WO2021007138A1 - Probe - Google Patents

Probe Download PDF

Info

Publication number
WO2021007138A1
WO2021007138A1 PCT/US2020/040845 US2020040845W WO2021007138A1 WO 2021007138 A1 WO2021007138 A1 WO 2021007138A1 US 2020040845 W US2020040845 W US 2020040845W WO 2021007138 A1 WO2021007138 A1 WO 2021007138A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
flutes
lead
exterior surface
fitment
Prior art date
Application number
PCT/US2020/040845
Other languages
French (fr)
Inventor
James W. Johnson
Original Assignee
Liqui-Box Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liqui-Box Corporation filed Critical Liqui-Box Corporation
Priority to EP20836190.7A priority Critical patent/EP3994078A4/en
Priority to CA3137852A priority patent/CA3137852A1/en
Priority to AU2020311869A priority patent/AU2020311869A1/en
Publication of WO2021007138A1 publication Critical patent/WO2021007138A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/0005Components or details
    • B05B11/0008Sealing or attachment arrangements between sprayer and container
    • B05B11/0013Attachment arrangements comprising means cooperating with the inner surface of the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/02Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring liquids other than fuel or lubricants
    • B67D7/0288Container connection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/22Spouts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/30Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages
    • B05B1/3006Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the controlling element being actuated by the pressure of the fluid to be sprayed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/28Couplings of the quick-acting type with fluid cut-off means
    • F16L37/38Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in only one of the two pipe-end fittings

