WO2021017745A1 - 一种物料均匀性检测设备及检测方法 - Google Patents

一种物料均匀性检测设备及检测方法 Download PDF

Info

Publication number
WO2021017745A1
WO2021017745A1 PCT/CN2020/099887 CN2020099887W WO2021017745A1 WO 2021017745 A1 WO2021017745 A1 WO 2021017745A1 CN 2020099887 W CN2020099887 W CN 2020099887W WO 2021017745 A1 WO2021017745 A1 WO 2021017745A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
uniformity
detection
data
light
Prior art date
Application number
PCT/CN2020/099887
Other languages
English (en)
French (fr)
Inventor
刘志丹
杨睿
曾宇斐
冯刚锋
Original Assignee
中国农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业大学 filed Critical 中国农业大学
Priority to US17/630,331 priority Critical patent/US11719623B2/en
Publication of WO2021017745A1 publication Critical patent/WO2021017745A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/206Drawing of charts or graphs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N2021/4764Special kinds of physical applications
    • G01N2021/4769Fluid samples, e.g. slurries, granulates; Compressible powdery of fibrous samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8405Application to two-phase or mixed materials, e.g. gas dissolved in liquids

Definitions

  • the invention belongs to the technical field of new energy detection, and specifically relates to a material uniformity detection equipment and method.
  • biomass slurry conversion is sent to the reactor, its uniformity has a significant effect on improving its utilization.
  • the uniformity of biomass slurry refers to the degree of change of the solid content concentration of the biomass slurry with space during the process of standing or moving. If the uniformity of the biomass slurry is insufficient, it will affect the state of the slurry and cause significant differences in its physical, chemical and fermentation properties.
  • the uniformity of biomass slurry is an important indicator for evaluating production efficiency, but it has not been paid attention to. With the deepening of its utilization and the expansion of application fields, whether it is used as biomass energy use or food production, environmental protection, etc. , Uniformity detection brings certain reference value to production practice.
  • Existing instruments for sludge and water turbidity analysis usually consist of a light source part, a light signal receiving part and a detection part.
  • the Chinese utility model patent with the announcement number CN 206960297 U published a device for detecting the uniformity of droplet deposition, but the device did not quantify the detection results.
  • the Chinese invention patent with the announcement number CN 108548781 A announced a method and device for detecting the uniformity of the grinding wheel mixture.
  • the surface of the mixture in the mixer is illuminated by a monochromatic light source, and the color image of the surface of the mixture is collected by a CD camera.
  • the standard deviation or center deviation method is used to determine the uniformity of the mixed material through pixel extraction and comparison, but the technical content of the device is high, and it is difficult to apply to the universal measurement of material uniformity.
  • the Chinese invention patent with the publication number CN 103119434 A discloses a method for detecting inhomogeneity using sound waves.
  • the detection device has many interference factors in the detection process, and the measurement error is large, and the detection result is not quantified.
  • the Chinese invention patent with the announcement number CN 106383098 A published a method and equipment for detecting the stability of liquid samples.
  • a software analysis module was added to the basic detection module to analyze the stability characteristics of the liquid sample in the form of a radar chart and establish a liquid Quantitative analysis method of sample state change over time.
  • the existing equipment and the present invention lack the distribution measurement for the sample space state, and it is difficult to meet the diversified needs of biomass slurry state analysis.
  • the invention aims to solve the problem of measuring the spatial state distribution of samples, so as to meet the detection needs of diversified materials such as biomass slurry.
  • the purpose of the present invention is to solve the current problem that the uniformity of biomass slurry is difficult to quantify, and to provide a material uniformity detection equipment that can meet the detection requirements of diversified materials such as biomass slurry.
  • Another object of the present invention is to provide a method for detecting material uniformity.
  • a material uniformity detection equipment which includes a detection unit and an operation control and signal processing unit;
  • the detection unit includes a sample detection box in the shape of a box; the sample detection box includes an inner shell 7 of the sample detection box;
  • the inner shell 7 of the sample detection box is divided into a bright room 1 and a dark room 2 by a partition 22.
  • a sample chamber 3 is provided between the bright room 1 and the dark room 2, and the sample chamber 3 is connected to the inner shell 7 of the sample detection box through the partition 22.
  • the bright room 1 is provided with a near-infrared light source 4 and a light source fixing bracket 5; wherein the near-infrared light source 4 is fixed on the inner shell 7 of the sample detection box of the bright room 1 through the light source fixing bracket 5;
  • a light sensor 6 is provided on the inner shell 7 of the sample detection box of the darkroom 2;
  • At least two light-transmitting ports are symmetrically provided on the two wall surfaces of the sample chamber 3 parallel to the partition 22, the side close to the bright room 1 is the first light-transmitting port 9, and the side close to the dark room 2 is the second light-transmitting port 10.
  • the connection line between the first light-transmitting port 9 and the second light-transmitting port 10 is perpendicular to the partition 22;
  • the near-infrared light source 4 and the light sensor 6 are located on both sides of the sample chamber 3.
  • the near-infrared light source 4, the first light transmission port 9, the second light transmission port 10, and the light sensor 6 are located on the same straight line, forming a detection light path, so that The light signal emitted by the near-infrared light source 4 can be received by the light sensor 6 through the first light transmission port 9 and the second light transmission port 10 of the sample chamber 3;
  • the rotating lifting device 12 is fixed on the bottom of the sample detection box, and the sample chamber 3 is fixed on the rotating lifting device 12;
  • the rotary lifting device 12 includes a rotary lifting device housing, a guide rail 15, a sliding block 16, a low-speed motor 17, an upper coupling 181, a lower coupling 182, a screw rod 19 and a fixing nut 20, among which,
  • At least one guide rail 15 is provided on the wall surface of the housing of the rotary lifting device along the vertical direction, the guide rail 15 is provided with a slider 16 and the slider 16 is provided with a low-speed motor 17;
