、電流検出部の一例として、シャント抵抗を説明した。しかし、電流検出部は、直流電流を含む低周波数から直流電流トランス又は交流電流トランスを測定する手法を用いても良い。また、3相モータの場合、2相の電流を求め、キルヒホッフの法則(Iu+Iv+Iw=0)より残りの1相を求める方法を用いても良い。 In the first embodiment and the second embodiment, the shunt resistance has been described as an example of the current detection unit. However, the current detection unit may use a method of measuring a DC current transformer or an AC current transformer from a low frequency including a DC current. Further, in the case of a three-phase motor, a method of obtaining a two-phase current and obtaining the remaining one phase from Kirchhoff's law (Iu + Iv + Iw = 0) may be used.
 第1の実施の形態及び第2の実施の形態では、ロータ位置検出部の一例として、ホールICによる出力基準信号H1~H3に基づいてロータの位置を検出するロータ位置検出部30を説明した。しかし、ロータ位置検出部は、ホールICを用いるものに限定されない。ロータ位置検出部は、モータの相電流と3相モータ駆動制御電圧からロータ位置を演算により検出してもよい。 In the first embodiment and the second embodiment, as an example of the rotor position detection unit, the rotor position detection unit 30 that detects the rotor position based on the output reference signals H1 to H3 by the Hall IC has been described. However, the rotor position detection unit is not limited to the one using the Hall IC. The rotor position detection unit may detect the rotor position by calculation from the phase current of the motor and the three-phase motor drive control voltage.
 第1の実施の形態及び第2の実施の形態では、ローパスフィルタ部の一例として、マイクロコンピュータ内の演算処理を説明したが、これに限定されるものではない。ローパスフィルタ部として、抵抗及びコンデンサを用いて、回路上でローパスフィルタ構成を実現してもよい。また、第1の実施の形態及び第2の実施の形態では、ローパスフィルタ処理の一例として、前回のモータ電流値と今回のモータ電流値との変化分を算出し、変化分を一定比率で低減して前回検出した電流に足し合わせた構成を説明した。しかし、ローパスフィルタ処理は、この方式に限定されるものではない。例えば、単純な移動平均値を用いてもよい。 In the first embodiment and the second embodiment, the arithmetic processing in the microcomputer has been described as an example of the low-pass filter unit, but the present invention is not limited to this. A low-pass filter configuration may be realized on the circuit by using a resistor and a capacitor as the low-pass filter unit. Further, in the first embodiment and the second embodiment, as an example of the low-pass filter processing, the change amount between the previous motor current value and the current motor current value is calculated, and the change amount is reduced by a constant ratio. Then, the configuration added to the previously detected current was explained. However, the low-pass filter processing is not limited to this method. For example, a simple moving average value may be used.
 第1の実施の形態及び第2の実施の形態では、ローパスフィルタ処理の一例として、過負荷状態検知処理の一環として実施されるローパスフィルタ処理(S102)を説明した。ローパスフィルタ処理の実施のタイミングは、ステップ102に限定されず、過負荷状態検知処理と独立して実施されてもよい。 In the first embodiment and the second embodiment, the low-pass filter processing (S102) performed as a part of the overload state detection processing has been described as an example of the low-pass filter processing. The timing of executing the low-pass filter processing is not limited to step 102, and may be executed independently of the overload state detection processing.
 第1の実施の形態及び第2の実施の形態では、モータ過負荷状態ではないと判定する基準値として、閾値αの三分の一の値である閾値βを説明した。しかし、基準値は、モータ過負荷状態ではないと判定できればよいので、閾値αの三分の一に限定されない。 In the first embodiment and the second embodiment, the threshold value β, which is one-third of the threshold value α, has been described as a reference value for determining that the motor is not in an overloaded state. However, the reference value is not limited to one-third of the threshold value α as long as it can be determined that the motor is not overloaded.
 第1の実施の形態では、モータ過負荷状態におけるモータの回転駆動の制御の一例として、モータ過負荷状態においてモータ7の駆動を停止する例を説明した。しかし、モータ過負荷状態におけるモータの回転駆動の制御は、駆動の停止に限定されない。例えば、洗濯時の攪拌時限を変更し、ON状態の時間を短くし、OFF状態の時間を長くしてもよい。 In the first embodiment, as an example of controlling the rotation drive of the motor in the motor overload state, an example of stopping the drive of the motor 7 in the motor overload state has been described. However, the control of the rotary drive of the motor in the motor overload state is not limited to the stop of the drive. For example, the stirring time during washing may be changed, the ON state time may be shortened, and the OFF state time may be lengthened.
 第1の実施の形態では、過負荷検知部の判定結果に基づいて、モータの回転駆動を制御する方法として、モータ過負荷状態においてモータ7の駆動を停止する例を説明した。しかし、モータの回転駆動を制御する方法は、モータ過負荷状態におけるモータ7の駆動停止に限定されず、洗濯運転の停止であってもよい。例えば、所定回数以上、モータ過負荷状態であると判定された場合、モータ7に異常があると判定してもよい。モータ7に異常があると判定された場合、洗濯運転を停止して異常報知してもよい。 In the first embodiment, as a method of controlling the rotational drive of the motor based on the determination result of the overload detection unit, an example of stopping the drive of the motor 7 in the motor overload state has been described. However, the method of controlling the rotational drive of the motor is not limited to the drive stop of the motor 7 in the motor overload state, and may be the stop of the washing operation. For example, when it is determined that the motor is overloaded a predetermined number of times or more, it may be determined that the motor 7 has an abnormality. If it is determined that the motor 7 has an abnormality, the washing operation may be stopped to notify the abnormality.
 本開示は、回転槽をモータにより回転駆動させる装置に適用可能である。具体的には、縦型洗濯機、ドラム式洗濯機、二槽式洗濯機などに、本開示は適用可能である。 The present disclosure is applicable to a device for rotationally driving a rotary tank with a motor. Specifically, the present disclosure is applicable to vertical washing machines, drum-type washing machines, two-tank washing machines, and the like.
 1 洗濯機本体
 2 水槽
 3 回転槽
 4 衣類出入口
 5 扉
 6 通水孔
 7 モータ
 7a、7b、7c 巻線
 8 注水管路
 9 排水管路
 10 操作表示パネル
 12 送風ファン
 14 プーリ
 15 流体バランサ
 16 ベルト
 17 回転中心軸
 20 商用電源
 21 整流器
 22 チョークコイル
 23 平滑コンデンサ
 24 インバータ回路
 24a~24f パワースイッチ半導体
 25 入力設定部
 26 負荷駆動部
 27 給水弁
 28 排水弁
 29 ヒートポンプ
 30 ロータ位置検出部
 30a、30b、30c ホールIC
 31 制御部
 32 駆動回路
 33 ローパスフィルタ処理部
 34 過負荷検知部
1 Washing machine body 2 Water tank 3 Rotating tank 4 Clothes entrance 5 Door 6 Water passage hole 7 Motor 7a, 7b, 7c Winding 8 Water injection pipeline 9 Drainage pipeline 10 Operation display panel 12 Blower fan 14 Pulley 15 Fluid balancer 16 Belt 17 Center of rotation 20 Commercial power supply 21 Rectifier 22 Choke coil 23 Smoothing capacitor 24 Inverter circuit 24a to 24f Power switch Semiconductor 25 Input setting unit 26 Load drive unit 27 Water supply valve 28 Drain valve 29 Heat pump 30 Rotor position detector 30a, 30b, 30c hole IC
31 Control unit 32 Drive circuit 33 Low-pass filter processing unit 34 Overload detection unit

