WO2021004440A1 - 一种确定异频临区的方法及装置 - Google Patents

一种确定异频临区的方法及装置 Download PDF

Info

Publication number
WO2021004440A1
WO2021004440A1 PCT/CN2020/100541 CN2020100541W WO2021004440A1 WO 2021004440 A1 WO2021004440 A1 WO 2021004440A1 CN 2020100541 W CN2020100541 W CN 2020100541W WO 2021004440 A1 WO2021004440 A1 WO 2021004440A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
inter
network
user terminal
cell
Prior art date
Application number
PCT/CN2020/100541
Other languages
English (en)
French (fr)
Inventor
石成辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20837315.9A priority Critical patent/EP3979688A4/en
Publication of WO2021004440A1 publication Critical patent/WO2021004440A1/zh
Priority to ZA2022/00172A priority patent/ZA202200172B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • H04W36/1443Reselecting a network or an air interface over a different radio air interface technology between licensed networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists

Definitions

  • This application relates to, but is not limited to, network sharing technologies, such as a method and device for determining inter-frequency neighboring cells.
  • Network sharing refers to a practice in which different operators jointly bear the high cost of mobile network deployment during the network deployment stage. Network sharing can greatly improve network utilization. When network sharing is deployed, due to the shared area, shared network transformation or deployment rhythm, etc., a boundary area between shared and non-shared networks is bound to appear. In this case, for a User Equipment (UE) that is not on the network frequency of the operator, when moving from a shared network to a non-shared network, the UE must switch to the network of the operator frequency point.
  • UE User Equipment
  • Network convergence is a trend. From the first two operators' network sharing to four, five or even more operators' network sharing, the scale and complexity of shared networks are getting higher and higher.
  • PLMN public land mobile networks
  • PLMN Public Land Mobile Network
  • Each operator has the need to switch to the home network in the border area. The total number of frequency points for these switching will be large, which may exceed the support capability of the terminal.
  • UE Under the constraints of the relevant agreements of the 3rd Generation Partnership Project (3GPP, 3rd Generation Partnership Project), for frequency division duplex (FDD, Frequency Division Duplexing) Universal Terrestrial Radio Access (UTRA, Universal Terrestrial Radio Access) network conditions , UE generally supports measurement of different frequency points in two systems at most. Time Division Duplex (TDD, Time Division Duplex) UTRA network supports at most three different frequency points; for Evolved Universal Terrestrial Radio Access (Evolved Universal Terrestrial Radio Access).
  • 3GPP 3rd Generation Partnership Project
  • FDD Frequency Division Duplexing
  • UTRA Universal Terrestrial Radio Access
  • E-UTRA Frequency Division Duplexing Evolved Universal Terrestrial Radio Access, FDD E-UTRA
  • the system can generally support 3 different frequency frequency point measurements (and time division duplex evolution) Type universal road radio access (Time Division Duplex Evolved Universal Terrestrial Radio Access, TDD E-UTRA) same), more frequency points are related to terminal capabilities, and UEs that support extended measurement capabilities can support 8 frequency points in a system measuring.
  • TDD E-UTRA Time Division Duplex Evolved Universal Terrestrial Radio Access
  • TDD E-UTRA Time Division Duplex Evolved Universal Terrestrial Radio Access
  • Many terminals are implemented in accordance with the minimum requirements of 3GPP. As the complexity of the shared network becomes higher and higher, the number of frequency points will also be limited.
  • NSA Non-Independent Network
  • SA Independent Network
  • 5G New Radio 5th Generation Wireless Systems New Radio
  • 5G New Radio The frequency point measurement capability of 5G NR terminals is also limited. Some terminals are implemented in accordance with the minimum requirements of the agreement. In complex networking, the problem of insufficient frequency points is often encountered.
  • the configured inter-frequency neighboring area and the different system neighboring area (this article will refer to the inter-frequency and different system neighboring areas) Referred to as inter-frequency neighboring cells, unless otherwise specified, they refer to inter-frequency or different system neighboring cells).
  • inter-frequency neighboring cells There will be many neighboring cells to multiple PLMN home networks.
  • the terminal will measure many invalid neighboring cells ( For example, it is not a neighboring cell of the terminal's home network).
  • the UTRA network because the number of neighboring cells contained in the measurement control message sent by each cell to a single terminal is limited, up to 32, this will cause a single terminal to receive very few effective neighbors.
  • the UE will be assigned the measurement frequency point. If all the different frequency points are sent to the UE, the UE's measurement capability will be exceeded. Even if the measurement capability is not exceeded, the UE will do a lot. Invalid measurement (for example, the measurement report is for the home network of other UEs. After receiving the measurement report, the evolved NodeB (eNodeB) judges that the neighboring cell is not authorized and cannot be handed over). Invalid measurement wastes the UE's measurement time slot (Gap), which consumes the performance of the UE.
  • eNodeB evolved NodeB
  • the method and device for determining inter-frequency neighboring cells provided in this application can improve the success rate of inter-frequency handover and reduce the call drop rate.
  • This application provides a method for determining inter-frequency neighboring cells, including:
  • the neighboring cell information that can be switched by the user terminal is processed to obtain the inter-frequency neighboring cell information including the neighboring cells belonging to the inter-frequency frequency point.
  • This application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute any one of the aforementioned methods for determining inter-frequency neighboring cells.
  • the present application also provides a device for determining inter-frequency neighboring regions, including a processor and a memory; wherein a computer program that can run on the processor is stored in the memory: Neighborhood methods.
  • This application also provides a device for determining inter-frequency neighboring cells, including: an acquisition module and a processing module; wherein,
  • the obtaining module is set to obtain the network identification of the home network of the user terminal when it is monitored that the user terminal enters the boundary area of the shared network;
  • the processing module is configured to process the neighbor cell information that can be switched by the user terminal according to the configuration information of the inter-frequency frequency point that can perform inter-frequency handover corresponding to the network identifier, and obtain the inter-frequency neighbor cell information that includes the neighboring cells belonging to the inter-frequency frequency point. District information.
  • FIG. 1 is a schematic diagram of inter-frequency handover in a shared carrier boundary area provided by the first embodiment of this application;
  • FIG. 2 is a schematic flowchart of a method for determining inter-frequency neighboring cells provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of the composition structure of an apparatus for determining inter-frequency neighboring cells provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of the neighboring cell relationship of a cell with more than 2 frequency points and switchable inter-frequency neighboring cells provided by the first embodiment of the application;
  • FIG. 5(a) is a schematic diagram of the neighbor relationship of the second list of user terminals of network A provided by the first embodiment of this application;
  • FIG. 5(b) is a schematic diagram of the neighbor relationship of the second list of user terminals of network B provided by the first embodiment of this application;
  • FIG. 5(c) is a schematic diagram of the neighbor relationship of the second list of user terminals of network C provided by the first embodiment of the application;
  • FIG. 6 is a schematic diagram of inter-frequency handover in a shared carrier boundary area provided by the second embodiment of this application.
  • FIG. 7 is a schematic diagram of the neighboring cell relationship of the switchable inter-frequency neighboring cells with more than 3 frequency points configured in a cell according to the second embodiment of the application;
  • FIG. 8(a) is a schematic diagram of the neighbor relationship of the second list of user terminals of network A provided by the second embodiment of this application;
  • FIG. 8(b) is a schematic diagram of the neighbor relationship of the second list of user terminals of network B provided by the second embodiment of this application;
  • FIG. 8(c) is a schematic diagram of the neighbor relationship of the second list of user terminals of network C provided by the second embodiment of this application;
  • FIG. 9 is a schematic diagram of inter-frequency handover in a shared carrier boundary area provided by the third embodiment of this application.
  • FIG. 10 is a schematic diagram of a neighboring cell relationship between a cell with 11 frequency points and a switchable inter-frequency neighboring cell provided by the third embodiment of the application;
  • FIG. 11(a) is a schematic diagram of the neighbor relationship of the second list of user terminals of network A provided by the third embodiment of this application;
  • FIG. 11(b) is a schematic diagram of the neighbor relationship of the second list of user terminals of network B provided by the third embodiment of this application;
  • FIG. 11(c) is a schematic diagram of the neighbor relationship of the second list of user terminals of network C provided by the third embodiment of this application;
  • FIG. 11(d) is a schematic diagram of the neighbor relationship of the second list of user terminals of network D provided by the third embodiment of this application;
  • FIG. 11(e) is a schematic diagram of the neighbor relationship of the second list of user terminals of the network E provided by the third embodiment of this application.