  • the top of the screw rod 19 is located inside the sample chamber 3, and is connected to the sample cell support bracket 21 through an upper coupling 181; the sample cell support bracket 21 is fixedly connected to the sample cell 11 above; the screw rod 19 passes downward and rotates On the upper end of the housing of the lifting device, a fixing nut 20 is sheathed on the screw rod 19, and the fixing nut 20 is fixed on the upper end of the housing of the rotary lifting device.
  • the bottom end of the screw rod 19 and the power output shaft of the low-speed motor 17 pass through the lower part.
  • the coupling 182 is connected; when the screw rod 19 is at its uppermost position, the bottom of the sample cell 11 is at least not lower than the detection formed by the near infrared light source 4, the first light transmission port 9, the second light transmission port 10 and the light sensor 6 Optical path, so that under the drive of the low-speed motor 17, the sample cell 11 can rotate downward through the detection optical path formed by the near-infrared light source 4, the first light transmission port 9, the second light transmission port 10 and the light sensor 6;
  • the operation control and signal processing unit includes a data acquisition and transmission module 13 and a data processing module 14;
  • the data collection and transmission module 13 is electrically connected with the light sensor 6 and the data processing module 14 respectively.
  • the sample cell support bracket 21 can be adjusted according to the size of the sample cell 11.
  • a material uniformity detection method using the material uniformity detection equipment includes the following steps:
  • the screw 19 of the rotary lifting device 12 is at its uppermost position, and the bottom of the sample cell 11 is not lower than the detection light path; the material sample is put into the sample cell 11, and the data acquisition and transmission module 13 automatically detects the Whether the sample pool 11 has been placed, and detecting whether the liquid level of the material sample reaches a height that meets the detection requirements;
  • the near-infrared light source 4 is turned on, the rotary lifting device 12 is started, and the screw 19 starts to descend; the sample cell 11 is driven by the screw 19 of the rotary lifting device 12 to rotate downwards , The data collection starts from the bottom of the sample pool 11, the sample pool 11 is collected with a certain track, and the data collection ends at the height of the sample;
  • the screw 19 of the rotary lifting device 12 rotates at a certain speed and decreases at a certain speed at the same time. Every certain time interval, the data collection and transmission module 13 collects and transmits the transmitted light intensity value collected by the optical sensor 6, and passes the data The processing module 14 performs data processing and displays it on the control screen of the instrument control interface in a predetermined form, and draws an image for the n data of each layer to indicate the uniformity of the sample in the horizontal direction of a layer;
  • the database is established on the basis of actual experience and data, by calling the uniformity parameters of material standard samples commonly used in actual engineering, comparing the data deviations of the two, namely the measured value and the standard value, and performing the deviation according to the preset expected size Analyze and give grade results to material samples.
  • step 1 the material sample is at least 15ml.
  • step 3 the image is drawn by the data processing module 14.
  • the data processing module 14 collects a transmitted light intensity value every 1 second for recording and drawing. Each time the screw 19 of the rotary lifting device 12 rotates one circle, the end The measurement of the layer material sample is completed with the detection of n data, and the material sample is divided into at least 10 layers according to the above steps.
  • the predetermined format is an image or data format.
  • step 3 the time interval is 1s.
  • step 6 the grade result is three grades of "meeting the requirements", “basically meeting the requirements” and “not meeting the requirements”.
  • step 6 the user can increase the content of the database by detecting the material sample.
  • step 6 the data processing module 14 displays the uniformity detection result in the form of an image, represents the uniformity data of each layer with an average value for each image, and calculates the data variance to assist in judging the uniformity of the sample in the vertical direction. Deviation comparison, gives the grade result.
  • the material uniformity detection equipment adopts a rotating lifting device to perform parallel and repeated measurements on each layer of samples, which fully considers the unevenness of the horizontal distribution of the samples; the light intensity analysis and detection method increases the scope of application of the present invention.
  • Effective uniformity detection can be performed for liquids, emulsions and turbid liquids.
  • the instrument control interface performs data collection, and draws the uniformity effect curve in real time according to the data measured by the rotary lifting device every 1s. While quantifying the uniformity index, it gives the uniformity status of a single sample in the horizontal space and the vertical space. It provides an important reference basis for sample analysis.
  • Figure 1 is a schematic structural diagram of the material uniformity detection equipment (excluding the equipment housing) of the present invention
  • Figure 2 is a schematic top view of the material uniformity detection equipment (excluding the equipment housing) of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the sample chamber 3 of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the rotary lifting device 12 of the present invention.
  • the shell of the sample detection box 8.
  • the shell of the sample detection box 9.
  • a material uniformity detection equipment includes a detection unit and an operation control and signal processing unit.
  • the detection unit includes a sample detection box in the shape of a box.
  • the sample detection box includes an inner and outer two-layer shell composed of an outer shell 8 of the sample detection box and an inner shell 7 of the sample detection box.
  • the inner shell 7 of the sample detection box is divided into a bright room 1 and a dark room 2 by a partition 22.
  • a sample room 3 is provided between the bright room 1 and the dark room 2.
  • the inner shell 7 of the sample detection box is connected.
  • the bright room 1 is provided with a near-infrared light source 4 and a light source fixing bracket 5; wherein the near-infrared light source 4 is fixed on the inner shell 7 of the sample detection box of the bright room 1 through the light source fixing bracket 5.
  • a light sensor 6 is provided on the inner shell 7 of the sample detection box of the darkroom 2.
