WO2021008487A1 - 一种激光和光电弧复合焊接的焊炬 - Google Patents

一种激光和光电弧复合焊接的焊炬 Download PDF

Info

Publication number
WO2021008487A1
WO2021008487A1 PCT/CN2020/101630 CN2020101630W WO2021008487A1 WO 2021008487 A1 WO2021008487 A1 WO 2021008487A1 CN 2020101630 W CN2020101630 W CN 2020101630W WO 2021008487 A1 WO2021008487 A1 WO 2021008487A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
laser beam
arc
melting electrode
torch
Prior art date
Application number
PCT/CN2020/101630
Other languages
English (en)
French (fr)
Inventor
王长春
陈卓勤
Original Assignee
成都智见复合科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都智见复合科技有限公司 filed Critical 成都智见复合科技有限公司
Publication of WO2021008487A1 publication Critical patent/WO2021008487A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Definitions

  • the invention relates to a welding torch device for welding and coating metal materials, specifically, to a welding torch for laser and optical arc hybrid welding, and a laser and optical arc hybrid welding method adopting the invention.
  • Welding is a processing and manufacturing technology that is crucial in various metal manufacturing industries and cannot be completely replaced so far.
  • Welding operation refers to generating high energy density on the workpiece to form a molten pool and move the molten pool. Therefore, if the energy coupling efficiency between the welding tool and the workpiece can be improved, that is, the energy density incident on the workpiece, significant economic benefits can be obtained, depending on the material and welding technology used.
  • Plasma welding is a process technology that uses plasma arc as an energy source to melt the workpiece for welding.
  • Plasma arc is obtained by compression and strengthening of non-melting electrode arc
  • Plasma with higher energy density, also known as compressed arc has an energy density of 10 5-10 6 w/cm 2 .
  • Plasma welding torches mainly include non-melting electrodes and water-cooled nozzles. At the beginning of welding, a small current pilot arc is first established between the tungsten electrode and the nozzle. The pilot arc does not actually participate in the welding; in the welding construction, the pilot arc is used A plasma arc is established between the tungsten electrode and the workpiece.
  • the energy density of the plasma arc between the nozzle and the workpiece is increased.
  • the higher energy plasma arc generates dynamic pressure on the surface of the workpiece, and the arc can penetrate Penetrate the molten pool, so it is also called "small hole” welding.
  • the main advantage of plasma welding is that it can perform one-time, relatively fast material welding with minimal joint preparation.
  • the plasma arc is concentrated in the "small hole"
  • the stress or deformation in the workpiece is reduced.
  • the first is plasma arcing technology.
  • Plasma welding usually requires high-frequency and high-voltage breakdown of the shielding gas between the electrode and the nozzle to form a non-transferred plasma arc, which may cause damage to some nearby electronic equipment.
  • the insufficient energy density of the plasma arc limits the penetration depth of the "small holes", the thickness of the weldable material, and the welding speed.
  • the "small holes" of plasma welding may collapse under certain operating conditions. Cause the weld quality to decrease.
  • Laser beam welding is an efficient and precise processing method that uses laser beam as a heat source for welding.
  • Laser beam welding dominated by the "small hole" mode can provide relatively large penetration depth.
  • laser beam welding has high energy density (generally 10 6 ⁇ 10 8 W/cm 2 ), heat Low input, small residual stress and deformation in the joint area, narrow melting zone and heat-affected zone, large penetration depth, fine weld structure, and good joint performance.
  • laser beam welding does not require vacuum conditions, and the type of shielding gas and pressure range can be easily selected.
  • the laser beam can be guided to inaccessible parts for welding with the help of deflection prisms or optical fibers.
  • the operation is flexible and can be Focusing welding through transparent materials, etc., the laser beam can be flexibly controlled, easy to achieve three-dimensional automatic welding of the workpiece.
  • Laser beam welding also has several major constraints. Since the thickness and penetration depth of the weldable material are restricted by the power and heat of the laser beam coupled to the workpiece, the welding effect can usually only be improved by increasing the laser power. Laser beam welding generally requires a large high-power gas laser, solid-state laser, or diode laser to generate and maintain a "small hole" welding pattern.
  • the pressure generated by the metal plasma on the inner wall of the "small hole” is very important for maintaining the "small hole” welding mode during the welding process.
  • the plasma density is too high, it will cause the laser beam to reflect; in fact, if the plasma density becomes too low or too high, it will reduce the efficiency of the welding operation.
  • starting laser beam welding on materials like metals requires higher laser beam power to form "small holes", but the power conversion efficiency of laser beams is very low.
  • laser beam welding technology has the following typical limitations:
  • the position of the weldment needs to be very precise (within the focus range of the laser beam), and the weldment needs to use a relatively complex fixture to ensure that the laser beam hot spot is aligned with the final position of the weldment; for thickness greater than 19mm
  • the production line is not suitable for laser welding.
  • the energy conversion efficiency is usually less than 10%; the weld bead solidifies quickly and is prone to porosity and embrittlement.
  • the basic feature of this laser arc hybrid welding technology is to use the energy of the laser beam to directly act on the surface of the workpiece and overlap with the melting electrode arc (GMAW) or TIG arc to produce a certain "hybrid welding” effect.
  • GMAW melting electrode arc
  • TIG arc melting electrode arc
  • laser beam arc hybrid welding has many important advantages, there are still some limitations that affect the application of laser beam arc hybrid welding technology in the industrial field.
  • one of the most important shortcomings of this hybrid welding method is the arrangement of the laser beam and the arc. Because the working areas of the two welding heat sources on the workpiece are asymmetrical, it is difficult to control the system to achieve stable operation; another The disadvantage is that the energy density level difference between the laser beam and the arc is large, which reduces the dual heat source "hybrid welding" effect. For example, when the arc current increases to a certain value, continuing to increase the arc current will weaken the energy of the laser beam.
  • the laser beam arc hybrid welding torch using the side-axis arrangement method still has many practical problems, such as the need for a large layout space, the relatively complex welding system, and a high weld slope. Precision and so on.
