WO2021019750A1 - Hermetic compressor and refrigeration cycle device - Google Patents

Hermetic compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2021019750A1
WO2021019750A1 PCT/JP2019/030101 JP2019030101W WO2021019750A1 WO 2021019750 A1 WO2021019750 A1 WO 2021019750A1 JP 2019030101 W JP2019030101 W JP 2019030101W WO 2021019750 A1 WO2021019750 A1 WO 2021019750A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
rotating shaft
shaft
cylinder
balancer
Prior art date
Application number
PCT/JP2019/030101
Other languages
French (fr)
Japanese (ja)
Inventor
平野 浩二
勝吾 志田
隼 戸田
功 川辺
平山 卓也
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2021536563A priority Critical patent/JP7242862B2/en
Priority to CN201980098227.5A priority patent/CN114072582B/en
Priority to EP19939139.2A priority patent/EP3988792A4/en
Priority to PCT/JP2019/030101 priority patent/WO2021019750A1/en
Publication of WO2021019750A1 publication Critical patent/WO2021019750A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/807Balance weight, counterweight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump

Definitions

  • An embodiment of the present invention relates to a closed compressor and a refrigerating cycle device provided with the closed compressor.
  • a closed compressor is installed in refrigeration cycle devices such as air conditioners.
  • the closed compressor includes a compression mechanism unit and an electric motor unit as main elements. These are housed in a closed container with the electric motor unit located above and the compression mechanism unit below.
  • the compression mechanism portion has a rotating shaft having an eccentric portion, and is connected to the electric motor portion via the rotating shaft.
  • the rotating shaft is supported by the upper first bearing (main bearing) and the lower second bearing (secondary bearing), respectively, and is rotated by the rotational driving force of the electric motor portion.
  • the electric motor unit includes a rotor (rotor) attached to a rotating shaft and a stator (stator) arranged so as to surround the rotor.
  • the sliding parts of the main bearing and the auxiliary bearing and the rotating shaft are lubricated by using, for example, the rotational force of the rotating shaft.
  • a structure is known in which the rotation shaft is hollow in the axial direction, and a radiation hole communicating with the hollow portion (hollow hole) and an oil groove communicating with the radiation hole are provided.
  • the hollow hole sucks the refrigerating machine oil (lubricating oil) stored in the bottom of the closed container to the radiation hole by the rotational force of the rotating shaft.
  • the radiation hole is provided on the rotating shaft perpendicular to the axial direction, and the lubricating oil sucked up by the hollow hole is supplied to the sliding portion between the bearing and the rotating shaft.
  • the oil groove is provided on either the outer peripheral surface of the rotating shaft or the inner peripheral surface of the bearing, for example, and the lubricating oil is distributed over the entire sliding portion between the bearing and the rotating shaft.
  • the lubricating oil that lubricates the sliding portion is returned to the bottom of the closed container.
  • the lubricity of the sliding part between the bearing and the rotating shaft is maintained by supplying lubricating oil to the minimum gap between the bearing and the rotating shaft to form an oil film.
  • a compressive load acts on the rotating shaft, which causes bending and deformation of the rotating shaft. Therefore, it is not easy to properly manage this extremely small gap in which the oil film exists. Absent.
  • a minimum gap between them should be made. More appropriate management is required.
  • An object of the present invention is a closed-type compressor that promotes lubrication to a sliding portion between the auxiliary bearing and the rotating shaft to improve lubricity in the sliding portion, and a refrigeration equipped with the closed-type compressor.
  • the purpose is to provide a cycle device.
  • the closed compressor rotatably supports the cylinder forming the cylinder chamber, the rotating shaft having an eccentric portion arranged in the cylinder chamber, and the rotating shaft, and the shaft of the rotating shaft in the cylinder chamber.
  • Lubricating oil that accommodates a compression mechanism including a first bearing that defines one end face in the core direction and a second bearing that defines the other end face, and lubricates the sliding portion of the compression mechanism. It is equipped with a closed container for storing.
  • the rotating shaft has a main shaft portion supported by the first bearing on one end side in the axis direction with the eccentric portion as a boundary, and a sub-shaft portion supported by the second bearing on the other end side.
  • the outer peripheral surface of the sub-shaft has a lubricating oil passage groove that spirally continues to one end in the axial direction along the rotation direction of the rotating shaft, with one end side of the other end in the axial direction as the base end.
  • the second bearing has a flange portion and a tubular portion protruding from the flange portion, and is the other end portion of the tubular portion in the axial direction and the base end of the oil passage groove when viewed from the radial direction of the rotating shaft.
  • the wall thickness of the part that wraps with is thinner than the wall thickness of the other part of the cylinder part.
  • FIG. 1 is a diagram schematically showing an air conditioner 1 which is an example of a refrigeration cycle device according to the present embodiment.
  • the air conditioner 1 includes a closed compressor 2, a condenser 3, an expansion device 4, an evaporator 5, and an accumulator 6 as main elements.
  • the refrigerant as the working fluid circulates in the circulation circuit 7 while changing the phase between the gas phase refrigerant and the liquid phase refrigerant.
  • the circulation circuit 7 is a circuit that reaches the suction side (suction pipe 36) from the discharge side (discharge pipe 10b) of the closed compressor 2 via the condenser 3, the expansion device 4, the evaporator 5, and the accumulator 6. ..
  • an HFC-based refrigerant such as R410A or R32, an HFO-based refrigerant such as R1234yf or R1234ze, or a natural refrigerant such as carbon dioxide (CO 2 ) can be appropriately used.
  • the condenser 3 dissipates heat from the high-temperature, high-pressure gas-phase refrigerant discharged from the closed compressor 2 and changes it into a high-pressure liquid-phase refrigerant.
  • the expansion device 4 decompresses the high-pressure liquid-phase refrigerant derived from the condenser 3 and changes it into a low-pressure gas-liquid two-phase refrigerant.
  • the evaporator 5 exchanges heat with air for a low-pressure gas-liquid two-phase refrigerant derived from the condenser 3. At that time, the gas-liquid two-phase refrigerant takes heat from the air and evaporates, and changes into a low-temperature / low-pressure gas-phase refrigerant.
  • the air passing through the evaporator 5 is cooled by the latent heat of vaporization of the liquid phase refrigerant, becomes cold air, and is sent to a place to be air-conditioned (cooled).
  • the low-temperature / low-pressure vapor-phase refrigerant that has passed through the evaporator 5 is guided to the accumulator 6.
  • the liquid phase refrigerant that has not completely evaporated is mixed in the refrigerant, it is separated into the liquid phase refrigerant and the gas phase refrigerant here.
  • the low-temperature, low-pressure vapor-phase refrigerant separated from the liquid-phase refrigerant is sucked into the closed compressor 2 from the accumulator 6 through the suction pipe 36, and is again converted into the high-temperature, high-pressure vapor refrigerant by the closed compressor 2. It is compressed and discharged from the discharge pipe 10b.
  • the closed compressor 2 is a so-called vertical rotary compressor, and includes a closed container 10, an electric motor portion 11, and a compression mechanism portion 12 as main elements.
  • FIG. 1 shows a state in which the closed compressor 2 is vertically traversed on two predetermined surfaces including the central axis O1 of the closed container 10, which will be described later.
  • the closed container 10 has a cylindrical peripheral wall 10a and stands up along the vertical direction.
  • a discharge pipe 10b is provided at the upper end of the closed container 10.
  • the discharge pipe 10b is connected to the condenser 3 via a circulation circuit 7.
  • an oil reservoir 10c for storing the lubricating oil I is provided in the lower part of the closed container 10.
  • lubricating oil I for example, polyol ester oil, polyvinyl ether oil, polyalkylene glycol oil, mineral oil and the like can be applied.
  • the electric motor unit 11 is housed in an intermediate portion along the central axis O1 of the closed container 10 so as to be located between the compression mechanism unit 12 and the discharge pipe 10b.
  • the electric motor unit 11 includes a so-called inner rotor type motor, and includes a rotor 21 and a stator 22.
  • FIG. 2 is an enlarged view showing the configuration of the compression mechanism unit 12 in FIG. 1.
  • the compression mechanism portion 12 is housed in the lower part of the closed container 10 so as to be immersed in the lubricating oil I.
  • the compression mechanism portion 12 has a single cylinder structure, and includes a cylinder 31, a rotating shaft 32, a first bearing 33, and a second bearing 34 as main elements.
  • the compression mechanism unit 12 is not limited to the single type, and may be provided with two or more cylinders.
  • the cylinder 31 is fixed to the inner peripheral surface of the peripheral wall 10a of the closed container 10.
  • a first bearing 33 is fixed above the cylinder 31, and a second bearing 34 is fixed below the cylinder 31.
  • the inner diameter portion of the cylinder 31, the space surrounded by the first bearing 33 and the second bearing 34 constitutes the cylinder chamber 35.
  • the cylinder chamber 35 is arranged coaxially with the central axis O1 of the closed container 10.
  • the cylinder chamber 35 is connected to the accumulator 6 via a suction pipe 36 which is a part of the circulation circuit 7.
  • the gas phase refrigerant separated from the liquid phase refrigerant by the accumulator 6 is guided to the cylinder chamber 35 through the suction pipe 36.
  • the cylinder 31 is provided with a vane (not shown) that divides the cylinder chamber 35 into a suction chamber and a compression chamber.
  • a vane groove (not shown) extending outward in the radial direction is formed in the inner peripheral portion of the cylinder 31.
  • the vane is urged inward in the radial direction by an urging means (not shown), and is supported by the cylinder 31 in a state where the tip portion is pressed against the outer peripheral surface of the roller 37 described later.
  • the vane moves back and forth into the cylinder chamber 35.
  • the volumes of the suction chamber and the compression chamber of the cylinder chamber 35 change, and the gas phase refrigerant sucked from the suction pipe 36 into the cylinder chamber 35 is compressed.
  • the axis of the rotating shaft 32 is located coaxially with the central axis O1 of the closed container 10 and penetrates the first bearing 33, the cylinder chamber 35, and the second bearing 34.
  • the axis (central axis O1) of the rotating shaft 32 extends vertically, and one end side along the axis of the rotating shaft 32 corresponds to the upper side and the other end side corresponds to the lower side.
  • the rotating shaft 32 has a main shaft portion 32a, a sub shaft portion 32b, and an eccentric portion 32c interposed between them.
  • the spindle portion 32a extends toward one end (upper end) of the rotating shaft 32 in the axis direction (hereinafter, simply referred to as the axis direction) with the eccentric portion 32c as a boundary.
  • the rotor 21 of the electric motor portion 11 is attached to the upper portion of the spindle portion 32a.
  • the sub-shaft portion 32b extends toward the other end (lower end) in the axial direction with the eccentric portion 32c as a boundary.
  • the main shaft portion 32a rotates (slides) while sliding in contact with the first bearing 33, and the sub-shaft portion 32b slides with the second bearing 34. That is, the spindle portion 32a is a part of the rotating shaft 32 that slides on the first bearing 33 on one end side (upper end side) in the axial direction with respect to the eccentric portion 32c.
  • the sub-shaft portion 32b is a part of the rotating shaft 32 that slides on the second bearing 34 on the other end side (lower end side) in the axis direction with respect to the eccentric portion 32c.
  • the eccentric portion 32c is eccentric with respect to the axis (central axis O1) of the rotating shaft 32 (main shaft portion 32a and sub-shaft portion 32b) and is arranged in the cylinder chamber 35.
  • a roller 37 is fitted on the outer peripheral surface of the eccentric portion 32c.
  • a slight gap is provided between the inner peripheral surface of the roller 37 and the outer peripheral surface of the eccentric portion 32c to allow the roller 37 to rotate with respect to the eccentric portion 32c.
  • the rotating shaft 32 is provided with a balancer 38 at the other end in the axial direction.
  • the sub-shaft portion 32b projects below the second bearing 34, and the balancer 38 is arranged at the projecting portion 32d.
  • the shape of the balancer 38 is not particularly limited, but is, for example, a disk shape or a semicircular plate shape.
  • the balancer 38 is formed with a through hole 38a in the axial direction.
  • the protruding portion 32d of the auxiliary shaft portion 32b is fixed to the through hole 38a by press fitting or screwing.
  • the center of the balancer 38 is eccentric with respect to the axis (central axis O1) of the rotating shaft 32 in a direction opposite to the eccentric direction of the eccentric portion 32c. That is, the balancer 38 and the eccentric portion 32c are arranged with a phase difference of 180 ° in the circumferential direction of the rotating shaft 32.
  • the arrangement angle of the balancer 38 differs depending on the number of eccentric portions.
  • the auxiliary shaft portion 32b has a shorter length in the axial core direction than the main shaft portion 32a. Therefore, by providing the balancer 38 on the sub-shaft portion 32b, for example, as compared with the case where the balancer is provided on the upper surface of the rotor 21 of the electric motor unit 11, a second support for the sub-shaft portion 32b, which is an arrangement portion of the balancer 38, is provided. The distance between the bearing 34 and the balancer 38 can be shortened. As a result, the rotational balance of the rotating shaft 32 having the eccentric portion 32c is stabilized, and the bending of the rotor 21 is suppressed.
  • the balancer 38 is covered with the balancer cover 39.
  • the balancer cover 39 is fixed to the second bearing 34 with bolts 40 (see FIG. 5) and covers the balancer 38 from below.
  • the balancer cover 39 includes a bottom portion 39a, a wall portion 39b that rises from the bottom portion 39a, and a flange portion 39c that is continuous with the wall portion 39b.
  • the bottom portion 39a is in contact with the other end surface of the rotating shaft 32, that is, the lower end surface 32e of the sub shaft portion 32b.
  • the contact portion is a thrust support portion 39d that receives a load acting on the rotating shaft 32 in the axial direction and slidably supports the lower end surface 32e.
  • the thrust support portion 39d is provided so as to raise the bottom portion 39a upward.
  • the upper surface (contact surface with the lower end surface 32e) of the thrust support portion 39d has a flat shape orthogonal to the axis direction.
  • An oil supply hole 39e penetrating in the vertical direction is formed in the central portion of the thrust support portion 39d, and the lower end thereof faces the lubricating oil I stored in the oil reservoir portion 10c of the closed container 10.
  • the wall portion 39b is a portion that covers the outer periphery of the balancer 38.
  • the flange portion 39c is a portion fixed to the second bearing 34 by a bolt 40, and has a claw 39f that supports the second flange portion 34b, which will be described later, from the circumferential direction.
  • the first bearing 33 and the second bearing 34 rotatably support the rotating shaft 32.
  • the first bearing 33 defines the upper surface 35a of the cylinder chamber 35
  • the second bearing 34 defines the lower surface 35b of the cylinder chamber 35.
  • the upper surface 35a is an end surface on one end side of the rotating shaft 32 in the axial direction
  • the lower surface 35b is an end surface on the other end side of the rotating shaft 32 in the axial direction. That is, the first bearing 33 corresponds to a member that closes the cylinder chamber 35 from above, and the second bearing 34 corresponds to a member that closes the cylinder chamber 35 from below.
  • the first bearing 33 includes a first flange portion 33b and a first tubular portion 33a protruding from the first flange portion 33b.
  • the first flange portion 33b is located at the lower end of the first tubular portion 33a and extends outward in the radial direction.
  • the first flange portion 33b has a portion on the inner circumference that is rotatably supported by inserting the spindle portion 32a.
  • the first flange portion 33b is formed with a first discharge hole 33d for discharging the refrigerant from the compression chamber of the cylinder chamber 35.
  • the first discharge hole 33d penetrates a part of the first flange portion 33b up and down and communicates with the compression chamber of the cylinder chamber 35.
  • the first discharge hole 33d is opened and closed by the first discharge valve mechanism 33e.
  • the first discharge valve mechanism 33e opens the first discharge hole 33d as the pressure in the compression chamber rises, and discharges high-temperature and high-pressure vapor-phase refrigerant from the cylinder chamber 35.
  • the muffler 41 covers the first bearing 33.
  • the muffler 41 has a communication hole 41a that communicates inside and outside (upper and lower) of the muffler 41.
  • the high-temperature, high-pressure vapor-phase refrigerant discharged through the first discharge hole 33d is discharged into the closed container 10 through the communication hole 41a.
  • the first tubular portion 33a is a portion that protrudes from the upper end of the first flange portion 33b and rotatably supports the first bearing 33 through the rotating shaft 32, specifically, the main shaft portion 32a.
  • the outer peripheral surface 32f slides with respect to the inner peripheral surface 33c of the first cylinder portion 33a.
  • the second bearing 34 includes a second flange portion 34b and a second tubular portion 34a protruding from the second flange portion 34b.
  • the second flange portion 34b is located at the upper end of the second tubular portion 34a and extends outward in the radial direction.
  • the second flange portion 34b has a portion on the inner circumference that is rotatably supported by inserting the auxiliary shaft portion 32b.
  • the second flange portion 34b is formed with a second discharge hole (hereinafter, referred to as a discharge port) 34d for discharging the refrigerant from the compression chamber of the cylinder chamber 35.
  • the discharge port 34d penetrates a part of the second flange portion 34b up and down and communicates with the compression chamber of the cylinder chamber 35.
  • the discharge port 34d is opened and closed by the second discharge valve mechanism 34e.
  • the second discharge valve mechanism 34e opens the discharge port 34d as the pressure in the compression chamber rises, and discharges high-temperature and high-pressure vapor-phase refrigerant from the cylinder chamber 35.
  • the high-temperature, high-pressure vapor-phase refrigerant discharged through the discharge port 34d is discharged into the cover space 42 of the balancer cover 39.
  • the cover space 42 is a space in which the balancer cover 39 covers the balancer 38 from below, and is a space surrounded by a bottom portion 39a and a wall portion 39b.
  • the second tubular portion 34a is a portion that protrudes from the lower end of the second flange portion 34b and rotatably supports the second bearing 34 through the rotating shaft 32, specifically, the sub-shaft portion 32b.
  • the outer peripheral surface 32g slides with respect to the inner peripheral surface 34c of the second tubular portion 34a.
  • the first bearing 33, the cylinder 31, and the second bearing 34 have a communication passage 43 that communicates the space above the lubricating oil storage surface Is in the closed container 10 with the cover space 42.
  • the communication passage 43 penetrates the first flange portion 33b, the cylinder 31, and the second flange portion 34b up and down.
  • the communication passage 43 is configured, for example, as a pipe body penetrating the first flange portion 33b, the cylinder 31, and the second flange portion 34b, or by communicating through holes formed in each of these portions.
  • the opening 43a on the one end (upper end) side of the communication passage 43 faces the inside of the muffler 41, and the opening 43b on the other end (lower end) side faces the cover space 42.
  • the number of passages 43 is not particularly limited.
  • two communication passages 431 and 432 are provided (see FIG. 5). Details of these communication passages 431 and 432 will be described later.
  • each sliding portion between the elements is lubricated by the lubricating oil I.
  • the lubrication structure of the compression mechanism portion 12 in the present embodiment specifically, the lubrication structure for the sliding portion (hereinafter, referred to as the bearing lubrication portion) between the rotating shaft 32 and the first bearing 33 and the second bearing 34. Will be described.
  • the rotating shaft 32 has an oil supply passage 51 for supplying lubricating oil I to the bearing lubricating portion from the oil sump portion 10c of the closed container 10.
  • the refueling passage 51 includes a main refueling passage 52 and sub refueling passages 53a and 53b.
  • the main oil supply passage 52 is configured such that a part of the rotating shaft 32 is hollow in the axial direction.
  • the lower end of the main oil supply passage 52 is opened by the lower end surface 32e of the rotating shaft 32 (sub shaft portion 32b).
  • the opening 52a communicates with the oil supply hole 39e of the balancer cover 39. That is, the lower end of the main oil supply passage 52 communicates with the inside of the closed container 10, specifically, the oil sump portion 10c through the opening 52a and the oil supply hole 39e.
  • the rotating shaft 32 rotates, so that the lubricating oil I is sucked up from the oil sump portion 10c into the main oil supply passage 52.
  • the upper end portion 52b of the main oil supply passage 52 ends in the middle portion in the axial direction of the rotating shaft 32, specifically, near the lower end portion of the main shaft portion 32a.
  • the position of the upper end portion 52b may reach at least the position of the cylinder 31.
  • the main oil supply passage 52 may be opened at the upper end surface of the rotating shaft 32 (main shaft portion 32a).
  • the inner peripheral surface of the main oil supply passage 52 may be provided with a spiral guide or the like that promotes the rise of the lubricating oil I as the rotating shaft 32 rotates.
  • the sub refueling passages 53a and 53b branch from the main refueling passage 52 and extend in a direction (diameter direction) orthogonal to the axis direction, and are open to the outer peripheral surfaces 32f and 32g of the rotating shaft 32. That is, the auxiliary refueling passages 53a and 53b are radial passages extending from the main refueling passage 52.
  • auxiliary oil supply passage 53a and 53b branching from the main oil supply passage 52 one is the first auxiliary oil supply passage 53a formed in the main shaft portion 32a, and the other is the second auxiliary oil supply passage 53a formed in the sub shaft portion 32b. It is a sub-fueling passage 53b.
  • the first auxiliary oil supply passage 53a is formed at a connecting portion with the eccentric portion 32c in the spindle portion 32a.
  • the first auxiliary oil supply passage 53a opens on the outer peripheral surface 32f of the spindle portion 32a, and the opening 53c faces the inner peripheral surface 33c of the first flange portion 33b of the first bearing 33.
  • the second auxiliary oil supply passage 53b is formed above the lower end (position of the lower end surface 32e) of the auxiliary shaft portion 32b when viewed from the radial direction of the rotating shaft 32.
  • the second auxiliary oil supply passage 53b opens on the outer peripheral surface 32g of the auxiliary shaft portion 32b, and the opening 53d faces the inner peripheral surface 34c of the second tubular portion 34a of the second bearing 34.
  • the auxiliary shaft portion 32b has an oil passage groove 54 for distributing the lubricating oil I to the sliding portion with the second bearing 34.
  • the oil passage groove 54 is formed on the outer peripheral surface 32g of the auxiliary shaft portion 32b.
