WO2021009401A1 - Spatial-orientation endoscopic system - Google Patents

Spatial-orientation endoscopic system Download PDF

Info

Publication number
WO2021009401A1
WO2021009401A1 PCT/ES2020/070449 ES2020070449W WO2021009401A1 WO 2021009401 A1 WO2021009401 A1 WO 2021009401A1 ES 2020070449 W ES2020070449 W ES 2020070449W WO 2021009401 A1 WO2021009401 A1 WO 2021009401A1
Authority
WO
WIPO (PCT)
Prior art keywords
inertial sensor
axis
camera
endoscope
surgeon
Prior art date
Application number
PCT/ES2020/070449
Other languages
Spanish (es)
French (fr)
Inventor
Jaime Viera Artiles
Jose Julián VALDIANDE GUTIÉRREZ
Jose Miguel LÓPEZ HIGUERA
Original Assignee
Servicio Cántabro De Salud
Universidad De Cantabria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Servicio Cántabro De Salud, Universidad De Cantabria filed Critical Servicio Cántabro De Salud
Publication of WO2021009401A1 publication Critical patent/WO2021009401A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof

Definitions

  • the present invention belongs to the field of systems, devices and methods for surgery. More specifically, a system is proposed to improve spatial orientation in endoscopic surgery, configured to control the spatial position of the endoscope with respect to a reference position.
  • the endoscope is the instrument used to carry out this type of surgery and allows us to observe inside a cavity, duct or hollow organ. It is made up of a tubular probe, which can be rigid or semi-flexible, which has a light that allows the cavity to be observable and a camera at the end of the probe.
  • the endoscope allows access to the interior of the human body through natural cavities (sinonasal endoscopic surgery, anterior skull base surgery, etc.) or through small incisions (laparoscopy, arthroscopy, etc.). Rigid endoscopes can be operated with one hand, while surgical instruments are manipulated with the other. This technique has helped reduce morbidity in the surgical treatment of many pathologies, reducing hospital stay and the underlying healthcare cost.
  • the difficulty of minimally invasive endoscopic surgery lies in the spatial orientation.
  • This orientation is mainly based on the recognition of anatomical structures by the surgeon, but due to indirect, restricted and sometimes angled vision (the field of view or field of perspective can be 0, 30, 45 or 70 degrees) of the surgical field, as well as the alteration of the depth of field when moving from the natural binocular vision in three dimensions (3D) to the two dimensions (2D) of the endoscopic image on the screen, orientation during endoscopic procedures can represent a challenge.
  • the surgeon may lose sight of the points anatomical keys when navigating from one anatomical area to another, making it difficult to maintain spatial orientation. "Being lost" is a common experience among endoscopists.
  • Compensating for directional rotation and counterintuitive movements when the visual field is distorted requires complex brain coordination. Performance progressively decreases as the angle of rotation increases, something that becomes evident at just 15 degrees. The problem is accentuated when the surgery is performed with two surgeons, where only one is the one who handles the camera (as in endoscopic surgery of the skull base and in most laparoscopic procedures) since the surgeon who is operating bases his orientation, at least in part, in the image offered by your partner. Small inadvertent twists in surgery can distort the anatomical landmarks of the surgical field and disorient one or both surgeons, which can contribute to intraoperative, sometimes fatal complications.
  • Document US6097423A describes an endoscopic system that includes a camera head with an internal image detection device (such as a CCD sensor), a camera control unit that processes the camera signals into a video signal standard (such as NTSC) and a video screen to display the image received by the camera from an endoscope.
  • the CCD sensor is positioned on the camera head in such a way that its central axis coincides with that of the camera's optical input.
  • An accelerometer is attached to the CCD, producing a signal proportional to its position relative to the vertical being at its maximum when its vertical axis is vertical.
  • the system incorporates a servomotor that rotates the CCD to maintain the maximum value. In this way, the view presented by the video screen will always be level.
  • document US7037258E32 describes an apparatus and method for compensating the visualization of an image obtained in a camera associated with an endoscope.
  • the received optical image is converted into an electrical signal through an image sensor that can be a CCD or CMOS detector.
  • the endoscope camera has an inertial sensor that detects rotations of the received image with respect to the endoscope's optical axis and the sensor output signals are used to rotate the image or image from the sensor.
  • the Inertial sensor which can be an accelerometer or gyroscope, the image is rotated within a microprocessor to be displayed on a monitor.
  • Kurt Hóller et al have proposed a method to correct endoscopic orientation (“Endoscope Orientation Correction”, from book Medical Image Computing and Computer-Assisted Intervention - MICCAI 2009: 12th International Conference, London, UK, September 20-24 , 2009, Proceedings, Part I (pp. 459-66)).
  • a MEMS triaxial inertial sensor is attached to the tip of an endoscope and measures the impact of gravity on each of the three axes of the orthogonal accelerometer. After an initial calibration and filtering of these three values, the angle of rotation is estimated. Subsequently, the image rotation is performed in real time by digitally rotating the endoscopic video signal.
  • the present disclosure provides an endoscopic system comprising a rigid tubular lens with a channel for the passage of light through an optical fiber, configured to enter a cavity through a cutaneous hole or incision and whose function is to capture and transmit the image. of the illuminated cavity; a camera connected to one end of the tubular lens configured to digitize the image obtained through said tubular lens; a light source also connected to the tubular lens at the end that is connected to the camera; a video receiver connected to the camera through which the signal from it is collected; and a screen that allows you to view the image outgoing from the video receiver.
  • the system also includes:
  • an inertial sensor comprising at least a 3-axis accelerometer and a 2-axis gyroscope, the inertial sensor being configured to, based on the angular acceleration data obtained by the accelerometer and angular velocity obtained by the gyroscope, provide the Inertial sensor orientation through the angles of roll (rotation in the X axis) and pitch (rotation in the Y axis) that correspond to the angles of rotation of the endoscope (camera 10 + tube lens 1 1) due to the turns of the surgeon handling the endoscope, such that said inertial sensor must be located in the chamber (inside or on its surface, at its entrance or exit) or in its vicinity (at its entrance or exit), in such a way that does not interfere with the surgeon during use, and such that the X axis of the inertial sensor must be placed parallel to the longitudinal axis of the tubular lens, the Y axis of the inertial sensor parallel to the transverse axis of the tubular lens ular and the Z axi
  • a computer system comprising an inertial sensor data reception port connected to said inertial sensor; a video capture device configured to capture the video signal from the video receiver that collects the signal from the camera; a video output of the same format as the input video collected in the video recorder connected to the screen and a connection port connected to a human interaction device and which collects the data from said device;
  • a human interaction device configured to interact with the software of the computer system and command the relevant functionalities of said computer system.
  • the inertial sensor comprises an accelerometer with 3 sensing axes and a gyroscope with 2 sensing axes.
  • the inertial sensor comprises an accelerometer with 3 sensing axes (X, Y, Z), a gyroscope with 3 sensing axes (X, Y, Z) and a magnetometer with 3 sensing axes (X, Y, Z). .
  • the inertial sensor is placed externally in a watertight box attached to the cable outlet of the camera, in such a way that it does not interfere with the surgeon's holding of the endoscope.
  • the sensor Inertial is placed externally in a watertight box attached to any part of the endoscope chamber. 7.
  • the inertial sensor is incorporated into the chamber without the need for a watertight box.
  • the support of the watertight box comprises a ring adjustable to the diameter of the rigid outlet of the camera cable to which it is attached, configured to orient the box on the Y axis, and an intermediate joint configured to orient the box in the X axis, such that the housing support allows parallel orientation of the sensor housing at the optical outlet of the endoscope, and such that the housing support is made of a rigid sterilizable material.
  • the inertial sensor provides an output rate of the obtained angle data equal to or greater than the refresh rate of the display screen and suitable for fluid perception by the surgeon of changes in the turns of the head. sensors.
  • the computer system displays a native endoscopic image with an overprint of the endoscope turning data relative to a reference set by the surgeon.
  • Figure 1- It shows schematically the main elements of a conventional endoscopic system.
  • Figure 2 - Schematically shows the main elements of the system of the present invention, according to a possible embodiment thereof.
  • Figure 3- Shows the detail of the placement of the watertight box with the inertial sensor at the outlet of the camera cable, according to a possible embodiment of the invention.
  • Figure 4- Shows a support model of the watertight box, according to a possible embodiment of the invention.
  • Figure 5- Shows the image obtained on the screen of the system of the present invention, according to a possible embodiment thereof.
  • FIG. 1 it is shown a conventional endoscopic system 100 comprising a rigid tubular lens 11 with a channel for the passage of light through the optical fiber, configured to enter a cavity through a hole or skin incision and whose function is to capture and transmit the image of the illuminated cavity; a camera 10 connected to one end of the tubular lens 11 configured to digitize the image obtained through said tubular lens 11; a light source 13 also connected to the tubular lens 11 at the end that is connected to the camera 10; a video receiver 12 connected to the camera 10 through which the signal from it is collected; and a screen 14 that allows viewing the image coming out of the video receiver 12.
  • the surgeon connects the tubular lens 11 to the camera 10 and holds the camera 10 with one hand to introduce the tubular lens inside the patient, keeping the wrist in a resting position, that is, aligned with the forearm and ideally the forearm about 90 degrees from the arm.
  • Figure 2 shows the endoscopic system of the present invention 200 that includes the described elements of the conventional endoscopic system 100 and, in addition, it comprises an inertial sensor 21, a computer system 27 and a human interaction device 26, such as a pedal, a button, a button or a keyboard, to interact with the software of the computer system 27.
  • a human interaction device 26 such as a pedal, a button, a button or a keyboard