  • At least two light-transmitting ports are symmetrically provided on the two wall surfaces of the sample chamber 3 parallel to the partition 22, the side close to the bright room 1 is the first light-transmitting port 9, and the side close to the dark room 2 is the second light-transmitting port 10.
  • the connection line between the first light-transmitting port 9 and the second light-transmitting port 10 is perpendicular to the partition 22.
  • the near-infrared light source 4 and the light sensor 6 are located on both sides of the sample chamber 3.
  • the near-infrared light source 4, the first light transmission port 9, the second light transmission port 10, and the light sensor 6 are located on the same straight line, forming a detection light path, so that The light signal emitted by the near-infrared light source 4 can be received by the light sensor 6 through the first light transmission port 9 and the second light transmission port 10 of the sample chamber 3.
  • the rotating lifting device 12 is fixed on the bottom of the sample detection box, and the sample chamber 3 is fixed on the rotating lifting device 12.
  • the rotary lifting device 12 includes a rotary lifting device housing, a guide rail 15, a sliding block 16, a low-speed motor 17, an upper coupling 181, a lower coupling 182, a screw rod 19 and a fixing nut 20, among which,
  • At least one guide rail 15 is provided on the wall surface of the housing of the rotary lifting device along the vertical direction.
  • the guide rail 15 is provided with a sliding block 16 and a low-speed motor 17 is provided on the sliding block 16.
  • the top of the screw rod 19 is located inside the sample chamber 3 and is connected to the sample cell support bracket 21 through an upper coupling 181.
  • the sample cell support bracket 21 is fixedly connected to the sample cell 11 above it.
  • the sample cell support bracket 21 can be adjusted according to the size of the sample cell 11.
  • the screw rod 19 passes downward through the upper end of the housing of the rotary lifting device.
  • a fixing nut 20 is sheathed on the screw rod 19.
  • the fixing nut 20 is fixed on the upper end of the housing of the rotary lifting device.
  • the power output shaft of the electric motor 17 is connected by a lower coupling 182.
  • the bottom of the sample cell 11 is at least not lower than the detection light path formed by the near-infrared light source 4, the first light transmission port 9, the second light transmission port 10 and the light sensor 6, so that the low-speed motor Driven by 17, the sample cell 11 can rotate downward to pass through the detection light path formed by the near-infrared light source 4, the first light transmission port 9, the second light transmission port 10 and the light sensor 6.
  • the operation control and signal processing unit includes a data acquisition and transmission module 13 and a data processing module 14.
  • the data acquisition and transmission module 13 is electrically connected to the light sensor 6 and the data processing module 14 respectively, and transmits the data received and collected by the light sensor 6 to the data processing module 14 through the data acquisition and transmission module 13.
  • the data acquisition and transmission module 13 is completed by the integrated circuit board vitamine.
  • the data acquisition and transmission module 13 is provided with optical signal detection, sampling, transmission equipment and a computer signal processing system; the data processing module 14 is provided with a display interface and an analysis interface of the signal processing results to complete the operation control of the detection instrument.
  • the instrument control interface is set in the data processing module 14 and includes at least data display, data processing, and data analysis functions.
  • the instrument control interface is completed by the LabVIEW program development environment developed by National Instruments.
  • the present invention provides a method for detecting material uniformity, including the following steps:
  • the screw rod 19 of the rotary lifting device 12 is located at its uppermost position, and the bottom of the sample cell 11 is not lower than the detection light path.
  • the material sample is put into the sample pool 11, and the data collection and transmission module 13 automatically detects whether the sample pool 11 has been placed, and detects whether the liquid level of the material sample reaches a height that meets the detection requirements.
  • the material sample is at least 15ml.
  • the near-infrared light source 4 is turned on, the rotary lifting device 12 is started, and the screw rod 19 starts to descend.
  • the sample cell 11 is driven by the screw 19 of the rotating lifting device 12 to rotate and move downward.
  • the data collection starts from the bottom of the sample cell 11, and the sample cell 11 is collected with a certain track and ends at the height of the sample. .
  • the screw 19 of the rotary lifting device 12 rotates at a certain speed and decreases at a certain speed at the same time. Every certain time interval, the data collection and transmission module 13 collects and transmits the transmitted light intensity value collected by the optical sensor 6, and passes the data The processing module 14 performs data processing and displays it on the control screen of the instrument control interface in a predetermined form, and draws an image for the n data of each layer to indicate the uniformity of the sample in the horizontal direction of a layer.
  • the time interval is 1s.
  • the image is drawn by the data processing module 14.
  • the data processing module 14 collects a transmitted light intensity value every 1 second for recording and drawing. Each time the screw 19 of the rotary lifting device 12 rotates, one layer is ended. The measurement of the material sample completes the detection of n data, and the material sample is divided into at least 10 layers according to the above steps.
  • the predetermined form is an image or data form.
  • the database is established on the basis of actual experience and data, by calling the uniformity parameters of material standard samples commonly used in actual engineering, comparing the data deviations of the two, namely the measured value and the standard value, and performing the deviation according to the preset expected size Analyze and give grade results to material samples.
  • the grade result is three grades of "meet the requirements", “basically meet the requirements” and “do not meet the requirements”.
  • the user can increase the content of the database by detecting the material sample, which is convenient for comparison and calling.
  • the data processing module 14 displays the uniformity detection result in the form of an image, represents the uniformity data of each layer with an average value for each image, and calculates the data variance to assist in judging the uniformity of the sample in the vertical direction, and deviation from the database standard sample Compare, give the grade result.
  • the light intensity value is the light intensity value of the transmitted light received by the light sensor after the light source passes through the material sample.