  • the oil passage groove 54 is in the axial core direction along the rotation direction (direction indicated by the arrow R shown in FIG. 2) of the auxiliary shaft portion 32b (in short, the rotation shaft 32) starting from the second auxiliary oil supply passage 53b. It is a groove that spirally continues to one end (upper end) side. The spiral is continuous so as to rise the outer peripheral surface 32g in the rotation direction of the sub-shaft portion 32b.
  • the continuous length of the oil passage groove 54 is arbitrary, and the auxiliary shaft portion 32b may not be wound or may be wound more than once.
  • FIG. 2 shows, as an example, an oil passage groove 54 in which the auxiliary shaft portion 32b is not wound.
  • the oil passage groove 54 faces the inner peripheral surface 34c of the second flange portion 34b from the second cylinder portion 34a of the second bearing 34 over the entire length.
  • the base end 54a of the oil passage groove 54 communicates with the opening 53d on the outer peripheral surface 32g of the second auxiliary oil supply passage 53b. That is, the second auxiliary oil supply passage 53b opens at the bottom of the oil passage groove 54, and the opening 53d serves as the base end 54a of the oil passage groove 54. Therefore, the base end 54a is located above the lower end (position of the lower end surface 32e) of the sub-shaft portion 32b when viewed from the radial direction of the rotating shaft 32. The position of the base end 54a is defined as the central position of the opening 53d.
  • the tip of the oil passage groove 54 reaches the upper end portion of the sub-shaft portion 32b, in other words, the connection portion with the eccentric portion 32c.
  • the lubricating oil I sucked up to the main oil supply passage 52 through the oil supply hole 39e passes through the first auxiliary oil supply passage 53a and passes through the opening 53c to the second cylinder portion of the second bearing 34. It is discharged toward the inner peripheral surface 34c of 34a. Then, the lubricating oil I is a sliding portion (inner circumference) between the first cylinder portion 33a and the first flange portion 33b of the first bearing 33 and the spindle portion 32a as the rotating shaft 32 (spindle portion 32a) rotates. It spreads over the surface 33c and the outer peripheral surface 32f) S1 and lubricates the sliding portion S1.
  • the lubricating oil I sucked up by the main oil supply passage 52 is guided from the second auxiliary oil supply passage 53b to the oil passage groove 54 through the opening 53d.
  • the lubricating oil I guided to the oil passing groove 54 rises from the base end 54a to the tip along the oil passing groove 54.
  • the lubricating oil I is charged with the sliding portion between the second cylinder portion 34a and the second flange portion 34b of the second bearing 34 and the sub-shaft portion 32b as the rotating shaft 32 (sub-shaft portion 32b) rotates.
  • the inner peripheral surface 34c and the outer peripheral surface 32g) spread over S2 and lubricate the sliding portion S2.
  • the first bearing 33 has a first support end portion 61 at one end (upper end) in the axial direction
  • the second bearing 34 has a first support end 61 at the other end (lower end) in the axial direction. It has a second support end 62.
  • the wall thickness of the second support end 62 of the second bearing 34 (T1 shown in FIG. 2) is thinner than the wall thickness of the first support end 61 of the first bearing 33.
  • the wall thickness T1 of the second support end portion 62 is the wall thickness at the thinnest position of the second support end portion 62.
  • the first support end portion 61 is one end portion in the axial core direction of the support portion of the spindle portion 32a in the first bearing 33. In other words, it is a part of the portion where the spindle portion 32a slides in the first cylinder portion 33a, and is the upper end portion in the axial direction.
  • the first support end portion 61 corresponds to a thin-walled portion formed so that the first tubular portion 33a tapers toward the upper end portion.
  • the second support end portion 62 is the other end portion in the axial direction of the support portion of the sub-shaft portion 32b in the second bearing 34. In other words, it is a part of the portion where the sub-shaft portion 32b slides in the second cylinder portion 34a, and is the lower end portion in the axial direction.
  • a specific configuration of the second support end portion 62 will be described.
  • FIGS. 3 and 4 are vertical cross-sectional views showing a configuration example of the second bearing 34. It should be noted that FIGS. 3 and 4 show a state in which the second bearing 34 is vertically traversed on two predetermined surfaces including the central axis O1 of the closed container 10.
  • the second support end portion 62 is configured as an inner wall portion 63a of the groove 63 provided on the lower end surface 34f of the second cylinder portion 34a.
  • the groove 63 is continuously provided on the lower end surface 34f in the circumferential direction, and is composed of an inner wall portion 63a, an outer wall portion 63b, and a bottom portion 63c.
  • the inner wall portion 63a is a portion that defines the inner groove wall (inner peripheral surface) in the radial direction
  • the outer wall portion 63b is a portion that defines the outer groove wall (outer peripheral surface) in the radial direction.
  • the bottom portion 63c is a portion that defines a groove bottom (bottom surface) sandwiched between the inner wall portion 63a and the outer wall portion 63b.
  • the inner wall portion 63a is a portion on which the sub-shaft portion 32b slides at the lower end portion of the second cylinder portion 34a.
  • the inner wall portion 63a is thinner than the wall thickness of the other portion of the support portion of the sub-shaft portion 32b in the second tubular portion 34a of the second bearing 34.
  • a groove 64 is provided on the upper end surface 34g of the second flange portion 34b so as to substantially face the groove 63 in the axial direction.
  • the groove 64 is continuously provided on the upper end surface 34g in the circumferential direction, and is composed of an inner wall portion 64a, an outer wall portion 64b, and a bottom portion 64c that define each portion in the same manner as the groove 63.
  • the upper end portion of the second flange portion 34b is divided into an inner wall portion 64a and an outer wall portion 64b by the groove 64.
  • the inner wall portion 64a is a portion on which the sub-shaft portion 32b slides at the upper end portion of the second flange portion 34b.
  • the outer wall portion 64b is continuous with a portion of the second flange portion 34b that extends in the radial direction of the rotating shaft 32.
  • the second support end portion 62 is configured as a thin-walled portion 65 formed so that the second cylinder portion 34a tapers toward the lower end portion.
  • the thin-walled portion 65 is continuously formed in the circumferential direction at the lower end portion of the second tubular portion 34a.
  • the thin-walled portion 65 is a portion in which the second tubular portion 34a is thinned over the entire circumference of the lower end portion itself.
  • the thin-walled portion 65 is a portion on which the auxiliary shaft portion 32b slides at the lower end portion of the second cylinder portion 34a.
  • the thin wall portion 65 is thinner than the wall thickness of the other portion of the support portion of the sub-shaft portion 32b in the second tubular portion 34a of the second bearing 34.
  • the upper end surface 34g of the second tubular portion 34a is provided with a groove 64 composed of an inner wall portion 64a, an outer wall portion 64b, and a bottom portion 64c, as in the configuration example shown in FIG.
  • the groove 64 is provided so that the inner wall portion 64a is arranged so as to substantially overlap the thin-walled portion 65 when viewed from the axial direction.
  • the inner wall portion 63a (groove 63 in another way) and the thin wall portion as the second support end portion 62 having a wall thickness thinner than the other wall thickness of the second cylinder portion 34a. Since the second bearing 34 has the portion 65, the flexibility of the second tubular portion 34a can be increased and the structure can be easily elastically deformed. As a result, when an outward load in the radial direction is applied to the second tubular portion 34a from the auxiliary shaft portion 32b, the second support end portion 62 can be slightly deformed in addition to the inner wall portion 64a. As a result, the gap between the sliding portion (inner peripheral surface 34c and outer peripheral surface 32g) S2 between the second tubular portion 34a and the sub-shaft portion 32b can be expanded.
  • the second support end portion 62 is arranged so that the base end 54a of the oil passage groove 54 wraps with the second support end portion 62 when viewed from the radial direction of the rotation shaft 32, specifically, the sub shaft portion 32b. ing.
  • the central position of the base end 54a is the axis of the inner wall portion 63a when viewed from the radial direction of the sub-shaft portion 32b. Wrap with the position in the core direction. From another point of view, the center position of the opening 53d is located above the tip of the inner wall portion 63a and below the bottom portion 63c corresponding to the base end portion when viewed from the radial direction of the sub-shaft portion 32b. Just do it.
  • the center position of the opening 53d wraps with the position in the axial center direction of the thin-walled portion 65 when viewed from the radial direction of the sub-shaft portion 32b.
  • the center position of the opening 53d may be above the tip of the thin wall portion 65 and below the base end portion 65a when viewed from the radial direction of the sub-shaft portion 32b.
  • the lubricating oil I discharged from the opening 53d is a sliding portion between the second cylinder portion 34a and the auxiliary shaft portion 32b.
  • the lubricating oil I can be supplied to the upper side of the sliding portion S2 through the oil passage groove 54, and the lubricating oil I can be supplied downward from the base end 54a. Can be refueled.
  • the inner wall portion 64a and the second support end portion 62 can be slightly deformed to expand the gap of the sliding portion S2, the lubricating oil I can be applied to both above and below the sliding portion S2.
  • the base end 54a of the oil passage groove 54 and the second support end portion 62 are arranged so as to wrap when viewed from the radial direction of the sub-shaft portion 32b, the inner wall portion 64a and the second support end portion 62 The minute deformation makes it easier to supply the lubricating oil I below the sliding portion S2. Further, since the base end 54a of the oil passage groove 54 does not reach the lower end of the sub-shaft portion 32b and the inner wall portion 64a and the second support end portion 62 are slightly deformed, the sub-shaft portion 32b is viewed from the lower end. Excessive outflow of lubricating oil I can be prevented.
  • the second tubular portion 34a of the second bearing 34 that rotatably supports the sub-shaft portion 32b has a second cylinder portion 34a that rotatably supports the main shaft portion 32a. It is shorter than the first tubular portion 33a of the bearing 33 of 1. Therefore, from the viewpoint of the length in the axial direction, the second tubular portion 34a is less likely to bend than the first tubular portion 33a.
  • the second support end portion 62 which is thinner than the first support end portion 61 of the first bearing 33, is provided in the second bearing 34, the second cylinder portion 34a is the first cylinder. It can be bent in the same manner as the portion 33a. Therefore, it is possible to secure a gap of the sliding portion S2 equal to the gap of the sliding portion S1 and lubricate them evenly.
  • the lubricating oil I that lubricates the sliding portion S2 is supplied to the gap created by the minute deformation of the second cylinder portion 34a (inner wall portion 64a and the second support end portion 62), so that the sliding portion S2
  • the amount of oil required for sliding reliability can be kept small. Therefore, it is not necessary to supply a short amount of oil to the sliding portion S1 and other sliding portions. That is, it is possible to prevent a decrease in the lubrication performance of the sliding portion S1 and other sliding portions, and to improve the lubrication performance of the sliding portion S2.
  • the lubrication performance of the bearing lubrication portion of the compression mechanism portion 12, particularly the sliding portion S2 between the second bearing 34 (second cylinder portion 34a) and the sub-shaft portion 32b is enhanced. Can be done.
  • the lubricating oil I sucked up from the oil supply hole 39e into the main oil supply passage 52 enters the cover space 42 from the sliding gap between the thrust support portion 39d of the balancer cover 39 and the lower end surface 32e of the auxiliary shaft portion 32b. May infiltrate.
  • the balancer 38 stirs the infiltrated lubricating oil I, an extra resistance may occur in the rotation of the rotating shaft 32 depending on the magnitude of the resistance.
  • the present embodiment is provided with a discharge structure for efficiently discharging the infiltrated lubricating oil I from the cover space 42.
  • a discharge structure for efficiently discharging the infiltrated lubricating oil I from the cover space 42.
  • the balancer cover 39 has an inclined portion 71 that inclines from the other end (lower end) side of the rotating shaft 32 toward the communication passage 43.
  • the inclined portion 71 is a portion in which at least a part of the wall portion 39b is inclined in the radial direction of the rotating shaft 32 with respect to the bottom portion 39a.
  • the inclined portion 71 may be provided over the entire circumference of the wall portion 39b, or may be provided at a part in the circumferential direction.
  • FIG. 5 is a plan view showing the configuration of the balancer cover 39 from below.
  • the balancer cover 39 has a plurality of branch portions 72 and a fixed portion 73.
  • the branch chamber portion 72 divides the cover space 42 so as to avoid the fixing portion 73 by the bolt 40.
  • the fixing portion 73 is a fixing portion to the second bearing 34 via a bolt 40.
  • the balancer cover 39 is fixed to the second bearing 34 with five bolts 40, and has five fixing portions 73a to 73f corresponding to the second bearing 34. Therefore, the balancer cover 39 has five branch chambers 72a to 72e, avoiding these five fixed portions 73a to 73f.
  • the divided chamber portions 72 and the fixed portions 73 are arranged alternately in the circumferential direction at substantially equal intervals (in the same phase). Therefore, in a plan view as shown in FIG. 5, the balancer cover 39 has a shape of a substantially star shape with five vertices.
  • the number of branch chambers 72, the number of bolts 40, and the number of fixing portions 73 are not limited to five, and may be two or more, four or less, or six or more.
  • the plurality of (five as an example) branch rooms 72 communicate with each other in the cover space 42.
  • the cover space 42 forms one space as a whole in a state of being divided into five by five branch chambers 72a to 72e.
  • the first branch chamber 72a communicates with the discharge port 34d of the second bearing 34. That is, the first branch chamber portion 72a can communicate with the compression chamber of the cylinder chamber 35 via the discharge port 34d. Therefore, when the discharge port 34d is opened by the second discharge valve mechanism 34e, the high-temperature, high-pressure vapor-phase refrigerant is discharged from the compression chamber of the cylinder chamber 35 to the first branch chamber portion 72a. The discharged high-temperature, high-pressure vapor-phase refrigerant flows from the first branch chamber 72a into the other compartments 72b to 72e that communicate with each other.
  • the five branch chambers 72a to 72e communicates with the communication passage 43.
  • two communication passages 431 and 432 are provided. As shown in FIG. 5, these communication passages 431 and 432 are arranged with a predetermined phase difference (center angle difference) in the circumferential direction.
  • the communication passages 431 and 432 are first fixed portions (first) located from the discharge port 34d in the rotation direction of the rotation shaft 32 (direction indicated by the arrow R shown in FIG. 5) when viewed from the axis direction.
  • the fixed portion communicates with the branch portions 72b and 72c at a position of a central angle larger than the central angle ( ⁇ 1) up to 73a.
  • these communication passages 431 and 432 have a predetermined phase difference (center angle difference) in the circumferential direction, that is, two adjacent two of the five branch portions 72 (branch portions 72b, 72c) arranged at substantially equal intervals. ) Are arranged according to the arrangement interval (with a phase difference of about 72 °).
  • the second branch chamber 72b communicates with the communication passage 431
  • the third branch chamber 72c communicates with the communication passage 432. Therefore, the second branch chamber 72b communicates with the space above the lubricating oil storage surface Is in the closed container 10 via the communication passage 431 and the third branch 72c communicates with the space above the lubricating oil storage surface Is in the closed container 10 via the communication passage 432.
  • the center angle ( ⁇ 2) from the discharge port 34d to the communication passage 431 is larger than the center angle ( ⁇ 1) of the first fixing portion 73a to the bolt 40.
  • the central angle ( ⁇ 3) from the discharge port 34d to the communication passage 432 is further larger than the center angle ( ⁇ 2) to the communication passage 431 ( ⁇ 1 ⁇ 2 ⁇ 3).
  • the specified positions of the center angle are the position of the axis (center axis O1) of the rotating shaft 32, the rotation center Cb of the bolt 40, the opening center C1 of the opening 34h of the discharge port 34d, and the opening 43b of the communication passages 431 and 432.
  • An inclined portion 71 is provided in each of the second branch portion 72b and the third branch portion 72c.
  • the inclined portion 71 of the second branch portion 72b has an inclined surface 74b that approaches the communication passage 431 as it goes outward in the radial direction of the rotating shaft 32 (sub-shaft portion 32b).
  • the inclined portion 71 of the third branch chamber portion 72c has an inclined surface 74c that approaches the communication passage 432 as it goes outward in the radial direction of the rotating shaft 32 (sub-shaft portion 32b).
  • the roller 37 rotates eccentrically in the cylinder chamber 35 due to the rotation of the rotating shaft 32.
  • the high-temperature, high-pressure vapor-phase refrigerant compressed in the compression chamber of the cylinder chamber 35 is discharged from the discharge port 34d into the cover space 42 of the balancer cover 39.
  • the lubricating oil I sucked up from the oil supply hole 39e into the main oil supply passage 52 is covered from the sliding gap between the thrust support portion 39d of the balancer cover 39 and the lower end surface 32e of the auxiliary shaft portion 32b. It may invade 42.
  • the lubricating oil I is subjected to a pulling force into the cover space 42 due to the flow velocity of the high-temperature, high-pressure vapor-phase refrigerant (hereinafter referred to as discharge gas) discharged from the discharge port 34d. Further, the centrifugal force from the balancer 38 acts on the lubricating oil I that has entered the cover space 42, and the drawing force due to the discharged gas continues to act on the lubricating oil I.
  • discharge gas high-temperature, high-pressure vapor-phase refrigerant
  • the lubricating oil I rises along the inclined surfaces 74b and 74c and is guided from the opening 43b to the communication passage 43 (431,432).
  • the lubricating oil I guided to the communication passage 43 (431, 432) is discharged into the muffler 41 from the opening 43a, and is discharged into the space above the lubricating oil storage surface Is in the closed container 10.
  • FIG. 6 shows the conditions for the particles P of the lubricating oil I misted on the inclined surface SS whose inclination angle with respect to the horizontal plane GS is ⁇ to rise.
  • F is the centrifugal force acting on the particles P of the mist-ized lubricating oil I
  • is the inclination angle of the inclined surface SS with respect to the horizontal plane GS
  • ⁇ 1 of the inclined surfaces 74b and 74c shown in FIG. 2 is used. This is the specified angle.
  • is the coefficient of friction between the particles P of the mist-ized lubricating oil I and the inclined surface SS.
  • the value of the coefficient of friction ( ⁇ ) differs depending on various conditions for the lubricating oil I and the inclined surface SS.
  • the coefficient of friction
  • the inclination angle ( ⁇ ) is 70 ° or less, the particles P of the lubricating oil I rise the inclined surface SS by centrifugal force. It will be possible. Therefore, in the present embodiment, the inclination angles of the inclined surfaces 74b and 74c (angle ⁇ 1 shown in FIG. 2) are set to 70 ° or less with respect to the horizontal plane as an example.
  • the lubricating oil I is brought into the inclined surface 74b by the centrifugal force of the balancer 38 and the drawing force of the discharged gas. It can lead to 74c. Since the inclination angle ( ⁇ 1) of the inclined surfaces 74b and 74c is set to a predetermined angle, the lubricating oil I can be raised along the inclined surfaces 74b and 74c. As a result, the lubricating oil I can be discharged from the cover space 42 from the inclined surfaces 74b and 74c through the communication passages 431 and 432.
  • the atmosphere around the balancer 38 can be maintained by the discharged gas. Therefore, for example, the stirring resistance of the lubricating oil of the balancer 38 can be reduced, and the deterioration of the rotational performance of the rotating shaft 32 can be suppressed.
  • the inclined surfaces 74b and 74c are set to 70 ° or less with respect to the horizontal plane. Therefore, when the friction coefficient ( ⁇ ) between the oil droplets (mist) of the lubricating oil I scattered in the cover space 42 and the inclined surfaces 74b and 74c is relatively high, it is about 0.25 to 0.3 as an example. Even if there is, the lubricating oil I can be discharged from the cover space 42 along the inclined surfaces 74b and 74c.
  • the inclined surfaces 74b and 74c are provided in the branch chamber portions 72 (72b and 72c) arranged so as to avoid the fixing portion 73 of the bolt 40. Therefore, not only can the balancer cover 39 be firmly fixed to the second bearing 34 by the bolt 40, but also the lubricating oil I can be efficiently discharged from the cover space 42.
  • the communication passages 431 and 432 are arranged so as to communicate with the branch chamber portions 72b and 72c avoiding the fixing portion 73 of the bolt 40. Therefore, the communication passages 431 and 432 can be arranged and opened closer to the outer periphery of the branch chambers 72b and 72c, that is, to the inclined surfaces 74b and 74c.
  • a propulsive force acts on the mistized particles of the lubricating oil I and the discharge gas from the discharge port 34d in the tangential direction of the rotation of the rotating shaft 32 (sub-shaft portion 32b). ..
  • the central angle ( ⁇ 2, ⁇ 3) from the discharge port 34d to the communication passages 431, 432 is larger than the central angle ( ⁇ 1) of the first fixing portion 73a to the bolt 40. Therefore, centrifugal force and propulsive force are applied to the particles and the discharged gas of the lubricating oil I, respectively, so that the lubricating oil I can be reliably guided to the communication passages 431 and 432.
  • the fixing portions 73 can be arranged at predetermined intervals to secure a stable fixing position of the balancer cover 39 by the bolts 40.
  • the lubricating oil I can be efficiently discharged from the cover space 42, thereby further improving the reliability of the sealed compressor 2. It becomes possible to plan.
  • the closed compressor 2 is a single rotary compressor model having one cylinder 31, but may be a multi-cylinder rotary compressor model having two or more cylinders. In this case, each cylinder may have the same or different cylinder chamber volumes.
  • the sealed compressor may be a swing type in which a vane and a roller are integrated.
  • Refrigeration cycle device air conditioner
  • 2 Sealed compressor
  • 3 Condenser
  • 4 Expander
  • 5 ... Evaporator
  • 6 Accumulator
  • 7 ... Circulation circuit
  • 10 Sealed container
  • 10c Oil Reservoir
  • 11 Electric motor
  • 12 Compression mechanism, 31 ... Cylinder, 32 ... Rotating shaft, 32a ... Main shaft, 32b ... Sub-shaft, 32c ... Eccentric, 32e ... Lower end surface, 32f, 32g ... Outer surface , 33 ... 1st bearing, 33a ... 1st cylinder part, 33b ... 1st flange part, 34 ... 2nd bearing, 34a ...
  • oil flow groove 54a ... base end, 61 ... first support end, 62 ... second support end, 63, 64 ... groove, 63a, 64a ... inner wall Parts, 63b, 64b ... Outer wall part, 63c, 64c ... Bottom, 65 ... Thin-walled part, 71 ... Inclined part, 72 (72a-72f) ... Branch chamber part, 73 (73a-73f) ... Fixed part, 74b, 74c ... Inclined Surface, C1, C2, C3 ... Opening center, Cb ... Bolt rotation center, I ... Lubricating oil, Is ... Lubricating oil storage surface, O1 ... Central axis of closed container, S1, S2 ... Sliding part, T1 ... Second support The wall thickness of the end.