  • the laser beam and other welding heat sources adopt side-axis hybrid welding technology, and also include laser and TIG arc hybrid welding methods, which are similar to the dual heat source arrangement. Therefore, the above technical defects still exist.
  • the coaxial composite method of laser beam and arc (melting pole arc) is the same as the previous paraxial
  • the difference in the effect of hybrid welding is limited, and the coaxial composite method of laser beam and non-melting electrode (TIG arc, uncompressed plasma) is also difficult to achieve practicality, because this technology requires the use of ring-shaped or hollow non-melting electrodes.
  • irregular non-melting electrodes are not only difficult to manufacture, but also extremely easy to burn.
  • the main drawbacks of these technologies include: only part of the laser beam passes through the plasma arc for hybrid welding, and the energy utilization rate is low; the use of part of the laser beam to heat the electrode to excite the plasma will inevitably aggravate the burning of the counter electrode; Whether it is a conical hollow electrode or a combined electrode, there are problems such as low reliability, high requirements for manufacturing and installation accuracy, and difficulty in electrode replacement, which directly limit the promotion and application of the above technology.
  • the embodiments of the present invention provide a welding torch that uses a laser beam and a plasma arc for hybrid welding and a method of use thereof.
  • a welding torch using laser beam and plasma arc for hybrid welding including a torch body with a hollow cavity.
  • the hollow cavity has an input end and an output end for the laser beam to pass through.
  • the laser beam is incident from the input end and output End shot.
  • the input end includes a lens for focusing the incident light of the laser beam, and a first non-melting electrode is installed at the output end, and an insulating bushing that insulates the electrode and the welding torch.
  • the insulating bushing surrounds the lower end of the hollow cavity.
  • the lower part of the torch is provided with a compression nozzle and a protection nozzle for compressing the arc.
  • the protection nozzle surrounds the compression nozzle.
  • the compression nozzle has a through hole centered on the central axis of the torch body, and the bottom surface is perpendicular to the central axis of the torch body.
  • the first non-melting electrode is embedded in the insulating bush, and the radius of the laser beam passing through the through hole of the compression nozzle is r1, and the radius of the through hole of the compression nozzle is greater than r1.
  • the first non-melting electrode forms a pilot arc between the electrode end and the compression nozzle.
  • the pilot arc forms the main working plasma arc (transfer arc) in the space between the electrode end and the workpiece, which is called the first non-melting electrode.
  • Polar arc the main working plasma arc
  • the laser beam travels collinearly along the central axis of the torch body through the lens.
  • the laser beam is arranged coaxially with the plasma arc and passes through the center of the plasma arc to interact with it, forming a light arc that is different from the laser beam and the plasma arc. Focused to the focal point outside the welding body, the optical arc interacts with the metal vapor and plasma cloud generated when the laser smelts small holes on the workpiece to form a welding melting point on the workpiece material.
  • first non-melting electrode and the central axis of the welding torch main body are arranged at an oblique angle, and the range of the intersection angle between the electrode and the central axis of the welding torch main body is 0 degree to 90 degrees.
  • the distance h between the bottom end of the first non-melting electrode and the upper surface of the opening of the compression nozzle is 1 mm to 5 mm, and the distance is used to form a guide arc (non-transferred arc).
  • a protective gas is input between the compression nozzle and the protective nozzle.
  • the number of non-melting electrodes in the welding torch can be 1, 2, 3, or 4.
  • the first non-melting electrode establishes a plasma working arc between the end and the workpiece.
  • the laser beam interacts with the plasma arc to form an optical arc with higher energy density.
  • the optical arc interacts with the laser beam on the welding spot on the surface of the workpiece. Therefore, it is possible to obtain a higher coupling efficiency of the composite heat source than the conventional laser beam and arc recombination.
  • the electrode structure of the composite welding torch is simplified, which is easy to manufacture, install and operate, including replacing the electrode, and it is not easy to burn the electrode.
  • the welding torch of the present invention may be further reduced in size, which will facilitate the welding construction and help reduce the cost of the laser and optical arc hybrid welding torch.
  • Figure 1 is a schematic structural diagram of a torch composite welding gun using laser beam and plasma arc for composite welding
  • the reference signs are indicated as: 1. input end; 2. output end; 3. hollow cavity; 11, lens; 21, insulating bushing; 22, compression nozzle; 23, protection nozzle; 24, first non-melting electrode; 221. Central axis; 221. Through hole.
  • the present invention discloses a welding torch using laser beam and plasma arc for hybrid welding.
  • the welding torch comprises a welding torch body with an input end 1, an output end 2 and a hollow cavity 3 located between the input end 1 and the output end 2.
  • the laser beam is incident from the input end 1 and emitted from the output end 2.
  • the torch body has a central axis 211, and the central axis 211 is the direction in which the laser beam passes;
  • the input end 1 includes a lens 11 for focusing the incident light of the laser beam so that the beam is collinear with the central axis 211 of the welding torch body and is focused at a focal point outside the welding torch.
  • the output end 2 includes an insulating bush 21, a compression nozzle 22, a protection nozzle 23, and a first non-melting electrode 24;
  • the insulating bushing 21 surrounds the lower end of the hollow cavity 3 to ensure that the non-melting electrode is insulated from the welding torch;
  • the compression nozzle 22 is located at the output end of the insulating bush 21, the compression nozzle 22 has a through hole 221 centered on the central axis 211 of the torch body, and the bottom surface of the compression nozzle 22 is perpendicular to the central axis 211 of the torch body;
  • the protection nozzle 23 surrounds the compression nozzle 22 to protect the compression nozzle 22;
  • the first non-melting electrode 24 is embedded in the insulating bush 21 and arranged obliquely to the central axis 211.
  • the bottom end of the first non-melting electrode 24 is located above the through hole of the compression nozzle and the distance from the upper surface of the through hole of the compression nozzle 22 is h.