Definitions

  • this application relates to devices and related methods suitable for dispensing components from packaged products, including, for example, probes and probe assemblies for flexible packaging adapted to cooperate with equipment to dispense flowable products (e.g., beverages, mixes, dairy products, and syrups, etc.) at restaurants, convenience stores, and other retail locations.
  • flowable products e.g., beverages, mixes, dairy products, and syrups, etc.
  • Probes and valve assemblies are used in applications that benefit from or require their use in order to access materials, including packaged materials that are sold in sealed boxes, bags, bag-in-box, and/or metal, glass, or plastic containers.
  • conventional probes or valve assemblies are often adapted and configured (e.g., sized and shaped) to be attached securely (e.g., either temporarily or permanently) to a fitment, spout or other type of access point in a packaged product, such as flexible polyethylene liners or bags.
  • existing probes and valves help to control, meter, or measure the dispensing of packaged products (e.g., flowable products) they often are unable to provide regular and consistent flow when dispensing the product, particularly as the packaging containing the product empties.
  • the flexible bag can fold-in or crush-in toward its interior and impede or block the flow of the product being dispensed. This can result in incorrect dispensing volumes of product, inaccessible or residual volume of product, and/or time spent accessing and removing the material blocking the access to the product, creating an overall increase in cost and time associated with the use of the product.
  • the probe provided by the disclosure can overcome at least one or more of the deficiencies that are associated with existing probes in common use in the industry and can, for example, increase the product yield from packaged product, and/or reduce the time and effort required by the end-user in ensuring proper dispensing of the packaged product.
  • the aspect and embodiments provided by the disclosure relate to a probe that is adapted and designed for use with dispensing components for packaging such as, for example, flexible packaging, and cooperates with equipment to dispense flowable material (e.g., liquid products).
  • a probe that is adapted and designed for use with dispensing components for packaging such as, for example, flexible packaging, and cooperates with equipment to dispense flowable material (e.g., liquid products).
  • the disclosure provides a probe comprising a hollow body having an exterior surface, an interior surface, a nozzle end, a lead-in end that engages a seal or opening, a flange molded to the probe body, and a plurality of flutes on the exterior surface of the probe.
  • the plurality of flutes form protrusions and create a non-planar edge geometry at the lead-in end of the probe.
  • the non-planar edge geometry comprises rounded, scalloped, squared, pointed, troughed, or serrated shapes.
  • the probe comprises from 4 to 20 flutes on the lead-in end of the probe.
  • the plurality of flutes are symmetrically spaced on the exterior surface of the probe.
  • at least two of the plurality of flutes are asymmetrically spaced on the exterior surface of the probe.
  • the plurality of flutes have approximately the same dimensions. In some further embodiments, at least two of the plurality of flutes have substantially different dimensions.
  • the plurality of flutes run along the about 50% of the length of the lead-in end of the probe. In some other embodiments, the plurality of flutes run along no more than 50% of the length from the tip of the lead-in end to the flange.
  • the probe may further comprise an angled nozzle end.
  • the angled nozzle end may comprise an angle from about 10 to about 90 degrees from planar.
  • the angled nozzle end may comprise a 90 degree angle.
  • the probe may further comprise a check valve positioned on the interior surface of the probe, and configured to reduce or eliminate leakage of the product from the probe when in use.
  • the probe may further comprise a lock bead on at least a portion of the exterior surface of the probe, and located on the lead-in end.
  • the probe may further comprise on the nozzle end a threaded portion, one or more ribs, or a roughened surface configured to provide a secure fit to an attachment.
  • FIG. 1A depicts a side-view of a probe in accordance with an example embodiment of the disclosure.
  • the portion of the probe i.e., proximate or lead-in end
  • the packaging and/or a fitment
  • its interior is presented at the bottom of the Figure, with the exterior-facing portion of the probe (from which the product dispenses, i.e., nozzle end) at the top of the Figure.
  • FIG. IB depicts a side-angled rear view of a probe in accordance with an example embodiment of the disclosure, providing detail of the interior-facing portion (lead-in end) of the probe that attaches to a packaging access point (e.g., spout, seal, and/or fitment) and contacts the product contained within the packaging, when fully engaged with the packaging.
  • a packaging access point e.g., spout, seal, and/or fitment
  • FIG. 1C depicts a cutaway side view of a side-angled, rear view of a probe in accordance with an example embodiment of the disclosure.
  • FIG. ID depicts a cutaway side view of a side-angled, rear view of a probe in accordance with an example embodiment of the disclosure, which illustrates an alternative embodiment of structure within the interior hollow portion of the probe.
  • FIG. 2A depicts a side-angled front view of a probe in accordance with an example embodiment of the disclosure, engaged and securely affixed to a flip cap fitment.
  • FIG. 2B depicts a cutaway view of the probe and fitment illustrated in FIG. 2A.
  • FIG. 3A depicts a side-angled front view of a probe in accordance with an example embodiment of the disclosure, oriented to a flip cap fitment/seal, prior to being engaged/securely affixed to the flip cap fitment/seal.
  • FIG. 3B depicts a cutaway view of the probe and fitment illustrated in FIG. 3A.
  • FIG. 4A depicts an exploded view of components of a probe in accordance with an example embodiment of the disclosure.
  • the probe comprises a 90 degree spout in addition to a check flow valve positioned in its interior hollow portion of the proximate or lead- in end.
  • Optional components of a flip cap fitment are also illustrated.
  • FIG. 4B depicts cutaway side view of a probe in accordance with an example embodiment of the disclosure that is seated in a fitment, with some of the components as generally illustrated in FIG. 4 A.
  • FIG. 5A depicts a probe in accordance with an example embodiment of the disclosure.
  • the probe comprises a 90 degree spout and a lock bead on the lead in end (as illustrated, between the flange and the plurality of flutes) that circles at least a portion of the perimeter of the exterior surface of the probe.
  • the probe and the fitment are oriented to each other prior to engagement.
  • FIG. 5B depicts a cutaway side view of a probe in accordance with an example embodiment of the disclosure.
  • This embodiment generally depicts the probe as illustrated in FIG. 5A comprising a 90 degree spout and a lock bead, where the probe and fitment are engaged, and the lock bead is shown as engaging with a portion of the fitment and providing a more secure connection and seal.
  • FIG. 5C depicts an alternative cutaway side view of a probe and fitment as generally shown in FIGs. 5 A and 5B illustrating the engagement between the lock bead and fitment.
  • FIG. 6 depicts a probe in accordance with an example embodiment of the disclosure.
  • the probe comprises a 90 degree spout, wherein the spout may be elongated in order to allow for easier connection (secured friction-fit attachment/access for detachment) to a fixture such as a hose or another tube, lead-line, or opening that is configured to receive a packaged product.
  • Ranges as used herein are intended as shorthand only to avoid listing and describing each and every value within the identified range. Any appropriate value within the range can be selected as the upper value, the lower value, or the end-point of the range.
  • the term "flowable material” encompasses any liquid, semi-solid, gel, emulsion, or similar materials which are flowable under gravity or may be pumped. Such materials include liquids (for example, syrup, mixes, alcohol, milk, water, fruit juice, oil, etc.), semi-solid and liquid emulsions (for example, ice cream, ice cream mix, soft margarine, whipping cream, doughs, etc.).
  • liquids for example, syrup, mixes, alcohol, milk, water, fruit juice, oil, etc.
  • semi-solid and liquid emulsions for example, ice cream, ice cream mix, soft margarine, whipping cream, doughs, etc.
  • the aspects and embodiments described herein find particular use for flowable foods and beverages, including those that may be packaged at ambient or at refrigerated temperatures.
  • the disclosure provides probes having improved structure relative to the probes that are commonly used in the art for dispensing flowable material.
  • the structural features of the probes described herein comprise a plurality of flute structures on the exterior surface of the lead-in (or proximate) end of the probe, and which can provide for improved emptying and product flow (e.g., regular, consistent, and/or unimpeded flow) in use, and avoids blockage (e.g., by flexible packaging containing the product) as the product is dispensed.
  • a probe may be adapted to interact (e.g., securely engage either permanently or temporarily) with a fitment or spout, or other known type of opening or access point, that is attached to a container holding a flowable product or material.
  • the engagement between the probe and the opening typically forms a liquid tight seal.
  • the container may be a flexible bag made from one or more plastic materials or a semi-rigid container, also of a plastic material, that holds the flowable product or material (e.g., liquids or semi-solids) that are to be dispensed.
  • the probe in accordance with example embodiments of the disclosure can be adapted and sized according to the size of the fitment, spout, opening, or access point, as well as to the volume, size, and/or shape of the bag or container so that a desired level of flow through the probe can be achieved.
  • a wide variety of liquids or semi-solids can be dispensed through the probe including, for example, viscous, but flowable, (liquid) foods, for example, coffee, soda, milk, cooking oil, syrups, water, drink mixes, as well as flowable (liquid) chemicals such as, for example, detergents, cleaning liquids, hand soap, pastes, and adhesives/glues.
  • a probe 10 may be formed by casting, molded (e.g., injection molded) or 3D printed from a variety of materials as discussed herein.
  • a probe in accordance with the example aspects and embodiments herein generally comprises a hollow, cylindrical body having a lead-in or proximal end and a distal end, the distal end (sometimes referred to herein as the“nozzle end”) forming a nozzle having a structure (e.g., nipple, threads, protrusions, spout, etc.) capable of mating with a tube, hose, lead- in line, or other opening configured to receive product.
  • a structure e.g., nipple, threads, protrusions, spout, etc.
  • the probe may also comprise a flange on the outer surface of the probe which extends around at least a portion of the circumference of the probe, and which generally separates the lead-in and distal end of the probe.
  • the lead-in end typically comprises an external surface adapted or configured to mate (e.g., frictional, secured fit) with a fitment, spout or other access point and a plurality of flutes.
  • product flows through the probe when it is securely fit to the packaging (e.g., to a fitment and penetrating any seal or cap in the packaging).
  • a probe comprises a body having a nozzle end 16, and a lead-in end 18 that engages a seal or opening, a flange 11 molded to the probe body that presses against or abuts a fitment, seal, or opening engaged by the proximate end of the probe, and a plurality of depressions or flutes 14 on the exterior surface of the probe.
  • the plurality of flutes 14 are positioned on the exterior surface of the proximate, or lead-in, end and are oriented parallel to each other and to the direction of product flow through the probe.
  • the plurality of flutes are positioned on the end of the lead-in end and generally form a structure that creates a non-planar edge geometry on the lead-in end.
  • the number of the plurality of flutes on the exterior surface of the probe may vary depending on the size of the flutes relative to the size of the probe.
  • the probe comprises a plurality of flutes wherein the plurality may be 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 flutes or more.
  • the probe comprises from about 8 flutes to about 16 flutes on its exterior surface.