Abstract

This hermetic compressor (2) is provided with a cylinder (31), a rotary shaft (32), a first bearing (33), a second bearing (34), and a hermetic container (10). The rotary shaft has: a main shaft part (32a) supported by the first bearing on one end side thereof in the axial direction thereof with an eccentric section (32c) as a boundary; and a sub shaft part (32b) supported by the second bearing on the other end side thereof. The sub shaft part has, on the outer circumferential surface (32g) thereof, an oil flow groove (54) which is for a lubrication oil (I) and spirally extends toward the one axial end side along the rotational direction (R) of the rotary shaft from the one axial end side, rather than the other axial end, that serves as a base end (54a). The second bearing has a flange part (34b) and a cylindrical part (34a) protruding from the flange part, wherein the wall thickness of a portion of the cylindrical part, which is the other axial end section and overlaps the base end of the oil flow groove when viewed in the radial direction of the rotary shaft, is smaller than those of other sections of the cylindrical part.

Description

密閉型圧縮機、および冷凍サイクル装置Closed compressor and refrigeration cycle device
 本発明の実施形態は、密閉型圧縮機、および該密閉型圧縮機を備えた冷凍サイクル装置に関する。 An embodiment of the present invention relates to a closed compressor and a refrigerating cycle device provided with the closed compressor.
 空気調和機などの冷凍サイクル装置には、密閉型圧縮機が搭載されている。密閉型圧縮機は、主たる要素として圧縮機構部および電動機部を備えている。これらは、電動機部を上方に、圧縮機構部を下方に位置付けて、密閉容器に収容されている。圧縮機構部は、偏心部を持つ回転軸を有するとともに、回転軸を介して電動機部と連結されている。回転軸は、上方の第1の軸受(主軸受)と下方の第2の軸受(副軸受)でそれぞれ支持され、電動機部の回転駆動力により回転する。電動機部は、回転軸に取り付けられた回転子(ロータ)と、回転子を取り囲んで配置された固定子(ステータ)とを備えている。 A closed compressor is installed in refrigeration cycle devices such as air conditioners. The closed compressor includes a compression mechanism unit and an electric motor unit as main elements. These are housed in a closed container with the electric motor unit located above and the compression mechanism unit below. The compression mechanism portion has a rotating shaft having an eccentric portion, and is connected to the electric motor portion via the rotating shaft. The rotating shaft is supported by the upper first bearing (main bearing) and the lower second bearing (secondary bearing), respectively, and is rotated by the rotational driving force of the electric motor portion. The electric motor unit includes a rotor (rotor) attached to a rotating shaft and a stator (stator) arranged so as to surround the rotor.
 主軸受および副軸受と回転軸との摺動部分は、例えば回転軸の回転力を利用して潤滑されている。潤滑構造の一例として、回転軸を軸方向に中空とし、該中空部分(中空孔)と連通する放射孔と、該放射孔と連通する油溝を設けた構造が知られている。中空孔は、回転軸の回転力により、密閉容器の底部に貯留した冷凍機油(潤滑油)を放射孔まで吸い上げる。放射孔は、軸方向と垂直に回転軸に設けられ、中空孔に吸い上げられた潤滑油を軸受と回転軸との摺動部分に給油する。油溝は、例えば回転軸の外周面もしくは軸受の内周面のいずれかに設けられ、潤滑油を軸受と回転軸との摺動部分全体に行き渡らせる。摺動部分を潤滑した潤滑油は、密閉容器の底部に返油される。 The sliding parts of the main bearing and the auxiliary bearing and the rotating shaft are lubricated by using, for example, the rotational force of the rotating shaft. As an example of the lubrication structure, a structure is known in which the rotation shaft is hollow in the axial direction, and a radiation hole communicating with the hollow portion (hollow hole) and an oil groove communicating with the radiation hole are provided. The hollow hole sucks the refrigerating machine oil (lubricating oil) stored in the bottom of the closed container to the radiation hole by the rotational force of the rotating shaft. The radiation hole is provided on the rotating shaft perpendicular to the axial direction, and the lubricating oil sucked up by the hollow hole is supplied to the sliding portion between the bearing and the rotating shaft. The oil groove is provided on either the outer peripheral surface of the rotating shaft or the inner peripheral surface of the bearing, for example, and the lubricating oil is distributed over the entire sliding portion between the bearing and the rotating shaft. The lubricating oil that lubricates the sliding portion is returned to the bottom of the closed container.
特公昭61-45079号公報Special Publication No. 61-45079 実開昭61-94296号公報Jitsukaisho 61-94296 特開2018-165502号公報JP-A-2018-165502
 軸受と回転軸との摺動部分の潤滑性は、軸受と回転軸との間の極小隙間に潤滑油を供給し、油膜を形成することで維持される。しかしながら、圧縮機構部で冷媒を圧縮する過程で、回転軸には圧縮荷重が作用し、これにより回転軸に撓み変形が生じるため、油膜が存在するこの極小隙間を適切に管理することは容易ではない。特に、回転軸の偏心部よりも下側の部分であり、副軸受で支持される部分と副軸受との摺動部分における潤滑性の向上を図るためには、これらの間の極小隙間をより一層適切に管理することが求められる。 The lubricity of the sliding part between the bearing and the rotating shaft is maintained by supplying lubricating oil to the minimum gap between the bearing and the rotating shaft to form an oil film. However, in the process of compressing the refrigerant in the compression mechanism, a compressive load acts on the rotating shaft, which causes bending and deformation of the rotating shaft. Therefore, it is not easy to properly manage this extremely small gap in which the oil film exists. Absent. In particular, in order to improve the lubricity of the part below the eccentric part of the rotating shaft and the sliding part between the part supported by the auxiliary bearing and the auxiliary bearing, a minimum gap between them should be made. More appropriate management is required.
 本発明の目的は、副軸受と回転軸との摺動部分への給油を促進し、該摺動部分における潤滑性の向上を図った密閉型圧縮機、および該密閉型圧縮機を備えた冷凍サイクル装置を提供することにある。 An object of the present invention is a closed-type compressor that promotes lubrication to a sliding portion between the auxiliary bearing and the rotating shaft to improve lubricity in the sliding portion, and a refrigeration equipped with the closed-type compressor. The purpose is to provide a cycle device.
 実施形態によれば、密閉型圧縮機は、シリンダ室を形成するシリンダと、シリンダ室内に配置される偏心部を有する回転軸と、回転軸を回転可能に支持し、シリンダ室における回転軸の軸芯方向の一端側の端面を規定する第1の軸受および他端側の端面を規定する第2の軸受と、を備える圧縮機構部を収容し、圧縮機構部の摺動部分を潤滑する潤滑油を貯留する密閉容器を備える。回転軸は、偏心部を境に軸芯方向の一端側で第1の軸受に支持される主軸部と、他端側で第2の軸受に支持される副軸部とを有する。副軸部は、軸芯方向の他端よりも一端側を基端として、回転軸の回転方向に沿って軸芯方向の一端側へ螺旋状に連続する潤滑油の通油溝を外周面に有する。第2の軸受は、フランジ部とフランジ部から突出する筒部とを有し、筒部のうち、軸芯方向の他端部分で、かつ回転軸の径方向からみて前記通油溝の基端とラップする部分の肉厚は、筒部の他の部分の肉厚よりも薄い。 According to the embodiment, the closed compressor rotatably supports the cylinder forming the cylinder chamber, the rotating shaft having an eccentric portion arranged in the cylinder chamber, and the rotating shaft, and the shaft of the rotating shaft in the cylinder chamber. Lubricating oil that accommodates a compression mechanism including a first bearing that defines one end face in the core direction and a second bearing that defines the other end face, and lubricates the sliding portion of the compression mechanism. It is equipped with a closed container for storing. The rotating shaft has a main shaft portion supported by the first bearing on one end side in the axis direction with the eccentric portion as a boundary, and a sub-shaft portion supported by the second bearing on the other end side. The outer peripheral surface of the sub-shaft has a lubricating oil passage groove that spirally continues to one end in the axial direction along the rotation direction of the rotating shaft, with one end side of the other end in the axial direction as the base end. Have. The second bearing has a flange portion and a tubular portion protruding from the flange portion, and is the other end portion of the tubular portion in the axial direction and the base end of the oil passage groove when viewed from the radial direction of the rotating shaft. The wall thickness of the part that wraps with is thinner than the wall thickness of the other part of the cylinder part.
実施形態に係る密閉型圧縮機を備えた冷凍サイクル装置(空気調和機)を概略的に示す図である。It is a figure which shows schematicly the refrigerating cycle apparatus (air conditioner) provided with the closed type compressor which concerns on embodiment. 実施形態に係る密閉型圧縮機の圧縮機構部を拡大して示す図である。It is a figure which enlarges and shows the compression mechanism part of the closed type compressor which concerns on embodiment.
空気調和機の室内ユニットを分解して示す斜視図である。
実施形態に係る密閉型圧縮機の第2の軸受の構成の一例を示す縦断面図である。 実施形態に係る密閉型圧縮機の第2の軸受の構成の別例を示す縦断面図である。 実施形態に係る密閉型圧縮機のバランサカバーを下方から示す平面図である。 実施形態に係る密閉型圧縮機において、傾斜面を潤滑油の粒子が上昇するための条件を説明するための模式図である。
It is a perspective view which shows the indoor unit of an air conditioner by disassembling.
It is a vertical sectional view which shows an example of the structure of the 2nd bearing of the closed type compressor which concerns on embodiment. It is a vertical cross-sectional view which shows another example of the structure of the 2nd bearing of the closed type compressor which concerns on embodiment. It is a top view which shows the balancer cover of the closed type compressor which concerns on embodiment from below. It is a schematic diagram for demonstrating the condition for the particles of lubricating oil rising on an inclined surface in the closed type compressor which concerns on embodiment.
 以下、一実施形態について、図1から図6を参照して説明する。 
 図1は、本実施形態に係る冷凍サイクル装置の一例である空気調和機1を概略的に示す図である。空気調和機1は、主たる要素として、密閉型圧縮機2と、凝縮器3と、膨張装置4と、蒸発器5と、アキュムレータ6とを備えている。空気調和機1においては、作動流体である冷媒が気相冷媒と液相冷媒とに相変化しながら循環回路7を循環する。循環回路7は、密閉型圧縮機2の吐出側(吐出管10b)から凝縮器3、膨張装置4、蒸発器5、およびアキュムレータ6を経由し、吸込側(吸込管36)に至る回路である。冷媒としては、R410AやR32などのHFC系冷媒、R1234yfやR1234zeなどのHFO系冷媒、二酸化炭素(CO)などの自然冷媒を適宜使用可能である。
Hereinafter, one embodiment will be described with reference to FIGS. 1 to 6.
FIG. 1 is a diagram schematically showing an air conditioner 1 which is an example of a refrigeration cycle device according to the present embodiment. The air conditioner 1 includes a closed compressor 2, a condenser 3, an expansion device 4, an evaporator 5, and an accumulator 6 as main elements. In the air conditioner 1, the refrigerant as the working fluid circulates in the circulation circuit 7 while changing the phase between the gas phase refrigerant and the liquid phase refrigerant. The circulation circuit 7 is a circuit that reaches the suction side (suction pipe 36) from the discharge side (discharge pipe 10b) of the closed compressor 2 via the condenser 3, the expansion device 4, the evaporator 5, and the accumulator 6. .. As the refrigerant, an HFC-based refrigerant such as R410A or R32, an HFO-based refrigerant such as R1234yf or R1234ze, or a natural refrigerant such as carbon dioxide (CO 2 ) can be appropriately used.
 凝縮器3は、密閉型圧縮機2から吐出される高温・高圧の気相冷媒を放熱させ、高圧の液相冷媒に変化させる。 
 膨張装置4は、凝縮器3から導かれた高圧の液相冷媒を減圧し、低圧の気液二相冷媒に変化させる。 
 蒸発器5は、凝縮器3から導かれた低圧の気液二相冷媒を空気と熱交換させる。その際、気液二相冷媒は、空気から熱を奪って蒸発し、低温・低圧の気相冷媒に変化する。蒸発器5を通過する空気は、液相冷媒の蒸発潜熱により冷やされ、冷風となって空調(冷房)すべき場所に送られる。
The condenser 3 dissipates heat from the high-temperature, high-pressure gas-phase refrigerant discharged from the closed compressor 2 and changes it into a high-pressure liquid-phase refrigerant.
The expansion device 4 decompresses the high-pressure liquid-phase refrigerant derived from the condenser 3 and changes it into a low-pressure gas-liquid two-phase refrigerant.
The evaporator 5 exchanges heat with air for a low-pressure gas-liquid two-phase refrigerant derived from the condenser 3. At that time, the gas-liquid two-phase refrigerant takes heat from the air and evaporates, and changes into a low-temperature / low-pressure gas-phase refrigerant. The air passing through the evaporator 5 is cooled by the latent heat of vaporization of the liquid phase refrigerant, becomes cold air, and is sent to a place to be air-conditioned (cooled).
 蒸発器5を通過した低温・低圧の気相冷媒は、アキュムレータ6に導かれる。蒸発し切れなかった液相冷媒が冷媒中に混入している場合は、ここで液相冷媒と気相冷媒とに分離される。液相冷媒から分離された低温・低圧の気相冷媒は、アキュムレータ6から吸込管36を通って密閉型圧縮機2に吸い込まれるとともに、密閉型圧縮機2で再び高温・高圧の気相冷媒に圧縮されて吐出管10bから吐出される。 The low-temperature / low-pressure vapor-phase refrigerant that has passed through the evaporator 5 is guided to the accumulator 6. When the liquid phase refrigerant that has not completely evaporated is mixed in the refrigerant, it is separated into the liquid phase refrigerant and the gas phase refrigerant here. The low-temperature, low-pressure vapor-phase refrigerant separated from the liquid-phase refrigerant is sucked into the closed compressor 2 from the accumulator 6 through the suction pipe 36, and is again converted into the high-temperature, high-pressure vapor refrigerant by the closed compressor 2. It is compressed and discharged from the discharge pipe 10b.
 次に、空気調和機1に用いられる密閉型圧縮機2の具体的な構成について説明する。図1に示すように、密閉型圧縮機2は、いわゆる縦形のロータリーコンプレッサであって、主たる要素として、密閉容器10、電動機部11および圧縮機構部12を備えている。なお、図1には、後述する密閉容器10の中心軸線O1を含む所定の二面で密閉型圧縮機2を縦断した状態を示す。 Next, the specific configuration of the sealed compressor 2 used in the air conditioner 1 will be described. As shown in FIG. 1, the closed compressor 2 is a so-called vertical rotary compressor, and includes a closed container 10, an electric motor portion 11, and a compression mechanism portion 12 as main elements. Note that FIG. 1 shows a state in which the closed compressor 2 is vertically traversed on two predetermined surfaces including the central axis O1 of the closed container 10, which will be described later.
 密閉容器10は、円筒状の周壁10aを有するとともに、鉛直方向に沿うように起立されている。密閉容器10の上端には、吐出管10bが設けられている。吐出管10bは、循環回路7を介して凝縮器3に接続されている。さらに、密閉容器10の下部には、潤滑油Iを貯留する油溜まり部10cが設けられている。 The closed container 10 has a cylindrical peripheral wall 10a and stands up along the vertical direction. A discharge pipe 10b is provided at the upper end of the closed container 10. The discharge pipe 10b is connected to the condenser 3 via a circulation circuit 7. Further, an oil reservoir 10c for storing the lubricating oil I is provided in the lower part of the closed container 10.
 潤滑油Iとしては、例えばポリオールエステル油、ポリビニルエーテル油、ポリアルキレングリコール油、鉱物油などが適用可能である。 As the lubricating oil I, for example, polyol ester oil, polyvinyl ether oil, polyalkylene glycol oil, mineral oil and the like can be applied.
 電動機部11は、圧縮機構部12と吐出管10bとの間に位置するように密閉容器10の中心軸線O1に沿う中間部に収容されている。電動機部11は、いわゆるインナーロータ型のモータを含み、回転子21および固定子22を備えている。 The electric motor unit 11 is housed in an intermediate portion along the central axis O1 of the closed container 10 so as to be located between the compression mechanism unit 12 and the discharge pipe 10b. The electric motor unit 11 includes a so-called inner rotor type motor, and includes a rotor 21 and a stator 22.
 図2は、図1における圧縮機構部12の構成を拡大して示す図である。図1および図2に示すように、圧縮機構部12は、潤滑油Iに浸かるように密閉容器10の下部に収容されている。圧縮機構部12は、シングル型のシリンダ構造を有し、シリンダ31、回転軸32、第1の軸受33および第2の軸受34を主たる要素として備えている。なお、圧縮機構部12は、シングル型に限らず、二つ以上のシリンダを備えたものであってもよい。 FIG. 2 is an enlarged view showing the configuration of the compression mechanism unit 12 in FIG. 1. As shown in FIGS. 1 and 2, the compression mechanism portion 12 is housed in the lower part of the closed container 10 so as to be immersed in the lubricating oil I. The compression mechanism portion 12 has a single cylinder structure, and includes a cylinder 31, a rotating shaft 32, a first bearing 33, and a second bearing 34 as main elements. The compression mechanism unit 12 is not limited to the single type, and may be provided with two or more cylinders.
 シリンダ31は、密閉容器10の周壁10aの内周面に固定されている。シリンダ31の上方には第1の軸受33、シリンダ31の下方には第2の軸受34がそれぞれ固定されている。シリンダ31の内径部、第1の軸受33および第2の軸受34で囲まれた空間は、シリンダ室35を構成する。シリンダ室35は、密閉容器10の中心軸線O1と同軸状に配置されている。シリンダ室35は、循環回路7の一部である吸込管36を介してアキュムレータ6に接続されている。アキュムレータ6で液相冷媒から分離された気相冷媒は、吸込管36を通ってシリンダ室35に導かれる。 The cylinder 31 is fixed to the inner peripheral surface of the peripheral wall 10a of the closed container 10. A first bearing 33 is fixed above the cylinder 31, and a second bearing 34 is fixed below the cylinder 31. The inner diameter portion of the cylinder 31, the space surrounded by the first bearing 33 and the second bearing 34 constitutes the cylinder chamber 35. The cylinder chamber 35 is arranged coaxially with the central axis O1 of the closed container 10. The cylinder chamber 35 is connected to the accumulator 6 via a suction pipe 36 which is a part of the circulation circuit 7. The gas phase refrigerant separated from the liquid phase refrigerant by the accumulator 6 is guided to the cylinder chamber 35 through the suction pipe 36.
 シリンダ31には、シリンダ室35を吸入室と圧縮室に区画するベーン(図示省略)が配置されている。シリンダ31の内周部には、径方向の外側に向けて延びたベーン溝(図示省略)が形成されている。ベーンは、径方向の内側へ付勢手段(図示省略)で付勢され、先端部を後述するローラ37の外周面に押し付けた状態でシリンダ31に支持されている。ローラ37の偏心回転に伴って、ベーンはシリンダ室35に進退する。これにより、シリンダ室35の吸入室および圧縮室の容積が変化し、吸込管36からシリンダ室35に吸い込まれた気相冷媒が圧縮される。 The cylinder 31 is provided with a vane (not shown) that divides the cylinder chamber 35 into a suction chamber and a compression chamber. A vane groove (not shown) extending outward in the radial direction is formed in the inner peripheral portion of the cylinder 31. The vane is urged inward in the radial direction by an urging means (not shown), and is supported by the cylinder 31 in a state where the tip portion is pressed against the outer peripheral surface of the roller 37 described later. As the roller 37 rotates eccentrically, the vane moves back and forth into the cylinder chamber 35. As a result, the volumes of the suction chamber and the compression chamber of the cylinder chamber 35 change, and the gas phase refrigerant sucked from the suction pipe 36 into the cylinder chamber 35 is compressed.
 回転軸32は、軸芯が密閉容器10の中心軸線O1と同軸状に位置し、第1の軸受33、シリンダ室35、第2の軸受34を貫通している。本実施形態において、回転軸32の軸芯(中心軸線O1)は鉛直に伸びており、回転軸32の軸芯に沿った一端側が上、他端側が下に相当する。 The axis of the rotating shaft 32 is located coaxially with the central axis O1 of the closed container 10 and penetrates the first bearing 33, the cylinder chamber 35, and the second bearing 34. In the present embodiment, the axis (central axis O1) of the rotating shaft 32 extends vertically, and one end side along the axis of the rotating shaft 32 corresponds to the upper side and the other end side corresponds to the lower side.
 回転軸32は、主軸部32aおよび副軸部32b、これらの間に介在する偏心部32cを有している。 
 主軸部32aは、偏心部32cを境に回転軸32の軸芯方向(以下、単に軸芯方向という)の一端(上端)へ向けて伸長している。主軸部32aの上部には、電動機部11の回転子21が取り付けられている。副軸部32bは、偏心部32cを境に軸芯方向の他端(下端)へ向けて伸長している。回転軸32の回転時、主軸部32aは第1の軸受33と摺接しながら回転(摺動)し、副軸部32bは第2の軸受34と摺動する。すなわち、主軸部32aは、偏心部32cよりも軸芯方向の一端側(上端側)で第1の軸受33と摺動する回転軸32の一部分である。副軸部32bは、偏心部32cよりも軸芯方向の他端側(下端側)で第2の軸受34と摺動する回転軸32の一部分である。
The rotating shaft 32 has a main shaft portion 32a, a sub shaft portion 32b, and an eccentric portion 32c interposed between them.
The spindle portion 32a extends toward one end (upper end) of the rotating shaft 32 in the axis direction (hereinafter, simply referred to as the axis direction) with the eccentric portion 32c as a boundary. The rotor 21 of the electric motor portion 11 is attached to the upper portion of the spindle portion 32a. The sub-shaft portion 32b extends toward the other end (lower end) in the axial direction with the eccentric portion 32c as a boundary. When the rotating shaft 32 rotates, the main shaft portion 32a rotates (slides) while sliding in contact with the first bearing 33, and the sub-shaft portion 32b slides with the second bearing 34. That is, the spindle portion 32a is a part of the rotating shaft 32 that slides on the first bearing 33 on one end side (upper end side) in the axial direction with respect to the eccentric portion 32c. The sub-shaft portion 32b is a part of the rotating shaft 32 that slides on the second bearing 34 on the other end side (lower end side) in the axis direction with respect to the eccentric portion 32c.