  • the range of h can be between 1mm and 5mm. The range depends on the output current range of the torch plasma power supply. The larger the output current of the welding torch, the larger the h, and vice versa.
  • the radius of the laser beam passing through the through hole 221 of the compression nozzle 22 is r1; the radius of the through hole 221 is greater than r1.
  • the first non-melting electrode 24 forms a pilot arc between the electrode end and the compression nozzle 22.
  • the pilot arc establishes a main working plasma arc in the space between the first non-melting electrode 24 and the workpiece;
  • the laser beam passes through the lens 11 and travels collinearly along the central axis 211 of the torch body.
  • the laser beam is arranged coaxially with the plasma arc and passes through the center of the plasma arc to interact with it, forming a light arc that is different from the laser beam and the plasma arc.
  • the laser beam is focused to the focal point outside the welding body, and the optical arc interacts with the metal vapor and plasma cloud generated when the laser smelts small holes on the workpiece to form a welding melting spot on the workpiece material.
  • the first non-melting electrode 24 is arranged at an oblique angle along the central axis of the welding torch body, ranging from 0 degrees to 90 degrees. This angle has a wide application range and is also convenient for designing welding torches of different forms and functions. The best effect is to ensure The electrode is easy to install and will not make the torch size too bulky.
  • the distance h between the bottom end of the first non-melting electrode 24 and the upper surface of the opening of the compression nozzle 22 is 1 mm to 5 mm. At such a distance, it is very easy to form between the first non-melting electrode 24 and the compression nozzle 22. Stable non-transferring arc.
  • a protective gas is input between the compression nozzle 22 and the protective nozzle 23.
  • the number of non-melting electrodes in the welding torch can be 1, 2, 3, or 4.
  • Two rod-shaped non-melting electrodes are arranged symmetrically along the center line of the welding torch; three uniformly arranged electrodes can also be used, or four electrodes arranged in pairs opposite to each other can be used.
  • the plasma arc power formed by multiple electrodes is higher.
  • a transfer arc (plasma arc) is established between the non-melting electrode and the workpiece in the present invention, and the laser beam passes through the plasma arc and interacts with it to form a light arc with higher energy density on the workpiece welding spot ,
  • the laser beam passing through the optical arc and the optical arc work together to form the optical arc-laser discharge, thereby maximizing the energy density of the welding spot on the workpiece.
  • the arc energy density is continuously increased under the coupling effect and photoelectric composite effect, forming a light arc with a higher energy density than the plasma arc:
  • the first non-melting electrode forms a pilot arc (non-transferred arc) between the electrode and the nozzle;
  • transfer arc a compressed plasma arc
  • the laser beam passing through the plasma arc interacts with the plasma arc, so that the plasma arc forms a light arc with a higher energy density, realizing the second step of energy enhancement;
  • the laser beam interacts with the optical arc to form a higher energy density welding spot on the workpiece, which realizes the third step of energy enhancement, thereby increasing the material's absorption rate of welding energy.
  • the method of using the above welding torch includes:
  • the first non-melting electrode 24 forms a pilot arc between the electrode end and the nozzle 22.
  • the pilot arc is transferred to a compressed plasma arc between the electrode and the workpiece.
  • the laser beam passes through the center of the plasma arc and interacts with the plasma arc. The interaction forms a light arc, which acts together with the laser beam on the workpiece to form a high-energy density welding spot.
  • the welding torch of the present invention greatly improves the energy density of the surface of the workpiece, thereby improving the welding efficiency.
  • the penetration depth obtained by using a 1KW laser is equivalent to the effect of a 2KW-3KW laser welding alone.
  • the laser beam and optical arc hybrid welding torch of the present invention uses the combined action of the laser beam and the optical arc to increase the energy density on the welding point of the workpiece; using the device of the present invention, a lower power laser can be used to obtain the welding point on the workpiece
  • the high coupling efficiency of the composite heat source eliminates some defects of laser beam welding, including the workpiece must have very precise dimensions, fast solidification of the weld bead, and expensive equipment; using the device of the present invention also eliminates some defects of plasma welding, including The welding efficiency is low, the penetration depth is small, etc.; the use of the device of the present invention also eliminates the defects of some existing laser beam plasma hybrid welding devices, including the complicated structure of the welding torch, the extremely easy burning of the electrode, the difficult manufacturing and installation, The application range is narrow and so on.
  • the laser beam light arc hybrid welding torch of the present invention is also suitable for the case of pulsed plasma welding.
  • the present invention is also applicable to welding aluminum alloy, magnesium alloy or other occasions where a variable polarity plasma power source is required.
  • coating the end of the plasma electrode with alloys such as thorium, lanthanum, zirconium, etc. is beneficial to prolong the service life of the electrode and also helps to improve the stability of the welding process.
  • the main physical effects that occur in the enhanced interaction between the laser beam and the plasma arc include:
  • the plasma arc has a significant contraction effect and a higher energy density, that is, the optical arc is formed, which is manifested in that the diameter of the optical arc is smaller than that of a single plasma arc, and the temperature of the optical arc is also significantly higher than that of the plasma arc.
  • the optical arc can promote the material's absorption rate of laser energy.
  • the absorption efficiency of aluminum alloy materials can be increased from 5% to 90%.
  • the reflectivity of copper materials to laser light is higher than 99%.
  • the copper material can absorb more laser energy to melt the copper material under the action of the optical arc, so the copper alloy material can be welded by the present invention, which greatly improves the laser
  • the present invention greatly improves the absorption rate of the laser energy by the material, and the laser beam emitted does not have direct reflection phenomenon under the surrounding of the plasma arc, so it will not affect the laser Because the laser is located inside the plasma nozzle, the spatter generated during welding will not pollute the laser.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)