  • the inertial sensor 21 comprises at least a 3-axis accelerometer and a 2-axis gyroscope, the inertial sensor 21 being configured to provide the data from the angular acceleration obtained by the accelerometer and the angular velocity obtained by the gyroscope. orientation of the inertial sensor 21 through the angles of bank (rotation on the X axis) and pitch (rotation on the Y axis). These pitch and roll angles, calculated by the inertial sensor 21 from the data from the accelerometers and the gyroscopes, correspond to the angles of rotation of the endoscope (camera 10 + tube lens 1 1) due to the wrist turns of the surgeon who is operating the endoscope.
  • said inertial sensor 21 comprises an accelerometer with 3 sensing axes (X, Y, Z) and a gyroscope with 2 sensing axes (X, Y).
  • the inertial sensor 21 also comprises a 3-axis magnetometer and a 3-axis gyroscope, with which the inertial sensor 21 is able to obtain the yaw (rotation in the Z axis).
  • the researchers have concluded that for the inertial sensor 21 to be able to accurately detect the movements of the surgeon's wrist, said sensor 21 must be located in the chamber 10 (inside or on its surface, at its entrance or exit) or in its vicinity (at its entrance or exit), and such that the inertial sensor 21 does not interfere with the surgeon during its use.
  • the input of the camera 10 corresponds to the port connected to the tubular lens 11, and that the output of the camera 10 corresponds to the port connected to the video receiver 12.
  • the X-axis of the inertial sensor 21 must be located parallel to the longitudinal axis of the tubular lens 11
  • the Y axis of the inertial sensor 21 must be located parallel to the transverse axis of the tubular lens 1 1
  • the Z axis of the inertial sensor 21 must be located parallel to the vertical endoscope, so that the movements of the inertial sensor 21 and the endoscope are united. In this way, the data of the orientation axes of the inertial sensor 21 coincide with the orientation of the endoscope.
  • the inertial sensor 21 is placed externally in a watertight box 31 fixed to the cable outlet of the camera 10, in such a way that it does not interfere with the surgeon's holding of the endoscope.
  • the inertial sensor 21 can be placed externally in a watertight box 31 attached to any part of the endoscope chamber 10 or it can be incorporated into the chamber 10 without the need for a watertight box.
  • the X axis of the inertial sensor 21 must be aligned parallel to the longitudinal axis of the tubular lens 11
  • the Y axis of the inertial sensor 21 must be aligned parallel to the transverse axis of the tubular lens 1 1
  • the Z axis of the inertial sensor 21 must be aligned parallel to the vertical of the endoscope.
  • the support of the watertight box 300 comprises an adjustable ring 32 to the diameter of the rigid outlet of the cable of the chamber 10 to which it is attached, which allows the box to be oriented in the Y axis, and an intermediate joint 33 that allows to orient the box on the X axis.
  • the support of the watertight box 300 allows the parallel orientation of the watertight box 31 of the inertial sensor 21 at the optical outlet of the endoscope, since that allows the watertight box 31 to rotate on its X and Y axes.
  • the watertight box support 300 is preferably made of a rigid sterilizable material, or a material chosen from the following list of materials: a synthetic material, a surgical metal, and mixtures thereof.
  • the inertial sensor 21 is configured to determine at least the angles of roll (X) and pitch (Y) with which the orientation of the endoscope is obtained, producing output data suitable for the relaxed movement of the endoscope. Likewise, the inertial sensor 21 can offer the raw data so that it can be used by the system to calculate any type of variable related to the surgeon's restraint. The inertial sensor 21 provides an output rate of the obtained angle data equal to or greater than the refresh rate of the display screen 14 and suitable for fluid perception by the surgeon of changes in the turns of the sensors.
  • the computer system 27 comprises a data reception port 22 of the inertial sensor 21 connected to said inertial sensor 21; a video capture device 23 configured to capture the video signal output from the video receiver 12 that collects the signal from the camera 10; a video output 24 of the same format as the input video collected in the video recorder 23 connected to the screen 14 and a connection port 25 connected to the human interaction device 26 and which collects the data from said device.
  • the human interaction device 26 is configured to interact with the software of the computer system 27 and command the pertinent functionalities of said computer system 27.
  • the action of this human interaction device 26 can be multifunctional. For example, a short press on pedal 26 can change the display type, navigate through a list of options, and so on. For example, a long, long press on pedal 26 can perform horizon calibration, accept the selected option, start data recording, and so on.
  • a method of spatial orientation in endoscopic surgery which allows to control the spatial position of the endoscope with respect to a reference position, using the system defined above.
  • the method comprises the stages of: First, the endoscopic system is prepared, connecting the light source 13 to the tubular lens 11, this is connected to the camera 10 and the latter to the video receiver 12 that will allow its display on the screen.
  • Inertial sensor 21 is positioned at the chosen location in chamber 10 and is aligned with the X and Y axis of the tubular lens.
  • Human interaction device 26 is connected to connection port 25 of computer system 27 and computer software 27 is started.
  • the endoscope is inserted into the desired cavity that is illuminated by the light source.
  • the camera 10 captures the image that passes through the tubular lens 1 1 and is displayed on the screen 14.
  • the inertial sensor 21 collects at a continuous frequency the raw values provided by the accelerometer (X, Y, Z) and by the gyroscope (X, Y), which correspond to the angular acceleration values of each axis and the velocity values of each axis respectively. These raw data are transformed by means of a mathematical processing integrated in the inertial sensor 1 1 into the data of the absolute angles of pitch and bank of the orientation of the inertial sensor 11.
  • Said data are sent continuously to the computer system 27 through the data reception port 22, with a frequency equivalent to the frequency of sending images of the video sequence of the camera 10.
  • These pitch and roll angles calculated by the inertial sensor 1 1 a From the data from the accelerometers and gyroscopes, they correspond to the angles of rotation of the endoscope due to the wrist turns of the surgeon who is operating the endoscope. These angles are updated as the surgeon manipulates the endoscope and are sent with the frequency indicated to the computer system 27.
  • the tubular lens 1 In parallel, the tubular lens 1 1, supported by the illumination that is injected from the light source 13, takes the images of the cavity in which it is inserted. These images are collected by the camera 10 that is connected to the video receiver 12 and this sends them to the video recorder 23 of the computer system 27 through a continuous video frame, and immediately this video frame is transmitted without latency to the output. video 24 of the computer system 27, this video in turn being sent to screen 14 where it is represented natively and in real time.
  • the The surgeon defines to the computer system 27 the reference position of the endoscope, establishing the rotation position of the 2 current axes (pitch and roll), as the reference position, through the human interaction device 26.
  • the data The reference pitch and roll data are saved in the memory of the computer system 27.
  • the computer system 27 can store in the memory all the pitch and pitch data at the reception frequency thereof, for subsequent processing of said data. data.
  • the computer system 27 represents on the screen 14, above the native video image 15, indicators of rotation displacement of the axes with respect to the reference position set by the surgeon.
  • the bank and pitch angles represented by the displacement indicators are calculated by subtracting the current value of the bank and pitch angles sent at each moment by the inertial sensor 21, less the value of the bank and pitch angles from the reference position. stored in the computer system memory 27.
  • these angles represented on the screen are translated into the angular deviation that the change in orientation of the endoscope undergoes with respect to the desirable orientation set by the surgeon.
  • the surgeon will be able to have information about the turn that he is making in the endoscope and will be able to act in real time correcting the deviation that he sees if he considers it appropriate.
  • the surgeon manages to improve his own spatial perception of how the endoscope is located, helping him to better understand the position of the anatomical landmarks shown in the image, as well as to react to unwanted turns of the endoscope that would not have been perceived without it. help from this system.
  • a system functionality indicator 51 shows warping and is represented by circular bars proportional in their arc length to the deviation calculated around the external circumference of the image. obtained from the endoscope. The deviation is calculated by subtracting from the current position the reference position previously set by the surgeon.
  • a system functionality indicator 54 shows pitch and is represented by a vertical bar proportional in its length to the calculated deviation in degrees.
  • the color can be assigned to said bar based on the turning threshold reached, as well as the roll indicator 51.
  • a system functionality indicator consists of menu options 53 operable through human interaction device 26.
  • these menu options may consist of reference; remove reference; start or stop data and video recording; remove visual guides, etc. You can switch from one menu option to another and activate the selected option through the human interaction device 26.
  • a system functionality indicator 52 enables the recording of data from the sensors and the image from the camera 10, as well as the subtractions between the current roll and pitch data. and the reference ones, which are stored on an internal disk. In this way, the data can be analyzed later, for example, to assess the skills of the surgeon in handling the camera and to aid in their training.
  • the computer system 27 making use of the surgeon's pulse information collected by the accelerometer of the inertial sensor 21, can warn of variations in it (fatigue, stress, disorientation , etc.) so that timely action can be taken.
  • the surgeon wants to change the reference position, he can reactivate the human interaction device 26 to update to the new position in space.
  • the system does not alter the position of the native image. The surgeon will always have full control of the movement of the camera 10 and therefore of the image displayed on the screen.
  • the system will show the variations in the position of the camera 10 with respect to the position chosen as a reference, using the previously explained functionality indicators, offering information in real time about the position of the camera 10 so that the surgeon can correct it if so. want.
  • the term “approximately” and terms of its family should be interpreted as indicating values very close to those that accompany said term. That is, a deviation within reasonable limits from an exact value should be accepted, because a person skilled in the art will understand that such a deviation from the indicated values may be unavoidable due to measurement inaccuracies, etc. The same applies to the terms “about”, “about” and “substantially”.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