  • the computing device includes one or more processors (Central Processing Unit, CPU), input/output interfaces, network interfaces, and memory.
  • processors Central Processing Unit, CPU
  • input/output interfaces input/output interfaces
  • network interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, Phase-Change Random Access Memory (PRAM), Static Random-Access Memory (SRAM), and Dynamic Random Access Memory (Dynamic Random Access Memory).
  • PRAM Phase-Change Random Access Memory
  • SRAM Static Random-Access Memory
  • Dynamic Random Access Memory Dynamic Random Access Memory
  • DRAM dynamic random access memory
  • other types of random access memory read only memory, electrically erasable programmable read only memory (Electrically Erasable Programmable Read Only Memory, EEPROM), flash memory or other memory technologies, read-only CD-ROM Memory (Compact Disc Read-Only Memory, CD-ROM), Digital Video Disc (DVD) or other optical storage, magnetic cassette tape, magnetic tape disk storage or other magnetic storage devices or any other non-transmission media, Can be used to store information that can be accessed by computing devices.
  • computer-readable media does not include non-transitory computer-readable media (transitory media), such as modulated data signals and carrier waves.
  • FIG. 1 is a schematic diagram of inter-frequency handover in the shared carrier boundary area provided by the first embodiment of the application.
  • operator A is network A in the figure
  • operator B is network B in the figure
  • operator C That is, the network C in the figure.
  • Operator A, Operator B, and Operator C deploy FDD and UTRA network sharing in area X, the shared area in the figure, and build separate networks in other areas.
  • operator A has frequency points F1, F2, and frequency point F3
  • operator B has frequency points F4
  • frequency point F5 frequency point F6
  • operator C has frequency point F7, frequency point F8, and frequency point F9.
  • operator A, operator B, and operator C can use frequency F1, frequency F2, and frequency F3 of operator A.
  • operator A, operator B, and operator C independently build/deploy networks.
  • Operator A can only use frequency F1, frequency F2 and frequency F3, and operator B can only use frequency F4 , Frequency point F5 and frequency point F6, operator C can only use frequency point F7, frequency point F8 and frequency point F9.
  • cell 1 CELL1 (F1 carrier frequency)
  • the original planned inter-frequency handover neighboring cells are CELL2 (F2 carrier frequency) and CELL3 (F3 carrier frequency), which are exactly 2 different frequency points ( You can also configure more F2 carrier frequency and F3 carrier frequency adjacent cells, up to 32).
  • users of operator B and users of operator C can also access cell CELL1.
  • CELL1 is at the boundary, users of operator B and users of operator C need to switch to their own home network, so CELL1 at least It is necessary to add non-shared networks CELL4 (F4 carrier frequency) and CELL5 (F7 carrier frequency) as inter-frequency neighboring regions, so that the inter-frequency neighboring region information of CELL1 includes 4 frequency neighboring inter-frequency neighboring regions (frequency point F2, frequency point F3) , Frequency point F4, the adjacent area of frequency point F7).
  • F4 carrier frequency
  • CELL5 F7 carrier frequency
  • FDD UTRA network UEs can only measure two different frequency points, so the controller will only select two of the different frequency points neighboring cells to send in the measurement control message, for example, the controller selects F2 And F4, then the following questions will appear:
  • FIG 9 is a schematic diagram of inter-frequency handover in a shared carrier boundary area provided by the third embodiment of the application.
  • operator A is network A in the figure
  • operator B is network B in the figure
  • operator C That is the C network in the figure
  • the operator D is the D network in the figure
  • the operator E is the E network in the figure
  • the operators A, B, C, D and E are in area X.
  • the shared area in the figure deploys FDD E-UTRA or 5G NR network sharing, and builds separate networks in other areas.
  • operator A has frequency F1, frequency F2, frequency F3 and frequency F4, operator B has frequency F5, frequency F6, frequency F7 and frequency F8, operator C has frequency F9, frequency Point F10, F11 and F12, Operator D has F13, F14, F15 and F16, Operator E has F17, F18, F19 and F20 .
  • operator A, operator B, operator C, operator D, and operator E can use operator A's frequency point F1, frequency point F2, frequency point F3, and frequency point F4.
  • operator A, operator B, operator C, operator D, and operator E build/deploy networks independently.
  • Operator A can only use frequency point F1, frequency point F2, frequency point F3, Point F4, operator B can only use frequency point F5, frequency point F6, frequency point F7, and frequency point F8, operator C can only use frequency point F9, frequency point F10, frequency point F11, frequency point F12, and operator D Only frequency point F13, frequency point F14, frequency point F15, and frequency point F16 can be used.
  • Operator E can only use frequency point F17, frequency point F18, frequency point F19, and frequency point F20.
  • CELL1 CELL1 carrier frequency
  • the original planned inter-frequency handover frequency points are frequency point F2, frequency point F3, and frequency point F4. There is no waste of frequency points and neither There is an invalid measurement.
  • cell CELL1 needs to add non-shared network frequency F5, frequency F6, frequency F9, frequency F10, frequency F13, frequency F14, frequency F17, and the neighboring cells of frequency F18 are Inter-frequency neighboring cell, so the inter-frequency neighboring cell information of CELL1 includes the inter-frequency neighboring cells of 11 frequency points (F2, F3, F4, F5, F6, F9, Frequency F10, frequency point F13, frequency point F14, frequency point F17, frequency point F18).
  • FDD E-UTRA network UEs can generally measure 3 inter-frequency frequency points in the system (UEs that support extended measurement capabilities can measure 8), 5G NR generally can measure 7 inter-frequency frequency points in the system, although these They are all minimum requirements. In actual implementation, most UEs are implemented in accordance with the minimum protocol requirements. The number of measurable inter-frequency points is small. Moreover, even if the terminal has strong capabilities, the measurement frequency points are not limited, but for each For the UE in the home network, 11 frequency points are measured, which includes many invalid frequency points, which wastes the UE's measurement GAP and increases the air interface load. In addition, if too many measurement frequency points are carried, if the measurement capability of the UE is exceeded, it will cause terminal problems.
  • this application proposes a method for determining inter-frequency neighboring cells, as shown in FIG. 2, which includes:
  • Step 210 Obtain the network identifier of the home network of the user terminal entering the shared network boundary area.
  • this step further includes: the user terminal enters the shared network boundary area, and the user terminal enters the shared network boundary area includes: the user terminal is in the shared network boundary area (also called the shared carrier boundary area), and Access or handover to a border cell (which may be referred to as a target border cell) in a shared network border area, and the border cell is the primary serving cell.
  • the shared network boundary area also called the shared carrier boundary area
  • Access or handover to a border cell which may be referred to as a target border cell in a shared network border area
  • the border cell is the primary serving cell.
  • the primary serving cell in the UTRA network, is the primary cell in the activation set; in the E-UTRA and 5G NR networks, the primary serving cell is the primary cell (PCell, Primary Cell).
  • PCell Primary Cell
  • the network identity of the home network of the user terminal includes the public land mobile network identity (Public Land Mobile Network Identity Document, PLMN ID) of the PLMN to which the user terminal belongs, which may be referred to as distinguishing public land mobile in this application.
  • PLMN ID Public Land Mobile Network Identity Document
  • Selected-PLMN ID Select Public Land Mobile Network Identity Document
  • the Selected-PLMN ID is the PLMN ID of the home network or equivalent network of the user terminal.
  • the PLMN ID includes a mobile device country code (Mobile Country Code, MCC) and a mobile device network code (Mobile Network Code, MNC).
  • MCC Mobile Country Code
  • MNC Mobile Network Code
  • Step 220 According to the configuration information of the inter-frequency frequency points that can perform the inter-frequency handover corresponding to the network identifier, process the neighboring cell information that can be switched by the user terminal to obtain inter-frequency neighboring cell information including the neighboring cells belonging to the inter-frequency frequency point .
  • the method before step 220, the method further includes:
  • Each operator PLMN under each primary serving cell in the shared network boundary area is allocated 0 to a specified number of inter-frequency frequency points, thereby forming configuration information of all inter-frequency frequency points that can perform inter-frequency handover.
