WO2021012371A1 - 无框架岩石三轴实验仪及工作方法 - Google Patents

无框架岩石三轴实验仪及工作方法 Download PDF

Info

Publication number
WO2021012371A1
WO2021012371A1 PCT/CN2019/106609 CN2019106609W WO2021012371A1 WO 2021012371 A1 WO2021012371 A1 WO 2021012371A1 CN 2019106609 W CN2019106609 W CN 2019106609W WO 2021012371 A1 WO2021012371 A1 WO 2021012371A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
self
chamber
balancing
pressure chamber
Prior art date
Application number
PCT/CN2019/106609
Other languages
English (en)
French (fr)
Inventor
程远方
闫传梁
刘彬
任旭
韩忠英
姜超
Original Assignee
中国石油大学(华东)
长春市展拓试验仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东), 长春市展拓试验仪器有限公司 filed Critical 中国石油大学(华东)
Publication of WO2021012371A1 publication Critical patent/WO2021012371A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means

Definitions

  • the invention belongs to the technical field of rock mechanics, and specifically relates to a frameless rock triaxial experimental instrument and a working method.
  • Rock mechanics is a new science that uses mechanical principles and methods to study the mechanical behavior of rocks and phenomena related to mechanics. It is not only closely related to the national economic infrastructure, resource development, environmental protection, disaster reduction and disaster prevention, and has important engineering application value, but also a basic discipline that combines mechanics and earth science.
  • the main research content is rock stability and fracture.
  • Rock stability mainly includes wellbore stability, roadway stability, slope stability, rock formation movement and rock bursts.
  • Rock crushing includes mechanical crushing, blasting rock fragmentation, hydraulic rock fragmentation and electrophysical rock fragmentation.
  • the principles of rock mechanics have been widely used in land and ocean oil and gas exploitation, mining, civil air defense, tunnels, civil engineering, water conservancy and hydropower and other engineering fields, making engineering design or process design more reasonable and producing huge economic benefits.
  • the conventional triaxial experiment of rock mechanics refers to an experiment that uses cylindrical specimens to simulate the mechanical properties of rocks in an in-situ physical environment under certain temperature and pressure conditions. It is an important method for studying rock mechanical properties. In order to obtain the full stress-strain curve of the rock, it is necessary to improve the rigidity of the main frame. For decades, the main frame of the conventional three-axis experimental device has undergone the evolution from a four-pillar structure to a frame structure.
  • CN107505207 A discloses a multi-functional drill bit rock breaking experiment device and method that can test the triaxial strength parameters of rock, which includes a main device, a head structure, a confining pressure system, an acoustic emission system, a temperature control system, and a pore material injection system
  • the main device includes an autoclave base and an autoclave cover plate, the autoclave cover plate is fixed on the top of the autoclave base, an experiment cavity is formed between the autoclave base and the autoclave cover plate, and the autoclave cover plate is opened
  • the pilot hole connected to the experimental cavity, the confining pressure sleeve is provided in the experimental cavity, the rock sample is provided in the confining pressure sleeve, and the temperature sensor and pressure sensor are provided in the experimental cavity.
  • the temperature sensor and the pressure sensor are respectively connected with the thermometer and Pressure gauge connection.
  • the prior art experimental device still has the problems of large volume, high cost, and difficulty in alignment of the axial pressure system due to the elevation of the autoclave during the experiment.
  • the bottom end of the piston in the pressure chamber will receive a lot of force, which requires the host to balance it, which greatly increases the tonnage of the host, which will cause a certain error in the measurement of the axial load.
  • the purpose of the present invention is to provide a frameless rock three-axis experimental instrument and working method, which not only omits the main frame of the large area, does not need to repeatedly lift the kettle body during the experiment, but also increases the confining pressure during the three-axis experiment. (Unloading) the axial pressure is automatically balanced at the same time, with the characteristics of large rigidity, small size, safety and environmental protection, simple and fast experiments, and accurate experimental results.
  • One of the tasks of the present invention is to provide a frameless rock three-axis experimental instrument, which adopts the following technical solutions:
  • a frameless rock three-axis experimental instrument which includes an experimental host, a computer, a fully digital servo controller, an axial pressure system, a confining pressure system, and a pore pressure system.
  • the axial pressure system, the confining pressure system, and the pore pressure system are respectively Connected with the all-digital servo controller, and the all-digital servo controller is connected to the computer;
  • the experimental host includes a pressure chamber column, a pressure outer cylinder wall, a self-balancing system, and a base.
  • the pressure chamber column is fitted with the pressure outer cylinder wall, and a hydraulic machine is arranged in the base
  • the hydraulic press can drive the cylinder wall of the pressure outside to rise/fall.
  • the column of the pressure chamber is in an open state.
  • the column of the pressure chamber is in a closed state;
  • the pressure chamber cylinder When the pressure chamber cylinder is closed, the pressure chamber cylinder and the pressure chamber wall form a pressure chamber for placing the sample.
  • the test An upper indenter is arranged above the sample, a lower indenter is arranged below the sample, and an axial deformation sensor and a radial deformation sensor are installed on the outside of the sample;
  • the self-balancing system includes a self-balancing chamber and a self-balancing piston located in the self-balancing chamber.
  • the self-balancing chamber is located above the pressure chamber and communicates with the pressure chamber.
  • the self-balancing piston Between the lower end surface of the upper indenter and the upper end surface of the upper indenter adopts a hemispherical inlay mode, between the upper indenter and the column of the pressure chamber, between the lower indenter and the sample stage in the pressure chamber Both are connected by springs;
  • the computer is used to send instructions to the all-digital servo controller, and the all-digital servo controller is used to control the axial pressure system, the confining pressure system and the pore pressure system respectively.
  • the above-mentioned axial pressure system includes an axial pressure sensor, an axial pressure pump, and a piston reset chamber.
  • the above-mentioned axial pressure sensor is connected to the above-mentioned full digital servo controller through an axial pressure data transmission line.
