WO2021006385A1 - 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 - Google Patents

마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 Download PDF

Info

Publication number
WO2021006385A1
WO2021006385A1 PCT/KR2019/008467 KR2019008467W WO2021006385A1 WO 2021006385 A1 WO2021006385 A1 WO 2021006385A1 KR 2019008467 W KR2019008467 W KR 2019008467W WO 2021006385 A1 WO2021006385 A1 WO 2021006385A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
semiconductor light
layer
conductive type
Prior art date
Application number
PCT/KR2019/008467
Other languages
English (en)
French (fr)
Inventor
김정섭
김정훈
박창서
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201980098292.8A priority Critical patent/CN114127942A/zh
Priority to EP19936555.2A priority patent/EP3998634A4/en
Priority to US17/621,399 priority patent/US20230014515A1/en
Publication of WO2021006385A1 publication Critical patent/WO2021006385A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention is applicable to the technical field related to a display device, and relates to, for example, a display device using a micro LED (Light Emitting Diode) and a method of manufacturing the same.
  • a micro LED Light Emitting Diode
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Diodes
  • LED Light Emitting Diode
  • GaAsP compound semiconductor in 1962 has been used as a light source for display images in electronic devices including information communication devices. Accordingly, a method for solving the above-described problems by implementing a display using the semiconductor light emitting device may be proposed.
  • the semiconductor light emitting device has various advantages, such as a long lifespan, low power consumption, excellent initial driving characteristics, and high vibration resistance, compared to a filament-based light emitting device.
  • An object of an embodiment of the present invention is to provide a display device and a manufacturing method using a semiconductor light emitting device.
  • Another object of an embodiment of the present invention is to provide a display device capable of a stable wiring process after assembling a semiconductor light emitting device to a display substrate and a method of manufacturing the same.
  • Another object of an embodiment of the present invention is to solve various problems not mentioned herein. Those skilled in the art can understand through the entire purpose of the specification and drawings.
  • a method of manufacturing a display device using a semiconductor light emitting device for achieving the above object includes: forming a semiconductor light emitting device on a first substrate; Transferring the semiconductor light emitting device to a second substrate; Coating an insulating layer on the semiconductor light emitting device transferred to the second substrate; And forming a wiring electrode electrically connected to the semiconductor light emitting device, wherein the forming of the semiconductor light emitting device comprises: a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor on the first substrate.
  • Forming a semiconductor light emitting structure including a layer, a first conductive type electrode, and a second conductive type electrode; Forming a first passivation layer on the semiconductor light emitting structure; Selectively removing the first passivation layer formed on the first conductive type electrode and the second conductive type electrode of the semiconductor light emitting structure; And forming a second passivation layer on the semiconductor light emitting structure.
  • it includes removing the second passivation layer between transferring to the second substrate and coating the insulating layer.
  • the step of removing the second passivation layer is performed by a wet etching process.
  • the coating of the insulating layer includes flattening an upper portion of the insulating layer and exposing at least a portion of an upper portion of the semiconductor light emitting device.
  • the forming of the wiring electrode includes forming a first electrode electrically connected to the first conductive type electrode of the semiconductor light emitting device and a second electrode electrically connected to the second conductive type electrode. Includes steps.
  • the forming of the first electrode and the second electrode includes removing the first conductive type electrode and the second passivation layer formed on the second conductive type electrode.
  • the forming of the first electrode and the second electrode may be located in an overlapping region between the first electrode and the second electrode, and the first conductive electrode and the second conductive electrode. And selectively removing the second passivation layer.
  • the step of selectively removing the second passivation layer may be performed by a dry etching process.
  • a display device using a plurality of semiconductor light emitting devices includes at least one of the semiconductor light emitting devices comprising: a first conductive type semiconductor layer; A second conductive type semiconductor layer positioned on the first conductive type semiconductor layer; An active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer; A second conductive type electrode positioned on the second conductive type semiconductor layer; A first conductive type electrode positioned in a region where the second conductive type semiconductor layer and the active layer are partially etched to expose the first conductive type semiconductor layer; A first passivation layer and a second passivation layer sequentially disposed to surround side surfaces of the first conductive type semiconductor layer and the second conductive type semiconductor layer, and a first electrode on the first conductive type electrode The second passivation layer is located in a region excluding a portion in contact with the second electrode, and the second passivation layer is positioned on a region excluding a portion in contact with the second electrode above the second conductive type electrode.
  • the first passivation layer and the second passivation layer are sequentially disposed on the first conductive type semiconductor layer except for a portion in contact with the first conductive type electrode, and the second conductive type
  • the first passivation layer and the second passivation layer are sequentially disposed in a region other than a portion in contact with the first conductive type electrode on the upper part of the semiconductor layer.
  • the second passivation layer is located in a region excluding a portion in contact with the first conductive type electrode on the first conductive type semiconductor layer, and on the second conductive type semiconductor layer, the first The second passivation layer is located in a region excluding a portion in contact with the one-conductive electrode.
  • the first etching ratio of the first passivation layer is smaller than the second etching ratio of the second passivation layer.
  • the first passivation layer is characterized in that it contains the same material as the second passivation layer.
  • the thickness of the second passivation layer is 100 nm or more thinner than the thickness of the first passivation layer.
  • a magnetic layer is included under the first conductive electrode or the second conductive electrode.
  • the semiconductor light emitting device is characterized in that it is an LED (Micro-LED) having a size of a micrometer unit.
  • a display device and a manufacturing method using a semiconductor light emitting device can be provided.
  • the passivation layer can be selectively removed only at the portion to which the wiring electrode is connected by the multiple passivation layers formed on the semiconductor light emitting device. A stable wiring process that minimizes the risk of defects can be performed.
  • FIG. 1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light emitting device of the present invention.
  • FIG. 2 is a partially enlarged view of part A of FIG. 1.
  • 3A and 3B are cross-sectional views taken along lines B-B and C-C of FIG. 2.
  • FIG. 4 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 3.
  • 5A to 5C are conceptual diagrams illustrating various forms of implementing colors in relation to a flip chip type semiconductor light emitting device.
  • FIG. 6 is a cross-sectional view showing a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • FIG. 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the present invention.
  • FIG. 8 is a cross-sectional view taken along line D-D of FIG. 7.
  • FIG. 9 is a conceptual diagram illustrating the vertical semiconductor light emitting device of FIG. 8.
  • FIG. 10 is a flowchart illustrating a method of manufacturing a display device using a semiconductor light emitting device according to another embodiment of the present invention.
  • FIG. 11 is a flow chart specifically illustrating a process of forming the multiple passivation layer of FIG. 10.
  • FIG. 12 is a flowchart specifically illustrating a process of performing the wiring process of FIG. 10.
  • FIG. 13 is a cross-sectional view illustrating a semiconductor light emitting structure formed on the first substrate of FIG. 10.
  • FIG. 14 is a cross-sectional view after a first passivation layer is formed on the semiconductor light emitting structure of FIG. 13.
  • FIG. 15 is a cross-sectional view after selectively removing only the first passivation layer formed on the conductive electrodes of the semiconductor light emitting structure of FIG. 14;
  • FIG. 16 is a cross-sectional view of a semiconductor light emitting device in which a second passivation layer is formed on the semiconductor light emitting structure of FIG. 15.
  • FIG. 17 is a cross-sectional view of the semiconductor light emitting device of FIG. 16 after performing a wiring process.
  • FIG. 18 is another cross-sectional view after a wiring process is performed on the semiconductor light emitting device of FIG. 16.
  • 19 is a flowchart specifically illustrating another wiring process method performed in the semiconductor light emitting device of FIG. 16.
  • FIG. 20 is a cross-sectional view of a semiconductor light emitting device in which a wiring process is performed according to FIG. 19.
  • 21 is a diagram illustrating various electrode shapes that can be formed by a wiring process.
  • FIG. 22 is a diagram illustrating a case in which wiring electrodes are formed at various positions in the semiconductor light emitting device performing the wiring process of FIG. 17.
  • an element such as a layer, region or substrate is referred to as being “on” another component, it will be understood that it may exist directly on the other element or there may be intermediate elements between them. There will be.
  • the display device described herein is a concept including all display devices that display information as a unit pixel or a set of unit pixels. Therefore, it can be applied to parts, not limited to finished products.
  • a panel corresponding to a part of a digital TV is also independently a display device in the present specification.
  • Finished products include mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants (PDAs), portable multimedia players (PMPs), navigation, Slate PC, Tablet PC, and Ultra. This could include books, digital TVs, and desktop computers.
  • the semiconductor light emitting device mentioned in this specification is a concept including LEDs, micro LEDs, and the like, and may be used interchangeably.
  • FIG. 1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light emitting device of the present invention.
  • information processed by a controller (not shown) of the display apparatus 100 may be displayed using a flexible display.
  • Flexible displays include displays that can be bent, or bendable, or twistable, or foldable, or rollable by external force, for example.
  • the flexible display may be a display manufactured on a thin and flexible substrate that can be bent, bent, or foldable or rolled like paper while maintaining the display characteristics of a conventional flat panel display.
  • the display area of the flexible display becomes a flat surface.
  • the display area may be a curved surface.
  • the information displayed in the second state may be visual information output on a curved surface. This visual information is implemented by independently controlling light emission of sub-pixels arranged in a matrix form.
  • the unit pixel means, for example, a minimum unit for implementing one color.
  • the unit pixel of the flexible display may be implemented by a semiconductor light emitting device.
  • a light emitting diode LED
  • the light emitting diode is formed in a small size, and through this, it can serve as a unit pixel even in the second state.
  • FIG. 2 is a partially enlarged view of part A of FIG. 1.
  • 3A and 3B are cross-sectional views taken along lines B-B and C-C of FIG. 2.
  • FIG. 4 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 3.
  • 5A to 5C are conceptual diagrams illustrating various forms of implementing colors in relation to a flip chip type semiconductor light emitting device.
  • a display device 100 using a passive matrix (PM) type semiconductor light emitting device is illustrated as a display device 100 using a semiconductor light emitting device.
  • PM passive matrix
  • AM active matrix
  • the display device 100 shown in FIG. 1 includes a substrate 110, a first electrode 120, a conductive adhesive layer 130, a second electrode 140, and at least one semiconductor light emitting device as shown in FIG. Includes 150.
  • the substrate 110 may be a flexible substrate.
  • the substrate 110 may include glass or polyimide (PI).
  • PI polyimide
  • any material such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) may be used as long as it has insulation and is flexible.
  • the substrate 110 may be a transparent material or an opaque material.
  • the substrate 110 may be a wiring board on which the first electrode 120 is disposed, and thus the first electrode 120 may be positioned on the substrate 110.
  • the insulating layer 160 may be disposed on the substrate 110 on which the first electrode 120 is located, and the auxiliary electrode 170 may be disposed on the insulating layer 160.
  • a state in which the insulating layer 160 is stacked on the substrate 110 may be a single wiring board.
  • the insulating layer 160 is made of an insulating and flexible material such as polyimide (PI), PET, and PEN, and may be formed integrally with the substrate 110 to form a single substrate.
  • the auxiliary electrode 170 is an electrode that electrically connects the first electrode 120 and the semiconductor light emitting device 150, and is positioned on the insulating layer 160 and is disposed corresponding to the position of the first electrode 120.
  • the auxiliary electrode 170 has a dot shape and may be electrically connected to the first electrode 120 through an electrode hole 171 penetrating through the insulating layer 160.
  • the electrode hole 171 may be formed by filling a via hole with a conductive material.
  • a conductive adhesive layer 130 is formed on one surface of the insulating layer 160, but the present invention is not limited thereto.
  • a layer performing a specific function is formed between the insulating layer 160 and the conductive adhesive layer 130, or a structure in which the conductive adhesive layer 130 is disposed on the substrate 110 without the insulating layer 160 It is also possible.
  • the conductive adhesive layer 130 may serve as an insulating layer.
  • the conductive adhesive layer 130 may be a layer having adhesiveness and conductivity, and for this purpose, a material having conductivity and a material having adhesiveness may be mixed in the conductive adhesive layer 130.
  • the conductive adhesive layer 130 has ductility, thereby enabling a flexible function in the display device.
  • the conductive adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, or the like.
  • ACF anisotropic conductive film
  • the conductive adhesive layer 130 allows electrical interconnection in the Z direction passing through the thickness, but may be configured as a layer having electrical insulation in the horizontal X-Y direction. Therefore, the conductive adhesive layer 130 may be referred to as a Z-axis conductive layer (however, hereinafter referred to as a'conductive adhesive layer').
  • the anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member, and when heat and pressure are applied, only a specific portion becomes conductive by the anisotropic conductive medium.
  • heat and pressure are applied to the anisotropic conductive film, but other methods may be applied in order for the anisotropic conductive film to partially have conductivity.
  • Other methods described above may be, for example, that only one of the above heat and pressure is applied or UV cured or the like.
  • the anisotropic conductive medium may be, for example, conductive balls or conductive particles.
  • the anisotropic conductive film is a film in which conductive balls are mixed with an insulating base member, and when heat and pressure are applied, only a specific portion becomes conductive by the conductive balls.
  • a core of a conductive material may contain a plurality of particles covered by an insulating film made of a polymer material, and in this case, a portion to which heat and pressure is applied is destroyed by the insulating film and becomes conductive by the core. .
  • the shape of the core may be deformed to form a layer in contact with each other in the thickness direction of the film.
  • heat and pressure are applied to the anisotropic conductive film as a whole, and an electrical connection in the Z-axis direction is partially formed due to a height difference of a counterpart adhered by the anisotropic conductive film.
  • the anisotropic conductive film may contain a plurality of particles coated with a conductive material in an insulating core.
  • the part to which heat and pressure are applied is deformed (pressed together) to have conductivity in the thickness direction of the film.
  • a form in which the conductive material penetrates the insulating base member in the Z-axis direction and has conductivity in the thickness direction of the film is also possible.
  • the conductive material may have a pointed end.
  • the anisotropic conductive film may be a fixed array anisotropic conductive film (ACF) in which conductive balls are inserted into one surface of an insulating base member. More specifically, the insulating base member is formed of an adhesive material, and the conductive ball is intensively disposed on the bottom of the insulating base member, and when heat and pressure are applied from the base member, it is deformed together with the conductive ball. Accordingly, it has conductivity in the vertical direction.
  • ACF fixed array anisotropic conductive film
  • the present invention is not necessarily limited thereto, and the anisotropic conductive film has a form in which conductive balls are randomly mixed in an insulating base member, or consists of a plurality of layers, and a form in which conductive balls are disposed on one layer (double- ACF) etc. are all possible.
  • the anisotropic conductive paste is a combination of a paste and a conductive ball, and may be a paste in which conductive balls are mixed with an insulating and adhesive base material.
  • the solution containing conductive particles may be a solution containing conductive particles or nanoparticles.
  • the second electrode 140 is positioned on the insulating layer 160 to be spaced apart from the auxiliary electrode 170. That is, the conductive adhesive layer 130 is disposed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the semiconductor light emitting device 150 After forming the conductive adhesive layer 130 with the auxiliary electrode 170 and the second electrode 140 positioned on the insulating layer 160, the semiconductor light emitting device 150 is connected in a flip chip form by applying heat and pressure. Then, the semiconductor light emitting device 150 is electrically connected to the first electrode 120 and the second electrode 140.
  • the semiconductor light emitting device may be a flip chip type light emitting device.
  • the semiconductor light emitting device includes a p-type electrode 156, a p-type semiconductor layer 155 on which the p-type electrode 156 is formed, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer ( And an n-type semiconductor layer 153 formed on 154) and an n-type electrode 152 disposed horizontally apart from the p-type electrode 156 on the n-type semiconductor layer 153.
  • the p-type electrode 156 may be electrically connected by the auxiliary electrode 170 and the conductive adhesive layer 130 shown in FIG. 3, and the n-type electrode 152 is electrically connected to the second electrode 140. Can be connected to.
  • the auxiliary electrode 170 is formed to be elongated in one direction, so that one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
  • one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
  • p-type electrodes of the left and right semiconductor light emitting devices with the auxiliary electrode as the center may be electrically connected to one auxiliary electrode.
  • the semiconductor light emitting device 150 is pressed into the conductive adhesive layer 130 by heat and pressure, through which the portion between the p-type electrode 156 and the auxiliary electrode 170 of the semiconductor light emitting device 150 And, only a portion between the n-type electrode 152 and the second electrode 140 of the semiconductor light emitting device 150 has conductivity, and the remaining portion does not have conductivity because there is no press-fitting of the semiconductor light emitting device.
  • the conductive adhesive layer 130 not only mutually couples the semiconductor light emitting device 150 and the auxiliary electrode 170 and between the semiconductor light emitting device 150 and the second electrode 140, but also forms an electrical connection.
  • the plurality of semiconductor light emitting devices 150 constitute a light emitting device array, and a phosphor layer 180 is formed in the light emitting device array.
  • the light emitting device array may include a plurality of semiconductor light emitting devices having different luminance values.
  • Each semiconductor light emitting device 150 constitutes a unit pixel, and is electrically connected to the first electrode 120.
  • the first electrode 120 may be plural, the semiconductor light emitting elements are arranged in rows, for example, and the semiconductor light emitting elements of each row may be electrically connected to any one of the plurality of first electrodes.
  • semiconductor light emitting devices are connected in a flip chip form, semiconductor light emitting devices grown on a transparent dielectric substrate can be used. Further, the semiconductor light emitting devices may be, for example, nitride semiconductor light emitting devices. Since the semiconductor light emitting device 150 has excellent luminance, individual unit pixels can be configured with a small size.
  • a partition wall 190 may be formed between the semiconductor light emitting devices 150.
  • the partition wall 190 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 130.
  • the base member of the anisotropic conductive film may form the partition wall.
  • the partition wall 190 may have reflective properties and a contrast ratio may be increased even without a separate black insulator.
  • a reflective partition wall may be separately provided as the partition wall 190.
  • the partition wall 190 may include a black or white insulator depending on the purpose of the display device. When a partition wall of a white insulator is used, it is possible to increase reflectivity, and when a partition wall of a black insulator is used, it is possible to increase the contrast while having reflective characteristics.
  • the phosphor layer 180 may be located on the outer surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device emitting blue (B) light
  • the phosphor layer 180 performs a function of converting the blue (B) light into a color of a unit pixel.
  • the phosphor layer 180 may be a red phosphor 181 or a green phosphor 182 constituting individual pixels.
  • a red phosphor 181 capable of converting blue light into red (R) light may be stacked on a blue semiconductor light emitting device, and at a position forming a green unit pixel, blue A green phosphor 182 capable of converting blue light into green (G) light may be stacked on the semiconductor light emitting device.
  • a blue semiconductor light emitting device may be used alone in a portion of the blue unit pixel.
  • unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • a phosphor of one color may be stacked along each line of the first electrode 120. Accordingly, one line of the first electrode 120 may be an electrode that controls one color. That is, along the second electrode 140, red (R), green (G), and blue (B) may be sequentially disposed, and a unit pixel may be implemented through this.
  • unit pixels of red (R), green (G), and blue (B) can be implemented by combining the semiconductor light emitting device 150 and the quantum dot (QD) instead of the phosphor. have.
  • a black matrix 191 may be disposed between each of the phosphor layers in order to improve contrast. That is, the black matrix 191 may improve contrast of the contrast.
  • the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green colors may be applied.
  • each of the semiconductor light emitting devices 150 is made of gallium nitride (GaN) as a main material, and indium (In) and/or aluminum (Al) are added together to emit various light including blue. It can be implemented as a light emitting device.
  • GaN gallium nitride
  • Al aluminum
  • the semiconductor light emitting device may be a red, green, and blue semiconductor light emitting device to form a sub-pixel, respectively.
  • red, green, and blue semiconductor light emitting devices R, G, B
  • R, G, B red, green, and blue semiconductor light emitting devices
  • unit pixels of red, green, and blue by red, green, and blue semiconductor light emitting devices They form one pixel, through which a full color display can be implemented.
  • the semiconductor light emitting device may include a white light emitting device W in which a yellow phosphor layer is provided for each individual device.
  • a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the white light emitting device W.
  • a unit pixel may be formed by using a color filter in which red, green, and blue are repeated on the white light emitting device W.
  • a structure in which a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 are provided on the ultraviolet light emitting device UV is also possible.
  • the semiconductor light emitting device can be used not only for visible light but also for ultraviolet (UV) light, and the ultraviolet (UV) can be extended in the form of a semiconductor light emitting device that can be used as an excitation source of the upper phosphor. .
  • the semiconductor light emitting device is positioned on the conductive adhesive layer to constitute a unit pixel in the display device. Since the semiconductor light emitting device has excellent luminance, individual unit pixels can be configured even with a small size.
  • the individual semiconductor light emitting device 150 may have, for example, a side length of 80 ⁇ m or less, and may be a rectangular or square device. In the case of a rectangle, the size may be 20 X 80 ⁇ m or less.
  • the distance between the semiconductor light emitting devices is relatively large enough.
  • the display device using the semiconductor light emitting device described above can be manufactured by a new type of manufacturing method. Hereinafter, the manufacturing method will be described with reference to FIG. 6.
  • FIG. 6 is a cross-sectional view showing a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • a conductive adhesive layer 130 is formed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are positioned.
  • An insulating layer 160 is stacked on the wiring board 110, and a first electrode 120, an auxiliary electrode 170, and a second electrode 140 are disposed on the wiring board 110.
  • the first electrode 120 and the second electrode 140 may be disposed in a mutually orthogonal direction.
  • the wiring board 110 and the insulating layer 160 may each include glass or polyimide (PI).
  • the conductive adhesive layer 130 may be implemented by, for example, an anisotropic conductive film, and for this purpose, an anisotropic conductive film may be applied to a substrate on which the insulating layer 160 is positioned.
  • a temporary substrate 112 corresponding to the positions of the auxiliary electrodes 170 and the second electrodes 140 and on which a plurality of semiconductor light emitting elements 150 constituting individual pixels are positioned is provided, and the semiconductor light emitting element 150 ) Is disposed to face the auxiliary electrode 170 and the second electrode 140.
  • the temporary substrate 112 is a growth substrate on which the semiconductor light emitting device 150 is grown, and may be a spire substrate or a silicon substrate.
  • the semiconductor light emitting device When the semiconductor light emitting device is formed in units of a wafer, it can be effectively used in a display device by having a gap and a size capable of forming a display device.
  • the wiring board and the temporary board 112 are thermally compressed.
  • the wiring board and the temporary board 112 may be thermally compressed by applying an ACF press head.
  • the wiring board and the temporary board 112 are bonded by the thermal compression. Due to the characteristics of the anisotropic conductive film having conductivity by thermal compression, only the portion between the semiconductor light emitting device 150 and the auxiliary electrode 170 and the second electrode 140 has conductivity, through which electrodes and semiconductor light emission The device 150 may be electrically connected. In this case, the semiconductor light emitting device 150 is inserted into the anisotropic conductive film, and a partition wall may be formed between the semiconductor light emitting devices 150 through this.
  • the temporary substrate 112 is removed.
  • the temporary substrate 112 may be removed using a laser lift-off method (LLO) or a chemical lift-off method (CLO).
  • LLO laser lift-off method
  • CLO chemical lift-off method
  • a transparent insulating layer (not shown) may be formed by coating silicon oxide (SiOx) or the like on the wiring board to which the semiconductor light emitting device 150 is bonded.
  • the semiconductor light-emitting device 150 is a blue semiconductor light-emitting device that emits blue (B) light, and a red or green phosphor for converting the blue (B) light into the color of a unit pixel emits the blue semiconductor light.
  • a layer can be formed on one side of the device.
  • the manufacturing method or structure of a display device using the semiconductor light emitting device described above may be modified in various forms.
  • a vertical semiconductor light emitting device may also be applied to the display device described above.
  • FIG. 7 is a perspective view illustrating another embodiment of a display device using the semiconductor light emitting device of the present invention
  • FIG. 8 is a cross-sectional view taken along line DD of FIG. 7
  • FIG. 9 is a vertical semiconductor light emitting device of FIG. It is a conceptual diagram.
  • the display device may be a display device using a passive matrix (PM) type vertical semiconductor light emitting device.
  • PM passive matrix
  • the display device includes a substrate 210, a first electrode 220, a conductive adhesive layer 230, a second electrode 240, and at least one semiconductor light emitting device 250.
  • the substrate 210 is a wiring board on which the first electrode 220 is disposed, and may include polyimide (PI) to implement a flexible display device.
  • PI polyimide
  • any material that has insulation and is flexible may be used.
  • the first electrode 220 is positioned on the substrate 210 and may be formed as an electrode having a long bar shape in one direction.
  • the first electrode 220 may be formed to serve as a data electrode.
  • the conductive adhesive layer 230 is formed on the substrate 210 on which the first electrode 220 is located.
  • the conductive adhesive layer 230 is a solution containing anisotropy conductive film (ACF), anisotropic conductive paste, and conductive particles. ), etc.
  • ACF anisotropy conductive film
  • anisotropic conductive paste anisotropic conductive paste
  • conductive particles conductive particles.
  • the semiconductor light emitting element 250 is connected by applying heat and pressure to the semiconductor light emitting element 250. It is electrically connected to the electrode 220.
  • the semiconductor light emitting device 250 is preferably disposed to be positioned on the first electrode 220.
  • the electrical connection is created because the anisotropic conductive film partially has conductivity in the thickness direction when heat and pressure are applied. Accordingly, in the anisotropic conductive film, it is divided into a part having conductivity and a part not having conductivity in the thickness direction.
  • the conductive adhesive layer 230 implements electrical connection as well as mechanical coupling between the semiconductor light emitting device 250 and the first electrode 220.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby configuring individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent luminance, individual unit pixels can be configured with a small size.
  • the individual semiconductor light emitting device 250 may have, for example, a side length of 80 ⁇ m or less, and may be a rectangular or square device. In the case of a rectangle, for example, it may have a size of 20 X 80 ⁇ m or less.
  • the semiconductor light emitting device 250 may have a vertical structure.
  • a plurality of second electrodes 240 are disposed between the vertical semiconductor light emitting devices in a direction crossing the length direction of the first electrode 220 and electrically connected to the vertical semiconductor light emitting device 250.
  • such a vertical semiconductor light emitting device includes a p-type electrode 256, a p-type semiconductor layer 255 formed on the p-type electrode 256, and an active layer 254 formed on the p-type semiconductor layer 255. ), an n-type semiconductor layer 253 formed on the active layer 254 and an n-type electrode 252 formed on the n-type semiconductor layer 253.
  • the p-type electrode 256 located at the bottom may be electrically connected by the first electrode 220 and the conductive adhesive layer 230, and the n-type electrode 252 located at the top is a second electrode 240 to be described later. ) And can be electrically connected.
  • the vertical semiconductor light emitting device 250 has a great advantage of reducing a chip size since electrodes can be arranged up and down.
  • a phosphor layer 280 may be formed on one surface of the semiconductor light emitting device 250.
  • the semiconductor light emitting device 250 is a blue semiconductor light emitting device 251 that emits blue (B) light, and a phosphor layer 280 for converting the blue (B) light into a color of a unit pixel is provided.
  • the phosphor layer 280 may be a red phosphor 281 and a green phosphor 282 constituting individual pixels.
  • a red phosphor 281 capable of converting blue light into red (R) light may be stacked on a blue semiconductor light emitting device, and at a position forming a green unit pixel, blue A green phosphor 282 capable of converting blue light into green (G) light may be stacked on the semiconductor light emitting device.
  • a blue semiconductor light emitting device may be used alone in a portion of the blue unit pixel. In this case, unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green colors may be applied as described above in a display device to which a flip chip type light emitting device is applied.
  • the second electrode 240 is positioned between the semiconductor light emitting devices 250 and is electrically connected to the semiconductor light emitting devices 250.
  • the semiconductor light emitting devices 250 may be arranged in a plurality of rows, and the second electrode 240 may be located between the rows of the semiconductor light emitting devices 250.
  • the second electrode 240 may be positioned between the semiconductor light emitting devices 250.
  • the second electrode 240 may be formed as a long bar-shaped electrode in one direction, and may be disposed in a direction perpendicular to the first electrode.
  • the second electrode 240 and the semiconductor light emitting device 250 may be electrically connected by a connection electrode protruding from the second electrode 240.
  • the connection electrode may be an n-type electrode of the semiconductor light emitting device 250.
  • the n-type electrode is formed as an ohmic electrode for ohmic contact, and the second electrode covers at least a portion of the ohmic electrode by printing or vapor deposition. Through this, the second electrode 240 and the n-type electrode of the semiconductor light emitting device 250 may be electrically connected.
  • the second electrode 240 may be positioned on the conductive adhesive layer 230.
  • a transparent insulating layer (not shown) including silicon oxide (SiOx) or the like may be formed on the substrate 210 on which the semiconductor light emitting device 250 is formed.
  • SiOx silicon oxide
  • the second electrode 240 is positioned after the transparent insulating layer is formed, the second electrode 240 is positioned on the transparent insulating layer.
  • the second electrode 240 may be formed to be spaced apart from the conductive adhesive layer 230 or the transparent insulating layer.
  • a transparent electrode such as ITO Indium Tin Oxide
  • the ITO material has poor adhesion to the n-type semiconductor layer. have. Accordingly, according to the present invention, by placing the second electrode 240 between the semiconductor light emitting devices 250, there is an advantage in that a transparent electrode such as ITO is not required. Accordingly, the light extraction efficiency can be improved by using the n-type semiconductor layer and a conductive material having good adhesion as a horizontal electrode without being restricted by the selection of a transparent material.
  • a partition wall 290 may be positioned between the semiconductor light emitting devices 250. That is, a partition wall 290 may be disposed between the vertical semiconductor light emitting devices 250 to isolate the semiconductor light emitting devices 250 constituting individual pixels. In this case, the partition wall 290 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 230. For example, by inserting the semiconductor light emitting device 250 into the anisotropic conductive film, the base member of the anisotropic conductive film may form the partition wall.
  • the partition wall 290 may have reflective properties and a contrast ratio may be increased even without a separate black insulator.
  • a reflective partition wall may be separately provided.
  • the partition wall 290 may include a black or white insulator depending on the purpose of the display device.
  • the partition wall 290 is between the vertical semiconductor light emitting element 250 and the second electrode 240. It can be located between. Accordingly, individual unit pixels can be configured with a small size using the semiconductor light emitting device 250, and the distance between the semiconductor light emitting device 250 is relatively large enough, so that the second electrode 240 is connected to the semiconductor light emitting device 250. ), there is an effect of implementing a flexible display device having HD image quality.