Abstract

一种激光和光电弧复合焊接的焊炬包括:焊炬主体,具有输入端(1)、输出端(2)及位于输入端(1)和输出端(2)之间的中空内腔(3);焊炬主体具有激光束穿过方向的中心轴线(211);输入端(1)有用于聚焦激光束的入射光线的透镜(11);输出端(2)包括有绝缘衬套(21)、压缩喷嘴(22)、保护喷嘴(23)、第一非熔化电极(24);绝缘衬套(21)包围中空内腔(3)下端;压缩喷嘴(22)位于绝缘衬套(21)输出端;第一非熔化电极(24)镶嵌于绝缘衬套(21)中并与中心轴线(211)斜角布置,其底端位于压缩喷嘴(22)的通孔(221)上方并距离压缩喷嘴(22)的通孔(221)上表面的距离为h,其底端之间的间距为d;激光束通过压缩喷嘴(22)的通孔(221)处的半径为r1,通孔的半径大于r1。

Description

一种激光和光电弧复合焊接的焊炬 技术领域
本发明涉及一种用于金属材料的焊接、涂覆的焊炬装置,确切地说,是涉及激光和光电弧复合焊接的焊炬,以及采用本发明的激光和光电弧复合焊接方法。
背景技术
焊接是在各种金属制造行业中至关重要、至今无法完全取代的加工制造技术。焊接作业是指在工件上产生高的能量密度形成熔池并移动熔池。因此,如果可以提高焊接工具与工件之间的能量耦合效率,即入射在工件上的能量密度,则可以获得显著的经济效益,这取决于所用的材料和焊接技术。
其中之一就是具有较高的能量耦合密度的等离子焊,等离子焊接是一种将等离子弧用作能量源来熔化工件进行焊接的工艺技术,等离子弧是由非熔化电极电弧经压缩强化之后获得的能量密度更高的等离子体,又称压缩电弧,能量密度可达10 5--10 6w/cm 2。等离子焊接焊炬主要包括非熔化电极和水冷喷嘴等,焊接开始时,首先在钨极与喷嘴间建立较小电流的引导电弧,该引导弧并不实际参与焊接;在焊接施工时,利用引导弧在钨极与工件之间建立等离子弧,非熔化电极电弧经喷嘴压缩后提高了在喷嘴和工件之间的等离子弧能量密度,较高能量的等离子弧在工件表面产生动态压力,其电弧可以穿透熔融液池,因此也称之为“小孔”焊接。等离子焊的主要优点是能够进行一道次、相对快速的材料焊接,接头准备工作最少。另外,因为等离子弧聚集在“小孔”内,减小了工件内的应力或变形。
尽管等离子焊接具有许多重要优点,但仍存在几项严重的局限性。
首先是等离子起弧技术,等离子焊接通常需要高频高压击穿电极和喷嘴之间的保护气体形成非转移等离子弧,这可能会导致邻近一些电子设备受损。另外,等离子体电弧的能量密度不足因此制约了“小孔”的穿透深度、可焊材料厚度和焊接速度,另外,等离子焊接的“小孔”可能在某些操作条件下出现塌陷,由此造成焊缝质量降低。
在等离子焊中,入射在工件上的能量密度是形成“小孔”的最重要参数。在常规的等离子弧焊过程中,对于约200A-250A的电流和约3KW-3.5KW的等离子功率密度而言,辐射热传递是主导因素,因此,实际上无法利用现有技术获得更高的等离子焊接功率密度,任何通过增大焊炬功耗来提高功率密度的尝试都会降低焊接效率;如果尝试提高焊接速度, 等离子弧会变得不稳定,工件上的热斑会落在焊炬轴线之后,这是导致焊接质量差的一个起因。
激光束焊是一种利用激光束作为热源进行焊接的高效精密加工方法。以“小孔”模式为主导的激光束焊接可以提供相对大的熔深,与其他熔焊方法相比,激光束焊接具有能量密度高(一般为10 6~10 8W/cm 2)、热输入少、接头区残余应力和变形小、熔化区和热影响区窄,以及熔深大、焊缝组织细小、接头性能好等优点。此外,与电子束技术相比,激光束焊接不需要真空条件,保护气体种类及压力范围可方便选择,可借助偏转棱镜或光导纤维将激光束引导到难以接近的部位进行焊接,操作灵活,可穿过透明材料聚焦焊接等,激光束可灵活控制,易于实现工件的三维自动化焊接。
激光束焊也具有几项重大的制约条件。由于可焊材料厚度和穿透深度受制于被耦合至工件的激光束的功率和热量,因此通常只能通过提高激光器功率来改善的焊接效果。激光束焊一般需要大型的高功率气体激光器、固态激光器或二极管激光器以生成并维持“小孔”焊接的模式。
众所周知,金属等离子体对“小孔”内壁所产生的压力对焊接过程中维持“小孔”焊接模式是非常重要的。但是,如果等离子体密度过高会造成激光束反射;实际上,等离子体的密度变得过低或过高,都会导致降低焊接作业的效率。另外,在像金属这样的材料上启动激光束焊,需要使用更高的激光束功率以形成“小孔”,但激光束的功率转换效率都是很低的。
总的来说,激光束焊接技术存在以下典型的限制条件:
(1)需要非常精确的焊件位置(在激光束的聚焦范围内),焊件需使用相对复杂的夹治具,以确保激光束热斑与焊件的最终位置对准;对于厚度大于19mm的工件,生产线上不适合使用激光焊接。
(2)对于高反射性及高导热性材料如铝、铜及其合金等,激光束焊接的应用受到限制。当进行高能量焊接时,激光束焊接的性能会受到等离子体的影响。
(3)能量转换效率通常低于10%;焊道凝固快,容易产生气孔及脆化。
(4)设备昂贵。
为了消除或减少激光焊接的缺陷,利用其它热源与激光束进行复合焊接的新技术现在已经开始了一些工业应用。已经应用的、最典型的是激光束与电弧采用旁轴式布置的复合焊接技术。
这种激光电弧复合焊接技术的基本特点是用激光束的能量直接作用于工件表面,并与 熔化电极电弧(GMAW)或者TIG电弧重合在一起,产生了一定的“复合焊接”效果,但是,由于GMAW或者TIG电弧的能量密度远远低于激光束,因此这种“复合焊接”效果是有限的。
总的来说,激光束和电弧复合焊接有以下的“复合焊接”优点:
1)具有一定的“复合焊接”效果,相比单独激光焊接而言可以提高焊接速度、增加熔深、提高焊接的“搭桥”能力。
2)与单独电弧焊接相比,激光束与电弧的复合热源可以提高焊接速度。