  • the pump is connected with the aforementioned all-digital servo controller, and the loading and unloading of the axial pressure pump is controlled by the aforementioned all-digital servo controller.
  • the above-mentioned confining pressure system includes a confining pressure sensor, a confining pressure pump, an air pump, and a grease trap.
  • the above-mentioned confining pressure sensor is connected to the above-mentioned fully digital servo controller through a confining pressure data transmission line.
  • the confining pressure pump is connected with the above-mentioned fully digital servo controller, and the loading and unloading of the above confining pressure pump is controlled by the fully digital servo controller.
  • the aforementioned pore pressure system includes a pore pressure sensor and a pore pressure pump.
  • the aforementioned pore pressure sensor is connected to the aforementioned all-digital servo controller through a pore pressure data transmission line, and the aforementioned pore pressure pump is connected to the aforementioned all-digital servo controller. Connect, control the loading and unloading of the pore pressure pump through the above-mentioned all-digital servo controller.
  • the pressure chamber cylinder when the pressure chamber cylinder is in a closed state, the pressure chamber cylinder is slightly tightened and locked between the pressure chamber cylinder and the pressure chamber wall.
  • the area of the upper ring of the self-balancing piston is equal to the area of the lower end surface of the self-balancing piston in the pressure chamber.
  • the pressure chamber and the self-balancing chamber are kept in communication through the high-pressure pipeline.
  • the above-mentioned self-balancing piston and the upper indenter are reserved in the interior of the holes for loading the pore pressure, and the diameter of the holes reserved at the junction of the self-balancing piston and the upper indenter is gradually enlarged; wherein the lower end of the upper indenter is flat , And carved with grooves.
  • the aforementioned lower indenter has a hole in the middle, and the upper end surface is engraved with grooves, and the aforementioned lower indenter and the aforementioned sample stage also adopt a hemispherical mosaic combination mode.
  • the steps of controlling the loading and unloading of the axial pressure pump through the above-mentioned all-digital servo controller are: when the axial pressure is loaded, the piston reset cavity is emptied, so that the axial pressure is loaded by the self-balancing piston, and the axial pressure is unloaded. Afterwards, the piston reset chamber is controlled by the servo controller to control oil filling, thereby resetting the self-balancing piston.
  • the method of fitting the outer cylinder wall of the pressure chamber and the column of the pressure chamber is used to replace the frame and autoclave of the traditional three-axis experimental device.
  • the rigidity of the whole machine is significantly improved, and the volume of the whole machine is greatly reduced, saving materials ;
  • the height of the pressure chamber column is much smaller than the frame of the traditional triaxial test machine, which greatly reduces the elastic potential energy stored in the frame before the peak strength, and makes the stress-strain curve in the post-peak stage more accurate;
  • the frameless rock three-axis experimental instrument of the present invention has a self-balancing system, which can automatically balance the axial pressure while the confining pressure is added (unloaded) during the three-axis experiment, which can better ensure the accuracy of the experimental data.
  • the frameless rock three-axis experimental instrument of the present invention has the characteristics of simple and convenient experiments. In the experiment process, complicated pressure chamber lifting procedures are omitted. In the traditional three-axis device, the pressure chamber rises and falls require manual centering. In addition, there are potential safety hazards.
  • the pressure chamber needs to be fixed with bolts or heavy fixed slips for pressurization.
  • the frameless rock triaxial tester of the present invention uses the outer cylinder wall of the pressure chamber to be fitted with the column of the pressure chamber and is driven by a press The rise and fall of the outer cylinder wall are slightly tightened with screws, which can complete the experimental preparation in a short time, which is safe, time-saving, labor-saving and worry-free.
  • Figure 1 is a schematic diagram of the overall structure of the frameless rock triaxial tester in the present invention.
  • Figure 2 is a schematic diagram of the self-balancing piston in the present invention.
  • Figure 5 is a schematic cross-sectional top view of the pressure chamber in the present invention.
  • the present invention proposes a frameless rock three-axis experimental instrument and working method.
  • the present invention will be described in detail below with reference to specific implementation examples.
  • the frameless rock three-axis experimental instrument proposed by the present invention not only omits the main frame with a large area, and does not need to repeatedly lift the kettle body during the experiment, but also in the three-axis experiment, the confining pressure is added (unloaded) while the axial pressure Automatic balance, with the characteristics of large rigidity, small size, safety and environmental protection, simple and fast experiments, and accurate experimental results.
  • the present invention is a frameless rock three-axis experimental instrument, which mainly includes a computer 32, a fully digital servo controller 31, a frameless experimental host, an axial pressure system, a confining pressure system, and a pore pressure system .
  • the computer 32 and the fully digital servo controller 31 are connected through the servo control data line 30.
  • the fully digital servo controller 31 is respectively connected with the axial pressure system, the confining pressure system and the pore pressure system through data transmission lines.
  • the upper part of the frameless experimental host is connected to the pressure chamber.
  • the cylinder is tightly connected by a connector 37, and the fully digital servo controller 31 is also connected with a piston reset pipeline 38;
  • the frameless experimental host is composed of a pressure outer cylinder wall 11, a pressure chamber column 12, an upper self-balancing chamber 3, and a lower base 13, wherein the self-balancing chamber 3 and the pressure chamber 10 pass high pressure Line 15 connection;
  • the axial pressure system is composed of axial pressure sensor, axial pressure data transmission line 1, axial pressure pump 29, piston reset cavity 2 and so on.
  • the axial pressure sensor is connected to the fully digital servo controller 31 through the axial pressure data transmission line 1, and the axial pressure pump 29 is connected to the fully digital servo controller 31.
  • the experiment software on the computer 32 sends instructions to the fully digital servo controller 31.
  • the servo controller 31 controls the loading and unloading of the axial pressure pump 29.
  • the piston reset chamber 2 is controlled by the fully digital servo controller 31 to not be filled with oil, which is convenient for the axial pressure to be loaded by the self-balancing piston 4.
