WO2021017920A1 - sidelink数据传输方法和设备 - Google Patents

sidelink数据传输方法和设备 Download PDF

Info

Publication number
WO2021017920A1
WO2021017920A1 PCT/CN2020/102992 CN2020102992W WO2021017920A1 WO 2021017920 A1 WO2021017920 A1 WO 2021017920A1 CN 2020102992 W CN2020102992 W CN 2020102992W WO 2021017920 A1 WO2021017920 A1 WO 2021017920A1
Authority
WO
WIPO (PCT)
Prior art keywords
tbs
resource
parameter
scheduled
resource overhead
Prior art date
Application number
PCT/CN2020/102992
Other languages
English (en)
French (fr)
Inventor
彭淑燕
纪子超
邬华明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020227006521A priority Critical patent/KR102685160B1/ko
Priority to EP20846434.7A priority patent/EP4007190A4/en
Publication of WO2021017920A1 publication Critical patent/WO2021017920A1/zh
Priority to US17/583,334 priority patent/US20220225353A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the embodiments of the present disclosure relate to the field of communications, and in particular to a data transmission method and device for a side link (sidelink, or side link, side link, etc.).
  • LTE sidelink is based on broadcast communication. Although it can be used for basic security communication of vehicle to everything (V2X), it is not suitable for more advanced V2X services.
  • the New Radio (NR) system will support more advanced sidelink transmission designs, such as unicast, multicast or multicast, etc., so as to support more comprehensive service types.
  • TBS Transport Block Size
  • the purpose of the present disclosure is to provide a sidelink data transmission method and device to solve the problem that TBS cannot be calculated in related technologies.
  • a sidelink data transmission method is provided, the method is executed by a terminal device, and the method includes:
  • a terminal device including:
  • TBS calculation module used to calculate TBS according to the scheduled resource size and target resource overhead
  • the transmission module is used for sidelink data transmission according to the calculated TBS.
  • a terminal device in a third aspect, includes a processor, a memory, and a computer program that is stored in the memory and can run on the processor.
  • the computer program When the computer program is executed by the processor, Implement the steps of the sidelink data transmission method as described in the first aspect.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the steps of the sidelink data transmission method as described in the first aspect are implemented.
  • the terminal device may calculate the TBS according to the scheduled resource size and the target resource overhead, and perform sidelink data transmission according to the calculated TBS.
  • the terminal device may calculate the TBS according to the scheduled resource size and the target resource overhead, and perform sidelink data transmission according to the calculated TBS.
  • Fig. 1 is a schematic flowchart of an embodiment of a sidelink data transmission method provided according to the present disclosure
  • Figure 2 is a schematic structural diagram of an embodiment of a terminal device according to the present disclosure
  • Fig. 3 is a schematic structural diagram of another embodiment of a terminal device according to the present disclosure.
  • terminal devices may include, but are not limited to, mobile stations (Mobile Station, MS), mobile terminals (Mobile Terminal), mobile phones (Mobile Telephone), User Equipment (UE), and mobile phones (handset) And portable equipment (portable equipment), vehicles (vehicle), etc.
  • the terminal equipment can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), for example, the terminal equipment can be a mobile phone (or It is called a "cellular" phone), a computer with wireless communication function, etc.
  • the terminal device can also be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device.
  • the present disclosure provides a sidelink data transmission method 100, which may be executed by a terminal device, including S102 and S104.
  • TBS Transport Block Size
  • TBS mainly depends on the size of the scheduled resources.
  • the scheduled resource is composed of one or several resource blocks (Resource Block, RB), and one RB occupies several symbols in the time domain and several subcarriers in the frequency domain.
  • Resource Block Resource Block
  • the target resource overhead may include at least one of the following:
  • Physical sidelink control channel Physical Sidelink Control Channel, PSCCH
  • PSCCH Physical Sidelink Control Channel
  • Physical sidelink feedback channel Physical Sidelink Feedback Channel, PSFCH resource overhead
  • the SFCI may include at least one of HARQ ACK/NACK and channel state information report;
  • DMRS Demodulation Reference Signal
  • Phase-tracking reference signal Phase-tracking reference signal (Phase-tracking reference signal, PTRS) resource overhead;
  • Channel State Information-Reference Signal Channel State Information-Reference Signal, CSI-RS
  • AGC Automatic Gain Control
  • Guard Period Guard Period
  • the target resource overhead may include at least one of the PSFCH and the SFCI multiplexed in the PSSCH, where the resource overhead of the SFCI includes the resource overhead for transmitting the CSI report; the resource overhead for the PSFCH includes the HARQ ACK/NACK transmission Resource overhead.
  • the upper layer configures the available resources of the PSFCH, and the terminal device obtains the time slot slot(s) for configuring the PSFCH resource according to the configuration information of the higher layer. If the terminal device uses the slot(s) to transmit PSSCH, the configured TBS is subtracted PSFCH resource overhead.
  • the resource overhead of the PSFCH does not need to be considered when calculating the TBS.
  • this step can remove the aforementioned target resource overhead from the scheduled resources when calculating TBS.
  • a certain value is subtracted based on the size of the scheduled resource, and the value is related to the above-mentioned target resource.
  • the subtracted number in the subtraction calculation process can be the above-mentioned scheduled resource, or it can be the resource in the calculation process. Other values.
  • the scheduled resource size is multiplied by a scaling factor
  • the scaling factor is related to the above-mentioned target resource
  • the scaling factor is greater than 0 and less than or equal to 1
  • the multiplicand in the multiplication calculation process may be the aforementioned scheduling
  • the resource can also be other values in the calculation process.
  • S104 Perform sidelink data transmission according to the calculated TBS.
  • sidelink data transmission is performed according to the calculated TBS, which can specifically be sending sidelink data or receiving sidelink data.
  • the sidelink data can be sent through the transceiver according to the calculated TBS; for the receiving end terminal device, the sidelink data can be obtained by demodulating the calculated TBS.
  • the terminal device can calculate the TBS according to the scheduled resource size and the target resource overhead, and perform sidelink data transmission according to the calculated TBS.
  • the terminal device can calculate the TBS according to the scheduled resource size and the target resource overhead, and perform sidelink data transmission according to the calculated TBS.
  • the embodiments of the present disclosure can prevent the transmission code rate of the transmission block from exceeding the demodulated code rate, improve the decoding success rate, and improve the communication efficiency.
  • the target resource overhead may include PSCCH resource overhead, and the PSCCH resource overhead may be calculated according to the PSCCH configuration.
  • the foregoing target resource overhead may also include resource overhead such as PSFCH or SFCI.
  • resource overhead such as PSFCH or SFCI.
  • the resource overhead of SFCI can be determined according to the indication of Sidelink Control Information (SCI) for TBS calculation.
  • SCI Sidelink Control Information
  • the following steps may be further included:
  • the first PSCCH may indicate the foregoing second PSCCH in an explicit or implicit manner.
  • the first PSCCH includes indication information indicating whether the second PSCCH is included, and information such as the resource size/location of the second PSCCH, that is, an explicit indication.
  • the first PSCCH may indicate the transmission type (for example, unicast, multicast, broadcast), if it is unicast/multicast, it means that there is a second PSCCH, and then the second PSCCH is determined according to the pre-configured resource size of the second PSCCH The second resource overhead of the PSCCH is implicitly indicated.
  • the transmission type for example, unicast, multicast, broadcast
  • the second PSCCH is determined according to the pre-configured resource size of the second PSCCH
  • the second resource overhead of the PSCCH is implicitly indicated.
  • the TBS of the first transmitted sidelink data can be used as the TBS of the retransmitted sidelink data, and then the TBS of the first transmitted sidelink data Retransmit sidelink data.
  • I MCS For example, if the TB of sidelink data satisfies 28 ⁇ I MCS ⁇ 31, depending on the size of TBS TBS calculation of a recent TB using the same schedule SCI of 0 ⁇ I MCS ⁇ 28; wherein said I MCS satisfying 28 ⁇ I MCS ⁇ 31 sidelink data for retransmission, I MCS meet 0 ⁇ I MCS ⁇ 28 sidelink data for initial transmission.
  • the calculation of TBS according to the scheduled resource size and target resource overhead in the foregoing several embodiments may include at least one of the following:
  • the scheduled resource includes the number of scheduled symbols.
  • the second parameter is subtracted from the number of available REs in the scheduled resource, and the TBS is calculated according to the obtained value.
  • the number of available REs in the scheduled resource is calculated according to the size of the scheduled resource. In this manner, the number of available REs in the scheduled resource may be calculated through the above method 1), or may be calculated through other methods.
  • the number of available REs in the scheduled resource is multiplied by the third parameter, and the TBS is calculated according to the obtained value.
  • the number of available REs in the scheduled resource is calculated according to the size of the scheduled resource.
  • the number of available REs in the resources scheduled in this manner may be calculated in the above manner 1), or may be calculated in other ways.
  • the intermediate number of information is calculated based on the number of available REs in the scheduled resource.
  • the number of available REs in the scheduled resource can be calculated by the above methods 2) and 3), or by other methods. Way calculated.
  • the first parameter, the second parameter, the third parameter, the fourth parameter, and the fifth parameter are all related to the target resource overhead mentioned above; and the third parameter, the fourth parameter and the fifth parameter are all greater than 0 and less than Equal to 1.
  • N'RE is the number of REs available on a PRB; Is the number of subcarriers in a PRB, usually 12; Is the number of scheduled symbols; Noh_sym is the number of symbols related to the target resource overhead, corresponding to the first parameter in the preceding paragraph ; Is the resource overhead of DMRS in a PRB; It is a parameter predefined by the protocol, a parameter configured by a network device (pre-), or a parameter configured by a terminal device, and can also be obtained through negotiation and feedback.
  • Noh_sym 1, for example, Noh_sym is the resource overhead of GP and/or AGC.
  • mapping relationship between numerology and Noh_sym can be predefined:
  • the terminal device can determine the resource overhead according to the transmission type, for example,
  • the sender terminal device selects according to the configuration Cost value.
  • N RE min(156, N'RE ) ⁇ n PRB
  • N RE is the number of available REs on the total PRB in the scheduled resource; for example, the number of available REs on the total PRB in a time slot; n PRB is the number of available PRBs.
  • N info N RE ⁇ R ⁇ Q m ⁇
  • R is the code rate
  • Q m is the modulation order
  • is the number of layers.
  • N info ⁇ 3824 use the following step 4 to obtain TBS; otherwise, use step 5 to obtain TBS.
  • the sending end terminal device can send SCI/Sidelink Radio Resource Control (SL-RRC) to indicate to the receiving end terminal device Overhead.
  • SCI/Sidelink Radio Resource Control SCI/Sidelink Radio Resource Control
  • the receiving end terminal device determines according to the transmission type Overhead, and calculate TBS, for example,
  • the sending end terminal device selects the overhead value according to the configuration and sends SCI/SL-RRC instructions Overhead.