  • the prescribed number is a first prescribed number, such as two inter-frequency frequency points; for E-UTRA or 5G NR, the prescribed number is a second prescribed number, such as 16 inter-frequency frequency points.
  • These inter-frequency frequency points are target frequency points at which user terminals belonging to the PLMN can perform inter-frequency handover in the primary serving cell. For example, for the UE under each PLMN ID, except for these target frequency points, other frequency points cannot be used for handover.
  • the method before step 220, the method further includes:
  • the inter-frequency neighboring cell information of each cell sharing the network boundary area is configured as the neighboring cell information that the user terminal can switch.
  • the inter-frequency neighboring cell information of each cell in the shared network boundary area is determined according to the actual situation and planned and configured switchable neighboring cell information. At this time, there is no need to consider the limitation of the number of frequency points. For example, for a UTRA network, you can configure more than the third specified number (such as 32 inter-frequency neighboring cells) and more than the first specified number (such as 2 inter-frequency neighboring cell information), and each cell can be planned as much as possible. The configuration of inter-frequency neighboring cells. Another example: For E-UTRA or 5G NR networks, in principle, there is no limit on the number of frequency points and the number of neighboring cells. In an embodiment, whether it is a UTRA network, an E-UTRA network, or a 5G NR network, when configuring inter-frequency neighboring cells, there are some quantitative restrictions due to capacity.
  • the neighbor cell information that can be switched by the user terminal refers to the neighbor cell information after all the cells in the active set are combined. Because the neighboring cells of all the cells in the active set are neighboring cells that the terminal can switch to, the neighboring cells of the cells in the active set will be merged first to delete the repeated inter-frequency neighboring cells.
  • the number of merged neighboring cells may exceed the third specified number, such as 32, and the number of inter-frequency frequency points may exceed the first specified number, such as 2.
  • step 220 may include:
  • the PLMN ID of the PLMN to which the user terminal belongs and in the configuration information of the inter-frequency frequency point of the belonging PLMN that can perform inter-frequency handover, find the inter-frequency frequency point corresponding to the border cell to which the user terminal is connected or handed over; according to the found
  • the inter-frequency frequency point filters all the inter-frequency frequency points and inter-frequency neighboring cells included in the neighboring cell information that can be switched by the user terminal, retains the neighboring cells belonging to the found inter-frequency frequency points, and deletes the neighbors that do not belong to the found inter-frequency frequency points. Area.
  • the filtered inter-frequency frequency points will not exceed the first specified number, such as two; for the E-UTRA or 5G NR network, the filtered inter-frequency frequency points will not exceed the second The specified number, such as 16.
  • the method further includes: matching the neighbors according to the priority
  • the neighboring cells among the filtered inter-frequency neighboring cells are sorted, starting with the highest priority level, and the third specified number (such as 32 neighboring cells) is selected as the filtered inter-frequency neighboring cells, that is, the first one with the highest priority level is selected.
  • the 32 neighboring cells are used as the filtered inter-frequency neighboring cells.
  • the neighboring cells with the same priority may be sorted from first to last according to the configuration order.
  • the number of inter-frequency neighboring cells will not exceed the first specified number, such as 32, and the number of inter-frequency neighboring cells The number will not exceed the second specified number, such as 2; for E-UTRA or 5G NR networks, in the determined inter-frequency adjacent cell information, the number of inter-frequency frequency points does not exceed the third specified number, such as 16, this application It maximizes the use of inter-frequency frequency points and inter-frequency neighboring cells, reduces the UE's measurement GAP, improves the success rate of inter-frequency handover, and reduces the call drop rate.
  • the method further includes: sending the obtained inter-frequency neighboring cell information to the user terminal through a measurement control message, so as to trigger the user terminal to perform the measurement of the inter-frequency neighboring cell at an appropriate time.
  • An embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute any one of the above-mentioned methods for determining inter-frequency neighboring cells.
  • An embodiment of the present application also provides an apparatus for determining inter-frequency neighboring regions, including a processor and a memory; wherein a computer program that can run on the processor is stored in the memory: The method of different frequency neighboring cells.
  • Figure 3 is a schematic diagram of the composition structure of the device for determining inter-frequency neighboring cells provided by an embodiment of the application. As shown in Figure 3, it at least includes: an acquisition module and a processing module; wherein, the acquisition module is set to monitor that the user terminal enters the sharing The network boundary area obtains the network identification of the home network of the user terminal; the processing module is set to process the neighboring cell information of the user terminal that can be switched according to the inter-frequency frequency point configuration information that can perform inter-frequency switching corresponding to the network identification to obtain Including inter-frequency neighboring cell information of neighboring cells belonging to the inter-frequency frequency point.
  • the user terminal in the acquiring module enters the shared network boundary area, including: the user terminal is in the shared network boundary area and accesses or switches to a boundary cell in the shared network boundary area, and the boundary cell It is the main serving cell.
  • the primary serving cell in the UTRA network, is the primary cell in the active set; in the E-UTRA and 5G NR networks, the primary serving cell is the PCell.
  • the network identity of the home network of the user terminal includes: the PLMN ID of the PLMN to which the user terminal belongs.
  • the apparatus for determining inter-frequency neighboring cells in the present application further includes: a first configuration module configured to allocate 0 to a prescribed number to each operator PLMN under each primary serving cell in the shared network boundary area The configuration information of all the different frequency points that can be switched between different frequencies is formed.
  • the prescribed number is the first prescribed number, such as two inter-frequency points; for E-UTRA or 5G NR, the prescribed number is the second prescribed number, such as 16 inter-frequency point.
  • the apparatus for determining inter-frequency neighboring cells in the present application further includes: a second configuration module configured to configure the shared inter-frequency neighboring cells according to the inter-frequency neighboring cells that can actually perform inter-frequency handover by user terminals belonging to each operator
  • the inter-frequency neighboring cell information of each cell in the network boundary area is used as the neighboring cell information that the user terminal can switch.
  • the processing module is set to: according to the PLMN ID of the home PLMN of the user terminal, find the user terminal access or handover in the configuration information of the inter-frequency frequency point of the home PLMN that can perform inter-frequency handover The inter-frequency frequency points corresponding to the target boundary cell found; filter all inter-frequency frequency points and inter-frequency neighboring cells included in the user terminal's switchable neighboring cell information according to the found inter-frequency frequency points, and retain the found inter-frequency frequency points Delete the neighboring cells that do not belong to the found different frequency points.
  • the filtered inter-frequency frequency points will not exceed the first specified number, such as two; for the E-UTRA or 5G NR network, the filtered inter-frequency frequency points will not exceed the second The specified number, such as 16.
  • the processing module is further configured to: for the UTRA network, in the case where the number of neighboring cells in the filtered inter-frequency neighboring cells is greater than the third prescribed number (such as 32), the priority is The neighboring cells in the filtered inter-frequency neighboring cells are sorted, and the first third specified number (such as 32 neighboring cells) with a high priority level is selected as the filtered inter-frequency neighboring cells.
  • the processing module is further configured to: for neighboring cells with the same priority, sort them from first to last according to the configuration order.
  • the number of inter-frequency neighboring cells will not exceed the third specified number, such as 32, and the number of inter-frequency neighboring cells The number will not exceed the first specified number, such as two; for E-UTRA or 5G NR networks, in the determined inter-frequency adjacent cell information, the number of inter-frequency frequency points does not exceed the second specified number, such as 16, this application It maximizes the use of inter-frequency frequency points and inter-frequency neighboring cells, reduces the UE's measurement GAP, improves the success rate of inter-frequency handover, and reduces the call drop rate.
  • the apparatus for determining the inter-frequency neighboring cell of the present application further includes: a measurement control module configured to send the obtained inter-frequency neighboring cell information to the user terminal through a measurement control message, so as to trigger the user terminal at an appropriate time Carry out the measurement of different frequency adjacent area.
  • the radio network controller (RNC, Radio Network Controller) realizes the determination of neighboring cell information.
  • RNC Radio Network Controller
  • the difference between the shared carrier boundary area shown in FIG. Take the frequency switching diagram as an example, the shared carrier is provided by operator A, and the other two operators, operator B and operator C, can use the carrier of operator A in the shared carrier area, but cannot use the carrier in the non-shared carrier area Carrier of A.
  • Methods to determine neighborhood information include:
  • the RNC configures the switchable inter-frequency neighboring cell information of each cell according to the actual situation and planning; and, the RNC configures the inter-frequency neighboring cells of the PLMN ID of the shared carrier boundary area cell to perform the inter-frequency handover.