  • the plurality of flutes may be asymmetrically arranged around the exterior surface of the probe.
  • the plurality of flutes may be symmetrically arranged around the exterior surface of the probe.
  • the plurality of flutes may comprise one or more flutes having one or more different dimensions. In some embodiments the plurality of flutes may have the same dimensions.
  • the plurality of flutes may have a length that varies relative to the length of the lead-in end of the probe (i.e., the region bounded by the terminal end of the lead- in end and the flange).
  • the length of the plurality of flutes may vary, as long as the length of the flutes (a) do not create any leaks between the liquid-tight seal formed by the engagement of the probe and fitment/seal or opening, and/or (b) provide for the improved flow characteristics of the probe design described herein.
  • the plurality of flutes may run along the exterior surface of the probe for a length that spans substantially the entire length from the lead-in (proximate) end to the flange.
  • the plurality of flutes may run along the exterior surface of the probe over a length of about 5% to about 50% (e.g., 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50%) of the length of the lead-in end.
  • the plurality of flutes include the portion of the lead-in end that forms the tip or terminal end of the probe that accesses the packaged product.
  • embodiments described herein comprise a plurality of flutes that are positioned on the end of the lead-in end and generally protrude from the body of the probe to form a structure that creates a non-planar edge geometry on the lead-in end.
  • the plurality of flutes protrude from the body of the probe and to create a non-planar edge geometry that can be rounded, scalloped, squared, pointed, troughed, or serrated, and the like.
  • the plurality of flutes may have a depth that varies, as long as the depth of the flutes (a) do not create any leaks between the liquid-tight seal formed by the engagement of the probe and fitment/seal or opening, and/or (b) provide for the improved flow characteristics of the probe design described herein.
  • the plurality of flutes may have a depth that is about 5% to about 50% (e.g., 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% or more) of the wall thickness of the lead-in end.
  • the plurality of flutes may have any geometry or shape. While many of the example embodiments disclosed herein to illustrate the probe comprise linear flutes, other shapes are contemplated. In some embodiments the flutes along some portion of their lengths may cross or intersect each other. Similarly, while many of the example probe embodiments disclosed herein depict the cross-sectional shape of the troughs or depressions of the flutes as squared or rounded, the cross-sectional geometry may be any of a variety of shapes.
  • the plurality of flutes may have a cross-sectional shape or geometry that comprises a semi-circular shape (e.g., a trough with a rounded bottom), a triangular shape (e.g., a trough with a pointed bottom), a squared or rectangular shape (e.g., a trough with a flat bottom), or the like (e.g., hexagonal, octagonal shapes).
  • a semi-circular shape e.g., a trough with a rounded bottom
  • a triangular shape e.g., a trough with a pointed bottom
  • a squared or rectangular shape e.g., a trough with a flat bottom
  • hexagonal, octagonal shapes e.g., hexagonal, octagonal shapes
  • the total length of the probe 10 may vary depending on its particular application and use. Thus, the general description of the dimensions that follow can be modified depending on factors that will be apparent to one of skill in the art (e.g., the package volume size, the viscosity of flowable product being dispensed, temperature, dispensing speed, etc.).
  • the probe length falls within a range of at least about 1 inch to about 4 inches (e.g., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, or 4.0 inches).
  • the total length of the probe is from about 1 inch to about 2 inches, (e.g., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, or 2.0 inches).
  • the length of the nozzle 16 of the probe 10 is from about 0.25 inch to about 2.0 inches (e.g., 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, or 2.0 inches).
  • the inner and outer diameter of the nozzle 16 of the probe can be adapted to fit with a variety of attachments (e.g., hoses, lead-lines, or other openings) that are commonly attached to nozzles that dispense a product.
  • the nozzle end diameter may range from about 0.1 inch to about 0.5 inch, (e.g., 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, or 0.5 inches) and can be attached to a hose.
  • the hoses are attached to the nozzle 16 by a friction fit of the hose to the nozzle; however, other methods also can be used, such as, a hose clamp or the exterior of the nozzle may be provided with ribs, threads (e.g., screw threads), or with a roughened surface for a better friction fit.
  • the inner or outer diameter of the probe, as well as the nozzle and lead-in ends are about 0.5 inch to about 1.5 inches (e.g., 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, or 1.5 inches).
  • the thickness of the walls of the probe falls within a range of about 0.2 inches and 0.01 inches, and may have variation in its thickness throughout the length of the probe (ranging from, for example, about 0.095 inch in the nozzle section and about 0.05 inch at edge of the flange) and may be modified depending on the product to be dispensed.
  • the geometry and diameter of the flange 11 that separates the lead-in end and the nozzle end of the probe, and that may press against the fitment 30 can be adapted depending on the width of the fitment or opening, but in some embodiments is within a range of about 1 inch to about 3 inches.
  • the flange may be reinforced with one or more ribs or other designs that strengthen the flange.
  • the flange is formed over only a portion of the circumference of the probe surface.
  • the probe body may comprise an optional locking bead on its exterior surface, which may be adapted and designed so that it helps to securely engage and form a seal between the probe and fitment/opening.
  • a locking bead of the probe can attach to a fitment to form a seal with the fitment.
  • the lock bead may be located on the lead-in end of the probe, generally in an region between the end of the plurality of flutes and the flange
  • the probe may be constructed from a molded thermoplastic material.
  • the thermoplastic material can comprise a polyolefin such as, for example, polyethylene, copolymers and terpolymers of polyethylene, polypropylene, copolymers and terpolymers of polypropylene, polybutylene and copolymers and terpolymers thereof, fluorocarbon polymers and copolymers thereof, polyvinyl chloride and copolymers thereof, polyvinylidene chloride and fluorocarbon polymers and copolymers thereof.
  • thermosetting polymers such as, for example, epoxy resins, phenolic resins, melamine resins can also be used in the construction of the probe.
  • the probe comprises polyethylene, polypropylene or copolymers or terpolymers thereof, and may be used in combination.
  • FIG. 1A illustrates a side view schematic drawing of an example embodiment of a probe, in accordance with the disclosure.
  • the probe 10 has a nozzle end 16, a lead-in or proximate end 18, a flange 11, and a plurality of flutes 14 oriented on the exterior surface at the lead-in end of the probe.
  • the plurality of flutes are depicted as symmetrical and are symmetrically spaced on the outer surface of the probe.
  • the plurality of flutes function to maintain consistent product flow from the bag, preventing any blockage or impeded product flow as the packaging or bag empties and collapses on itself and nears the opening of the lead-in end of the probe.
  • the plurality of flutes that form protrusions and create a non-planar edge geometry at the terminal end of the lead-in end of the probe may provide for some amount of the improvement in probe performance.
  • FIGs. 1B-1D illustrate alternative embodiments and views of the probe 10 having a nozzle end 16, a lead-in or proximate end 18, a flange 11, and a plurality of flutes 14 oriented on the exterior surface at the lead-in end of the probe and create protrusions (i.e., a non-planar edge geometry) 15.
  • the orientation of the probe in FIGS. 2B-2D provide additional embodiments of the plurality of flutes 14 (about ten or twelve flutes), the flutes 14 having a taper 17 toward the tip of the lead-in non-planar edge 15 of the probe.
  • the cutaway side view of FIGS. 1C and ID illustrate a difference in the hollow interior of the probe, wherein FIG. 2D includes a ridge 19 or tapering/narrowing in the internal diameter of the probe.
  • FIGs. 2A and 2B depict an example embodiment of a probe 10, fitment 30, and spout 50 securely engaged to form a seal.
  • the probe 10 as generally described in FIGS. 1A-1D includes a flange 11 that is reinforced with one or more flange- strengthening ribs 12.
  • the fitment 30 comprises a flip cap 32 having a flip lid 34 with a pull tab 36.
  • An optional duckbill check valve 38 is included in the cap 32.
  • An optional duckbill lock ring (not shown) may be positioned between the cap duckbill 38 and the spout 50.
  • FIG. 2B provides a cutaway side view of the probe engaged with the fitment as shown in FIG.2A.
  • FIGs. 3A and 3B depict an example embodiment of a probe 10, a fitment 30 and a spout 50, as generally shown in FIGs. 2A and 2B, oriented to each other prior to being securely engaged to form a seal.
  • FIG. 4A illustrates an alternative embodiment of a probe in accordance with the aspects and embodiments described herein.
  • the figure depicts an exploded view of components of a probe 10, fitment 30, and seal 50 in accordance with an example embodiment of the disclosure.
  • the probe 10 comprises a 90 degree nozzle end 16 in addition to a check flow valve 45 positioned in the interior hollow portion of the probe.
  • the fitment 30 and the spout 50 are shown, where the fitment 30 comprises a flip cap 32 having a flip lid 34.
  • a duckbill check valve 38 is included in the cap 32 and with an optional duckbill lock ring 23.
  • FIG. 4B illustrates a cutaway side view of the engagement of the probe 10 with the plurality of flutes 14 having non- planar edge geometry 15 and optional duckbill check flow valve 45; fitment 30 with cap 32 and duckbill check valve 38; and spout 50 as shown in FIG. 5 A, but without the optional duckbill check valve lock ring.
  • FIGs. 5A-5C illustrate an alternative embodiment of a probe in accordance with the aspects and embodiments described herein.
  • the FIG. 5A depicts a probe 10, fitment 30, and spout 50, wherein the probe comprises a locking bead 13 molded on the exterior surface of the probe between the flange 11 and end of the plurality of flutes 14 on the lead-in end 18.
  • FIGs. 5B and 5C illustrate a cutaway side views of the engagement of the probe 10, fitment 30, and spout 50 as shown in FIG. 6A and illustrate alternative views showing the interaction between the locking bead 13 and fitment 30.
  • FIG. 7 illustrates an alternative embodiment of a probe in accordance with the aspects and embodiments described herein.
  • the figure depicts a cutaway side view of a probe 10, fitment 30, and spout 50, where the probe 10 comprises a 90 degree nozzle end 16 that is extended or elongated 16a in order to allow for easier connection (attachment/detachment) to a fixture such as a hose or another opening that receives a packaged product.
  • the nozzle end 16 also includes threading, ridges, or roughened exterior surface to help secure attachment to an optional attachment line or opening.
  • the probe as disclosed herein, in combination with an optional fitment, can be used in methods of dispensing a flowable product from a package, suitably a package comprising a flexible material such as a bag or bag-in-box package.
  • the probe provides for improved methods of dispensing a product that may, for example, improve consistency of product flow, reduce occurrence of impeded flow, improve the emptying of the product from the packaging, and/or avoid blockage of product flow caused by, for example, flexible packaging collapsing inward during dispensing of product and blocking the probe opening.
  • the disclosed embodiments are not limited to the specific arrangement or components discussed with respect to those embodiments.
  • the various embodiments that include a particular fitment (e.g., cap) or spout may alternatively not include a cap.
  • the embodiments disclosed herein are not limited to the specific polymers or materials discussed with respect to those embodiments. Any number of different kinds of polymers having different properties can be used with the embodiments disclosed herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Food-Manufacturing Devices (AREA)