Claims (3)

  1. 回転槽と、
    前記回転槽を回転駆動させるモータと、
    直流電流を交流電流に変換し、前記モータを駆動するインバータ回路と、
    前記モータに流れる電流を検出する電流検出部と、
    前記電流検出部により検出された電流をローパスフィルタ処理し、ローパスフィルタ処理された値を処理後の電流値として出力するローパスフィルタ部と、
    前記モータの過負荷状態を検知する過負荷検知部と、
    前記インバータ回路にモータ駆動指令を送信し、前記インバータ回路を通じて前記モータを制御する制御部と、
    を備え、
    前記過負荷検知部は、前記ローパスフィルタ部により出力された前記処理後の電流値に基づいて、前記モータが過負荷状態であると判定し、
    前記制御部は、前記過負荷検知部の判定結果に基づいて、前記モータの回転駆動を制御する、
    洗濯機。
    Rotating tank and
    A motor that rotationally drives the rotary tank and
    An inverter circuit that converts direct current into alternating current and drives the motor,
    A current detector that detects the current flowing through the motor,
    A low-pass filter unit that performs low-pass filter processing on the current detected by the current detection unit and outputs the processed value as a processed current value.
    An overload detection unit that detects the overload state of the motor, and
    A control unit that transmits a motor drive command to the inverter circuit and controls the motor through the inverter circuit.
    With
    The overload detection unit determines that the motor is in an overload state based on the processed current value output by the low-pass filter unit.
    The control unit controls the rotational drive of the motor based on the determination result of the overload detection unit.
    Washing machine.
  2. 前記過負荷検知部は、前記処理後の電流値が第1の値以上である状態において所定時間が経過した場合に、前記モータが過負荷状態であると判定し、
    前記処理後の電流値が前記第1の値よりも小さい第2の値である場合に、前記過負荷状態を解除する、
    請求項1に記載の洗濯機。
    The overload detection unit determines that the motor is in an overload state when a predetermined time elapses in a state where the current value after the processing is equal to or higher than the first value.
    When the current value after the processing is a second value smaller than the first value, the overload state is released.
    The washing machine according to claim 1.
  3. 前記制御部は、脱水動作において過負荷状態である場合、前記モータの回転数を低下させる、
    請求項1または2のいずれか1項に記載の洗濯機。
    When the control unit is in an overloaded state in the dehydration operation, the control unit reduces the rotation speed of the motor.
    The washing machine according to any one of claims 1 or 2.
PCT/JP2020/024939 2019-07-29 2020-06-25 Washing machine WO2021019977A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080052720.6A CN114144552A (en) 2019-07-29 2020-06-25 Washing machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019138760A JP7324971B2 (en) 2019-07-29 2019-07-29 washing machine
JP2019-138760 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021019977A1 true WO2021019977A1 (en) 2021-02-04