  • a black matrix 291 may be disposed between each phosphor to improve contrast. That is, the black matrix 291 can improve contrast of light and dark.
  • the semiconductor light emitting device grown on a growth substrate must be assembled or transferred to a new substrate.
  • the growth substrate may be, for example, a 12-inch wafer at the current technology level, and thus transfer may be repeated a plurality of times.
  • the assembly or transfer process is, for example, a process in which a very large number of semiconductor light emitting devices are collectively arranged on a new substrate, and may be arranged in a position different from the position set in the arrangement process, so that an alignment error exists. .
  • the alignment error range should be managed to the level of ⁇ 3 ⁇ m, which is the most important key factor in the display panel production yield.
  • FIG. 10 is a flowchart illustrating a method of manufacturing a display device using a semiconductor light emitting device according to another embodiment of the present invention.
  • a semiconductor light emitting structure is formed on a first substrate (or a growth substrate) (S1010).
  • the semiconductor light emitting structure may be a horizontal type semiconductor light emitting structure or a vertical type semiconductor light emitting structure, but the following description will be described as forming a horizontal type semiconductor light emitting structure.
  • a detailed formation method will be described later in FIG. 13.
  • the multiple passivation layer is composed of a first passivation layer and a second passivation layer, and some regions of the first passivation layer formed on the semiconductor light emitting structure are removed before forming the second passivation layer.
  • the semiconductor light emitting structure in which the multiple passivation layers are formed is defined as a semiconductor light emitting device.
  • the semiconductor light emitting device formed on the first substrate is separated from the first substrate (S1030).
  • Methods of separating the semiconductor light emitting device from the first substrate are largely divided into two, for example.
  • the first is that the semiconductor light emitting device of the first substrate is directly transferred to and separated from the second substrate.
  • the spacing between the semiconductor light emitting devices after the transfer is maintained equal to that of the existing first substrate.
  • an alignment error of the semiconductor light emitting device may occur during a transfer process by a flexible film used for transfer between substrates.
  • the second method is to be separated individually from the first substrate and exist as individual semiconductor light emitting devices.
  • the separated semiconductor light emitting device is assembled on the second substrate (S10400).
  • the assembly refers to a process of moving the semiconductor light emitting device from the first substrate to the second substrate, and may be used interchangeably with transfer.
  • the second substrate may be a donor substrate for another transfer, or a wiring substrate provided with wires so as to be directly used as a display panel.
  • the transfer process is to transfer the semiconductor light emitting device of the first substrate to the second substrate, as if painting using an adhesive film or the like. This process is referred to as, for example, a stamp process.
  • the stamping process may include an alignment step. For example, it is performed by horizontally moving any one of the first and second substrates relative to the other substrate and then vertically moving the other substrate. Thereafter, it is checked whether the assembly positions of the semiconductor light emitting element of the first substrate and the second substrate corresponding to the semiconductor light emitting element overlap by a camera sensor, and if they overlap, the semiconductor light emitting element is assembled according to the position. However, even in this case, there may be some alignment errors.
  • the adhesive film may impart conductivity between the substrate and the semiconductor light emitting device using an anisotropic conductive film.
  • a laser lift-off method selectively separates the device by applying a laser to the opposite side of the substrate on which the device is grown. ) Can be used.
  • a self-assembly process may be performed.
  • the self-assembly process refers to a process in which a very large number of semiconductor light emitting devices are assembled to a second substrate by the force of an electromagnetic field in a chamber filled with a fluid.
  • the second substrate may be an assembled substrate in which an assembly groove for self-assembly of a semiconductor light emitting device is formed.
  • An assembly electrode is provided below the assembly groove, and the assembly substrate may be located in a chamber filled with a fluid.
  • the semiconductor light-emitting device floating in the fluid includes, for example, a magnetic layer, and can be moved in the direction of the assembled substrate by an assembly device having a magnetic substance acting on the assembly substrate. That is, the semiconductor light emitting element in the chamber can move toward the assembly device by the magnetic field generated by the assembly device.
  • An assembly substrate having an assembly groove is located in a direction moving toward the assembly device, and the semiconductor light emitting device may contact the assembly groove.
  • the semiconductor light emitting device in contact with the assembly groove is fixed by an electric field applied from the assembly electrode formed under the assembly groove.
  • the time required to assemble the semiconductor light emitting devices on a substrate can be drastically reduced.
  • an assembly gap exists between the assembly groove and the semiconductor light emitting device to be assembled, and an assembly interval of more than a predetermined reference value among the assembly intervals may cause electrode formation failure during a wiring process.
  • the wiring process includes a process of forming an insulation layer, flattening the insulation layer, and an etching process to form an electrode.
  • FIG. 11 is a flow chart specifically illustrating a process of forming the multiple passivation layer of FIG. 10.
  • the passivation layer is continuously formed after the semiconductor light emitting structure is formed on the first substrate, the passivation layer may not be formed under the semiconductor light emitting structure.
  • this is an exemplary case, and the present invention is not limited thereto.
  • the passivation layer is formed by using an inorganic insulator such as silica or alumina through PECVD (Plasma Enhanced Chemical Vapor Deposition), LPCVD (Low Pressure Chemical Vapor Deposition), sputtering deposition method, etc., or photoresist, polymer It may be formed through a method of spin coating an organic material such as a material.
  • a first passivation layer is formed on the semiconductor light emitting structure formed on the first substrate (S1021).
  • the semiconductor light emitting structure includes a first conductive type semiconductor layer, an active layer, a second conductive type semiconductor layer, a first conductive type electrode and a second conductive type electrode.
  • the first passivation layer is formed on both side surfaces and upper portions of the semiconductor light emitting structure, and the first conductive type electrode and the second conductive type semiconductor layer formed on the first conductive type semiconductor layer above the semiconductor light emitting structure The first conductive type electrode formed thereon is located.
  • the selectively removing process (S1022) may include a photo-lithography process and an etching process.
  • the etching process means, for example, wet etching or dry etching.
  • the first passivation layer is positioned on a side surface of the semiconductor light emitting structure and on an upper portion of the semiconductor light emitting structure, except for the first conductive electrode and the second conductive electrode.
  • the first passivation layer and the second passivation layer are sequentially disposed on the side surface of the semiconductor light emitting structure.
  • only a second passivation layer is formed on the first conductive type electrode and the second conductive type electrode, except for the first conductive type electrode and the second conductive type electrode. In the first passivation layer and the second passivation layer are sequentially disposed.
  • the first etch ratio of the first passivation layer may be smaller than the second etch ratio of the second passivation layer.
  • the etch rate is a ratio representing the degree of etching for a unit time, and in the case of wet etching, it may vary depending on the reacting chemical solution, and in the case of dry etching, it may vary depending on the type of the reacting ion gas. In the case of the present invention, it means a case in which the first etch ratio of the first passivation layer is smaller than the second etch ratio of the second passivation layer in response to the ongoing etching method.
  • the second thickness of the second passivation layer may be thinner than the first thickness of the first passivation layer.
  • the difference in the etching ratio or thickness of the first passivation layer and the second passivation layer makes it easy to selectively remove only the passivation layer formed on the first and second conductive electrodes in the semiconductor light emitting device. Provide an environment. Details about this will be described later in FIGS. 17 to 20.
  • materials of the first passivation layer and the second passivation layer may be differently selected so that the first refractive index of the first passivation layer and the second refractive index of the second passivation layer are different.
  • FIG. 12 is a flowchart specifically illustrating a process of performing the wiring process of FIG. 10.
  • an insulating layer is formed on the semiconductor light emitting device assembled on the second substrate (S1051).
  • the insulating layer covers side surfaces and upper portions of the semiconductor light emitting device.
  • the insulating layer may be deposited by, for example, chemical vapor deposition (CVD), or may be coated by spin coating after applying an insulating solution onto a substrate.
  • CVD chemical vapor deposition
  • the insulating layer may be an organic insulating layer, preferably a photosensitive organic insulating layer.
  • the photosensitive organic insulating layer may be formed by spraying or spin coating a photosensitive agent having a positive tone such as photosensitive acrylate or PAC (Photo Active Compounds).
  • the positive tone photosensitizer refers to a photosensitizer that is removed by developing a region exposed to light.
  • planarization process means, for example, CMP (Chemical Mechanical Polishing), and a step of chemically and mechanically polishing may be performed.
  • the insulating layer and the passivation layer formed outside the semiconductor light emitting device are selectively removed (S1053).
  • both the first passivation layer and the second passivation layer formed on the semiconductor light emitting device may be removed, or only the second passivation layer may be selectively removed.
  • the passivation layer in contact with the insulating layer still remains on the side surface of the semiconductor light emitting device.
  • a photolithography process and an etching process may be performed.
  • a first electrode electrically connected to the exposed first conductivity type electrode and a second electrode electrically connected to the exposed second conductivity type electrode are formed (S1054).
  • the passivation layer is still located in other regions of the semiconductor light emitting device except for the exposed region, and the positions where the first electrode and the second electrode are formed are not accurate, and only some regions are conductive electrodes of the semiconductor light emitting device. Even if they are in contact with each other, a short phenomenon does not occur between different semiconductor layers in the semiconductor light emitting device.
  • FIG. 13 is a cross-sectional view illustrating a semiconductor light emitting structure formed on the first substrate of FIG. 10.
  • the semiconductor light emitting structure 1010 is formed on the first substrate 1001, the first conductive type semiconductor layer 1011, the active layer 1012, the second conductive type semiconductor layer 1013 ), a first conductive type electrode 1015 and a second conductive type electrode 1014.
  • the structure has a horizontal structure, and a first conductive type electrode in a region where the first conductive type semiconductor layer 1011 is exposed by etching some of the second conductive type semiconductor layer 1013 and some active layer 1012 ( 1015) has been exemplified, but the present invention is not limited thereto, and various horizontal mesa structures and vertical structures may be formed.
  • the first substrate 1001 may be formed of a material having a light-transmitting property, for example, any one of sapphire (Al2O3), GaN, ZnO, and AlO.
  • the first substrate 1001 may be formed of a material suitable for growth of semiconductor materials and a carrier wafer.
  • the first substrate 1001 may be formed of a material having excellent thermal conductivity, including a conductive substrate or an insulating substrate, for example, a SiC substrate or Si, GaAs having higher thermal conductivity than a sapphire (Al2O3) substrate.
  • GaP, InP, Ga2O3 may be used, but is not limited thereto.
  • the first conductive type semiconductor layer 1011 grown on the first substrate 1001 is an n-type semiconductor layer, and may be a nitride semiconductor layer such as n-GaN, and the second conductive type semiconductor layer 1013 May be a p-type semiconductor layer.
  • the present invention is not necessarily limited thereto, and an example in which the first conductive type semiconductor layer 1011 becomes a p-type and the second conductive type semiconductor layer 1013 is an n-type is also possible.
  • the first conductive type semiconductor layer 1011 and the second conductive type semiconductor layer 1013 may be formed by implanting impurities into an intrinsic or doped semiconductor substrate.
  • a region in which a p-n junction is formed by the impurity implantation may serve as the active layer 1012.
  • the enumerations of the first conductive semiconductor layer 1011, the second conductive semiconductor layer 1013, and the active layer 1012 are exemplary only, and the present invention is not limited thereto.
  • a first conductive type electrode 1015 is formed on the first conductive type semiconductor layer. Accordingly, in order to form the first conductive type electrode 1015, a process of patterning a partial area of the stacked semiconductor layer through a photo process, etching the area, and depositing a conductive type electrode may be performed.
  • the first conductive type electrode 1015 is in electrical contact with the first conductive type semiconductor layer 1011 and may be formed of one or more metal layers.
  • the first conductive type electrode 1015 includes at least one of ITO, chromium (Cr), titanium (Ti), and nickel-silver (Ni-Ag), and includes the first conductive type semiconductor layer 1011 and ohmic. ) It is possible to form an ohmic contact layer having contact characteristics.
  • the second conductive type electrode 1014 formed on the second conductive type semiconductor layer 1013 may be formed of one or more metal layers, similar to the first conductive type electrode 1015.
  • the second conductive type electrode 1014 includes at least one of ITO, chromium (Cr), titanium (Ti), and nickel-silver (Ni-Ag) to form the second conductive type semiconductor layer 1013 and ohmic. ) It is possible to form an ohmic contact layer having contact characteristics.
  • a magnetic layer may be formed under the first conductive electrode 1015 or the second conductive electrode 1014.
  • the magnetic layer itself formed on the first conductive semiconductor layer 1011 or the second conductive semiconductor layer 1013 may be used as a conductive electrode.
  • FIG. 14 is a cross-sectional view after a first passivation layer is formed on the semiconductor light emitting structure of FIG. 13.
  • the first passivation layer 1021 is formed on the side and upper portions of the semiconductor light emitting structure.
  • the semiconductor light emitting structure is formed on the first substrate 1001, and the first passivation layer 1021 is also continuously formed, and the first passivation layer 1021 is not formed under the semiconductor light emitting structure. May not. However, this is only an exemplary matter, and the present invention is not limited thereto.
  • both sides of the active layer 1012 and the second conductive type semiconductor layer 1013 of the semiconductor light emitting structure are in contact with the first passivation layer 1021, and the first conductive type of the semiconductor light emitting structure
  • Both side surfaces and tops of the semiconductor layer 1011, the first conductive electrode 1015 and the second conductive electrode 1014 contact the first passivation layer 1021.
  • this is only an exemplary matter, and the present invention is not limited thereto.
  • FIG. 15 is a cross-sectional view after selectively removing only the first passivation layer formed on the conductive electrodes of the semiconductor light emitting structure of FIG. 14;
  • a process of patterning a portion of an upper portion of the semiconductor light emitting device through a photo process and etching the corresponding region may be performed.
  • regions where the first passivation layer 1021 is formed are the first conductive type semiconductor layer 1011, the active layer 1012, and This is a partial region of a side surface of the two-conductive semiconductor layer 1013, the first conductive type electrode 1015 and the second conductive type electrode 1015, and an upper portion of the first conductive type semiconductor layer 1011. That is, only upper portions of the conductive electrodes for electrically connecting the semiconductor light emitting structure do not exist because the first passivation layer 1021 has been removed.
  • FIG. 16 is a cross-sectional view of a semiconductor light emitting device in which a second passivation layer is formed on the semiconductor light emitting structure of FIG. 15.
  • the second passivation layer 1022 is sequentially formed outside the first passivation layer 1021 previously formed on the semiconductor light emitting structure, and additionally, the first conductive electrode 1015 and the second conductive electrode 1014 It is formed on the top.
  • the second passivation layer 1022 is formed on the first conductive electrode 1015 and the second conductive electrode 1014, and the second passivation layer 1022 is formed on the other surface except the lower surface of the semiconductor light emitting structure.
  • the first passivation layer 1021 and the second passivation layer 1022 are sequentially disposed.
  • FIG. 17 is a cross-sectional view of the semiconductor light emitting device of FIG. 16 after performing a wiring process.
  • a semiconductor light emitting device which is a semiconductor light emitting structure in which multiple passivation layers are formed, is separated from the first substrate and assembled into a second substrate.
  • the separation and assembly steps may be performed by a substrate-to-substrate transfer method or a self-assembly method.
  • a first electrode 1052 and a second electrode 1053 are positioned in a partial region above the first conductive electrode 1015 and the second conductive electrode 1014 of the semiconductor light emitting device, and the electrodes are the semiconductor
  • An insulating layer 1051 is formed on top and side surfaces of the device so as not to be electrically connected to other regions of the light emitting device.
  • FIG. 17 is a cross-sectional view of a semiconductor light-emitting device after performing the wiring process described above in FIG. 12, and is a diagram illustrating a planarization process and an electrode after forming an insulating layer for the semiconductor light-emitting device.
  • the thickness of the insulating layer 1051 is sufficiently thicker than the height of the assembled semiconductor light emitting device 1700 so that the upper portion of the semiconductor light emitting device 1700 is not exposed on the surface. Thereafter, a photo process and an etching process are performed on the corresponding areas in order to expose a predetermined area above the first conductive type electrode 1015 and the second conductive type electrode 1014.
  • a first electrode 1052 and a second electrode 1053 for electrical connection with the first conductive electrode 1015 and the second conductive electrode 1014 are formed in the exposed area. Thereafter, an insulating layer 1051 is applied again to protect the electrodes 1052 and 1053. Therefore, in a strict sense, the insulating layer 1051 illustrated in FIG. 17 may be composed of a first insulating layer before the electrode formation process proceeds and a second insulating layer for protecting the corresponding electrode after the electrode formation.
  • the etching process may be dry etching or wet etching.
  • dry etching for example, since anisotropic etching is mainly performed using an ionic reaction gas in a plasma state, precise control of a fine pattern and an etched thickness is possible.
  • wet etching a region in which the chemical solution contacts with a chemical solution is mainly isotropic etching.
  • the first electrode 1052 and the second electrode 1053 are accurately connected to the first conductive type electrode 1015 and the second conductive type electrode 1014. Is shown.
  • the semiconductor light emitting device 1700 even if the electrodes 1052 and 1053 are formed at a distance by an error distance due to an alignment error during assembly, a probability of occurrence of a defect such as a short decreases.
  • the short-circuit failure is, for example, when the first electrode is formed on the semiconductor light emitting device, not only the first conductive type electrode but also other unintended regions such as the second conductive type semiconductor layer of the semiconductor light emitting device are electrically connected. Refers to the phenomenon.
  • the main reason for the decrease in the probability of occurrence of the short defect in the present invention is that, as described above in FIG. 11, in the structure of the semiconductor light emitting device, primarily, multiple passivation layers are formed, and secondly, the passivation layers are This is because different etching ratios are selected or the thickness of each passivation layer is formed differently.
  • an etching process for selectively removing the second passivation layer 1022 surrounding the conductive type electrode is performed. do. Assuming that the etching process is performed at a position overlapping the first conductive type electrode 1015 and the second conductive type semiconductor layer 1011 and the first passivation layer 1021 does not exist, the etching Through the process, the second conductive semiconductor layer 1011 will be exposed. Accordingly, there is a high probability that a short-circuit failure between the first conductive type semiconductor layer 1011 and the second conductive type semiconductor layer 1013 will be caused during electrode formation.
  • the first passivation layer 1021 is the same material as the second passivation layer 1022 and has the same etching ratio, and the thickness is very thin. If so, the second passivation layer is removed at the same time in the process of being etched, and thus, a short-circuit defect may occur when forming the electrode.
  • a structure for preventing such short-circuit failure is particularly important in a display device requiring transfer or assembly of a semiconductor light emitting device.
  • the reason for this is that an alignment error inevitably occurs during transfer or assembly, and a semiconductor light emitting device having a gradually small size is required for a high-pixel display.In this environment, the alignment error gradually increases the probability of causing a short failure when forming an electrode. Because it increases. Accordingly, the structure of a conventional semiconductor light emitting device is not suitable, and a structure of a semiconductor light emitting device capable of selectively removing only the passivation layer formed in the conductive electrode region to be electrically connected is required. Accordingly, the present invention can be viewed as an embodiment of a semiconductor light emitting device structure that satisfies the above requirements.
  • FIG. 18 is another cross-sectional view after a wiring process is performed on the semiconductor light emitting device of FIG. 16.
  • the thickness of forming the first insulating layer is different from the wiring process in FIG. 17.
  • the first insulating layer is similar to the height of the top of the assembled semiconductor light emitting device 1701. The thickness of (not shown) is formed.
  • the first insulating layer is planarized so that the semiconductor light emitting device 1701 is exposed on the surface.
  • an etching process for removing the second passivation layer formed on the exposed conductive electrodes 1014 and 1015 of the semiconductor light emitting device 1701 is performed. In this case, the etching process can be performed on the entire substrate without a separate photo process.
  • a second insulating layer is formed again, and electrodes 1052 and 1053 electrically connected to the conductive electrodes 1014 and 1015 are formed.
  • a third insulating layer for protecting the electrodes 1052 and 1053 is additionally formed.
  • the semiconductor light emitting device 1701 after the wiring process includes a first conductive type semiconductor layer 1011, an active layer 1012, a second conductive type semiconductor layer 1013, and a first conductive type electrode. 1015, a second conductive type electrode 1014, a first passivation layer 1021, and a second passivation layer 1022, and are positioned on the second substrate 1041.
  • a first passivation layer 1021 and a second passivation layer 1022 do not exist on the first conductive type electrode 1015 and the second conductive type electrode 1014 of the semiconductor light emitting device 1701.
  • a first electrode 1052 and a second electrode 1053 are positioned in a partial region above the first conductive type electrode 1015 and the second conductive type electrode 1014 of the semiconductor light emitting device 1701,
  • An insulating layer 1051 is formed on top and side surfaces of the device so that the electrodes are not electrically connected to other regions of the semiconductor light emitting device.
  • the insulating layer 1051 is a concept including the first insulating layer, the second insulating layer, and the third insulating layer described above in the wiring process of FIG. 18.
  • the difference between the semiconductor light emitting device of FIG. 18 and the semiconductor light emitting device of FIG. 17 is a difference in a region in which the second passivation layer formed on the conductive type electrode is removed.
  • the second passivation layer formed on the conductive electrode is completely removed, and in the semiconductor light emitting device of FIG. 17, the second passivation layer formed on the conductive electrode is partially removed.
  • the upper region of the semiconductor light emitting device is exposed on the surface by the planarized first insulating layer, and the etching process is collectively performed for the upper region of the plurality of semiconductor light emitting devices assembled on the substrate without a photo process.
  • the etching process may be dry etching or wet etching, but wet etching is more preferable. In the case of wet etching, it is possible to perform low cost and high-speed etching compared to dry etching, and the process can be simply performed using a chemical solution that selectively etches the second passivation layer.
  • a second insulating layer is formed again, and an additional etching process is performed to form an electrode.
  • the additional etching process performs only the etching of the insulating layer whose main component is an organic material, not the passivation layer, high-speed etching is possible and the etching thickness can be easily controlled.
  • 19 is a flowchart specifically illustrating another wiring process method performed in the semiconductor light emitting device of FIG. 16.
  • the insulating layer is not first formed on the semiconductor light emitting device assembled on the second substrate, but the etching process is performed first.
  • the second passivation layer formed on the semiconductor light emitting device assembled on the second substrate is removed (S1151). At this time, since the second passivation layer is entirely exposed to the outside, all of the second passivation layer will be removed. Thereafter, an insulating layer is formed on the side surfaces and upper portions of the semiconductor light emitting device from which the second passivation layer has been removed (S1152), and then a planarization process is performed (S1153). In addition, a partial region of the planarized insulating layer is selectively removed so that a partial region of the conductive electrode of the semiconductor light emitting device is exposed (S1154). Finally, a conductive material such as a metal is deposited on the exposed area to form an electrode (S1155).
  • FIG. 20 is a cross-sectional view of a semiconductor light emitting device in which a wiring process is performed according to FIG. 19.
  • the semiconductor light emitting device 1702 after the wiring process includes a first conductive type semiconductor layer 1011, an active layer 1012, a second conductive type semiconductor layer 1013, and a first conductive type electrode. 1015, a second conductive type electrode 1014 and a first passivation layer 1021 are included, and are positioned on the second substrate 1041.
  • first passivation layer 1021 and the second passivation layer 1022 do not exist on the first conductive type electrode 1015 and the second conductive type electrode 1014 of the semiconductor light emitting device 1702.
  • a first electrode 1052 and a second electrode 1053 are positioned in a partial region above the first conductive type electrode 1015 and the second conductive type electrode 1014 of the semiconductor light emitting device 1701,
  • An insulating layer 1051 is positioned on top and side surfaces of the device so that the electrodes are not electrically connected to other regions of the semiconductor light emitting device.
  • the semiconductor light emitting device 1702 illustrated in FIG. 20 may be, for example, a semiconductor light emitting device assembled by a self-assembly process.
  • a semiconductor light emitting device for self-assembly when the device is assembled to protect the device in a fluid, it is essential to form a passivation layer on the device.
  • the semiconductor light emitting device assembled in the substrate is etched so that the conductive electrode on the device is exposed for electrical connection. In this process, if the semiconductor light emitting device is self-assembled with a large array error, the correct position of the conductive electrode is not etched in the etching process, resulting in a short circuit defect.
  • the semiconductor light emitting device is protected by a single passivation layer
  • the etching process for forming the second electrode not only the passivation layer formed on the second conductive type electrode, but also the top of the first conductive type semiconductor layer If the passivation layer formed in is also removed, a short circuit between the first conductive semiconductor layer and the second conductive semiconductor layer may occur during subsequent electrode formation.
  • etching at an incorrect position may cause short circuit failure.
  • a structure of a multiple passivation layer is important so that only the electrical connection region of the device can be selectively exposed. That is, there is a need for a structure in which only the electrical connection region of the device is relatively easily etched under the same conditions.
  • the structure of the semiconductor light emitting device of the present invention can easily expose the conductive electrode of the semiconductor light emitting device, and stably form the electrode even if the etching process is performed without a separate photo process after assembly. can do.
  • the first etching ratio of the first passivation layer 1021 of the semiconductor light emitting device 1702 is the second passivation layer. If it is less than the etch ratio, the second passivation layer is etched, and even if a predetermined time elapses in a wet etching state exposed to a chemical solution, the first passivation layer 1702 remains due to the difference in the etch ratio. . Therefore, the remaining areas of the semiconductor light emitting device 1702 except for the upper portions of the first conductive type electrode 1015 and the second conductive type electrode 1014 are completely protected by the second substrate 1041 and the first passivation layer 1021. As a result, a stable wiring electrode can be formed.
  • the structure of the semiconductor light emitting device 1702 on which the wiring process shown in FIG. 20 is completed is similar to that of a conventional semiconductor light emitting device, but this is the shape of the result, and the semiconductor light emitting device at the time of assembly on the second substrate 1041
  • those skilled in the art will be able to easily determine the effect of the present invention.
  • 21 is a diagram illustrating various electrode shapes that can be formed by a wiring process.
  • a first passivation layer and a second passivation layer are formed, and the first etch ratio of the first passivation layer is formed smaller than the second etch ratio of the second passivation layer.
  • FIG. 21A is a plan view of a structure of a semiconductor light emitting device 1703 in which the second electrode 2153 is formed in a circular strip shape, viewed from above.
  • the semiconductor light emitting device 1703 may have a circular horizontal semiconductor light emitting structure, a first conductive type electrode 1015 and a first electrode 2152 are positioned in a central region, and a second conductive type electrode 1015 and a first electrode 2152 are positioned in a central region.
  • the passivation layer 1022, the second conductive type electrode 1014, and the second electrode 2153 are positioned.
  • the first conductive electrode 1015 and the second conductive electrode 1014 are shown in Fig. 21(a), but in the actual structure, the first conductive type electrode 1015 and the second conductive type electrode 1014 are shown in FIG.
  • a first passivation layer and a second passivation layer 1022 are formed on the type electrode 1015 and the second conductive type electrode 1014.
  • the second electrode 2153 is used as the second electrode 2153 as shown in FIG. 20(a). It may be formed in a circular band shape on the upper portion of the two-conductive electrode 1014.
  • 21B is a plan view of the structure of the semiconductor light emitting device 1704 in which the second electrode 2154 is formed in a plurality of circles on the second conductive type electrode 1014 from above.
  • FIG. 21C is a plan view of a structure of a semiconductor light emitting device 1704 in which the second electrode 2155 is formed in a plurality of fan-shaped bands on the second conductive type electrode 1014 from above.
  • FIG. 22 is a diagram illustrating a case in which wiring electrodes are formed at various positions in the semiconductor light emitting device performing the wiring process of FIG. 17.
  • the semiconductor light emitting device 1700 of FIG. 16 is positioned on the insulating layer 1051.
  • the semiconductor light emitting device 1700 includes a first conductive type electrode 1015, a second passivation layer 1022, and a second conductive type electrode 1014.
  • the first conductive type electrode 1015 and the second conductive type electrode 1014 are shown in Fig. 22(a), but in an actual structure, the first conductive type electrode 1015 And a first passivation layer and a second passivation layer 1022 on the second conductive type electrode 1014.
  • the rectangular structure defining the outer periphery of the insulating layer 1051 may be determined as an assembly groove in which the semiconductor light emitting device 1700 is assembled. Accordingly, the semiconductor light emitting device 1700 of FIG. 22A is a plan view showing a shape assembled in a normal position of an assembly groove.
  • a wiring process of etching and forming an electrode for a plurality of assembled semiconductor light emitting devices is performed collectively, and the wiring process means that the semiconductor light emitting device is assembled at a normal position of the assembly groove. It is performed assuming.
  • the first electrode 1052 and the second electrode 1053 are also used as the first conductive type semiconductor layer 1015 and the second conductive layer. It is accurately positioned on the semiconductor layer 1014.
  • the first electrode 1052 and the second electrode 1053 are It may be formed on an interface between the first conductive semiconductor layer 1015 and the second conductive semiconductor layer 1014.
  • the first conductive type electrode 1015 and the second conductive type electrode 1015 are shorted by the first electrode 1052 formed on the interface as described above to cause a defect. do.
  • the semiconductor light emitting device 1700 has a multi-passivation layer structure in which a first passivation layer and a second passivation layer 1022 are formed on the first conductive type electrode 1015 and the second conductive type electrode 1014. . Therefore, even if the second passivation layer 1022 of 22(b) is removed, the first passivation layer remains, and it is difficult to cause a short circuit between the first conductive electrode 1015 and the second conductive electrode 1015.
  • the first electrode 1052 and the second electrode 1053 are the first electrode. It may be formed on an interface between the conductive semiconductor layer 1015 and the second conductive semiconductor layer 1014.
  • the electrodes 1052 and 1053 formed on the interface cause short circuit failure in a general semiconductor device structure.
  • the semiconductor light emitting device 1700 includes a first passivation layer and a second passivation layer on top of the first conductive type electrode 1015 and the second conductive type electrode 1014. It is a multi-passivation layer structure in which the layer 1022 is formed. Therefore, even if the second passivation layer 1022 of 22(c) is removed, the first passivation layer remains, and it is unlikely that the first and second conductivity-type electrodes 1015 and 1015 are shorted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서에서는 다중 패시베이션층이 형성된 반도체 발광 소자를 이용하여 쇼트 불량을 최소화하는 마이크로 LED 디스플레이 장치 및 이의 제조 방법을 개시한다. 여기서 본 발명의 일 실시예에 따른 복수의 반도체 발광 소자들을 이용하는 디스플레이 장치에서, 상기 반도체 발광 소자들 중 적어도 하나는, 제 1도전형 반도체층, 제 2도전형 반도체층, 활성층, 제 1도전형 전극, 제 2도전형 전극 및 상기 제 1도전형 반도체층과 상기 제 2도전형 반도체층의 측면을 감싸도록 순차적으로 배치되는 제 1패시베이션층 및 제 2패시베이션층을 포함하고, 상기 제 1도전형 전극 및 상기 제 2도전형 전극의 상부에서, 제 1전극 및 제 2전극과 접촉하는 부분을 제외한 영역은 상기 제 2패시베이션층이 위치하는 것을 특징으로 한다.