  • Noh_sym is subtracted from the number of scheduled symbols to calculate the number of available REs on a PRB, and then the TBS is calculated according to the obtained number of available REs.
  • Table 1 TBS form when the median number of information N info ⁇ 3824
  • Steps 2 to 5 of the first embodiment can specifically follow the TBS calculation process of the Uu port, for example, the TBS calculation process of PUSCH.
  • N oh_sym configuration feedback information PSCCH configuration, the AGC configuration, PTRS configuration, CSI-RS configuration, the carrier frequency, Numerology configuration, the configuration of CSI to at least one associated transmission types .
  • Noh_sym is a value predefined by the protocol. Or, the value configured for the network device/terminal device (pre-), or obtained through negotiation by the terminal, or fed back by the receiving end terminal device to the sending end terminal device.
  • the number of symbols of the scheduled PSSCH may be subtracted from the number of symbols of the GP.
  • the number of symbols of GP can be one symbol or half a symbol.
  • the resource overhead of AGC is half a symbol, and the overhead of GP is half a symbol;
  • the resource overhead of AGC is one symbol, and the resource overhead of GP is half a symbol.
  • the resource overhead of AGC is one symbol, and the overhead of GP is one symbol;
  • the resource overhead of AGC is one symbol, and the overhead of GP is half a symbol;
  • the resource overhead of AGC is one symbol
  • the overhead of GP is one symbol.
  • the number of symbols of the AGC may be subtracted from the number of symbols of the scheduled PSSCH.
  • the number of AGC symbols can be one symbol, half symbol, or two symbols.
  • step 1 of the first embodiment can subtract the number of PSFCH symbols from the number of symbols of the scheduled PSSCH.
  • a certain symbol overhead may be subtracted from the number of scheduled PSSCH symbols.
  • the symbol overhead is half symbol or one symbol overhead, which is used to indicate the removal of CSI-RS, PTRS, SFCI, CSI and PSCCH Symbol overhead of at least one of them, etc.
  • the symbol overhead can be (pre-)configured by the network device; or configured by the terminal.
  • Noh_sym can be the sum of multiple resource (symbol) costs.
  • Noh_sym is the sum of the resource overhead of AGC and the symbol overhead of GP. And, wait.
  • N'RE is the number of REs available on a PRB; Is the number of subcarriers in a PRB, usually 12; Is the number of scheduled symbols, specifically the number of PSSCH symbols scheduled in a time slot; Noh_sym is the number of symbols related to the target resource overhead, corresponding to the first parameter in the preceding paragraph ; Is the resource overhead of DMRS in a PRB; It can be a parameter predefined by the protocol, a parameter configured by a network device (pre-), or a parameter configured by a terminal device, or it can be obtained through negotiation and feedback.
  • Noh_sym 1, for example, Noh_sym is the symbol overhead of GP and/or AGC.
  • mapping relationship between numerology and GP and/or AGC can be predefined:
  • the resource overhead of AGC is half a symbol, and the overhead of GP is half a symbol;
  • the resource overhead of AGC is one symbol, and the resource overhead of GP is half a symbol.
  • the resource overhead of AGC is one symbol, and the overhead of GP is one symbol;
  • the resource overhead of AGC is one symbol, and the overhead of GP is half a symbol;
  • the resource overhead of AGC is one symbol
  • the overhead of GP is one symbol.
  • the optional values are 0, 6, 12, 18, and the sender terminal device selects one according to the configuration Cost value.
  • N RE min(156, N'RE ) ⁇ n PRB
  • N RE is the number of available REs on the total PRB
  • n PRB is the number of available PRBs.
  • the TBS calculation process of the Uu port can be specifically used, for example, the TBS calculation process of PUSCH.
  • the transmitting terminal device may send an SCI/SL-RRC indication , So that the receiving end terminal device gets To calculate TBS.
  • the number of scheduled symbols is subtracted from Noh_sym to calculate the number of available symbols on a PRB, and then the number of available REs is calculated according to the obtained number of symbols and frequency domain resources, and then the obtained The number of available REs is used to calculate TBS.
  • the receiving end terminal device feeds back the resource overhead of AGC, for example, the resource overhead of AGC is one symbol.
  • each parameter in this formula can refer to step 1 of the first embodiment.
  • Noh_sym in this embodiment can be used to represent the resource overhead of at least one of AGC, PSCCH, SFCI, DMRS, PTRS, CSI-RS, and GP.
  • the optional values are 0, 6, 12, 18.
  • the sender terminal device selects one according to the configuration Cost value.
  • N RE min(156, N'RE ) ⁇ n PRB
  • Steps 4 to subsequent steps in this embodiment can specifically follow the TBS calculation process of the Uu port, for example, the TBS calculation process of the PUSCH.
  • TBS When calculating TBS in the third embodiment, Noh_sym is subtracted from the number of scheduled symbols to calculate the number of available REs on a PRB, and then TBS is calculated according to the obtained number of available REs.
  • Noh_sym in the third embodiment is obtained based on the feedback of the terminal device at the receiving end.
  • Noh_sym 2
  • Noh_sym may be used to represent the resource overhead of at least one of AGC, PSCCH, SFCI, DMRS, PTRS, CSI-RS, and GP.
  • Noh_sym in this embodiment is used to represent the resource overhead of GP and/or AGC and the resource overhead of PSFCH.
  • N RE min(156, N'RE ) ⁇ n PRB
  • Steps 2 to subsequent steps in this embodiment can specifically follow the TBS calculation process of the Uu port, for example, the TBS calculation process of the PUSCH.
  • N'RE is the number of REs available on a PRB; Is the number of subcarriers in a PRB, usually 12; Is the number of scheduled symbols, specifically the number of scheduled PSSCH symbols; Is the resource overhead of DMRS in a PRB; It is a parameter predefined by the protocol, a parameter configured by a network device (pre-), or a parameter configured by a terminal device, and can also be obtained through negotiation feedback; N is a parameter related to the target resource overhead.
  • N 12, for example, N is the resource overhead of GP and/or AGC.
  • mapping relationship between numerology and N can be predefined:
  • N RE min(156, N'RE ) ⁇ n PRB
  • Steps 2 to subsequent steps in this embodiment can specifically follow the TBS calculation process of the Uu port, for example, the TBS calculation process of the PUSCH.
  • the number of available REs on a PRB is subtracted from N, and then TBS is calculated according to the obtained value.
  • N in the fifth embodiment is related to at least one of feedback information configuration, PSCCH configuration, AGC configuration, PTRS configuration, CSI-RS configuration, carrier frequency, numerology configuration, CSI configuration, and transmission type.
  • N is a value predefined by the protocol.
  • N is a value configured by a network device/terminal device, or N is obtained through negotiation by the terminal device, or N is a feedback from the receiving end terminal device to the sending end terminal device.
  • the network device pre-configures the mapping relationship between numerology/AGC symbols and N; the terminal device obtains N according to the number of configured numerology/AGC symbols, thereby calculating the number of REs available on each PRB.
  • SCI may include the overhead of two levels of SCI, the first level of SCI is carried in the PSCCH, and the second level of SCI is carried in the PSSCH.
  • N RE min(156, N'RE ) ⁇ n PRB -M
  • N RE is the number of available REs on the total PRB
  • n PRB is the number of available PRBs, for example, the number of available PRBs in scheduled resources
  • M is a parameter related to the target resource overhead.
  • M 144, which is a value predetermined by the protocol.
  • M is calculated based on the resources configured by the SCI.
  • M is obtained through negotiation by the terminal.
  • M is obtained by the receiving terminal feedback to the sending terminal.
  • Steps 3 to subsequent steps in this embodiment can specifically follow the TBS calculation process of the Uu port, for example, the TBS calculation process of the PUSCH.
  • each PSSCH may contain only one PSCCH (target resource overhead)
  • the number of available REs on the total PRB is subtracted from M, and the subsequent calculation is based on the obtained number of available REs TBS.
  • M in the sixth embodiment is related to at least one of feedback information configuration, PSCCH configuration, AGC configuration, PTRS configuration, CSI-RS configuration, carrier frequency, numerical configuration, CSI configuration, and transmission type.
  • M is a value predefined by the protocol.
  • M is the value configured by the network device/terminal device. Or, obtained through negotiation for the terminal device. Or, for the receiving end terminal device to feed back to the sending end terminal device.
  • the network device preconfigures the mapping relationship between numerology/AGC symbols and M; the terminal device obtains M according to the number of configured numerology/AGC symbols, so as to calculate the number of REs available on the total PRB.
  • Is the number of subcarriers in a PRB Is the size of the scheduled resource, Is the resource overhead of DMRS in a PRB
  • It is a parameter predefined by the protocol, a parameter configured by a network device (pre), or a parameter configured by a terminal device, or obtained through negotiation for the terminal, or fed back to the sending terminal device for the receiving terminal device
  • alpha_1 is related to the target resource Parameters related to overhead, 0 ⁇ alpha_1 ⁇ 1.
  • Steps 2 to subsequent steps in this embodiment can specifically follow the TBS calculation process of the Uu port, for example, the TBS calculation process of the PUSCH.
  • the number of REs available on each PRB is multiplied by the scaling factor (corresponding to the third parameter in the foregoing), and then the TBS is calculated according to the obtained number of available REs.
  • N'RE is the number of REs available on a PRB; Is the number of subcarriers in a PRB, usually 12; Is the number of scheduled symbols, specifically the number of scheduled PSSCH symbols; Is the resource overhead of DMRS in a PRB; It is a parameter predefined by the protocol, a parameter configured by a network device (pre), or a parameter configured by a terminal device, or obtained through negotiation for the terminal, or fed back to the transmitting terminal device by the receiving terminal terminal device.
  • pre network device
  • N RE min(156,N' RE ) ⁇ n PRB ⁇ alpha_2
  • n PRB is the number of scheduled PRBs
  • alpha_2 is a parameter related to the target resource overhead, 0 ⁇ alpha_2 ⁇ 1.
  • Steps 3 to subsequent steps in this embodiment can specifically follow the TBS calculation process of the Uu port, for example, the TBS calculation process of the PUSCH.
  • the number of REs available on the total PRB in the scheduled resources is multiplied by the scaling factor (corresponding to the fourth parameter in the preceding paragraph), which is equivalent to multiplying the number of scheduled PRBs by the first Four parameters, and then calculate TBS according to the obtained value.
  • N RE min(156, N'RE ) ⁇ n PRB
  • N RE is the number of available REs on the total PRB
  • n PRB is the number of available PRBs.
  • N info N RE ⁇ R ⁇ Q m ⁇ v ⁇ alpha_3
  • R is the code rate
  • Q m is the modulation order
  • is the number of layers
  • alpha_3 is a parameter related to the target resource overhead
  • Step 4 to subsequent steps can all follow the TBS calculation process of the Uu port, for example, the TBS calculation process of PUSCH.
  • the intermediate number of information is multiplied by the scaling factor (corresponding to the fifth parameter in the preceding paragraph), and then TBS is calculated according to the obtained value.
  • N'RE is the number of REs available on a PRB; Is the number of subcarriers in a PRB, usually 12; Is the number of scheduled symbols, specifically the number of scheduled PSSCH symbols; Is the resource overhead of DMRS in a PRB; It is a parameter related to the target resource overhead.
  • the target resource overhead may be the resource overhead of at least one of AGC, PSCCH, SFCI, DMRS, PTRS, CSI-RS, and GP.
  • Steps 2 to subsequent steps in this embodiment can specifically follow the TBS calculation process of the Uu port, for example, the TBS calculation process of the PUSCH.
  • the number of REs available on each PRB is subtracted (Corresponding to the first parameter in the preceding text), and then calculate the TBS according to the obtained number of available REs.