Abstract

一种物料均匀性检测设备及方法,涉及新能源检测技术领域。针对目前生物质浆料均匀性状态难以量化的问题,提供一种能够满足生物质浆料等多元化物料的检测需要的物料均匀性检测设备。样品池(11)在旋转升降装置(12)的带动下进行升降螺旋运动,对样品池(11)以一定轨迹形式进行数据采集,通过将多次测量的大量透射光光强值与高度之间的关系建立图像,分别显示水平分层的均匀性和竖直方向的均匀性,以此来判断物料样品整体的均匀性。

Description

一种物料均匀性检测设备及检测方法 技术领域
本发明属于新能源检测技术领域,具体涉及一种物料均匀性检测设备及方法。
背景技术
生物质储量巨大,是一种节能环保、废物利用的高效资源。在大规模生产中,生物质浆料转化被送入反应器时,其均匀性对提高其利用率有显著作用。狭义的讲,生物质浆料均匀性是指生物质浆料在静置或运动过程中物料含固量浓度随空间的变化程度。如果生物质浆料均匀性不足,会影响浆料状态,就会使得其物理、化学及发酵性能存在显著差异。生物质浆料的均匀性是评价生产效率的重要指标,但一直以来没有受到重视,随着其利用程度的加深以及应用领域的拓展,不管是作为生物质能源利用还是食品生产、环境保护等方面,均匀性检测都为生产实践带来一定的参考价值。
国内目前还没有针对物料的均匀性提出明确定义与作用的研究。现有的对污泥、水体浊度分析的仪器通常由光源部分、光信号接收部分与检测部分组成。
公告号为CN 206960297 U的中国实用新型专利公布了一种雾滴沉积均匀性检测装置,但该装置对检测结果没有量化。
公告号为CN 108548781 A的中国发明专利公布了一种砂轮混料均匀性图像检测方法及装置,利用单色光源照射混料机内的混合料表面, 并利用CD相机采集混合料表面彩色图像,通过像素点提取对比进行标准差或中心偏离法对混合物料的均匀性进行判断,但该装置的技术含量要求高,难以适用于对物料均匀性的普适测量。
公告号为CN 103119434 A的中国发明专利公布了一种利用声波检测不均匀性的方法,该检测装置在检测过程中的干扰因素较多,测量误差较大,并且也没有对检测结果量化处理。
公告号为CN 106383098 A的中国发明专利公布了一种液体样品稳定性检测方法和设备,在基本检测模块的基础上增加了软件分析模块,以雷达图的形式分析液体样品稳定特性,建立了液体样品随时间的定量状态变化分析方法。但现有设备与该发明缺少针对样品空间状态的分布测量,难以满足多元化的生物质浆料状态分析需要。
本发明旨在解决样品空间状态分布测量的问题,以满足生物质浆料等多元化物料的检测需要。
发明内容
本发明的目的是针对目前生物质浆料均匀性状态难以量化的问题,提供一种能够满足生物质浆料等多元化物料的检测需要的物料均匀性检测设备。
本发明的另一目的在于提出一种物料均匀性检测方法。
本发明的目的是通过以下技术方案实现的:
一种物料均匀性检测设备,所述设备包括检测单元和操作控制与信号处理单元;
检测单元包括呈箱体形状的样品检测箱体;样品检测箱体包括样品检测箱体内壳7;
样品检测箱体内壳7被隔板22分隔为明室1和暗室2,在明室1与暗室2之间设有样品室3,样品室3通过所述隔板22与样品检测箱 体内壳7相连;
明室1中设有近红外光源4和光源固定支架5;其中,所述近红外光源4通过光源固定支架5固定在明室1的样品检测箱体内壳7上;
暗室2的样品检测箱体内壳7上设有光传感器6;
样品室3与隔板22平行的两个壁面上对称设有至少两个透光口,靠近明室1一侧的为第一透光口9,靠近暗室2一侧的为第二透光口10,第一透光口9和第二透光口10的连线垂直于隔板22;
近红外光源4与光传感器6位于所述样品室3的两侧,近红外光源4、第一透光口9、第二透光口10和光传感器6位于同一条直线上,形成检测光路,使得近红外光源4发出的光信号能够通过样品室3的第一透光口9和第二透光口10被光传感器6接收;
旋转升降装置12固定在样品检测箱体底部,样品室3固定在旋转升降装置12之上;
旋转升降装置12包括旋转升降装置壳体、导轨15、滑块16、低速电机17、上部联轴器181、下部联轴器182、丝杆19和固定螺母20,其中,
旋转升降装置壳体的壁面沿竖直方向设有至少一条导轨15,所述导轨15上设有滑块16,所述滑块16上设有低速电机17;
所述丝杆19的顶端位于样品室3的内部,通过上部联轴器181与样品池支撑支架21连接;样品池支撑支架21与其上方的样品池11固定连接;丝杆19向下穿过旋转升降装置壳体的上端,所述丝杆19上套有一固定螺母20,所述固定螺母20固定在旋转升降装置壳体的上端,丝杆19的底端与低速电机17的动力输出轴通过下部联轴器182连接;当丝杆19位于其最上方位置时,样品池11的底部至少不低于近红外光源4、第一透光口9、第二透光口10和光传感器6形成的检测光路,从而在低速电机17的驱动下,样品池11能够向下旋转通过近红外光 源4、第一透光口9、第二透光口10和光传感器6形成的检测光路;
操作控制与信号处理单元包括数据采集传输模块13和数据处理模块14;