Description

마이크로 LED를 이용한 디스플레이 장치 및 이의 제조 방법
본 발명은 디스플레이 장치 관련 기술 분야에 적용 가능하며, 예를 들어 마이크로 LED(Light Emitting Diode)를 이용한 디스플레이 장치 및 이의 제조 방법에 관한 것이다.
최근에는 디스플레이 기술 분야에서 박형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liquid Crystal Display)와 OLED(Organic Light Emitting Diodes)로 대표되고 있다.
그러나, LCD의 경우에 빠르지 않은 반응 시간과, 플렉서블의 구현이 어렵다는 문제점이 있고, OLED의 경우에 수명이 짧고, 양산 수율이 좋지 않다는 문제점이 있다.
한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 것으로 잘 알려진 반도체 발광 소자로서, 1962년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다. 따라서, 상기 반도체 발광 소자를 이용하여 디스플레이를 구현하여, 전술한 문제점을 해결하는 방안이 제시될 수 있다. 상기 반도체 발광 소자는 필라멘트 기반의 발광 소자에 비해 긴 수명, 낮은 전력 소모, 우수한 초기 구동 특성, 및 높은 진동 저항 등의 다양한 장점을 갖는다.
이러한 반도체 발광 소자의 크기는 최근에 수십 마이크로미터까지 줄어들었다. 따라서 상기 반도체 발광 소자들을 이용하여 디스플레이 장치를 구현하는 경우, 매우 많은 수의 반도체 발광 소자들을 디스플레이 장치의 배선기판에 조립하여야 한다.
하지만 상기 조립과정에서, 배선기판의 특정 위치에 수많은 반도체 발광 소자를 정밀하게 위치시키는 것은 매우 어려우며, 상기 특정 위치에 조립되지 못한 반도체 발광 소자의 경우, 이후 배선공정에서 다양한 불량을 유발하는 문제점이 있다.
본 발명의 일 실시예의 목적은, 반도체 발광 소자를 이용한 디스플레이 장치 및 제조 방법을 제공하는 것이다.
본 발명의 일 실시예의 다른 목적은, 반도체 발광 소자를 디스플레이 기판에 조립 후, 안정적인 배선 공정이 가능한 디스플레이 장치 및 이의 제조 방법을 제공하는 것이다.
나아가, 본 발명의 일 실시예의 또 다른 목적은, 여기에서 언급하지 않은 다양한 문제점들도 해결하고자 한다. 당업자는 명세서 및 도면의 전 취지를 통해 이해할 수 있다.
상기 목적을 달성하기 위한 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법은, 제 1기판에서 반도체 발광 소자를 형성하는 단계; 상기 반도체 발광 소자를 제 2기판으로 전사하는 단계; 상기 제 2기판에 전사된 상기 반도체 발광 소자에 절연층을 코팅하는 단계; 및 상기 반도체 발광 소자와 전기적으로 연결되는 배선 전극을 형성하는 단계;를 포함하고, 상기 반도체 발광 소자를 형성하는 단계는, 상기 제 1기판에 제 1도전형 반도체층, 활성층, 제 2도전형 반도체층, 제 1도전형 전극 및 제 2도전형 전극을 포함하는 반도체 발광 구조물을 형성하는 단계; 상기 반도체 발광 구조물에 제 1패시베이션층을 형성하는 단계; 상기 반도체 발광 구조물의 상기 제 1도전형 전극 및 상기 제 2도전형 전극의 상부에 형성된 상기 제 1패시베이션층을 선택적으로 제거하는 단계; 상기 반도체 발광 구조물에 제 2패시베이션층을 형성하는 단계를 포함한다.
실시예로서, 상기 제 2기판으로 전사하는 단계 및 상기 절연층을 코팅하는 단계 사이에 상기 제 2패시베이션층을 제거하는 단계를 포함한다.
실시예로서, 상기 제 2패시베이션층을 제거하는 단계는, 습식 식각 공정에 의해 수행되는 것을 특징으로 한다.
실시예로서, 상기 절연층을 코팅하는 단계는 상기 절연층의 상부를 평탄화하는 단계 및 상기 반도체 발광 소자의 상부의 적어도 일부 영역을 노출하는 단계를 포함한다.
실시예로서, 상기 배선 전극을 형성하는 단계는, 상기 반도체 발광 소자의 상기 제 1도전형 전극과 전기적으로 연결되는 제 1전극 및 상기 제 2도전형 전극과 전기적으로 연결되는 제 2전극을 형성하는 단계를 포함한다.
실시예로서, 상기 제 1전극 및 상기 제 2전극을 형성하는 단계는, 상기 제 1도전형 전극 및 상기 제 2도전형 전극의 상부에 형성된 상기 제 2패시베이션층을 제거하는 단계를 포함한다.
실시예로서, 상기 제 1전극 및 상기 제 2전극을 형성하는 단계는, 상기 제 1전극 및 상기 제 2전극과 상기 제 1도전형 전극 및 상기 제 2도전형 전극 사이의 오버랩되는 영역에 위치하는 상기 제 2패시베이션층을 선택적으로 제거하는 단계를 포함한다.
상기 제 2패시베이션층을 선택적으로 제거하는 단계는, 건식 식각 공정에 의해 수행되는 것을 특징으로 한다.
본 발명의 다른 실시예에 따른 복수의 반도체 발광 소자들을 이용한 디스플레이 장치는, 상기 반도체 발광 소자들 중 적어도 하나는, 제 1도전형 반도체층; 상기 제 1도전형 반도체층 상에 위치하는 제 2도전형 반도체층; 상기 제 1도전형 반도체층과 상기 제 2도전형 반도체층 사이에 배치되는 활성층; 상기 제 2도전형 반도체층 상에 위치하는 제 2도전형 전극; 상기 제 2도전형 반도체층 및 활성층의 일부가 식각되어 상기 제 1도전형 반도체층이 노출된 영역에 위치하는 제 1도전형 전극; 상기 제1도전형 반도체층과 상기 제2도전형 반도체층의 측면을 감싸도록 순차적으로 배치되는 제 1패시베이션층 및 제 2패시베이션층을 포함하고, 상기 제 1도전형 전극의 상부에서, 제 1전극과 접촉하는 부분을 제외한 영역은 상기 제 2패시베이션층이 위치하고, 상기 제 2도전형 전극의 상부에서, 제 2전극과 접촉하는 부분을 제외한 영역은 상기 제 2패시베이션층이 위치하는 것을 특징으로 한다.
실시예로서, 상기 제 1도전형 반도체층의 상부에서, 상기 제 1도전형 전극과 접촉하는 부분을 제외한 영역은 상기 제 1패시베이션층 및 상기 제 2패시베이션층이 순차적으로 배치되고, 상기 제 2도전형 반도체층의 상부에서, 상기 제 1도전형 전극과 접촉하는 부분을 제외한 영역은 상기 제 1패시베이션층 및 상기 제 2패시베이션층이 순차적으로 배치되는 것을 특징으로 한다.
실시예로서, 상기 제 1도전형 반도체층의 상부에서, 상기 제 1도전형 전극과 접촉하는 부분을 제외한 영역은 상기 제 2패시베이션층이 위치하고, 상기 제 2도전형 반도체층의 상부에서, 상기 제 1도전형 전극과 접촉하는 부분을 제외한 영역은 상기 제 2패시베이션층이 위치하는 것을 특징으로 한다.
실시예로서, 상기 제 1패시베이션층의 제 1식각비는 상기 제 2패시베이션층의 제 2식각비보다 작은 것을 특징으로 한다.
실시예로서, 상기 제 1패시베이션층은 상기 제 2패시베이션층과 동일한 물질을 포함하는 것을 특징으로 한다.
실시예로서, 상기 제 2패시베이션층의 두께는 상기 제 1패시베이션층의 두께보다 100nm 이상 얇은 것을 특징으로 한다.
실시예로서, 상기 제 1도전형 전극 또는 상기 제 2도전형 전극의 하부에 자성층을 포함하는 것을 특징으로 한다.
실시예로서, 상기 반도체 발광 소자는 마이크로미터 단위의 크기를 가진 LED(Micro-LED)인 것을 특징으로 한다.
본 발명의 일 실시예에 따르면, 반도체 발광 소자를 이용한 디스플레이 장치 및 제조 방법을 제공할 수 있다.
구체적으로, 반도체 발광 소자를 기판에 조립한 후, 배선 공정을 수행하는 경우, 상기 반도체 발광 소자에 형성된 다중 패시베이션층에 의해, 배선 전극이 연결되는 부분만 선택적으로 패시베이션층의 제거가 가능하여, 쇼트 불량 위험을 최소화한 안정적인 배선 공정을 수행할 수 있다.
따라서, 상기 배선 공정에서 발생할 수 있는 반도체 발광 소자의 쇼트(Short) 또는 오픈(Open) 불량을 감소시키는 기술적 효과가 있다.
나아가, 본 발명의 또 다른 일실시예에 따르면, 여기에서 언급하지 않은 추가적인 기술적 효과들도 있다. 당업자는 명세서 및 도면의 전 취지를 통해 이해할 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도 2는 도 1의 A부분의 부분 확대도 이다.
도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 절단된 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러 가지 형태를 나타내는 개념도들이다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 7은 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이다.
도 8은 도 7의 라인 D-D를 따라 절단된 단면도이다.
도 9는 도 8의 수직형 반도체 발광 소자를 나타내는 개념도이다.
도 10은 본 발명의 다른 실시예에 따른 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법을 나타내는 순서도이다.
도 11은 도 10의 다중 패시베이션층을 형성하는 과정을 구체적으로 나타내는 순서도이다.
도 12는 도 10의 배선 공정을 수행하는 과정을 구체적으로 나타내는 순서도이다.
도 13은 도10의 제 1기판에 형성된 반도체 발광 구조물을 나타내는 단면도이다.
도 14는 도 13의 반도체 발광 구조물에 제 1패시베이션층이 형성된 후의 단면도이다.
도 15는 도14의 반도체 발광 구조물의 도전형 전극들의 상부에 형성된 제 1패시베이션층만 선택적으로 제거한 후의 단면도이다.
도 16은 도 15의 반도체 발광 구조물에 제 2패시베이션층이 형성된 반도체 발광 소자의 단면도이다.
도 17은 도 16의 반도체 발광 소자에 배선 공정을 수행한 이후의 일 단면도이다.
도 18은 도 16의 반도체 발광 소자에 배선 공정을 수행한 이후의 다른 단면도이다.
도 19는 도 16의 반도체 발광 소자에 수행되는 다른 배선 공정 방법을 구체적으로 나타내는 순서도이다.
도 20은 도 19에 의해 배선 공정이 수행된 반도체 발광 소자의 단면도이다.
도 21은 배선 공정에 의해 형성될 수 있는 다양한 전극 모양을 나타내는 도면이다.
도 22는 도 17의 배선 공정을 수행하는 반도체 발광 소자에 대해, 다양한 위치에서 배선 전극이 형성되는 경우를 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
나아가, 설명의 편의를 위해 각각의 도면에 대해 설명하고 있으나, 당업자가 적어도 2개 이상의 도면을 결합하여 다른 실시예를 구현하는 것도 본 발명의 권리범위에 속한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치는 단위 화소 또는 단위 화소의 집합으로 정보를 표시하는 모든 디스플레이 장치를 포함하는 개념이다. 따라서 완성품에 한정하지 않고 부품에도 적용될 수 있다. 예를 들어 디지털 TV의 일 부품에 해당하는 패널도 독자적으로 본 명세서 상의 디스플레이 장치에 해당한다. 완성품으로는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 데스크 탑 컴퓨터 등이 포함될 수 있다.
그러나, 본 명세서에 기재된 실시예에 따른 구성은 추후 개발되는 새로운 제품 형태라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술 분야의 당업자라면 쉽게 알 수 있을 것이다.
또한, 당해 명세서에서 언급된 반도체 발광 소자는 LED, 마이크로 LED 등을 포함하는 개념이며, 혼용되어 사용될 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일실시예를 나타내는 개념도이다.
도 1에 도시된 바와 같이, 디스플레이 장치(100)의 제어부(미도시)에서 처리되는 정보는 플렉서블 디스플레이(flexible display)를 이용하여 표시될 수 있다.
플렉서블 디스플레이는, 예를 들어 외력에 의하여 휘어질 수 있는, 또는 구부러질 수 있는, 또는 비틀어질 수 있는, 또는 접힐 수 있는, 또는 말려질 수 있는 디스플레이를 포함한다.
나아가, 플렉서블 디스플레이는, 예를 들어 기존의 평판 디스플레이의 디스플레이 특성을 유지하면서, 종이와 같이 휘어지거나, 또는 구부리거나, 또는 접을 수 있거나 또는 말 수 있는 얇고 유연한 기판 위에 제작되는 디스플레이가 될 수 있다.
상기 플렉서블 디스플레이가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 상기 플렉서블 디스플레이의 디스플레이 영역이 평면이 된다. 상기 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률 반경을 가지는 상태, 이하, 제2상태라 한다)에서는 상기 디스플레이 영역이 곡면이 될 수 있다. 도 1에 도시된 바와 같이, 상기 제2상태에서 표시되는 정보는 곡면상에 출력되는 시각 정보가 될 수 있다. 이러한 시각 정보는 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 독자적으로 제어됨에 의하여 구현된다. 상기 단위 화소는, 예를 들어 하나의 색을 구현하기 위한 최소 단위를 의미한다.
상기 플렉서블 디스플레이의 단위 화소는 반도체 발광 소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광 소자의 일 종류로서 발광 다이오드(Light Emitting Diode: LED)를 예시한다. 상기 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 단위 화소의 역할을 할 수 있게 된다.
상기 발광 다이오드를 이용하여 구현된 플렉서블 디스플레이에 대하여, 이하 도면들을 참조하여 보다 상세히 설명한다.
도 2는 도 1의 A부분의 부분 확대도 이다.
도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 절단된 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러 가지 형태를 나타내는 개념도들이다.
도 2, 도 3a 및 도 3b에 도시된 바와 같이, 반도체 발광 소자를 이용한 디스플레이 장치(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치(100)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.
도 1에 도시된 디스플레이 장치(100)는, 도 2에 도시된 바와 같이 기판(110), 제1전극(120), 전도성 접착층(130), 제2전극(140) 및 적어도 하나의 반도체 발광 소자(150)를 포함한다.
기판(110)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판(110)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 상기 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
상기 기판(110)은 제1전극(120)이 배치되는 배선기판이 될 수 있으며, 따라서 상기 제1전극(120)은 기판(110) 상에 위치할 수 있다.
도 3a에 도시된 바와 같이 절연층(160)은 제1전극(120)이 위치한 기판(110) 상에 배치될 수 있으며, 상기 절연층(160)에는 보조전극(170)이 위치할 수 있다. 이 경우에, 상기 기판(110)에 절연층(160)이 적층된 상태가 하나의 배선기판이 될 수 있다. 보다 구체적으로, 절연층(160)은 폴리이미드(PI, Polyimide), PET, PEN 등과 같이 절연성이 있고, 유연성 있는 재질로, 상기 기판(110)과 일체로 이루어져 하나의 기판을 형성할 수 있다.
보조전극(170)은 제1전극(120)과 반도체 발광 소자(150)를 전기적으로 연결하는 전극으로서, 절연층(160) 상에 위치하고, 제1전극(120)의 위치에 대응하여 배치된다. 예를 들어, 보조전극(170)은 닷(dot) 형태이며, 절연층(160)을 관통하는 전극홀(171)에 의하여 제1전극(120)과 전기적으로 연결될 수 있다. 상기 전극홀(171)은 비아홀에 도전물질이 채워짐에 의하여 형성될 수 있다.
도 2 또는 도 3a에 도시된 바와 같이, 절연층(160)의 일면에는 전도성 접착층(130)이 형성되나, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 절연층(160)과 전도성 접착층(130)의 사이에 특정 기능을 수행하는 레이어가 형성되거나, 절연층(160)이 없이 전도성 접착층(130)이 기판(110)상에 배치되는 구조도 가능하다. 전도성 접착층(130)이 기판(110)상에 배치되는 구조에서는 전도성 접착층(130)이 절연층의 역할을 할 수 있다.
상기 전도성 접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 상기 전도성 접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 또한 전도성 접착층(130)은 연성을 가지며, 이를 통하여 디스플레이 장치에서 플렉서블 기능을 가능하게 한다.
이러한 예로서, 전도성 접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 상기 전도성 접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기 절연성을 가지는 레이어로서 구성될 수 있다. 따라서 상기 전도성 접착층(130)은 Z축 전도층으로 명명될 수 있다(다만, 이하 '전도성 접착층'이라 한다).
상기 이방성 전도성 필름은 이방성 전도매질(anisotropic conductive medium)이 절연성 베이스부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 이방성 전도매질에 의하여 전도성을 가지게 된다. 이하, 상기 이방성 전도성 필름에는 열 및 압력이 가해지는 것으로 설명하나, 상기 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법이 적용될 수도 있다. 전술한 다른 방법은, 예를 들어 상기 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.
또한, 상기 이방성 전도매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 예를 들어, 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이 차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.
상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)이 될 수 있다. 보다 구체적으로, 절연성 베이스 부재는 접착성을 가지는 물질로 형성되며, 도전볼은 상기 절연성 베이스 부재의 바닥 부분에 집중적으로 배치되며, 상기 베이스 부재에서 열 및 압력이 가해지면 상기 도전볼과 함께 변형됨에 따라 수직 방향으로 전도성을 가지게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 이방성 전도성 필름은 절연성 베이스 부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.
이방성 전도 페이스트는 페이스트와 도전볼의 결합 형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 파티클 혹은 나노 입자를 함유한 형태의 솔루션이 될 수 있다.
다시 도3a를 참조하면, 제2전극(140)은 보조전극(170)과 이격하여 절연층(160)에 위치한다. 즉, 상기 전도성 접착층(130)은 보조전극(170) 및 제2전극(140)이 위치하는 절연층(160) 상에 배치된다.
절연층(160)에 보조전극(170)과 제2전극(140)이 위치된 상태에서 전도성 접착층(130)을 형성한 후에, 반도체 발광 소자(150)를 열 및 압력을 가하여 플립 칩 형태로 접속시키면, 상기 반도체 발광 소자(150)는 제1전극(120) 및 제2전극(140)과 전기적으로 연결된다.
도 4를 참조하면, 상기 반도체 발광 소자는 플립 칩 타입(flip chiptype)의 발광 소자가 될 수 있다.
예를 들어, 상기 반도체 발광 소자는 p형 전극(156), p형 전극(156)이 형성되는 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154) 상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에서 p형 전극(156)과 수평방향으로 이격 배치되는 n형 전극(152)을 포함한다. 이 경우, p형 전극(156)은 도3에 도시된, 보조전극(170)과 전도성 접착층(130)에 의하여 전기적으로 연결될 수 있고, n형 전극(152)은 제2전극(140)과 전기적으로 연결될 수 있다.