  • the piston reset chamber 2 is controlled by the fully digital servo controller 31 to control oil filling, thereby resetting the self-balancing piston 4;
  • the above-mentioned confining pressure system consists of a confining pressure pump 24, a confining pressure data transmission line 19, an air pump 26, an oil return device, an oil trap 17, etc.
  • the confining pressure sensor is connected to a fully digital servo controller 31 through a confining pressure data transmission line 19,
  • the pressure pump 24 is connected to a fully digital servo controller 31, and the fully digital servo controller 31 controls the loading and unloading of the confining pressure pump 24;
  • the above-mentioned pore pressure system consists of a pore pressure pump 25, a pore pressure sensor, a pore pressure data transmission line 20, etc.
  • the pore pressure sensor is connected by a pore pressure data transmission line 20 to a fully digital servo controller 31, and the pore pressure pump 25 is controlled by a fully digital servo.
  • the device 31 is connected, and the full digital servo controller 31 controls the loading and unloading of the pore pressure pump 25.
  • the pressure outer cylinder wall 11 of the above-mentioned frameless main engine is fitted with the pressure chamber column 12, and the pressure outer cylinder wall 11 is driven up and down by the hydraulic machine in the lower base 13, such as by means of the lifting rail 14, the pressure outer cylinder wall 11 When descending along the lifting rail 14, open the pressure chamber 10, and the pressure chamber wall 11 rises to close the pressure chamber 10.
  • the pressure chamber wall 11 When closed, the pressure chamber wall 11 is tightened and locked with a screw 7; in order to achieve the stress-strain curve peak It can be measured that the stiffness of the pressure chamber column 12 is large enough to function as a frame in the traditional three-axis experimental device; the height of the pressure chamber column 12 is much smaller than that of the traditional three-axis experimental machine, which greatly reduces the peak strength before the frame storage
  • the elastic potential energy makes the stress-strain curve in the post-peak phase more accurate; the integration of the frame and the kettle improves the overall rigidity, greatly reduces the volume of the device, and eliminates the repeated lifting of the autoclave during the experiment.
  • the above-mentioned self-balancing system includes a self-balancing chamber 3 and a self-balancing piston 4 located in the self-balancing chamber.
  • the self-balancing chamber 3 is located above the pressure chamber and is connected to the pressure chamber through a high-pressure pipeline 15.
  • the area A of the upper ring of the self-balancing piston 4 in the self-balancing chamber 3 is equal to the area A of the lower end surface of the self-balancing piston in the pressure chamber, and the two chambers are connected by a high-pressure pipeline 15.
  • the load acting on the lower end of the self-balancing piston when the confining pressure is pressurized is equal to the load acting on the ring of the balance pressure chamber, that is, the resultant axial force of the self-balancing piston is zero when the confining pressure is applied.
  • the lower end surface of the above-mentioned self-balancing piston 4 and the upper end surface of the upper indenter 6 adopt a hemispherical inlaid mode.
  • the self-balancing piston 4 and the upper indenter 6 have reserved pore pressure channels 5 for loading pore pressure in order to press The alignment of the head 6 and the sample 16 does not affect the loading of the pore pressure.
  • the diameter of the reserved orifice at the junction of the self-balancing piston 4 and the upper indenter 6 is gradually enlarged; the lower end of the upper indenter 6 is a flat surface for uniform pore pressure Loading, the upper indenter groove 36 is engraved, the upper indenter 6 and the pressure chamber cylinder 12 are connected by a spring 35 and fixed by a screw 34; the lower indenter 33 has a hole in the middle, and the upper end surface is engraved with a lower indenter
  • the groove 39 and the lower pressing head 33 are connected to the sample table 18 by a spring, and the two also adopt a hemispherical inlay combination mode. When the end surface of the sample 16 is uneven, uniform pressure can be achieved.
  • the above-mentioned confining pressure oil return device is composed of an oil return valve 23, an oil return pipe 21, a vent valve 27, a vent pipe 28, and an oil supply line 22.
  • the oil return valve 23 and the vent valve 27 can be opened. Oil back.
  • the above-mentioned frameless main machine adopts chromium-molybdenum alloy material and is integrated in one piece. Under a working load of 500KN, the deformation becomes 0.035mm, and the calculated stiffness is 14GN/m, while the traditional frame-type three-axis test machine is under a working load of 500KN. The deformation becomes 0.05mm, and the stiffness calculated by the stiffness formula is 10GN/m. Compared with the traditional experimental machine, the stiffness of the present invention is increased by 40%, which further improves the application scope of the experimental machine.
  • the working method of the frameless rock three-axis experimental instrument of the present invention includes the following steps:
  • the first step is to seal the sample with an oil separator 17 and install the radial deformation sensor 8 and the axial deformation sensor 9 on the outside of the sample;
  • the second step is to open the pressure chamber 10 and place the sample 16 on the lower indenter 33, and connect the deformation sensor data transmission line;
  • the third step is to close the pressure chamber 10 and tighten the screw 7, and then perform confining pressure filling. After the confining pressure is loaded to the set value, stop the pressurization and start the axial stress loading;
  • the fourth step is to conduct rock mechanics experiments, and the computer 32 obtains the full stress-strain experiment curve
  • Step 5 After the experiment is completed, first unload the axial stress, then unload the confining pressure and open the vent valve 27 and the oil return valve 23 to recover the hydraulic oil;
  • the sixth step is to remove the screw 7 to open the pressure chamber 10 and take out the sample 16.
  • the present invention not only omits the larger frame, but does not need to repeatedly lift the kettle body during the experiment.
  • the height of the column in the pressure chamber is much smaller than that of the traditional three-axis experimental machine, which greatly reduces
  • the elastic potential energy stored in the frame before the peak strength makes the stress-strain curve at the post-peak stage more accurate; and in the triaxial experiment, the confining pressure is loaded (unloaded) while the axial pressure is automatically balanced, thereby further ensuring the accuracy of the experimental data Nature, strengthen the guiding role of engineering design.
  • the invention has the characteristics of large rigidity, small size, safety and environmental protection, simple and fast experiments, and accurate experimental results.