  • the boundary cells in the shared area F1, F2, and F3 are all configured with different frequency adjacent areas with more than 2 frequency points.
  • the two-way arrow indicates the two-way switching relationship
  • the single arrow indicates the single switching relationship.
  • the inter-frequency frequency points configured under CELL1 that can perform inter-frequency switching include: frequency points that can be switched in network A: frequency point F2, frequency point F3;
  • the switchable frequency points of network C frequency point F2, frequency point F7.
  • each PLMN ID is the actual PLMN ID used in the shared carrier area.
  • the shared carrier is provided by operator A, and operator B and operator C can access the shared carrier area. Into or use carrier A's carrier, it cannot be used in non-shared areas.
  • the application is initiated to determine the inter-frequency neighboring cell Methods.
  • the initial access to a border cell in the shared carrier area may be through, for example, a radio resource control (Radio Resource Control, RRC) connection request and a cell update (CELL UPDATE) request to access the border cell,
  • RRC Radio Resource Control
  • CELL UPDATE cell update
  • the border cell is the primary serving cell in the active set.
  • Hard handover or soft handover to the border cell and the border cell as the primary serving cell includes: the user terminal hard handovers from other cells to the border cell, and the border cell is the primary serving cell, and adding the border through the active set update procedure
  • the cell is the cell in the active set and is the primary serving cell in the active set.
  • the inter-frequency neighboring cells of all the cells in the active set are merged, and the inter-frequency neighboring cell lists of multiple cells are formed into the first list. It is assumed that the first list obtained after merging is called the cell-level inter-frequency neighboring cell of the UE List.
  • the duplicate neighboring cells will be deleted in the process of merging to obtain the first list.
  • the number of inter-frequency neighboring cells can exceed 32, and the number of inter-frequency frequency points can exceed 2.
  • the second list may be referred to as a UE-level inter-frequency neighbor cell list of the UE.
  • the number of inter-frequency frequency points in the second list will not exceed 2, however, the number of inter-frequency neighboring cells in the second list can exceed 32.
  • FIG. 5(a) is a schematic diagram of the neighbor relationship of the second list of user terminals of network A provided in the first embodiment of this application
  • FIG. 5(b) It is a schematic diagram of the neighboring cell relationship of the second list of user terminals of network B provided in the first embodiment of this application
  • Figure 5(c) is the neighboring cell of the second list of user terminals of network C provided in the first embodiment of this application. Relationship diagram.
  • the inter-frequency neighboring cells in the second list if the number of inter-frequency neighboring cells in the second list exceeds 32, sort the inter-frequency neighboring cells in the second list according to the priority and configuration order of each inter-frequency neighboring cell, The ones with the highest priority level are ranked first, the ones with the same priority level are sorted according to the configuration order, and the configuration is ranked first, and the inter-frequency neighboring cell information after the first 32 inter-frequency neighboring cells in the second list is deleted.
  • the RNC will send the processed inter-frequency neighboring cell information (that is, the second list through a measurement control message) to the UE to trigger the UE to perform inter-frequency neighboring cell measurement at an appropriate time.
  • the shared carrier is operated by Provided by operator A and operator B.
  • users of operator A can use the carrier of operator B
  • users of operator B can use the carrier of operator A
  • users of operator C can use operator A and Operator B's carrier
  • operators A, B, and C can only use their own carriers.
  • Methods to determine neighborhood information include:
  • the RNC configures the switchable inter-frequency neighboring cell information of each cell according to the actual situation and planning; and, the RNC configures the inter-frequency neighboring cells of the PLMN ID of the shared carrier boundary area cell to perform the inter-frequency handover.
  • the shared area border cell F1 , F2, F3, F4, F5, F6 are all configured with more than 2 frequency points of different frequency neighboring areas.
  • the two-way arrow indicates the two-way switching relationship
  • the single arrow indicates the single switching relationship.
  • the inter-frequency frequency points configured under CELL1 that can perform inter-frequency switching include: frequency points that can be switched in network A: frequency point F2, frequency point F3; network B Switchable frequency points: frequency point F2, frequency point F4; network C switchable frequency points: frequency point F2, frequency point F7.
  • users of operator A, operator B, and operator C can perform inter-frequency handover to the home PLMN network at the boundary of the shared area.
  • Each PLMN network is actually a PLMN network used in the shared carrier area.
  • the shared carrier is provided by operator A and operator B.
  • users of operator A can use the carrier of operator B.
  • Operator B can use the carrier of operator A
  • operator C can use the carriers of operators A and B.
  • operator A, operator B, and operator C can only use their own carriers.
  • the application is initiated to determine the inter-frequency neighboring cell Methods.
  • the initial access to a border cell in the shared carrier area may be through an RRC connection request and a CELL UPDATE request to access the border cell, and the border cell is the primary serving cell in the active set.
  • hard handover or soft handover to the border cell and the border cell as the primary serving cell includes: the user terminal hard handovers from other cells to the border cell, and the border cell is the primary serving cell, and through activation The set update process adds the border cell as a cell in the active set and is the primary serving cell in the active set.
  • the inter-frequency neighboring cells of all the cells in the active set are merged, and the inter-frequency neighboring cell lists of multiple cells are formed into the first list. It is assumed that the first list obtained after merging is called the cell-level inter-frequency neighboring cell of the UE List.
  • the duplicate neighboring cells will be deleted in the process of merging to obtain the first list.
  • the number of inter-frequency neighboring cells can exceed 32, and the number of inter-frequency frequency points can exceed 2.
  • the first list obtained by the combination is filtered, and the adjacent cells that do not belong to the different frequency points in the different frequency frequency point configuration information are deleted, To form the second list.
  • the second list may be referred to as a UE-level inter-frequency neighbor cell list of the UE.
  • the number of inter-frequency frequency points in the second list will not exceed 2, however, the number of inter-frequency neighboring cells in the second list can exceed 32.
  • FIG. 8(a) is a schematic diagram of the neighbor relationship of the second list of user terminals of network A provided in the second embodiment of this application
  • FIG. 8(b) It is a schematic diagram of the neighboring cell relationship of the second list of user terminals of network B provided in the second embodiment of this application
  • FIG. 8(c) is the neighboring cell of the second list of user terminals of network C provided in the second embodiment of this application. Relationship diagram.
  • the inter-frequency neighboring cells in the second list if the number of inter-frequency neighboring cells in the second list exceeds 32, sort the inter-frequency neighboring cells in the second list according to the priority and configuration order of each inter-frequency neighboring cell, The ones with the highest priority level are ranked first, the ones with the same priority level are sorted according to the configuration order, and the configuration is ranked first, and the inter-frequency neighboring cell information after the first 32 inter-frequency neighboring cells in the second list is deleted.
  • the RNC will send the processed inter-frequency neighboring cell information (that is, the second list through a measurement control message) to the UE to trigger the UE to perform inter-frequency neighboring cell measurement at an appropriate time.
  • an evolved base station (Evolved Nodeb, eNodeb) or a next-generation base station (Generation Nodeb, gNodeb) implements the determination of neighbor cell information.
  • Evolved Nodeb, eNodeb evolved Nodeb
  • Geneation Nodeb, gNodeb next-generation base station
  • the shared carrier is provided by operator A.
  • the other four operators namely, operator B, operator C, operator D, and operator E, can The carrier A's carrier is used in the shared carrier area, while the carrier A's carrier cannot be used in the non-shared carrier area.
  • Methods to determine neighborhood information include:
  • the eNodeb or gNodeb configures the switchable inter-frequency neighboring cell information of each cell according to the actual situation and planning; and, the eNodeb or gNodeb configures the inter-frequency neighboring cell of the shared carrier boundary area cell to distinguish the PLMN ID that can perform inter-frequency handover. Different frequency points.
  • the boundary cells in the shared area F1, F2, F3, and F4 are all configured with 11 different frequency adjacent areas.
  • the two-way arrow indicates the two-way switching relationship
  • the single arrow indicates the single switching relationship.
  • the inter-frequency frequency points that can be configured to perform inter-frequency switching under CELL1 include: frequency points that can be switched in network A: frequency point F2, frequency point F3, frequency point F4; network B can switch frequency points: frequency point F2, frequency point F5, frequency point F6; network C can switch frequency points: frequency point F2, frequency point F9, frequency point F10; network D can switch frequency points: Frequency point F2, frequency point F13, frequency point F14; network E can switch frequency points: frequency point F2, frequency point F17, frequency point F18.