Abstract

The disclosure provides methods and probes used to dispense flowable materials from a packaged source, such as a bag in box container. The probes are adapted to engage with one or more dispensing components, for example, spouts, faucets, caps, bags, boxes, or other dispensing components. The disclosure also provides methods of using the probe, including connecting the probe to one or more dispensing components, for example flip caps, and methods of dispensing the packaged flowable material.

Description

PROBE
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is related to and claims the benefit of priority to U.S. Provisional Application No. 62/870,937, filed July 5, 2019, which is incorporated herein by reference in its entirety, for all purposes.
BACKGROUND
[0001] Generally, this application relates to devices and related methods suitable for dispensing components from packaged products, including, for example, probes and probe assemblies for flexible packaging adapted to cooperate with equipment to dispense flowable products (e.g., beverages, mixes, dairy products, and syrups, etc.) at restaurants, convenience stores, and other retail locations.
[0002] Probes and valve assemblies are used in applications that benefit from or require their use in order to access materials, including packaged materials that are sold in sealed boxes, bags, bag-in-box, and/or metal, glass, or plastic containers. For example, conventional probes or valve assemblies are often adapted and configured (e.g., sized and shaped) to be attached securely (e.g., either temporarily or permanently) to a fitment, spout or other type of access point in a packaged product, such as flexible polyethylene liners or bags. While existing probes and valves help to control, meter, or measure the dispensing of packaged products (e.g., flowable products) they often are unable to provide regular and consistent flow when dispensing the product, particularly as the packaging containing the product empties. For example, as the product packaged in a flexible bag is dispensed and the interior volume of the bag empties, the flexible bag can fold-in or crush-in toward its interior and impede or block the flow of the product being dispensed. This can result in incorrect dispensing volumes of product, inaccessible or residual volume of product, and/or time spent accessing and removing the material blocking the access to the product, creating an overall increase in cost and time associated with the use of the product.
[0003] The probe provided by the disclosure can overcome at least one or more of the deficiencies that are associated with existing probes in common use in the industry and can, for example, increase the product yield from packaged product, and/or reduce the time and effort required by the end-user in ensuring proper dispensing of the packaged product.
SUMMARY
[0004] Generally, the aspect and embodiments provided by the disclosure relate to a probe that is adapted and designed for use with dispensing components for packaging such as, for example, flexible packaging, and cooperates with equipment to dispense flowable material (e.g., liquid products).
[0005] In an aspect, the disclosure provides a probe comprising a hollow body having an exterior surface, an interior surface, a nozzle end, a lead-in end that engages a seal or opening, a flange molded to the probe body, and a plurality of flutes on the exterior surface of the probe. In some embodiments the plurality of flutes form protrusions and create a non-planar edge geometry at the lead-in end of the probe. In some embodiments, the non-planar edge geometry comprises rounded, scalloped, squared, pointed, troughed, or serrated shapes.
[0006] In some embodiments, the probe comprises from 4 to 20 flutes on the lead-in end of the probe. In some embodiments, the plurality of flutes are symmetrically spaced on the exterior surface of the probe. In some further embodiments, at least two of the plurality of flutes are asymmetrically spaced on the exterior surface of the probe. In some embodiments, the plurality of flutes have approximately the same dimensions. In some further embodiments, at least two of the plurality of flutes have substantially different dimensions.
[0007] In some embodiments, the plurality of flutes run along the about 50% of the length of the lead-in end of the probe. In some other embodiments, the plurality of flutes run along no more than 50% of the length from the tip of the lead-in end to the flange.
[0008] In any of the above aspects and embodiments, the probe may further comprise an angled nozzle end. In some further embodiments, the angled nozzle end may comprise an angle from about 10 to about 90 degrees from planar. In yet further embodiments, the angled nozzle end may comprise a 90 degree angle. [0009] In any of the above aspects and embodiments, the probe may further comprise a check valve positioned on the interior surface of the probe, and configured to reduce or eliminate leakage of the product from the probe when in use.
[0010] In any of the above aspects and embodiments, the probe may further comprise a lock bead on at least a portion of the exterior surface of the probe, and located on the lead-in end.
[0011] In any of the above aspects and embodiments, the probe may further comprise on the nozzle end a threaded portion, one or more ribs, or a roughened surface configured to provide a secure fit to an attachment.
[0012] Additional aspects and embodiments will be apparent in light of the appended drawings and the following detailed description and examples, which are provided for purposes of illustration. It should be understood, however, that the claims are not limited to the arrangements and instrumentality shown in the attached drawings. Furthermore, the appearances shown in the drawings represent individual examples of many possible appearances, both functional and ornamental that can be employed to achieve one or more of the functional features of the disclosure and its technology.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] FIG. 1A depicts a side-view of a probe in accordance with an example embodiment of the disclosure. The portion of the probe (i.e., proximate or lead-in end) adapted to fit with the packaging (and/or a fitment) and its interior is presented at the bottom of the Figure, with the exterior-facing portion of the probe (from which the product dispenses, i.e., nozzle end) at the top of the Figure.
[0014] FIG. IB depicts a side-angled rear view of a probe in accordance with an example embodiment of the disclosure, providing detail of the interior-facing portion (lead-in end) of the probe that attaches to a packaging access point (e.g., spout, seal, and/or fitment) and contacts the product contained within the packaging, when fully engaged with the packaging.
[0015] FIG. 1C depicts a cutaway side view of a side-angled, rear view of a probe in accordance with an example embodiment of the disclosure. [0016] FIG. ID depicts a cutaway side view of a side-angled, rear view of a probe in accordance with an example embodiment of the disclosure, which illustrates an alternative embodiment of structure within the interior hollow portion of the probe.
[0017] FIG. 2A depicts a side-angled front view of a probe in accordance with an example embodiment of the disclosure, engaged and securely affixed to a flip cap fitment.
[0018] FIG. 2B depicts a cutaway view of the probe and fitment illustrated in FIG. 2A.
[0019] FIG. 3A depicts a side-angled front view of a probe in accordance with an example embodiment of the disclosure, oriented to a flip cap fitment/seal, prior to being engaged/securely affixed to the flip cap fitment/seal.
[0020] FIG. 3B depicts a cutaway view of the probe and fitment illustrated in FIG. 3A.
[0021] FIG. 4A depicts an exploded view of components of a probe in accordance with an example embodiment of the disclosure. In this embodiment, the probe comprises a 90 degree spout in addition to a check flow valve positioned in its interior hollow portion of the proximate or lead- in end. Optional components of a flip cap fitment are also illustrated.
[0022] FIG. 4B depicts cutaway side view of a probe in accordance with an example embodiment of the disclosure that is seated in a fitment, with some of the components as generally illustrated in FIG. 4 A.
[0023] FIG. 5A depicts a probe in accordance with an example embodiment of the disclosure. In this embodiment, the probe comprises a 90 degree spout and a lock bead on the lead in end (as illustrated, between the flange and the plurality of flutes) that circles at least a portion of the perimeter of the exterior surface of the probe. The probe and the fitment are oriented to each other prior to engagement.
[0024] FIG. 5B depicts a cutaway side view of a probe in accordance with an example embodiment of the disclosure. This embodiment generally depicts the probe as illustrated in FIG. 5A comprising a 90 degree spout and a lock bead, where the probe and fitment are engaged, and the lock bead is shown as engaging with a portion of the fitment and providing a more secure connection and seal.
[0025] FIG. 5C depicts an alternative cutaway side view of a probe and fitment as generally shown in FIGs. 5 A and 5B illustrating the engagement between the lock bead and fitment.
[0026] FIG. 6 depicts a probe in accordance with an example embodiment of the disclosure. In this embodiment, the probe comprises a 90 degree spout, wherein the spout may be elongated in order to allow for easier connection (secured friction-fit attachment/access for detachment) to a fixture such as a hose or another tube, lead-line, or opening that is configured to receive a packaged product.
DETAILED DESCRIPTION
[0027] Ranges as used herein are intended as shorthand only to avoid listing and describing each and every value within the identified range. Any appropriate value within the range can be selected as the upper value, the lower value, or the end-point of the range.