数据采集传输模块13分别与光传感器6和数据处理模块14电连接。
所述样品池支撑支架21能够根据样品池11的大小进行调节。
一种利用所述的物料均匀性检测设备的物料均匀性检测方法,所述方法包括如下步骤:
1、在初始状态,旋转升降装置12的丝杆19位于其最上方位置,样品池11的底部不低于检测光路;将物料样品放入样品池11中,数据采集传输模块13自动检测所述样品池11是否已经放置好,并检测所述物料样品的液面高度是否到达满足检测要求高度;
2、物料样品放入样品池11后,根据所述样品物料类别,在数据处理模块14选定数据库,并新建数据文件,启动物料均匀性检测;
3、在物料均匀性检测启动的同时,近红外光源4开启,旋转升降装置12启动,丝杆19开始下降;样品池11在旋转升降装置12的丝杆19的带动下,进行旋转向下运动,数据采集从样品池11的底部开始,对样品池11以一定轨迹进行数据采集,至样品高度处结束数据采集;
旋转升降装置12的丝杆19以一定转速旋转且同时以一定速度下降,每隔一定时间间隔,数据采集传输模块13对光传感器6所采集的透射光光强值进行数据采集传输,并通过数据处理模块14进行数据处理并以预定的形式显示在仪器控制界面的控制屏上,对每层的n个数据绘制一个图像,以表示一层样品水平方向的均匀程度;
4、当设备检测到旋转升降装置12的丝杆19下降到预设高度时,数据采集结束,近红外光源4关闭,旋转升降装置12的丝杆19开始 上升,将样品池11送出检测区;
5、重复步骤1~4;
6、通过将多次测量的大量透射光光强值与高度之间的关系建立图像显示,以每层的n个数据绘制一组显示图,对每个图像以平均值代表每层均匀度数据,并计算数据方差来辅助判断样品竖直方向的均匀性,以此来判断物料样品整体的均匀性;
所述数据库建立在实际经验与数据基础上,通过调用实际工程中常用的物料标准样品均匀性参数,通过所述两者即测量值和标准值的数据偏差进行对比,根据预设期望大小进行偏差分析,对物料样品给出等级结果。
步骤1中,物料样品至少为15ml。
步骤3中,所述图像由数据处理模块14绘制,数据处理模块14每1秒采集一个透射光光强值进行记录并绘图,所述旋转升降装置12的丝杆19每转动一圈,结束一层物料样品的测量,完成n个数据的检测,所述物料样品按以上步骤被分为至少10层。
步骤3中,所述预定的形式为图像或数据的形式。
步骤3中,所述时间间隔为1s。
步骤6中,所述等级结果为“满足要求”“基本满足要求”与“不满足要求”三个等级。
步骤6中,使用者能够通过对所述物料样品的检测增加数据库的内容。
步骤6中,数据处理模块14以图像形式显示均匀性检测结果,对每个图像以平均值代表每层均匀度数据,并计算数据方差来辅助判断样品竖直方向均匀性,与数据库标准样品进行偏差对比,给出等级结果。
本发明的有益效果在于:
物料均匀性检测设备采用旋转升降装置,对每一层样品进行平行重复测量,充分地考虑了样品的水平分布的不均匀性;采用光强分析检测的方式,增大了本发明的适用范围,对于液体、乳液以及浊液均可进行有效的均匀性检测。仪器控制界面进行数据采集,根据旋转升降装置每1s所测得的数据实时绘制均匀性效果曲线,在量化均匀性指标的同时,给出了单个样品水平空间与竖直空间上的均匀性状态,给样品分析提供了重要参考依据。
附图说明
图1为本发明的物料均匀性检测设备(不含设备外壳)的结构示意图;
图2为本发明的物料均匀性检测设备(不含设备外壳)的俯视示意图;
图3为本发明的样品室3的结构示意图;
图4为本发明的旋转升降装置12的结构示意图。
附图标记:
1、明室                 2、暗室             3、样品室
4、近红外光源           5、光源固定支架     6、光传感器
7、样品检测箱体内壳     8、样品检测箱体外壳 9、第一透光口
10、第二透光口          11、样品池          12、旋转升降装置
13、数据采集传输模块    14、数据处理模块    15、导轨
16、滑块                17、低速电机        181、上部联轴器
19、丝杆                20、固定螺母        21、样品池支撑支架
22、隔板                182、下部联轴器
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
如图1~图4所示,一种物料均匀性检测设备,包括检测单元和操作控制与信号处理单元。
检测单元包括呈箱体形状的样品检测箱体。样品检测箱体包括由样品检测箱体外壳8和样品检测箱体内壳7组成的内外两层壳体。
如图2所示,样品检测箱体内壳7被隔板22分隔为明室1和暗室2,在明室1与暗室2之间设有样品室3,样品室3通过所述隔板22与样品检测箱体内壳7相连。
明室1中设有近红外光源4和光源固定支架5;其中,所述近红外光源4通过光源固定支架5固定在明室1的样品检测箱体内壳7上。
暗室2的样品检测箱体内壳7上设有光传感器6。