  • each PLMN ID is the actual PLMN ID used in the shared carrier area.
  • the shared carrier is provided by operator A, and the other four operators are operator B, operator C, and operator D , Operator E can access or use the carrier of Operator A in the shared carrier area, but cannot use it in the non-shared area but can only use its own carrier.
  • the initial access to a border cell in the shared carrier area may be access to the border cell through an RRC connection request and an RRC re-establishment request.
  • Switching to the border cell includes: the user terminal switches from other cells to the border cell, and this cell is the primary serving cell.
  • the inter-frequency frequency list of the PLMN of the border cell for the UE is a cell-level inter-frequency frequency list of the UE.
  • FIG. 11(a) is a schematic diagram of the neighbor relationship of the second list of user terminals of network A provided by the third embodiment of this application
  • FIG. 11(b) It is a schematic diagram of the neighboring cell relationship of the second list of user terminals of network B provided in the third embodiment of this application
  • FIG. 11(c) is the neighboring cell of the second list of user terminals of network C provided in the third embodiment of this application
  • Fig. 11(d) is a schematic diagram of the neighbor relationship of the second list of user terminals of network D provided by the third embodiment of this application
  • Fig. 11(e) is the user of network E provided by the third embodiment of this application
  • the eNode or gNodeb will send the inter-frequency frequency points included in the processed inter-frequency neighboring cell information to the UE through a measurement control message to trigger the UE to measure the inter-frequency neighboring cell.
  • the eNode or gNodeb After the UE reports the measurement result, the eNode or gNodeb will match the configured neighboring cell, and the handover will be performed after the match is successful. Since the measurement frequency points of each PLMN UE in this application have been restricted and differentiated, the neighbor cell matching phase will only match the inter-frequency neighbor cells corresponding to the UE's cell-level inter-frequency frequency point list, and will not switch to Neighbors of other frequency points.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种确定异频邻区的方法及装置,包括:用户终端进入共享网络边界区域,会获取用户终端归属网络的网络标识,并根据网络标识对应的可执行异频切换的异频频点的配置信息,对用户终端可切换的邻区信息进行处理,得到包括属于所述异频频点的邻区的异频邻区信息。

Description

一种确定异频临区的方法及装置
本申请要求在2019年07月09日提交中国专利局、申请号为201910613787.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及但不限于网络共享技术,例如一种确定异频邻区的方法及装置。
背景技术
网络共享,是指不同运营商之间在网络部署阶段共同承担高昂的移动网络部署费用的一种做法,通过网络共享可以极大地提高网络的利用率。在网络共享部署时,由于共享的区域范围、共享网络改造或部署节奏等原因,势必会出现共享网络与非共享网络之间的边界区域。在这种情况下,对于非本运营商网络频点的用户终端设备(User Equipment,UE),在从共享网络向非共享网络移动时,由于该UE必须要切换到所属运营商频点的网络中,即不能进行同频切换,必须要进行异频或者异系统切换(因为异系统切换也是一种异频切换,因此,本文将异频或者异系统切换简称为异频切换,如不特殊说明,都是指异频或者异系统切换)。
网络融合是一种趋势,从一开始的两家运营商网络共享到四、五家甚至更多的运营商网络共享,共享网络的规模和复杂度越来越高。在网络共享的边界区域(共享网络和非共享网络的边界区域),不同归属公共陆地移动网络(PLMN,Public Land Mobile Network)的用户(即不同运营商的用户)可以做切换的异频频点不同,每家运营商都有在边界区域切换到归属网络的需求,这些切换的频点数量总和会很多,可能会超过终端的支持能力。
比如,在第三代合作伙伴计划(3GPP,3rd Generation Partnership Project) 相关协议的约束下,对于频分双工(FDD,Frequency Division Duplexing)通用路面无线接入(UTRA,Universal Terrestrial Radio Access)网络情况,UE一般最多支持2个系统内的异频频点的测量,时分双工(TDD,Time Division Duplex)UTRA网络最多支持3个异频频点;对演进型通用路面无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)网络,频分双工演进型通用路面无线接入(Frequency Division Duplexing Evolved Universal Terrestrial Radio Access,FDD E-UTRA)系统内一般可以支持3个异频频点测量(与时分双工演进型通用路面无线接入(Time Division Duplex Evolved Universal Terrestrial Radio Access,TDD E-UTRA)相同),更多的频点数目和终端能力相关,支持测量能力扩展的UE可以支持8个频点的系统内测量。但是,用户的终端能力也是有限的,很多终端是按照3GPP的最低要求实现的,随着共享网络的复杂度越来越高,频点数也会受限;对于第五代移动通信技术(5th Generation Wireless Systems,5G)网络情况,不同的网络架构(如非独立组网(Non Independent Network,NSA)和独立组网(Non independent Network,SA)支持的最低频点数不一样,比如:NSA网络,系统内一般支持7个新无线接口(NR,New Radio)异频频点测量;再如:SA网络,系统内一般支持7个NR异频频点测量。同样,5G新空口(5th Generation Wireless Systems New Radio,5G NR)终端的频点测量能力也是有限的,一些终端是按照协议的最低要求来实现,在复杂的组网中,往往遇到频点个数不够的问题。