다시 도 2, 도 3a 및 도 3b를 참조하면, 보조전극(170)은 일방향으로 길게 형성되어, 하나의 보조전극이 복수의 반도체 발광 소자(150)에 전기적으로 연결될 수 있다. 예를 들어, 보조전극을 중심으로 좌우의 반도체 발광 소자들의 p 형 전극들이 하나의 보조전극에 전기적으로 연결될 수 있다.
보다 구체적으로, 열 및 압력에 의하여 전도성 접착층(130)의 내부로 반도체 발광 소자(150)가 압입되며 이를 통하여 반도체 발광 소자(150)의 p형 전극(156)과 보조전극(170) 사이의 부분과, 반도체 발광 소자(150)의 n형 전극(152)과 제2전극(140) 사이의 부분에서만 전도성을 가지게 되고, 나머지 부분에서는 반도체 발광 소자의 압입이 없어 전도성을 가지지 않게 된다. 이와 같이, 전도성 접착층(130)은 반도체 발광 소자(150)와 보조전극(170) 사이 및 반도체 발광 소자(150)와 제2전극(140) 사이를 상호 결합시켜줄 뿐만 아니라 전기적 연결까지 형성시킨다.
또한, 복수의 반도체 발광 소자(150)는 발광 소자 어레이(array)를 구성하며, 발광 소자 어레이에는 형광체층(180)이 형성된다.
발광 소자 어레이는 자체 휘도 값이 상이한 복수의 반도체 발광 소자들을 포함할 수 있다. 각각의 반도체 발광 소자(150)는 단위 화소를 구성하며, 제1전극(120)에 전기적으로 연결된다. 예를 들어, 제1전극(120)은 복수 개일 수 있고, 반도체 발광 소자들은 예컨대 수 열로 배치되며, 각 열의 반도체 발광 소자들은 상기 복수 개의 제1전극 중 어느 하나에 전기적으로 연결될 수 있다.
또한, 반도체 발광 소자들이 플립 칩 형태로 접속되므로, 투명 유전체 기판에 성장시킨 반도체 발광 소자들을 이용할 수 있다. 또한, 상기 반도체 발광 소자들은 예컨대 질화물 반도체 발광 소자일 수 있다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다.
도3에 도시된 바와 같이, 반도체 발광 소자(150)의 사이에 격벽(190)이 형성될 수 있다. 이 경우, 격벽(190)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(130)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(150)가 삽입됨에 의하여 이방성 전도성 필름의 베이스 부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(190)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로 반사성 격벽이 별도로 구비될 수 있다. 이 경우에, 상기 격벽(190)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다. 화이트 절연체의 격벽을 이용할 경우 반사성을 높이는 효과가 있을 수 있고, 블랙 절연체의 격벽을 이용할 경우, 반사 특성을 가지는 동시에 대비비(contrast)를 증가시킬 수 있다.
형광체층(180)은 반도체 발광 소자(150)의 외면에 위치할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자고, 형광체층(180)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(180)은 개별 화소를 구성하는 적색 형광체(181) 또는 녹색 형광체(182)가 될 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(181)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자 상에 청색광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(182)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G), 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(120)의 각 라인을 따라 하나의 색상의 형광체가 적층될 수 있다. 따라서, 제1전극(120)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(140)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광 소자(150)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)의 단위 화소들을 구현할 수 있다.
또한, 대비비(contrast) 향상을 위하여 각각의 형광체층들의 사이에는 블랙 매트릭스(191)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(191)는 명암의 대조를 향상시킬 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
도 5a를 참조하면, 각각의 반도체 발광 소자(150)는 질화 갈륨(GaN)을 주재료로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.
이 경우, 반도체 발광 소자는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색, 녹색 및 청색 반도체 발광 소자일 수 있다. 예컨대, 적색, 녹색 및 청색 반도체 발광 소자(R, G, B)가 교대로 배치되고, 적색, 녹색 및 청색 반도체 발광 소자에 의하여 적색(Red), 녹색(Green) 및 청색(Blue)의 단위 화소들이 하나의 화소(pixel)를 이루며, 이를 통하여 풀 칼라 디스플레이가 구현될 수 있다.
도 5b를 참조하면, 반도체 발광 소자는 황색 형광체층이 개별 소자 마다 구비된 백색 발광 소자(W)를 구비할 수 있다. 이 경우에는, 단위 화소를 이루기 위하여, 백색 발광 소자(W) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비될 수 있다. 또한, 이러한 백색 발광 소자(W) 상에 적색, 녹색, 및 청색이 반복되는 컬러 필터를 이용하여 단위 화소를 이룰 수 있다.
도 5c를 참조하면, 자외선 발광 소자(UV) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비되는 구조도 가능하다. 이와 같이, 반도체 발광 소자는 가시광선뿐만 아니라 자외선(UV)까지 전 영역에 사용 가능하며, 자외선(UV)이 상부 형광체의 여기원(excitation source)으로 사용 가능한 반도체 발광 소자의 형태로 확장될 수 있다.
본 예시를 다시 살펴보면, 반도체 발광 소자는 전도성 접착층 상에 위치되어, 디스플레이 장치에서 단위 화소를 구성한다. 반도체 발광 소자는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다.
이와 같은 개별 반도체 발광 소자(150)의 크기는 예를 들어, 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20 X 80㎛ 이하의 크기가 될 수 있다.
또한, 한 변의 길이가 10㎛인 정사각형의 반도체 발광 소자(150)를 단위 화소로 이용하여도 디스플레이 장치를 이루기 위한 충분한 밝기가 나타난다.
따라서, 단위 화소의 크기가 한 변이 600㎛, 나머지 한 변이 300㎛인 직사각형 화소인 경우를 예로 들면, 반도체 발광 소자의 거리가 상대적으로 충분히 크게 된다.
따라서, 이러한 경우, HD화질 이상의 고화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있게 된다.
상기에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치는 새로운 형태의 제조방법에 의하여 제조될 수 있다. 이하, 도 6을 참조하여 상기 제조 방법에 대하여 설명한다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법을 나타낸 단면도들이다.
도 6에 도시된 바와 같이, 먼저, 보조전극(170) 및 제2전극(140)이 위치된 절연층(160) 상에 전도성 접착층(130)을 형성한다. 배선기판(110)에 절연층(160)이 적층되며, 상기 배선기판(110)에는 제1전극(120), 보조전극(170) 및 제2전극(140)이 배치된다. 이 경우에, 제1전극(120)과 제2전극(140)은 상호 직교 방향으로 배치될 수 있다. 또한, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 배선기판(110) 및 절연층(160)은 각각 유리 또는 폴리이미드(PI)를 포함할 수 있다.
상기 전도성 접착층(130)은 예를 들어, 이방성 전도성 필름에 의하여 구현될 수 있으며, 이를 위하여 절연층(160)이 위치된 기판에 이방성 전도성 필름이 도포될 수 있다.
다음에, 보조전극(170) 및 제2전극(140)들의 위치에 대응하고, 개별 화소를 구성하는 복수의 반도체 발광 소자(150)가 위치된 임시기판(112)을, 상기 반도체 발광 소자(150)가 보조전극(170) 및 제2전극(140)와 마주하도록 배치한다.
이 경우에, 임시기판(112)은 반도체 발광 소자(150)를 성장시키는 성장 기판으로서, 사파이어(spire) 기판 또는 실리콘(silicon) 기판이 될 수 있다.
상기 반도체 발광 소자는 웨이퍼(wafer) 단위로 형성될 때, 디스플레이 장치를 이룰 수 있는 간격 및 크기를 가지도록 함으로써, 디스플레이 장치에 효과적으로 이용될 수 있다.
그 다음에, 배선기판과 임시기판(112)을 열 압착한다. 예를 들어, 배선기판과 임시기판(112)은 ACF 프레스 헤드를 적용하여 열 압착할 수 있다. 상기 열 압착에 의하여 배선기판과 임시기판(112)은 본딩(bonding)된다. 열 압착에 의하여 전도성을 갖는 이방성 전도성 필름의 특성에 의해 반도체 발광 소자(150)와 보조전극(170) 및 제2전극(140)의 사이의 부분만 전도성을 가지게 되며, 이를 통하여 전극들과 반도체 발광 소자(150)는 전기적으로 연결될 수 있다. 이 때에, 반도체 발광 소자(150)가 상기 이방성 전도성 필름의 내부로 삽입되며, 이를 통하여 반도체 발광 소자(150) 사이에 격벽이 형성될 수 있다.
그 다음에, 상기 임시기판(112)을 제거한다. 예를 들어, 임시기판(112)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다.
마지막으로, 상기 임시기판(112)을 제거하여 반도체 발광 소자들(150)을 외부로 노출시킨다. 필요에 따라, 반도체 발광 소자(150)가 결합된 배선기판 상을 실리콘 옥사이드(SiOx) 등을 코팅하여 투명 절연층(미도시)을 형성할 수 있다.
또한, 상기 반도체 발광 소자(150)의 일 면에 형광체층을 형성하는 단계를 더 포함할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 적색 형광체 또는 녹색 형광체가 상기 청색 반도체 발광 소자의 일면에 레이어를 형성할 수 있다.
이상에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법이나 구조는 여러 가지 형태로 변형될 수 있다. 그 예로서, 상기에서 설명된 디스플레이 장치에는 수직형 반도체 발광 소자도 적용될 수 있다.
또한, 이하 설명되는 변형예 또는 실시예에서는 앞선 예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 7은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이고, 도 8은 도 7의 라인 D-D를 따라 취한 단면도이며, 도 9은 도 8의 수직형 반도체 발광 소자를 나타내는 개념도이다.
본 도면들을 참조하면, 디스플레이 장치는 패시브 매트릭스(Passive Matrix, PM) 방식의 수직형 반도체 발광 소자를 이용한 디스플레이 장치가 될 수 있다.
상기 디스플레이 장치는 기판(210), 제1전극(220), 전도성 접착층(230), 제2전극(240) 및 적어도 하나의 반도체 발광 소자(250)를 포함한다.
기판(210)은 제1전극(220)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
제1전극(220)은 기판(210) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1 전극(220)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
전도성 접착층(230)은 제1전극(220)이 위치하는 기판(210)상에 형성된다. 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치와 같이, 전도성 접착층(230)은 이방성 전도성 필름(Anisotropy Conductive Film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 다만, 본 실시 예에서도 이방성 전도성 필름에 의하여 전도성 접착층(230)이 구현되는 경우를 예시한다.
기판(210) 상에 제1전극(220)이 위치하는 상태에서 이방성 전도성 필름을 위치시킨 후에, 반도체 발광 소자(250)를 열 및 압력을 가하여 접속시키면, 상기 반도체 발광 소자(250)가 제1전극(220)과 전기적으로 연결된다. 이 때, 상기 반도체 발광 소자(250)는 제1전극(220) 상에 위치되도록 배치되는 것이 바람직하다.
상기 전기적 연결은 전술한 바와 같이, 이방성 전도성 필름에서 열 및 압력이 가해지면 부분적으로 두께방향으로 전도성을 가지기 때문에 생성된다. 따라서, 이방성 전도성 필름에서는 두께 방향으로 전도성을 가지는 부분과 전도성을 가지지 않는 부분으로 구획된다.
또한, 이방성 전도성 필름은 접착 성분을 함유하기 때문에, 전도성 접착층(230)은 반도체 발광 소자(250)와 제1전극(220) 사이에서 전기적 연결뿐만 아니라 기계적 결합까지 구현한다.
이와 같이, 반도체 발광 소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광 소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(250)의 크기는 예를 들어, 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 예를 들어, 20 X 80㎛ 이하의 크기가 될 수 있다.
상기 반도체 발광 소자(250)는 수직형 구조가 될 수 있다.
수직형 반도체 발광 소자들의 사이에는, 제1전극(220)의 길이 방향과 교차하는 방향으로 배치되고, 수직형 반도체 발광 소자(250)와 전기적으로 연결된 복수의 제2전극(240)이 위치한다.
도 9를 참조하면, 이러한 수직형 반도체 발광 소자는 p형 전극(256), p형 전극(256) 상에 형성된 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층(254), 활성층(254)상에 형성된 n형 반도체층(253) 및 n형 반도체층(253) 상에 형성된 n형 전극(252)을 포함한다. 이 경우, 하부에 위치한 p형 전극(256)은 제1전극(220)과 전도성 접착층(230)에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(252)은 후술하는 제2전극(240)과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광 소자(250)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다시 도 8을 참조하면, 상기 반도체 발광 소자(250)의 일면에는 형광체층(280)이 형성될 수 있다. 예를 들어, 반도체 발광 소자(250)는 청색(B) 광을 발광하는 청색 반도체 발광 소자(251)이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 형광체층(280)이 구비될 수 있다. 이 경우에, 형광체층(280)은 개별 화소를 구성하는 적색 형광체(281) 및 녹색 형광체(282) 일 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(281)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자 상에 청색광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(282)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G), 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치에서 전술한 바와 같이, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
다시 본 실시예를 살펴보면, 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치하고, 반도체 발광 소자들(250)과 전기적으로 연결된다. 예를 들어, 반도체 발광 소자들(250)은 복수의 열로 배치되고, 제2전극(240)은 반도체 발광 소자들(250)의 열들 사이에 위치할 수 있다.
개별 화소를 이루는 반도체 발광 소자(250) 사이의 거리가 충분히 크기 때문에 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치될 수 있다.
제2전극(240)은 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있으며, 제1전극과 상호 수직한 방향으로 배치될 수 있다.
또한, 제2전극(240)과 반도체 발광 소자(250)는 제2전극(240)에서 돌출된 연결 전극에 의해 전기적으로 연결될 수 있다. 보다 구체적으로, 상기 연결 전극이 반도체 발광 소자(250)의 n형 전극이 될 수 있다. 예를 들어, n형 전극은 오믹(ohmic) 접촉을 위한 오믹 전극으로 형성되며, 상기 제2전극은 인쇄 또는 증착에 의하여 오믹 전극의 적어도 일부를 덮게 된다. 이를 통하여 제2전극(240)과 반도체 발광 소자(250)의 n형 전극이 전기적으로 연결될 수 있다.
다시 도 8을 참조하면, 상기 제2전극(240)은 전도성 접착층(230) 상에 위치될 수 있다. 경우에 따라, 반도체 발광 소자(250)가 형성된 기판(210) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(240)을 위치시킬 경우, 상기 제2전극(240)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(240)은 전도성 접착층(230) 또는 투명 절연층에 이격되어 형성될 수도 있다.
만약 반도체 발광 소자(250) 상에 제2전극(240)을 위치시키기 위하여는 ITO(Indium Tin Oxide)와 같은 투명 전극을 사용한다면, ITO 물질은 n형 반도체층과는 접착성이 좋지 않은 문제가 있다. 따라서, 본 발명은 반도체 발광 소자(250) 사이에 제2전극(240)을 위치시킴으로써, ITO와 같은 투명 전극을 사용하지 않아도 되는 이점이 있다. 따라서, 투명한 재료 선택에 구속되지 않고, n형 반도체층과 접착성이 좋은 전도성 물질을 수평 전극으로 사용하여 광추출 효율을 향상시킬 수 있다.
다시 도 8을 참조하면, 반도체 발광 소자(250) 사이에는 격벽(290)이 위치할 수 있다. 즉, 개별 화소를 이루는 반도체 발광 소자(250)를 격리시키기 위하여 수직형 반도체 발광 소자(250) 사이에는 격벽(290)이 배치될 수 있다. 이 경우, 격벽(290)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 상기 전도성 접착층(230)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(250)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(290)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로서, 반사성 격벽이 별도로 구비될 수 있다. 격벽(290)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다.