Family

ID=74229956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024939 WO2021019977A1 (en) 2019-07-29 2020-06-25 Washing machine

Country Status (4)

Country Link
JP (1) JP7324971B2 (en)
CN (1) CN114144552A (en)
TW (1) TW202108840A (en)
WO (1) WO2021019977A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023184308A (en) * 2022-06-17 2023-12-28 パナソニックIpマネジメント株式会社 Clothing treatment device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264375A (en) * 2007-04-24 2008-11-06 Mitsubishi Electric Corp Laundry machine
JP2014087511A (en) * 2012-10-31 2014-05-15 Hitachi Appliances Inc Washing machine
JP2014217643A (en) * 2013-05-10 2014-11-20 パナソニック株式会社 Washing machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239688A (en) * 1998-02-26 1999-09-07 Matsushita Electric Ind Co Ltd Washing machine
US6442979B1 (en) 1999-05-06 2002-09-03 Emerson Electric Co. Washing machine motor control device and method
JP4501980B2 (en) * 2007-09-25 2010-07-14 パナソニック株式会社 Washing machine
KR101037157B1 (en) * 2009-03-20 2011-05-26 엘지전자 주식회사 Washing machine
JP6236341B2 (en) * 2014-03-25 2017-11-22 アスモ株式会社 Motor drive device
CN204803608U (en) * 2014-11-05 2015-11-25 合肥国荣科技洗涤设备有限公司 Washing machine program controller with overload protection
JP6401658B2 (en) * 2015-05-08 2018-10-10 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264375A (en) * 2007-04-24 2008-11-06 Mitsubishi Electric Corp Laundry machine
JP2014087511A (en) * 2012-10-31 2014-05-15 Hitachi Appliances Inc Washing machine
JP2014217643A (en) * 2013-05-10 2014-11-20 パナソニック株式会社 Washing machine

Also Published As

Publication number Publication date
TW202108840A (en) 2021-03-01
JP7324971B2 (en) 2023-08-14
JP2021019916A (en) 2021-02-18
CN114144552A (en) 2022-03-04

Similar Documents

Publication Publication Date Title
US10214843B2 (en) Control method of washing machine
KR20080106125A (en) Washing machine apparatus and method
JP2005204431A (en) Motor drive unit
EP2447407A2 (en) Drum-type washing machine
JP3171568B2 (en) Washing machine
JP2015213666A (en) Washing machine
US8952648B2 (en) Washing machine with improved braking method
JP2017093534A (en) Washing machine
WO2021019977A1 (en) Washing machine
US8390229B2 (en) Washing machine with improved method of braking to a non-zero speed
KR100558996B1 (en) Electric washing machine
AU2019334749B2 (en) Drain pump driving apparatus and laundry processing machine comprising same
JP2018161190A (en) Washing machine
KR102522304B1 (en) Laundry treatment machine and method for the same
JP6528080B2 (en) Washing machine
JP2014087511A (en) Washing machine
JP6605836B2 (en) Motor drive device for washing machine
AU2019299805B2 (en) Laundry handling apparatus
JP4650476B2 (en) Drum washing machine
JP6528082B2 (en) Washing machine
JP5508758B2 (en) Washing machine
CN111434023A (en) Motor driving device and household appliance with same
CN111418143A (en) Motor driving apparatus and control method of the same
JP4103250B2 (en) Washing machine
JP2006061356A (en) Drum type washing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846289

Country of ref document: EP

Kind code of ref document: A1