在共享网络边界区域(即共享网络区域与非共享网络区域的边界处,也可称为共享载波边界区域),配置的异频邻区和异系统邻区(本文将异频和异系统邻区简称为异频邻区,如不特殊说明,都是指异频或者异系统邻区)会非常的多,会配置很多到多个PLMN归属网络的邻区,终端会测量很多无效的邻区 (比如不是此终端归属网络的邻区)。在UTRA网络中,因为每个小区给单个终端发送的测量控制消息中包含的邻区数量是有限制的,最多32个,这样就会导致单个终端可能收到的有效邻区会非常的少,甚至可能收不到归属网络的邻区,终端就无法切换回到归属网络,导致掉话。在E-UTRA和5G NR中,会给UE指定测量的频点,如果把所有的异频频点都发送给UE,也会超过UE的测量能力,就算没有超过测量能力,也会导致UE做很多无效测量(比如,测量报告是针对其他UE的归属网络的,演进节点(Evolved NodeB,eNodeB)收到测量报告后,判决此邻区没有授权,不能切换),无效测量浪费了UE的测量时隙(Gap),消耗了UE的性能。
发明内容
本申请提供的一种确定异频邻区的方法及装置,能够提高异频切换成功率,降低掉话率。
本申请提供了一种确定异频邻区的方法,包括:
获取进入共享网络边界区域的用户终端归属网络的网络标识;
根据网络标识对应的可执行异频切换的异频频点的配置信息,对用户终端可切换的邻区信息进行处理,得到包括属于所述异频频点的邻区的异频邻区信息。
本申请还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一所述的确定异频邻区的方法。
本申请又提供了一种实现确定异频邻区的装置,包括处理器、存储器;其中,存储器上存储有可在处理器上运行的计算机程序:用于执行上述任一所述的确定异频邻区的方法。
本申请又提供了一种确定异频邻区的装置,包括:获取模块、处理模块;其中,
获取模块,设置为在监测到用户终端进入共享网络边界区域,获取用户终 端归属网络的网络标识;
处理模块,设置为根据网络标识对应的可执行异频切换的异频频点的配置信息,对用户终端可切换的邻区信息进行处理,得到包括属于所述异频频点的邻区的异频邻区信息。
附图说明
附图用来提供对本申请技术方案的理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请第一实施例提供的共享载波边界区域的异频切换示意图;
图2为本申请实施例提供的确定异频邻区的方法的流程示意图;
图3为本申请实施例提供的确定异频邻区的装置的组成结构示意图;
图4为本申请第一实施例提供的一个小区配置多于2个频点的可切换的异频邻区的邻区关系示意图;
图5(a)为本申请第一实施例提供的网络A的用户终端的第二列表的邻区关系示意图;
图5(b)为本申请第一实施例提供的网络B的用户终端的第二列表的邻区关系示意图;
图5(c)为本申请第一实施例提供的网络C的用户终端的第二列表的邻区关系示意图;
图6为本申请第二实施例提供的共享载波边界区域的异频切换示意图;
图7为本申请第二实施例提供的一个小区配置多于3个频点的可切换的异频邻区的邻区关系示意图;
图8(a)为本申请第二实施例提供的网络A的用户终端的第二列表的邻区关系示意图;
图8(b)为本申请第二实施例提供的网络B的用户终端的第二列表的邻区关系示意图;
图8(c)为本申请第二实施例提供的网络C的用户终端的第二列表的邻区 关系示意图;
图9为本申请第三实施例提供的共享载波边界区域的异频切换示意图;
图10为本申请第三实施例提供的一个小区配置11个频点的可切换的异频邻区的邻区关系示意图;
图11(a)为本申请第三实施例提供的网络A的用户终端的第二列表的邻区关系示意图;
图11(b)为本申请第三实施例提供的网络B的用户终端的第二列表的邻区关系示意图;
图11(c)为本申请第三实施例提供的网络C的用户终端的第二列表的邻区关系示意图;
图11(d)为本申请第三实施例提供的网络D的用户终端的第二列表的邻区关系示意图;
图11(e)为本申请第三实施例提供的网络E的用户终端的第二列表的邻区关系示意图。
具体实施方式
在本申请一个典型的配置中,计算设备包括一个或多个处理器(Central Processing Unit,CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(Random Access Memory,RAM)和/或非易失性内存等形式,如只读存储器(Read-Only Memory,ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(Phase-Change Random Access Memory,PRAM)、静态随机存取存储器(Static Random-Access Memory,SRAM)、动态随机存取存储器(Dynamic Random Access Memory,DRAM)、其他类型的随机存取存储器、只读存储器、电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory, EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能光盘(Digital Video Disc,DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本申请中的界定,计算机可读介质不包括非暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
为使本申请的目的、技术方案和优点清楚明白,下文中将结合附图对本申请的实施例进行说明。
图1为本申请第一实施例提供的共享载波边界区域的异频切换示意图,如图1所示,运营商A即图中的A网络,运营商B即图中的B网络,运营商C即图中的C网络,运营商A、运营商B和运营商C在区域X即图中的共享区域部署FDD UTRA网络共享,在其他区域单独建网。假设运营商A拥有频点F1,频点F2和频点F3,运营商B拥有频点F4,频点F5和频点F6,运营商C拥有频点F7,频点F8和频点F9。在共享区域内,运营商A,运营商B和运营商C可以使用运营商A的频点F1,频点F2和频点F3。在非共享区域,运营商A,运营商B,运营商C各自独立建设/部署网络,运营商A只能使用频点F1,频点F2和频点F3,运营商B只能使用频点F4,频点F5和频点F6,运营商C只能使用频点F7,频点F8和频点F9。在边界共享区域内运营商A小区1(CELL1)(F1载频),原有规划异频切换邻区为CELL2(F2载频),CELL3(F3载频),正好是2个异频频点(还可以配置更多的F2载频和F3载频邻区,最多可以达到32个)。网络共享后,运营商B的用户和运营商C的用户也可以接入小区CELL1,因为CELL1在边界,运营商B的用户和运营商C的用户有切换到自身归属网络的需求,所以CELL1至少需要添加非共享网络CELL4(F4载频)和CELL5(F7载频)为异频邻区,这样CELL1的异频邻区信息包括4个频点的异频邻区(频点F2,频点F3,频点F4,频点F7的邻区)。但是按照3GPP协议相关规定,FDD UTRA网络UE只能测量2个异频频点,所以控制器只会选择其中的2个异频频点邻区在测量控制消息中发送,比如,控制器选择的是F2和F4,那么将出现以下问题:
1、运营商A的用户的异频频点只有F2,缺少了F3,虽然F4可以测量,但是不能切换,属于无效测量,所以运营商A的用户不能切换到F3载频,导致切 换频点不能达到最大2个。
2、运营商C的用户无法切换到归属网络,因为测量控制消息中没有携带F7频点的邻区。
这种情况会导致运营商A,运营商B,运营商C的异频频点和异频邻区数量都减少(极端情况运营商C的用户不能切换到归属网络),大大降低了异频切换成功率,增加了掉话率。
图9为本申请第三实施例提供的共享载波边界区域的异频切换示意图,如图10所示,运营商A即图中的A网络,运营商B即图中的B网络,运营商C即图中的C网络,运营商D即图中的D网络和运营商E即图中的E网络,运营商A、运营商B、运营商C、运营商D和运营商E在区域X即图中的共享区域部署FDD E-UTRA或者5G NR网络共享,在其他区域单独建网。假设运营商A拥有频点F1,频点F2,频点F3和频点F4,运营商B拥有频点F5,频点F6,频点F7和频点F8,运营商C拥有频点F9,频点F10,频点F11和频点F12,运营商D拥有频点F13,频点F14,频点F15和频点F16,运营商E拥有频点F17,频点F18,频点F19和频点F20。在共享区域内,运营商A,运营商B,运营商C,运营商D,运营商E可以使用运营商A的频点F1,频点F2,频点F3,频点F4。在非共享区域,运营商A,运营商B,运营商C,运营商D,运营商E各自独立建设/部署网络,运营商A只能使用频点F1,频点F2,频点F3,频点F4,运营商B只能使用频点F5,频点F6,频点F7,频点F8,运营商C只能使用频点F9,频点F10,频点F11,频点F12,运营商D只能使用频点F13,频点F14,频点F15,频点F16,运营商E只能使用频点F17,频点F18,频点F19,频点F20。在边界共享区域内运营商A小区1(CELL1)(F1载频),原有规划异频切换频点为频点F2,频点F3,频点F4,不存在频点浪费的情况,也不存在无效测量。网络共享后,运营商B,运营商C,运营商D,运营商E用户也可以接入CELL1,因为CELL1在边界,运营商B,运营商C,运营商D,运营商E的用户有切换到各自归属网络的需求,所以小区CELL1需要添加非共享网络频点F5,频点F6,频点F9,频点F10,频点F13,频点F14,频点F17,频点F18的邻区为异频邻区,这样CELL1的异频邻区信息包括11个频点的异频邻区(频点F2,频点F3,频点F4,频点F5,频点F6,频点F9,频点F10,频点F13,频点F14,频点F17,频点F18)。按照3GPP协议相关规定,FDD E-UTRA 网络UE一般可以测量3个系统内异频频点(支持测量能力扩展的UE可以测量8个),5G NR一般可以测量7个系统内异频频点,虽然这些都是最低要求,实际实现时大部分UE是按照最低的协议要求实现的,可测量的异频频点个数较少,而且,就算终端能力较强,测量频点没有受限,但是对于每个归属网络的UE来说,测量11个频点,包含了很多无效频点,浪费了UE的测量GAP,增加了空口负荷。而且携带过多的测量频点,如果超过了UE的测量能力,还会导致终端问题。