尽管激光束电弧复合焊接具有许多重要优点,但仍存在一些局限性,影响了激光束电弧复合焊接工艺技术在工业领域的应用。例如,这种复合焊接方法最重要的不足之一是在于激光束与电弧的旁轴布置方式,因为两个焊接热源在工件上的工作区域是非对称的,很难控制系统实现稳定工作;另一个不足在于激光束和电弧的能量密度等级差距大,降低了双热源“复合焊接”效果,例如,当电弧电流增大到一定值以后,继续增大电弧电流会减弱激光束的能量。另外,实际应用中,采用旁轴布置方式的激光束电弧复合焊接焊炬还存在很多实用性不足的问题,如需要较大的布置空间、焊接系统相对复杂、仍然要求有较高的焊缝坡口精密度等等。
与上述技术类似的、激光束与其它焊接热源采用旁轴布置方式的复合焊接技术,还包括激光与TIG电弧复合焊接方式,由双热源布置方式类似,因此,上述技术缺陷仍然存在。
激光束与其它普通焊接热源采用同轴布置方式的研究成果包括:激光束与MIG电弧(熔化极电弧)同轴复合焊炬、激光束与TIG电弧(非熔化电极)同轴复合焊炬(如美国专利US4,689,466)。上述技术因为激光束和电弧的能量密度等级差距太大,其“复合焊接”效果是受到局限的,从实际效果来看,激光束与电弧(熔化极电弧)同轴复合方法与之前的旁轴复合焊接效果区别是有限的,而激光束与非熔化电极(TIG电弧,未压缩等离子体)同轴复合方法也难以实现实用化,因为这项技术需要采用环形的或者是空心的非熔化电极,但这种异形的非熔化电极不仅难以制造,而且极易烧损。
激光束与等离子电弧采用同轴布置方式的研究成果如美国专利US5,705,785和US6,388,227所描述的激光束与等离子电弧(压缩电弧)复合的焊接技术,这些技术的核心内容都是利用部分激光束直接射在非熔化电极上,其余的激光束则穿过非熔化电极电弧中心,并与电弧进行复合焊接。这些技术的主要缺陷包括:只有部分激光束穿过等离子电弧进行复合焊接,能量利用率较低;采用部分激光束热辐射电极的方式激发等离子体,不可避免地加剧了对电极的烧损;另外,无论是圆锥形空心电极还是组合电极,都存在可 靠性低、制造和安装精度要求很高,电极更换困难等问题,直接限制了上述技术推广应用。
发明内容
为了克服上述技术缺陷,本发明实施例提供一种利用激光束和等离子弧进行复合焊接的焊炬及其使用方法。
为达上述目的,本发明所采取的技术方案是:
一种利用激光束和等离子弧进行复合焊接的焊炬,包括一个具有中空内腔的焊炬主体,中空内腔有用于激光束穿过的输入端、输出端,激光束从输入端入射从输出端射出。在输入端包括有透镜,用于聚焦激光束的入射光线,在输出端安装有第一非熔化电极,以及将电极与焊炬进行绝缘的绝缘衬套,绝缘衬套包围中空内腔下端,焊炬下部有用于压缩电弧的压缩喷嘴和保护喷嘴,保护喷嘴包围在压缩喷嘴外部,压缩喷嘴具有以焊炬主体中心轴线为中心的通孔,底面垂直于焊炬主体中心轴线。
第一非熔化电极镶嵌于绝缘衬套中,激光束通过位于压缩喷嘴通孔处的半径为r1,所述压缩喷嘴通孔的半径大于r1。
第一非熔化电极在电极端部和压缩喷嘴之间形成引导电弧,实施焊接时,引导电弧在电极端部与工件之间的空间形成主工作等离子电弧(转移电弧),称为第一非熔化极电弧。
激光束穿过透镜沿焊炬主体的中心轴线共线传播,激光束与等离子弧同轴布置并从等离子弧中心穿过与之相互作用,形成区别于激光束和等离子弧的光电弧,激光束被聚焦到焊接主体之外的焦点,所述光电弧与激光在工件上烧熔出小孔时产生的金属蒸汽和等离子云相互作用,在工件材料上形成焊接熔化点。
进一步地,第一非熔化电极和所述焊炬主体中心轴线为斜角布置,电极与焊炬主体中心轴线交角的范围为0度至90度。
进一步地,所述第一非熔化电极底端距离压缩喷嘴的开孔上表面的距离为h为1mm至5mm,该距离用于形成引导弧(非转移弧)。
进一步地,压缩喷嘴与保护喷嘴之间输入有保护气体。
进一步地,焊炬中非熔化电极的根数可以为1根、2根、3根或4根。
上述技术方案具有如下有益效果:
1、第一非熔化电极在端部和工件之间建立等离子工作电弧,激光束与等离子电弧相互作用形成具有更高能量密度的光电弧,该光电弧在工件表面的焊点上与激光束相互作用,因此可以获得比常规的激光束与电弧复合更高的复合热源耦合效率。
2、提供了一种成本更低的、可以获得与较高功率激光束一样的焊接能力和效率的焊接方法,可以获得超过单独激光束焊接的质量和效率,同时消除了现有激光和等离子复合焊接技术缺陷。
3、简化了复合焊炬的电极结构,便于制造、安装和操作,包括更换电极,并且不易烧损电极。采用本发明的焊炬可能进一步减小尺寸,这将更加便于焊接施工,而且有利于降低激光和光电弧复合焊炬的成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种利用激光束和等离子弧进行复合焊接的焊炬复合焊枪的结构示意图;
附图标记表示为:1、输入端;2、输出端;3、中空内腔;11、透镜;21、绝缘衬套;22、压缩喷嘴;23、保护喷嘴;24、第一非熔化电极;221、中心轴线;221、通孔。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明公开了一种利用激光束和等离子弧进行复合焊接的焊炬,包括:焊炬主体,具有输入端1、输出端2及位于输入端1和输出端2之间的中空内腔3,激光束从输入端1入射从输出端2射出;焊炬主体具有中心轴线211,所述中心轴线211为激光束穿过方向;
输入端1包括有透镜11,用于聚焦激光束的入射光线,从而光束与焊炬主体的中心轴线211共线且被聚焦于位于焊炬之外的一个焦点。
输出端2包括有绝缘衬套21、压缩喷嘴22、保护喷嘴23、第一非熔化电极24;
绝缘衬套21包围中空内腔3下端,保证非熔化电极与焊炬绝缘;
压缩喷嘴22位于绝缘衬套21输出端,压缩喷嘴22具有以焊炬主体中心轴线211为中心的通孔221,压缩喷嘴22的底面垂直于焊炬主体中心轴线211;