  • It is related to at least one of feedback information configuration, PSCCH configuration, AGC configuration, PTRS configuration, CSI-RS configuration, carrier frequency, numerology configuration, CSI configuration, and transmission type. or, The value predefined for the protocol. or, The value configured for the network device/terminal device, or, Obtained through negotiation for the terminal device, or, For the receiving end terminal equipment to feed back to the transmitting end terminal equipment.
  • E.g The optional values of is 12, 18, 24, and 30, where at least rate matching for GP is considered.
  • This implementation can be obtained according to the configuration of feedback resources To get the number of available REs.
  • step 2 in the first embodiment is replaced with step 2 in the eighth embodiment;
  • parameters related to the target resource overhead in the above-mentioned embodiment 1 to embodiment 10 for example, Noh_sym in embodiment 1 to embodiment 4; N in embodiment 5; M in embodiment 6; Alpha_1 in the seventh embodiment; alpha_2 in the eighth embodiment; alpha_3 in the nine and tenth embodiment Both can be obtained by at least one of the following methods:
  • the transmission type for example, broadcast, multicast, unicast
  • the transmission type can be indicated in SCI/DCI, or it can be obtained through the destination ID (for example, the destination ID and the transmission type
  • the above-mentioned parameters are related to the transmission type.
  • the terminal equipment can be pre-defined/pre-configured parameter values according to different transmission types; or, different transmission types have different configuration methods:
  • the target resource overhead is a predefined/preconfigured value
  • the target resource overhead is a configurable value
  • the AGC cost can be a default value or configurable.
  • the above-mentioned parameters may be indicated in the SCI, and/or obtained through negotiation or feedback according to the RRC configuration of the terminal device, for example:
  • the sending end terminal device sends instruction information to indicate whether to calculate the sidelink TBS minus the corresponding target resource overhead and the size of the target resource overhead;
  • the target resource overhead is indicated in the SCI as a value in the collection.
  • the feedback information is acquired, and the target resource overhead indication is carried in the feedback information, indicating whether the corresponding target resource overhead and/or the size of the target resource overhead are included.
  • At least one of the resource overheads of PSCCH, DMRS, AGC, GP, SFCI (PSFCH, CSI), PTRS, CSI-RS, that is, the target resource overhead can also be achieved through the above (7 ways In) at least one way.
  • the sidelink data transmission method according to the present disclosure is described in detail above in conjunction with FIG. 1 and the subsequent specific embodiments.
  • the terminal device provided according to the present disclosure will be described in detail below in conjunction with FIG. 2.
  • Fig. 2 is a schematic structural diagram of an embodiment of a terminal device according to the present disclosure. As shown in FIG. 2, the terminal device 200 includes:
  • the TBS calculation module 202 may be used to calculate TBS according to the scheduled resource size and target resource overhead;
  • the transmission module 204 can be used to perform secondary link data transmission according to the calculated TBS.
  • the terminal device provided in each embodiment of this specification can be a terminal device that sends Sidelink data, or a terminal device that receives Sidelink data.
  • the two can be one terminal device, because one terminal device can execute the sidelink data transmission. Step, you can also perform the step of receiving Sidelink data.
  • the terminal device provided in the embodiment of this specification calculates TBS according to the scheduled resource size and target resource overhead, and performs sidelink data transmission according to the calculated TBS.
  • the embodiments of the present disclosure can prevent the transmission code rate of the transmission block from exceeding the demodulated code rate, improve the decoding success rate, and improve the communication efficiency.
  • the target resource overhead includes at least one of the following:
  • the TBS calculation module 202 may be used to perform at least one of the following:
  • the second parameter is subtracted from the number of available REs in the scheduled resource, and then TBS is calculated according to the obtained value, and the number of available REs in the scheduled resource is calculated according to the size of the scheduled resource;
  • the first parameter, the second parameter, the third parameter, the fourth parameter, and the fifth parameter are related to the target resource overhead, and the third parameter and the fourth parameter And the fifth parameter is greater than 0 and less than or equal to 1.
  • TBS calculation module 202 may be used to calculate a number of PRB available in the symbol RE on the scheduling according to the formula N 'RE, according to the then N' is calculated TBS RE:
  • Is the number of subcarriers in a PRB Is the number of scheduled symbols
  • Noh_sym is the number of symbols related to the target resource overhead
  • It is a parameter predefined by the protocol, a parameter configured by a network device (pre), or a parameter configured by a terminal device.
  • TBS calculation module 202 may be used to calculate a number of PRB available in the symbol RE on the scheduling according to the formula N 'RE, according to the N' calculated TBS RE:
  • Is the number of subcarriers in a PRB Is the number of symbols scheduled, Is the resource overhead of DMRS in a PRB on the scheduling symbol, Is a parameter related to the target resource overhead.
  • TBS calculation module 202 may be used to calculate a number of PRB available in the symbol RE on the scheduling according to the formula N 'RE, according to the then N' is calculated TBS RE:
  • Is the number of subcarriers in a PRB Is the number of symbols scheduled, Is the resource overhead of DMRS in a PRB on the scheduling symbol, Is a parameter predefined by the protocol, a parameter configured by a network device (pre-), or a parameter configured by a terminal device, and N is a parameter related to the target resource overhead.
  • TBS calculation module 202 may be used for a number of available RE, RE is the number of PRB available N 'RE, scheduling recalculated according to the formula resource scheduling according to the calculated resource size of the symbol scheduler N RE , and calculate TBS according to the N RE :
  • N RE min(156,N' RE ) ⁇ n PRB -M
  • n PRB is the number of available PRBs
  • M is a parameter related to the target resource overhead.
  • TBS calculation module 202 may be used to calculate a number of PRB available in the symbol RE on the scheduling according to the formula N 'RE, according to the then N' is calculated TBS RE:
  • Is the number of subcarriers in a PRB Is the number of symbols scheduled, Is the resource overhead of DMRS in a PRB on the scheduling symbol, It is a parameter predefined by the protocol, a parameter configured by a network device (pre), or a parameter configured by a terminal device, alpha_1 is a parameter related to the target resource overhead, 0 ⁇ alpha_1 ⁇ 1.
  • TBS calculation module 202 may be used for a number of available RE, RE is the number of PRB available N 'RE, scheduling recalculated according to the formula resource scheduling according to the calculated resource size of the symbol scheduler N RE , and calculate TBS according to the N RE :
  • N RE min(156,N' RE ) ⁇ n PRB ⁇ alpha_2
  • n PRB is the number of scheduled PRBs
  • alpha_2 is a parameter related to the target resource overhead, 0 ⁇ alpha_2 ⁇ 1.
  • the TBS calculation module 202 may be used to calculate the number of available REs N RE according to the scheduled resource size, and then calculate the information intermediate number N info according to the following formula, and calculate TBS according to the N info :
  • N info N RE ⁇ R ⁇ Q m ⁇ v ⁇ alpha_3
  • N RE is the number of available REs in the scheduled resource
  • R is the code rate
  • Q m is the modulation order
  • is the number of layers
  • alpha_3 is a parameter related to the target resource overhead, 0 ⁇ alpha_3 ⁇ 1.
  • the target resource overhead includes PSCCH resource overhead
  • the target resource overhead is calculated according to the PSCCH configuration.
  • the TBS calculation module 202 may also be used for
  • the resource overhead of the PSCCH is calculated; wherein, the first PSCCH is predefined, configured by the network device, or pre-configured, and the second The second PSCCH is indicated by the first PSCCH.
  • the TBS calculation module 202 may be used to calculate the TBS according to the scheduled resource size and parameters related to the target resource overhead, the parameters being obtained by at least one of the following:
  • the TBS calculation module 202 may also be used to use the TBS of the initially transmitted secondary link data as the TBS of the retransmitted secondary link data.
  • the terminal device 200 provided according to the present disclosure may refer to the process corresponding to the method 100 provided in the present disclosure, and each unit/module in the terminal device 200 and other operations and/or functions described above are used to implement the corresponding process in the method 100, respectively. And can achieve the same or equivalent technical effect, for the sake of brevity, it will not be repeated here.
  • Fig. 3 is a structural block diagram of another embodiment of a terminal device according to the present disclosure.
  • the terminal device 300 shown in FIG. 3 includes: at least one processor 301, a memory 302, at least one network interface 304, and a user interface 303.
  • the various components in the terminal device 300 are coupled together through the bus system 305.
  • the bus system 305 is used to implement connection and communication between these components.
  • the bus system 305 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 305 in FIG. 3.
  • the user interface 303 may include a display, a keyboard, a pointing device (for example, a mouse, a trackball), a touch panel or a touch screen, etc.
  • the memory 302 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the memory 302 stores the following elements, executable modules or data structures, or their subsets, or their extended sets: operating system 3021 and application programs 3022.
  • the operating system 3021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 3022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program that implements the method of the embodiments of the present disclosure may be included in the application program 3022.
  • the terminal device 300 further includes: a computer program stored in the memory 302 and capable of running on the processor 301, and the computer program is executed by the processor 301 to implement the steps of the method 100 as follows.
  • the methods disclosed in the foregoing embodiments of the present disclosure may be applied to the processor 301 or implemented by the processor 301.
  • the processor 301 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method can be completed by an integrated logic circuit of hardware in the processor 301 or instructions in the form of software.
  • the aforementioned processor 301 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programmable logic devices discrete gate or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a computer-readable storage medium that is mature in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the computer-readable storage medium is located in the memory 302, and the processor 301 reads the information in the memory 302, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 301, each step of the above-mentioned method 100 embodiment is implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the terminal device 300 can implement the various processes implemented by the terminal device in the foregoing embodiments, and can achieve the same or equivalent technical effects. To avoid repetition, details are not described herein again.
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored.
  • a computer program When the computer program is executed by a processor, each process of the above method embodiment 100 is realized, and the same technical effect can be achieved. To avoid repetition, I won't repeat it here.
  • the computer-readable storage media include non-transitory computer-readable storage media, such as read-only memory (Read-Only Memory, ROM for short), Random Access Memory (RAM for short), and magnetic CD or CD, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种sidelink数据传输方法和设备,用以解决相关技术中无法计算TBS的问题。该方法可以由终端设备执行,包括:根据调度的资源大小以及目标资源开销计算TBS;根据计算出的TBS进行sidelink数据传输。