样品室3与隔板22平行的两个壁面上对称设有至少两个透光口,靠近明室1一侧的为第一透光口9,靠近暗室2一侧的为第二透光口10,第一透光口9和第二透光口10的连线垂直于隔板22。
近红外光源4与光传感器6位于所述样品室3的两侧,近红外光源4、第一透光口9、第二透光口10和光传感器6位于同一条直线上,形成检测光路,使得近红外光源4发出的光信号能够通过样品室3的第一透光口9和第二透光口10被光传感器6接收。
旋转升降装置12固定在样品检测箱体底部,样品室3固定在旋转升降装置12之上。
如图4所示,旋转升降装置12包括旋转升降装置壳体、导轨15、滑块16、低速电机17、上部联轴器181、下部联轴器182、丝杆19和固定螺母20,其中,
旋转升降装置壳体的壁面沿竖直方向设有至少一条导轨15,所述 导轨15上设有滑块16,所述滑块16上设有低速电机17。
所述丝杆19的顶端位于样品室3的内部,通过上部联轴器181与样品池支撑支架21连接。样品池支撑支架21与其上方的样品池11固定连接。所述样品池支撑支架21能够根据样品池11的大小进行调节。丝杆19向下穿过旋转升降装置壳体的上端,所述丝杆19上套有一固定螺母20,所述固定螺母20固定在旋转升降装置壳体的上端,丝杆19的底端与低速电机17的动力输出轴通过下部联轴器182连接。当丝杆19位于其最上方位置时,样品池11的底部至少不低于近红外光源4、第一透光口9、第二透光口10和光传感器6形成的检测光路,从而在低速电机17的驱动下,样品池11能够向下旋转通过近红外光源4、第一透光口9、第二透光口10和光传感器6形成的检测光路。
如图2所示,操作控制与信号处理单元包括数据采集传输模块13和数据处理模块14。
数据采集传输模块13分别与光传感器6和数据处理模块14电连接,将光传感器6接收采集的数据经过数据采集传输模块13传输到数据处理模块14。数据采集传输模块13通过集成电路板Arduino完成。
其中,数据采集传输模块13设有光信号检测、采样、传输设备与计算机信号处理系统;数据处理模块14设有信号处理结果的显示界面与分析界面,以完成检测仪器的操作控制。
仪器控制界面设置在数据处理模块14中,至少包括数据显示、数据处理、数据分析功能,所述的仪器控制界面由美国国家仪器公司研制的LabVIEW程序开发环境完成。
本发明提供一种物料均匀性检测方法,包括如下步骤:
1、在初始状态,旋转升降装置12的丝杆19位于其最上方位置,样品池11的底部不低于检测光路。将物料样品放入样品池11中,数 据采集传输模块13自动检测所述样品池11是否已经放置好,并检测所述物料样品的液面高度是否到达满足检测要求高度。优选地,物料样品至少为15ml。
2、物料样品放入样品池11后,根据所述样品物料类别,在数据处理模块14选定数据库,并新建数据文件,启动物料均匀性检测。
3、在物料均匀性检测启动的同时,近红外光源4开启,旋转升降装置12启动,丝杆19开始下降。样品池11在旋转升降装置12的丝杆19的带动下,进行旋转向下运动,数据采集从样品池11的底部开始,对样品池11以一定轨迹进行数据采集,至样品高度处结束数据采集。
旋转升降装置12的丝杆19以一定转速旋转且同时以一定速度下降,每隔一定时间间隔,数据采集传输模块13对光传感器6所采集的透射光光强值进行数据采集传输,并通过数据处理模块14进行数据处理并以预定的形式显示在仪器控制界面的控制屏上,对每层的n个数据绘制一个图像,以表示一层样品水平方向的均匀程度。
优选地,所述时间间隔为1s。
优选地,所述图像由数据处理模块14绘制,数据处理模块14每1秒采集一个透射光光强值进行记录并绘图,所述旋转升降装置12的丝杆19每转动一圈,结束一层物料样品的测量,完成n个数据的检测,所述物料样品按以上步骤被分为至少10层。
优选地,所述预定的形式为图像或数据的形式。
4、当设备检测到旋转升降装置12的丝杆19下降到预设高度时,数据采集结束,近红外光源4关闭,旋转升降装置12的丝杆19开始上升,将样品池11送出检测区。
5、重复步骤1~4。
6、通过将多次测量的大量透射光光强值与高度之间的关系建立图 像显示,以每层的n个数据绘制一组显示图,对每个图像以平均值代表每层均匀度数据,并计算数据方差来辅助判断样品竖直方向的均匀性,以此来判断物料样品整体的均匀性。
所述数据库建立在实际经验与数据基础上,通过调用实际工程中常用的物料标准样品均匀性参数,通过所述两者即测量值和标准值的数据偏差进行对比,根据预设期望大小进行偏差分析,对物料样品给出等级结果。优选地,所述等级结果为“满足要求”“基本满足要求”与“不满足要求”三个等级。
优选地,使用者能够通过对所述物料样品的检测增加数据库的内容,方便比较与调用。
优选地,数据处理模块14以图像形式显示均匀性检测结果,对每个图像以平均值代表每层均匀度数据,并计算数据方差来辅助判断样品竖直方向均匀性,与数据库标准样品进行偏差对比,给出等级结果。
本发明所述的物料均匀性检测方法中,所述的光强值为光源透过物料样品后光传感器接收到的透射光光强值。