만일 제2전극(240)이 반도체 발광 소자(250) 사이의 전도성 접착층(230) 상에 바로 위치된 경우, 격벽(290)은 수직형 반도체 발광 소자(250) 및 제2전극(240)의 사이 사이에 위치될 수 있다. 따라서, 반도체 발광 소자(250)를 이용하여 작은 크기로도 개별 단위 픽셀을 구성할 수 있고, 반도체 발광 소자(250)의 거리가 상대적으로 충분히 크게 되어 제2전극(240)을 반도체 발광 소자(250) 사이에 위치시킬 수 있고, HD 화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있는 효과가 있게 된다.
또한, 도8에 도시된 바와 같이, 대비비(contrast) 향상을 위하여 각각의 형광체 사이에는 블랙 매트릭스(291)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(291)는 명암의 대조를 향상시킬 수 있다.
전술하였듯이, 반도체 발광 소자를 이용한 대화면 고화소 디스플레이 장치의 경우, 성장 기판에서 성장한 상기 반도체 발광 소자는 새로운 기판으로 조립되거나 전사되어야 한다. 상기 성장 기판은 예를 들어, 현 기술수준에서는 12인치 웨이퍼일 수 있으며, 이에 따라서 복수 번의 전사가 반복될 수 있다.
상기 조립 또는 전사 과정은 예를 들어, 매우 많은 수의 반도체 발광 소자가 일괄적으로 새로운 기판에 배열되는 과정이며, 상기 배열 과정에서 설정된 위치와 다른 위치로 배열될 수 있어, 배열 오차가 존재하게 된다.
또한, 상기 조립 또는 전사 이후, 상기 반도체 발광 소자를 전기적으로 연결하기 위한 배선 공정이 수행되며, 상기 배열 오차의 범위가 일정한 스펙(Spec) 범위를 초과하는 경우, 상기 반도체 발광 소자는 쇼트(short) 또는 오픈(open) 불량을 유발하게 된다.
실험적으로, 상기 배열 오차범위는 ±3㎛ 수준까지 관리되어야 하며, 이는 디스플레이 패널 생산 수율에 있어서 가장 중요한 핵심 요소이다.
하지만, 현실적으로 상기 배열 오차를 관리하는 것은 별도의 관리 장비 및 시간이 추가되는 등 제조 비용을 증가시키는 요인이 된다. 이와 같은 문제점을 해결하기 위한 본 발명의 다른 실시예에 대하여, 이하 도 10 내지 도 22에서 상세히 후술하도록 하겠다.
도 10은 본 발명의 다른 실시예에 따른 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법을 나타내는 순서도이다.
먼저, 제 1기판(또는 성장기판)에서 반도체 발광 구조물을 형성한다(S1010). 본 발명에서 상기 반도체 발광 구조물은 수평형 반도체 발광 구조물 또는 수직형 반도체 발광 구조물 모두 가능하나, 이하 설명에서는 수평형 반도체 발광 구조물을 형성하는 것으로 설명한다. 이하, 상세한 형성 방법에 대해서는 도 13에서 후술하도록 한다.
이후, 상기 제 1기판에서 형성된 반도체 발광 구조물에 대해 다중 패시베이션층을 형성한다(S1020). 상기 다중 패시베이션층은 제 1패시베이션층 및 제 2패시베이션층으로 구성되며, 상기 반도체 발광 구조물에 형성된 상기 제 1패시베이션층의 일부 영역은 제 2패시베이션층을 형성하기 전에 제거된 상태이다. 본 명세서의 이하 내용에서는, 상기 다중 패시베이션층이 형성된 반도체 발광 구조물을 반도체 발광 소자로 정의하여 설명하도록 한다.
이어서, 상기 제 1기판에서 형성된 반도체 발광 소자를 상기 제 1기판으로부터 분리한다(S1030).
제 1기판으로부터 반도체 발광 소자를 분리하는 방법은 예를 들어, 크게 두 가지로 나뉜다. 첫 번째는 제 1기판의 반도체 발광 소자가 제 2기판으로 직접적으로 전사되며 분리되는 것이다. 이 경우는 기판 대 기판 간 전사이므로, 전사 후의 반도체 발광 소자들간의 간격은 기존 제 1기판에서의 간격과 동일하게 유지된다. 다만, 예를 들어, 기판간의 전사를 위해 사용하는 유연필름에 의한 전사 과정에서 상기 반도체 발광 소자의 배열 오차가 발생할 수 있다.
두 번째 방법은 제 1기판에서 낱개로 분리되어 개별 반도체 발광 소자로 존재하는 것이다.
그리고, 상기 분리된 반도체 발광소자는 제 2기판에 조립된다(S10400).
상기 조립은 반도체 발광 소자가 제 1기판에서 제 2기판으로 이동하는 과정을 의미하며, 전사와 혼용하여 쓰일 수 있다. 전술하였듯이, 기판 대 기판 간 전사의 경우, 제 2기판은 또 다른 전사를 위한 도너기판 또는, 디스플레이 패널로써 바로 활용할 수 있도록 배선들이 구비되어 있는 배선기판일 수 있다.
전사되는 과정은, 접착필름 등을 이용하여 도장을 찍듯이 제 1기판의 반도체 발광 소자를 제 2기판으로 옮기는 것이다. 이러한 과정을 예를 들어, 스탬프(stamp) 공정이라고 한다.
상기 스탬프 공정은 얼라인먼트(Alignment)하는 단계를 포함할 수 있다. 예를 들어, 제 1기판 및 제 2기판 중 어느 한 기판을 다른 기판에 대해 수평 이동시킨 후, 상기 다른 기판에 대해 수직 이동 시킴으로써 수행된다. 이후, 카메라 센서 등에 의해 제 1기판의 반도체 발광 소자와 상기 반도체 발광 소자에 대응하는 제 2기판의 조립 위치가 중첩되는지 검사하고, 중첩된다면 상기 위치에 맞게 반도체 발광 소자를 조립하게 된다. 다만 이 경우에도, 약간의 배열 오차는 존재할 수 있다.
상기 전사 과정 중에 접착필름은 이방성 전도성 필름을 이용하여 기판과 반도체 발광 소자간의 전도성을 부여할 수도 있다.
제 1기판에서 성장한 반도체 발광 소자들 중 일부만을 선택적으로 전사시키기 위해서는, 상기 소자가 성장된 기판의 반대 면에 레이저를 가하여, 선택적으로 상기 소자를 분리시키는 레이저 리프트 오프법(Laser Lift-Off, LLO)과 같은 방법이 사용될 수 있다.
상기 반도체 발광 소자가 제 2기판에 조립되는 다른 방법으로, 예를 들어, 자가 조립 공정이 수행될 수 있다.
자가 조립 공정은 매우 많은 수의 반도체 발광 소자가 유체가 채워진 챔버 내에서 전자기장의 힘에 의해 제 2기판에 조립되는 공정을 일컫는다.
상기 제 2기판은 반도체 발광 소자의 자기 조립을 위한 조립 홈이 형성된 조립기판일 수 있다. 상기 조립 홈의 하부에는 조립 전극을 구비되며, 상기 조립기판은 유체가 채워진 챔버 내에 위치할 수 있다.
유체 내에 부유하는 반도체 발광 소자는, 예를 들어, 자성층을 포함하고 있어서, 조립기판의 상부에서 작용하는 자성체를 가진 조립장치에 의해 조립기판 방향으로 이동할 수 있다. 즉, 조립장치에 의해 발생하는 자기장에 의해 챔버 내의 반도체 발광 소자는 조립장치를 향해 이동할 수 있다.
조립장치를 향해 이동하는 방향에는 조립 홈이 형성된 조립기판이 위치하고 있으며, 반도체 발광 소자는 상기 조립 홈에 접촉할 수 있다.
이 경우, 상기 조립 홈의 하부에 형성된 조립전극에서 인가되는 전기장에 의해 조립 홈에 접촉한 반도체 발광 소자는 고정되게 된다.
상기 전기장 및 자기장을 이용한 자가조립 방식에 의해, 반도체 발광 소자들은 기판에 조립되는 데 소요되는 시간을 급격히 단축시킬 수 있다.
다만, 상기 조립 홈과 조립되는 반도체 발광 소자 사이에는 조립 간격이 존재하며, 상기 조립 간격 중 일정 기준 값 이상의 조립 간격은 배선 공정 시 전극 형성 불량을 유발할 수 있다.
이후, 상기 제 2기판에 조립된 반도체 발광 소자에 대해 배선 공정을 진행한다(S1050). 배선 공정은 절연층을 형성하고, 상기 절연층을 평탄화하는 공정 및, 전극 형성을 위해 식각 공정을 포함한다.
다만, 본 명세서의 전 취지에 비추어 보아, 당업자가 이해 가능한 수준에서, 도 10에 도시된 순서도의 일부 단계를 삭제, 변경하는 것도 본 발명의 다른 권리범위에 속한다.
도 11은 도 10의 다중 패시베이션층을 형성하는 과정을 구체적으로 나타내는 순서도이다.
상기 패시베이션층은 제 1기판에서 반도체 발광 구조물을 형성한 이후, 연속하여 형성되므로, 상기 반도체 발광 구조물의 하부에는 패시베이션층이 형성되지 않을 수 있다. 다만, 이는 하나의 예시적인 경우이며, 본 발명이 이에 한정되는 것은 아니다.
또한, 상기 패시베이션층은 실리카, 알루미나 등의 무기물 절연체를 PECVD(Plasma Enhanced Chemical Vapor Deposition), LPCVD(Low Pressure Chemical Vapor Deposition), 스퍼터링(sputtering) 증착법 등을 통해 형성되거나, 포토레지스트(photoresist), 고분자 물질과 같은 유기물을 스핀 코팅(spin coating)하는 방법을 통해 형성될 수 있다.
먼저, 제 1기판에 형성된 반도체 발광 구조물에 대해 제 1패시베이션층을 형성한다(S1021). 후술하겠으나, 상기 반도체 발광 구조물은 제 1도전형 반도체층, 활성층, 제 2도전형 반도체층, 제 1도전형 전극 및 제 2도전형 전극을 포함한다.
상기 제 1패시베이션층은 상기 반도체 발광 구조물의 측면 및 상부에 모두 형성되며, 상기 반도체 발광 구조물의 상부에는 상기 제 1도전형 반도체층 상에 형성된 상기 제 1도전형 전극과 상기 제 2도전형 반도체층 상에 형성된 상기 제 1도전형 전극이 위치한다.
이후, 상기 반도체 발광 구조물의 상부에 위치한 상기 제 1도전형 전극과 상기 제 2도전형 전극에 형성된 상기 제 1패시베이션층을 선택적으로 제거하는 공정을 수행한다(S1022).
상기 선택적으로 제거하는 공정(S1022)은 포토리소그래피(Photo-lithography) 공정 및 식각(Etching) 공정을 포함할 수 있다.
상기 식각 공정은 예를 들어, 습식 식각 또는 건식 식각을 의미한다.
상기 선택적 제거 공정 이후, 상기 반도체 발광 구조물의 측면 및 상기 반도체 발광 구조물의 상부에서, 상기 제 1도전형 전극과 상기 제 2도전형 전극을 제외한 영역은 상기 제 1패시베이션층이 위치하게 된다.
이후, 상기 반도체 발광 구조물에 대해 제 2패시베이션층을 형성한다(S1023).
따라서, 상기 반도체 발광 구조물의 측면에는 상기 제 1패시베이션층 및 상기 제 2패시베이션층이 순차적으로 배치된다. 또한 상기 반도체 발광 구조물의 상부 영역 중에서, 상기 제 1도전형 전극과 상기 제 2도전형 전극의 상부에는 제 2패시베이션층만 형성되며, 상기 제 1도전형 전극과 상기 제 2도전형 전극을 제외한 영역에는 상기 제 1패시베이션층 및 상기 제 2패시베이션층이 순차적으로 배치된다.
한편, 상기 제 1패시베이션층과 상기 제 2패시베이션이 다른 물질일 경우, 예를 들어, 상기 제 1패시베이션층의 제 1식각비는 상기 제 2패시베이션층의 제 2식각비보다 작을 수 있다.
상기 식각비는 단위 시간동안 식각되는 정도를 나타내는 비율이며, 습식 식각의 경우는 반응하는 화학용액에 따라, 건식식각의 경우는 반응하는 이온가스의 종류에 따라 달라질 수 있다. 본 발명의 경우, 진행되는 식각 방식에 대응하여 제 1패시베이션층의 제 1식각비가 상기 제 2패시베이션층의 제 2식각비보다 작은 경우를 의미한다.
또한, 상기 제 1패시베이션층과 상기 제 2패시베이션층이 동일 물질일 경우, 예를 들어, 상기 제 2패시베이션층의 제 2두께는 상기 제 1패시베이션층의 제 1두께보다 얇을 수 있다.
상기 제 1패시베이션층과 상기 제 2패시베이션층의 식각비 또는 두께의 차이는, 상기 반도체 발광 소자에서 상기 제 1도전형 전극과 상기 제 2도전형 전극의 상부에 형성된 패시베이션층만 선택적으로 제거되기 용이한 환경을 제공한다. 이에 대한 자세한 내용은 도 17 내지 도 20에서 후술하도록 한다.
또한, 상기 제 1패시베이션층의 제 1굴절률과 상기 제 2패시베이션층의 제 2굴절률이 다르도록, 상기 제 1패시베이션층과 상기 제 2패시베이션층의 물질을 달리 선택할 수 있다.
이에 따라, 상기 반도체 발광 소자가 구동하는 경우, 상기 소자의 측면으로 방출되는 빛은 상기 서로 다른 굴절률을 가지는 다중 패시베이션층에 의해 다시 소자 내부로 반사되어 발광 효율을 높일 수 있다.
한편, 본 명세서의 전 취지에 비추어 보아, 당업자가 이해 가능한 수준에서, 도 11에 도시된 순서도의 일부 단계를 삭제, 변경하는 것도 본 발명의 다른 권리범위에 속한다.
도 12는 도 10의 배선 공정을 수행하는 과정을 구체적으로 나타내는 순서도이다.
먼저, 제 2기판에 조립된 반도체 발광 소자에 대해 절연층을 형성한다(S1051). 상기 절연층은 상기 반도체 발광 소자의 측면 및 상부를 감싸게 된다. 한편, 상기 절연층은 예를 들어, CVD(Chemical Vapor Deposition) 등의 방법에 의해 증착될 수도 있고, 절연용액을 기판 상에 도포 후 스핀 코팅의 방법으로 코팅될 수도 있다.
또한 상기 절연층은 유기 절연층일 수 있으며, 바람직하게는 감광성 유기 절연층일 수 있다. 상기 감광성 유기 절연층은 감광성 아크릴레이트, PAC(Photo Active Compounds)등의 positive tone의 감광제가 스프레이 방식으로 도포되거나 스핀 코팅됨으로 형성될 수 있다. 상기 positive tone의 감광제는 빛에 노출된 영역이 현상되어 제거되는 감광제를 의미한다.
또한, 반도체 발광 소자의 상부에 형성된 절연층의 경우, 상대적으로 돌출되어 있을 확률이 있는 바, 상기 절연층에 대해 평탄화 공정이 추가 진행될 수 있다(S1052). 평탄화 공정은 예를 들어, CMP(Chemical Mechanical Polishing)을 의미하며 화학적, 기계적으로 연마하는 단계를 수행할 수 있다.
이후, 배선 전극을 형성하기 위해, 상기 절연층 및 상기 반도체 발광 소자의 외부에 형성된 패시베이션층을 선택적으로 제거한다(S1053). 상기 패시베이션층의 제거는 반도체 발광 소자의 상부에 형성된 제 1패시베이션층 및 제 2패시베이션층을 모두 제거할 수도 있고, 제 2패시베이션층만 선택적으로 제거할 수도 있다. 다만, 상기 제거 공정 이후에도 상기 반도체 발광 소자의 측면에 절연층과 접촉하는 패시베이션층은 여전히 잔존한다.
제 2패시베이션층만 제거하는 경우에는 상기 반도체 발광 소자의 제 1도전형 전극 및 제 2도전형 전극만 외부로 노출된다. 상기 제거하는 단계는 포토리소그래피 공정 및 식각 공정이 수행될 수 있다.
이후, 상기 노출된 제 1도전형 전극과 전기적으로 연결되는 제 1전극 및 상기 노출된 제 2도전형 전극과 전기적으로 연결되는 제 2전극을 형성한다(S1054).
상기 노출된 영역을 제외한 반도체 발광 소자의 다른 영역은 여전히 패시베이션층이 위치하는 바, 상기 제 1전극 및 상기 제 2전극이 형성되는 위치가 정확하지 않고, 일부 영역만 상기 반도체 발광 소자의 도전형 전극과 접촉하고 있더라도, 상기 반도체 발광 소자 내의 서로 다른 반도체층 간의 쇼트(short) 현상은 발생하지 않는다.
한편, 본 명세서의 전 취지에 비추어 보아, 당업자가 이해 가능한 수준에서, 도 12에 도시된 순서도의 일부 단계를 삭제, 변경하는 것도 본 발명의 다른 권리범위에 속한다.
도 13은 도10의 제 1기판에 형성된 반도체 발광 구조물을 나타내는 단면도이다.
도 13에 도시된 바에 같이, 상기 반도체 발광 구조물(1010)은 제 1기판(1001) 상에 형성되며, 제1도전형 반도체층(1011), 활성층(1012), 제2도전형 반도체층(1013), 제 1도전형 전극(1015) 및 제 2도전형 전극(1014)를 포함한다. 상기 반도체 발광 구조물의 경우 수평형 구조이며, 일부 제 2도전형 반도체층(1013) 및 일부 활성층(1012)이 식각되어 제 1도전형 반도체층(1011)이 노출된 영역에 제 1도전형 전극(1015)이 형성된 구조를 예시하였으나, 본 발명이 이에 한정되는 것은 아니며, 다양한 수평형 메사(mesa) 구조 및 수직형 구조가 형성될 수 있다.
또한 상기 제 1기판은(1001)은 광 투과적 성질을 가지는 재질, 예를 들어 사파이어(Al2O3), GaN, ZnO, AlO 중 어느 하나를 포함하여 형성될 수 있다.
또한, 상기 제 1기판은(1001)은 반도체 물질 성장에 적합한 물질, 캐리어 웨이퍼로 형성될 수 있다. 또한 상기 제 1기판은(1001)은 열 전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판을 포함하여 예를 들어, 사파이어(Al2O3) 기판에 비해 열전도성이 큰 SiC 기판 또는 Si, GaAs, GaP, InP, Ga2O3 중 적어도 하나를 사용할 수 있으나, 이에 한정하지 않는다.
나아가, 상기 제 1기판(1001) 상에 성장한 제 1도전형 반도체층(1011)은 n형 반도체층으로서, n-GaN 과 같은 질화물 반도체층이 될 수 있으며, 제 2도전형 반도체층(1013)은 p형 반도체층이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 제1도전형 반도체층(1011)이 p형이 되고 제2도전형 반도체층(1013)이 n형이 되는 예시도 가능하다.
또한, 본 발명의 다른 실시예에 따르면, 진성 또는 도핑된 반도체기판에 불순물을 주입하여, 상기 제1도전형 반도체층(1011) 및 제2도전형 반도체층(1013)을 형성할 수 있다. 또한, 상기 불순물 주입에 의하여 p-n 접합이 형성된 영역이 상기 활성층(1012)과 같은 역할을 할 수도 있다. 상기 제1도전형 반도체층(1011), 제2도전형 반도체층(1013) 및 활성층(1012)에 대한 열거 사항은 예시적일 뿐, 본 발명이 이에 한정되는 것은 아니다.
또한 도 13에 도시된 바와 같이, 제1도전형 전극(1015)은 상기 제 1도전형 반도체층의 상부에 형성된다. 따라서 상기 제1도전형 전극(1015)을 형성하기 위해 포토공정을 통해 적층된 반도체층의 일부 영역을 패터닝하고, 해당 영역을 식각한 후 도전형 전극을 증착하는 공정이 수행될 수 있다.
상기 제 1도전형 전극(1015)은 제1도전형 반도체층(1011)과 전기적 접촉이 형성되고, 하나 이상의 금속층으로 형성될 수 있다. 상기 제 1도전형 전극(1015)은 ITO, 크롬(Cr), 티타늄(Ti) 및 니켈-은(Ni-Ag) 중 어느 하나 이상을 포함하여 제1도전형 반도체층(1011)과 오믹(ohmic) 접촉 특성을 지니는 오믹 접촉층을 형성할 수 있다.
또한 상기 제 2도전형 반도체층(1013) 상에 형성되는 상기 제 2도전형 전극(1014)도 상기 제 1도전형 전극(1015)과 마찬가지로 하나 이상의 금속층으로 형성될 수 있다. 상기 제 2도전형 전극(1014)은 ITO, 크롬(Cr), 티타늄(Ti) 및 니켈-은(Ni-Ag) 중 어느 하나 이상을 포함하여 제 2도전형 반도체층(1013)과 오믹(ohmic) 접촉 특성을 지니는 오믹 접촉층을 형성할 수 있다.
또한, 자가 조립용 반도체 발광 소자를 위해, 상기 제 1도전형 전극(1015) 또는 상기 제 2도전형 전극(1014)의 하부에 자성층을 형성할 수 있다. 또는 예를 들어, 상기 제 1도전형 반도체층(1011)이나 제 2도전형 반도체층(1013)의 상부에 형성된 자성층 자체를 도전형 전극으로 활용할 수도 있다.
도 14는 도 13의 반도체 발광 구조물에 제 1패시베이션층이 형성된 후의 단면도이다.
도 14에 도시된 바와 같이, 상기 제 1패시베이션층(1021)은 상기 반도체 발광 구조물의 측면 및 상부에 형성된다. 상기 반도체 발광 구조물은 제 1기판(1001)상에 형성되어 있고, 상기 제 1패시베이션층(1021)도 연속해서 형성되는 바, 상기 반도체 발광 구조물의 하부에는 상기 제 1패시베이션층(1021)이 형성되지 않을 수 있다. 다만 이는 예시적인 사항일 뿐, 본 발명이 이에 한정되지 않는다.
구체적으로, 도 14에서는, 상기 반도체 발광 구조물의 활성층(1012) 및 제 2도전형 반도체층(1013)의 양측면이 상기 제 1패시베이션층(1021)과 접촉하며, 상기 반도체 발광 구조물의 제 1도전형 반도체층(1011), 제 1도전형 전극(1015) 및 제 2도전형 전극(1014)의 양측면 및 상부가 상기 제 1패시베이션층(1021)과 접촉한다. 다만 이는 예시적인 사항일 뿐, 본 발명이 이에 한정되지 않는다.
도 15는 도14의 반도체 발광 구조물의 도전형 전극들의 상부에 형성된 제 1패시베이션층만 선택적으로 제거한 후의 단면도이다.
상기 선택적 제거를 위해서, 포토공정을 통해 반도체 발광 소자의 상부의 일부 영역을 패터닝하고, 해당 영역을 식각하는 공정이 수행될 수 있다.
도 15에 도시된 바와 같이, 제 1기판(1001)상에 형성된 반도체 발광 구조물에서, 제 1패시베이션층(1021)이 형성되는 영역은 제 1도전형 반도체층(1011), 활성층(1012), 제 2도전형 반도체층(1013), 제 1도전형 전극(1015) 및 제 2도전형 전극(1015)의 측면 및 제 1도전형 반도체층(1011)의 상부의 일부 영역이다. 즉, 상기 반도체 발광 구조물을 전기적으로 연결하기 위한 도전형 전극들의 상부만 제 1패시베이션층(1021)이 제거되어 존재하지 않는다.
도 16은 도 15의 반도체 발광 구조물에 제 2패시베이션층이 형성된 반도체 발광 소자의 단면도이다.