Abstract

一种无框架岩石三轴实验仪及工作方法,该实验仪包括实验主机、计算机(32)、全数字伺服控制器(31)、轴压系统、围压系统及孔压系统,轴压系统、围压系统、孔压系统分别与全数字伺服控制器(31)连接在一起,全数字伺服控制器(31)连接在计算机(32)上,实验主机包括压力室柱体(12)、压力室外筒壁(11)、自平衡系统及底座(13),压力室柱体(12)与压力室外筒壁(11)相嵌合,在底座(13)内设置有液压机,液压机可驱动压力室外筒壁(11)上升/下降,自平衡系统包括自平衡室(3)及位于自平衡室(3)内的自平衡活塞(4),自平衡室(3)位于压力室(10)的上方。实验仪在三轴实验过程中,围压加(卸)载的同时轴压自动平衡,具有刚度大、体积小、安全环保、实验简单快捷、实验结果准确的特点。

Description

无框架岩石三轴实验仪及工作方法 技术领域
本发明属于岩石力学技术领域,具体涉及无框架岩石三轴实验仪及工作方法。
背景技术
岩石力学是运用力学原理和方法来研究岩石的力学行为以及与力学有关的现象的一门新兴科学。它不仅与国民经济基础建设、资源开发、环境保护、减灾防灾存在密切联系,具有重要的工程应用价值,而且也是力学和地学相结合的一个基础学科。对于工程岩石力学,主要的研究内容是岩石的稳定与破碎。岩石稳定主要包括井眼稳定、巷道稳定、边坡稳定、岩层移动及冲击地压等。岩石破碎包括机械破碎、爆破破岩、水力破岩及电物理破岩等。岩石力学原理目前已广泛应用于陆地及海洋油气开采、采矿、人防、隧道、土木、水利水电等工程领域,使得工程设计或过程设计更加合理,并产生了巨大的经济效益。
岩石力学常规三轴实验是指用圆柱形试件在模拟一定温度和压力条件下来研究岩石在原地物理环境下的力学性能的实验,是岩石力学特性研究的重要方式。为了获取岩石的全应力应变曲线,需要提高主机框架的刚度,几十年来常规三轴实验装置主机经历了由四立柱结构向框架结构的演化。如CN107505207 A公开了一种能够测试岩石三轴强度参数的多功能钻头破岩实验装置及方法,它包括主体装置、压头结构、围压系统、声发射系统、温度控制系统和孔隙物料注入系统;主体装置包括高压釜基座和高压釜盖板,高压釜盖板固设于高压釜基座顶部,高压釜基座与高压釜盖板之间形成有实验腔,高压釜盖板上开设有连通实验腔的导向孔,实验腔内设置有围压套,围压套内设置有岩样,实验腔内设置有温度传感器和压力传感器,温度传感器和压力传感器分别与位于主体装置外部的温度计和压力表连接。
但是,现有技术实验装置仍然存在体积大、成本高、实验过程中高压釜升降使轴压系统不易对中等问题。同时,加围压时压力室活塞底端会受到很大的作用力,需要主机来平衡,使得主机吨位大幅增加,会给轴向载荷的计量带来一定 的误差。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明的目的在于提供一种无框架岩石三轴实验仪及工作方法,其不仅省略了占地较大的主机框架,实验过程不用反复升降釜体,而且在三轴实验过程中,围压加(卸)载的同时轴压自动平衡,具有刚度大、体积小、安全环保、实验简单快捷、实验结果准确的特点。
本发明的任务之一在于提供一种无框架岩石三轴实验仪,其采用了以下技术方案:
一种无框架岩石三轴实验仪,其包括实验主机、计算机、全数字伺服控制器、轴压系统、围压系统及孔压系统,所述的轴压系统、围压系统、孔压系统分别与所述的全数字伺服控制器连接在一起,所述的全数字伺服控制器连接在所述的计算机上;
所述的实验主机包括压力室柱体、压力室外筒壁、自平衡系统及底座,所述的压力室柱体与所述的压力室外筒壁相嵌合,在所述的底座内设置有液压机,所述的液压机可驱动所述的压力室外筒壁上升/下降,当所述的压力室外筒壁下降时,所述的压力室柱体呈打开状态,当所述的压力室外筒壁上升时,所述的压力室柱体呈关闭状态;
当所述的压力室柱体为关闭状态时,所述的压力室柱体与所述的压力室外筒壁形成用于放置试样的压力室,当对试样进行加载时,所述的试样的上方设置有上压头,所述的试样的下方设置有下压头,在所述的试样的外侧安装有轴向变形传感器和径向变形传感器;
所述的自平衡系统包括自平衡室及位于自平衡室内的自平衡活塞,所述的自平衡室位于所述压力室的上方,且其与压力室之间保持连通,所述的自平衡活塞的下端面与所述的上压头的上端面之间采取半球镶嵌的模式,所述的上压头与压力室柱体之间、所述的下压头与位于压力室内的试样台之间均通过弹簧连接 ;
所述的计算机用于发送指令给所述的全数字伺服控制器,所述的全数字伺服控制器分别用于控制所述的轴压系统、围压系统和孔压系统。
作为本发明的一个优选方案,上述的轴压系统包括轴压传感器、轴压泵及活塞复位腔,上述的轴压传感器通过轴压数据传输线与上述的全数字伺服控制器连接,上述的轴压泵与上述的全数字伺服控制器连接,通过上述的全数字伺服控制器来控制上述轴压泵的加载与卸载。