Claims (10)

  1. 一种物料均匀性检测设备,其特征在于:所述设备包括检测单元和操作控制与信号处理单元;
    检测单元包括呈箱体形状的样品检测箱体;样品检测箱体包括样品检测箱体内壳(7);
    样品检测箱体内壳(7)被隔板(22)分隔为明室(1)和暗室(2),在明室(1)与暗室(2)之间设有样品室(3),样品室(3)通过所述隔板(22)与样品检测箱体内壳(7)相连;
    明室(1)中设有近红外光源(4)和光源固定支架(5);其中,所述近红外光源(4)通过光源固定支架(5)固定在明室(1)的样品检测箱体内壳(7)上;
    暗室(2)的样品检测箱体内壳(7)上设有光传感器(6);
    样品室(3)与隔板(22)平行的两个壁面上对称设有至少两个透光口,靠近明室(1)一侧的为第一透光口(9),靠近暗室(2)一侧的为第二透光口(10),第一透光口(9)和第二透光口(10)的连线垂直于隔板(22);
    近红外光源(4)与光传感器(6)位于所述样品室(3)的两侧,近红外光源(4)、第一透光口(9)、第二透光口(10)和光传感器(6)位于同一条直线上,形成检测光路,使得近红外光源(4)发出的光信号能够通过样品室(3)的第一透光口(9)和第二透光口(10)被光传感器(6)接收;
    旋转升降装置(12)固定在样品检测箱体底部,样品室(3)固定在旋转升降装置(12)之上;
    旋转升降装置(12)包括旋转升降装置壳体、导轨(15)、滑块(16)、 低速电机(17)、上部联轴器(181)、下部联轴器(182)、丝杆(19)和固定螺母(20),其中,
    旋转升降装置壳体的壁面沿竖直方向设有至少一条导轨(15),所述导轨(15)上设有滑块(16),所述滑块(16)上设有低速电机(17);
    所述丝杆(19)的顶端位于样品室(3)的内部,通过上部联轴器(181)与样品池支撑支架(21)连接;样品池支撑支架(21)与其上方的样品池(11)固定连接;丝杆(19)向下穿过旋转升降装置壳体的上端,所述丝杆(19)上套有一固定螺母(20),所述固定螺母(20)固定在旋转升降装置壳体的上端,丝杆(19)的底端与低速电机(17)的动力输出轴通过下部联轴器(182)连接;当丝杆(19)位于其最上方位置时,样品池(11)的底部至少不低于近红外光源(4)、第一透光口(9)、第二透光口(10)和光传感器(6)形成的检测光路,从而在低速电机(17)的驱动下,样品池(11)能够向下旋转通过近红外光源(4)、第一透光口(9)、第二透光口(10)和光传感器(6)形成的检测光路;
    操作控制与信号处理单元包括数据采集传输模块(13)和数据处理模块(14);
    数据采集传输模块(13)分别与光传感器(6)和数据处理模块(14)电连接。
  2. 如权利要求1所述的物料均匀性检测设备,其特征在于:所述样品池支撑支架(21)能够根据样品池(11)的大小进行调节。
  3. 一种利用权利要求1或2所述的物料均匀性检测设备的物料均匀性检测方法,其特征在于:所述方法包括如下步骤:
    1)、在初始状态,旋转升降装置(12)的丝杆(19)位于其最上 方位置,样品池(11)的底部不低于检测光路;将物料样品放入样品池(11)中,数据采集传输模块(13)自动检测所述样品池(11)是否已经放置好,并检测所述物料样品的液面高度是否到达满足检测要求高度;
    2)、物料样品放入样品池(11)后,根据所述样品物料类别,在数据处理模块(14)选定数据库,并新建数据文件,启动物料均匀性检测;
    3)、在物料均匀性检测启动的同时,近红外光源(4)开启,旋转升降装置(12)启动,丝杆(19)开始下降;样品池(11)在旋转升降装置(12)的丝杆(19)的带动下,进行旋转向下运动,数据采集从样品池(11)的底部开始,对样品池(11)以一定轨迹进行数据采集,至样品高度处结束数据采集;
    旋转升降装置(12)的丝杆(19)以一定转速旋转且同时以一定速度下降,每隔一定时间间隔,数据采集传输模块(13)对光传感器(6)所采集的透射光光强值进行数据采集传输,并通过数据处理模块(14)进行数据处理并以预定的形式显示在仪器控制界面的控制屏上,对每层的n个数据绘制一个图像,以表示一层样品水平方向的均匀程度;
    4)、当设备检测到旋转升降装置(12)的丝杆(19)下降到预设高度时,数据采集结束,近红外光源(4)关闭,旋转升降装置(12)的丝杆(19)开始上升,将样品池(11)送出检测区;
    5)、重复步骤1)~4);
    6)、通过将多次测量的大量透射光光强值与高度之间的关系建立图像显示,以每层的n个数据绘制一组显示图,对每个图像以平均值代表每层均匀度数据,并计算数据方差来辅助判断样品竖直方向的均匀性,以此来判断物料样品整体的均匀性;
    所述数据库建立在实际经验与数据基础上,通过调用实际工程中常用的物料标准样品均匀性参数,通过两者即测量值和标准值的数据偏差进行对比,根据预设期望大小进行偏差分析,对物料样品给出等级结果。
  4. 如权利要求3所述的物料均匀性检测方法,其特征在于:步骤1)中,物料样品至少为15ml。
  5. 如权利要求3所述的物料均匀性检测方法,其特征在于:步骤3)中,所述图像由数据处理模块(14)绘制,数据处理模块(14)每(1)秒采集一个透射光光强值进行记录并绘图,所述旋转升降装置(12)的丝杆(19)每转动一圈,结束一层物料样品的测量,完成n个数据的检测,所述物料样品按以上步骤被分为至少10层。
  6. 如权利要求3所述的物料均匀性检测方法,其特征在于:步骤3)中,所述预定的形式为图像或数据的形式。
  7. 如权利要求3所述的物料均匀性检测方法,其特征在于:步骤3)中,所述时间间隔为1s。
  8. 如权利要求3所述的物料均匀性检测方法,其特征在于:步骤6)中,所述等级结果为“满足要求”“基本满足要求”与“不满足要求”三个等级。
  9. 如权利要求3所述的物料均匀性检测方法,其特征在于:步骤6)中,使用者能够通过对所述物料样品的检测增加数据库的内容。
  10. 如权利要求3所述的物料均匀性检测方法,其特征在于:步骤6)中,数据处理模块(14)以图像形式显示均匀性检测结果,对每个图像以平均值代表每层均匀度数据,并计算数据方差来辅助判断样品竖直方向均匀性,与数据库标准样品进行偏差对比,给出等级结果。
PCT/CN2020/099887 2019-07-26 2020-07-02 一种物料均匀性检测设备及检测方法 WO2021017745A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/630,331 US11719623B2 (en) 2019-07-26 2020-07-02 Slurry material uniformity detection device and detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910681037.8A CN110411978B (zh) 2019-07-26 2019-07-26 一种物料均匀性检测设备及检测方法
CN201910681037.8 2019-07-26