保护喷嘴23包围在压缩喷嘴22外部,用于保护压缩喷嘴22;
第一非熔化电极24镶嵌于绝缘衬套21中并与中心轴线211倾斜设置,第一非熔化电极24的底端位于压缩喷嘴的通孔上方并距离压缩喷嘴22的通孔上表面的距离为h,h范围可在1mm至5mm之间,该范围视焊炬等离子电源输出电流范围而定,输出电流较大的焊炬则h越大,反之则越小。
激光束通过位于压缩喷嘴22通孔221处的半径为r1;所述通孔221的半径大于r1。
第一非熔化电极24在电极端部和压缩喷嘴22之间形成引导电弧,实施焊接时,引导电弧在第一非熔化电极24与工件之间的空间里建立主工作等离子电弧;
激光束穿过透镜11沿焊炬主体的中心轴线211共线传播,激光束与等离子弧同轴布置并从等离子弧中心穿过与之相互作用,形成区别于激光束和等离子弧的光电弧,激光束被聚焦到焊接主体之外的焦点,所述光电弧与激光在工件上烧熔出小孔时产生的金属蒸汽和等离子云相互作用,在工件材料上形成焊接熔化点。
第一非熔化电极24沿所述焊炬主体中心轴线斜角布置,范围为0度至90度,该角度适用范围较宽,也便于设计不同形式、不同功能的焊炬,最好效果是保证电极便于安装、不会使焊炬尺寸过于笨重。
进一步地,所述第一非熔化电极24底端距离压缩喷嘴22的开孔上表面的距离为h为1mm至5mm,这样的距离下第一非熔化电极24和压缩喷嘴22之间极易形成稳定的非转移弧。
进一步地,压缩喷嘴22与保护喷嘴23之间输入有保护气体。
进一步地,焊炬中非熔化电极的根数可以为1根、2根、3根或4根。采用2根棒状的非熔化电极,沿焊炬中心线对称布置;也可以采用3根均匀布置的电极,也可以采用两两相对布置的4根电极,多个电极形成的等离子电弧功率更高。
当实施焊接时,本发明中的非熔化电极与工件之间建立转移电弧(等离子电弧),激光束穿过等离子弧并与之相互作用,形成能量密度更高的光电弧,在工件焊点上,穿过光电弧的激光束与光电弧共同作用,形成了光电弧-激光放电,从而最大程度地提高了在工件焊点的能量密度。
利用本发明,电弧能量密度在耦合作用和光电复合作用下持续提高,形成了比等离子弧能量密度更高的光电弧:
1、首先,第一非熔化电极在电极和喷嘴之间形成引导电弧(非转移电弧);
2、实施焊接时,在电极和工件之间形成压缩等离子弧(“转移电弧”),实现了能 量增强的第一步;
3、穿过等离子弧的激光束与等离子弧相互作用,使等离子弧形成能量密度更高的光电弧,实现了能量增强的第二步;
4、激光束与光电弧相互作用、在工件上形成了更高能量密度的焊接点,实现了能量增强的第三步,从而提高了材料对焊接能量的吸收率。
上述焊炬的使用方法,包括:
第一非熔化电极24在电极端部和喷嘴22之间形成引导电弧,实施焊接时,该引导电弧转移成电极与工件之间的压缩等离子弧,激光束穿过等离子弧中心,并与等离子弧相互作用形成光电弧,该光电弧与激光束共同作用在工件上,形成了高能量密度的焊接点。
相比单独的激光束或者等离子弧而言,本发明焊炬大幅度提高了工件表面的能量密度,进而提高了焊接效率。利用本发明,采用1KW激光器所获得的熔深相当于2KW-3KW激光器单独焊接的效果。
本发明所述激光束光电弧复合焊接焊炬,是利用激光束和光电弧的共同作用提高工件焊点上的能量密度;利用本发明的装置,可以采用较小功率的激光器在工件焊点上获得高的复合热源耦合效率,消除了一些激光束焊接的缺陷,包括工件必须具备非常精确尺寸、焊道凝固快、设备昂贵等;利用本发明的装置,同时还消除了一些等离子焊接的缺陷,包括焊接效率较低、熔深小等;利用本发明的装置,同时还消除了现有一些激光束等离子复合焊接装置的缺陷,包括焊炬结构复杂、电极极易烧损、制造和安装难度大、应用范围较窄等。
本发明所述激光束光电弧复合焊接焊炬,也适用于采用脉冲式等离子焊接的情况。
在焊接铝合金、镁合金或者其它的需要采用变极性等离子电源的场合,本发明同样适用。同时,在等离子电极的端部涂覆钍、镧、锆等合金,有利于延长电极的使用寿命,也有利于提高焊接过程的稳定性。
根据发明人研究,在激光束与等离子弧之间增强的相互作用中发生的主要物理作用包括:
1、等离子弧发生了明显的收缩效应、产生更高的能量密度,即形成所述光电弧,其表现为光电弧直径小于单独的等离子电弧,光电弧的温度也明显高于等离子电弧。根据研究和对比,光电弧能够促进材料对激光能量的吸收率,例如可以把铝合金材料对激光的吸收效率从5%提高到90%,又例如,由于铜材料对激光的反射率高于99%,一般不能用激光焊接,但利用本发明,一方面,铜材料在光电弧的作用下可以吸收更多的激光能量熔化 铜材料,因此利用本发明可以焊接铜合金材料,这大大提高了激光的应用领域和应用能力,另一方面,本发明体现出大幅度提高了材料对激光能量的吸收率,并且在等离子电弧的包围下,发射的激光束不存在直接反射现象,因此不会影响激光器,由于激光器位于等离子喷嘴内部,焊接过程中产生的飞溅物也不会污染激光器。
2、缩小工件上的热影响区域或热斑点。
3、提高等离子体温度。
4、提高耦合等离子弧稳定性。
5、减小能耗。只需要较小功率的激光束和较低输出的等离子热源就可以达到较大功率激光束、较高输出的等离子热源才能具有的焊接效果,总的净效果是在工件上产生较高的能量密度斑点,例如,与同等功率激光焊接、同等电流的等离子焊接相比,本发明具有更高的焊接速度和更大的熔深。
在上述的详细描述中,各种特征一起组合在单个的实施方案中,以简化本公开。不应该将这种公开方法解释为反映了这样的意图,即,所要求保护的主题的实施方案需要比清楚地在每个权利要求中所陈述的特征更多的特征。相反,如所附的权利要求书所反映的那样,本发明处于比所公开的单个实施方案的全部特征少的状态。因此,所附的权利要求书特此清楚地被并入详细描述中,其中每项权利要求独自作为本发明单独的优选实施方案。