作为本发明的另一个优选方案,上述的围压系统包括围压传感器、围压泵、气泵及隔油套,上述的围压传感器通过围压数据传输线与上述的全数字伺服控制器连接,上述的围压泵与上述的全数字伺服控制器连接,通过全数字伺服控制器来控制上述围压泵的加载与卸载。
进一步的,上述的孔压系统包括孔压传感器、孔压泵,上述的孔压传感器通过孔压数据传输线与上述的全数字伺服控制器连接,上述的孔压泵与上述的全数字伺服控制器连接,通过上述的全数字伺服控制器控制孔压泵的加载与卸载。
进一步的,当上述的压力室柱体呈关闭状态时,在压力室柱体与上述的压力室外筒壁之间通过螺丝稍上紧锁死。
进一步的,上述的自平衡活塞上部圆环的面积和压力室中自平衡活塞下端面面积相等,上述的压力室与自平衡室之间通过高压管线保持连通,当进行围压加压时,作用在自平衡活塞下端的载荷等于作用在平衡压力室圆环上的载荷,即加围压时自平衡活塞所受轴向合力为零。
进一步的,上述的自平衡活塞和上压头内部预留有加载孔压所用的孔道,在自平衡活塞和上压头相结合处预留的孔道直径逐渐扩大;其中上压头下端面为平面,并刻有凹槽。
优选的,上述的下压头中间带孔,上端面刻有凹槽,上述的下压头与上述的试样台之间也采取半球镶嵌结合的模式。
优选的,通过上述的全数字伺服控制器来控制上述轴压泵的加载与卸载的步骤为:在轴压加载时,活塞复位腔放空,方便轴压通过自平衡活塞加载,在轴压卸载完成后,活塞复位腔内由伺服控制器控制充油,从而将自平衡活塞进行复 位。
发明的有益效果
有益效果
与现有技术相比,本发明带来了以下有益技术效果:
(1)在结构设计上,采用压力室外筒壁和压力室柱体相嵌合的方式代替传统三轴实验装置的框架和高压釜,整机刚度提升明显,且整机体积大幅降低,节省材料;压力室柱体的高度远小于传统三轴实验机的框架,大大减少了峰值强度前框架存储的弹性势能,使峰后阶段的应力-应变曲线更准确;
(2)在常规三轴实验中,围压油会有部分溢出到地面,造成污染环境、浪费资源,本设备设计有残油回收,重复利用更加环保。
(3)本发明无框架岩石三轴实验仪具有自平衡系统,做到在三轴实验过程中围压加(卸)载的同时轴压自动平衡,能更好的保证实验数据的准确性。
(4)本发明无框架岩石三轴实验仪具有实验简单方便的特点,在实验过程中省去了复杂的压力室升降程序,在传统三轴装置中压力室升起、下降需要人为对中,且存在安全隐患,压力室加压需要用螺栓固定或者笨重的固定卡瓦锁紧,而本发明无框架岩石三轴实验仪采用压力室外筒壁和压力室柱体相嵌合,用压力机驱动外筒壁的上升和下降,用螺丝稍进行锁紧,可在短时间内完成实验准备工作,做到安全、省时、省力、省心。
对附图的简要说明
附图说明
下面结合附图对本发明做进一步说明:
图1为本发明中的无框架岩石三轴实验仪整体结构示意图;
图2为本发明中的自平衡活塞示意图;
图3中(3a)(3b)分别为本发明中的自平衡活塞和上压头结构示意图;
图4中(4a)(4b)分别为本发明中的试样台和下压头结构示意图;
图5为本发明中的压力室横截面俯视示意图;
其中,1、轴压数据传输线;2、活塞复位腔;3、自平衡室;4、自平衡活塞;5、孔压通道;6、上压头;7、螺丝稍;8、径向变形传感器;9、轴向变形传感 器;10、压力室;11、压力室外筒壁;12、压力室柱体;13、底座;14、升降轨道;15、高压管线;16、试样;17、隔油套;18、试样台;19、围压数据传输线;20、孔压数据传输线;21、回油管;22、供油管线;23、回油阀;24、围压泵;25、孔压泵;26、气泵;27、通气阀;28、通气管;29、轴压泵;30、伺服控制数据线;31、全数字伺服控制器;32、计算机;33、下压头;34、螺丝;35、弹簧;36、上压头凹槽;37、连接件;38、活塞复位管线;39、下压头凹槽。
发明实施例
本发明的实施方式
本发明提出了一种无框架岩石三轴实验仪及工作方法,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施实例对本发明做详细说明。
本发明提出的无框架岩石三轴实验仪,其不仅省略了占地较大的主机框架,实验过程不用反复升降釜体,而且在三轴实验中,围压加(卸)载的同时轴压自动平衡,具有刚度大、体积小、安全环保、实验简单快捷、实验结果准确的特点。
结合图1至图5所示,本发明一种无框架岩石三轴实验仪,其主要包括计算机32、全数字伺服控制器31、无框架实验主机、轴压系统、围压系统和孔压系统。
计算机32与全数字伺服控制器31通过伺服控制数据线30相连,全数字伺服控制器31分别与轴压系统、围压系统和孔压系统通过数据传输线相连,无框架实验主机的上部与压力室柱体通过连接件37紧密连接,全数字伺服控制器31还连接有活塞复位管线38;