상기 제 2패시베이션층(1022)은 상기 반도체 발광 구조물에 기 형성된 제 1패시베이션층(1021)의 외부에 순차적으로 형성되며, 추가적으로 제 1도전형 전극(1015) 및 제 2도전형 전극(1014)의 상부에 형성된다.
따라서, 상기 제 1도전형 전극(1015) 및 상기 제 2도전형 전극(1014)의 상부에는 제 2패시베이션층(1022)만 형성되어 있으며, 상기 반도체 발광 구조물의 하부 면을 제외한 나머지 면에는 상기 제 1패시베이션층(1021)과 상기 제 2패시베이션층(1022)가 순차적으로 배치된다.
도 17은 도 16의 반도체 발광 소자에 배선 공정을 수행한 이후의 일 단면도이다.
상기 배선 공정을 수행하기 위해서는, 다중 패시베이션층이 형성된 반도체 발광 구조물인 반도체 발광 소자가 제 1기판에서 분리되고 제 2기판으로 조립되는 과정이 선행되어야 한다. 전술하였듯이 상기 분리 및 조립 단계는 기판 대 기판 전사 방법 또는 자가조립 방법에 의해 수행될 수 있다.
도 17에 도시된 바와 같이, 제 1도전형 반도체층(1011), 활성층(1012), 제 2도전형 반도체층(1013), 제 1도전형 전극(1015), 제 2도전형 전극(1014), 제 1패시베이션층(1021) 및 제 2패시베이션층(1022)를 포함하는 반도체 발광 소자(1700)가 제 2기판(1041)에 위치한다.
상기 반도체 발광 소자의 제 1도전형 전극(1015)과 제 2도전형 전극(1014)의 상부의 일부 영역에 제 1전극(1052) 및 제 2전극(1053)이 위치하며, 상기 전극들이 상기 반도체 발광 소자의 다른 영역과는 전기적으로 연결되지 않도록 상기 소자의 상부 및 측면으로 절연층(1051)이 형성된다.
또한, 도 17은 도 12에서 전술한 배선 공정을 진행한 이후의 반도체 발광 소자에 대한 단면도로, 상기 반도체 발광 소자에 대해 절연층을 형성한 이후 평탄화 공정 및 전극을 형성한 도면이다.
상기 절연층(1051)의 두께는 조립된 반도체 발광 소자(1700)의 높이보다 충분히 두껍게 하여, 상기 반도체 발광 소자(1700)의 상부가 표면에 드러나지 않도록 형성한다. 이후 상기 제 1도전형 전극(1015)과 상기 제 2도전형 전극(1014)의 상부의 일정 영역을 노출시키기 위해, 해당 영역에 포토 공정 및 식각 공정을 수행한다.
상기 노출된 영역에 상기 제 1도전형 전극(1015)과 상기 제 2도전형 전극(1014)과 전기적 연결을 위한 제 1전극(1052) 및 제 2전극(1053)을 형성한다. 이후 다시 절연층(1051)을 도포하여 상기 전극들(1052,1053)을 보호한다. 따라서 도 17에서 도시된 절연층(1051)은 엄밀한 의미에서 전극 형성 공정이 진행되기 전의 제 1절연층 및 전극 형성 이후 해당 전극을 보호하기 위한 제 2절연층으로 구성될 수 있다.
또한 상기 식각 공정은 건식 식각 또는 습식 식각이 가능하다. 건식 식각의 경우, 예를 들어, 플라즈마 상태의 이온성 반응 가스를 사용하여 주로 이방성 식각이 진행되는 바, 미세 패턴 및 식각되는 두께의 정밀한 제어가 가능하다. 또한 습식 식각의 경우, 화학용액을 이용하여 상기 화학용액이 접촉하는 영역은 주로 등방성 식각이 된다.
도 17의 반도체 발광 소자(1700)의 경우, 제 1전극(1052) 및 제 2전극(1053)이 제 1도전형 전극(1015) 및 제 2도전형 전극(1014)에 정확하게 연결되어 있는 모습을 도시하고 있다.
상기 반도체 발광 소자(1700)의 경우, 상기 전극들(1052, 1053)이 조립 시 배열 오차에 의해, 오차 거리만큼 떨어진 위치에서 형성되더라도, 쇼트(short)와 같은 불량이 발생할 확률이 감소하게 된다.
상기 쇼트 불량은, 예를 들어, 반도체 발광 소자에 제 1전극 형성 시, 해당 제 1도전형 전극뿐만 아니라 상기 반도체 발광 소자의 제 2도전형 반도체층과 같이 의도하지 않은 다른 영역도 전기적으로 연결되는 현상을 말한다.
본 발명에서 상기 쇼트 불량의 발생 확률이 감소하는 주요 원인은, 도 11에서 전술하였던 바와 같이, 반도체 발광 소자의 구조에 있어서, 일차적으로는 다중 패시베이션층을 형성하였기 때문이며, 이차적으로는 상기 패시베이션층들의 식각비를 다르게 선택하거나 각 패시베이션층의 두께를 다르게 형성하였기 때문이다.
예를 들어, 상기 반도체 발광 소자(1700)의 제 1도전형 전극(1015)의 일부 영역을 노출하기 위해서는 상기 도전형 전극을 감싸는 제 2패시베이션층(1022)를 선택적으로 제거하기 위한 식각 공정이 수행된다. 상기 식각 공정이 상기 제 1도전형 전극(1015) 및 상기 제 2도전형 반도체층(1011)과 오버랩되는 위치에서 수행되고, 제 1패시베이션층(1021)이 존재하지 않는 구조라고 가정하면, 상기 식각 공정에 의해 제 2도전형 반도체층(1011) 영역까지 노출될 것이다. 이에 따라 전극 형성 시 제 1도전형 반도체층(1011)과 제 2도전형 반도체층(1013)간의 쇼트 불량이 유발될 확률이 크다.
또한, 상기 제 1패시베이션층(1021)이 존재하는 구조라도, 예를 들어, 상기 제 1패시베이션층(1021)이 상기 제 2 패시베이션층(1022)과 식각비가 같은 동일 물질이며, 두께가 매우 얇게 형성된다면, 상기 제 2패시베이션층이 식각되는 과정에서 같이 제거되며, 이에 따라 전극 형성 시 쇼트 불량이 유발될 수 있다.
이러한 쇼트 불량을 예방하는 구조는 특히 반도체 발광 소자의 전사 또는 조립이 필요한 디스플레이 장치에 있어서 매우 중요하다. 그 이유는 전사 또는 조립 시 배열 오차가 발생할 수 밖에 없고, 고화소 디스플레이를 위해서는 점차적으로 작은 크기의 반도체 발광 소자가 요구되는 바, 이러한 환경에서 상기 배열 오차는 전극 형성 시 쇼트 불량을 유발할 확률을 점차적으로 증가시키기 때문이다. 따라서 통상의 반도체 발광 소자의 구조는 적합하지 않으며, 전기적 연결이 되는 도전형 전극 영역에 형성된 패시베이션층만 선택적으로 제거할 수 있는 반도체 발광 소자 구조가 요구된다. 따라서 본 발명은 상기 요구를 충족시키는 반도체 발광 소자 구조의 일 실시예라고 볼 수 있다.
도 18은 도 16의 반도체 발광 소자에 배선 공정을 수행한 이후의 다른 단면도이다.
상기 배선 공정은 도 17의 배선 공정과는 제 1절연층을 형성하는 두께가 다르다. 도 17의 배선 공정은 반도체 발광 소자의 상부를 완전히 덮을 만큼의 절연층의 두께가 형성되었다면, 도 18의 배선 공정에서는 조립된 반도체 발광 소자(1701)의 상부의 높이와 유사한 수준으로 제 1절연층(미도시)의 두께를 형성하게 된다. 이후 상기 제 1절연층을 평탄화하여 상기 반도체 발광 소자(1701)가 표면에 노출되도록 한다. 또한 상기 노출된 반도체 발광 소자(1701)의 도전형 전극(1014, 1015) 상에 형성된 제 2패시베이션층을 제거하기 위한 식각 공정을 수행한다. 이 때 식각 공정은 별도의 포토 공정 없이 기판 전체에 대해 진행이 가능하다.
이후, 다시 제 2절연층을 형성하고, 상기 도전형 전극(1014,1015)과 전기적으로 연결되는 전극(1052,1053)을 형성한다. 그리고 상기 전극(1052,1053)을 보호하기 위한 제 3절연층을 추가로 형성한다.
상기 배선 공정 이후의 반도체 발광 소자(1701)는 도 18에 도시된 바와 같이, 제 1도전형 반도체층(1011), 활성층(1012), 제 2도전형 반도체층(1013), 제 1도전형 전극(1015), 제 2도전형 전극(1014), 제 1패시베이션층(1021) 및 제 2패시베이션층(1022)를 포함하며, 제 2기판(1041)에 위치한다.
또한, 상기 반도체 발광 소자(1701)의 제 1도전형 전극(1015) 및 제 2도전형 전극(1014)의 상부에는 제 1패시베이션층(1021) 및 제 2패시베이션층(1022)이 존재하지 않는다.
또한, 상기 반도체 발광 소자(1701)의 제 1도전형 전극(1015)과 제 2도전형 전극(1014)의 상부의 일부 영역에는 제 1전극(1052) 및 제 2전극(1053)이 위치하며, 상기 전극들이 상기 반도체 발광 소자의 다른 영역과는 전기적으로 연결되지 않도록 상기 소자의 상부 및 측면으로 절연층(1051)이 형성된다. 상기 절연층(1051)은 도 18의 배선 공정에서 전술하였던 제 1절연층, 제 2절연층 및 제 3절연층을 포함하는 개념이다.
도 18의 반도체 발광 소자가 도 17의 반도체 발광 소자와 다른 점은 도전형 전극 상에 형성된 제 2패시베이션층이 제거되는 영역의 차이이다. 도 18의 반도체 발광 소자는 도전형 전극 상에 형성된 제 2패시베이션층이 전부 제거되었으며, 도 17의 반도체 발광 소자는 도전형 전극 상에 형성된 제 2패시베이션층이 일부 제거되었다.
도 18의 배선 공정의 경우, 평탄화된 제 1절연층에 의해 반도체 발광 소자의 상부 영역이 표면에 노출되는 바, 기판에 조립된 복수 개의 반도체 발광 소자의 상부 영역에 대해 포토 공정없이 식각 공정을 일괄 수행할 수 있다. 상기 식각 공정은 건식 식각 또는 습식 식각 모두 가능하나, 습식 식각이 좀더 바람직하다. 습식 식각의 경우 건식 식각에 비해 저비용 및 고속의 식각이 가능하며, 제 2패시베이션층을 선택적으로 식각하는 화학용액을 사용하여 간단히 공정을 수행할 수 있다.
또한 상기 제 2패시베이션을 선택적으로 식각한 이후에는 다시 제 2절연층을 형성하고 전극 형성을 위해 추가 식각 공정을 수행하게 된다. 이때 상기 추가 식각 공정은 패시베이션층이 아닌 유기물이 주성분인 절연층에 대한 식각만 수행하는 바, 고속의 식각이 가능하며 식각 두께 등의 제어가 용이하다.
도 19는 도 16의 반도체 발광 소자에 수행되는 다른 배선 공정 방법을 구체적으로 나타내는 순서도이다.
상기 다른 배선 공정이란, 제 2기판에 조립된 반도체 발광 소자에 절연층이 먼저 형성되는 것이 아니라, 식각 공정이 먼저 수행되는 경우이다.
도 19에 도시된 바와 같이, 먼저 제 2기판에 조립된 반도체 발광 소자 상에 형성된 제 2패시베이션층을 제거한다(S1151). 이 때 상기 제 2패시베이션층은 외부에 전체 노출되어 있기 때문에 모두 제거될 것이다. 이후 상기 제 2패시베이션층이 제거된 반도체 발광 소자의 측면 및 상부에 대해 절연층을 형성하고(S1152), 이어서 평탄화 공정을 수행한다(S1153). 또한 상기 반도체 발광 소자의 도전형 전극의 일부 영역이 노출되도록 상기 평탄화된 절연층의 일부 영역을 선택적으로 제거한다(S1154). 마지막으로 상기 노출된 영역에 금속 등의 전도성 물질을 증착하여 전극을 형성한다(S1155).
한편, 본 명세서의 전 취지에 비추어 보아, 당업자가 이해 가능한 수준에서, 도 19에 도시된 순서도의 일부 단계를 삭제, 변경하는 것도 본 발명의 다른 권리범위에 속한다.
도 20은 도 19에 의해 배선 공정이 수행된 반도체 발광 소자의 단면도이다.
상기 배선 공정 이후의 반도체 발광 소자(1702)는 도 20에 도시된 바와 같이, 제 1도전형 반도체층(1011), 활성층(1012), 제 2도전형 반도체층(1013), 제 1도전형 전극(1015), 제 2도전형 전극(1014) 및 제 1패시베이션층(1021)를 포함하며, 제 2기판(1041)에 위치한다.
또한 상기 반도체 발광 소자(1702)의 제 1도전형 전극(1015) 및 제 2도전형 전극(1014)의 상부에는 제 1패시베이션층(1021) 및 제 2패시베이션층(1022)이 존재하지 않는다.
또한, 상기 반도체 발광 소자(1701)의 제 1도전형 전극(1015)과 제 2도전형 전극(1014)의 상부의 일부 영역에 제 1전극(1052) 및 제 2전극(1053)이 위치하며, 상기 전극들이 상기 반도체 발광 소자의 다른 영역과는 전기적으로 연결되지 않도록 상기 소자의 상부 및 측면으로 절연층(1051)이 위치한다.
도 20에 도시된 반도체 발광 소자(1702)는, 예를 들어, 자가 조립 공정에 의해 조립된 반도체 발광 소자일 수 있다. 자가 조립을 위한 반도체 발광 소자의 경우, 유체 내에서 상기 소자의 보호를 위해 조립될 당시에는 상기 소자의 상부에도 패시베이션층의 형성이 필수적이다. 다만, 상기 자가 조립 이후, 기판 내 조립된 반도체 발광 소자는 전기적 연결을 위해 소자 상부의 도전형 전극이 노출되도록 식각 공정이 수행된다. 이 과정에서 상기 반도체 발광 소자가 큰 배열 오차를 가지고 자가 조립된다면, 상기 식각 공정에서 도전형 전극의 정확한 위치가 식각되지 않아, 이후 쇼트 불량이 유발된다. 예를 들어, 상기 반도체 발광 소자가 단일 패시베이션층으로 보호되는 경우, 제 2전극을 형성하기 위한 식각 공정에서, 제 2도전형 전극의 상부에 형성된 패시베이션층 뿐만 아니라, 제 1도전형 반도체층의 상부에 형성된 패시베이션층까지 제거한다면 이후 전극 형성 시, 제 1도전형 반도체층과 제 2도전형 반도체층이 쇼트되는 불량을 유발할 수 있다. 또한 다중 패시베이션층이 구비되더라도 소자 내 도전형 전극 영역과 다른 영역이 동일한 다중 패시베이션층이 구비되어 있다면, 단일 패시베이션층이 형성된 소자와 유사하게, 잘못된 위치의 식각은 쇼트 불량을 유발시킬 수 있다.
따라서 반도체 발광 소자의 조립 시, 배열 오차가 존재하더라도 안정적으로 전극을 형성하기 위해서는, 소자의 전기적 연결 영역만을 선택적으로 노출시킬 수 있도록 다중 패시베이션층의 구조가 중요하다. 즉, 소자의 전기적 연결 영역만 동일 조건에서 상대적으로 식각이 용이한 구조가 필요하다.
도 20에 도시된 바와 같이, 본 발명의 반도체 발광 소자 구조는, 조립 이후 별도의 포토 공정없이 식각 공정만 수행하더라도 상기 반도체 발광 소자의 도전형 전극을 용이하게 노출시킬 수 있고, 안정적으로 전극을 형성할 수 있다.
좀 더 구체적으로, 상기 반도체 발광 소자(1702)가 조립 후 습식 식각 공정이 수행되는 경우, 상기 반도체 발광 소자(1702)의 제 1패시베이션층(1021)의 제 1식각비가 제 2패시베이션층의 제 2식각비보다 작다면, 상기 제 2패시베시이션층이 식각되고, 화학 용액에 노출된 습식 식각 상태로 일정 시간이 경과하더라도, 상기 식각비 차이에 의해 상기 제 1패시베이션층(1702)은 잔존하게 된다. 따라서 상기 반도체 발광 소자(1702)의 제 1도전형 전극(1015) 및 제 2도전형 전극(1014)의 상부를 제외한 나머지 영역은 제 2기판(1041) 및 제 1패시베이션층(1021)에 온전히 보호되는 바, 안정적인 배선 전극을 형성할 수 있다.
도 20에 도시된 배선 공정이 완료된 반도체 발광 소자(1702)의 구조는 통상적인 반도체 발광 소자의 구조와 유사하나, 이는 결과물의 형상이며, 제 2기판(1041)에 조립될 당시의 반도체 발광 소자의 구조 및 상기 배선 공정을 고려할 때, 당업자라면 본 발명의 효과를 용이하게 판단할 수 있을 것이다.
도 21은 배선 공정에 의해 형성될 수 있는 다양한 전극 모양을 나타내는 도면이다.
상기 배선 공정이 수행되는 반도체 발광 소자는 전술하였듯이 제 1패시베이션층 및 제 2패시베이션층이 형성되며, 제 1패시베이션층의 제 1식각비는 제 2패시베이션층의 제 2식각비보다 작게 형성한다.
도 21(a)는 제 2전극(2153)이 원형의 띠 모양으로 형성된 반도체 발광 소자(1703)의 구조를 상부에서 관찰한 평면도이다.
상기 반도체 발광 소자(1703)는 원형의 수평형 반도체 발광 구조를 가질 수 있으며, 중심 영역에 제 1도전형 전극(1015) 및 제 1전극(2152)가 위치하며, 중심영역에서 멀어지는 방향으로 제 2패시베이션층(1022), 제 2도전형 전극(1014) 및 제 2전극(2153)이 위치한다.
제 2전극(2153)의 형성 위치를 시각적으로 표현하기 위해 상기 제 1도전형 전극(1015) 및 제 2도전형 전극(1014)을 도 21(a)에 도시하였으나, 실제 구조에서는 상기 제 1도전형 전극(1015) 및 제 2도전형 전극(1014)의 상부에 제 1패시베이션층 및 제 2패시베이션층(1022)가 형성된다.
상기 반도체 발광 소자(1703)의 경우, 상기 제 2도전형 전극(1014)의 상부에 전극이 형성될 공간이 넓기 때문에, 도 20(a) 에 도시된 바와 같이 제 2전극(2153)을 상기 제 2도전형 전극(1014)의 상부에 원형의 띠 모양으로 형성할 수 있다.
도 21(b)는 제 2전극(2154)이 제 2도전형 전극(1014)의 상부에 복수 개의 원형으로 형성된 반도체 발광 소자(1704)의 구조를 상부에서 관찰한 평면도이다.
도 21(c)는 제 2전극(2155)이 제 2도전형 전극(1014)의 상부에 복수 개의 부채꼴 형태의 띠 모양으로 형성된 반도체 발광 소자(1704)의 구조를 상부에서 관찰한 평면도이다.
식각비가 다른 다중 패시베이션층의 구조를 가진 반도체 발광 소자의 경우, 외부에 노출된, 식각비가 높은 일부 패시베이션층의 제거는 용이한 바, 도 21에 도시된 바와 같이 다양한 전극 형성이 가능하다. 다만, 상기 전극들의 형태는 예시적인 사항에 불과하며 본 발명은 이에 한정되지 않는다.
도 22는 도 17의 배선 공정을 수행하는 반도체 발광 소자에 대해, 다양한 위치에서 배선 전극이 형성되는 경우를 나타내는 도면이다.
도 22(a)에 도시된 바와 같이, 절연층(1051) 상에 도 16의 반도체 발광 소자(1700)가 위치한다.
상기 반도체 발광 소자(1700)는 제 1도전형 전극(1015), 제 2패시베이션층(1022) 및 제 2도전형 전극(1014)를 포함한다.
본 발명의 효과를 시각적으로 표현하기 위해 상기 제 1도전형 전극(1015) 및 제 2도전형 전극(1014)을 도 22(a)에 도시하였으나, 실제 구조에서는 상기 제 1도전형 전극(1015) 및 제 2도전형 전극(1014)의 상부에 제 1패시베이션층 및 제 2패시베이션층(1022)가 형성된다.
또한, 상기 절연층(1051)의 외곽을 정의하는 사각 구조는 상기 반도체 발광 소자(1700)이 조립되는 조립 홈으로 판단하여도 무방하다. 따라서 도 22(a)의 반도체 발광 소자(1700)는 조립 홈의 정상 위치에 조립된 형상을 도시한 평면도이다.
한편, 디스플레이 장치 제조 시, 조립된 복수 개의 반도체 발광 소자에 대해 식각 및 전극을 형성하는 배선 공정이 일괄적으로 수행되는 바, 상기 배선 공정은 상기 반도체 발광 소자가 조립 홈의 정상 위치에 조립되는 것을 가정하여 수행된다.
따라서, 도 22(a)와 같이 정상 위치에 반도체 발광 소자(1700)가 조립되면, 이후 제 1전극(1052) 및 제 2전극(1053)도 제 1도전형 반도체층(1015) 및 제 2도전형 반도체층(1014) 상부에 정확하게 위치하게 된다.
반면, 도 22(b)에 도시된 바와 같이, 조립 홈의 좌측 상단으로 조립된 반도체 발광 소자(1700)의 경우, 배선 전극 형성 시, 제 1전극(1052) 및 제 2전극(1053)은 제 1도전형 반도체층(1015) 및 제 2도전형 반도체층(1014)의 경계면에 형성될 수 있다.
다중 패시베이션층 구조가 아닌 반도체 발광 소자의 경우, 상기와 같이 경계면에 형성된 제 1전극(1052)에 의해 제 1도전형 전극(1015)과 제 2도전형 전극(1015)이 쇼트되어 불량을 유발하게 된다.
하지만, 상기 반도체 발광 소자(1700)는 상기 제 1도전형 전극(1015) 및 제 2도전형 전극(1014)의 상부에 제 1패시베이션층 및 제 2패시베이션층(1022)가 형성된 다중 패시베이션층 구조이다. 따라서 22(b)의 제 2패시베이션층(1022)가 제거되더라도 제 1패시베이션층이 잔존하는 바 제 1도전형 전극(1015)과 제 2도전형 전극(1015)이 쇼트되는 경우는 발생하기 어렵다.
또한 도 22(c)에 도시된 바와 같이, 조립 홈의 우측 하단으로 조립된 반도체 발광 소자(1700)의 경우, 배선 전극 형성 시, 제 1전극(1052) 및 제 2전극(1053)은 제 1도전형 반도체층(1015) 및 제 2도전형 반도체층(1014)의 경계면에 형성될 수 있다.
상기 경계면에 형성된 전극들(1052,1053)은 일반적인 반도체 소자 구조에서는 쇼트 불량을 유발시킨다.
하지만, 도22(b)에서 전술하였던 바와 같이, 상기 반도체 발광 소자(1700)는 상기 제 1도전형 전극(1015) 및 제 2도전형 전극(1014)의 상부에 제 1패시베이션층 및 제 2패시베이션층(1022)가 형성된 다중 패시베이션층 구조이다. 따라서 22(c)의 제 2패시베이션층(1022)가 제거되더라도 제 1패시베이션층이 잔존하는 바 제 1도전형 전극(1015)과 제 2도전형 전극(1015)이 쇼트되는 경우는 발생하기 어렵다.
이처럼, 본 발명의 경우, 다소 잘못된 위치에 반도체 발광 소자가 조립되더라도, 이후 배선 공정에서 쇼트 불량을 예방할 수 있는 장점이 있으며, 이는 패널 수율 관점에서 매우 중요한 효과이다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (16)