Publications (1)

Publication Number Publication Date
WO2021017745A1 true WO2021017745A1 (zh) 2021-02-04

Family

ID=68363153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099887 WO2021017745A1 (zh) 2019-07-26 2020-07-02 一种物料均匀性检测设备及检测方法

Country Status (3)

Country Link
US (1) US11719623B2 (zh)
CN (1) CN110411978B (zh)
WO (1) WO2021017745A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110411978B (zh) 2019-07-26 2020-05-22 中国农业大学 一种物料均匀性检测设备及检测方法
CN111077105A (zh) * 2019-12-31 2020-04-28 银隆新能源股份有限公司 胶体溶液均匀性的检测方法及应用
CN112155242A (zh) * 2020-10-22 2021-01-01 上海烟草集团有限责任公司 一种烟丝掺配过程均匀性的判断方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140255A (zh) * 1995-07-10 1997-01-15 苌国强 全自动膜层均匀性检测仪
JP2012107952A (ja) * 2010-11-16 2012-06-07 Toppan Printing Co Ltd 光学ムラ検査装置
JP5121199B2 (ja) * 2006-09-25 2013-01-16 オリンパス株式会社 基板検査装置および基板検査方法
CN107290306A (zh) * 2017-07-06 2017-10-24 中国科学院光电研究院 一种激光晶体粒子掺杂浓度均匀性测量方法及装置
CN207074168U (zh) * 2017-06-28 2018-03-06 北京诚益通科技有限公司 一种带混合均匀度在线检测装置的混合机
CN107941747A (zh) * 2018-01-16 2018-04-20 济南金宏利实业有限公司 基于mems近红外技术检测混料均匀度的装置及方法
CN110411978A (zh) * 2019-07-26 2019-11-05 中国农业大学 一种物料均匀性检测设备及检测方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404642A (en) * 1981-05-15 1983-09-13 Trebor Industries, Inc. Apparatus for near infrared quantitative analysis with temperature variation correction
US4609991A (en) * 1983-07-19 1986-09-02 The United States Of America As Represented By The Department Of Health And Human Services Automated system for determining the molecular weight and/or concentration of macromolecules via sedimentation equilibrium
US4487278A (en) * 1983-08-24 1984-12-11 Trebor Industries, Inc. Instrument for providing automatic measurement of test weight
US4801804A (en) * 1986-09-30 1989-01-31 Trebor Industries, Inc. Method and apparatus for near infrared reflectance measurement of non-homogeneous materials
ATE157905T1 (de) * 1993-06-29 1997-09-15 Pfizer Apparat zum mischen und feststellen der homogenität ''on-line''
KR100433263B1 (ko) * 2001-07-25 2004-05-31 대한민국 근적외선 흡수스펙트럼을 이용한 곡물 1립 비파괴 분석방법
US6992759B2 (en) * 2002-10-21 2006-01-31 Nippon Shokubai Co., Ltd. Sample holder for spectrum measurement and spectrophotometer
US7570443B2 (en) * 2003-09-19 2009-08-04 Applied Biosystems, Llc Optical camera alignment
US20050226771A1 (en) * 2003-09-19 2005-10-13 Lehto Dennis A High speed microplate transfer
US7407630B2 (en) * 2003-09-19 2008-08-05 Applera Corporation High density plate filler
CN2697642Y (zh) * 2004-05-12 2005-05-04 高建新 近红外光谱仪专用实验台
CN201177601Y (zh) * 2008-04-21 2009-01-07 中国烟草总公司郑州烟草研究院 近红外烟叶加料均匀性测试装置
DE102010038329B4 (de) * 2010-07-23 2014-02-06 Bruker Optik Gmbh IR-Spektrometer mit berührungsloser Temperaturmessung
IT1404710B1 (it) 2010-11-25 2013-11-29 Imal Srl Apparecchiatura per rilevare disomogeita'
WO2013167453A1 (en) * 2012-05-07 2013-11-14 Bayer Pharma Aktiengesellschaft Process for manufacturing a pharmaceutical dosage form comprising nifedipine and candesartan cilexetil
CN103105286B (zh) * 2013-01-24 2015-09-23 中国兵器工业第二0五研究所 成像光电系统光谱响应非均匀性测量方法
CN205456000U (zh) * 2016-01-05 2016-08-17 泉州装备制造研究所 一种造纸法再造烟叶涂布均匀性在线检测系统
CN106383098A (zh) * 2016-02-01 2017-02-08 北京朗迪森科技有限公司 一种液体样品稳定性检测方法及装置
CN105953927A (zh) * 2016-03-10 2016-09-21 中国科学院合肥物质科学研究院 一种近红外探测器均匀性测试系统
US20180172510A1 (en) * 2016-12-08 2018-06-21 Verifood, Ltd. Spectrometry system applications
CN107025378B (zh) * 2017-04-07 2020-12-22 上海创和亿电子科技发展有限公司 一种基于标偏分位百分比的均匀性评价方法
CN107367483A (zh) * 2017-07-18 2017-11-21 河南中烟工业有限责任公司 一种卷烟在线制丝混丝均匀性的检测评价方法
CN206960297U (zh) 2017-07-18 2018-02-02 江苏省农业科学院 一种雾滴沉积均匀性检测装置
CN107421912A (zh) * 2017-07-27 2017-12-01 中国农业大学 一种基于近红外透射技术的液态乳制品质量检测的装置与方法
CN108548781B (zh) 2018-04-17 2021-03-16 郑州磨料磨具磨削研究所有限公司 一种砂轮混料均匀性图像检测方法及装置
CN109142263B (zh) * 2018-07-13 2020-12-18 南京理工大学 一种固体推进剂制备过程的组分分散均匀性在线测试方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140255A (zh) * 1995-07-10 1997-01-15 苌国强 全自动膜层均匀性检测仪
JP5121199B2 (ja) * 2006-09-25 2013-01-16 オリンパス株式会社 基板検査装置および基板検査方法
JP2012107952A (ja) * 2010-11-16 2012-06-07 Toppan Printing Co Ltd 光学ムラ検査装置
CN207074168U (zh) * 2017-06-28 2018-03-06 北京诚益通科技有限公司 一种带混合均匀度在线检测装置的混合机
CN107290306A (zh) * 2017-07-06 2017-10-24 中国科学院光电研究院 一种激光晶体粒子掺杂浓度均匀性测量方法及装置
CN107941747A (zh) * 2018-01-16 2018-04-20 济南金宏利实业有限公司 基于mems近红外技术检测混料均匀度的装置及方法
CN110411978A (zh) * 2019-07-26 2019-11-05 中国农业大学 一种物料均匀性检测设备及检测方法

Also Published As

Publication number Publication date
CN110411978A (zh) 2019-11-05
US11719623B2 (en) 2023-08-08
CN110411978B (zh) 2020-05-22
US20220252504A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2021017745A1 (zh) 一种物料均匀性检测设备及检测方法
CN201662493U (zh) 一种用于细颗粒物采样的采样称重装置
CN104777267B (zh) 一种自动滴定厌氧发酵缓冲能力的装置
CN207215656U (zh) 激光粒度仪
CN207074168U (zh) 一种带混合均匀度在线检测装置的混合机
CN109131758A (zh) 一种水质监测取样用智能船舶
CN204536203U (zh) 一种一体化探头式光电水质多参数在线测量系统
CN101008606B (zh) 接触表面真实接触面积和粘着效应测量装置及其测量方法
CN110987738A (zh) 一种悬浊液自动检测装置及方法
CN203616247U (zh) 一种水质检测仪用便携式机箱
CN205879943U (zh) 一种原油含水分析仪
CN207281061U (zh) 一种多时段间隔水质监测系统
CN116380714B (zh) 一种水样含沙量测量装置及使用其的测量方法
CN217846287U (zh) 微型水质在线监测站
CN203720052U (zh) 用于水文悬沙测定的多机位浊度仪标定系统
CN108169309B (zh) 一种转盘式测量杯运载机构及其使用方法
CN115541852A (zh) 一种高精度含水分析仪
CN203595664U (zh) 一种便携式光谱水质检测装置
CN200996929Y (zh) 接触表面真实接触面积和粘着效应测量装置
CN201255733Y (zh) 生物柴油原料和生物柴油酸值自动测定仪
CN204228691U (zh) 一种实验分析仪
CN2739640Y (zh) 尿液分析仪
CN203837779U (zh) 液位传感器检测装置
CN203259441U (zh) 用于检测石油产品颗粒污染度的进样装置
CN217766386U (zh) 一种环评用水质监控装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846048

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20846048

Country of ref document: EP

Kind code of ref document: A1