 偏心部32cは、回転軸32(主軸部32aおよび副軸部32b)の軸芯(中心軸線O1)に対して偏心し、シリンダ室35に配置されている。偏心部32cの外周面には、ローラ37が嵌着されている。ローラ37の内周面と偏心部32cの外周面との間には、偏心部32cに対するローラの37の回転を許容する僅かな隙間が設けられている。これにより、ローラ37は、回転軸32が回転した時に、シリンダ室35内で回転軸32の軸芯に対して偏心回転し、外周面の一部がシリンダ室35の内周面に油膜を介して接触する。 The eccentric portion 32c is eccentric with respect to the axis (central axis O1) of the rotating shaft 32 (main shaft portion 32a and sub-shaft portion 32b) and is arranged in the cylinder chamber 35. A roller 37 is fitted on the outer peripheral surface of the eccentric portion 32c. A slight gap is provided between the inner peripheral surface of the roller 37 and the outer peripheral surface of the eccentric portion 32c to allow the roller 37 to rotate with respect to the eccentric portion 32c. As a result, when the rotating shaft 32 rotates, the roller 37 rotates eccentrically with respect to the axis of the rotating shaft 32 in the cylinder chamber 35, and a part of the outer peripheral surface thereof passes through an oil film on the inner peripheral surface of the cylinder chamber 35. Contact.
 回転軸32には、軸芯方向の他端部にバランサ38が設けられている。本実施形態において、副軸部32bは第2の軸受34よりも下方に突出しており、バランサ38はその突出部分32dに配置されている。バランサ38の形状は特に限定されないが、例えば円板状や半円板状などである。バランサ38には、軸芯方向の貫通孔38aが形成されている。貫通孔38aには、副軸部32bの突出部分32dが圧入やねじ止めなどにより固定されている。バランサ38の中心は、回転軸32の軸芯(中心軸線O1)に対して偏心部32cの偏心方向と逆方向に偏心している。すなわち、バランサ38および偏心部32cは、回転軸32の周方向に180°の位相差で配置されている。なお、偏心部の数により、バランサ38の配置角度は異なる。 The rotating shaft 32 is provided with a balancer 38 at the other end in the axial direction. In the present embodiment, the sub-shaft portion 32b projects below the second bearing 34, and the balancer 38 is arranged at the projecting portion 32d. The shape of the balancer 38 is not particularly limited, but is, for example, a disk shape or a semicircular plate shape. The balancer 38 is formed with a through hole 38a in the axial direction. The protruding portion 32d of the auxiliary shaft portion 32b is fixed to the through hole 38a by press fitting or screwing. The center of the balancer 38 is eccentric with respect to the axis (central axis O1) of the rotating shaft 32 in a direction opposite to the eccentric direction of the eccentric portion 32c. That is, the balancer 38 and the eccentric portion 32c are arranged with a phase difference of 180 ° in the circumferential direction of the rotating shaft 32. The arrangement angle of the balancer 38 differs depending on the number of eccentric portions.
 本実施形態において、副軸部32bは、主軸部32aと比べ、軸芯方向の長さが短い。したがって、副軸部32bにバランサ38を設けることで、例えば電動機部11の回転子21の上面にバランサを設ける場合と比べ、バランサ38の配設部分である副軸部32bを支持する第2の軸受34とバランサ38との距離を短縮できる。この結果、偏心部32cを有する回転軸32の回転バランスが安定し、回転子21の撓みなどが抑制される。 In the present embodiment, the auxiliary shaft portion 32b has a shorter length in the axial core direction than the main shaft portion 32a. Therefore, by providing the balancer 38 on the sub-shaft portion 32b, for example, as compared with the case where the balancer is provided on the upper surface of the rotor 21 of the electric motor unit 11, a second support for the sub-shaft portion 32b, which is an arrangement portion of the balancer 38, is provided. The distance between the bearing 34 and the balancer 38 can be shortened. As a result, the rotational balance of the rotating shaft 32 having the eccentric portion 32c is stabilized, and the bending of the rotor 21 is suppressed.
 バランサ38は、バランサカバー39で覆われている。バランサカバー39は、第2の軸受34にボルト40(図5参照)で固定され、バランサ38を下方から覆っている。バランサカバー39は、底部39aと、底部39aから起立する壁部39bと、壁部39bに連続するフランジ部39cとを備えている。 The balancer 38 is covered with the balancer cover 39. The balancer cover 39 is fixed to the second bearing 34 with bolts 40 (see FIG. 5) and covers the balancer 38 from below. The balancer cover 39 includes a bottom portion 39a, a wall portion 39b that rises from the bottom portion 39a, and a flange portion 39c that is continuous with the wall portion 39b.
 底部39aは、回転軸32の他端面、つまり副軸部32bの下端面32eに当接している。かかる当接部分は、回転軸32に作用する軸芯方向の荷重を受け止め、下端面32eを摺動可能に支持するスラスト支持部39dとなっている。スラスト支持部39dは、底部39aを上方に隆起させるように設けられている。スラスト支持部39dにおける上面(下端面32eとの当接面)は、軸芯方向と直交する平坦状となっている。スラスト支持部39dの中央部には、上下方向に貫通する給油孔39eが形成され、その下端は密閉容器10の油溜まり部10cに貯留された潤滑油Iに臨んでいる。壁部39bは、バランサ38の外周を覆う部分である。フランジ部39cは、ボルト40による第2の軸受34との固定部分であり、後述する第2フランジ部34bを周方向から支持する爪39fを有している。 The bottom portion 39a is in contact with the other end surface of the rotating shaft 32, that is, the lower end surface 32e of the sub shaft portion 32b. The contact portion is a thrust support portion 39d that receives a load acting on the rotating shaft 32 in the axial direction and slidably supports the lower end surface 32e. The thrust support portion 39d is provided so as to raise the bottom portion 39a upward. The upper surface (contact surface with the lower end surface 32e) of the thrust support portion 39d has a flat shape orthogonal to the axis direction. An oil supply hole 39e penetrating in the vertical direction is formed in the central portion of the thrust support portion 39d, and the lower end thereof faces the lubricating oil I stored in the oil reservoir portion 10c of the closed container 10. The wall portion 39b is a portion that covers the outer periphery of the balancer 38. The flange portion 39c is a portion fixed to the second bearing 34 by a bolt 40, and has a claw 39f that supports the second flange portion 34b, which will be described later, from the circumferential direction.
 第1の軸受33および第2の軸受34は、回転軸32を回転可能に支持する。第1の軸受33はシリンダ室35の上面35aを規定し、第2の軸受34はシリンダ室35の下面35bを規定する。上面35aは、回転軸32の軸芯方向の一端側の端面であり、下面35bは回転軸32の軸芯方向の他端側の端面である。すなわち、第1の軸受33はシリンダ室35を上方から閉塞する部材に相当し、第2の軸受34はシリンダ室35を下方から閉塞する部材に相当する。 The first bearing 33 and the second bearing 34 rotatably support the rotating shaft 32. The first bearing 33 defines the upper surface 35a of the cylinder chamber 35, and the second bearing 34 defines the lower surface 35b of the cylinder chamber 35. The upper surface 35a is an end surface on one end side of the rotating shaft 32 in the axial direction, and the lower surface 35b is an end surface on the other end side of the rotating shaft 32 in the axial direction. That is, the first bearing 33 corresponds to a member that closes the cylinder chamber 35 from above, and the second bearing 34 corresponds to a member that closes the cylinder chamber 35 from below.
 第1の軸受33は、第1フランジ部33bと、第1フランジ部33bから突出する第1筒部33aとを備えている。 
 第1フランジ部33bは、第1筒部33aの下端に位置し、径方向の外側に向けて延びている。第1フランジ部33bは、主軸部32aを挿通して回転可能に支持する部分を内周に有している。第1フランジ部33bには、シリンダ室35の圧縮室から冷媒を吐出させる第1吐出孔33dが形成されている。第1吐出孔33dは、第1フランジ部33bの一部を上下に貫通し、シリンダ室35の圧縮室内に連通している。第1吐出孔33dは、第1吐出弁機構33eによって開閉される。第1吐出弁機構33eは、圧縮室内の圧力上昇に伴って第1吐出孔33dを開放し、シリンダ室35から高温・高圧の気相冷媒を吐出させる。
The first bearing 33 includes a first flange portion 33b and a first tubular portion 33a protruding from the first flange portion 33b.
The first flange portion 33b is located at the lower end of the first tubular portion 33a and extends outward in the radial direction. The first flange portion 33b has a portion on the inner circumference that is rotatably supported by inserting the spindle portion 32a. The first flange portion 33b is formed with a first discharge hole 33d for discharging the refrigerant from the compression chamber of the cylinder chamber 35. The first discharge hole 33d penetrates a part of the first flange portion 33b up and down and communicates with the compression chamber of the cylinder chamber 35. The first discharge hole 33d is opened and closed by the first discharge valve mechanism 33e. The first discharge valve mechanism 33e opens the first discharge hole 33d as the pressure in the compression chamber rises, and discharges high-temperature and high-pressure vapor-phase refrigerant from the cylinder chamber 35.
 第1の軸受33の上方には、第1の軸受33を覆うマフラ41が備えられている。マフラ41は、マフラ41の内外(上下)を連通する連通孔41aを有している。第1吐出孔33dを通して吐出された高温・高圧の気相冷媒は、連通孔41aを通して密閉容器10内に吐出される。 Above the first bearing 33, a muffler 41 covering the first bearing 33 is provided. The muffler 41 has a communication hole 41a that communicates inside and outside (upper and lower) of the muffler 41. The high-temperature, high-pressure vapor-phase refrigerant discharged through the first discharge hole 33d is discharged into the closed container 10 through the communication hole 41a.
 第1筒部33aは、第1フランジ部33bの上端から突出し、第1の軸受33において回転軸32、具体的には主軸部32aを挿通して回転可能に支持する部分である。主軸部32aは、第1筒部33aに挿通された状態で、外周面32fが第1筒部33aの内周面33cに対して摺動する。 The first tubular portion 33a is a portion that protrudes from the upper end of the first flange portion 33b and rotatably supports the first bearing 33 through the rotating shaft 32, specifically, the main shaft portion 32a. In the state where the spindle portion 32a is inserted into the first cylinder portion 33a, the outer peripheral surface 32f slides with respect to the inner peripheral surface 33c of the first cylinder portion 33a.
 第2の軸受34は、第2フランジ部34bと、第2フランジ部34bとから突出する第2筒部34aとを備えている。 
 第2フランジ部34bは、第2筒部34aの上端に位置し、径方向の外側に向けて延びている。第2フランジ部34bは、副軸部32bを挿通して回転可能に支持する部分を内周に有している。第2フランジ部34bには、シリンダ室35の圧縮室から冷媒を吐出させる第2吐出孔(以下、吐出ポートという)34dが形成されている。吐出ポート34dは、第2フランジ部34bの一部を上下に貫通し、シリンダ室35の圧縮室内に連通している。吐出ポート34dは、第2吐出弁機構34eによって開閉される。第2吐出弁機構34eは、圧縮室内の圧力上昇に伴って吐出ポート34dを開放し、シリンダ室35から高温・高圧の気相冷媒を吐出させる。吐出ポート34dを通して吐出された高温・高圧の気相冷媒は、バランサカバー39のカバー空間42に吐出される。カバー空間42は、バランサカバー39がバランサ38を下方から覆う空間であり、底部39aおよび壁部39bで囲まれた空間である。
The second bearing 34 includes a second flange portion 34b and a second tubular portion 34a protruding from the second flange portion 34b.
The second flange portion 34b is located at the upper end of the second tubular portion 34a and extends outward in the radial direction. The second flange portion 34b has a portion on the inner circumference that is rotatably supported by inserting the auxiliary shaft portion 32b. The second flange portion 34b is formed with a second discharge hole (hereinafter, referred to as a discharge port) 34d for discharging the refrigerant from the compression chamber of the cylinder chamber 35. The discharge port 34d penetrates a part of the second flange portion 34b up and down and communicates with the compression chamber of the cylinder chamber 35. The discharge port 34d is opened and closed by the second discharge valve mechanism 34e. The second discharge valve mechanism 34e opens the discharge port 34d as the pressure in the compression chamber rises, and discharges high-temperature and high-pressure vapor-phase refrigerant from the cylinder chamber 35. The high-temperature, high-pressure vapor-phase refrigerant discharged through the discharge port 34d is discharged into the cover space 42 of the balancer cover 39. The cover space 42 is a space in which the balancer cover 39 covers the balancer 38 from below, and is a space surrounded by a bottom portion 39a and a wall portion 39b.
 第2筒部34aは、第2フランジ部34bの下端から突出し、第2の軸受34において回転軸32、具体的には副軸部32bを挿通して回転可能に支持する部分である。副軸部32bは、第2筒部34aに挿通された状態で、外周面32gが第2筒部34aの内周面34cに対して摺動する。 The second tubular portion 34a is a portion that protrudes from the lower end of the second flange portion 34b and rotatably supports the second bearing 34 through the rotating shaft 32, specifically, the sub-shaft portion 32b. In the state where the auxiliary shaft portion 32b is inserted into the second tubular portion 34a, the outer peripheral surface 32g slides with respect to the inner peripheral surface 34c of the second tubular portion 34a.
 第1の軸受33、シリンダ31、および第2の軸受34は、密閉容器10内の潤滑油貯留面Isの上方空間とカバー空間42とを連通する連通路43を有している。連通路43は、第1フランジ部33b、シリンダ31、および第2フランジ部34bを上下に貫通している。連通路43は、例えば第1フランジ部33b、シリンダ31、および第2フランジ部34bを貫く管体として、もしくはこれら各部に形成された貫通孔を連通させて構成される。連通路43の一端(上端)側の開口部43aは、マフラ41内に臨み、他端(下端)側の開口部43bは、カバー空間42に臨んでいる。 The first bearing 33, the cylinder 31, and the second bearing 34 have a communication passage 43 that communicates the space above the lubricating oil storage surface Is in the closed container 10 with the cover space 42. The communication passage 43 penetrates the first flange portion 33b, the cylinder 31, and the second flange portion 34b up and down. The communication passage 43 is configured, for example, as a pipe body penetrating the first flange portion 33b, the cylinder 31, and the second flange portion 34b, or by communicating through holes formed in each of these portions. The opening 43a on the one end (upper end) side of the communication passage 43 faces the inside of the muffler 41, and the opening 43b on the other end (lower end) side faces the cover space 42.
 連通路43の本数は特に限定されない。本実施形態では一例として、二つの連通路431,432が備えられている(図5参照)。これらの連通路431,432の詳細については後述する。 The number of passages 43 is not particularly limited. In this embodiment, as an example, two communication passages 431 and 432 are provided (see FIG. 5). Details of these communication passages 431 and 432 will be described later.
 上述したような構成をなす圧縮機構部12は、要素間の各摺動部分が潤滑油Iによって潤滑されている。次に、本実施形態における圧縮機構部12の潤滑構造、具体的には回転軸32と第1の軸受33および第2の軸受34との摺動部分(以下、軸受潤滑部という)に対する潤滑構造について説明する。 In the compression mechanism portion 12 having the above-described configuration, each sliding portion between the elements is lubricated by the lubricating oil I. Next, the lubrication structure of the compression mechanism portion 12 in the present embodiment, specifically, the lubrication structure for the sliding portion (hereinafter, referred to as the bearing lubrication portion) between the rotating shaft 32 and the first bearing 33 and the second bearing 34. Will be described.
 回転軸32は、密閉容器10の油溜まり部10cから潤滑油Iを軸受潤滑部に供給するための給油路51を有している。給油路51は、主給油路52および副給油路53a,53bを含んで構成されている。 The rotating shaft 32 has an oil supply passage 51 for supplying lubricating oil I to the bearing lubricating portion from the oil sump portion 10c of the closed container 10. The refueling passage 51 includes a main refueling passage 52 and sub refueling passages 53a and 53b.
 主給油路52は、回転軸32の一部を軸芯方向に中空として構成されている。 
 主給油路52の下端部は、回転軸32(副軸部32b)の下端面32eで開口している。開口部52aは、バランサカバー39の給油孔39eと連通している。すなわち、主給油路52の下端部は、開口部52aおよび給油孔39eを介して密閉容器10内、具体的には油溜まり部10cと連通している。これにより、回転軸32が回転することにより、油溜まり部10cから潤滑油Iが主給油路52に吸い上げられる。
The main oil supply passage 52 is configured such that a part of the rotating shaft 32 is hollow in the axial direction.
The lower end of the main oil supply passage 52 is opened by the lower end surface 32e of the rotating shaft 32 (sub shaft portion 32b). The opening 52a communicates with the oil supply hole 39e of the balancer cover 39. That is, the lower end of the main oil supply passage 52 communicates with the inside of the closed container 10, specifically, the oil sump portion 10c through the opening 52a and the oil supply hole 39e. As a result, the rotating shaft 32 rotates, so that the lubricating oil I is sucked up from the oil sump portion 10c into the main oil supply passage 52.
 主給油路52の上端部52bは、回転軸32の軸芯方向の中途部分、具体的には主軸部32aの下端部近傍で終止している。上端部52bの位置(軸芯方向における下端部からの高さ)は、少なくともシリンダ31の位置まで達していればよい。例えば、主給油路52は、回転軸32(主軸部32a)の上端面で開口していてもよい。また、主給油路52の内周面には、回転軸32の回転に伴って潤滑油Iの上昇を促す螺旋状のガイドなどを設けてもよい。 The upper end portion 52b of the main oil supply passage 52 ends in the middle portion in the axial direction of the rotating shaft 32, specifically, near the lower end portion of the main shaft portion 32a. The position of the upper end portion 52b (height from the lower end portion in the axial direction) may reach at least the position of the cylinder 31. For example, the main oil supply passage 52 may be opened at the upper end surface of the rotating shaft 32 (main shaft portion 32a). Further, the inner peripheral surface of the main oil supply passage 52 may be provided with a spiral guide or the like that promotes the rise of the lubricating oil I as the rotating shaft 32 rotates.
 副給油路53a,53bは、主給油路52から分岐して軸芯方向と直交する方向(径方向)に伸長し、回転軸32の外周面32f,32gに開口している。すなわち、副給油路53a,53bは、主給油路52から伸長する放射路である。 The sub refueling passages 53a and 53b branch from the main refueling passage 52 and extend in a direction (diameter direction) orthogonal to the axis direction, and are open to the outer peripheral surfaces 32f and 32g of the rotating shaft 32. That is, the auxiliary refueling passages 53a and 53b are radial passages extending from the main refueling passage 52.
 主給油路52から分岐する2つの副給油路53a,53bのうち、一方は主軸部32aに形成された第1の副給油路53aであり、他方は副軸部32bに形成された第2の副給油路53bである。 Of the two auxiliary oil supply passages 53a and 53b branching from the main oil supply passage 52, one is the first auxiliary oil supply passage 53a formed in the main shaft portion 32a, and the other is the second auxiliary oil supply passage 53a formed in the sub shaft portion 32b. It is a sub-fueling passage 53b.
 第1の副給油路53aは、主軸部32aにおける偏心部32cとの接続部分に形成されている。第1の副給油路53aは主軸部32aの外周面32fに開口し、その開口部53cは第1の軸受33の第1フランジ部33bの内周面33cに臨んでいる。 The first auxiliary oil supply passage 53a is formed at a connecting portion with the eccentric portion 32c in the spindle portion 32a. The first auxiliary oil supply passage 53a opens on the outer peripheral surface 32f of the spindle portion 32a, and the opening 53c faces the inner peripheral surface 33c of the first flange portion 33b of the first bearing 33.
 第2の副給油路53bは、回転軸32の径方向からみて、副軸部32bの下端(下端面32eの位置)よりも上方に形成されている。第2の副給油路53bは副軸部32bの外周面32gに開口し、その開口部53dは第2の軸受34の第2筒部34aの内周面34cに臨んでいる。 The second auxiliary oil supply passage 53b is formed above the lower end (position of the lower end surface 32e) of the auxiliary shaft portion 32b when viewed from the radial direction of the rotating shaft 32. The second auxiliary oil supply passage 53b opens on the outer peripheral surface 32g of the auxiliary shaft portion 32b, and the opening 53d faces the inner peripheral surface 34c of the second tubular portion 34a of the second bearing 34.
 これらの主給油路52および副給油路53a,53bに加えて、副軸部32bは、第2の軸受34との摺動部分に潤滑油Iを行き渡らせる通油溝54を有している。通油溝54は、副軸部32bの外周面32gに形成されている。通油溝54は、第2の副給油路53bを起点に副軸部32b(端的には回転軸32)の回転方向(図2に示す矢印Rで示す方向)に沿って、軸芯方向の一端(上端)側へ螺旋状に連続する溝である。螺旋は、副軸部32bの回転方向へ外周面32gを上昇するように連続している。通油溝54が連続する長さは任意であり、副軸部32bを巻回していなくともよいし、一周以上巻回していてもよい。図2には、副軸部32bを巻回しない通油溝54を一例として示す。通油溝54は、全長に亘って第2の軸受34の第2筒部34aから第2フランジ部34bの内周面34cに臨んでいる。 In addition to these main oil supply passages 52 and auxiliary oil supply passages 53a and 53b, the auxiliary shaft portion 32b has an oil passage groove 54 for distributing the lubricating oil I to the sliding portion with the second bearing 34. The oil passage groove 54 is formed on the outer peripheral surface 32g of the auxiliary shaft portion 32b. The oil passage groove 54 is in the axial core direction along the rotation direction (direction indicated by the arrow R shown in FIG. 2) of the auxiliary shaft portion 32b (in short, the rotation shaft 32) starting from the second auxiliary oil supply passage 53b. It is a groove that spirally continues to one end (upper end) side. The spiral is continuous so as to rise the outer peripheral surface 32g in the rotation direction of the sub-shaft portion 32b. The continuous length of the oil passage groove 54 is arbitrary, and the auxiliary shaft portion 32b may not be wound or may be wound more than once. FIG. 2 shows, as an example, an oil passage groove 54 in which the auxiliary shaft portion 32b is not wound. The oil passage groove 54 faces the inner peripheral surface 34c of the second flange portion 34b from the second cylinder portion 34a of the second bearing 34 over the entire length.
 通油溝54の基端54aは、第2の副給油路53bの外周面32g上の開口部53dと連通している。すなわち、第2の副給油路53bは通油溝54の溝底に開口しており、その開口部53dが通油溝54の基端54aとなっている。したがって、基端54aは、回転軸32の径方向からみて、副軸部32bの下端(下端面32eの位置)よりも上方に位置する。基端54aの位置は、開口部53dの中心位置として規定される。通油溝54の先端は、副軸部32bの上端部、換言すれば偏心部32cとの接続部に達している。 The base end 54a of the oil passage groove 54 communicates with the opening 53d on the outer peripheral surface 32g of the second auxiliary oil supply passage 53b. That is, the second auxiliary oil supply passage 53b opens at the bottom of the oil passage groove 54, and the opening 53d serves as the base end 54a of the oil passage groove 54. Therefore, the base end 54a is located above the lower end (position of the lower end surface 32e) of the sub-shaft portion 32b when viewed from the radial direction of the rotating shaft 32. The position of the base end 54a is defined as the central position of the opening 53d. The tip of the oil passage groove 54 reaches the upper end portion of the sub-shaft portion 32b, in other words, the connection portion with the eccentric portion 32c.