  1. 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법에 있어서,
    제 1기판에서 반도체 발광 소자를 형성하는 단계;
    상기 반도체 발광 소자를 제 2기판으로 전사하는 단계;
    상기 제 2기판에 전사된 상기 반도체 발광 소자에 절연층을 코팅하는 단계; 및
    상기 반도체 발광 소자와 전기적으로 연결되는 배선 전극을 형성하는 단계;를 포함하고,
    상기 반도체 발광 소자를 형성하는 단계는,
    상기 제 1기판에 제 1도전형 반도체층, 활성층, 제 2도전형 반도체층, 제 1도전형 전극 및 제 2도전형 전극을 포함하는 반도체 발광 구조물을 형성하는 단계;
    상기 반도체 발광 구조물에 제 1패시베이션층을 형성하는 단계;
    상기 반도체 발광 구조물의 상기 제 1도전형 전극 및 상기 제 2도전형 전극의 상부에 형성된 상기 제 1패시베이션층을 선택적으로 제거하는 단계;
    상기 반도체 발광 구조물에 제 2패시베이션층을 형성하는 단계를 포함하는 디스플레이 장치의 제조 방법.
  2. 제 1항에 있어서,
    상기 제 2기판으로 전사하는 단계 및 상기 절연층을 코팅하는 단계 사이에 상기 제 2패시베이션층을 제거하는 단계를 포함하는 디스플레이 장치의 제조 방법.
  3. 제 2항에 있어서,
    상기 제 2패시베이션층을 제거하는 단계는, 습식 식각 공정에 의해 수행되는 것을 특징으로 하는 디스플레이 장치의 제조 방법.
  4. 제 1항에 있어서,
    상기 절연층을 코팅하는 단계는 상기 절연층의 상부를 평탄화하는 단계 및 상기 반도체 발광 소자의 상부의 적어도 일부 영역을 노출하는 단계를 포함하는 디스플레이 장치의 제조 방법.
  5. 제 1항에 있어서,
    상기 배선 전극을 형성하는 단계는,
    상기 반도체 발광 소자의 상기 제 1도전형 전극과 전기적으로 연결되는 제 1전극 및 상기 제 2도전형 전극과 전기적으로 연결되는 제 2전극을 형성하는 단계를 포함하는 디스플레이 장치의 제조 방법.
  6. 제 5항에 있어서,
    상기 제 1전극 및 상기 제 2전극을 형성하는 단계는, 상기 제 1도전형 전극 및 상기 제 2도전형 전극의 상부에 형성된 상기 제 2패시베이션층을 제거하는 단계를 포함하는 디스플레이 장치의 제조 방법.
  7. 제 5항에 있어서,
    상기 제 1전극 및 상기 제 2전극을 형성하는 단계는, 상기 제 1전극 및 상기 제 2전극과 상기 제 1도전형 전극 및 상기 제 2도전형 전극 사이의 오버랩되는 영역에 위치하는 상기 제 2패시베이션층을 선택적으로 제거하는 단계를 포함하는 디스플레이 장치의 제조 방법.
  8. 제 7항에 있어서,
    상기 제 2패시베이션층을 선택적으로 제거하는 단계는, 건식 식각 공정에 의해 수행되는 것을 특징으로 하는 디스플레이 장치의 제조 방법.
  9. 복수의 반도체 발광 소자들을 구비하는 디스플레이 장치에 있어서,
    상기 반도체 발광 소자들 중 적어도 하나는,
    제 1도전형 반도체층;
    상기 제 1도전형 반도체층 상에 위치하는 제 2도전형 반도체층;
    상기 제 1도전형 반도체층과 상기 제 2도전형 반도체층 사이에 배치되는 활성층;
    상기 제 2도전형 반도체층 상에 위치하는 제 2도전형 전극;
    상기 제 2도전형 반도체층 및 활성층의 일부가 식각되어 상기 제 1도전형 반도체층이 노출된 영역에 위치하는 제 1도전형 전극;
    상기 제1도전형 반도체층과 상기 제2도전형 반도체층의 측면을 감싸도록 순차적으로 배치되는 제 1패시베이션층 및 제 2패시베이션층을 포함하고,
    상기 제 1도전형 전극의 상부에서, 제 1전극과 접촉하는 부분을 제외한 영역은 상기 제 2패시베이션층이 위치하고,
    상기 제 2도전형 전극의 상부에서, 제 2전극과 접촉하는 부분을 제외한 영역은 상기 제 2패시베이션층이 위치하는 것을 특징으로 하는 디스플레이 장치.
  10. 제 9항에 있어서,
    상기 제 1도전형 반도체층의 상부에서, 상기 제 1도전형 전극과 접촉하는 부분을 제외한 영역은 상기 제 1패시베이션층 및 상기 제 2패시베이션층이 순차적으로 배치되고,
    상기 제 2도전형 반도체층의 상부에서, 상기 제 1도전형 전극과 접촉하는 부분을 제외한 영역은 상기 제 1패시베이션층 및 상기 제 2패시베이션층이 순차적으로 배치되는 것을 특징으로 하는 디스플레이 장치.
  11. 제 9항에 있어서,
    상기 제 1도전형 반도체층의 상부에서, 상기 제 1도전형 전극과 접촉하는 부분을 제외한 영역은 상기 제 2패시베이션층이 위치하고,
    상기 제 2도전형 반도체층의 상부에서, 상기 제 1도전형 전극과 접촉하는 부분을 제외한 영역은 상기 제 2패시베이션층이 위치하는 것을 특징으로 하는 디스플레이 장치.
  12. 제 9항에 있어서,
    상기 제 1패시베이션층의 제 1식각비는 상기 제 2패시베이션층의 제 2식각비보다 작은 것을 특징으로 하는 디스플레이 장치.
  13. 제 9항에 있어서,
    상기 제 1패시베이션층은 상기 제 2패시베이션층과 동일한 물질을 포함하는 것을 특징으로 하는 디스플레이 장치.
  14. 제 13항에 있어서,
    상기 제 2패시베이션층의 두께는 상기 제 1패시베이션층의 두께보다 100nm 이상 얇은 것을 특징으로 하는 디스플레이 장치.
  15. 제 9항에 있어서,
    상기 제 1도전형 전극 또는 상기 제 2도전형 전극의 하부에 자성층을 포함하는 것을 특징으로 하는 디스플레이 장치.
  16. 제 9항에 있어서,
    상기 반도체 발광 소자는 마이크로미터 단위의 크기를 가진 LED(Micro-LED)인 것을 특징으로 하는 디스플레이 장치.
PCT/KR2019/008467 2019-07-09 2019-07-10 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 WO2021006385A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980098292.8A CN114127942A (zh) 2019-07-09 2019-07-10 利用微型led的显示装置以及其制造方法
EP19936555.2A EP3998634A4 (en) 2019-07-09 2019-07-10 DISPLAY DEVICE USING MICRO-LED AND METHOD OF MANUFACTURE THEREOF
US17/621,399 US20230014515A1 (en) 2019-07-09 2019-07-10 Display device using micro led and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0082779 2019-07-09
KR1020190082779A KR20190088929A (ko) 2019-07-09 2019-07-09 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2021006385A1 true WO2021006385A1 (ko) 2021-01-14