Claims (10)

  1. 一种用于激光束和光电弧复合焊接的焊炬,其特征在于,该焊炬包括:
    焊炬主体,具有输入端(1)、输出端(2)及位于输入端(1)和输出端(2)之间的中空内腔(3),激光束从输入端(1)入射从输出端(2)射出;所述焊炬主体具有中心轴线(211),所述中心轴线(211)为激光束穿过方向;
    所述输入端(1)包括有透镜(11),用于聚焦激光束的入射光线;
    所述输出端(2)包括有绝缘衬套(21)、压缩喷嘴(22)、保护喷嘴(23)、第一非熔化电极(24);
    所述绝缘衬套(21)包围中空内腔(3)下端,保证非熔化电极与焊炬绝缘;
    所述压缩喷嘴(22)位于绝缘衬套(21)输出端,压缩喷嘴(22)具有以焊炬主体中心轴线(211)为中心的通孔(221),压缩喷嘴(22)的底面垂直于焊炬主体中心轴线(211);
    所述保护喷嘴(23)包围在压缩喷嘴(22)外部,用于保护压缩喷嘴(22);
    所述第一非熔化电极(24)镶嵌于绝缘衬套(21)中并与中心轴线(211)斜角布置,第一非熔化电极(24)的底端位于压缩喷嘴的通孔上方并距离压缩喷嘴(22)的通孔上表面的距离为h;
    所述激光束通过位于压缩喷嘴(22)通孔(221)处的半径为r1,所述通孔(221)的半径大于r1;
    所述第一非熔化电极(24)在电极端部和压缩喷嘴(22)之间形成引导电弧,实施焊接时,引导电弧在第一非熔化电极(24)与工件之间的空间里建立主工作等离子电弧;
    激光束穿过透镜(11)沿焊炬主体的中心轴线(211)共线传播,激光束与等离子弧同轴布置并从等离子弧中心穿过与之相互作用,形成区别于激光束和等离子弧的光电弧,激光束被聚焦到焊接主体之外的焦点,所述光电弧与激光在工件上烧熔出小孔时产生的金属蒸汽和等离子云相互作用,在工件材料上形成焊接熔化点。
  2. 如权利要求1所述的用于激光束和光电弧复合焊接的焊炬,其特征在于:
    所述第一非熔化电极(24)和焊炬轴线斜角布置,角度范围为0度至90度。
  3. 如权利要求1所述的用于激光束和光电弧复合焊接的焊炬,其特征在于:
    所述压缩喷嘴(22)与保护喷嘴(23)之间输入有保护气体。
  4. 如权利要求1所述的用于激光束和光电弧复合焊接的焊炬,其特征在于:还包括:
    镶嵌于绝缘衬套(21)中的第二非熔化电极,所述第二非熔化电极和第一非熔化电极 (24)沿焊炬轴线对称布置在中心轴线(211)之外。
  5. 如权利要求4所述的用于激光束和光电弧复合焊接的焊炬,其特征在于:还包括:
    镶嵌于绝缘衬套(21)中的第三非熔化电极,所述第三非熔化电极与第一非熔化电极(24)和第二非熔化电极均匀布置在中心轴线(211)之外。
  6. 如权利要求5所述的用于激光束和光电弧复合焊接的焊炬,其特征在于:还包括:
    镶嵌于绝缘衬套(21)中的第四非熔化电极,所述第四非熔化电极与第一非熔化电极(24)、第二非熔化电极和第三非熔化电极均匀布置在中心轴线(211)之外。
  7. 如权利要求1所述的用于激光束和光电弧复合焊接的焊炬,其特征在于:所述第一非熔化电极(24)的底端距离压缩喷嘴(22)的通孔上表面的距离h为1mm至5mm,该距离用于形成引导电弧。
  8. 如权利要求4-6任一项所述的用于激光束和光电弧复合焊接的焊炬,其特征在于:所述第二非熔化电极在电极端部和压缩喷嘴(22)之间形成引导电弧,实施焊接时,引导电弧在所述第二非熔化电极与工件之间的空间里建立主工作等离子电弧,该等离子电弧与激光束同轴布置。
  9. 如权利要求4-6任一项所述的用于激光束和光电弧复合焊接的焊炬,其特征在于:所述第二非熔化电极和焊炬轴线斜角布置,角度范围为0度至90度。
  10. 如权利要求1-7任一项所述的用于激光束和光电弧复合焊接的焊炬,其特征在于:本发明适用于采用脉冲式等离子焊接或采用变极性等离子电源焊接的场合。
PCT/CN2020/101630 2019-07-15 2020-07-13 一种激光和光电弧复合焊接的焊炬 WO2021008487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910635907.8A CN111375896A (zh) 2019-07-15 2019-07-15 一种激光和光电弧复合焊接的焊炬
CN201910635907.8 2019-07-15