Description

sidelink数据传输方法和设备
相关申请的交叉引用
本申请主张在2019年7月29日在中国提交的中国专利申请号201910691372.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信领域,尤其涉及一种副链路(sidelink,或译为旁链路,侧链路,边链路等)数据传输方法和设备。
背景技术
长期演进(Long Term Evolution,LTE)sidelink是基于广播形式进行通讯的,虽然可用于车联网(vehicle to everything,V2X)的基本安全类通信,但不适用于更高级的V2X业务。新空口(New Radio,NR)系统将支持更加先进的sidelink传输设计,例如,单播,多播或组播等,从而可以支持更全面的业务类型。
对于终端设备而言,在进行sidelink数据传输过程中需要计算传输块大小(Transport Block Size,TBS)。目前,NR系统中,如何准确地计算出TBS以进行sidelink数据传输,是相关技术中亟需解决的技术问题。
发明内容
本公开的目的是提供一种sidelink数据传输方法和设备,用以解决相关技术中无法计算TBS的问题。
第一方面,提供了一种sidelink数据传输方法,所述方法由终端设备执行,所述方法包括:
根据调度的资源大小以及目标资源开销计算TBS;
根据计算出的TBS进行sidelink数据传输。
第二方面,提供了一种终端设备,包括:
TBS计算模块,用于根据调度的资源大小以及目标资源开销计算TBS;
传输模块,用于根据计算出的TBS进行sidelink数据传输。
第三方面,提供了一种终端设备,该终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的sidelink数据传输方法的步骤。
第四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的sidelink数据传输方法的步骤。
在本公开实施例中,终端设备可以根据调度的资源大小以及目标资源开销计算TBS,并根据计算出的TBS进行sidelink数据传输。本公开实施例在计算TBS时,由于充分考虑了调度的资源中的目标资源开销,便于提高计算得到的TBS的准确性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本公开提供的sidelink数据传输方法的一个实施例的示意性流程图;
图2是根据本公开提供的终端设备的一个实施例的结构示意图;
图3是根据本公开提供的终端设备的另一个实施例的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本 申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。本说明书各个实施例中的“和/或”表示前后两者中的至少一个。
应理解,本公开实施例的技术方案可以应用于各种通信系统,例如:LTE sidelink系统或NR sidelink系统,或者为后续演进的sidelink通信系统。
在本公开实施例中,终端设备可以包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、用户设备(User Equipment,UE)、手机(handset)及便携设备(portable equipment)、车辆(vehicle)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
如图1所示,本公开提供一种sidelink数据传输方法100,该方法可以由终端设备执行,包括S102和S104。
S102:根据调度的资源大小以及目标资源开销计算传输块大小(Transport Block Size,TBS)。
通常,TBS主要取决于调度的资源大小。可选地,调度的资源是由一个或若干个资源块(Resource Block,RB))构成,一个RB在时域上占据若干个符号,在频域上占据若干个子载波。
本说明书各个实施例中,目标资源开销可以包括下述至少之一:
物理副链路控制信道(Physical Sidelink Control Channel,PSCCH)的资源开销;
物理副链路反馈信道(Physical Sidelink Feedback Channel,PSFCH)的资源开销;
副链路反馈控制信息(Sidelink Feedback Control Information,SFCI)的资源开销,该SFCI可以包括HARQ ACK/NACK和信道状态信息报告中的至少之一;
解调参考信号(Demodulation Reference Signal,DMRS)的资源开销;
相位追踪参考信号(Phase-tracking reference signal,PTRS)的资源开销;
信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)的资源开销;
自动增益控制(Automatic Gain Control,AGC)的资源开销;
保护间隔(Guard Period,GP)的资源开销。
可选地,目标资源开销可以包括PSFCH以及复用在PSSCH中的SFCI中的至少之一,该处的SFCI的资源开销包括传输CSI报告的资源开销;PSFCH的资源开销包括传输HARQ ACK/NACK的资源开销。
例如,高层配置了PSFCH的可用资源,终端设备根据高层配置信息,获取配置PSFCH资源的时隙slot(s),若终端设备使用该slot(s)传输PSSCH,则在计算TBS时减去配置的PSFCH的资源开销。
需要说明的是,如果PSFCH不在PSSCH的调度符号内,则在计算TBS不需要考虑PSFCH的资源开销。
在一个具体的例子中,该步骤可以在计算TBS时从调度的资源中去除掉上述目标资源开销。
例如,在计算TBS的过程中基于调度的资源大小减去一定的数值,该数值与上述目标资源相关,该减法计算过程中的被减数可以是上述调度的资源,也可以是计算过程中的其他数值。
又例如,在计算TBS的过程中基于调度的资源大小乘以缩放因子,该缩放因子与上述目标资源相关,缩放因子大于0且小于等于1,该乘法计 算过程中的被乘数可以是上述调度的资源,也可以是计算过程中的其他数值。
S104:根据计算出的TBS进行sidelink数据传输。
该步骤中根据计算出的TBS进行sidelink数据传输,具体可以是发送sidelink数据,也可以是接收sidelink数据。
该步骤中,对于发送端终端设备而言,可以根据计算出的TBS,通过收发器发送sidelink数据;对于接收端终端设备而言,可以根据计算出的TBS,解调得到sidelink数据。
本公开提供的sidelink数据传输方法,终端设备可以根据调度的资源大小以及目标资源开销计算TBS,并根据计算出的TBS进行sidelink数据传输。本公开实施例在计算TBS时,由于充分考虑了调度的资源中的目标资源开销,便于提高计算得到的TBS的准确性。
对于接收端终端设备而言,本公开实施例可以避免传输块的传输码率超过可解调的码率,提高解码的成功率,提高通信效率。
在上述实施例中提到的目标资源开销,可选地,该目标资源开销可以包括PSCCH的资源开销,该PSCCH的资源开销可以根据PSCCH的配置计算得到的。
当然,上述目标资源开销还可以包括PSFCH或SFCI等的资源开销。例如,目标资源开销包括SFCI时,在S102中计算TBS时,可以根据副链路控制信息(Sidelink Control Information,SCI)的指示,确定SFCI的资源开销以进行TBS计算。
可选地,在上述目标资源开销包括PSCCH的资源开销时,在S102执行之前,还可以包括如下步骤:
1)根据盲检时PSCCH所占用的资源计算PSCCH的资源开销;或
2)根据第一PSCCH的第一资源开销,以及第二PSCCH的第二资源开销,计算PSCCH的总资源开销,具体可以是第一资源开销和第二资源开销之和;其中,上述第一PSCCH可以是预定义的、网络设备配置的或预配置的,上述第二PSCCH是第一PSCCH指示的。
可选地,第一PSCCH可以以显式指示或隐式指示的方式指示上述第二PSCCH。
例如,第一PSCCH中包括有指示信息,该指示信息指示是否包含第二PSCCH,第二PSCCH的资源大小/位置等信息,即显式指示。
又例如,第一PSCCH可以指示传输类型(例如,单播,组播,广播),如果为单播/组播,表示存在第二PSCCH,再根据预配置的第二PSCCH的资源大小确定第二PSCCH的第二资源开销,即隐式指示。
可选地,与上述若各个实施例并列,在sidelink数据是重传sidelink数据的情况下,可以将初传sidelink数据的TBS作为所述重传sidelink数据的TBS,然后根据初传sidelink数据的TBS进行sidelink数据重传。
例如,如果sidelink数据的TB满足28≤I MCS≤31,则该TBS的大小取决于相同TB最近的一个使用0≤I MCS≤28的SCI调度的TBS的计算;其中,上述I MCS满足28≤I MCS≤31用于重传sidelink数据,I MCS满足0≤I MCS≤28用于初传sidelink数据。
可选地,在上述若干个实施例中的根据调度的资源大小以及目标资源开销计算TBS,可以包括下述至少之一:
1)将调度的符号数目减去第一参数以计算一个物理资源块(Physical Resource Block,PRB)中可用资源粒子(Resource Element,RE)的数目,再根据一个PRB中可用RE的数目计算TBS。其中,调度的资源包括该调度的符号数目。
2)将调度的资源中可用RE的数目减去第二参数,再根据得到的值计算TBS,该调度的资源中可用RE的数目根据调度的资源大小计算得到。该方式中,调度的资源中可用RE的数目可以是通过上述方式1)计算得到的,也可以是通过其它方式计算得到的得到。
3)将调度的资源中可用RE的数目乘以第三参数,再根据得到的值计算TBS,该调度的资源中可用RE的数目根据所述调度的资源大小计算得到。该方式中调度的资源中可用RE的数目可以是通过上述方式1)计算得到的,也可以是通过其它方式计算得到的得到。
4)将调度的资源中可用PRB的数目乘以第四参数,再根据得到的值计算TBS。
5)将信息中间数乘以第五参数,再根据得到的值计算TBS,所述信息中间数根据所述调度的资源大小计算得到。该方式中,信息中间数是基于调度的资源中可用RE的数目计算的到的,该调度的资源中可用RE的数目可以是通过上述方式2)和方式3)计算处理,也可以是通过其它方式计算得到的。
其中,上述第一参数、第二参数、第三参数、第四参数以及第五参数均与前文提到的目标资源开销相关;且述第三参数、第四参数以及第五参数均大于0小于等于1。
为详细说明本公开提供的sidelink数据传输方法,以下将结合几个具体的实施例,对其中的TBS的计算过程进行详细说明。
实施例一:
1、计算每个PRB上可用的RE的数目:
Figure PCTCN2020102992-appb-000001
其中,N' RE是一个PRB上可用RE的数目;
Figure PCTCN2020102992-appb-000002
是一个PRB中子载波的数目,通常为12;
Figure PCTCN2020102992-appb-000003
是调度的符号数目;N oh_sym是与目标资源开销相关 的符号数目,对应于前文中的第一参数;
Figure PCTCN2020102992-appb-000004
是一个PRB中DMRS的资源开销;
Figure PCTCN2020102992-appb-000005
是协议预定义的参数、网络设备(预)配置的参数或终端设备配置的参数,还可以是通过协商、反馈获取得到。
a)该实施例中,可选地,N oh_sym=1,例如,N oh_sym是GP和/或AGC的资源开销。
或者,可选地,可以预先定义numerology与N oh_sym的映射关系:
若载频为FR1,SCS=15kHz,则N oh_sym=1;
若载频为FR1,SCS=30kHz,则N oh_sym=2;
若载频为FR1,SCS=60kHz,则N oh_sym=2;
若载频为FR2,SCS=60kHz,则N oh_sym=1;
若载频为FR2,SCS=120kHz,则N oh_sym=2。
b)可选地,
Figure PCTCN2020102992-appb-000006
的可选值为0,6,12,18,终端设备可以根据传输类型确定该资源开销,例如,
如果为广播传输,
Figure PCTCN2020102992-appb-000007
默认配置为0。
如果为单播传输,发送端终端设备根据配置选择
Figure PCTCN2020102992-appb-000008
开销值。
如果为组播传输,
Figure PCTCN2020102992-appb-000009
默认配置为0。
2、计算调度的资源中总PRB上的可用RE的数目:N RE=min(156,N' RE)·n PRB
其中,N RE是调度的资源中总PRB上的可用RE的数目;例如,一个时隙中总PRB上的可用RE的数目;n PRB是可用PRB的数目。
3、计算信息中间数:N info=N RE·R·Q m·υ
其中,R为码率,Q m为调制阶数,υ为层数。
当N info≤3824时,采用如下步骤4得到TBS;否则,采用步骤5得到TBS。
4、当信息中间数N info≤3824时,得到量化中间数
Figure PCTCN2020102992-appb-000010
其中
Figure PCTCN2020102992-appb-000011
然后在如下表格1中查找到不小于量化中间数N′ info的、最近的TBS。
5、当信息中间数N info>3824时,量化中间数
Figure PCTCN2020102992-appb-000012
其中,
Figure PCTCN2020102992-appb-000013
然后根据量化中间数N′ info确定TBS。
在该实施例中,可选地,若为单播sidelink传输,发送端终端设备可以发送SCI/副链路无线资源控制(Sidelink Radio Resource Control,SL-RRC),向接收端终端设备指示
Figure PCTCN2020102992-appb-000014
开销。
可选地,接收端终端设备根据传输类型确定
Figure PCTCN2020102992-appb-000015
开销,并计算TBS,具体例如,
如果为广播传输,
Figure PCTCN2020102992-appb-000016
默认配置为0。
如果为单播传输,发送端终端设备根据配置选择开销值,并发送SCI/SL-RRC指示
Figure PCTCN2020102992-appb-000017
开销。
如果为广播传输,
Figure PCTCN2020102992-appb-000018
默认配置为0。
该实施例一在计算TBS时,是将调度的符号数目减去N oh_sym以计算一个PRB上可用RE的数目,后续再根据得到的可用RE的数目计算TBS。
表1信息中间数N info≤3824时的TBS表格
Index TBS Index TBS Index TBS Index TBS
1 24 31 336 61 1288 91 3624
2 32 32 352 62 1320 92 3752
3 40 33 368 63 1352 93 3824
4 48 34 384 64 1416    
5 56 35 408 65 1480    
6 64 36 432 66 1544    
7 72 37 456 67 1608    
8 80 38 480 68 1672    
9 88 39 504 69 1736    
10 96 40 528 70 1800    
11 104 41 552 71 1864    
12 112 42 576 72 1928    
13 120 43 608 73 2024    
14 128 44 640 74 2088    
15 136 45 672 75 2152    
16 144 46 704 76 2216    
17 152 47 736 77 2280    
18 160 48 768 78 2408    