作为本发明的一个主要改进点,无框架实验主机是由压力室外筒壁11、压力室柱体12、上部的自平衡室3以及下部底座13构成,其中自平衡室3与压力室10通过高压管线15连接;
轴压系统由轴压传感器、轴压数据传输线1、轴压泵29、活塞复位腔2等组成。轴压传感器通过轴压数据传输线1与全数字伺服控制器31相连,轴压泵29与全数字伺服控制器31相连,通过计算机32上实验软件发送指令给全数字伺服控制器31,由全数字伺服控制器31控制轴压泵29的加载与卸载,在轴压加载时,活塞复 位腔2内由全数字伺服控制器31控制不充油,方便轴压通过自平衡活塞4加载,在轴压卸载时,活塞复位腔2内由全数字伺服控制器31控制充油,从而将自平衡活塞4进行复位;
上述的围压系统由围压泵24、围压数据传输线19、气泵26、回油装置、隔油套17等组成,围压传感器通过围压数据传输线19与全数字伺服控制器31相连,围压泵24与全数字伺服控制器31相连,由全数字伺服控制器31控制围压泵24的加载与卸载;
上述的孔压系统由孔压泵25、孔压传感器、孔压数据传输线20等构成,孔压传感器由孔压数据传输线20与全数字伺服控制器31相连,孔压泵25与全数字伺服控制器31相连,由全数字伺服控制器31控制孔压泵25的加载与卸载。
进一步的,上述无框架主机的压力室外筒壁11和压力室柱体12相嵌合,通过下部底座13中液压机驱动压力室外筒壁11上升和下降,如借助于升降轨道14,压力室外筒壁11沿着升降轨道14下降时打开压力室10,压力室外筒壁11上升关闭压力室10,关闭时压力室外筒壁11用螺丝稍7进行上紧锁死;为了做到应力-应变曲线峰后可测,压力室柱体12刚度足够大,起到传统三轴实验装置中框架的作用;而压力室柱体12的高度远小于传统三轴实验机的框架,大大减少了峰值强度前框架存储的弹性势能,使峰后阶段的应力-应变曲线更准确;框釜一体化,提升了整体刚度,大大缩小了装置体积,省略了实验过程中高压釜的反复升降。
上述的自平衡系统,包括自平衡室3及位于自平衡室内的自平衡活塞4,自平衡室3位于压力室的上方,且其与压力室之间是通过高压管线15连接而成。
上述的自平衡系统的原理是:自平衡室3中自平衡活塞4上部圆环的面积A圆环和压力室中自平衡活塞下端面面积A端面相等,两个腔体通过高压管线15连接,在围压加压时作用在自平衡活塞下端的载荷等于作用在平衡压力室圆环上的载荷,即加围压时自平衡活塞所受轴向合力为零。
上述的自平衡活塞4的下端面和上压头6的上端面采取半球镶嵌的模式,自平衡活塞4和上压头6内部预留有加载孔压所用的孔压通道5,为了在上压头6与试样16对齐过程中不影响孔压的加载,在自平衡活塞4和上压头6相结合处预留孔道直 径逐渐扩大;其中上压头6下端面为平面,为了孔压均匀加载,刻有上压头凹槽36,上压头6与压力室柱体12之间通过弹簧35相连接,通过螺丝34进行固定;下压头33中间带孔,上端面刻有下压头凹槽39,下压头33通过弹簧与试样台18连接,两者也采取半球镶嵌结合的模式,当试样16端面不平时,做到均匀加压。
上述的围压回油装置由回油阀23、回油管21、通气阀27、通气管28和供油管线22构成,当需要回油时,打开回油阀23和通气阀27,就可以进行回油。
上述的无框架主机采用铬钼合金材料,进行一体式嵌合,其在工作载荷500KN下,形变为0.035mm,计算可得刚度为14GN/m,而传统框架式三轴实验机在工作载荷500KN下,形变为0.05mm,由刚度公式计算得刚度为10GN/m,本发明与传统实验机相比刚度提高了40%,进一步提升了实验机的适用范围。
本发明无框架岩石三轴实验仪工作方法包括以下步骤:
第一步、用隔油套17密封试样并在试样外侧安装径向变形传感器8和轴向变形传感器9;
第二步、开启压力室10并放置试样16到下压头33上,连接好变形传感器数据传输线;
第三步、闭合压力室10上紧螺丝稍7,然后进行围压充液,待围压加载到设定值后停止加压并开始进行轴向应力加载;
第四步、进行岩石力学实验,计算机32获得全应力-应变实验曲线;
第五步、实验完毕后先卸载轴向应力,再卸载围压及打开通气阀27和回油阀23回收液压油;
第六步、取下螺丝稍7打开压力室10取出试样16。
本发明与其它岩石力学三轴实验装置相比较,不仅省略了占地较大的框架,实验过程不用反复升降釜体,压力室内柱体的高度远小于传统三轴实验机的框架,大大减少了峰值强度前框架存储的弹性势能,使峰后阶段的应力-应变曲线更准确;而且在三轴实验中,围压加(卸)载的同时轴压自动平衡,进而进一步保证了实验数据的准确性,加大了对工程设计的指导作用。本发明整体具有刚度大,体积小,安全环保,实验简单快捷,实验结果准确的特点。
本发明中未述及的部分借鉴现有技术即可实现。
需要说明的是,在本说明书的教导下本领域技术人员所做出的任何等同方式,或明显变型方式均应在本发明的保护范围内。