Family

ID=67480751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008467 WO2021006385A1 (ko) 2019-07-09 2019-07-10 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법

Country Status (5)

Country Link
US (1) US20230014515A1 (ko)
EP (1) EP3998634A4 (ko)
KR (1) KR20190088929A (ko)
CN (1) CN114127942A (ko)
WO (1) WO2021006385A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257964A (zh) * 2021-07-09 2021-08-13 苏州芯聚半导体有限公司 微led芯片及其封装方法、电子装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190117413A (ko) * 2019-09-26 2019-10-16 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021070977A1 (ko) * 2019-10-07 2021-04-15 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR20190126261A (ko) * 2019-10-22 2019-11-11 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114439A (ko) * 2017-04-10 2018-10-18 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
KR20190042130A (ko) * 2017-10-13 2019-04-24 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR20190067296A (ko) * 2017-12-06 2019-06-17 삼성디스플레이 주식회사 발광 다이오드 장치 및 이의 제조 방법
KR20190076929A (ko) * 2019-06-12 2019-07-02 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR20190077254A (ko) * 2019-06-13 2019-07-03 엘지전자 주식회사 마이크로미터 단위 크기의 반도체 발광 소자를 이용하는 발광 장치 및 그 제조 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101752663B1 (ko) * 2010-12-22 2017-06-30 엘지이노텍 주식회사 발광소자 및 발광소자 제조방법
JP2013021175A (ja) * 2011-07-12 2013-01-31 Toshiba Corp 半導体発光素子
KR101771461B1 (ko) * 2015-04-24 2017-08-25 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR102603411B1 (ko) * 2017-12-18 2023-11-16 엘지디스플레이 주식회사 마이크로led 표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114439A (ko) * 2017-04-10 2018-10-18 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
KR20190042130A (ko) * 2017-10-13 2019-04-24 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR20190067296A (ko) * 2017-12-06 2019-06-17 삼성디스플레이 주식회사 발광 다이오드 장치 및 이의 제조 방법
KR20190076929A (ko) * 2019-06-12 2019-07-02 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR20190077254A (ko) * 2019-06-13 2019-07-03 엘지전자 주식회사 마이크로미터 단위 크기의 반도체 발광 소자를 이용하는 발광 장치 및 그 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3998634A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257964A (zh) * 2021-07-09 2021-08-13 苏州芯聚半导体有限公司 微led芯片及其封装方法、电子装置
CN113257964B (zh) * 2021-07-09 2021-10-08 苏州芯聚半导体有限公司 微led芯片及其封装方法、电子装置

Also Published As

Publication number Publication date
CN114127942A (zh) 2022-03-01
EP3998634A1 (en) 2022-05-18
US20230014515A1 (en) 2023-01-19
EP3998634A4 (en) 2023-08-09
KR20190088929A (ko) 2019-07-29

Similar Documents

Publication Publication Date Title
WO2021002490A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021033802A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021040102A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021040066A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2020251076A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021066221A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021006385A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021015306A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021070977A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021080028A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2014163325A1 (en) Display device using semiconductor light emitting device
WO2021125421A1 (ko) 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법
WO2021054491A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2015072685A1 (en) Display apparatus using semiconductor light emitting device
WO2016003019A1 (en) Display device using semiconductor light emitting device
WO2019151550A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2015133709A1 (en) Display device using semiconductor light emitting device
WO2021060595A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021060577A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021015350A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법
WO2018092977A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2020166777A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021100955A1 (ko) 발광 소자를 이용한 디스플레이 장치
WO2021025243A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2021033801A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019936555

Country of ref document: EP

Effective date: 20220209