[0028] The singular form of a word includes the plural, and vice versa, unless the context clearly dictates otherwise. Thus, references "a," "an," and "the" generally include the plurals of the respective terms they qualify. For example, reference to "a method" includes its plural- "methods." Similarly, the terms "comprise," "comprises," and "comprising," whether used as a transitional phrase in the claims or otherwise, should be interpreted inclusively rather than exclusively. Likewise, the terms "include," "including," "has," "having," and "or" should be construed to be inclusive, unless such a construction is clearly prohibited from the context. Similarly, the term "examples," particularly when followed by a listing of terms, is intended to be merely exemplary, illustrative, and non-limiting and thus should not be deemed to be exclusive or comprehensive.
[0029] Unless defined otherwise, all technical and scientific terms, terms of art, and acronyms used in the disclosure have the meanings commonly understood by one of ordinary skill in the art in the relevant technology field(s) in which the term is used. Although any compositions, methods, articles of manufacture, or other means or materials similar or equivalent to those described in the disclosure can be used in the practice of the various aspects and embodiments herein, specific compositions, methods, articles of manufacture, or other means or materials are described only for purposes of illustration and clarity.
[0030] All patents, patent applications, publications, technical and/or scholarly articles, and other references cited or referred to herein are incorporated in their entirety by reference to the extent allowed by law. The discussion of those references is intended merely to summarize the assertions made in these references. No admission is made that any such patents, patent applications, publications or references, or any portion thereof, are relevant, material, or prior art to the disclosure or the scope of claims.
[0031] As used herein, the term "flowable material" encompasses any liquid, semi-solid, gel, emulsion, or similar materials which are flowable under gravity or may be pumped. Such materials include liquids (for example, syrup, mixes, alcohol, milk, water, fruit juice, oil, etc.), semi-solid and liquid emulsions (for example, ice cream, ice cream mix, soft margarine, whipping cream, doughs, etc.). The aspects and embodiments described herein find particular use for flowable foods and beverages, including those that may be packaged at ambient or at refrigerated temperatures.
[0032] In a general sense, the disclosure provides probes having improved structure relative to the probes that are commonly used in the art for dispensing flowable material. The structural features of the probes described herein comprise a plurality of flute structures on the exterior surface of the lead-in (or proximate) end of the probe, and which can provide for improved emptying and product flow (e.g., regular, consistent, and/or unimpeded flow) in use, and avoids blockage (e.g., by flexible packaging containing the product) as the product is dispensed.
[0033] In accordance with the aspects and example embodiments of the disclosure, a probe may be adapted to interact (e.g., securely engage either permanently or temporarily) with a fitment or spout, or other known type of opening or access point, that is attached to a container holding a flowable product or material. The engagement between the probe and the opening typically forms a liquid tight seal. In example embodiments the container may be a flexible bag made from one or more plastic materials or a semi-rigid container, also of a plastic material, that holds the flowable product or material (e.g., liquids or semi-solids) that are to be dispensed. The probe in accordance with example embodiments of the disclosure can be adapted and sized according to the size of the fitment, spout, opening, or access point, as well as to the volume, size, and/or shape of the bag or container so that a desired level of flow through the probe can be achieved. A wide variety of liquids or semi-solids can be dispensed through the probe including, for example, viscous, but flowable, (liquid) foods, for example, coffee, soda, milk, cooking oil, syrups, water, drink mixes, as well as flowable (liquid) chemicals such as, for example, detergents, cleaning liquids, hand soap, pastes, and adhesives/glues.
[0034] In some aspects and embodiments, such as those illustrated by the Figures, a probe 10 may be formed by casting, molded (e.g., injection molded) or 3D printed from a variety of materials as discussed herein. A probe in accordance with the example aspects and embodiments herein generally comprises a hollow, cylindrical body having a lead-in or proximal end and a distal end, the distal end (sometimes referred to herein as the“nozzle end”) forming a nozzle having a structure (e.g., nipple, threads, protrusions, spout, etc.) capable of mating with a tube, hose, lead- in line, or other opening configured to receive product. The probe may also comprise a flange on the outer surface of the probe which extends around at least a portion of the circumference of the probe, and which generally separates the lead-in and distal end of the probe. The lead-in end typically comprises an external surface adapted or configured to mate (e.g., frictional, secured fit) with a fitment, spout or other access point and a plurality of flutes. In use product flows through the probe when it is securely fit to the packaging (e.g., to a fitment and penetrating any seal or cap in the packaging).
[0035] Referring to the illustrative embodiment of FIG. 1 A, a probe comprises a body having a nozzle end 16, and a lead-in end 18 that engages a seal or opening, a flange 11 molded to the probe body that presses against or abuts a fitment, seal, or opening engaged by the proximate end of the probe, and a plurality of depressions or flutes 14 on the exterior surface of the probe.
[0036] In some embodiments, the plurality of flutes 14 are positioned on the exterior surface of the proximate, or lead-in, end and are oriented parallel to each other and to the direction of product flow through the probe. The plurality of flutes are positioned on the end of the lead-in end and generally form a structure that creates a non-planar edge geometry on the lead-in end. In various aspects and embodiments, the number of the plurality of flutes on the exterior surface of the probe may vary depending on the size of the flutes relative to the size of the probe. In some embodiments the probe comprises a plurality of flutes wherein the plurality may be 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 flutes or more. In some embodiments, the probe comprises from about 8 flutes to about 16 flutes on its exterior surface. In some embodiments the plurality of flutes may be asymmetrically arranged around the exterior surface of the probe. In some embodiments the plurality of flutes may be symmetrically arranged around the exterior surface of the probe. In some embodiments the plurality of flutes may comprise one or more flutes having one or more different dimensions. In some embodiments the plurality of flutes may have the same dimensions.
[0037] In some embodiments the plurality of flutes may have a length that varies relative to the length of the lead-in end of the probe (i.e., the region bounded by the terminal end of the lead- in end and the flange). Thus, the length of the plurality of flutes may vary, as long as the length of the flutes (a) do not create any leaks between the liquid-tight seal formed by the engagement of the probe and fitment/seal or opening, and/or (b) provide for the improved flow characteristics of the probe design described herein. In some embodiments the plurality of flutes may run along the exterior surface of the probe for a length that spans substantially the entire length from the lead-in (proximate) end to the flange. In some embodiments the plurality of flutes may run along the exterior surface of the probe over a length of about 5% to about 50% (e.g., 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50%) of the length of the lead-in end. In these aspects and embodiments, the plurality of flutes include the portion of the lead-in end that forms the tip or terminal end of the probe that accesses the packaged product. As discussed above, embodiments described herein comprise a plurality of flutes that are positioned on the end of the lead-in end and generally protrude from the body of the probe to form a structure that creates a non-planar edge geometry on the lead-in end. In some embodiments, the plurality of flutes protrude from the body of the probe and to create a non-planar edge geometry that can be rounded, scalloped, squared, pointed, troughed, or serrated, and the like.
[0038] In some embodiments the plurality of flutes may have a depth that varies, as long as the depth of the flutes (a) do not create any leaks between the liquid-tight seal formed by the engagement of the probe and fitment/seal or opening, and/or (b) provide for the improved flow characteristics of the probe design described herein. In some embodiments the plurality of flutes may have a depth that is about 5% to about 50% (e.g., 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% or more) of the wall thickness of the lead-in end.
[0039] In some embodiments the plurality of flutes may have any geometry or shape. While many of the example embodiments disclosed herein to illustrate the probe comprise linear flutes, other shapes are contemplated. In some embodiments the flutes along some portion of their lengths may cross or intersect each other. Similarly, while many of the example probe embodiments disclosed herein depict the cross-sectional shape of the troughs or depressions of the flutes as squared or rounded, the cross-sectional geometry may be any of a variety of shapes. For example, in some embodiments the plurality of flutes may have a cross-sectional shape or geometry that comprises a semi-circular shape (e.g., a trough with a rounded bottom), a triangular shape (e.g., a trough with a pointed bottom), a squared or rectangular shape (e.g., a trough with a flat bottom), or the like (e.g., hexagonal, octagonal shapes).