为了解决上述问题,本申请提出一种确定异频邻区的方法,如图2所示,包括:
步骤210:获取进入共享网络边界区域的用户终端归属网络的网络标识。
在一种示例性实例中,本步骤之前还包括:用户终端进入共享网络边界区域,用户终端进入共享网络边界区域包括:用户终端处于共享网络边界区域(也可称为共享载波边界区域),并接入或者切换到共享网络边界区域的一个边界小区(可以称为目标边界小区),且该边界小区是主服务小区。
在一种示例性实例中,在UTRA网络中,主服务小区为激活集中的主小区;在E-UTRA和5G NR网络中,主服务小区为主小区(PCell,Primary Cell)。
在一种示例性实例中,用户终端归属网络的网络标识包括:用户终端归属的PLMN的公共陆地移动网络标识(Public Land Mobile Network Identity Document,PLMN ID),本申请中可以称为区分公共陆地移动网络标识(Selected Public Land Mobile Network Identity Document,Selected-PLMN ID)。
在一种示例性实例中,Selected-PLMN ID为用户终端的归属网络或者等效网络的PLMN ID。
每个PLMN网络由PLMN ID确定,PLMN ID包括移动设备国家代码(Mobile Country Code,MCC)和移动设备网络代码(Mobile Network Code,MNC)。
步骤220:根据网络标识对应的可执行异频切换的异频频点的配置信息,对用户终端可切换的邻区信息进行处理,得到包括属于所述异频频点的邻区的异频邻区信息。
在一种示例性实例中,步骤220之前,还包括:
对共享网络边界区域的每个主服务小区下的每个运营商PLMN分配0到规定数目的异频频点,从而形成所有可执行异频切换的异频频点的配置信息。
在一种示例性实例中,针对UTRA,规定数目为第一规定数目,如2个的异频频点;针对E-UTRA或5G NR,规定数目为第二规定数目,如16个异频频点。
这些异频频点是归属于该PLMN的用户终端能够在该主服务小区进行异频切换的目标频点。例如,针对每一个PLMN ID下的UE,除了这些目标频点,其他频点都不能用于切换。
在一种示例性实例中,步骤220之前,还包括:
根据归属每个运营商的用户终端实际可以执行异频切换的异频邻区,配置共享网络边界区域的每个小区的异频邻区信息作为用户终端可切换的邻区信息。
共享网络边界区域的每个小区的异频邻区信息是根据实际情况和规划配置的可切换的邻区信息确定的,此时并不用考虑频点数量的限制。比如,对于UTRA网络,可以配置超过第三规定数目(如32个异频邻区)和超过第一规定数目(如2个异频频点的邻区信息),每个小区可以通过规划尽可能多的配置异频邻区。再如:对于E-UTRA或5G NR网络,原则上也没有频点个数限制和邻区个数限制。在一实施例中,无论是UTRA网络、E-UTRA网络还是5G NR网络,在配置异频邻区时,因为容量的原因会做一些数量上的限制。
在一种示例性实例中,对于UTRA网络,用户终端可切换的邻区信息,是指激活集内的所有小区合并后的邻区信息。因为激活集内的所有小区的邻区都是终端可以切换的邻区,因此,会先将激活集中的小区的邻区进行合并,以删除重复的异频邻区。合并后的邻区的数目可能会超过第三规定数目,如32个,异频频点数目可能会超过第一规定数目,如2个。
在一种示例性实例中,步骤220可以包括:
根据用户终端归属PLMN的PLMN ID,在归属的PLMN的可执行异频切换的异频频点的配置信息中,查找到用户终端接入或切换到的边界小区对应的异频频点;根据查找到的异频频点对用户终端可切换的邻区信息包括的所有的异频频点和异频邻区进行过滤,保留属于查找到的异频频点的邻区,删除不属于 查找到的异频频点的邻区。
在一种示例性实例中,对于UTRA网络,过滤后的异频频点不会超过第一规定数目,如2个;对于E-UTRA或5G NR网络,过滤后的异频频点不会超过第二规定数目,如16个。
在一种示例性实例中,对于UTRA网络,如果过滤后的异频邻区中的邻区个数大于第三规定数目(如32个)的情况下,所述方法还包括:根据优先级对过滤后的异频邻区中的邻区进行排序,从优先级级别最高开始,选择第三规定数目(如32个邻区)作为过滤后的异频邻区,即选择优先级级别高的前32个邻区作为过滤后的异频邻区。在一种示例性实例中,对于优先级相同的邻区,按照配置顺序从前往后进行排序即可。
通过本申请提供的确定异频邻区的方法,对于UTRA网络,确定出的异频邻区信息中,异频邻区的数目不会超过第一规定数目,如32个,并且异频频点的数目不会超过第二规定数目,如2个;对于E-UTRA或5G NR网络,确定出的异频邻区信息中,异频频点个数不超过第三规定数目,如16个,本申请最大化利用了异频频点和异频邻区,减少了UE的测量GAP,提高了异频切换成功率,降低了掉话率。
在一种示例性实例中,所述方法还包括:通过测量控制消息将得到的异频邻区信息发送给用户终端,以在合适时机触发用户终端进行异频邻区的测量。
本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项所述的确定异频邻区的方法。
本申请实施例还提供一种实现确定异频邻区的装置,包括处理器、存储器;其中,存储器上存储有可在处理器上运行的计算机程序:用于执行上述任一项所述的确定异频邻区的方法。
图3为本申请实施例提供的确定异频邻区的装置的组成结构示意图,如图3所示,至少包括:获取模块、处理模块;其中,获取模块,设置为在监测到用户终端进入共享网络边界区域,获取用户终端归属网络的网络标识;处理模块,设置为根据所述网络标识对应的可执行异频切换的异频频点配置信息,对用户终端可切换的邻区信息进行处理,得到包括属于所述异频频点的邻区的异频邻区信息。
在一种示例性实例中,获取模块中的用户终端进入共享网络边界区域,包括:用户终端处于共享网络边界区域,并接入或者切换到共享网络边界区域的一个边界小区,且所述边界小区是主服务小区。
在一种示例性实例中,在UTRA网络中,主服务小区为激活集中的主小区;在E-UTRA和5G NR网络中,主服务小区为PCell。
在一种示例性实例中,用户终端归属网络的网络标识包括:用户终端归属的PLMN的PLMN ID。
在一种示例性实例中,本申请确定异频邻区的装置还包括:第一配置模块,设置为对共享网络边界区域的每个主服务小区下的每个运营商PLMN分配0到规定数目的异频频点,从而形成所有可执行异频切换的异频频点的配置信息。在一种示例性实例中,针对UTRA,规定的数目为第一规定数目,如2个的异频频点;针对E-UTRA或5G NR,规定的数目为第二规定数目,如16个异频频点。
在一种示例性实例中,本申请确定异频邻区的装置还包括:第二配置模块,设置为根据归属每个运营商的用户终端实际可以执行异频切换的异频邻区,配置共享网络边界区域的每个小区的异频邻区信息作为用户终端可切换的邻区信息。
在一种示例性实例中,处理模块是设置为:根据用户终端归属PLMN的PLMN ID,在归属的PLMN的可执行异频切换的异频频点的配置信息中,查找到用户终端接入或切换到的目标边界小区对应的异频频点;根据查找到的异频频点对用户终端可切换的邻区信息包括的所有的异频频点和异频邻区进行过滤,保留属于查找到的异频频点的邻区,删除不属于查找到的异频频点的邻区。
在一种示例性实例中,对于UTRA网络,过滤后的异频频点不会超过第一规定数目,如2个;对于E-UTRA或5G NR网络,过滤后的异频频点不会超过第二规定数目,如16个。
在一种示例性实例中,处理模块还设置为:对于UTRA网络,在过滤后的异频邻区中的邻区个数大于第三规定数目(如32个)的情况下,根据优先级对过滤后的异频邻区中的邻区进行排序,选择优先级级别高的前第三规定数目(如32个邻区)作为过滤后的异频邻区。在一种示例性实施例中,处理模块还设置 为:对于优先级相同的邻区,按照配置顺序从前往后进行排序即可。
通过本申请提供的确定异频邻区的装置,对于UTRA网络,确定出的异频邻区信息中,异频邻区的数目不会超过第三规定数目,如32个,并且异频频点的数目不会超过第一规定数目,如2个;对于E-UTRA或5G NR网络,确定出的异频邻区信息中,异频频点个数不超过第二规定数目,如16个,本申请最大化利用了异频频点和异频邻区,减少了UE的测量GAP,提高了异频切换成功率,降低了掉话率。