The present invention relates to a system for improving spatial orientation in endoscopic surgery, designed to control the spatial position of the endoscope with respect to a reference position.

Description

DESCRIPCIÓN DESCRIPTION
SISTEMA ENDOSCÓPICO DE ORIENTACIÓN ESPACIAL ENDOSCOPIC SYSTEM OF SPACE ORIENTATION
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención pertenece al campo de los sistemas, dispositivos y métodos para cirugía. Más concretamente se propone un sistema para mejorar la orientación espacial en cirugía endoscópica, configurado para controlar la posición espacial del endoscopio respecto a una posición de referencia. The present invention belongs to the field of systems, devices and methods for surgery. More specifically, a system is proposed to improve spatial orientation in endoscopic surgery, configured to control the spatial position of the endoscope with respect to a reference position.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
En las últimas décadas, la cirugía endoscópica mínimamente invasiva ha cobrado enorme importancia e interés debido a las ventajas que proporciona al paciente. El endoscopio es el instrumento utilizado para llevar a cabo este tipo de cirugías y permite observar dentro de una cavidad, conducto u órgano hueco. Está conformado por una sonda tubular, que puede ser rígida o semiflexible, la cual presenta una luz que permite que la cavidad sea observable y una cámara en el extremo de la sonda. In recent decades, minimally invasive endoscopic surgery has gained enormous importance and interest due to the benefits it provides to the patient. The endoscope is the instrument used to carry out this type of surgery and allows us to observe inside a cavity, duct or hollow organ. It is made up of a tubular probe, which can be rigid or semi-flexible, which has a light that allows the cavity to be observable and a camera at the end of the probe.
El endoscopio permite acceder al interior del cuerpo humano a través de cavidades naturales (cirugía endoscópica nasosinusal, cirugía de base de cráneo anterior, etc.) o a través de pequeñas incisiones (laparoscopia, artroscopia, etc.). Los endoscopios rígidos pueden manejarse con una mano, mientras con la otra se manipulan los instrumentos quirúrgicos. Esta técnica ha ayudado a reducir la morbilidad en el tratamiento quirúrgico de muchas patologías, disminuyendo la estancia hospitalaria y el gasto sanitario subyacente. The endoscope allows access to the interior of the human body through natural cavities (sinonasal endoscopic surgery, anterior skull base surgery, etc.) or through small incisions (laparoscopy, arthroscopy, etc.). Rigid endoscopes can be operated with one hand, while surgical instruments are manipulated with the other. This technique has helped reduce morbidity in the surgical treatment of many pathologies, reducing hospital stay and the underlying healthcare cost.
La dificultad de la cirugía endoscópica mínimamente invasiva radica en la orientación espacial. Esta orientación se basa fundamentalmente en el reconocimiento de las estructuras anatómicas por parte del cirujano, pero debido a la visión indirecta, restringida y en ocasiones angulada (el campo de visión o campo de perspectiva puede ser de 0, 30, 45 o 70 grados) del campo quirúrgico, así como la alteración de la profundidad de campo al pasar de la visión natural binocular en tres dimensiones (3D) a las dos dimensiones (2D) de la imagen endoscópica en la pantalla, la orientación durante los procedimientos endoscópicos pueden suponer un reto. El cirujano puede perder de vista los puntos anatómicos claves al navegar de una zona anatómica a otra, lo que hace difícil mantener la orientación espacial. “Estar perdido” es una experiencia común entre los endoscopistas. The difficulty of minimally invasive endoscopic surgery lies in the spatial orientation. This orientation is mainly based on the recognition of anatomical structures by the surgeon, but due to indirect, restricted and sometimes angled vision (the field of view or field of perspective can be 0, 30, 45 or 70 degrees) of the surgical field, as well as the alteration of the depth of field when moving from the natural binocular vision in three dimensions (3D) to the two dimensions (2D) of the endoscopic image on the screen, orientation during endoscopic procedures can represent a challenge. The surgeon may lose sight of the points anatomical keys when navigating from one anatomical area to another, making it difficult to maintain spatial orientation. "Being lost" is a common experience among endoscopists.
La alteración de la profundidad de campo se ha conseguido minimizar con los sistemas de endoscopía 3D, aunque a día de hoy la endoscopia en 2D sigue siendo la más ampliamente utilizada. The alteration of depth of field has been minimized with 3D endoscopy systems, although today 2D endoscopy is still the most widely used.
El método 3D más extendido para ayudar a la orientación intraoperatoria en cirugías como la nanosinusal y de base de cráneo son los sistemas de neuronavegación, tanto ópticos como electromagnéticos, que ayudan a localizar la posición de los instrumentos quirúrgicos en el espacio tridimensional correlacionándolos con las imágenes radiológicas (Tomografía Computerizada o Resonancia Nuclear Magnética) previas del paciente. Su evolución ha llevado a los nuevos sistemas de realidad aumentada en las que se superponen reconstrucciones tridimensionales de las imágenes radiológicas a la imagen endoscópica. Sin embargo, su uso está limitado a grandes centros debido a su elevado coste y precisión limitada. Además, cirugías como la laparoscopia abdominal no pueden beneficiarse de su uso al trabajar mayormente en partes blandas sin utilizar referencias óseas. The most widespread 3D method to aid intraoperative orientation in surgeries such as nanosinus and skull base are the neuronavigation systems, both optical and electromagnetic, which help to locate the position of surgical instruments in three-dimensional space by correlating them with the images radiological (Computerized Tomography or Magnetic Nuclear Resonance) of the patient. Its evolution has led to new augmented reality systems in which three-dimensional reconstructions of radiological images are superimposed on the endoscopic image. However, its use is limited to large centers due to its high cost and limited precision. Furthermore, surgeries such as abdominal laparoscopy cannot benefit from its use by working mostly on soft tissue without using bone landmarks.
En la mayoría de las cirugías, la manera más común de combatir la alteración de la percepción de profundidad con el endoscopio clásico de 2D, es el movimiento continuo de la cámara. Para ello, la cámara se sujeta a pulso con una mano con libertad de movimiento en todos los ejes, por lo que está sujeta al error humano sistemático en forma de movimientos involuntarios. Éstos pueden deberse a la falta de experiencia y el cansancio o fatiga durante la intervención, entre otros motivos. La rotación sobre el eje longitudinal puede pasar inadvertida y hacer que se altere la posición del horizonte de la imagen, generando una distorsión de las referencias anatómicas en el campo quirúrgico, que aumenta a medida que lo hacen los grados de dicha rotación y pueden llevar a la desorientación del cirujano. In most surgeries, the most common way to combat the alteration of depth perception with the classic 2D endoscope is the continuous movement of the camera. To do this, the camera is held by hand with one hand with freedom of movement in all axes, so it is subject to systematic human error in the form of involuntary movements. These may be due to lack of experience and tiredness or fatigue during the intervention, among other reasons. Rotation about the longitudinal axis can go unnoticed and alter the position of the image horizon, generating a distortion of the anatomical landmarks in the surgical field, which increases as the degrees of said rotation increase and can lead to the disorientation of the surgeon.
El cirujano deberá hacer múltiples correcciones durante la intervención para paliar los efectos negativos de esta distorsión. Uno de los métodos utilizados para corregir este fenómeno es la denominada“rotación mental”, en la que el cirujano ajusta la imagen en su cabeza buscando la horizontalidad inicial para mantenerse orientado. Este proceso contribuye a aumentar los tiempos quirúrgicos y es además un factor añadido que genera fatiga. The surgeon must make multiple corrections during the intervention to alleviate the negative effects of this distortion. One of the methods used to correct this phenomenon is the so-called "mental rotation", in which the surgeon adjusts the image in his head, looking for the initial horizontality to stay oriented. This process It contributes to increasing surgical times and is also an added factor that generates fatigue.
La compensación de la rotación direccional y los movimientos contra-intuitivos que se realizan al estar el campo visual distorsionado requieren una coordinación cerebral compleja. El rendimiento disminuye progresivamente a medida que el ángulo de rotación incrementa, algo que se hace evidente a tan solo 15 grados. El problema se acentúa cuando la cirugía se realiza con dos cirujanos, donde solo uno es el que maneja la cámara (como en la cirugía endoscópica de base de cráneo y en la mayoría de procedimientos de laparoscopia) ya que el cirujano que está operando basa su orientación, al menos en parte, en la imagen que le ofrece su compañero. Pequeños giros inadvertidos en la cirugía pueden generar una distorsión de las referencias anatómicas del campo quirúrgico y desorientar a uno o ambos cirujanos, lo que puede contribuir a ocasionar complicaciones intraoperatorias, a veces fatales. Compensating for directional rotation and counterintuitive movements when the visual field is distorted requires complex brain coordination. Performance progressively decreases as the angle of rotation increases, something that becomes evident at just 15 degrees. The problem is accentuated when the surgery is performed with two surgeons, where only one is the one who handles the camera (as in endoscopic surgery of the skull base and in most laparoscopic procedures) since the surgeon who is operating bases his orientation, at least in part, in the image offered by your partner. Small inadvertent twists in surgery can distort the anatomical landmarks of the surgical field and disorient one or both surgeons, which can contribute to intraoperative, sometimes fatal complications.
En el estado de la técnica se encuentran diversos sistemas que tratan de evitar el cambio de la imagen debido a la rotación en el eje longitudinal. En el documento US6097423A se describe un sistema endoscópico que incluye un cabezal de cámara con un dispositivo interno de detección de imagen (como por ejemplo un sensor CCD), una unidad de control de cámara que procesa las señales de la cámara en una señal de video estándar (como por ejemplo NTSC) y una pantalla de video para mostrar la imagen recibida por la cámara desde un endoscopio. El sensor CCD se coloca en el cabezal de la cámara de tal manera que su eje central coincide con el de la entrada óptica de la cámara. Un acelerómetro se fija al CCD, produciendo una señal proporcional a su posición relativa a la vertical estando en su máximo cuando su eje vertical es vertical. El sistema incorpora un servomotor que gira el CCD para mantener el valor máximo. De esta manera, la vista presentada por la pantalla de video siempre estará nivelada. In the state of the art there are various systems that try to avoid the change of the image due to rotation in the longitudinal axis. Document US6097423A describes an endoscopic system that includes a camera head with an internal image detection device (such as a CCD sensor), a camera control unit that processes the camera signals into a video signal standard (such as NTSC) and a video screen to display the image received by the camera from an endoscope. The CCD sensor is positioned on the camera head in such a way that its central axis coincides with that of the camera's optical input. An accelerometer is attached to the CCD, producing a signal proportional to its position relative to the vertical being at its maximum when its vertical axis is vertical. The system incorporates a servomotor that rotates the CCD to maintain the maximum value. In this way, the view presented by the video screen will always be level.