19 168 49 808 79 2472    
20 176 50 848 80 2536    
21 184 51 888 81 2600    
22 192 52 928 82 2664    
23 208 53 984 83 2728    
24 224 54 1032 84 2792    
25 240 55 1064 85 2856    
26 256 56 1128 86 2976    
27 272 57 1160 87 3104    
28 288 58 1192 88 3240    
29 304 59 1224 89 3368    
30 320 60 1256 90 3496    
该实施例一的步骤2至步骤5,具体可以沿用Uu口的TBS计算过程,例如,PUSCH的TBS计算过程。
可选地,该实施例一中,N oh_sym与反馈信息配置、PSCCH配置、AGC配置、PTRS配置、CSI-RS配置、载频、numerology的配置,CSI的配置,传输类型中的至少一项相关。或者,N oh_sym为协议预定义的值。或者,为网络设备/终端设备(预)配置的值,或者,为终端协商获取的,或者,为接收端终端设备反馈给发送端终端设备的。
具体例如,实施例一的步骤1可以用调度的PSSCH的符号数减去GP的符号数。其中,GP的符号数可以为一个符号或者半个符号。可选地,定义numerology与GP和/或AGC的映射关系:
若载频为FR1,SCS=15kHz,则AGC的资源开销为半个符号,GP的开销为半个符号;
若载频为FR1,SCS=30kHz,则AGC的资源开销为一个符号,GP的资源开销为半个符号。
若载频为FR1,SCS=60kHz,则AGC的资源开销为一个符号,GP的开销为一个符号;
若载频为FR2,SCS=60kHz,则AGC的资源开销为一个符号,GP的开销为半个符号;
若载频为FR2,SCS=120kHz,则AGC的资源开销为一个符号,GP的开销为一个符号。
又例如,实施例一的步骤1可以用调度的PSSCH的符号数减去AGC的符号数。其中,AGC的符号数可以为一个符号,半个符号,两个符号。又例如,根据PSFCH的配置,若在该调度资源中配置了PSFCH的资源,则实施例一的步骤1可以用调度的PSSCH的符号数减去PSFCH的符号数。
再例如,实施例一的步骤1可以用调度的PSSCH的符号数减去一定的符号开销,该符号开销为半符号或一个符号开销,用来表示去除CSI-RS,PTRS,SFCI,CSI以及PSCCH中的至少之一的符号开销等。该符号开销可以是网络设备(预)配置的;或者是终端配置的。
需要说明的是,上述举例仅仅以一种资源开销为例进行说明,实际上,N oh_sym可以是多种资源(符号)开销之和,例如,N oh_sym为AGC的资源开销和GP的符号开销之和,等等。
实施例二
1、计算每个PRB上可用的RE的数目:
Figure PCTCN2020102992-appb-000019
其中,N' RE是一个PRB上可用RE的数目;
Figure PCTCN2020102992-appb-000020
是一个PRB中子载波的数目,通常为12;
Figure PCTCN2020102992-appb-000021
是调度的符号数目,具体可以是一个时隙中调度的PSSCH的符号数目;N oh_sym是与目标资源开销相关的符号数目,对应于前文中的第一参数;
Figure PCTCN2020102992-appb-000022
是一个PRB中DMRS的资源开销;
Figure PCTCN2020102992-appb-000023
可以是协议预定义的参数、网络设备(预)配置的参数或终端设备配置的参数,还可以是通过协商、反馈获取得到。
a)该实施例中,可选地,N oh_sym=1,例如,N oh_sym是GP和/或AGC的符号开销。
或者,可选地,可以预先定义numerology与GP和/或AGC的映射关系:
若载频为FR1,SCS=15kHz,则AGC的资源开销为半个符号,GP的开销为半个符号;
若载频为FR1,SCS=30kHz,则AGC的资源开销为一个符号,GP的资源开销为半个符号。
若载频为FR1,SCS=60kHz,则AGC的资源开销为一个符号,GP的开销为一个符号;
若载频为FR2,SCS=60kHz,则AGC的资源开销为一个符号,GP的开销为半个符号;
若载频为FR2,SCS=120kHz,则AGC的资源开销为一个符号,GP的开销为一个符号。
b)该实施例中,可选地,
Figure PCTCN2020102992-appb-000024
的可选值为0,6,12,18,发送端终端设备根据配置选择一个
Figure PCTCN2020102992-appb-000025
开销值。
2、计算调度的资源中总PRB上的可用RE的数目:N RE=min(156,N' RE)·n PRB
其中,N RE是总PRB上的可用RE的数目;n PRB是可用PRB的数目。
3、和实施例一的步骤3、4、5相同。该实施例二的步骤2至后续步骤,具体可以沿用Uu口的TBS计算过程,例如,PUSCH的TBS计算过程。
该实施例二中,可选地,发送端终端设备可以发送SCI/SL-RRC指示
Figure PCTCN2020102992-appb-000026
的大小,这样,接收端终端设备获取
Figure PCTCN2020102992-appb-000027
的值以计算TBS。
该实施例二在计算TBS时,是将调度的符号数目减去N oh_sym以计算一个PRB上可用符号的数目,再根据得到的符号数目以及频域资源计算可用的RE数目,后续再根据得到的可用RE的数目计算TBS。
实施例三
1、接收端终端设备反馈AGC等的资源开销,例如,AGC的资源开销为一个符号。
2、发送端终端设备根据接收到的反馈信息和配置信息确定N oh_sym=1。
3、计算每个PRB上可用的RE的数目:
Figure PCTCN2020102992-appb-000028
该公式中各个参数的含义可以参见实施例一的步骤1。区别点在于,该实施例中的N oh_sym可以用来表示AGC,PSCCH,SFCI,DMRS,PTRS,CSI-RS以及GP中的至少之一的资源开销,例如,N oh_sym为GP和/或AGC的开销,则该实施例中N oh_sym=1。
该实施例中,
Figure PCTCN2020102992-appb-000029
的可选值为0,6,12,18。发送端终端设备根据配置选择一个
Figure PCTCN2020102992-appb-000030
开销值。
4、计算调度的资源中总PRB上的可用RE的数目:N RE=min(156,N' RE)·n PRB
该公式中各个参数的含义可以参见实施例一的步骤2。
5、和实施例一的步骤3、4、5相同。该实施例的步骤4至后续步骤,具体可以沿用Uu口的TBS计算过程,例如,PUSCH的TBS计算过程。
该实施例三在计算TBS时,是将调度的符号数目减去N oh_sym以计算一个PRB上可用RE的数目,后续再根据得到的可用RE的数目计算TBS。
该实施例三中的N oh_sym是基于接收端终端设备的反馈得到。
实施例四
1、计算每个PRB上可用的RE的数目:
Figure PCTCN2020102992-appb-000031
该公式中各个参数的含义可以参见实施例一的步骤1。
该实施例中,可选地,N oh_sym=2,N oh_sym可以用来表示AGC,PSCCH,SFCI,DMRS,PTRS,CSI-RS以及GP中的至少之一的资源开销。具体地,该实施例中的N oh_sym用来表示GP和/或AGC的资源开销、以及PSFCH的资源开销。
可选地,N oh_sym还可以根据PSFCH的配置确定,预定义配置关系与N oh_sym之间的关系,例如,若调度的资源中配置了PSFCH的资源,则N oh_sym=2;否则,N oh_sym=1。
2、计算调度的资源中总PRB上的可用RE的数目:N RE=min(156,N' RE)·n PRB
该公式中各个参数的含义可以参见实施例一的步骤2。
3、和实施例一的步骤3、4、5相同。该实施例的步骤2至后续步骤,具体可以沿用Uu口的TBS计算过程,例如,PUSCH的TBS计算过程。
可选地,该实施例中,如果PSSCH的调度符号中不包括PSFCH,则在确定N oh_sym时不需要考虑PSFCH的开销。
实施例五
1、计算每个PRB上可用的RE的数目:
Figure PCTCN2020102992-appb-000032
其中,N' RE是一个PRB上可用RE的数目;
Figure PCTCN2020102992-appb-000033
是一个PRB中子载波的数目,通常为12;
Figure PCTCN2020102992-appb-000034
是调度的符号数目,具体可以是调度的PSSCH的符号数目;
Figure PCTCN2020102992-appb-000035
是一个PRB中DMRS的资源开销;
Figure PCTCN2020102992-appb-000036
是协议预定义的参数、网络设备(预)配置的参数或终端设备配置的参数,还可以是通过协商反馈获取的到;N是与目标资源开销相关的参数。
该实施例中,可选地,N=12,例如,N是GP和/或AGC的资源开销。
或者,可选地,可以预先定义numerology与N的映射关系:
若载频为FR1,SCS=15kHz,则N=12;
若载频为FR1,SCS=30kHz,则N=24;
若载频为FR1,SCS=60kHz,则N=24;
若载频为FR2,SCS=60kHz,则N=12;
若载频为FR2,SCS=120kHz,则N=24。
2、计算调度的资源中总PRB上的可用RE的数目:N RE=min(156,N' RE)·n PRB
该公式中各个参数的含义可以参见实施例一的步骤2。
3、和实施例一的步骤3、4、5相同。该实施例的步骤2至后续步骤,具体可以沿用Uu口的TBS计算过程,例如,PUSCH的TBS计算过程。
该实施例五在计算TBS时,将一个PRB上可用RE的数目减去N,后续再根据得到的值计算TBS。
可选地,该实施例五中的N与反馈信息配置、PSCCH配置、AGC配置、PTRS配置、CSI-RS配置、载频、numerology的配置,CSI的配置,传输类型中的至少一项相关。或者,N为协议预定义的值。或者,N为网络设备/终端设备配置的值,或者,N为终端设备协商获取的,或者,N为接收端终端设备反馈给发送端终端设备的。
例如,网络设备预配置numerology/AGC符号与N之间的映射关系;终端设备根据配置的numerology/AGC符号的数目得到N,从而计算每个PRB上可用的RE的数目。
实施例六
1、计算每个PRB上可用的RE的数目:
Figure PCTCN2020102992-appb-000037
该公式中各个参数的含义可以参见实施例五的步骤1,当然,该公式中没有实施例五中的参数N。
可选地,该公式中
Figure PCTCN2020102992-appb-000038
中包括SCI的开销。其中,SCI可能包括两级SCI的开销,第一级SCI在PSCCH中携带,第二级SCI在PSSCH中携带。
2、计算调度的资源中总PRB上的可用RE的数目:N RE=min(156,N' RE)·n PRB-M
其中,N RE是总PRB上的可用RE的数目;n PRB是可用PRB的数目,例如,调度的资源中可用PRB的数目;M是与目标资源开销相关的参数。
可选地,M=144,为协议预定的值。
可选地,M为是根据SCI配置的资源计算得到。
可选地,M为终端协商获取的。
可选地,M为接收终端反馈给发送终端获取的。
3、和实施例一的步骤3、4、5相同。该实施例的步骤3至后续步骤,具体可以沿用Uu口的TBS计算过程,例如,PUSCH的TBS计算过程。
该实施例六在计算TBS时,考虑到每个PSSCH中可能只包含一个PSCCH(目标资源开销),因此将总PRB上的可用RE的数目减去M,后续再根据得到的可用RE的数目计算TBS。
可选地,该实施例六中的M与反馈信息配置、PSCCH配置、AGC配置、PTRS配置、CSI-RS配置、载频、numerology的配置,CSI的配置, 传输类型中的至少一项相关。或者,M为协议预定义的值。或者,M为网络设备/终端设备配置的值。或者,为终端设备协商获取的。或者,为接收端终端设备反馈给发送端终端设备的。
例如,网络设备预配置numerology/AGC符号与M之间的映射关系;终端设备根据配置的numerology/AGC符号的数目得到M,从而计算总PRB上可用的RE的数目。
实施例七
1、计算每个PRB上可用的RE的数目:
Figure PCTCN2020102992-appb-000039
其中,
Figure PCTCN2020102992-appb-000040
是一个PRB中子载波的数目,
Figure PCTCN2020102992-appb-000041
是调度的资源大小,
Figure PCTCN2020102992-appb-000042
是一个PRB中DMRS的资源开销,
Figure PCTCN2020102992-appb-000043
是协议预定义的参数、网络设备(预)配置的参数或终端设备配置的参数,或者,为终端协商获取的,或者,为接收端终端设备反馈给发送端终端设备的,alpha_1是与目标资源开销相关的参数,0<alpha_1≤1。
2、参见实施例一的步骤2、3、4、5。该实施例的步骤2至后续步骤,具体可以沿用Uu口的TBS计算过程,例如,PUSCH的TBS计算过程。
该实施例七在计算TBS时,将每个PRB上可用的RE的数目乘以缩放因子(对应于前文中的第三参数),后续再根据得到的可用RE的数目计算TBS。
实施例八
1、计算每个PRB上可用的RE的数目:
Figure PCTCN2020102992-appb-000044
其中,N' RE是一个PRB上可用RE的数目;
Figure PCTCN2020102992-appb-000045
是一个PRB中子载波的数目,通常为12;
Figure PCTCN2020102992-appb-000046
是调度的符号数目,具体可以是调度的PSSCH的 符号数目;
Figure PCTCN2020102992-appb-000047
是一个PRB中DMRS的资源开销;
Figure PCTCN2020102992-appb-000048
是协议预定义的参数、网络设备(预)配置的参数或终端设备配置的参数,或者,为终端协商获取的,或者,为接收端终端设备反馈给发送端终端设备的。
2、计算调度的资源中总PRB上的可用RE的数目:
N RE=min(156,N' RE)·n PRB·alpha_2
n PRB是调度的PRB的数目,alpha_2是与目标资源开销相关的参数,0<alpha_2≤1。
3、和实施例一的步骤3、4、5相同。该实施例的步骤3至后续步骤,具体可以沿用Uu口的TBS计算过程,例如,PUSCH的TBS计算过程。
该实施例八在计算TBS时,将调度的资源中总PRB上可用的RE的数目乘以缩放因子(对应于前文中的第四参数),也即相当于将调度的PRB的数目乘以第四参数,后续再根据得到的值计算TBS。
实施例九
1、计算每个PRB上可用的RE的数目:
Figure PCTCN2020102992-appb-000049
该公式中各个参数的含义可以参见实施例八的步骤1。
2、计算调度的资源中总PRB上的可用RE的数目:N RE=min(156,N' RE)·n PRB
其中,N RE是总PRB上的可用RE的数目;n PRB是可用PRB的数目。
3、计算信息中间数:N info=N RE·R·Q m·v·alpha_3
其中,R为码率,Q m为调制阶数,υ为层数,alpha_3是与目标资源开销相关的参数,0<alpha_3≤1。
4、参见实施例一的步骤4、5。该实施例的步骤1和步骤2;步骤4至后续步骤,均可以沿用Uu口的TBS计算过程,例如,PUSCH的TBS计算过程。
该实施例九在计算TBS时,将信息中间数乘以缩放因子(对应于前文中的第五参数),后续再根据得到的值计算TBS。
实施例十
1、计算每个PRB上可用的RE的数目:
Figure PCTCN2020102992-appb-000050
其中,N' RE是一个PRB上可用RE的数目;
Figure PCTCN2020102992-appb-000051