 回転軸32が回転すると、給油孔39eを介して主給油路52に吸い上げられた潤滑油Iは、第1の副給油路53aを通って開口部53cから第2の軸受34の第2筒部34aの内周面34cに向けて吐出される。そして、潤滑油Iは、回転軸32(主軸部32a)の回転に伴って、第1の軸受33の第1筒部33aおよび第1フランジ部33bと主軸部32aとの摺動部分(内周面33cと外周面32f)S1に行き渡り、摺動部分S1を潤滑する。 When the rotating shaft 32 rotates, the lubricating oil I sucked up to the main oil supply passage 52 through the oil supply hole 39e passes through the first auxiliary oil supply passage 53a and passes through the opening 53c to the second cylinder portion of the second bearing 34. It is discharged toward the inner peripheral surface 34c of 34a. Then, the lubricating oil I is a sliding portion (inner circumference) between the first cylinder portion 33a and the first flange portion 33b of the first bearing 33 and the spindle portion 32a as the rotating shaft 32 (spindle portion 32a) rotates. It spreads over the surface 33c and the outer peripheral surface 32f) S1 and lubricates the sliding portion S1.
 また、主給油路52に吸い上げられた潤滑油Iは、第2の副給油路53bから開口部53dを通って通油溝54に導かれる。通油溝54に導かれた潤滑油Iは、基端54aから先端まで通油溝54を伝って上昇する。その間、潤滑油Iは、回転軸32(副軸部32b)の回転に伴って、第2の軸受34の第2筒部34aおよび第2フランジ部34bと副軸部32bとの摺動部分(内周面34cと外周面32g)S2に行き渡り、摺動部分S2を潤滑する。 Further, the lubricating oil I sucked up by the main oil supply passage 52 is guided from the second auxiliary oil supply passage 53b to the oil passage groove 54 through the opening 53d. The lubricating oil I guided to the oil passing groove 54 rises from the base end 54a to the tip along the oil passing groove 54. During that time, the lubricating oil I is charged with the sliding portion between the second cylinder portion 34a and the second flange portion 34b of the second bearing 34 and the sub-shaft portion 32b as the rotating shaft 32 (sub-shaft portion 32b) rotates. The inner peripheral surface 34c and the outer peripheral surface 32g) spread over S2 and lubricate the sliding portion S2.
 本実施形態において、第1の軸受33は軸芯方向の一端部(上端部)に第1支持端部61を有し、第2の軸受34は軸芯方向の他端部(下端部)に第2支持端部62を有している。第2の軸受34の第2支持端部62の肉厚(図2に示すT1)は、第1の軸受33の第1支持端部61の肉厚よりも薄い。第2支持端部62の肉厚T1は、第2支持端部62の最も薄い位置の肉厚である。 In the present embodiment, the first bearing 33 has a first support end portion 61 at one end (upper end) in the axial direction, and the second bearing 34 has a first support end 61 at the other end (lower end) in the axial direction. It has a second support end 62. The wall thickness of the second support end 62 of the second bearing 34 (T1 shown in FIG. 2) is thinner than the wall thickness of the first support end 61 of the first bearing 33. The wall thickness T1 of the second support end portion 62 is the wall thickness at the thinnest position of the second support end portion 62.
 第1支持端部61は、第1の軸受33における主軸部32aの支持部分のうち、軸芯方向の一端部分である。換言すれば、第1筒部33aにおいて主軸部32aが摺動する部分の一部分であり、軸芯方向の上端部分である。本実施形態では一例として、第1支持端部61は、第1筒部33aが上端部に向かって先細りするように形成された薄肉部分に相当する。 The first support end portion 61 is one end portion in the axial core direction of the support portion of the spindle portion 32a in the first bearing 33. In other words, it is a part of the portion where the spindle portion 32a slides in the first cylinder portion 33a, and is the upper end portion in the axial direction. In the present embodiment, as an example, the first support end portion 61 corresponds to a thin-walled portion formed so that the first tubular portion 33a tapers toward the upper end portion.
 このように、主軸部32aが摺動する第1筒部33aの他の部分に比べて第1支持端部61を薄肉とすることで、摺動する主軸部32aに対する第1筒部33aの支持圧が過剰とならず、適当に維持される。 In this way, by making the first support end portion 61 thinner than the other portion of the first cylinder portion 33a on which the spindle portion 32a slides, the support of the first cylinder portion 33a with respect to the sliding spindle portion 32a The pressure does not become excessive and is maintained appropriately.
 第2支持端部62は、第2の軸受34における副軸部32bの支持部分のうち、軸芯方向の他端部分である。換言すれば、第2筒部34aにおいて副軸部32bが摺動する部分の一部分であり、軸芯方向の下端部分である。以下、第2支持端部62の具体的構成について説明する。 The second support end portion 62 is the other end portion in the axial direction of the support portion of the sub-shaft portion 32b in the second bearing 34. In other words, it is a part of the portion where the sub-shaft portion 32b slides in the second cylinder portion 34a, and is the lower end portion in the axial direction. Hereinafter, a specific configuration of the second support end portion 62 will be described.
 図3および図4は、第2の軸受34の構成例を示す縦断面図である。なお、図3および図4には、密閉容器10の中心軸線O1を含む所定の二面で第2の軸受34を縦断した状態を示す。 3 and 4 are vertical cross-sectional views showing a configuration example of the second bearing 34. It should be noted that FIGS. 3 and 4 show a state in which the second bearing 34 is vertically traversed on two predetermined surfaces including the central axis O1 of the closed container 10.
 図3に示す構成例において、第2支持端部62は、第2筒部34aの下端面34fに設けられた溝63の内壁部63aとして構成されている。溝63は、下端面34fに周方向へ連続して設けられ、内壁部63a、外壁部63b、および底部63cによって構成されている。内壁部63aは、径方向の内側の溝壁(内周面)を規定する部分であり、外壁部63bは径方向の外側の溝壁(外周面)を規定する部分である。底部63cは、内壁部63aと外壁部63bとに挟まれた溝底(底面)を規定する部分である。これにより、第2筒部34aの下端部は、溝63によって内壁部63aと外壁部63bに二分される。内壁部63aは、第2筒部34aの下端部において副軸部32bが摺動する部分である。内壁部63aは、第2の軸受34の第2筒部34aにおける副軸部32bの支持部分の他の部分の肉厚よりも薄い。 In the configuration example shown in FIG. 3, the second support end portion 62 is configured as an inner wall portion 63a of the groove 63 provided on the lower end surface 34f of the second cylinder portion 34a. The groove 63 is continuously provided on the lower end surface 34f in the circumferential direction, and is composed of an inner wall portion 63a, an outer wall portion 63b, and a bottom portion 63c. The inner wall portion 63a is a portion that defines the inner groove wall (inner peripheral surface) in the radial direction, and the outer wall portion 63b is a portion that defines the outer groove wall (outer peripheral surface) in the radial direction. The bottom portion 63c is a portion that defines a groove bottom (bottom surface) sandwiched between the inner wall portion 63a and the outer wall portion 63b. As a result, the lower end of the second tubular portion 34a is divided into an inner wall portion 63a and an outer wall portion 63b by the groove 63. The inner wall portion 63a is a portion on which the sub-shaft portion 32b slides at the lower end portion of the second cylinder portion 34a. The inner wall portion 63a is thinner than the wall thickness of the other portion of the support portion of the sub-shaft portion 32b in the second tubular portion 34a of the second bearing 34.
 また、第2フランジ部34bの上端面34gには、軸芯方向に溝63とほぼ対向して溝64が設けられている。溝64は、上端面34gに周方向へ連続して設けられ、溝63と同様に各部を規定する内壁部64a、外壁部64b、および底部64cによって構成されている。これにより、第2フランジ部34bの上端部は、溝64によって内壁部64aと外壁部64bに二分される。内壁部64aは、第2フランジ部34bの上端部において副軸部32bが摺動する部分である。外壁部64bは、第2フランジ部34bにおける回転軸32の径方向に拡がる部分に連続している。 Further, a groove 64 is provided on the upper end surface 34g of the second flange portion 34b so as to substantially face the groove 63 in the axial direction. The groove 64 is continuously provided on the upper end surface 34g in the circumferential direction, and is composed of an inner wall portion 64a, an outer wall portion 64b, and a bottom portion 64c that define each portion in the same manner as the groove 63. As a result, the upper end portion of the second flange portion 34b is divided into an inner wall portion 64a and an outer wall portion 64b by the groove 64. The inner wall portion 64a is a portion on which the sub-shaft portion 32b slides at the upper end portion of the second flange portion 34b. The outer wall portion 64b is continuous with a portion of the second flange portion 34b that extends in the radial direction of the rotating shaft 32.
 図4に示す構成例において、第2支持端部62は、第2筒部34aが下端部に向かって先細りするように形成された薄肉部65として構成されている。薄肉部65は、第2筒部34aの下端部に周方向へ連続して形成されている。これにより、図3に示す内壁部63aと異なり、薄肉部65は、第2筒部34aが下端部自体の肉厚が全周に亘って薄肉とされた部分となっている。薄肉部65は、第2筒部34aの下端部において副軸部32bが摺動する部分である。薄肉部65は、第2の軸受34の第2筒部34aにおける副軸部32bの支持部分の他の部分の肉厚よりも薄い。 In the configuration example shown in FIG. 4, the second support end portion 62 is configured as a thin-walled portion 65 formed so that the second cylinder portion 34a tapers toward the lower end portion. The thin-walled portion 65 is continuously formed in the circumferential direction at the lower end portion of the second tubular portion 34a. As a result, unlike the inner wall portion 63a shown in FIG. 3, the thin-walled portion 65 is a portion in which the second tubular portion 34a is thinned over the entire circumference of the lower end portion itself. The thin-walled portion 65 is a portion on which the auxiliary shaft portion 32b slides at the lower end portion of the second cylinder portion 34a. The thin wall portion 65 is thinner than the wall thickness of the other portion of the support portion of the sub-shaft portion 32b in the second tubular portion 34a of the second bearing 34.
 また、第2筒部34aの上端面34gには、図3に示す構成例と同様に、内壁部64a、外壁部64b、および底部64cによって構成される溝64が設けられている。この場合、溝64は、軸芯方向からみて、内壁部64aが薄肉部65とほぼ重なって配置されるように設けられている。 Further, the upper end surface 34g of the second tubular portion 34a is provided with a groove 64 composed of an inner wall portion 64a, an outer wall portion 64b, and a bottom portion 64c, as in the configuration example shown in FIG. In this case, the groove 64 is provided so that the inner wall portion 64a is arranged so as to substantially overlap the thin-walled portion 65 when viewed from the axial direction.
 このように、溝64に加えて、第2筒部34aの他の肉厚よりも薄い肉厚を有する第2支持端部62として内壁部63a(別の捉え方をすれば溝63)や薄肉部65を第2の軸受34が有することで、第2筒部34aの可撓性を高め、弾性変形しやすい構造とすることができる。これにより、副軸部32bから径方向の外向きの荷重が第2筒部34aに作用された際、内壁部64aに加えて、第2支持端部62を微小変形させることができる。その結果、第2筒部34aと副軸部32bとの摺動部分(内周面34cと外周面32g)S2の隙間を拡大させることができる。 In this way, in addition to the groove 64, the inner wall portion 63a (groove 63 in another way) and the thin wall portion as the second support end portion 62 having a wall thickness thinner than the other wall thickness of the second cylinder portion 34a. Since the second bearing 34 has the portion 65, the flexibility of the second tubular portion 34a can be increased and the structure can be easily elastically deformed. As a result, when an outward load in the radial direction is applied to the second tubular portion 34a from the auxiliary shaft portion 32b, the second support end portion 62 can be slightly deformed in addition to the inner wall portion 64a. As a result, the gap between the sliding portion (inner peripheral surface 34c and outer peripheral surface 32g) S2 between the second tubular portion 34a and the sub-shaft portion 32b can be expanded.
 このため、回転軸32の径方向からみて、通油溝54の基端54aが副軸部32bの下端(下端面32eの位置)よりも上方に位置している場合であっても、摺動部分S2の隅々まで潤滑油Iを行き渡らせ、潤滑性能を高めることができる。その際、基端54aが副軸部32bの下端よりも上方に位置しているため、潤滑油Iが摺動部分S2の潤滑に寄与せずに油溜まり部10cに落下してしまうことを抑止できる。これらによって潤滑性能が高められることで、密閉型圧縮機2の信頼性向上を図ることが可能となる。 Therefore, even when the base end 54a of the oil passage groove 54 is located above the lower end (position of the lower end surface 32e) of the sub-shaft portion 32b when viewed from the radial direction of the rotating shaft 32, it slides. Lubricating oil I can be distributed to every corner of the portion S2 to improve the lubricating performance. At that time, since the base end 54a is located above the lower end of the auxiliary shaft portion 32b, it is possible to prevent the lubricating oil I from falling into the oil sump portion 10c without contributing to the lubrication of the sliding portion S2. it can. By improving the lubrication performance by these, it becomes possible to improve the reliability of the sealed compressor 2.
 さらに、第2支持端部62は、通油溝54の基端54aが回転軸32、具体的には副軸部32bの径方向からみて、第2支持端部62とラップするように配置されている。 Further, the second support end portion 62 is arranged so that the base end 54a of the oil passage groove 54 wraps with the second support end portion 62 when viewed from the radial direction of the rotation shaft 32, specifically, the sub shaft portion 32b. ing.
 例えば、第2支持端部62が内壁部63aである場合、副軸部32bの径方向からみて、基端54a、具体的には開口部53dの軸芯方向における中心位置が内壁部63aの軸芯方向の位置とラップする。別の捉え方をすれば、副軸部32bの径方向からみて、開口部53dの中心位置が内壁部63aの先端よりも上方で、基端部分に相当する底部63cよりも下方に位置していればよい。 
 また、第2支持端部62が薄肉部65である場合、副軸部32bの径方向からみて、開口部53dの中心位置が薄肉部65の軸芯方向の位置とラップする。別の捉え方をすれば、副軸部32bの径方向からみて、開口部53dの中心位置が薄肉部65の先端よりも上方で、基端部分65aよりも下方に位置していればよい。
For example, when the second support end portion 62 is the inner wall portion 63a, the central position of the base end 54a, specifically, the opening 53d in the axial direction is the axis of the inner wall portion 63a when viewed from the radial direction of the sub-shaft portion 32b. Wrap with the position in the core direction. From another point of view, the center position of the opening 53d is located above the tip of the inner wall portion 63a and below the bottom portion 63c corresponding to the base end portion when viewed from the radial direction of the sub-shaft portion 32b. Just do it.
When the second support end portion 62 is the thin-walled portion 65, the center position of the opening 53d wraps with the position in the axial center direction of the thin-walled portion 65 when viewed from the radial direction of the sub-shaft portion 32b. Another way of thinking is that the center position of the opening 53d may be above the tip of the thin wall portion 65 and below the base end portion 65a when viewed from the radial direction of the sub-shaft portion 32b.
 第2支持端部62(内壁部63aもしくは薄肉部65)をこのように配置することで、開口部53dから吐出された潤滑油Iを第2筒部34aと副軸部32bとの摺動部分(内周面34cと外周面32g)S2に対し、摺動部分S2の上方へは通油溝54を伝って潤滑油Iを給油することができ、下方へは基端54aから潤滑油Iを給油することができる。その際、内壁部64aおよび第2支持端部62を微小変形させて摺動部分S2の隙間を拡大させることができるので、摺動部分S2の上方および下方のいずれに対しても、潤滑油Iを満遍なく行き渡らせることが可能となる。また、副軸部32bの径方向からみて、通油溝54の基端54aと第2支持端部62とがラップするように配置されているため、内壁部64aおよび第2支持端部62の微小変形により、摺動部分S2の下方に潤滑油Iを給油しやすくしている。さらに、通油溝54の基端54aが副軸部32bの下端まで達しておらず、また、内壁部64aおよび第2支持端部62の変形が微小なため、副軸部32bの下端からの過度な潤滑油Iの流出を防ぐことができる。 By arranging the second support end portion 62 (inner wall portion 63a or thin-walled portion 65) in this way, the lubricating oil I discharged from the opening 53d is a sliding portion between the second cylinder portion 34a and the auxiliary shaft portion 32b. (Inner peripheral surface 34c and outer peripheral surface 32g) With respect to S2, the lubricating oil I can be supplied to the upper side of the sliding portion S2 through the oil passage groove 54, and the lubricating oil I can be supplied downward from the base end 54a. Can be refueled. At that time, since the inner wall portion 64a and the second support end portion 62 can be slightly deformed to expand the gap of the sliding portion S2, the lubricating oil I can be applied to both above and below the sliding portion S2. It becomes possible to spread evenly. Further, since the base end 54a of the oil passage groove 54 and the second support end portion 62 are arranged so as to wrap when viewed from the radial direction of the sub-shaft portion 32b, the inner wall portion 64a and the second support end portion 62 The minute deformation makes it easier to supply the lubricating oil I below the sliding portion S2. Further, since the base end 54a of the oil passage groove 54 does not reach the lower end of the sub-shaft portion 32b and the inner wall portion 64a and the second support end portion 62 are slightly deformed, the sub-shaft portion 32b is viewed from the lower end. Excessive outflow of lubricating oil I can be prevented.
 副軸部32bは主軸部32aよりも軸芯方向に短いため、副軸部32bを回転可能に支持する第2の軸受34の第2筒部34aは、主軸部32aを回転可能に支持する第1の軸受33の第1筒部33aよりも短い。したがって、軸芯方向の長さの観点では、第2筒部34aは第1筒部33aよりも撓み難い。しかしながら、本実施形態では、第1の軸受33の第1支持端部61よりも薄肉の第2支持端部62を第2の軸受34に設けているため、第2筒部34aを第1筒部33aと同等に撓ませることが可能となる。このため、摺動部分S2の隙間を摺動部分S1の隙間と同等に確保し、これらを満遍なく潤滑させることが可能となる。 Since the sub-shaft portion 32b is shorter in the axial core direction than the main shaft portion 32a, the second tubular portion 34a of the second bearing 34 that rotatably supports the sub-shaft portion 32b has a second cylinder portion 34a that rotatably supports the main shaft portion 32a. It is shorter than the first tubular portion 33a of the bearing 33 of 1. Therefore, from the viewpoint of the length in the axial direction, the second tubular portion 34a is less likely to bend than the first tubular portion 33a. However, in the present embodiment, since the second support end portion 62, which is thinner than the first support end portion 61 of the first bearing 33, is provided in the second bearing 34, the second cylinder portion 34a is the first cylinder. It can be bent in the same manner as the portion 33a. Therefore, it is possible to secure a gap of the sliding portion S2 equal to the gap of the sliding portion S1 and lubricate them evenly.
 その際、摺動部分S2を潤滑する潤滑油Iは、第2筒部34a(内壁部64aおよび第2支持端部62)の微小変形により生じた隙間へ給油されるため、摺動部分S2の摺動信頼性に必要な僅かな油量にとどめることができる。したがって、摺動部分S1やその他の摺動部分への給油量を不足させずに済む。すなわち、摺動部分S1やその他の摺動部分に対する潤滑性能の低下を防止するとともに、摺動部分S2の潤滑性能を高めることができる。 At that time, the lubricating oil I that lubricates the sliding portion S2 is supplied to the gap created by the minute deformation of the second cylinder portion 34a (inner wall portion 64a and the second support end portion 62), so that the sliding portion S2 The amount of oil required for sliding reliability can be kept small. Therefore, it is not necessary to supply a short amount of oil to the sliding portion S1 and other sliding portions. That is, it is possible to prevent a decrease in the lubrication performance of the sliding portion S1 and other sliding portions, and to improve the lubrication performance of the sliding portion S2.
 このように、本実施形態によれば、圧縮機構部12の軸受潤滑部、特に第2の軸受34(第2筒部34a)と副軸部32bとの摺動部分S2の潤滑性能を高めることができる。その一方で、給油孔39eから主給油路52に吸い上げられた潤滑油Iは、バランサカバー39のスラスト支持部39dと副軸部32bの下端面32eとの間の摺動隙間からカバー空間42に浸入する場合がある。この場合、例えば浸入した潤滑油Iをバランサ38が撹拌すると、その抵抗の大きさによっては回転軸32の回転に余計な抵抗が生じるおそれがある。 As described above, according to the present embodiment, the lubrication performance of the bearing lubrication portion of the compression mechanism portion 12, particularly the sliding portion S2 between the second bearing 34 (second cylinder portion 34a) and the sub-shaft portion 32b is enhanced. Can be done. On the other hand, the lubricating oil I sucked up from the oil supply hole 39e into the main oil supply passage 52 enters the cover space 42 from the sliding gap between the thrust support portion 39d of the balancer cover 39 and the lower end surface 32e of the auxiliary shaft portion 32b. May infiltrate. In this case, for example, when the balancer 38 stirs the infiltrated lubricating oil I, an extra resistance may occur in the rotation of the rotating shaft 32 depending on the magnitude of the resistance.
 このため、本実施形態では、浸入した潤滑油Iをカバー空間42から効率的に排出するための排出構造を備えている。これにより、例えばバランサ38の潤滑油の撹拌抵抗に起因する回転軸32の回転性能の低下などの抑制が図られる。以下、かかる排出構造について説明する。 Therefore, the present embodiment is provided with a discharge structure for efficiently discharging the infiltrated lubricating oil I from the cover space 42. As a result, for example, deterioration of the rotational performance of the rotating shaft 32 due to the stirring resistance of the lubricating oil of the balancer 38 can be suppressed. The discharge structure will be described below.
 図2に示すように、バランサカバー39は、回転軸32の他端(下端)側から連通路43に向けて傾斜する傾斜部71を有する。傾斜部71は、底部39aに対して回転軸32の径方向へ壁部39bの少なくとも一部を傾斜させた部位である。例えば、傾斜部71は、壁部39bの全周に亘って設けられていてもよいし、周方向の一部に設けられていてもよい。 As shown in FIG. 2, the balancer cover 39 has an inclined portion 71 that inclines from the other end (lower end) side of the rotating shaft 32 toward the communication passage 43. The inclined portion 71 is a portion in which at least a part of the wall portion 39b is inclined in the radial direction of the rotating shaft 32 with respect to the bottom portion 39a. For example, the inclined portion 71 may be provided over the entire circumference of the wall portion 39b, or may be provided at a part in the circumferential direction.