[0040] The total length of the probe 10 may vary depending on its particular application and use. Thus, the general description of the dimensions that follow can be modified depending on factors that will be apparent to one of skill in the art (e.g., the package volume size, the viscosity of flowable product being dispensed, temperature, dispensing speed, etc.). In some embodiments, the probe length falls within a range of at least about 1 inch to about 4 inches (e.g., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, or 4.0 inches). In some embodiments the total length of the probe is from about 1 inch to about 2 inches, (e.g., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, or 2.0 inches). In embodiments the length of the nozzle 16 of the probe 10 is from about 0.25 inch to about 2.0 inches (e.g., 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, or 2.0 inches). In embodiments, the inner and outer diameter of the nozzle 16 of the probe can be adapted to fit with a variety of attachments (e.g., hoses, lead-lines, or other openings) that are commonly attached to nozzles that dispense a product. In some embodiments, the nozzle end diameter may range from about 0.1 inch to about 0.5 inch, (e.g., 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, or 0.5 inches) and can be attached to a hose. Typically, the hoses are attached to the nozzle 16 by a friction fit of the hose to the nozzle; however, other methods also can be used, such as, a hose clamp or the exterior of the nozzle may be provided with ribs, threads (e.g., screw threads), or with a roughened surface for a better friction fit. In some embodiments, the inner or outer diameter of the probe, as well as the nozzle and lead-in ends are about 0.5 inch to about 1.5 inches (e.g., 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, or 1.5 inches).
[0041] Typically, the thickness of the walls of the probe falls within a range of about 0.2 inches and 0.01 inches, and may have variation in its thickness throughout the length of the probe (ranging from, for example, about 0.095 inch in the nozzle section and about 0.05 inch at edge of the flange) and may be modified depending on the product to be dispensed.
[0042] The geometry and diameter of the flange 11 that separates the lead-in end and the nozzle end of the probe, and that may press against the fitment 30 (e.g., cap) can be adapted depending on the width of the fitment or opening, but in some embodiments is within a range of about 1 inch to about 3 inches. In some embodiments, the flange may be reinforced with one or more ribs or other designs that strengthen the flange. In some embodiments the flange is formed over only a portion of the circumference of the probe surface.
[0043] In some embodiments the probe body may comprise an optional locking bead on its exterior surface, which may be adapted and designed so that it helps to securely engage and form a seal between the probe and fitment/opening. Thus, in some embodiments, a locking bead of the probe can attach to a fitment to form a seal with the fitment. In some embodiments, the lock bead may be located on the lead-in end of the probe, generally in an region between the end of the plurality of flutes and the flange
[0044] In some embodiments, the probe may be constructed from a molded thermoplastic material. In some embodiments the thermoplastic material can comprise a polyolefin such as, for example, polyethylene, copolymers and terpolymers of polyethylene, polypropylene, copolymers and terpolymers of polypropylene, polybutylene and copolymers and terpolymers thereof, fluorocarbon polymers and copolymers thereof, polyvinyl chloride and copolymers thereof, polyvinylidene chloride and fluorocarbon polymers and copolymers thereof. In some embodiments, thermosetting polymers such as, for example, epoxy resins, phenolic resins, melamine resins can also be used in the construction of the probe. In some particular embodiments the probe comprises polyethylene, polypropylene or copolymers or terpolymers thereof, and may be used in combination.
[0045] Referring to the Figures, FIG. 1A illustrates a side view schematic drawing of an example embodiment of a probe, in accordance with the disclosure. The probe 10 has a nozzle end 16, a lead-in or proximate end 18, a flange 11, and a plurality of flutes 14 oriented on the exterior surface at the lead-in end of the probe. In the embodiment illustrated in FIG 1A, the plurality of flutes are depicted as symmetrical and are symmetrically spaced on the outer surface of the probe. As described herein, the plurality of flutes function to maintain consistent product flow from the bag, preventing any blockage or impeded product flow as the packaging or bag empties and collapses on itself and nears the opening of the lead-in end of the probe. Without being limited by any proposed mechanism, the plurality of flutes that form protrusions and create a non-planar edge geometry at the terminal end of the lead-in end of the probe may provide for some amount of the improvement in probe performance.
[0046] FIGs. 1B-1D illustrate alternative embodiments and views of the probe 10 having a nozzle end 16, a lead-in or proximate end 18, a flange 11, and a plurality of flutes 14 oriented on the exterior surface at the lead-in end of the probe and create protrusions (i.e., a non-planar edge geometry) 15. The orientation of the probe in FIGS. 2B-2D, provide additional embodiments of the plurality of flutes 14 (about ten or twelve flutes), the flutes 14 having a taper 17 toward the tip of the lead-in non-planar edge 15 of the probe. The cutaway side view of FIGS. 1C and ID illustrate a difference in the hollow interior of the probe, wherein FIG. 2D includes a ridge 19 or tapering/narrowing in the internal diameter of the probe.
[0047] FIGs. 2A and 2B depict an example embodiment of a probe 10, fitment 30, and spout 50 securely engaged to form a seal. In this depiction the probe 10 as generally described in FIGS. 1A-1D includes a flange 11 that is reinforced with one or more flange- strengthening ribs 12. In the embodiment depicted by FIGs. 2A-2B, the fitment 30 comprises a flip cap 32 having a flip lid 34 with a pull tab 36. An optional duckbill check valve 38 is included in the cap 32. An optional duckbill lock ring (not shown) may be positioned between the cap duckbill 38 and the spout 50. When the duckbill lock ring is present, it can engage the cap duckbill 20 assisting in forming a liquid seal with the spout 50, locking the spout into cap 30 helping to prevent seepage or leakage of liquid that is to be dispensed from the bag or container (not shown) to which spout 50 is attached. FIG. 2B provides a cutaway side view of the probe engaged with the fitment as shown in FIG.2A.
[0048] FIGs. 3A and 3B depict an example embodiment of a probe 10, a fitment 30 and a spout 50, as generally shown in FIGs. 2A and 2B, oriented to each other prior to being securely engaged to form a seal.
[0049] FIG. 4A illustrates an alternative embodiment of a probe in accordance with the aspects and embodiments described herein. The figure depicts an exploded view of components of a probe 10, fitment 30, and seal 50 in accordance with an example embodiment of the disclosure. In this embodiment, the probe 10 comprises a 90 degree nozzle end 16 in addition to a check flow valve 45 positioned in the interior hollow portion of the probe. The fitment 30 and the spout 50 are shown, where the fitment 30 comprises a flip cap 32 having a flip lid 34. A duckbill check valve 38 is included in the cap 32 and with an optional duckbill lock ring 23. FIG. 4B illustrates a cutaway side view of the engagement of the probe 10 with the plurality of flutes 14 having non- planar edge geometry 15 and optional duckbill check flow valve 45; fitment 30 with cap 32 and duckbill check valve 38; and spout 50 as shown in FIG. 5 A, but without the optional duckbill check valve lock ring.
[0050] FIGs. 5A-5C illustrate an alternative embodiment of a probe in accordance with the aspects and embodiments described herein. The FIG. 5A depicts a probe 10, fitment 30, and spout 50, wherein the probe comprises a locking bead 13 molded on the exterior surface of the probe between the flange 11 and end of the plurality of flutes 14 on the lead-in end 18. FIGs. 5B and 5C illustrate a cutaway side views of the engagement of the probe 10, fitment 30, and spout 50 as shown in FIG. 6A and illustrate alternative views showing the interaction between the locking bead 13 and fitment 30.
[0051] FIG. 7 illustrates an alternative embodiment of a probe in accordance with the aspects and embodiments described herein. The figure depicts a cutaway side view of a probe 10, fitment 30, and spout 50, where the probe 10 comprises a 90 degree nozzle end 16 that is extended or elongated 16a in order to allow for easier connection (attachment/detachment) to a fixture such as a hose or another opening that receives a packaged product. The nozzle end 16 also includes threading, ridges, or roughened exterior surface to help secure attachment to an optional attachment line or opening.
[0052] The probe as disclosed herein, in combination with an optional fitment, can be used in methods of dispensing a flowable product from a package, suitably a package comprising a flexible material such as a bag or bag-in-box package. The probe provides for improved methods of dispensing a product that may, for example, improve consistency of product flow, reduce occurrence of impeded flow, improve the emptying of the product from the packaging, and/or avoid blockage of product flow caused by, for example, flexible packaging collapsing inward during dispensing of product and blocking the probe opening.
[0053] The disclosed embodiments are not limited to the specific arrangement or components discussed with respect to those embodiments. For instance, the various embodiments that include a particular fitment (e.g., cap) or spout may alternatively not include a cap. Similarly, the embodiments disclosed herein are not limited to the specific polymers or materials discussed with respect to those embodiments. Any number of different kinds of polymers having different properties can be used with the embodiments disclosed herein.
[0054] It will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the novel techniques disclosed in this application. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the novel techniques without departing from its scope. Therefore, it is intended that the novel techniques not be limited to the particular techniques disclosed, but that they will include all techniques falling within the scope of the appended claims.