A su vez, el documento US7037258E32 describe un aparato y método para compensar la visualización de una imagen obtenida en una cámara asociada a un endoscopio. La imagen óptica recibida se convierte en una señal eléctrica a través de un sensor de imagen que puede ser un detector CCD o un CMOS. La cámara del endoscopio tiene un sensor inercial que detecta rotaciones de la imagen recibida respecto al eje óptico del endoscopio y las señales de salida del sensor se utilizan para rotar la imagen o la imagen del sensor. En el caso de rotación de la imagen obtenida con el sensor de imagen, el sensor inercial, que puede ser un acelerómetro o giroscopio, la imagen se rota dentro de un microprocesador para ser visualizada en un monitor. In turn, document US7037258E32 describes an apparatus and method for compensating the visualization of an image obtained in a camera associated with an endoscope. The received optical image is converted into an electrical signal through an image sensor that can be a CCD or CMOS detector. The endoscope camera has an inertial sensor that detects rotations of the received image with respect to the endoscope's optical axis and the sensor output signals are used to rotate the image or image from the sensor. In the case of rotation of the image obtained with the image sensor, the Inertial sensor, which can be an accelerometer or gyroscope, the image is rotated within a microprocessor to be displayed on a monitor.
Por otra parte, Kurt Hóller et al han propuesto un método para corregir la orientación endoscópica (“Endoscopio Orientation Correction”, from book Medical Image Computing and Computer-Assisted Intervention - MICCAI 2009: 12th International Conference, London, UK, September 20-24, 2009, Proceedings, Part I (pp.459-66)). Un sensor inercial triaxial MEMS se coloca en la punta de un endoscopio y mide el impacto de la gravedad en cada uno de los tres ejes del acelerómetro ortogonal. Después de una calibración inicial y filtrado de estos tres valores se estima el ángulo de rotación. Posteriormente, la rotación de la imagen se realiza en tiempo real mediante la rotación digital de la señal de video endoscópica. On the other hand, Kurt Hóller et al have proposed a method to correct endoscopic orientation (“Endoscope Orientation Correction”, from book Medical Image Computing and Computer-Assisted Intervention - MICCAI 2009: 12th International Conference, London, UK, September 20-24 , 2009, Proceedings, Part I (pp. 459-66)). A MEMS triaxial inertial sensor is attached to the tip of an endoscope and measures the impact of gravity on each of the three axes of the orthogonal accelerometer. After an initial calibration and filtering of these three values, the angle of rotation is estimated. Subsequently, the image rotation is performed in real time by digitally rotating the endoscopic video signal.
Todos estos sistemas descritos se basan en sensores inerciales cuya señal se utiliza para girar activamente la imagen en pantalla y mantener la horizontalidad de la misma, restando los efectos de la rotación producida por la sujeción manual del cirujano. Es decir, con este tipo de sistemas, lo que se obtiene es una imagen estable en cuanto a su rotación, independientemente de la acción del cirujano. Esto puede producir un efecto de descoordinación óculo-manual ya que movimientos de giro voluntarios del endoscopio no se corresponderán con la imagen mostrada al permanecer inalterada, lo que puede conllevar a situaciones de peligro, puesto que con la otra mano el cirujano maneja el instrumental y se alteraría la relación del movimiento de una mano respecto de la otra. El cirujano no tiene el control total de la imagen que se muestra en la pantalla con los sistemas mencionados y esto puede ser otra fuente de desorientación. All these systems described are based on inertial sensors whose signal is used to actively rotate the image on the screen and maintain its horizontality, subtracting the effects of the rotation produced by the manual grip of the surgeon. That is, with this type of system, what is obtained is a stable image in terms of its rotation, regardless of the action of the surgeon. This can produce an eye-manual incoordination effect since voluntary turning movements of the endoscope will not correspond to the image shown as it remains unaltered, which can lead to dangerous situations, since the surgeon handles the instruments with the other hand and the ratio of the movement of one hand to the other would be altered. The surgeon does not have full control of the image displayed on the screen with the systems mentioned and this can be another source of disorientation.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente divulgación proporciona un sistema endoscópico que comprende una lente tubular rígida con un canal para el paso de luz a través de fibra óptica, configurada para introducirse en una cavidad a través de un orificio o incisión cutánea y cuya función es captar y transmitir la imagen de la cavidad iluminada; una cámara conectada a un extremo de la lente tubular configurada para digitalizar la imagen obtenida a través de dicha lente tubular; una fuente de luz conectada también a la lente tubular por el extremo que se conecta a la cámara; un receptor de video conectado a la cámara a través del cual se recoge la señal proveniente de la misma; y una pantalla que permite visualizar la imagen saliente del receptor de video. El sistema comprende además: The present disclosure provides an endoscopic system comprising a rigid tubular lens with a channel for the passage of light through an optical fiber, configured to enter a cavity through a cutaneous hole or incision and whose function is to capture and transmit the image. of the illuminated cavity; a camera connected to one end of the tubular lens configured to digitize the image obtained through said tubular lens; a light source also connected to the tubular lens at the end that is connected to the camera; a video receiver connected to the camera through which the signal from it is collected; and a screen that allows you to view the image outgoing from the video receiver. The system also includes:
- un sensor inercial que comprende al menos un acelerómetro de 3 ejes y un giroscopio de 2 ejes, estando el sensor inercial configurado para, a partir de los datos de aceleración angular obtenidos por el acelerómetro y de velocidad angular obtenidos por el giroscopio, proporcionar la orientación del sensor inercial a través de los ángulos de alabeo (rotación en el eje X) y cabeceo (rotación en el eje Y) que se corresponden con los ángulos de giro del endoscopio (cámara 10 + lente tubular 1 1) debido a los giros de muñeca del cirujano que está manejando el endoscopio, tal que dicho sensor inercial debe estar situado en la cámara (en su interior o en su superficie, a su entrada o salida) o en sus proximidades (a su entrada o salida), de forma que no interfiera al cirujano durante su utilización, y tal que el eje X del sensor inercial debe situarse de manera paralela al eje longitudinal de la lente tubular, el eje Y del sensor inercial de manera paralela al eje transversal de la lente tubular y el eje Z del sensor inercial de manera paralela a la vertical del endoscopio (cámara 10 + lente tubular 11); - an inertial sensor comprising at least a 3-axis accelerometer and a 2-axis gyroscope, the inertial sensor being configured to, based on the angular acceleration data obtained by the accelerometer and angular velocity obtained by the gyroscope, provide the Inertial sensor orientation through the angles of roll (rotation in the X axis) and pitch (rotation in the Y axis) that correspond to the angles of rotation of the endoscope (camera 10 + tube lens 1 1) due to the turns of the surgeon handling the endoscope, such that said inertial sensor must be located in the chamber (inside or on its surface, at its entrance or exit) or in its vicinity (at its entrance or exit), in such a way that does not interfere with the surgeon during use, and such that the X axis of the inertial sensor must be placed parallel to the longitudinal axis of the tubular lens, the Y axis of the inertial sensor parallel to the transverse axis of the tubular lens ular and the Z axis of the inertial sensor parallel to the vertical of the endoscope (camera 10 + tubular lens 11);
- un sistema informático que comprende un puerto de recepción de datos del sensor inercial conectado a dicho sensor inercial; una capturadora de video configurada para captar la señal de video de salida del receptor de video que recoge la señal proveniente de la cámara; una salida de video del mismo formato que el video de entrada recogido en la capturadora de video conectada a la pantalla y un puerto de conexión conectado a un dispositivo de interacción humana y que recoge los datos de dicho dispositivo; - a computer system comprising an inertial sensor data reception port connected to said inertial sensor; a video capture device configured to capture the video signal from the video receiver that collects the signal from the camera; a video output of the same format as the input video collected in the video recorder connected to the screen and a connection port connected to a human interaction device and which collects the data from said device;
- un dispositivo de interacción humana configurado para interactuar con el software del sistema informático y comandar las funcionalidades pertinentes de dicho sistema informático. - a human interaction device configured to interact with the software of the computer system and command the relevant functionalities of said computer system.
Preferentemente, el sensor inercial comprende un acelerómetro con 3 ejes de sensado y un giroscopio con 2 ejes de sensado. Alternativamente, el sensor inercial comprende un acelerómetro con 3 ejes de sensado (X, Y, Z), un giroscopio con 3 ejes de sensado (X, Y, Z) y un magnetómetro de 3 ejes de sensado (X, Y, Z). Preferably, the inertial sensor comprises an accelerometer with 3 sensing axes and a gyroscope with 2 sensing axes. Alternatively, the inertial sensor comprises an accelerometer with 3 sensing axes (X, Y, Z), a gyroscope with 3 sensing axes (X, Y, Z) and a magnetometer with 3 sensing axes (X, Y, Z). .
En una posible realización, el sensor inercial está colocado externamente en una caja estanca fijada a la salida del cable de la cámara, de tal forma, que no interfiere con la sujeción del endoscopio por parte del cirujano. En otra posible realización, el sensor inercial está colocado externamente en una caja estanca fijada en cualquier parte de la cámara del endoscopio. 7. En otra posible realización, el sensor inercial está incorporado dentro de la cámara sin necesidad de caja estanca. In a possible embodiment, the inertial sensor is placed externally in a watertight box attached to the cable outlet of the camera, in such a way that it does not interfere with the surgeon's holding of the endoscope. In another possible embodiment, the sensor Inertial is placed externally in a watertight box attached to any part of the endoscope chamber. 7. In another possible embodiment, the inertial sensor is incorporated into the chamber without the need for a watertight box.
En una posible realización, el soporte de la caja estanca comprende un anillo ajustable al diámetro de la salida rígida del cable de la cámara al que va sujeto configurado para orientar la caja en el eje Y, y una articulación intermedia configurada para orientar la caja en el eje X, tal que el soporte de la caja estanca permite la orientación paralela de la caja estanca del sensor en la salida óptica del endoscopio, y tal que el soporte de la caja estanca está hecho de un material rígido esterilizable. In a possible embodiment, the support of the watertight box comprises a ring adjustable to the diameter of the rigid outlet of the camera cable to which it is attached, configured to orient the box on the Y axis, and an intermediate joint configured to orient the box in the X axis, such that the housing support allows parallel orientation of the sensor housing at the optical outlet of the endoscope, and such that the housing support is made of a rigid sterilizable material.
En una posible realización, el sensor inercial proporciona una tasa de salida de los datos de los ángulos obtenidos igual o superior a la frecuencia de refresco de la pantalla de visualización y adecuada para la percepción fluida por parte del cirujano de los cambios en los giros de los sensores. In a possible embodiment, the inertial sensor provides an output rate of the obtained angle data equal to or greater than the refresh rate of the display screen and suitable for fluid perception by the surgeon of changes in the turns of the head. sensors.