Publications (1)

Publication Number Publication Date
WO2021008487A1 true WO2021008487A1 (zh) 2021-01-21

Family

ID=71219618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101630 WO2021008487A1 (zh) 2019-07-15 2020-07-13 一种激光和光电弧复合焊接的焊炬

Country Status (2)

Country Link
CN (1) CN111375896A (zh)
WO (1) WO2021008487A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111375896A (zh) * 2019-07-15 2020-07-07 成都智见复合科技有限公司 一种激光和光电弧复合焊接的焊炬
CN112589274A (zh) * 2020-12-24 2021-04-02 广东省科学院中乌焊接研究所 一种激光-等离子弧复合切割与焊接加工装置及加工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002113588A (ja) * 2000-10-04 2002-04-16 Nippon Steel Weld Prod & Eng Co Ltd レ−ザ/交流プラズマ複合の加工装置
US6388227B1 (en) * 1999-07-15 2002-05-14 Plasma Laser Technologies Ltd. Combined laser and plasma-arc processing torch and method
FR2829413B1 (fr) * 2001-09-11 2003-12-12 Air Liquide Torche et installation de soudage hybride laser-arc modulaires multi-procedes
CN106141437A (zh) * 2016-08-15 2016-11-23 广东省焊接技术研究所(广东省中乌研究院) 一种激光与双等离子弧复合焊接装置
CN106735909A (zh) * 2017-02-07 2017-05-31 王长春 一种用于激光束和等离子弧复合焊接的焊炬
CN110587137A (zh) * 2019-10-14 2019-12-20 广东省焊接技术研究所(广东省中乌研究院) 铝合金的复合焊接方法以及焊接头
CN210848805U (zh) * 2019-07-15 2020-06-26 成都智见复合科技有限公司 一种激光和光电弧复合焊接的焊炬
CN111375896A (zh) * 2019-07-15 2020-07-07 成都智见复合科技有限公司 一种激光和光电弧复合焊接的焊炬

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388227B1 (en) * 1999-07-15 2002-05-14 Plasma Laser Technologies Ltd. Combined laser and plasma-arc processing torch and method
JP2002113588A (ja) * 2000-10-04 2002-04-16 Nippon Steel Weld Prod & Eng Co Ltd レ−ザ/交流プラズマ複合の加工装置
FR2829413B1 (fr) * 2001-09-11 2003-12-12 Air Liquide Torche et installation de soudage hybride laser-arc modulaires multi-procedes
CN106141437A (zh) * 2016-08-15 2016-11-23 广东省焊接技术研究所(广东省中乌研究院) 一种激光与双等离子弧复合焊接装置
CN106735909A (zh) * 2017-02-07 2017-05-31 王长春 一种用于激光束和等离子弧复合焊接的焊炬
CN210848805U (zh) * 2019-07-15 2020-06-26 成都智见复合科技有限公司 一种激光和光电弧复合焊接的焊炬
CN111375896A (zh) * 2019-07-15 2020-07-07 成都智见复合科技有限公司 一种激光和光电弧复合焊接的焊炬
CN110587137A (zh) * 2019-10-14 2019-12-20 广东省焊接技术研究所(广东省中乌研究院) 铝合金的复合焊接方法以及焊接头

Also Published As

Publication number Publication date
CN111375896A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
US6388227B1 (en) Combined laser and plasma-arc processing torch and method
WO2018145544A1 (zh) 一种用于激光束和等离子弧复合焊接的焊炬
US5705785A (en) Combined laser and plasma arc welding torch
US6469277B1 (en) Method and apparatus for hybrid welding under shielding gas
CN104985327A (zh) 一种双焦点激光与InFocus电弧复合焊接方法
WO2021008487A1 (zh) 一种激光和光电弧复合焊接的焊炬
CN104625411B (zh) 一种Ti2AlNb基金属间化合物与异种钛合金焊接的方法
CN104014933B (zh) 一种激光-toptig复合焊接的方法
CN108500491A (zh) 激光-冷金属过渡电弧同轴复合增材制造装置及方法
CN101992354A (zh) 微束等离子弧和激光复合焊接方法
CN110170746B (zh) 一种同轴双焦点激光-tig电弧复合焊接方法
CN103433630A (zh) 一种脉动送丝激光-电弧复合点焊方法
CN104227242A (zh) 中心负压等离子弧激光同轴复合焊接装置及方法
CN105171242B (zh) 一种激光‑InFocus电弧双面对称复合焊接方法
CN206455302U (zh) 一种用于激光束和等离子弧复合焊接的焊炬
CN210848805U (zh) 一种激光和光电弧复合焊接的焊炬
CN112792456B (zh) 一种基于激光稳定熔池尺寸的电弧增材制造方法及系统
CN113146047A (zh) 一种铝合金的激光-电弧复合焊接设备及焊接方法
CN105618933B (zh) 一种高效高质的激光‑微弧等离子复合焊接方法
CN101318266A (zh) 空心电极激光等离子同轴复合加工装置
CN107999963B (zh) 一种激光-熔化极电弧同轴复合装置
JP2003311456A (ja) レーザ照射アーク溶接ヘッド
JP3768394B2 (ja) レ−ザ/プラズマ複合の加工装置
CN113319430A (zh) 一种磁场辅助多级氩弧与激光中心耦合共熔池焊接装置
CN207372497U (zh) 一种基于高速扫描振镜的大功率激光焊接系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20841581

Country of ref document: EP

Kind code of ref document: A1