是一个PRB中子载波的数目,通常为12;
Figure PCTCN2020102992-appb-000052
是调度的符号数目,具体可以是调度的PSSCH的符号数目;
Figure PCTCN2020102992-appb-000053
是一个PRB中DMRS的资源开销;
Figure PCTCN2020102992-appb-000054
是与目标资源开销相关的参数,目标资源开销可以是AGC,PSCCH,SFCI,DMRS,PTRS,CSI-RS以及GP中的至少之一的资源开销。
2、参见实施例一的步骤2、3、4、5。该实施例的步骤2至后续步骤,具体可以沿用Uu口的TBS计算过程,例如,PUSCH的TBS计算过程。
该实施例十在计算TBS时,将每个PRB上可用的RE的数目减去
Figure PCTCN2020102992-appb-000055
(对应于前文中的第一参数),后续再根据得到的可用RE的数目计算TBS。
可选地,
Figure PCTCN2020102992-appb-000056
与反馈信息配置、PSCCH配置、AGC配置、PTRS配置、CSI-RS配置、载频、numerology的配置,CSI的配置,传输类型中的至少一项相关。或者,
Figure PCTCN2020102992-appb-000057
为协议预定义的值。或者,
Figure PCTCN2020102992-appb-000058
为网络设备/终端设备配置的值,或者,
Figure PCTCN2020102992-appb-000059
为终端设备协商获取的,或者,
Figure PCTCN2020102992-appb-000060
为接收端终端设备反馈给发送端终端设备的。
例如:
Figure PCTCN2020102992-appb-000061
的可选值为12,18,24,30,该处至少考虑对GP进行速率匹配。
又例如:预定义反馈信息和
Figure PCTCN2020102992-appb-000062
的关系,如果没有配置反馈资源,则
Figure PCTCN2020102992-appb-000063
为N1;若配置了反馈资源,则
Figure PCTCN2020102992-appb-000064
为N2。该实施方式可以根据反馈资源的配置得到
Figure PCTCN2020102992-appb-000065
的值,从而得到可用的RE的数目。
需要说明是的是,上述实施例一至实施例十介绍的TBS计算方法,各个实施例之间还可以组合使用,例如,将实施例一中的步骤2替换为实施例八的步骤2;又例如,将实施例一的步骤3替换为实施例九中的步骤3;又例如,参照实施例五,在实施例一的步骤1的公式中再减去N;再例如,参照实施例六,在实施例一的步骤2的公式中再减去M,等等。
还需要说明是的是,上述实施例一至实施例十中与目标资源开销相关的参数,例如,实施例一至实施例四中的N oh_sym;实施例五中的N;实施例六中的M;实施例七中的alpha_1;实施例八中的alpha_2;实施例九中的alpha_3以及实施例十中的
Figure PCTCN2020102992-appb-000066
均可以是通过下述至少一种方式得到:
1)协议预定义的;
2)网络设备预配置的;
3)网络设备配置的;
4)根据传输类型(例如,广播,组播,单播)配置的,其中,传输类型可以在SCI/DCI中指示,或者,可以通过目的地ID获取得到(例如,目的地ID和传输类型之间存在有映射关系;
5)SCI或下行控制信息(Downlink Control Information,DCI)指示的;
6)终端设备间无线资源控制RRC配置协商的;以及
7)通过反馈信息得到的。
例如,上述(与目标资源开销相关的)参数与传输类型相关。终端设备则可以根据不同的传输类型,协议预定义/预配置参数值;或者,不同的传输类型有不同的配置方式:
若为广播传输,目标资源开销为一个预定义/预配置的值;
若为单播传输,目标资源开销为可配置的值;
若为组播传输,AGC的开销可以是一个默认值,或者是可配的。
又例如,上述(与目标资源开销相关的)参数可在SCI中指示,和/或根据终端设备RRC配置协商或反馈获取,具体例如:
发送端终端设备发送指示信息,指示计算sidelink TBS是否减去相应的目标资源开销及目标资源开销的大小;
通过SL-RRC的配置开销的集合,在SCI中指示目标资源开销为集合中的一个值。
通过反馈信息获取,在反馈信息中携带目标资源开销指示,指示是否包含对应的目标资源开销和/或目标资源开销的大小。
可选地,在计算TBS时,PSCCH,DMRS,AGC,GP,SFCI(PSFCH,CSI),PTRS,CSI-RS中至少一项资源开销,即目标资源开销,也可以是通过上述(7种方式中的)至少一种方式得到。
以上结合图1以及后续各个具体实施例详细描述了根据本公开提供的sidelink数据传输方法。下面将结合图2详细描述根据本公开提供的终端设备。
图2是根据本公开提供的终端设备的一个实施例的结构示意图。如图2所示,终端设备200包括:
TBS计算模块202,可以用于根据调度的资源大小以及目标资源开销计算TBS;
传输模块204,可以用于根据计算出的TBS进行副链路数据传输。
本说明书各个实施例提供的终端设备,可以是发送Sidelink数据的终端设备,也可以是接收Sidelink数据的终端设备,当然,这两者可以是一个终端设备,因为一个终端设备可以执行发送Sidelink数据的步骤,也可以执行接收Sidelink数据的步骤。
本说明书实施例提供的终端设备,根据调度的资源大小以及目标资源开销计算TBS,并根据计算出的TBS进行sidelink数据传输。本公开实施例在计算TBS时,由于充分考虑了调度的资源中的目标资源开销,便于提高计算得到的TBS的准确性。
对于接收端终端设备而言,本公开实施例可以避免传输块的传输码率超过可解调的码率,提高解码的成功率,提高通信效率。
可选地,作为一个实施例,所述目标资源开销包括下述至少之一:
PSCCH的资源开销;
PSFCH的资源开销;
SFCI的资源开销;
DMRS的资源开销;
PTRS的资源开销;
CSI-RS的资源开销;
AGC的资源开销;
GP的资源开销。
可选地,作为一个实施例,TBS计算模块202,可以用于执行下述至少之一:
将调度的符号数目减去第一参数以计算可用资源粒子RE的数目,再根据得到的值计算TBS;
将调度的资源中可用RE的数目减去第二参数,再根据得到的值计算TBS,该调度的资源中可用RE的数目根据所述调度的资源大小计算得到;
将调度的资源中可用RE的数目乘以第三参数,再根据得到的值计算TBS,该调度的资源中可用RE的数目根据所述调度的资源大小计算得到;
将调度的资源中可用物理资源块PRB的数目乘以第四参数,再根据得到的值计算TBS;
将信息中间数乘以第五参数,再根据得到的值计算TBS,所述信息中间数根据所述调度的资源大小计算得到;
其中,所述第一参数、所述第二参数、所述第三参数、所述第四参数以及所述第五参数与所述目标资源开销相关,所述第三参数、所述第四参数以及所述第五参数均大于0且小于等于1。
可选地,作为一个实施例,TBS计算模块202,可以用于根据如下公式计算调度符号上一个PRB中可用RE的数目N' RE,再根据所述N' RE计算TBS:
Figure PCTCN2020102992-appb-000067
其中,
Figure PCTCN2020102992-appb-000068
是一个PRB中子载波的数目,
Figure PCTCN2020102992-appb-000069
是调度的符号数目,N oh_sym是与所述目标资源开销相关的符号数目,
Figure PCTCN2020102992-appb-000070
是调度符号上一个PRB中DMRS的资源开销,
Figure PCTCN2020102992-appb-000071
是协议预定义的参数、网络设备(预)配置的参数或终端设备配置的参数。
可选地,作为一个实施例,TBS计算模块202,可以用于根据如下公式计算调度符号上一个PRB中可用RE的数目N' RE,根据所述N' RE计算TBS:
Figure PCTCN2020102992-appb-000072
其中,
Figure PCTCN2020102992-appb-000073
是一个PRB中子载波的数目,
Figure PCTCN2020102992-appb-000074
是调度的符号数目,
Figure PCTCN2020102992-appb-000075
是调度符号上一个PRB中DMRS的资源开销,
Figure PCTCN2020102992-appb-000076
是与所述目标资源开销相关的参数。
可选地,作为一个实施例,TBS计算模块202,可以用于根据如下公式计算调度符号上一个PRB中可用RE的数目N' RE,再根据所述N' RE计算TBS:
Figure PCTCN2020102992-appb-000077
其中,
Figure PCTCN2020102992-appb-000078
是一个PRB中子载波的数目,
Figure PCTCN2020102992-appb-000079
是调度的符号数目,
Figure PCTCN2020102992-appb-000080
是调度符号上一个PRB中DMRS的资源开销,
Figure PCTCN2020102992-appb-000081
是协议预定义的参数、网络设备(预)配置的参数或终端设备配置的参数,N是与所述目标资源开销相关的参数。
可选地,作为一个实施例,TBS计算模块202,可以用于根据调度的资源大小计算调度符号上一个PRB中可用RE的数目N' RE,再根据如下公式计算调度的资源中可用RE的数目N RE,并根据所述N RE计算TBS:
N RE=min(156,N' RE)·n PRB-M
n PRB是可用PRB的数目,M是与所述目标资源开销相关的参数。
可选地,作为一个实施例,TBS计算模块202,可以用于根据如下公式计算调度符号上一个PRB中可用RE的数目N' RE,再根据所述N' RE计算TBS:
Figure PCTCN2020102992-appb-000082
其中,
Figure PCTCN2020102992-appb-000083
是一个PRB中子载波的数目,
Figure PCTCN2020102992-appb-000084
是调度的符号数目,
Figure PCTCN2020102992-appb-000085
是调度符号上一个PRB中DMRS的资源开销,
Figure PCTCN2020102992-appb-000086
是协议预定义的参数、网络设备(预)配置的参数或终端设备配置的参数,alpha_1是与所述目标资源开销相关的参数,0<alpha_1≤1。
可选地,作为一个实施例,TBS计算模块202,可以用于根据调度的资源大小计算调度符号上一个PRB中可用RE的数目N' RE,再根据如下公式计算调度的资源中可用RE的数目N RE,并根据所述N RE计算TBS:
N RE=min(156,N' RE)·n PRB·alpha_2
n PRB是调度的PRB的数目,alpha_2是与所述目标资源开销相关的参数,0<alpha_2≤1。
可选地,作为一个实施例,TBS计算模块202,可以用于根据调度的资源大小计算可用RE的数目N RE,再根据如下公式计算信息中间数N info,并根据所述N info计算TBS:
N info=N RE·R·Q m·v·alpha_3
N RE是调度的资源中可用RE的数目,R为码率,Q m为调制阶数,υ为层数,alpha_3是与所述目标资源开销相关的参数,0<alpha_3≤1。
可选地,作为一个实施例所述目标资源开销包括PSCCH的资源开销,所述目标资源开销是根据PSCCH的配置计算得到的。
可选地,作为一个实施例,TBS计算模块202,还可以用于
根据盲检时PSCCH所占用的资源计算PSCCH的资源开销;或
根据第一PSCCH的第一资源开销,以及第二PSCCH的第二资源开销,计算PSCCH的资源开销;其中,所述第一PSCCH是预定义的、网络设备配置的或预配置的,所述第二PSCCH是所述第一PSCCH指示的。
可选地,作为一个实施例,TBS计算模块202,可以用于根据调度的资源大小以及与所述目标资源开销相关的参数计算TBS,所述参数是通过下述至少之一得到:
协议预定义的;
网络设备预配置的;
网络设备配置的;
根据传输类型配置的;
副链路控制信息SCI或下行控制信息DCI指示的;
终端设备间无线资源控制RRC配置协商的;
通过反馈信息得到的。
可选地,作为一个实施例,TBS计算模块202,还可以用于将初传副链路数据的TBS作为所述重传副链路数据的TBS。
根据本公开提供的终端设备200可以参照对应本公开提供的方法100的流程,并且,该终端设备200中的各个单元/模块和上述其他操作和/或功能分别为了实现方法100中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图3是根据本公开提供的终端设备另一个实施例的结构框图。图3所示的终端设备300包括:至少一个处理器301、存储器302、至少一个网络接口304和用户接口303。终端设备300中的各个组件通过总线系统305耦合在一起。可理解,总线系统305用于实现这些组件之间的连接通信。总线系统305除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图3中将各种总线都标为总线系统305。
其中,用户接口303可以包括显示器、键盘、点击设备(例如,鼠标,轨迹球(trackball))、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器302可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存 取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器302旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器302存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统3021和应用程序3022。
其中,操作系统3021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序3022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序3022中。
在本公开实施例中,终端设备300还包括:存储在存储器上302并可在处理器301上运行的计算机程序,计算机程序被处理器301执行时实现如下方法100的步骤。
上述本公开实施例揭示的方法可以应用于处理器301中,或者由处理器301实现。处理器301可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器301中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器301可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读 存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器302,处理器301读取存储器302中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器301执行时实现如上述方法100实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
终端设备300能够实现前述实施例中终端设备实现的各个过程,并且能够达到相同或等同的技术效果,为避免重复,这里不再赘述。
本公开还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例100的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质的示例包括非暂态计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (21)