En una posible realización, el sistema informático representa en la pantalla una imagen endoscópica nativa con sobreimpresión de los datos de giro del endoscopio respecto de una referencia fijada por el cirujano. In one possible embodiment, the computer system displays a native endoscopic image with an overprint of the endoscope turning data relative to a reference set by the surgeon.
Los diferentes aspectos y realizaciones de la invención definidos anteriormente pueden combinarse entre sí, siempre que sean mutuamente compatibles. The different aspects and embodiments of the invention defined above can be combined with each other, provided they are mutually compatible.
Ventajas y características adicionales de la invención serán evidentes a partir de la descripción detallada que sigue y se señalarán particularmente en las reivindicaciones adjuntas. Additional advantages and features of the invention will be apparent from the detailed description that follows and will be pointed out particularly in the appended claims.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Para complementar la descripción y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo de realización práctica de la misma, se acompaña como parte integrante de la descripción, un juego de figuras en el que con carácter ilustrativo y no limitativo, se ha representado lo siguiente: To complement the description and in order to help a better understanding of the characteristics of the invention, according to an example of a practical embodiment thereof, a set of figures is attached as an integral part of the description, in which with character Illustrative and not limiting, the following has been represented:
La Figura 1-. Muestra esquemáticamente los principales elementos de un sistema endoscópico convencional. La Figura 2- Muestra esquemáticamente los principales elementos del sistema de la presente invención, según una posible realización del mismo. La Figura 3- Muestra el detalle de la colocación de la caja estanca con el sensor inercial a la salida del cable de la cámara, según una posible realización de la invención. Figure 1-. It shows schematically the main elements of a conventional endoscopic system. Figure 2 - Schematically shows the main elements of the system of the present invention, according to a possible embodiment thereof. Figure 3- Shows the detail of the placement of the watertight box with the inertial sensor at the outlet of the camera cable, according to a possible embodiment of the invention.
La Figura 4- Muestra un modelo de soporte de la caja estanca, según una posible realización de la invención. Figure 4- Shows a support model of the watertight box, according to a possible embodiment of the invention.
La Figura 5- Muestra la imagen obtenida en la pantalla del sistema de la presente invención, según una posible realización del mismo. Figure 5- Shows the image obtained on the screen of the system of the present invention, according to a possible embodiment thereof.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La descripción que sigue no debe tomarse en un sentido limitado, sino que se proporciona solamente con el propósito de describir principios amplios de la invención. Las siguientes realizaciones de la invención se describirán a modo de ejemplo, con referencia a las figuras arriba citadas, que muestran aparatos y resultados de acuerdo con la invención. The description that follows is not to be taken in a limited sense, but is provided solely for the purpose of describing broad principles of the invention. The following embodiments of the invention will be described by way of example, with reference to the figures cited above, which show apparatus and results according to the invention.
A continuación, se describe el sistema de orientación espacial en cirugía endoscópica, que permite controlar la posición espacial del endoscopio respecto a una posición de referencia, de acuerdo con el esquema del mismo de las Figuras 1 y 2. En la Figura 1 , se muestra un sistema endoscópico convencional 100 que comprende una lente tubular rígida 11 con un canal para el paso de luz a través de fibra óptica, configurada para introducirse en una cavidad a través de un orificio o incisión cutánea y cuya función es captar y transmitir la imagen de la cavidad iluminada; una cámara 10 conectada a un extremo de la lente tubular 11 configurada para digitalizar la imagen obtenida a través de dicha lente tubular 11 ; una fuente de luz 13 conectada también a la lente tubular 11 por el extremo que se conecta a la cámara 10; un receptor de video 12 conectado a la cámara 10 a través del cual se recoge la señal proveniente de la misma; y una pantalla 14 que permite visualizar la imagen saliente del receptor de video 12. Durante la utilización del sistema, el cirujano conecta la lente tubular 11 a la cámara 10 y sujeta la cámara 10 con una mano para introducir la lente tubular en el interior del paciente, manteniendo la muñeca en posición de reposo, es decir, alineada con el antebrazo e idealmente, el antebrazo a unos 90 grados del brazo. Next, the spatial orientation system in endoscopic surgery is described, which allows controlling the spatial position of the endoscope with respect to a reference position, according to the scheme of Figures 1 and 2. In Figure 1, it is shown a conventional endoscopic system 100 comprising a rigid tubular lens 11 with a channel for the passage of light through the optical fiber, configured to enter a cavity through a hole or skin incision and whose function is to capture and transmit the image of the illuminated cavity; a camera 10 connected to one end of the tubular lens 11 configured to digitize the image obtained through said tubular lens 11; a light source 13 also connected to the tubular lens 11 at the end that is connected to the camera 10; a video receiver 12 connected to the camera 10 through which the signal from it is collected; and a screen 14 that allows viewing the image coming out of the video receiver 12. During the use of the system, the surgeon connects the tubular lens 11 to the camera 10 and holds the camera 10 with one hand to introduce the tubular lens inside the patient, keeping the wrist in a resting position, that is, aligned with the forearm and ideally the forearm about 90 degrees from the arm.
En la Figura 2 se muestra el sistema endoscópico de la presente invención 200 que incluye los elementos descritos del sistema endoscópico convencional 100 y, además, comprende un sensor inercial 21 , un sistema informático 27 y un dispositivo de interacción humana 26, como por ejemplo un pedal, un pulsador, un botón o un teclado, para interactuar con el software del sistema informático 27. Figure 2 shows the endoscopic system of the present invention 200 that includes the described elements of the conventional endoscopic system 100 and, in addition, it comprises an inertial sensor 21, a computer system 27 and a human interaction device 26, such as a pedal, a button, a button or a keyboard, to interact with the software of the computer system 27.
El sensor inercial 21 comprende al menos un acelerómetro de 3 ejes y un giroscopio de 2 ejes, estando el sensor inercial 21 configurado para, a partir de los datos de aceleración angular obtenidos por el acelerómetro y de velocidad angular obtenidos por el giroscopio, proporcionar la orientación del sensor inercial 21 a través de los ángulos de alabeo (rotación en el eje X) y cabeceo (rotación en el eje Y). Estos ángulos de cabeceo y alabeo, calculados por el sensor inercial 21 a partir de los datos de los acelerómetros y los giroscopios, se corresponden con los ángulos de giro del endoscopio (cámara 10 + lente tubular 1 1) debido a los giros de muñeca del cirujano que está manejando el endoscopio. The inertial sensor 21 comprises at least a 3-axis accelerometer and a 2-axis gyroscope, the inertial sensor 21 being configured to provide the data from the angular acceleration obtained by the accelerometer and the angular velocity obtained by the gyroscope. orientation of the inertial sensor 21 through the angles of bank (rotation on the X axis) and pitch (rotation on the Y axis). These pitch and roll angles, calculated by the inertial sensor 21 from the data from the accelerometers and the gyroscopes, correspond to the angles of rotation of the endoscope (camera 10 + tube lens 1 1) due to the wrist turns of the surgeon who is operating the endoscope.
En el ejemplo aquí referido (no ilustrado) dicho sensor inercial 21 comprende un acelerómetro con 3 ejes de sensado (X, Y, Z) y un giroscopio con 2 ejes de sensado (X, Y). Opcionalmente, el sensor inercial 21 también comprende un magnetómetro de 3 ejes y un giroscopio de 3 ejes, con los que el sensor inercial 21 es capaz de obtener la guiñada (rotación en el eje Z). In the example referred to here (not illustrated) said inertial sensor 21 comprises an accelerometer with 3 sensing axes (X, Y, Z) and a gyroscope with 2 sensing axes (X, Y). Optionally, the inertial sensor 21 also comprises a 3-axis magnetometer and a 3-axis gyroscope, with which the inertial sensor 21 is able to obtain the yaw (rotation in the Z axis).
Experimentalmente, los investigadores han observado que cuando la lente tubular 1 1 presenta una óptica de 0o, el giro o rotación de la muñeca del cirujano y por tanto de la cámara 10 que opera, coincide con el giro o rotación de la imagen que se muestra en la pantalla 14. Esto ocurre porque el eje X de la visión de la óptica coincide con el eje X de la cámara 10. Sin embargo, cuando la óptica de la lente tubular 11 es angulada el giro de la muñeca del cirujano y por tanto de la cámara 10 no coincide con el giro o rotación de la imagen que se percibe en la pantalla 14. Esto ocurre porque el eje X de la visión de las ópticas anguladas no coincide con el eje X de la cámara 10. Por este motivo y debido además a que la lente tubular 1 1 se suele cambiar durante la intervención quirúrgica, los investigadores han concluido que para que el sensor inercial 21 pueda detectar de manera precisa los movimientos de la muñeca del cirujano, dicho sensor 21 debe estar situado en la cámara 10 (en su interior o en su superficie, a su entrada o salida) o en sus proximidades (a su entrada o salida), y tal que el sensor inercial 21 no interfiera al cirujano durante su utilización. Un experto en la materia entenderá que la entrada de la cámara 10 corresponde al puerto conectado a la lente tubular 11 , y que la salida de la cámara 10 corresponde al puerto conectado al receptor de video 12. Además, el eje X del sensor inercial 21 debe situarse de manera paralela al eje longitudinal de la lente tubular 11 , el eje Y del sensor inercial 21 debe situarse de manera paralela al eje transversal de la lente tubular 1 1 y el eje Z del sensor inercial 21 debe situarse de manera paralela a la vertical del endoscopio, de manera que los movimientos del sensor inercial 21 y del endoscopio sean solidarios. De esta manera los datos de los ejes de la orientación del sensor inercial 21 coinciden con la orientación del endoscopio. Experimentally, researchers have observed that when the tubular lens 1 1 presents an optic of 0 ° , the rotation or rotation of the surgeon's wrist and therefore of the operating camera 10, coincides with the rotation or rotation of the image that is displayed. displayed on screen 14. This occurs because the X-axis of the optic's vision coincides with the X-axis of the camera 10. However, when the optic of the tubular lens 11 is angled the surgeon's wrist twists and therefore both of the camera 10 does not coincide with the rotation or rotation of the image that is perceived on the screen 14. This occurs because the X axis of the vision of the angled optics does not coincide with the X axis of the camera 10. For this reason, and also because the tubular lens 1 1 is usually changed during surgery, the researchers have concluded that for the inertial sensor 21 to be able to accurately detect the movements of the surgeon's wrist, said sensor 21 must be located in the chamber 10 (inside or on its surface, at its entrance or exit) or in its vicinity (at its entrance or exit), and such that the inertial sensor 21 does not interfere with the surgeon during its use. A person skilled in the art will understand that the input of the camera 10 corresponds to the port connected to the tubular lens 11, and that the output of the camera 10 corresponds to the port connected to the video receiver 12. Furthermore, the X-axis of the inertial sensor 21 must be located parallel to the longitudinal axis of the tubular lens 11, the Y axis of the inertial sensor 21 must be located parallel to the transverse axis of the tubular lens 1 1 and the Z axis of the inertial sensor 21 must be located parallel to the vertical endoscope, so that the movements of the inertial sensor 21 and the endoscope are united. In this way, the data of the orientation axes of the inertial sensor 21 coincide with the orientation of the endoscope.