Claims (10)

  1. 一种无框架岩石三轴实验仪,其包括实验主机、计算机、全数字伺服控制器、轴压系统、围压系统及孔压系统,所述的轴压系统、围压系统、孔压系统分别与所述的全数字伺服控制器连接在一起,所述的全数字伺服控制器连接在所述的计算机上,其特征在于:
    所述的实验主机包括压力室柱体、压力室外筒壁、自平衡系统及底座,所述的压力室柱体与所述的压力室外筒壁相嵌合,在所述的底座内设置有液压机,所述的液压机可驱动所述的压力室外筒壁上升/下降,当所述的压力室外筒壁下降时,所述的压力室柱体呈打开状态,当所述的压力室外筒壁上升时,所述的压力室柱体呈关闭状态;
    当所述的压力室柱体为关闭状态时,所述的压力室柱体与所述的压力室外筒壁形成用于放置试样的压力室,当对试样进行加载时,所述的试样的上方设置有上压头,所述的试样的下方设置有下压头,在所述的试样的外侧安装有轴向变形传感器和径向变形传感器;
    所述的自平衡系统包括自平衡室及位于自平衡室内的自平衡活塞,所述的自平衡室位于所述压力室的上方,且其与压力室之间保持连通,所述的自平衡活塞的下端面与所述的上压头的上端面之间采取半球镶嵌的模式,所述的上压头与压力室柱体之间、所述的下压头与位于压力室内的试样台之间均通过弹簧连接;
    所述的计算机用于发送指令给所述的全数字伺服控制器,所述的全数字伺服控制器分别用于控制所述的轴压系统、围压系统和孔压系统。
  2. 根据权利要求1所述的一种无框架岩石三轴实验仪,其特征在于:所述的轴压系统包括轴压传感器、轴压泵及活塞复位腔,所述的轴压传感器通过轴压数据传输线与所述的全数字伺服控制器连接 ,所述的轴压泵与所述的全数字伺服控制器连接,通过所述的全数字伺服控制器来控制所述轴压泵的加载与卸载。
  3. 根据权利要求1所述的一种无框架岩石三轴实验仪,其特征在于:所述的围压系统包括围压传感器、围压泵、气泵及隔油套,所述的围压传感器通过围压数据传输线与所述的全数字伺服控制器连接,所述的围压泵与所述的全数字伺服控制器连接,通过全数字伺服控制器来控制所述围压泵的加载与卸载。
  4. 根据权利要求1所述的一种无框架岩石三轴实验仪,其特征在于:所述的孔压系统包括孔压传感器、孔压泵,所述的孔压传感器通过孔压数据传输线与所述的全数字伺服控制器连接,所述的孔压泵与所述的全数字伺服控制器连接,通过所述的全数字伺服控制器控制孔压泵的加载与卸载。
  5. 根据权利要求1所述的一种无框架岩石三轴实验仪,其特征在于:当所述的压力室柱体呈关闭状态时,在压力室柱体与所述的压力室外筒壁之间通过螺丝稍上紧锁死。
  6. 根据权利要求1所述的一种无框架岩石三轴实验仪,其特征在于:所述的自平衡活塞上部圆环的面积和压力室中自平衡活塞下端面面积相等,所述的压力室与自平衡室之间通过高压管线保持连通,当进行围压加压时,作用在自平衡活塞下端的载荷等于作用在平衡压力室圆环上的载荷,即加围压时自平衡活塞所受轴向合力为零。
  7. 根据权利要求1所述的一种无框架岩石三轴实验仪,其特征在于:所述的自平衡活塞和上压头内部预留有加载孔压所用的孔道,在自平衡活塞和上压头相结合处预留的孔道直径逐渐扩大;其中上压头下端面为平面,并刻有凹槽。
  8. 根据权利要求1所述的一种无框架岩石三轴实验仪,其特征在于:所述的下压头中间带孔,上端面刻有凹槽,所述的下压头与所述的试样台之间也采取半球镶嵌结合的模式。
  9. 根据权利要求2所述的一种无框架岩石三轴实验仪,其特征在于,通过所述的全数字伺服控制器来控制所述轴压泵的加载与卸载的步骤为:在轴压加载时,活塞复位腔放空,方便轴压通过自平衡活塞加载,在轴压卸载完成后,活塞复位腔内由伺服控制器控制充油,从而将自平衡活塞进行复位。
  10. 根据权利要求1-9任一项所述的一种无框架岩石三轴实验仪的工作方法,其特征在于,依次包括以下步骤:
    a、用隔油套密封试样并在试样外侧安装径向变形传感器和轴向变形传感器;
    b、开启压力室并放置试样到下压头上,连接好变形传感器数据传输线;
    c、闭合压力室上紧螺丝稍,然后进行围压充液,待围压加载到设定值后停止加压并开始进行轴向应力加载;
    d、进行岩石力学实验,计算机获得全应力-应变实验曲线;
    e、实验完毕后先卸载轴向应力,再卸载围压及打开充气阀和回油阀回收液压油;
    f、取下螺丝稍,打开压力室取出试样。
PCT/CN2019/106609 2019-07-24 2019-09-19 无框架岩石三轴实验仪及工作方法 WO2021012371A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910668943.4A CN110411823A (zh) 2019-07-24 2019-07-24 无框架岩石三轴实验仪及工作方法
CN201910668943.4 2019-07-24