  1. 一种副链路数据传输方法,所述方法由终端设备执行,所述方法包括:
    根据调度的资源大小以及目标资源开销计算传输块大小TBS;
    根据计算出的TBS进行副链路数据传输。
  2. 如权利要求1所述的方法,其中,所述目标资源开销包括下述至少之一:
    物理副链路控制信道PSCCH的资源开销;
    物理副链路反馈信道PSFCH的资源开销;
    副链路反馈控制信息SFCI的资源开销;
    解调参考信号DMRS的资源开销;
    相位追踪参考信号PTRS的资源开销;
    信道状态信息参考信号CSI-RS的资源开销;
    自动增益控制AGC的资源开销;
    保护间隔GP的资源开销。
  3. 如权利要求1或2所述的方法,其中,所述根据调度的资源大小以及目标资源开销计算TBS包括下述至少之一:
    将调度的符号数目减去第一参数以计算一个物理资源块PRB中可用资源粒子RE的数目,再根据得到的值计算TBS;
    将调度的资源中可用RE的数目减去第二参数,再根据得到的值计算TBS,该调度的资源中可用RE的数目根据所述调度的资源大小计算得到;
    将调度的资源中可用RE的数目乘以第三参数,再根据得到的值计算TBS,该调度的资源中可用RE的数目根据所述调度的资源大小计算得到;
    将调度的资源中可用PRB的数目乘以第四参数,再根据得到的值计算TBS;
    将信息中间数乘以第五参数,再根据得到的值计算TBS,所述信息中间数根据所述调度的资源大小计算得到;
    其中,所述第一参数、所述第二参数、所述第三参数、所述第四参数以及所述第五参数与所述目标资源开销相关,所述第三参数、所述第四参数以及所述第五参数均大于0且小于等于1。
  4. 如权利要求1所述的方法,其中,所述根据调度的资源大小以及目标资源开销计算TBS包括:
    根据如下公式计算调度符号上一个PRB中可用RE的数目N' RE,再根据所述N' RE计算TBS:
    Figure PCTCN2020102992-appb-100001
    其中,
    Figure PCTCN2020102992-appb-100002
    是一个PRB中子载波的数目,
    Figure PCTCN2020102992-appb-100003
    是调度的符号数目,N oh_sym是与所述目标资源开销相关的符号数目,
    Figure PCTCN2020102992-appb-100004
    是调度符号上一个PRB中DMRS的资源开销,
    Figure PCTCN2020102992-appb-100005
    是协议预定义的参数、网络设备(预)配置的参数或终端设备配置的参数。
  5. 如权利要求1所述的方法,其中,所述根据调度的资源大小以及目标资源开销计算TBS包括:
    根据如下公式计算调度符号上一个PRB中可用RE的数目N' RE,再根据所述N' RE计算TBS:
    Figure PCTCN2020102992-appb-100006
    其中,
    Figure PCTCN2020102992-appb-100007
    是一个PRB中子载波的数目,
    Figure PCTCN2020102992-appb-100008
    是调度的符号数目,
    Figure PCTCN2020102992-appb-100009
    是调度符号上一个PRB中DMRS的资源开销,
    Figure PCTCN2020102992-appb-100010
    是与所述目标资源开销相关的参数。
  6. 如权利要求1所述的方法,其中,所述根据调度的资源大小以及目标资源开销计算TBS包括:
    根据如下公式计算调度符号上一个PRB中可用RE的数目N' RE,再根据所述N' RE计算TBS:
    Figure PCTCN2020102992-appb-100011
    其中,
    Figure PCTCN2020102992-appb-100012
    是一个PRB中子载波的数目,
    Figure PCTCN2020102992-appb-100013
    是调度的符号数目,
    Figure PCTCN2020102992-appb-100014
    是调度符号上一个PRB中DMRS的资源开销,
    Figure PCTCN2020102992-appb-100015
    是协议预定义的参数、网络设备(预)配置的参数或终端设备配置的参数,N是与所述目标资源开销相关的参数。
  7. 如权利要求1所述的方法,其中,所述根据调度的资源大小以及目标资源开销计算TBS包括:
    根据调度的资源大小计算调度符号上一个PRB中可用RE的数目N' RE,再根据如下公式计算调度的资源中可用RE的数目N RE,并根据所述N RE计算TBS:
    N RE=min(156,N' RE)·n PRB-M
    n PRB是调度的资源中可用PRB的数目,M是与所述目标资源开销相关的参数。
  8. 如权利要求1所述的方法,其中,所述根据调度的资源大小以及目标资源开销计算TBS包括:
    根据如下公式计算调度符号上一个PRB中可用RE的数目N' RE,再根据所述N' RE计算TBS:
    Figure PCTCN2020102992-appb-100016
    其中,
    Figure PCTCN2020102992-appb-100017
    是一个PRB中子载波的数目,
    Figure PCTCN2020102992-appb-100018
    是调度的符号数目,
    Figure PCTCN2020102992-appb-100019
    是调度符号上一个PRB中DMRS的资源开销,
    Figure PCTCN2020102992-appb-100020
    是协议预定义的 参数、网络设备(预)配置的参数或终端设备配置的参数,alpha_1是与所述目标资源开销相关的参数,0<alpha_1≤1。
  9. 如权利要求1所述的方法,其中,所述根据调度的资源大小以及目标资源开销计算TBS包括:
    根据调度的资源大小计算调度符号上一个PRB中可用RE的数目N' RE,再根据如下公式计算调度的资源中可用RE的数目N RE,并根据所述N RE计算TBS:
    N RE=min(156,N' RE)·n PRB·alpha_2
    n PRB是调度的PRB的数目,alpha_2是与所述目标资源开销相关的参数,0<alpha_2≤1。
  10. 如权利要求1所述的方法,其中,所述根据调度的资源大小以及目标资源开销计算TBS包括:
    根据调度的资源大小计算可用RE的数目N RE,再根据如下公式计算信息中间数N info,并根据所述N info计算TBS:
    N info=N RE·R·Q m·v·alpha_3
    N RE是调度的资源中可用RE的数目,R为码率,Q m为调制阶数,υ为层数,alpha_3是与所述目标资源开销相关的参数,0<alpha_3≤1。
  11. 如权利要求2所述的方法,其中,所述目标资源开销包括PSCCH的资源开销,所述目标资源开销是根据PSCCH的配置计算得到的。
  12. 如权利要求11所述的方法,其中,所述根据调度的资源大小以及目标资源开销计算TBS之前,所述方法还包括:
    根据盲检时PSCCH所占用的资源计算PSCCH的资源开销;或
    根据第一PSCCH的第一资源开销,以及第二PSCCH的第二资源开销,计算PSCCH的资源开销;其中,所述第一PSCCH是预定义的、网络设备配置的或预配置的,所述第二PSCCH是所述第一PSCCH指示的。
  13. 如权利要求1所述的方法,其中,所述根据调度的资源大小以及目标资源开销计算TBS包括:根据调度的资源大小以及与所述目标资源开销相关的参数计算TBS,所述参数是通过下述至少之一得到:
    协议预定义的;
    网络设备预配置的;
    网络设备配置的;
    根据传输类型配置的;
    副链路控制信息SCI或下行控制信息DCI指示的;
    终端设备间无线资源控制RRC配置协商的;
    通过反馈信息得到的。
  14. 如权利要求1所述的方法,其中,在所述副链路数据是重传副链路数据的情况下,所述方法还包括:
    将初传副链路数据的TBS作为所述重传副链路数据的TBS。
  15. 一种终端设备,包括:
    TBS计算模块,用于根据调度的资源大小以及目标资源开销计算TBS;
    传输模块,用于根据计算出的TBS进行副链路数据传输。
  16. 如权利要求15所述的终端设备,其中,所述目标资源开销包括下述至少之一:
    PSCCH的资源开销;
    PSFCH的资源开销;
    SFCI的资源开销;
    DMRS的资源开销;
    PTRS的资源开销;
    CSI-RS的资源开销;
    AGC的资源开销;
    GP的资源开销。
  17. 如权利要求15或16所述的终端设备,其中,所述TBS计算模块,配置用于执行下述至少之一:
    将调度的符号数目减去第一参数以计算一个PRB中可用RE的数目,再根据得到的值计算TBS;
    将调度的资源中可用RE的数目减去第二参数,再根据得到的值计算TBS,该调度的资源中可用RE的数目根据所述调度的资源大小计算得到;
    将调度的资源中可用RE的数目乘以第三参数,再根据得到的值计算TBS,该调度的资源中可用RE的数目根据所述调度的资源大小计算得到;
    将调度的资源中可用物理资源块PRB的数目乘以第四参数,再根据得到的值计算TBS;
    将信息中间数乘以第五参数,再根据得到的值计算TBS,所述信息中间数根据所述调度的资源大小计算得到;
    其中,所述第一参数、所述第二参数、所述第三参数、所述第四参数以及所述第五参数与所述目标资源开销相关,所述第三参数、所述第四参数以及所述第五参数均大于0且小于等于1。
  18. 如权利要求15所述的终端设备,其中,所述TBS计算模块,配置用于根据调度的资源大小以及与所述目标资源开销相关的参数计算TBS,所述参数是通过下述至少之一得到:
    协议预定义的;
    网络设备预配置的;
    网络设备配置的;
    根据传输类型配置的;
    SCI或DCI指示的;
    终端设备间RRC配置协商的;
    通过反馈信息得到的。
  19. 如权利要求15所述的终端设备,其中,所述TBS计算模块,还用于在所述副链路数据是重传副链路数据的情况下,将初传副链路数据的TBS作为所述重传副链路数据的TBS。
  20. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至14中任一项所述的副链路数据传输方法的步骤。
  21. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至14中任一项所述的副链路数据传输方法的步骤。
PCT/CN2020/102992 2019-07-29 2020-07-20 sidelink数据传输方法和设备 WO2021017920A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227006521A KR102685160B1 (ko) 2019-07-29 2020-07-20 사이드링크 데이터 전송 방법 및 장치
EP20846434.7A EP4007190A4 (en) 2019-07-29 2020-07-20 SIDE LINK DATA TRANSMISSION METHOD AND DEVICE
US17/583,334 US20220225353A1 (en) 2019-07-29 2022-01-25 Sidelink data transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910691372.6A CN111800220A (zh) 2019-07-29 2019-07-29 sidelink数据传输方法和设备
CN201910691372.6 2019-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/583,334 Continuation US20220225353A1 (en) 2019-07-29 2022-01-25 Sidelink data transmission method and device