En un ejemplo de realización (Figura 3), el sensor inercial 21 queda colocado externamente en una caja estanca 31 fijada a la salida del cable de la cámara 10, de tal forma, que no interfiere con la sujeción del endoscopio por parte del cirujano. En otros ejemplos de realización (no ilustrados), el sensor inercial 21 puede estar colocado externamente en una caja estanca 31 fijada en cualquier parte de la cámara 10 del endoscopio o puede estar incorporado dentro de la cámara 10 sin necesidad de caja estanca. En todos los casos, el eje X del sensor inercial 21 debe estar alineado de manera paralela al eje longitudinal de la lente tubular 11 , el eje Y del sensor inercial 21 debe estar alineado de manera paralela al eje transversal de la lente tubular 1 1 y el eje Z del sensor inercial 21 debe estar alineado de manera paralela a la vertical del endoscopio. In an exemplary embodiment (Figure 3), the inertial sensor 21 is placed externally in a watertight box 31 fixed to the cable outlet of the camera 10, in such a way that it does not interfere with the surgeon's holding of the endoscope. In other embodiments (not illustrated), the inertial sensor 21 can be placed externally in a watertight box 31 attached to any part of the endoscope chamber 10 or it can be incorporated into the chamber 10 without the need for a watertight box. In all cases, the X axis of the inertial sensor 21 must be aligned parallel to the longitudinal axis of the tubular lens 11, the Y axis of the inertial sensor 21 must be aligned parallel to the transverse axis of the tubular lens 1 1 and the Z axis of the inertial sensor 21 must be aligned parallel to the vertical of the endoscope.
En un ejemplo de realización, como el mostrado en la Figura 4, el soporte de la caja estanca 300 comprende un anillo ajustable 32 al diámetro de la salida rígida del cable de la cámara 10 al que va sujeto, que permite orientar la caja en el eje Y, y una articulación intermedia 33 que permite orientar la caja en el eje X. De esta forma, el soporte de la caja estanca 300 permite la orientación paralela de la caja estanca 31 del sensor inercial 21 en la salida óptica del endoscopio, ya que permite rotar la caja estanca 31 en sus ejes X e Y. El soporte de la caja estanca 300 está preferentemente hecho de un material rígido esterilizable, o de un material elegido de la siguiente lista de materiales: un material sintético, un metal de uso quirúrgico y sus mezclas. In an embodiment, such as that shown in Figure 4, the support of the watertight box 300 comprises an adjustable ring 32 to the diameter of the rigid outlet of the cable of the chamber 10 to which it is attached, which allows the box to be oriented in the Y axis, and an intermediate joint 33 that allows to orient the box on the X axis. In this way, the support of the watertight box 300 allows the parallel orientation of the watertight box 31 of the inertial sensor 21 at the optical outlet of the endoscope, since that allows the watertight box 31 to rotate on its X and Y axes. The watertight box support 300 is preferably made of a rigid sterilizable material, or a material chosen from the following list of materials: a synthetic material, a surgical metal, and mixtures thereof.
El sensor inercial 21 está configurado para determinar al menos los ángulos de alabeo (X) y cabeceo (Y) con los que se obtiene la orientación del endoscopio, produciendo unos datos de salida adecuados para el movimiento relajado del endoscopio. Asimismo, el sensor inercial 21 puede ofrecer los datos en crudo para que puedan ser usados por el sistema para calcular cualquier tipo de variable relacionada con la sujeción del cirujano. El sensor inercial 21 proporciona una tasa de salida de los datos de los ángulos obtenidos igual o superior a la frecuencia de refresco de la pantalla 14 de visualización y adecuada para la percepción fluida por parte del cirujano de los cambios en los giros de los sensores. The inertial sensor 21 is configured to determine at least the angles of roll (X) and pitch (Y) with which the orientation of the endoscope is obtained, producing output data suitable for the relaxed movement of the endoscope. Likewise, the inertial sensor 21 can offer the raw data so that it can be used by the system to calculate any type of variable related to the surgeon's restraint. The inertial sensor 21 provides an output rate of the obtained angle data equal to or greater than the refresh rate of the display screen 14 and suitable for fluid perception by the surgeon of changes in the turns of the sensors.
Como se muestra en la Figura 2, el sistema informático 27 comprende un puerto de recepción de datos 22 del sensor inercial 21 conectado a dicho sensor inercial 21 ; una capturadora de video 23 configurada para captar la señal de video de salida del receptor de video 12 que recoge la señal proveniente de la cámara 10; una salida de video 24 del mismo formato que el video de entrada recogido en la capturadora de video 23 conectada a la pantalla 14 y un puerto de conexión 25 conectado al dispositivo de interacción humana 26 y que recoge los datos de dicho dispositivo. As shown in Figure 2, the computer system 27 comprises a data reception port 22 of the inertial sensor 21 connected to said inertial sensor 21; a video capture device 23 configured to capture the video signal output from the video receiver 12 that collects the signal from the camera 10; a video output 24 of the same format as the input video collected in the video recorder 23 connected to the screen 14 and a connection port 25 connected to the human interaction device 26 and which collects the data from said device.
El dispositivo de interacción humana 26 está configurado para interactuar con el software del sistema informático 27 y comandar las funcionalidades pertinentes de dicho sistema informático 27. La acción de este dispositivo de interacción humana 26 puede ser multifunción. Por ejemplo, una pisada breve en el pedal 26 puede cambiar el tipo de visualización, navegar por una lista de opciones, etc. Por ejemplo, una pisada de larga duración larga en el pedal 26 puede realizar la calibración de horizonte, aceptar la opción seleccionada, iniciar la grabación de datos, etc. The human interaction device 26 is configured to interact with the software of the computer system 27 and command the pertinent functionalities of said computer system 27. The action of this human interaction device 26 can be multifunctional. For example, a short press on pedal 26 can change the display type, navigate through a list of options, and so on. For example, a long, long press on pedal 26 can perform horizon calibration, accept the selected option, start data recording, and so on.
En otro aspecto de la invención, se proporciona un método de orientación espacial en cirugía endoscópica, que permite controlar la posición espacial del endoscopio con respecto a una posición de referencia, utilizando el sistema definido anteriormente. El método comprende las etapas de: En primer lugar, se prepara el sistema endoscópico, conectando la fuente de luz 13 a la lente tubular 11 , ésta se conecta a la cámara 10 y ésta al receptor de video 12 que permitirá su visualización en la pantalla. El sensor inercial 21 se coloca en el lugar elegido de la cámara 10 y se alinea con el eje X e Y de la lente tubular. El dispositivo de interacción humana 26 se conecta al puerto de conexión 25 del sistema informático 27 y se inicia el software informático 27. In another aspect of the invention, a method of spatial orientation in endoscopic surgery is provided, which allows to control the spatial position of the endoscope with respect to a reference position, using the system defined above. The method comprises the stages of: First, the endoscopic system is prepared, connecting the light source 13 to the tubular lens 11, this is connected to the camera 10 and the latter to the video receiver 12 that will allow its display on the screen. Inertial sensor 21 is positioned at the chosen location in chamber 10 and is aligned with the X and Y axis of the tubular lens. Human interaction device 26 is connected to connection port 25 of computer system 27 and computer software 27 is started.
Una vez en funcionamiento, el endoscopio se introduce en la cavidad deseada que queda iluminada gracias a la fuente de luz. La cámara 10 capta la imagen que pasa a través de la lente tubular 1 1 y se muestran en la pantalla 14. El sensor inercial 21 va recogiendo a una frecuencia continua los valores en crudo proporcionados por el acelerómetro (X, Y, Z) y por el giroscopio (X, Y), que se corresponden con los valores de aceleración angular de cada eje y los valores de velocidad de cada eje respectivamente. Estos datos en crudo son transformados mediante un procesado matemático integrado en el sensor inercial 1 1 en los datos de los ángulos absolutos de cabeceo y alabeo de la orientación del sensor inercial 11. Dichos datos (ángulos absolutos de cabeceo y alabeo) se van enviando continuamente al sistema informático 27 a través del puerto de recepción de datos 22, con una frecuencia equivalente a la frecuencia de envío de imágenes de la secuencia de video de la cámara 10. Estos ángulos de cabeceo y alabeo, calculados por el sensor inercial 1 1 a partir de los datos de los acelerómetros y los giroscopios, se corresponden con los ángulos de giro del endoscopio debido a los giros de muñeca del cirujano que está manejando el endoscopio. Estos ángulos se van actualizando a medida que se produce la manipulación del endoscopio por parte del cirujano y son enviados con la frecuencia indicada al sistema informático 27. Once in operation, the endoscope is inserted into the desired cavity that is illuminated by the light source. The camera 10 captures the image that passes through the tubular lens 1 1 and is displayed on the screen 14. The inertial sensor 21 collects at a continuous frequency the raw values provided by the accelerometer (X, Y, Z) and by the gyroscope (X, Y), which correspond to the angular acceleration values of each axis and the velocity values of each axis respectively. These raw data are transformed by means of a mathematical processing integrated in the inertial sensor 1 1 into the data of the absolute angles of pitch and bank of the orientation of the inertial sensor 11. Said data (absolute angles of pitch and bank) are sent continuously to the computer system 27 through the data reception port 22, with a frequency equivalent to the frequency of sending images of the video sequence of the camera 10. These pitch and roll angles, calculated by the inertial sensor 1 1 a From the data from the accelerometers and gyroscopes, they correspond to the angles of rotation of the endoscope due to the wrist turns of the surgeon who is operating the endoscope. These angles are updated as the surgeon manipulates the endoscope and are sent with the frequency indicated to the computer system 27.
Paralelamente, la lente tubular 1 1 , apoyada por la iluminación que se inyecta desde la fuente de luz 13, toma las imágenes de la cavidad en la que está introducida. Estas imágenes son recogidas por la cámara 10 que está conectada al receptor de video 12 y éste las envía a la capturadora de video 23 del sistema informático 27 mediante una trama de video continua, e inmediatamente esta trama de video se transmite sin latencia a la salida de video 24 del sistema informático 27 siendo a su vez enviado este video a la pantalla 14 en donde se representa de forma nativa y en tiempo real. In parallel, the tubular lens 1 1, supported by the illumination that is injected from the light source 13, takes the images of the cavity in which it is inserted. These images are collected by the camera 10 that is connected to the video receiver 12 and this sends them to the video recorder 23 of the computer system 27 through a continuous video frame, and immediately this video frame is transmitted without latency to the output. video 24 of the computer system 27, this video in turn being sent to screen 14 where it is represented natively and in real time.