Claims

Claims
1. A probe comprising a hollow body having an exterior surface, an interior surface, a nozzle end, a lead-in end that engages a seal or opening, a flange molded to the probe body, and a plurality of flutes on the exterior surface of the probe.
2. The probe of claim 1, wherein the plurality of flutes form protrusions and create a non-planar edge geometry at the lead-in end of the probe.
3. The probe of claim 1, wherein the probe comprises from 4 to 20 flutes on the lead- in end of the probe.
4. The probe of claim 1, wherein the plurality of flutes are symmetrically spaced on the exterior surface of the probe.
5. The probe of claim 1, wherein at least two of the plurality of flutes are asymmetrically spaced on the exterior surface of the probe.
6. The probe of claim 1, wherein the plurality of flutes have approximately the same dimensions.
7. The probe of claim 1, wherein at least two of the plurality of flutes have substantially different dimensions.
8. The probe of claim 1, wherein the plurality of flutes run along the about 50% of the length of the lead-in end of the probe.
9. The probe of claim 1, wherein the plurality of flutes run along no more than 50% of the length from the tip of the lead-in end to the flange.
10. The probe of claim 1, further comprising a 90 degree junction at the nozzle end.
11. The probe of claim 1, further comprising a check valve positioned on the interior surface of the probe, and configured to reduce or eliminate leakage of the product from the probe when in use.
12. The probe of claim 1, further comprising a lock bead on at least a portion of the exterior surface of the probe, and located on the lead-in end.
13. The probe of claim 1, further comprising on the nozzle end a threaded portion, one or more ribs, or a roughened surface configured to provide a secure fit to an attachment.
14. The probe of claim 2, wherein the non-planar edge geometry comprises rounded, scalloped, squared, pointed, troughed, or serrated shapes.
PCT/US2020/040845 2019-07-05 2020-07-05 Probe WO2021007138A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20836190.7A EP3994078A4 (en) 2019-07-05 2020-07-05 Probe
CA3137852A CA3137852A1 (en) 2019-07-05 2020-07-05 Probe
AU2020311869A AU2020311869A1 (en) 2019-07-05 2020-07-05 Probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962870937P 2019-07-05 2019-07-05
US62/870,937 2019-07-05

Publications (1)

Publication Number Publication Date
WO2021007138A1 true WO2021007138A1 (en) 2021-01-14

Family

ID=74065613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2020/040845 WO2021007138A1 (en) 2019-07-05 2020-07-05 Probe

Country Status (5)

Country Link
US (1) US11951496B2 (en)
EP (1) EP3994078A4 (en)
AU (1) AU2020311869A1 (en)
CA (1) CA3137852A1 (en)
WO (1) WO2021007138A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD941088S1 (en) * 2019-03-26 2022-01-18 Rich Products Corporation Dispensing fitment
US20230356892A1 (en) * 2022-05-05 2023-11-09 Liqui-Box Corporation Dispensing system
CN114812834A (en) * 2022-05-16 2022-07-29 新乡北方车辆仪表有限公司 Threaded connection high-pressure-resistant temperature sensor structure and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB129216A (en) * 1919-01-21 1919-07-10 William George Ray Self-piercing Adaptor for Beer and Barrel Taps.
US4440316A (en) * 1980-02-27 1984-04-03 Trinity Associates Combined piercer and valve for flexible bag
US6364178B1 (en) * 2000-07-11 2002-04-02 Joseph R. Paczonay Fluid control and dispenser apparatus
WO2008014605A1 (en) 2006-07-31 2008-02-07 Liqui-Box Canada, Inc. A piercing fitment assembly
US20100176152A1 (en) * 2009-01-09 2010-07-15 Johnson James W Duckbill flip cap fitment for a collapsible container
US20100224629A1 (en) * 2007-07-25 2010-09-09 Peter John Schroeder Aseptic packs
US20120284991A1 (en) * 2009-12-07 2012-11-15 Matthew Kusz Configurable port fitment, kit, and related methods
US20170113912A1 (en) * 2015-06-12 2017-04-27 Liqui-Box Corporation Fitment for dispensing fluids from a flexible container