 図5は、バランサカバー39の構成を下方から示す平面図である。図5に示すように、バランサカバー39は、複数の分室部72および固定部73を有する。 
 分室部72は、ボルト40による固定部73を避けて、カバー空間42を区画している。固定部73は、ボルト40を介した第2の軸受34への固定部分である。図5に示す構成例では、バランサカバー39は、五本のボルト40で第2の軸受34に固定されており、これに対応して五つの固定部73a~73fを有している。このため、バランサカバー39は、これら五つの固定部73a~73fを避けて五つの分室部72a~72eを有している。これらの分室部72と固定部73とは、周方向へ交互にほぼ等間隔(同一位相)で配置されている。したがって、図5に示すような平面視において、バランサカバー39は、頂点が五つの略星形の形態をなしている。なお、分室部72の数、ボルト40の本数および固定部73の数は、五つに限定されず、二つ以上四つ以下、あるいは六つ以上であってもよい。
FIG. 5 is a plan view showing the configuration of the balancer cover 39 from below. As shown in FIG. 5, the balancer cover 39 has a plurality of branch portions 72 and a fixed portion 73.
The branch chamber portion 72 divides the cover space 42 so as to avoid the fixing portion 73 by the bolt 40. The fixing portion 73 is a fixing portion to the second bearing 34 via a bolt 40. In the configuration example shown in FIG. 5, the balancer cover 39 is fixed to the second bearing 34 with five bolts 40, and has five fixing portions 73a to 73f corresponding to the second bearing 34. Therefore, the balancer cover 39 has five branch chambers 72a to 72e, avoiding these five fixed portions 73a to 73f. The divided chamber portions 72 and the fixed portions 73 are arranged alternately in the circumferential direction at substantially equal intervals (in the same phase). Therefore, in a plan view as shown in FIG. 5, the balancer cover 39 has a shape of a substantially star shape with five vertices. The number of branch chambers 72, the number of bolts 40, and the number of fixing portions 73 are not limited to five, and may be two or more, four or less, or six or more.
 これら複数(一例として五つ)の分室部72は、カバー空間42で連通している。図5に示す構成例において、カバー空間42は、五つの分室部72a~72eによって五つに区画された状態で、全体として一つの空間を形成している。 The plurality of (five as an example) branch rooms 72 communicate with each other in the cover space 42. In the configuration example shown in FIG. 5, the cover space 42 forms one space as a whole in a state of being divided into five by five branch chambers 72a to 72e.
 五つの分室部72a~72eのうち、第1の分室部72aは、第2の軸受34の吐出ポート34dと連通している。すなわち、第1の分室部72aは、吐出ポート34dを介してシリンダ室35の圧縮室と連通可能となっている。したがって、第2吐出弁機構34eによって吐出ポート34dが開放されることで、シリンダ室35の圧縮室から第1の分室部72aに高温・高圧の気相冷媒が吐出される。吐出された高温・高圧の気相冷媒は、第1の分室部72aからその他の連通する分室部72b~72eに流入する。 Of the five branch chambers 72a to 72e, the first branch chamber 72a communicates with the discharge port 34d of the second bearing 34. That is, the first branch chamber portion 72a can communicate with the compression chamber of the cylinder chamber 35 via the discharge port 34d. Therefore, when the discharge port 34d is opened by the second discharge valve mechanism 34e, the high-temperature, high-pressure vapor-phase refrigerant is discharged from the compression chamber of the cylinder chamber 35 to the first branch chamber portion 72a. The discharged high-temperature, high-pressure vapor-phase refrigerant flows from the first branch chamber 72a into the other compartments 72b to 72e that communicate with each other.
 また、五つの分室部72a~72eのうち、少なくとも一つは、連通路43と連通している。上述したように、本実施形態では一例として、二つの連通路431,432が備えられている。図5に示すように、これらの連通路431,432は、周方向に所定の位相差(中心角度差)で配置されている。具体的には、軸芯方向からみて、連通路431,432は、回転軸32の回転方向(図5に示す矢印Rで示す方向)において吐出ポート34dから最初に位置する固定部(第1の固定部)73aまでの中心角度(α1)よりも大きな中心角度の位置で分室部72b,72cと連通している。 Further, at least one of the five branch chambers 72a to 72e communicates with the communication passage 43. As described above, in the present embodiment, as an example, two communication passages 431 and 432 are provided. As shown in FIG. 5, these communication passages 431 and 432 are arranged with a predetermined phase difference (center angle difference) in the circumferential direction. Specifically, the communication passages 431 and 432 are first fixed portions (first) located from the discharge port 34d in the rotation direction of the rotation shaft 32 (direction indicated by the arrow R shown in FIG. 5) when viewed from the axis direction. The fixed portion) communicates with the branch portions 72b and 72c at a position of a central angle larger than the central angle (α1) up to 73a.
 すなわち、これらの連通路431,432は、周方向に所定の位相差(中心角度差)、つまりほぼ等間隔で配置された五つの分室部72のうちの隣り合う二つ(分室部72b,72c)の配置間隔に合わせて(位相差が72°程度で)配置されている。これにより、第2の分室部72bが連通路431と、第3の分室部72cが連通路432とそれぞれ連通している。したがって、第2の分室部72bは連通路431を介して、第3の分室部72cは連通路432を介して、密閉容器10内の潤滑油貯留面Isの上方空間とそれぞれ連通している。 That is, these communication passages 431 and 432 have a predetermined phase difference (center angle difference) in the circumferential direction, that is, two adjacent two of the five branch portions 72 (branch portions 72b, 72c) arranged at substantially equal intervals. ) Are arranged according to the arrangement interval (with a phase difference of about 72 °). As a result, the second branch chamber 72b communicates with the communication passage 431, and the third branch chamber 72c communicates with the communication passage 432. Therefore, the second branch chamber 72b communicates with the space above the lubricating oil storage surface Is in the closed container 10 via the communication passage 431 and the third branch 72c communicates with the space above the lubricating oil storage surface Is in the closed container 10 via the communication passage 432.
 この場合、回転軸32の回転方向において、吐出ポート34dから連通路431までの中心角度(α2)は、第1の固定部73aのボルト40までの中心角度(α1)よりも大きい。また、吐出ポート34dから連通路432までの中心角度(α3)は、連通路431までの中心角度(α2)よりもさらに大きい(α1<α2<α3)。中心角度の規定位置は、回転軸32の軸芯(中心軸線O1)の位置、ボルト40の回転中心Cb、吐出ポート34dの開口部34hの開口中心C1、および連通路431,432の開口部43bの開口中心C2,C3である。 In this case, in the rotation direction of the rotating shaft 32, the center angle (α2) from the discharge port 34d to the communication passage 431 is larger than the center angle (α1) of the first fixing portion 73a to the bolt 40. Further, the central angle (α3) from the discharge port 34d to the communication passage 432 is further larger than the center angle (α2) to the communication passage 431 (α1 <α2 <α3). The specified positions of the center angle are the position of the axis (center axis O1) of the rotating shaft 32, the rotation center Cb of the bolt 40, the opening center C1 of the opening 34h of the discharge port 34d, and the opening 43b of the communication passages 431 and 432. The center of opening C2 and C3.
 第2の分室部72bおよび第3の分室部72cには、傾斜部71がそれぞれ設けられている。第2の分室部72bの傾斜部71は、回転軸32(副軸部32b)の径方向の外側へ向かうに従って連通路431に近づく傾斜面74bを有している。また、第3の分室部72cの傾斜部71は、回転軸32(副軸部32b)の径方向の外側へ向かうに従って連通路432に近づく傾斜面74cを有している。 An inclined portion 71 is provided in each of the second branch portion 72b and the third branch portion 72c. The inclined portion 71 of the second branch portion 72b has an inclined surface 74b that approaches the communication passage 431 as it goes outward in the radial direction of the rotating shaft 32 (sub-shaft portion 32b). Further, the inclined portion 71 of the third branch chamber portion 72c has an inclined surface 74c that approaches the communication passage 432 as it goes outward in the radial direction of the rotating shaft 32 (sub-shaft portion 32b).
 本実施形態においては、回転軸32の回転により、ローラ37がシリンダ室35において偏心回転する。これにより、シリンダ室35の圧縮室で圧縮された高温・高圧の気相冷媒が吐出ポート34dからバランサカバー39のカバー空間42に吐出される。また上述したように、給油孔39eから主給油路52に吸い上げられた潤滑油Iは、バランサカバー39のスラスト支持部39dと副軸部32bの下端面32eとの間の摺動隙間からカバー空間42に浸入する場合がある。 In the present embodiment, the roller 37 rotates eccentrically in the cylinder chamber 35 due to the rotation of the rotating shaft 32. As a result, the high-temperature, high-pressure vapor-phase refrigerant compressed in the compression chamber of the cylinder chamber 35 is discharged from the discharge port 34d into the cover space 42 of the balancer cover 39. Further, as described above, the lubricating oil I sucked up from the oil supply hole 39e into the main oil supply passage 52 is covered from the sliding gap between the thrust support portion 39d of the balancer cover 39 and the lower end surface 32e of the auxiliary shaft portion 32b. It may invade 42.
 この場合、潤滑油Iには、吐出ポート34dから吐出された高温・高圧の気相冷媒(以下、吐出ガスという)の流速によるカバー空間42への引込力が作用する。また、カバー空間42に浸入した潤滑油Iには、バランサ38からの遠心力が作用するとともに、吐出ガスによる引込力が引き続き作用する。 In this case, the lubricating oil I is subjected to a pulling force into the cover space 42 due to the flow velocity of the high-temperature, high-pressure vapor-phase refrigerant (hereinafter referred to as discharge gas) discharged from the discharge port 34d. Further, the centrifugal force from the balancer 38 acts on the lubricating oil I that has entered the cover space 42, and the drawing force due to the discharged gas continues to act on the lubricating oil I.
 このため、潤滑油Iは、図2中の矢印A2で示すように、傾斜面74b,74cを伝って上昇し、開口部43bから連通路43(431,432)に導かれる。連通路43(431,432)に導かれた潤滑油Iは、開口部43aからマフラ41内に吐出され、密閉容器10内の潤滑油貯留面Isの上方空間に排出される。 Therefore, as shown by the arrow A2 in FIG. 2, the lubricating oil I rises along the inclined surfaces 74b and 74c and is guided from the opening 43b to the communication passage 43 (431,432). The lubricating oil I guided to the communication passage 43 (431, 432) is discharged into the muffler 41 from the opening 43a, and is discharged into the space above the lubricating oil storage surface Is in the closed container 10.
 その際、潤滑油Iは、ミスト化されて傾斜面74b,74cを上昇する。図6には、水平面GSに対する傾斜角度がθである傾斜面SSをミスト化された潤滑油Iの粒子Pが上昇するための条件を示す。図6に示すように、ミスト化された潤滑油Iの粒子Pが遠心力によって傾斜面SSを上昇するためには、次のような関係式(1)を満たす必要がある。 
 Fcosθ>μ×Fsinθ すなわち、tanθ<1/μ …(1) 
 Fは、ミスト化された潤滑油Iの粒子Pに作用する遠心力、θは、傾斜面SSの水平面GSに対する傾斜角度であり、図2に示す傾斜面74b,74cの傾斜角度θ1の値を規定する角度である。μは、ミスト化された潤滑油Iの粒子Pと傾斜面SSとの摩擦係数である。
At that time, the lubricating oil I is mist-ized and rises on the inclined surfaces 74b and 74c. FIG. 6 shows the conditions for the particles P of the lubricating oil I misted on the inclined surface SS whose inclination angle with respect to the horizontal plane GS is θ to rise. As shown in FIG. 6, in order for the mist-formed lubricating oil I particles P to rise on the inclined surface SS by centrifugal force, it is necessary to satisfy the following relational expression (1).
Fcosθ> μ × Fsinθ That is, tanθ <1 / μ ... (1)
F is the centrifugal force acting on the particles P of the mist-ized lubricating oil I, θ is the inclination angle of the inclined surface SS with respect to the horizontal plane GS, and the value of the inclination angle θ1 of the inclined surfaces 74b and 74c shown in FIG. 2 is used. This is the specified angle. μ is the coefficient of friction between the particles P of the mist-ized lubricating oil I and the inclined surface SS.
 摩擦係数(μ)の値は、潤滑油Iおよび傾斜面SSに対する各種条件によって異なる。本実施形態では、一般的な値として0.25から0.3程度として試算すると、傾斜角度(θ)が70°以下であれば、潤滑油Iの粒子Pは遠心力によって傾斜面SSを上昇可能となる。したがって、本実施形態では、傾斜面74b,74cの傾斜角度(図2に示す角度θ1)を、一例として水平面に対して70°以下とする。 The value of the coefficient of friction (μ) differs depending on various conditions for the lubricating oil I and the inclined surface SS. In the present embodiment, assuming a general value of about 0.25 to 0.3, if the inclination angle (θ) is 70 ° or less, the particles P of the lubricating oil I rise the inclined surface SS by centrifugal force. It will be possible. Therefore, in the present embodiment, the inclination angles of the inclined surfaces 74b and 74c (angle θ1 shown in FIG. 2) are set to 70 ° or less with respect to the horizontal plane as an example.
 このような潤滑油Iの排出構造によれば、カバー空間42に潤滑油Iが浸入した場合であっても、バランサ38の遠心力および吐出ガスの引込力によって、潤滑油Iを傾斜面74b,74cに導くことができる。傾斜面74b,74cの傾斜角度(θ1)が所定角度とされているため、傾斜面74b,74cを伝って潤滑油Iを上昇させることができる。これにより、傾斜面74b,74cから連通路431,432を通して、潤滑油Iをカバー空間42から排出できる。その結果、バランサ38の周辺の雰囲気を吐出ガスで保つことができる。このため、例えばバランサ38の潤滑油の撹拌抵抗を低減でき、回転軸32の回転性能の低下などを抑制できる。 According to such a discharge structure of the lubricating oil I, even when the lubricating oil I has infiltrated into the cover space 42, the lubricating oil I is brought into the inclined surface 74b by the centrifugal force of the balancer 38 and the drawing force of the discharged gas. It can lead to 74c. Since the inclination angle (θ1) of the inclined surfaces 74b and 74c is set to a predetermined angle, the lubricating oil I can be raised along the inclined surfaces 74b and 74c. As a result, the lubricating oil I can be discharged from the cover space 42 from the inclined surfaces 74b and 74c through the communication passages 431 and 432. As a result, the atmosphere around the balancer 38 can be maintained by the discharged gas. Therefore, for example, the stirring resistance of the lubricating oil of the balancer 38 can be reduced, and the deterioration of the rotational performance of the rotating shaft 32 can be suppressed.
 一例として、傾斜面74b,74cは、水平面に対して70°以下とされている。このため、カバー空間42に飛散している潤滑油Iの油滴(ミスト)と傾斜面74b,74cとの摩擦係数(μ)が比較的高い場合、一例として0.25から0.3程度であっても、傾斜面74b,74cを伝って潤滑油Iをカバー空間42から排出させることができる。 As an example, the inclined surfaces 74b and 74c are set to 70 ° or less with respect to the horizontal plane. Therefore, when the friction coefficient (μ) between the oil droplets (mist) of the lubricating oil I scattered in the cover space 42 and the inclined surfaces 74b and 74c is relatively high, it is about 0.25 to 0.3 as an example. Even if there is, the lubricating oil I can be discharged from the cover space 42 along the inclined surfaces 74b and 74c.
 また、傾斜面74b,74cは、ボルト40の固定部73を避けて配置された分室部72(72b,72c)に設けられている。したがって、ボルト40によってバランサカバー39を第2の軸受34に対して強固に固定できるだけでなく、潤滑油Iをカバー空間42から効率的に排出できる。 Further, the inclined surfaces 74b and 74c are provided in the branch chamber portions 72 (72b and 72c) arranged so as to avoid the fixing portion 73 of the bolt 40. Therefore, not only can the balancer cover 39 be firmly fixed to the second bearing 34 by the bolt 40, but also the lubricating oil I can be efficiently discharged from the cover space 42.
 すなわち、本実施形態において、連通路431,432は、ボルト40の固定部73を避けた分室部72b,72cと連通して配置されている。このため、連通路431,432を分室部72b,72cの外周寄り、つまり傾斜面74b,74cに寄せて配置して開口させることができる。ミスト化された潤滑油Iの粒子および吐出ポート34dからの吐出ガスには、バランサ38からの遠心力に加えて、回転軸32(副軸部32b)の回転の接線方向に推進力が作用する。したがって、連通路431,432を傾斜面74b,74cに寄せて配置することで、潤滑油Iおよび吐出ガスに対してより大きな遠心力および推進力を作用させることができる。このため、潤滑油Iを吐出ガスに乗せることで、さらに効率的にカバー空間42から排出できる。 That is, in the present embodiment, the communication passages 431 and 432 are arranged so as to communicate with the branch chamber portions 72b and 72c avoiding the fixing portion 73 of the bolt 40. Therefore, the communication passages 431 and 432 can be arranged and opened closer to the outer periphery of the branch chambers 72b and 72c, that is, to the inclined surfaces 74b and 74c. In addition to the centrifugal force from the balancer 38, a propulsive force acts on the mistized particles of the lubricating oil I and the discharge gas from the discharge port 34d in the tangential direction of the rotation of the rotating shaft 32 (sub-shaft portion 32b). .. Therefore, by arranging the communication passages 431 and 432 closer to the inclined surfaces 74b and 74c, a larger centrifugal force and propulsive force can be applied to the lubricating oil I and the discharged gas. Therefore, by placing the lubricating oil I on the discharged gas, it can be discharged from the cover space 42 more efficiently.
 また、吐出ポート34dから連通路431,432までの中心角度(α2,α3)は、いずれも第1の固定部73aのボルト40までの中心角度(α1)よりも大きい。このため、潤滑油Iの粒子および吐出ガスに遠心力と推進力をそれぞれ作用させて、潤滑油Iを連通路431,432まで確実に導くことができる。併せて、固定部73を所定間隔で配置し、ボルト40による安定したバランサカバー39の固定位置を確保できる。 Further, the central angle (α2, α3) from the discharge port 34d to the communication passages 431, 432 is larger than the central angle (α1) of the first fixing portion 73a to the bolt 40. Therefore, centrifugal force and propulsive force are applied to the particles and the discharged gas of the lubricating oil I, respectively, so that the lubricating oil I can be reliably guided to the communication passages 431 and 432. At the same time, the fixing portions 73 can be arranged at predetermined intervals to secure a stable fixing position of the balancer cover 39 by the bolts 40.
 このように、本実施形態によれば、軸受潤滑部に対する潤滑性能が高められることに加えて、カバー空間42から潤滑油Iを効率的に排出できることで、さらなる密閉型圧縮機2の信頼性向上を図ることが可能となる。 As described above, according to the present embodiment, in addition to enhancing the lubrication performance for the bearing lubricating portion, the lubricating oil I can be efficiently discharged from the cover space 42, thereby further improving the reliability of the sealed compressor 2. It becomes possible to plan.
 以上、本発明の実施形態を説明したが、かかる実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiments of the present invention have been described above, such embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
 例えば、上述した実施形態において、密閉型圧縮機2は、シリンダ31が一つのシングルロータリコンプレッサモデルとしているが、二つ以上のシリンダを備えた多気筒ロータリコンプレッサモデルであってもよい。この場合、各シリンダは、シリンダ室の容積が同等であってもよいし、異なっていてもよい。また、密閉型圧縮機は、ベーンとローラが一体となったスイングタイプであってもよい。 For example, in the above-described embodiment, the closed compressor 2 is a single rotary compressor model having one cylinder 31, but may be a multi-cylinder rotary compressor model having two or more cylinders. In this case, each cylinder may have the same or different cylinder chamber volumes. Further, the sealed compressor may be a swing type in which a vane and a roller are integrated.
 1…冷凍サイクル装置(空気調和機)、2…密閉型圧縮機、3…凝縮器、4…膨張装置、5…蒸発器、6…アキュムレータ、7…循環回路、10…密閉容器、10c…油溜まり部、11…電動機部、12…圧縮機構部、31…シリンダ、32…回転軸、32a…主軸部、32b…副軸部、32c…偏心部、32e…下端面、32f,32g…外周面、33…第1の軸受、33a…第1筒部、33b…第1フランジ部、34…第2の軸受、34a…第2筒部、34b…第2フランジ部、34d…第2吐出孔(吐出ポート)、34h…開口部、35…シリンダ室、35a…上面、35b…下面、38…バランサ、39…バランサカバー、39a…底部、39b…壁部、39c…フランジ部、39e…給油孔、40…ボルト、42…カバー空間、43(431,432)…連通路、43a,43b…開口部、51…給油路、52…主給油路、53a…第1の副給油路、53b…第2の副給油路、53c,53d…開口部、54     …通油溝、54a…基端、61…第1支持端部、62…第2支持端部、63,64…溝、63a,64a…内壁部、63b,64b…外壁部、63c,64c…底部、65…薄肉部、71…傾斜部、72(72a~72f)…分室部、73(73a~73f)…固定部、74b,74c…傾斜面、C1,C2,C3…開口中心、Cb…ボルト回転中心、I…潤滑油、Is…潤滑油貯留面、O1…密閉容器の中心軸線、S1,S2…摺動部分、T1…第2支持端部の肉厚。 1 ... Refrigeration cycle device (air conditioner), 2 ... Sealed compressor, 3 ... Condenser, 4 ... Expander, 5 ... Evaporator, 6 ... Accumulator, 7 ... Circulation circuit, 10 ... Sealed container, 10c ... Oil Reservoir, 11 ... Electric motor, 12 ... Compression mechanism, 31 ... Cylinder, 32 ... Rotating shaft, 32a ... Main shaft, 32b ... Sub-shaft, 32c ... Eccentric, 32e ... Lower end surface, 32f, 32g ... Outer surface , 33 ... 1st bearing, 33a ... 1st cylinder part, 33b ... 1st flange part, 34 ... 2nd bearing, 34a ... 2nd cylinder part, 34b ... 2nd flange part, 34d ... 2nd discharge hole ( Discharge port), 34h ... opening, 35 ... cylinder chamber, 35a ... top surface, 35b ... bottom surface, 38 ... balancer, 39 ... balancer cover, 39a ... bottom, 39b ... wall part, 39c ... flange part, 39e ... lubrication hole, 40 ... bolt, 42 ... cover space, 43 (431,432) ... communication passage, 43a, 43b ... opening, 51 ... refueling passage, 52 ... main refueling passage, 53a ... first sub refueling passage, 53b ... second Sub-lubricating passages, 53c, 53d ... opening, 54 ... oil flow groove, 54a ... base end, 61 ... first support end, 62 ... second support end, 63, 64 ... groove, 63a, 64a ... inner wall Parts, 63b, 64b ... Outer wall part, 63c, 64c ... Bottom, 65 ... Thin-walled part, 71 ... Inclined part, 72 (72a-72f) ... Branch chamber part, 73 (73a-73f) ... Fixed part, 74b, 74c ... Inclined Surface, C1, C2, C3 ... Opening center, Cb ... Bolt rotation center, I ... Lubricating oil, Is ... Lubricating oil storage surface, O1 ... Central axis of closed container, S1, S2 ... Sliding part, T1 ... Second support The wall thickness of the end.