A continuación, en función de las referencias anatómicas observables en la imagen mostrada en la pantalla 14 al comienzo del procedimiento o en un momento dado, el cirujano define al sistema informático 27 la posición de referencia del endoscopio, estableciendo la posición de giro de los 2 ejes actuales (cabeceo y alabeo), como la posición de referencia, a través del dispositivo de interacción humana 26. En ese momento, los datos de cabeceo y alabeo de referencia se guardan en la memoria del sistema informático 27. Opcionalmente, el sistema informático 27 puede ir guardando en la memoria todos los datos de alabeo y cabeceo a la frecuencia de recepción de los mismos, para el posterior tratamiento de dichos datos. Then, based on the anatomical landmarks observable in the image displayed on screen 14 at the beginning of the procedure or at a given time, the The surgeon defines to the computer system 27 the reference position of the endoscope, establishing the rotation position of the 2 current axes (pitch and roll), as the reference position, through the human interaction device 26. At that moment, the data The reference pitch and roll data are saved in the memory of the computer system 27. Optionally, the computer system 27 can store in the memory all the pitch and pitch data at the reception frequency thereof, for subsequent processing of said data. data.
El sistema informático 27, a través del receptor de video 12, continúa recogiendo el video de la cámara 10 y lo va representando en la pantalla 14 en tiempo real y sin alteración de la imagen nativa. El sistema informático 27 representa en la pantalla 14, encima de la imagen de video nativa 15 unos indicadores de desplazamiento de giro de los ejes respecto a la posición de referencia fijada por el cirujano. Los ángulos de alabeo y cabeceo representados por los indicadores de desplazamiento se calculan restando el valor actual de los ángulos de alabeo y cabeceo enviada en cada momento por el sensor inercial 21 , menos el valor de los ángulos de alabeo y cabeceo de la posición de referencia guardada en la memoria del sistema informático 27. The computer system 27, through the video receiver 12, continues to collect the video from the camera 10 and represents it on the screen 14 in real time and without alteration of the native image. The computer system 27 represents on the screen 14, above the native video image 15, indicators of rotation displacement of the axes with respect to the reference position set by the surgeon. The bank and pitch angles represented by the displacement indicators are calculated by subtracting the current value of the bank and pitch angles sent at each moment by the inertial sensor 21, less the value of the bank and pitch angles from the reference position. stored in the computer system memory 27.
Por tanto, estos ángulos representados en pantalla se traducen en el desvío angular que sufre el cambio de orientación del endoscopio respecto a la orientación deseable fijada por el cirujano. De esta manera, con esta ayuda visual, el cirujano podrá tener información del giro que va realizando en el endoscopio y podrá actuar en tiempo real corrigiendo el desvío que vaya apreciando si así lo considera oportuno. Con este método el cirujano consigue mejorar su propia percepción espacial de cómo está situado el endoscopio, ayudándole entender mejor la posición de las referencias anatómicas que se muestran en la imagen, así como a reaccionar a giros indeseados del endoscopio que no hubieran sido percibidos sin la ayuda de este sistema. Therefore, these angles represented on the screen are translated into the angular deviation that the change in orientation of the endoscope undergoes with respect to the desirable orientation set by the surgeon. In this way, with this visual aid, the surgeon will be able to have information about the turn that he is making in the endoscope and will be able to act in real time correcting the deviation that he sees if he considers it appropriate. With this method, the surgeon manages to improve his own spatial perception of how the endoscope is located, helping him to better understand the position of the anatomical landmarks shown in the image, as well as to react to unwanted turns of the endoscope that would not have been perceived without it. help from this system.
En un ejemplo de realización, como se muestra en la Figura 5, un indicador de funcionalidad del sistema 51 muestra el alabeo y se representa a través de unas barras circulares proporcionales en su longitud de arco al desvío calculado alrededor de la circunferencia externa de la imagen obtenida del endoscopio. El desvío se calcula restando a la posición actual la posición de referencia fijada previamente por el cirujano. Opcionalmente, se puede asignar color a dichas barras en función del umbral de giro alcanzado. Por ejemplo, si el giro alcanzado es menor de 10°, las barras se muestran en color verde; si el giro alcanzado es mayor de 10° pero menor de 15°, las barras se muestran en color amarillo y si el giro alcanzado es mayor de 15° las barras se muestran en color rojo. Se escoge 15° como umbral rojo de alerta porque está demostrado que a partir de ese umbral el rendimiento quirúrgico empieza a sufrir un deterioro. In an exemplary embodiment, as shown in Figure 5, a system functionality indicator 51 shows warping and is represented by circular bars proportional in their arc length to the deviation calculated around the external circumference of the image. obtained from the endoscope. The deviation is calculated by subtracting from the current position the reference position previously set by the surgeon. Optionally, you can assign color to these bars according to the threshold of rotation reached. For example, if the turn achieved is less than 10 °, the bars are displayed in green color; if the turn achieved is greater than 10 ° but less than 15 °, the bars are shown in yellow and if the turn achieved is greater than 15 °, the bars are shown in red. 15 ° is chosen as the red alert threshold because it has been shown that from that threshold, surgical performance begins to deteriorate.
En un ejemplo de realización, como se muestra en la Figura 5, un indicador de funcionalidad del sistema 54 muestra el cabeceo y se representa a través de una barra vertical proporcional en su longitud al desvío en grados calculado. Opcionalmente, se puede asignar color a dicha barra en función del umbral de giro alcanzado al igual que el indicador de alabeo 51. In an exemplary embodiment, as shown in Figure 5, a system functionality indicator 54 shows pitch and is represented by a vertical bar proportional in its length to the calculated deviation in degrees. Optionally, the color can be assigned to said bar based on the turning threshold reached, as well as the roll indicator 51.
En un ejemplo de realización, como se muestra en la Figura 5, un indicador de funcionalidad del sistema consiste en unas opciones de menú 53 accionables a través del dispositivo de interacción humana 26. Por ejemplo, estas opciones de menú pueden consistir en poner referencia; quitar referencia; comenzar o parar la grabación de datos y video; eliminar guías visuales, etc. Se puede cambiar de una a otra opción del menú y activar la opción seleccionada mediante el dispositivo de interacción humana 26. In an exemplary embodiment, as shown in Figure 5, a system functionality indicator consists of menu options 53 operable through human interaction device 26. For example, these menu options may consist of reference; remove reference; start or stop data and video recording; remove visual guides, etc. You can switch from one menu option to another and activate the selected option through the human interaction device 26.
En un ejemplo de realización, como se muestra en la Figura 5, un indicador de funcionalidad del sistema 52 permite activar la grabación de datos de los sensores y la imagen de la cámara 10, así como las restas entre los datos de alabeo y cabeceo actuales y los de referencia, que son almacenados en un disco interno. De esta manera, los datos pueden ser analizados con posterioridad, por ejemplo, para evaluar la destreza en el manejo de la cámara del cirujano y servir de ayuda para su entrenamiento. In an exemplary embodiment, as shown in Figure 5, a system functionality indicator 52 enables the recording of data from the sensors and the image from the camera 10, as well as the subtractions between the current roll and pitch data. and the reference ones, which are stored on an internal disk. In this way, the data can be analyzed later, for example, to assess the skills of the surgeon in handling the camera and to aid in their training.
A modo de ejemplo, en otra posible realización (no ilustrada), el sistema informático 27 haciendo uso de la información del pulso del cirujano recogida por el acelerómetro del sensor inercial 21 , puede alertar de las variaciones en el mismo (cansancio, estrés, desorientación, etc.) para que se puedan tomar medidas oportunas. By way of example, in another possible embodiment (not illustrated), the computer system 27 making use of the surgeon's pulse information collected by the accelerometer of the inertial sensor 21, can warn of variations in it (fatigue, stress, disorientation , etc.) so that timely action can be taken.
Finalmente, cada vez que el cirujano quiera cambiar de posición de referencia puede volver a activar el dispositivo de interacción humana 26 para actualizar a la nueva posición en el espacio. El sistema no altera la posición de la imagen nativa. El cirujano tendrá siempre el control total del movimiento de la cámara 10 y por tanto de la imagen mostrada en pantalla. El sistema mostrará las variaciones de la posición de la cámara 10 respecto a la posición elegida como de referencia, usando los indicadores de funcionalidad previamente explicados, ofreciendo información en tiempo real sobre la posición de la cámara 10 para que el cirujano pueda corregirla si así lo desea. Finally, each time the surgeon wants to change the reference position, he can reactivate the human interaction device 26 to update to the new position in space. The system does not alter the position of the native image. The surgeon will always have full control of the movement of the camera 10 and therefore of the image displayed on the screen. The system will show the variations in the position of the camera 10 with respect to the position chosen as a reference, using the previously explained functionality indicators, offering information in real time about the position of the camera 10 so that the surgeon can correct it if so. want.
En este texto, el término“comprende” y sus derivaciones (tal como“comprendiendo”, etc.) no deben entenderse en un sentido excluyente, es decir, estos términos no deben ser interpretados como que excluyen la posibilidad de que lo que se describe y se define pueda incluir elementos, etapas adicionales, etc. In this text, the term "comprises" and its derivations (such as "comprising", etc.) should not be understood in an exclusive sense, that is, these terms should not be interpreted as excluding the possibility that what is described and it is defined to include elements, additional stages, etc.
En el contexto de la presente invención, el término“aproximadamente” y términos de su familia (como “aproximado”, etc.) deben interpretarse como indicando valores muy cercanos a aquellos que acompañan a dicho término. Es decir, una desviación dentro de límites razonables con respecto a un valor exacto deberían aceptarse, porque un experto en la materia entenderá que tal desviación con respecto a los valores indicados puede ser inevitable debido a imprecisiones de medida, etc. Lo mismo aplica a los términos “unos”,“alrededor de” y“sustancialmente”. In the context of the present invention, the term "approximately" and terms of its family (such as "approximate", etc.) should be interpreted as indicating values very close to those that accompany said term. That is, a deviation within reasonable limits from an exact value should be accepted, because a person skilled in the art will understand that such a deviation from the indicated values may be unavoidable due to measurement inaccuracies, etc. The same applies to the terms "about", "about" and "substantially".
La invención no se limita obviamente a la(s) realización(es) específica(s) descrita(s), sino que abarca también cualquier variación que pueda ser considerada por cualquier experto en la materia (por ejemplo, con relación a la elección de materiales, dimensiones, componentes, configuración, etc.), dentro del alcance general de la invención como se define en las reivindicaciones. The invention is not obviously limited to the specific embodiment (s) described, but also encompasses any variation that may be considered by any person skilled in the art (for example, in relation to the choice of materials, dimensions, components, configuration, etc.), within the general scope of the invention as defined in the claims.