Publications (1)

Publication Number Publication Date
WO2021012371A1 true WO2021012371A1 (zh) 2021-01-28

Family

ID=68362762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106609 WO2021012371A1 (zh) 2019-07-24 2019-09-19 无框架岩石三轴实验仪及工作方法

Country Status (2)

Country Link
CN (1) CN110411823A (zh)
WO (1) WO2021012371A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113063665A (zh) * 2021-04-29 2021-07-02 四川大学 岩石三轴蠕变试验装置及其系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881188B (zh) * 2021-01-18 2022-03-08 中国矿业大学(北京) 一种实验室三维动态岩石破碎试验系统及方法
CN113514331B (zh) * 2021-06-08 2022-10-11 浙江大学 一种大载荷双轴压缩加载装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940684A1 (fr) * 2008-12-31 2010-07-02 Jean Claude Robinet Dispositif d'essai d'eprouvettes a etats de contraintes triaxiales et hydriques controles
CN104483191A (zh) * 2014-12-30 2015-04-01 长安大学 一种压力试验机用水泥抗压夹具及其使用方法
CN204594804U (zh) * 2015-05-28 2015-08-26 中国石油化工股份有限公司胜利油田分公司石油工程技术研究院 转向剂效果评价真三轴试验机
CN107505207A (zh) * 2017-08-16 2017-12-22 西南石油大学 一种能够测试岩石三轴强度参数的多功能钻头破岩实验装置及方法
CN107782634A (zh) * 2017-09-19 2018-03-09 太原理工大学 微机控制电液伺服岩石三轴动态剪切渗流耦合多功能试验装置
CN108020470A (zh) * 2017-11-15 2018-05-11 东北大学 一种用于模拟超高压和高温地质条件的岩石三轴压力机
CN109855973A (zh) * 2019-01-22 2019-06-07 东北大学 一种岩石三轴直接拉伸室内实验装置和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735532B (zh) * 2012-06-29 2014-06-04 东北大学 一种卸载时主应力方向可变换的岩石真三轴压力室
CN108801778A (zh) * 2018-07-13 2018-11-13 华东交通大学 一种三轴试验机岩心夹持器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940684A1 (fr) * 2008-12-31 2010-07-02 Jean Claude Robinet Dispositif d'essai d'eprouvettes a etats de contraintes triaxiales et hydriques controles
CN104483191A (zh) * 2014-12-30 2015-04-01 长安大学 一种压力试验机用水泥抗压夹具及其使用方法
CN204594804U (zh) * 2015-05-28 2015-08-26 中国石油化工股份有限公司胜利油田分公司石油工程技术研究院 转向剂效果评价真三轴试验机
CN107505207A (zh) * 2017-08-16 2017-12-22 西南石油大学 一种能够测试岩石三轴强度参数的多功能钻头破岩实验装置及方法
CN107782634A (zh) * 2017-09-19 2018-03-09 太原理工大学 微机控制电液伺服岩石三轴动态剪切渗流耦合多功能试验装置
CN108020470A (zh) * 2017-11-15 2018-05-11 东北大学 一种用于模拟超高压和高温地质条件的岩石三轴压力机
CN109855973A (zh) * 2019-01-22 2019-06-07 东北大学 一种岩石三轴直接拉伸室内实验装置和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113063665A (zh) * 2021-04-29 2021-07-02 四川大学 岩石三轴蠕变试验装置及其系统

Also Published As

Publication number Publication date
CN110411823A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2021012371A1 (zh) 无框架岩石三轴实验仪及工作方法
CN109540788B (zh) 模拟地压作用下岩土与锚固体粘结性能的测试方法及系统
CN110296928B (zh) 利用磁流体模拟可视化裂隙渗流的装置及方法
CN104614497B (zh) 真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统
CN106596281A (zh) 一种高压真三轴硬岩恒温时效破裂试验装置及方法
CN107515150B (zh) 一种海洋管线力学性能综合测试实验装置
CN203443860U (zh) 深部岩体高地应力模拟加载装置及试验装置
CN101122552B (zh) 油层套管射孔抗挤毁模拟试验方法和模拟试验机
CN103760028B (zh) 实验室用岩石强度测试的围压加载装置
CN106639971B (zh) 一种射孔炮眼高承压封堵方法
CN109298162A (zh) 不同相态二氧化碳致裂页岩装置及实验方法
CN202757828U (zh) 三轴试验围压装置
CN111366472B (zh) 用于可变岩心尺寸的真三轴水力压裂物理模拟设备及方法
CN104100281A (zh) 一种矿用多级让压防冲支护装置、支护系统及使用方法
CN108104786B (zh) 一种页岩压裂室内模拟实验装置
CN104374559B (zh) 一种井下工具动态性能实验检测装置
CN105628526B (zh) 动态加载水压致裂岩石力学试验系统
CN205317604U (zh) 一种用于模拟深部岩体受力状态的爆炸载荷模拟发生器
CN106644689A (zh) 一种用于岩石双轴试验的可调侧向压力加载装置及其试验方法
CN107255598B (zh) 一种霍普金森试验中使土样易取出的围压装置
CN112146991A (zh) 一种用于岩石力学三轴实验的高效实验装置
CN204461905U (zh) 一种测试管桩与注浆土体之间静力剪切特性的试验装置
CN203050790U (zh) 一种用于预测煤层释放瓦斯膨胀能的测定装置
CN206710188U (zh) 一种高精度扭矩反馈型岩石空心圆柱扭剪仪
CN105781616B (zh) 模拟煤层钻进过程中钻孔动态失稳监测系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938911

Country of ref document: EP

Kind code of ref document: A1