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1016135A (en) * 1911-06-08 1912-01-30 Andrew B Foans Combination can-opener and spout.
US1249577A (en) * 1917-02-28 1917-12-11 Edith Ball Can-spout.
US2007449A (en) * 1934-04-06 1935-07-09 Kernodle Sealed fluid dispenser
US2023397A (en) * 1934-05-16 1935-12-10 William D Mcgurn Dispensing can opener
US2712886A (en) * 1950-12-19 1955-07-12 Young Ernest Anthony Closure and pouring device for cartons and like containers, having a cutting edge for opening the container
CH478693A (en) * 1967-08-14 1969-09-30 Weber Alwin Spout sleeve for pierceable bags and containers for liquids made of thin-walled paper, cardboard or plastics
CH489426A (en) * 1968-04-23 1970-04-30 Hegi R SPOUT SLEEVE FOR TIN CANS AND SIMILAR CONTAINERS
US3927803A (en) * 1972-02-10 1975-12-23 Alwin Weber Piercing spout
US3973698A (en) * 1974-10-08 1976-08-10 Toppan Printing Co., Ltd. Thrusting cock
CA1232576A (en) 1985-10-18 1988-02-09 James W. Clements Twist cap with integral puncture means
US4712714A (en) * 1986-05-21 1987-12-15 Domenick Mucciarone Sealing spout for paper cartons
US4826500A (en) * 1987-10-16 1989-05-02 Rautsola Riku H Enteral nutrient delivery system
US4867324A (en) * 1988-06-03 1989-09-19 John Rogosich Nursing attachment for disposable beverage containers
US5141133A (en) * 1990-03-06 1992-08-25 Marubeni Corporation Pouring plug of a container
US5090596A (en) * 1991-09-09 1992-02-25 Knight Robert W Plastic perforative spout device
JP2547507B2 (en) * 1992-10-05 1996-10-23 オリヒロ株式会社 Refill bag
US5732853A (en) * 1992-11-03 1998-03-31 Bentfield Europe B.V. Dosing unit comprising a dispensing device and a container bag unit
NL9401399A (en) * 1994-08-30 1996-04-01 Sara Lee De Nv Assembly for providing a passage for liquid between a first part and a second part.
DE19839841B4 (en) * 1998-09-02 2004-03-04 Steiger, Arthur, Uetikon Removal device for a liquid container
DE69918993T2 (en) * 1999-10-01 2005-08-11 Tetra Laval Holdings & Finance S.A. Lockable opening device for packages for flowable foodstuffs
CN1254417C (en) * 2000-12-20 2006-05-03 三协制药工业株式会社 Adaptor for beverage pack and beverage feeder
DK1262412T3 (en) * 2001-05-29 2006-12-04 Tetra Laval Holdings & Finance Re-sealable opening device for sealed packages with pourable food products
US7150476B2 (en) * 2002-05-03 2006-12-19 Blazing Products, Inc. Saddle tee and tap for irrigation lines
DE60209689T2 (en) * 2002-09-09 2006-10-05 Tetra Laval Holdings & Finance S.A. Lockable opening device for packages for flowable foodstuffs
US6971548B2 (en) * 2003-03-10 2005-12-06 Ds Smith Plastics Limited Puncturable spout
US7757892B2 (en) * 2005-09-16 2010-07-20 Bosch Pouch Systems Ag Closure device for closed receptacles of plastic film
US7607555B2 (en) * 2006-03-01 2009-10-27 Ds Smith Plastics Limited Puncturable cap and piercer
DE102006015525B3 (en) * 2006-03-31 2007-08-02 Sig Technology Ag Screw cap closure for a plastics/cardboard container, for liquid foods, has a cutting unit within the base body with an interrupted thread for the screw cap to be assembled from above without screwing or pressure
CN102448841B (en) * 2009-04-06 2014-08-27 国际包装创新有限责任公司 Ribbed water spike
DE102009045124A1 (en) * 2009-09-29 2011-03-31 Robert Bosch Gmbh Closure device made of plastic
DE102011017509A1 (en) * 2011-04-26 2012-10-31 Robert Bosch Gmbh Closure with adapter
DE102011017793A1 (en) * 2011-04-29 2012-10-31 Robert Bosch Gmbh Cutting tooth of a rotatable cutting device
ES2714405T3 (en) * 2011-08-29 2019-05-28 Liqui Box Corp Aseptic accessory duckbill flip top for a folding bag and process to fill a folding bag
US10609939B2 (en) * 2013-12-16 2020-04-07 Monarch Media, Llc Coconut water removal device and method therefor
US11027960B2 (en) * 2015-08-13 2021-06-08 David G. Kraenzle Apparatus, systems, and methods relating to transfer of liquids to/from containers and/or storage of liquids in containers
US10005654B2 (en) * 2015-08-13 2018-06-26 David G. Kraenzle Apparatus, systems, and methods relating to transfer of fluids to/from containers and/or storage/transport of fluids in containers
US10179677B2 (en) * 2015-09-03 2019-01-15 Fres-Co System Usa, Inc. Aseptic package fluid dispensing apparatus and methods of dispensing liquids from flexible packages
US10287081B2 (en) * 2015-09-03 2019-05-14 Fres-Co System Usa, Inc. Aseptic package fluid dispensing apparatus
US10676261B2 (en) * 2017-09-07 2020-06-09 Silgan White Cap LLC Closure assembly
SE543593C2 (en) * 2017-09-27 2021-04-06 Asept Int Ab Coupling device for connection to a flexible container for dispensing food product
WO2020010295A1 (en) * 2018-07-06 2020-01-09 Liqui-Box Corporation Dispensing probe for dispensing flowable material
US10843914B1 (en) * 2019-05-10 2020-11-24 Dan Weatherly Pump bottle access device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB129216A (en) * 1919-01-21 1919-07-10 William George Ray Self-piercing Adaptor for Beer and Barrel Taps.
US4440316A (en) * 1980-02-27 1984-04-03 Trinity Associates Combined piercer and valve for flexible bag
US6364178B1 (en) * 2000-07-11 2002-04-02 Joseph R. Paczonay Fluid control and dispenser apparatus
WO2008014605A1 (en) 2006-07-31 2008-02-07 Liqui-Box Canada, Inc. A piercing fitment assembly
US20100224629A1 (en) * 2007-07-25 2010-09-09 Peter John Schroeder Aseptic packs
US20100176152A1 (en) * 2009-01-09 2010-07-15 Johnson James W Duckbill flip cap fitment for a collapsible container
US20120284991A1 (en) * 2009-12-07 2012-11-15 Matthew Kusz Configurable port fitment, kit, and related methods
US20170113912A1 (en) * 2015-06-12 2017-04-27 Liqui-Box Corporation Fitment for dispensing fluids from a flexible container

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3994078A4

Also Published As

Publication number Publication date
CA3137852A1 (en) 2021-01-14
US11951496B2 (en) 2024-04-09
AU2020311869A1 (en) 2021-12-09
US20210001360A1 (en) 2021-01-07
EP3994078A1 (en) 2022-05-11
EP3994078A4 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
US11951496B2 (en) Probe
US10095318B2 (en) Flexibility-mounted evacuation channels in collapsible bags
US4128189A (en) Device for improving the pourability of fluids and also forming an improved closure for a container of such fluids
US7628299B2 (en) Threaded spout
US20150060499A1 (en) Dispenser for pouring liquids
US20110297706A1 (en) Universal fitment for attachment to spouts
US20080230573A1 (en) Vessel
AU2006221525A1 (en) Spout fitting and container
US11142377B2 (en) Easy to remove cap design
US5320260A (en) Syrup dispenser
US6412664B1 (en) Cap for dispensing viscous liquids
US20180009580A1 (en) Spout assembly
RU171899U1 (en) COOKING DEVICE SUITABLE FOR DRAINING LIQUID FROM A BOTTLE BY AN ORDER PORTION
US20140144547A1 (en) Jar buddy
US11731810B2 (en) Inverted dispensing container
US11518580B2 (en) Aseptic screw-cap assembly
US20230030350A1 (en) Multipurpose Vented Funnel
US20190300246A1 (en) Disposable travel pouch
US20200130907A1 (en) Single-serve beverage receptacle
GB2091677A (en) Container spouts
MXPA06008624A (en) Threaded spout
WO2010010443A2 (en) Accessory for a container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836190

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3137852

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020311869

Country of ref document: AU

Date of ref document: 20200705

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020836190

Country of ref document: EP

Effective date: 20220207