Claims

REIVINDICACIONES
1. Sistema endoscópico (200) que comprende una lente tubular rígida (1 1) con un canal para el paso de luz a través de fibra óptica, configurada para introducirse en una cavidad a través de un orificio o incisión cutánea y cuya función es captar y transmitir la imagen de la cavidad iluminada; una cámara (10) conectada a un extremo de la lente tubular (11) configurada para digitalizar la imagen obtenida a través de dicha lente tubular; una fuente de luz (13) conectada también a la lente tubular (1 1) por el extremo que se conecta a la cámara (10); un receptor de video (12) conectado a la cámara (10) a través del cual se recoge la señal proveniente de la misma; y una pantalla (14) que permite visualizar la imagen saliente del receptor de video (12), estando el sistema caracterizado por que comprende además: 1. Endoscopic system (200) comprising a rigid tubular lens (1 1) with a channel for the passage of light through optical fiber, configured to enter a cavity through a hole or skin incision and whose function is to capture and transmitting the image of the illuminated cavity; a camera (10) connected to one end of the tubular lens (11) configured to digitize the image obtained through said tubular lens; a light source (13) also connected to the tubular lens (1 1) at the end that is connected to the camera (10); a video receiver (12) connected to the camera (10) through which the signal from it is collected; and a screen (14) that allows viewing the outgoing image of the video receiver (12), the system being characterized in that it also comprises:
- un sensor inercial (21) que comprende al menos un acelerómetro de 3 ejes y un giroscopio de 2 ejes, estando el sensor inercial (21) configurado para, a partir de los datos de aceleración angular obtenidos por el acelerómetro y de velocidad angular obtenidos por el giroscopio, proporcionar la orientación del sensor inercial (21) a través de los ángulos de alabeo (rotación en el eje X) y cabeceo (rotación en el eje Y) que se corresponden con los ángulos de giro del endoscopio (cámara 10 + lente tubular 1 1) debido a los giros de muñeca del cirujano que está manejando el endoscopio, tal que dicho sensor inercial (21) debe estar situado en la cámara (10) (en su interior o en su superficie, a su entrada o salida) o en sus proximidades (a su entrada o salida), de forma que no interfiera al cirujano durante su utilización, y tal que el eje X del sensor inercial (21) debe situarse de manera paralela al eje longitudinal de la lente tubular (1 1), el eje Y del sensor inercial (21) de manera paralela al eje transversal de la lente tubular y el eje Z del sensor inercial (21) de manera paralela a la vertical del endoscopio (cámara 10 + lente tubular 1 1); - an inertial sensor (21) comprising at least a 3-axis accelerometer and a 2-axis gyroscope, the inertial sensor (21) being configured to, from the angular acceleration data obtained by the accelerometer and angular velocity obtained by the gyroscope, provide the orientation of the inertial sensor (21) through the angles of roll (rotation in the X axis) and pitch (rotation in the Y axis) that correspond to the rotation angles of the endoscope (camera 10 + tubular lens 1 1) due to the wrist twists of the surgeon who is handling the endoscope, such that said inertial sensor (21) must be located in the chamber (10) (inside or on its surface, at its entrance or exit ) or in its vicinity (at its entrance or exit), so that it does not interfere with the surgeon during its use, and such that the X axis of the inertial sensor (21) must be located parallel to the longitudinal axis of the tubular lens (1 1), the Y axis of the inertial sensor (21) so that parallel to the transverse axis of the tubular lens and the Z axis of the inertial sensor (21) parallel to the vertical of the endoscope (camera 10 + tubular lens 1 1);
- un sistema informático (27) que comprende un puerto de recepción de datos (22) del sensor inercial (21) conectado a dicho sensor inercial (21); una capturadora de video (23) configurada para captar la señal de video de salida del receptor de video (12) que recoge la señal proveniente de la cámara (10); una salida de video (24) del mismo formato que el video de entrada recogido en la capturadora de video (23) conectada a la pantalla (14) y un puerto de conexión (25) conectado a un dispositivo de interacción humana (26) y que recoge los datos de dicho dispositivo; - a computer system (27) comprising a data reception port (22) of the inertial sensor (21) connected to said inertial sensor (21); a video capture device (23) configured to capture the output video signal of the video receiver (12) that collects the signal from the camera (10); a video output (24) of the same format as the input video collected in the video recorder (23) connected to the screen (14) and a connection port (25) connected to a human interaction device (26) and collecting data from said device;
- un dispositivo de interacción humana (26) configurado para interactuar con el software del sistema informático (27) y comandar las funcionalidades pertinentes de dicho sistema informático (27). - a human interaction device (26) configured to interact with the software of the computer system (27) and command the relevant functionalities of said computer system (27).
2. El sistema de la reivindicación 1 , donde el sensor inercial (21) comprende un acelerómetro con 3 ejes de sensado (X, Y, Z) y un giroscopio con 2 ejes de sensado (X,The system of claim 1, where the inertial sensor (21) comprises an accelerometer with 3 sensing axes (X, Y, Z) and a gyroscope with 2 sensing axes (X,
Y)· AND)·
3. El sistema de la reivindicación 1 , donde el sensor inercial (21) comprende un acelerómetro con 3 ejes de sensado (X, Y, Z), un giroscopio con 3 ejes de sensado (X, Y, Z) y un magnetómetro de 3 ejes de sensado (X, Y, Z). 3. The system of claim 1, where the inertial sensor (21) comprises an accelerometer with 3 sensing axes (X, Y, Z), a gyroscope with 3 sensing axes (X, Y, Z) and a magnetometer of 3 sensing axes (X, Y, Z).
4. El sistema de cualquiera de las reivindicaciones anteriores, donde el sensor inercial (21) está colocado externamente en una caja estanca (31) fijada a la salida del cable de la cámara (10), de tal forma, que no interfiere con la sujeción del endoscopio por parte del cirujano. 4. The system of any of the preceding claims, wherein the inertial sensor (21) is placed externally in a watertight box (31) fixed to the cable outlet of the chamber (10), in such a way that it does not interfere with the holding the endoscope by the surgeon.
5. El sistema de cualquiera de las reivindicaciones 1 a 3 donde el sensor inercial (21) está colocado externamente en una caja estanca (31) fijada en cualquier parte de la cámara (10) del endoscopio. The system of any one of claims 1 to 3 wherein the inertial sensor (21) is externally placed in a watertight box (31) attached to any part of the chamber (10) of the endoscope.
6. El sistema de cualquiera de las reivindicaciones 4 a 5, donde el soporte de la caja estanca (300) comprende un anillo ajustable (32) al diámetro de la salida rígida del cable de la cámara (10) al que va sujeto configurado para orientar la caja en el eje Y, y una articulación intermedia (33) configurada para orientar la caja en el eje X, tal que el soporte de la caja estanca (300) permite la orientación paralela de la caja estanca del sensor (31) en la salida óptica del endoscopio, y tal que el soporte de la caja estanca (300) está hecho de un material rígido esterilizable. The system of any of claims 4 to 5, wherein the support of the watertight box (300) comprises an adjustable ring (32) to the diameter of the rigid outlet of the cable of the camera (10) to which it is attached configured to orient the box on the Y axis, and an intermediate hinge (33) configured to orient the box on the X axis, such that the support of the watertight box (300) allows the parallel orientation of the watertight sensor box (31) in the optical outlet of the endoscope, and such that the support of the watertight box (300) is made of a rigid sterilizable material.
7. El sistema de cualquiera de las reivindicaciones 1 a 3 donde el sensor inercial está incorporado dentro de la cámara (10) sin necesidad de caja estanca. 7. The system of any of claims 1 to 3 wherein the inertial sensor is incorporated within the chamber (10) without the need for a sealed box.
8. El sistema de cualquiera de las reivindicaciones anteriores, donde el sensor inercial (21) proporciona una tasa de salida de los datos de los ángulos obtenidos igual o superior a la frecuencia de refresco de la pantalla (14) de visualización y adecuada para la percepción fluida por parte del cirujano de los cambios en los giros de los sensores. 8. The system of any of the preceding claims, wherein the inertial sensor (21) provides an output rate of the data of the angles obtained equal to or greater than the refresh rate of the display screen (14) and suitable for the fluid perception by the surgeon of changes in sensor rotations.
9. El sistema de cualquiera de las reivindicaciones anteriores, donde el sistema informático (27) representa en la pantalla (14) una imagen endoscópica nativa con sobreimpresión de los datos de giro del endoscopio respecto de una referencia fijada por el cirujano. The system of any of the preceding claims, wherein the computer system (27) displays on the screen (14) a native endoscopic image with overprinting of the endoscope rotation data relative to a reference set by the surgeon.
PCT/ES2020/070449 2019-07-18 2020-07-10 Spatial-orientation endoscopic system WO2021009401A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201931231U ES1235420Y (en) 2019-07-18 2019-07-18 ENDOSCOPIC SPACE ORIENTATION SYSTEM
ESU201931231 2019-07-18

Publications (1)

Publication Number Publication Date
WO2021009401A1 true WO2021009401A1 (en) 2021-01-21

Family

ID=68048486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070449 WO2021009401A1 (en) 2019-07-18 2020-07-10 Spatial-orientation endoscopic system

Country Status (2)

Country Link
ES (1) ES1235420Y (en)
WO (1) WO2021009401A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160073854A1 (en) * 2014-09-12 2016-03-17 Aperture Diagnostics Ltd. Systems and methods using spatial sensor data in full-field three-dimensional surface measurement
CN104224089B (en) * 2014-09-15 2017-05-31 天津大学 A kind of endoscopic system with surgical navigational function for possessing antijamming capability
US20170251900A1 (en) * 2015-10-09 2017-09-07 3Dintegrated Aps Depiction system
US20180214007A1 (en) * 2017-01-30 2018-08-02 Seiko Epson Corporation Endoscope operation support system
US20190142523A1 (en) * 2016-06-06 2019-05-16 Medigus Ltd. Endoscope-like devices comprising sensors that provide positional information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160073854A1 (en) * 2014-09-12 2016-03-17 Aperture Diagnostics Ltd. Systems and methods using spatial sensor data in full-field three-dimensional surface measurement
CN104224089B (en) * 2014-09-15 2017-05-31 天津大学 A kind of endoscopic system with surgical navigational function for possessing antijamming capability
US20170251900A1 (en) * 2015-10-09 2017-09-07 3Dintegrated Aps Depiction system
US20190142523A1 (en) * 2016-06-06 2019-05-16 Medigus Ltd. Endoscope-like devices comprising sensors that provide positional information
US20180214007A1 (en) * 2017-01-30 2018-08-02 Seiko Epson Corporation Endoscope operation support system

Also Published As

Publication number Publication date
ES1235420U (en) 2019-09-30
ES1235420Y (en) 2019-12-23

Similar Documents

Publication Publication Date Title
ES2361717T3 (en) ROBOTIZED PLATFORM WITH MULTIPLE APPLICATIONS FOR NEUROSURGY AND RESET PROCEDURE.
US10441146B2 (en) Method of measuring distance by an endoscope, and endoscope system
JP6389467B2 (en) Isolated multi-camera system for minimally invasive surgery
US20190246873A1 (en) Endoscopy devices and methods of use
ES2881537T3 (en) General endoscopic control system
ES2899353T3 (en) Digital system for capturing and visualizing surgical video
US9307894B2 (en) Endoscope comprising a system with multiple cameras for use in minimal-invasive surgery
ES2220574T3 (en) VISION HELP IN THE FORM OF SUNGLASSES-LUPA WITH AUTOMATIC FOCUS DEVICE.
JP2001514915A (en) Minimally invasive surgical equipment
ES2957696T3 (en) Imaging system and observation procedure
US20100036394A1 (en) Magnetic Levitation Based Devices, Systems and Techniques for Probing and Operating in Confined Space, Including Performing Medical Diagnosis and Surgical Procedures
EP3025658A1 (en) Medical system and medical instrument control method
JPWO2017145475A1 (en) Medical information processing apparatus, information processing method, and medical information processing system
US9510735B2 (en) Method and system for displaying video-endoscopic image data of a video endoscope
ES2384949T3 (en) Endoscope and image capture device
WO2018088105A1 (en) Medical support arm and medical system
JP2016158911A (en) Surgical operation method using image display device, and device using in surgical operation
WO2005066690A1 (en) System for the stereoscopic viewing of real-time or static images
JP2018075674A (en) Joint driving actuator
JP4607043B2 (en) Endoscopic image forming method with display of gravity direction
KR101600985B1 (en) Medical imaging system using wireless capsule endoscope and medical image reconstruction method for the same
US20200093545A1 (en) Control apparatus, control method, and medical observation system
ES2872930T3 (en) Portable Surgical Tool with Autonomous Navigation
WO2021009401A1 (en) Spatial-orientation endoscopic system
JP6435578B2 (en) Surgery support device, surgery support program, and surgery support method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840444

Country of ref document: EP

Kind code of ref document: A1