Publications (1)

Publication Number Publication Date
WO2021017920A1 true WO2021017920A1 (zh) 2021-02-04

Family

ID=72805088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102992 WO2021017920A1 (zh) 2019-07-29 2020-07-20 sidelink数据传输方法和设备

Country Status (4)

Country Link
US (1) US20220225353A1 (zh)
EP (1) EP4007190A4 (zh)
CN (1) CN111800220A (zh)
WO (1) WO2021017920A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162917A1 (en) * 2020-02-12 2021-08-19 Qualcomm Incorporated Transport block size determination for sidelink communications

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210067290A1 (en) * 2019-08-26 2021-03-04 Mediatek Singapore Pte. Ltd. Sidelink communications with two-stage sidelink control information
US20220361111A1 (en) * 2019-08-26 2022-11-10 Lg Electronics Inc. Method and device for determining sidelink transmission power in nr v2x
CN113141238B (zh) * 2020-01-20 2023-11-24 维沃移动通信有限公司 数据传输方法和设备
US12010053B2 (en) * 2020-02-13 2024-06-11 Intel Corporation Transport block size (TBS) determination for sidelink communication
US11831442B2 (en) * 2020-05-15 2023-11-28 Qualcomm Incorporated Demodulation reference signal (DMRS) overhead in sidelink wireless communications
CN115643637A (zh) * 2021-07-19 2023-01-24 维沃移动通信有限公司 定位方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632782A (zh) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 一种v2x通信中的发送与接收方法和设备
US20190141647A1 (en) * 2017-11-07 2019-05-09 Ajit Nimbalker Methods of limited buffer rate-matching (lbrm), pre-emption, and sidelink syncrhonization in new radio (nr) systems
CN111263454A (zh) * 2020-01-19 2020-06-09 展讯通信(上海)有限公司 传输块大小确定方法和终端设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106465090B (zh) * 2014-05-09 2019-11-19 华为技术有限公司 用于设备到设备的发现消息大小的可扩展解决方案
EP3602944B1 (en) * 2017-03-24 2021-12-08 Apple Inc. Carrier aggregation and high order modulation in vehicle-to-vehicle (v2v) sidelink communication
US11140696B2 (en) * 2017-03-31 2021-10-05 Lg Electronics Inc. Method for transmitting a signal of a user equipment for V2X communication in a wireless communication system and apparatus using the same
CN109327906B (zh) * 2017-08-01 2023-04-07 中兴通讯股份有限公司 一种资源配置、控制信息发送方法及装置、设备
WO2019193730A1 (ja) * 2018-04-05 2019-10-10 株式会社Nttドコモ ユーザ端末及び無線基地局
EP3796733B1 (en) * 2018-07-17 2023-03-22 LG Electronics Inc. Method and device for determining tbs in nr v2x

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632782A (zh) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 一种v2x通信中的发送与接收方法和设备
US20190141647A1 (en) * 2017-11-07 2019-05-09 Ajit Nimbalker Methods of limited buffer rate-matching (lbrm), pre-emption, and sidelink syncrhonization in new radio (nr) systems
CN111263454A (zh) * 2020-01-19 2020-06-09 展讯通信(上海)有限公司 传输块大小确定方法和终端设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLE: "On Remaining Details of NR V2X Physical Layer Structure", 3GPP DRAFT; R1-2002323, vol. RAN WG1, 11 April 2020 (2020-04-11), pages 1 - 10, XP051875543 *
NEC: "Remaining issues on physical layer structure", 3GPP DRAFT; R1-2002361, vol. RAN WG1, 11 April 2020 (2020-04-11), pages 1 - 5, XP051875572 *
NTT DOCOMO; INC: "Remaining issues on sidelink physical layer structure", 3GPP DRAFT; R1-2000914, vol. RAN WG1, 14 February 2020 (2020-02-14), pages 1 - 16, XP051853093 *
See also references of EP4007190A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162917A1 (en) * 2020-02-12 2021-08-19 Qualcomm Incorporated Transport block size determination for sidelink communications
US11616626B2 (en) 2020-02-12 2023-03-28 Qualcomm Incorporated Transport block size determination for sidelink communications

Also Published As

Publication number Publication date
EP4007190A4 (en) 2022-09-14
CN111800220A (zh) 2020-10-20
KR20220037502A (ko) 2022-03-24
US20220225353A1 (en) 2022-07-14
EP4007190A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
WO2021017920A1 (zh) sidelink数据传输方法和设备
WO2021062972A1 (zh) 数据传输的方法和设备
US10631276B2 (en) Data transmission method, base station, and terminal device
AU2021204172B2 (en) Allocation of communication resources for control signals in the uplink
TWI732000B (zh) 傳輸數據的方法和裝置
US9986543B2 (en) Allocation of communication resources
WO2021027563A1 (zh) Sidelink harq-ack的发送方法、psfch资源确定的方法及设备
WO2019192471A1 (zh) Csi报告的传输方法、终端设备和网络设备
US20220149987A1 (en) Method for sidelink rate matching and resource mapping, and device
WO2021204206A1 (zh) 资源确定方法和设备
WO2021073446A1 (zh) 时域资源的确定方法和设备
CN107005953A (zh) 一种数据传输方法、设备及系统
EP2635081B1 (en) Allocation of communication resources
KR102685160B1 (ko) 사이드링크 데이터 전송 방법 및 장치
WO2022111470A1 (zh) 资源处理方法、装置、系统及存储介质
WO2022151269A1 (zh) 上行控制信息的发送方法、接收方法、装置、设备及介质
WO2021056579A1 (zh) 一种dmrs样式指示信息的传输方法和通信装置
WO2017166232A1 (zh) 一种下行控制信息的传输方法、装置和系统
CN112566068A (zh) 一种dmrs样式指示信息的传输方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227006521

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020846434

Country of ref document: EP

Effective date: 20220228