Claims (7)

  1.  シリンダ室を形成するシリンダと、
     前記シリンダ室内に配置される偏心部を有する回転軸と、
     前記回転軸を回転可能に支持し、前記シリンダ室における前記回転軸の軸芯方向の一端側の端面を規定する第1の軸受および他端側の端面を規定する第2の軸受と、を備える圧縮機構部を収容し、
     前記圧縮機構部の摺動部分を潤滑する潤滑油を貯留する密閉容器を備え、
     前記回転軸は、前記偏心部を境に前記軸芯方向の一端側で前記第1の軸受に支持される主軸部と、他端側で前記第2の軸受に支持される副軸部と、を有し、
     前記副軸部は、前記軸芯方向の他端よりも一端側を基端として、前記回転軸の回転方向に沿って前記軸芯方向の一端側へ螺旋状に連続する前記潤滑油の通油溝を外周面に有し、
     前記第2の軸受は、フランジ部と前記フランジ部から突出する筒部とを有し、前記筒部のうち、前記軸芯方向の他端部分で、かつ前記回転軸の径方向からみて前記通油溝の基端とラップする部分の肉厚は、前記筒部の他の部分の肉厚よりも薄い
     密閉型圧縮機。
    The cylinder that forms the cylinder chamber and
    A rotating shaft having an eccentric portion arranged in the cylinder chamber and
    A first bearing that rotatably supports the rotating shaft and defines one end surface of the rotating shaft on the axial core direction and a second bearing that defines the other end surface of the rotating shaft in the cylinder chamber are provided. Accommodates the compression mechanism and
    A closed container for storing lubricating oil that lubricates the sliding portion of the compression mechanism is provided.
    The rotating shaft includes a main shaft portion supported by the first bearing on one end side in the axis direction with the eccentric portion as a boundary, and a sub-shaft portion supported by the second bearing on the other end side. Have,
    The sub-shaft portion is spirally continuous from one end side of the other end in the axis direction to one end side in the axis direction along the rotation direction of the rotation shaft. It has a groove on the outer peripheral surface and
    The second bearing has a flange portion and a tubular portion projecting from the flange portion, and is the other end portion of the tubular portion in the axial core direction and is viewed from the radial direction of the rotating shaft. A closed compressor in which the wall thickness of the portion that wraps with the base end of the oil groove is thinner than the wall thickness of the other portion of the tubular portion.
  2.  前記回転軸の径方向からみて前記通油溝の基端とラップする部分は、前記筒部における前記軸芯方向の他端に設けられた周方向に連続する溝の内壁部、もしくは、前記筒部における前記軸芯方向の他端に設けられた周方向に連続する薄肉部のいずれかである
     請求項1に記載の密閉型圧縮機。
    The portion that wraps with the base end of the oil passage groove when viewed from the radial direction of the rotation shaft is the inner wall portion of the groove provided in the other end of the cylinder portion in the axial direction and continuous in the circumferential direction, or the cylinder. The closed compressor according to claim 1, which is one of thin-walled portions continuous in the circumferential direction provided at the other end of the portion in the axial direction.
  3.  前記回転軸の前記軸芯方向の他端部に設けられたバランサと、
     前記バランサを覆うバランサカバーと、をさらに備え、
     前記第2の軸受は、前記シリンダ室で圧縮された作動流体を前記バランサカバーのカバー空間に吐出する吐出孔と、前記カバー空間と前記密閉容器内の潤滑油貯留面の上方空間とを連通する連通路と、を有し、
     前記バランサカバーは、前記回転軸の他端側から前記連通路に向けて傾斜する傾斜部を有する
     請求項1に記載の密閉型圧縮機。
    A balancer provided at the other end of the rotating shaft in the axial direction, and
    A balancer cover that covers the balancer is further provided.
    The second bearing communicates a discharge hole that discharges the working fluid compressed in the cylinder chamber into the cover space of the balancer cover, and the cover space and the space above the lubricating oil storage surface in the closed container. With a continuous passage,
    The closed compressor according to claim 1, wherein the balancer cover has an inclined portion inclined from the other end side of the rotating shaft toward the communication passage.
  4.  前記バランサカバーは、前記第2の軸受にボルトで固定され、前記ボルトによる固定部を避けて前記カバー空間を区画するとともに前記カバー空間で互いに連通する複数の分室部を有し、
     複数の前記分室部のうち、少なくとも一つは、前記連通路と連通し、
     前記連通路と連通する前記分室部には、前記回転軸の径方向の外側へ向かうに従って前記連通路に近づく傾斜面を有する前記傾斜部が設けられている
     請求項3に記載の密閉型圧縮機。
    The balancer cover is bolted to the second bearing, and has a plurality of branch portions that partition the cover space and communicate with each other in the cover space while avoiding the fixing portion by the bolt.
    At least one of the plurality of branch chambers communicates with the communication passage,
    The closed compressor according to claim 3, wherein the branch chamber portion communicating with the communication passage is provided with an inclined portion having an inclined surface that approaches the communication passage toward the outside in the radial direction of the rotation shaft. ..
  5.  前記傾斜面は、水平面に対する傾斜角度が70°以下である
     請求項4に記載の密閉型圧縮機。
    The closed compressor according to claim 4, wherein the inclined surface has an inclination angle of 70 ° or less with respect to a horizontal plane.
  6.  前記軸芯方向からみて、前記回転軸の回転方向において前記吐出孔の開口中心から前記連通路の開口中心までの前記回転軸の軸芯に対する中心角度は、前記吐出孔の開口中心から最初に位置する前記ボルトの回転中心までの前記軸芯に対する中心角度よりも大きい
     請求項4または5に記載の密閉型圧縮機。
    The center angle of the rotation shaft from the opening center of the discharge hole to the opening center of the communication path with respect to the shaft core in the rotation direction of the rotation shaft when viewed from the axis direction is first located from the opening center of the discharge hole. The sealed compressor according to claim 4 or 5, which is larger than the center angle with respect to the shaft core to the rotation center of the bolt.
  7.  請求項1から請求項6のいずれかに記載された密閉型圧縮機と、
     前記密閉型圧縮機に接続された凝縮器と、
     前記凝縮器に接続された膨張装置と、
     前記膨張装置に接続された蒸発器と、を備える
     冷凍サイクル装置。
    The sealed compressor according to any one of claims 1 to 6.
    A condenser connected to the closed compressor and
    An expansion device connected to the condenser and
    A refrigeration cycle device comprising an evaporator connected to the expansion device.
PCT/JP2019/030101 2019-07-31 2019-07-31 Hermetic compressor and refrigeration cycle device WO2021019750A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021536563A JP7242862B2 (en) 2019-07-31 2019-07-31 Hermetic compressor and refrigeration cycle equipment
CN201980098227.5A CN114072582B (en) 2019-07-31 2019-07-31 Hermetic compressor and refrigeration cycle device
EP19939139.2A EP3988792A4 (en) 2019-07-31 2019-07-31 Hermetic compressor and refrigeration cycle device
PCT/JP2019/030101 WO2021019750A1 (en) 2019-07-31 2019-07-31 Hermetic compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/030101 WO2021019750A1 (en) 2019-07-31 2019-07-31 Hermetic compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021019750A1 true WO2021019750A1 (en) 2021-02-04

Family

ID=74228626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030101 WO2021019750A1 (en) 2019-07-31 2019-07-31 Hermetic compressor and refrigeration cycle device

Country Status (4)

Country Link
EP (1) EP3988792A4 (en)
JP (1) JP7242862B2 (en)
CN (1) CN114072582B (en)
WO (1) WO2021019750A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145079A (en) 1984-08-08 1986-03-04 コマニ−株式会社 Dust treatment device of toilet door
JPS6194296U (en) 1984-11-28 1986-06-18
JPH09250483A (en) * 1996-03-19 1997-09-22 Mitsubishi Electric Corp Rotary type compressor
KR20050053371A (en) * 2003-12-01 2005-06-08 엘지전자 주식회사 Apparatus for reducing thrust face friction of vane compressor
JP2018165502A (en) 2017-03-28 2018-10-25 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6262101B2 (en) * 2014-08-27 2018-01-17 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle apparatus
JP7002033B2 (en) * 2016-02-26 2022-01-20 パナソニックIpマネジメント株式会社 2-cylinder type sealed compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145079A (en) 1984-08-08 1986-03-04 コマニ−株式会社 Dust treatment device of toilet door
JPS6194296U (en) 1984-11-28 1986-06-18
JPH09250483A (en) * 1996-03-19 1997-09-22 Mitsubishi Electric Corp Rotary type compressor
KR20050053371A (en) * 2003-12-01 2005-06-08 엘지전자 주식회사 Apparatus for reducing thrust face friction of vane compressor
JP2018165502A (en) 2017-03-28 2018-10-25 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device

Also Published As

Publication number Publication date
JP7242862B2 (en) 2023-03-20
CN114072582A (en) 2022-02-18
EP3988792A4 (en) 2023-01-04
CN114072582B (en) 2023-08-29
EP3988792A1 (en) 2022-04-27
JPWO2021019750A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US6896493B2 (en) Scroll compressor
JP6755428B1 (en) Scroll compressor and refrigeration cycle equipment
US6089834A (en) Helical compressor and method of assembling the same
CN113167266B (en) Compressor and air conditioner
JP7360785B2 (en) Rotary compressor and refrigeration cycle equipment
JP6762253B2 (en) Revolver and refrigeration cycle equipment
JP7113091B2 (en) Rotary compressor, method for manufacturing rotary compressor, and refrigeration cycle device
WO2021019750A1 (en) Hermetic compressor and refrigeration cycle device
JP2017053222A (en) Hermetic scroll compressor and refrigeration air conditioning equipment
US11566624B2 (en) Compressor having lubrication system
JP6762113B2 (en) Scroll compressor and air conditioner
US20210207601A1 (en) Rotary compressor and refrigeration cycle apparatus
JP2023071508A (en) Hermetic rotary compressor
WO2021079477A1 (en) Compressor and refrigeration cycle device
JP7253655B1 (en) Scroll compressor and refrigeration cycle device
JP7293024B2 (en) Rotary compressor and refrigeration cycle equipment
JP7357178B1 (en) Compressors and air conditioners
JP5157148B2 (en) Compressor
JP7213382B1 (en) Scroll compressor and refrigeration cycle device
JP7400080B2 (en) Rotary compressor and refrigeration cycle equipment
JP2013204488A (en) Scroll type fluid machine
JP7159079B2 (en) Hermetic compressor and refrigerator using the same
WO2022085443A1 (en) Compressor and refrigeration cycle device
US20230193901A1 (en) Scroll compressor and home appliance including the same
WO2023188422A1 (en) Compressor and upper shell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536563

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019939139

Country of ref document: EP

Effective date: 20220118

NENP Non-entry into the national phase

Ref country code: DE