在一种示例性实例中,本申请确定异频邻区的装置还包括:测量控制模块,设置为通过测量控制消息将得到的异频邻区信息发送给用户终端,以在合适时机触发用户终端进行异频邻区的测量。
下面结合具体实施例对本申请进行描述。
第一实施例,以UTRA网络为例,假设由无线网络控制器(RNC,Radio Network Controller)实现对邻区信息的确定,第一实施例中,以图1所示的共享载波边界区域的异频切换示意图为例,共享载波由运营商A提供,另外两家运营商即运营商B和运营商C,可以在共享载波区域使用运营商A的载波,而在非共享载波区域不能使用运营商A的载波。确定邻区信息的方法包括:
首先,RNC根据实际情况和规划配置每个小区的可切换的异频邻区信息;以及,RNC配置共享载波边界区域小区的区分PLMN ID的异频邻区可执行异频切换的异频频点。
在一种示例性实例中,可以预先根据每个运营商UE实际可以执行异频切换的异频邻区进行配置,此时不用考虑频点数量限制,如图4所示,共享区域内边界小区F1,F2,F3均配置了超过2个频点的异频邻区,图4中,双向箭头表示双向切换关系,单项箭头表示单项切换关系。
在一种示例性实例中,结合图1的描述,以CELL1为例,CELL1下配置的可执行异频切换的异频频点包括:网络A可切换的频点:频点F2,频点F3;网络B可切换的频点:频点F2,频点F4;网络C可切换的频点:频点F2,频点F7。
在一种示例性实例中,每个PLMN ID是实际共享载波区域使用的PLMN ID,在第一实施例中,共享载波由运营商A提供,运营商B和运营商C在共享 载波区域可以接入或者使用运营商A的载波,在非共享区域则不能使用。
接着,当一个归属PLMN的用户终端初始接入到共享载波区域的一边界小区,通过硬切换或者软切换到该边界小区且该边界小区是为主服务小区时,启动本申请确定异频邻区的方法。
在一种示例性实例中,初始接入共享载波区域的一边界小区,可以是通过如无线资源控制(Radio Resource Control,RRC)连接请求以及小区更新(CELL UPDATE)请求接入到该边界小区,并且该边界小区是激活集中的主服务小区。通过硬切换或者软切换到该边界小区并且该边界小区为主服务小区包括:用户终端从其他小区硬切换到该边界小区,并且该边界小区是主服务小区,以及通过激活集更新流程添加该边界小区为激活集中的小区,并且是激活集中的主服务小区。
然后,将激活集中的所有小区的异频邻区合并,将多个小区的异频邻区表组成第一列表,假设合并后得到的第一列表称为该UE的小区级的异频邻区列表。
在一种示例性实例中,由于激活集中的小区可能会有重复的邻区,因此在合并得到第一列表过程中会删除重复的邻区。在合并得到的第一列表中,异频邻区数目可以超过32个,异频频点数目可以超过2个。
之后,根据区分PLMN ID的异频邻区可执行异频切换的异频频点的配置信息,对合并得到的第一列表进行过滤,删除不属于异频频点配置信息中的异频频点的邻区,以形成第二列表。
第二列表可以称为该UE的UE级的异频邻区列表。第二列表中的异频频点数目不会超过2个,但是,第二列表中的异频邻区数目可以超过32个。
结合图1所示的共享载波边界区域的异频切换示意图,图5(a)为本申请第一实施例提供的网络A的用户终端的第二列表的邻区关系示意图,图5(b)为本申请第一实施例提供的网络B的用户终端的第二列表的邻区关系示意图,图5(c)为本申请第一实施例提供的网络C的用户终端的第二列表的邻区关系示意图。
在一种示例性实例中,如果第二列表中的异频邻区数目超过了32个,根据每个异频邻区的优先级和配置顺序对第二列表中的异频邻区进行排序,优先级级别高的排在前面,优先级级别相同的按照配置顺序排序,配置在前面的排序 靠前,删除第二列表中排在前面的32个异频邻区之后的异频邻区信息。
最后,RNC会将处理后的异频邻区信息(即第二列表通过测量控制消息)发送给该UE,以在合适时机触发UE进行异频邻区的测量。
第二实施例,以UTRA网络为例,假设由RNC实现对邻区信息的确定,第二实施例中,以图6所示的共享载波边界区域的异频切换示意图为例,共享载波由运营商A和运营商B提供,在共享载波区域,运营商A的用户可以使用运营商B的载波,运营商B的用户可以使用运营商A的载波,运营商C的用户可以使用运营商A和运营商B的载波,而在非共享载波区域运营商A,B,C只能使用自己的载波。确定邻区信息的方法包括:
首先,RNC根据实际情况和规划配置每个小区的可切换的异频邻区信息;以及,RNC配置共享载波边界区域小区的区分PLMN ID的异频邻区可执行异频切换的异频频点。
在一种示例性实例中,可以预先根据每个运营商UE实际可以执行异频切换的异频邻区进行配置,此时不用考虑频点数量限制,如图7所示,共享区域边界小区F1,F2,F3,F4,F5,F6均配置了超过2个频点的异频邻区,图7中,双向箭头表示双向切换关系,单项箭头表示单项切换关系。
在一种示例性实例中,结合图6,以CELL1为例,CELL1下配置的可执行异频切换的异频频点包括:网络A可切换的频点:频点F2,频点F3;网络B可切换的频点:频点F2,频点F4;网络C可切换的频点:频点F2,频点F7。
本实施例中的运营商A,运营商B,运营商C的用户在共享区域边界可以执行异频切换到归属的PLMN网络。每个PLMN网络是实际共享载波区域使用的PLMN网络,第二实施例中,共享载波由运营商A和运营商B提供,在共享载波区域,运营商A的用户可以使用运营商B的载波,运营商B可以使用运营商A的载波,运营商C可以使用运营商A和B的载波,在非共享载波区域运营商A,运营商B,运营商C只能使用自己的载波。
接着,当一个归属PLMN的用户终端初始接入到共享载波区域的一边界小区,通过硬切换或者软切换到该边界小区且该边界小区是为主服务小区时,启动本申请确定异频邻区的方法。
在一种示例性实例中,初始接入共享载波区域的一边界小区,可以是通过 RRC连接请求以及CELL UPDATE请求接入到该边界小区,并且该边界小区是激活集中的主服务小区。在一实施例中,通过硬切换或者软切换到该边界小区并且该边界小区为主服务小区包括:用户终端从其他小区硬切换到该边界小区,并且该边界小区是主服务小区,以及通过激活集更新流程添加该边界小区为激活集中的小区,并且是激活集中的主服务小区。
然后,将激活集中的所有小区的异频邻区合并,将多个小区的异频邻区表组成第一列表,假设合并后得到的第一列表称为该UE的小区级的异频邻区列表。
在一种示例性实例中,由于激活集中的小区可能会有重复的邻区,因此在合并得到第一列表过程中会删除重复的邻区。在合并得到的第一列表中,异频邻区数目可以超过32个,异频频点数目可以超过2个。
之后,根据区分PLMN ID的异频邻区可执行异频切换的异频频点配置信息,对合并得到的第一列表进行过滤,删除不属于异频频点配置信息中的异频频点的邻区,以形成第二列表。
第二列表可以称为该UE的UE级的异频邻区列表。第二列表中的异频频点数目不会超过2个,但是,第二列表中的异频邻区数目可以超过32个。
结合图6所示的共享载波边界区域的异频切换示意图,图8(a)为本申请第二实施例提供的网络A的用户终端的第二列表的邻区关系示意图,图8(b)为本申请第二实施例提供的网络B的用户终端的第二列表的邻区关系示意图,图8(c)为本申请第二实施例提供的网络C的用户终端的第二列表的邻区关系示意图。
在一种示例性实例中,如果第二列表中的异频邻区数目超过了32个,根据每个异频邻区的优先级和配置顺序对第二列表中的异频邻区进行排序,优先级级别高的排在前面,优先级级别相同的按照配置顺序排序,配置在前面的排序靠前,删除第二列表中排在前面的32个异频邻区之后的异频邻区信息。
最后,RNC会将处理后的异频邻区信息(即第二列表通过测量控制消息)发送给该UE,以在合适时机触发UE进行异频邻区的测量。
第三实施例,以E-UTRA或者5G NR网络为例,假设由演进基站(Evolved Nodeb,eNodeb)或者下一代基站(Generation Nodeb,gNodeb)实现对邻区信息的确定,第三实施例中,以图9所示的共享载波边界区域的异频切换示意图 为例,共享载波由运营商A提供,另外四家运营商即运营商B、运营商C、运营商D和运营商E,可以在共享载波区域使用运营商A的载波,而在非共享载波区域不能使用运营商A的载波。确定邻区信息的方法包括:
首先,eNodeb或者gNodeb根据实际情况和规划配置每个小区的可切换的异频邻区信息;以及,eNodeb或者gNodeb配置共享载波边界区域小区的区分PLMN ID的异频邻区可执行异频切换的异频频点。
在一种示例性实例中,可以预先根据每个运营商UE实际可以执行异频切换的异频邻区进行配置,此时不用考虑频点数量限制,如图10所示,共享区域内边界小区F1,F2,F3,F4均配置11个频点的异频邻区,图10中,双向箭头表示双向切换关系,单项箭头表示单项切换关系。
在一种示例性实例中,结合图9,以CELL1为例,CELL1下配置的可执行异频切换的异频频点包括:网络A可切换的频点:频点F2,频点F3,频点F4;网络B可切换的频点:频点F2,频点F5,频点F6;网络C可切换的频点:频点F2,频点F9,频点F10;网络D可切换的频点:频点F2,频点F13,频点F14;网络E可切换的频点:频点F2,频点F17,频点F18。
本实施例中,每个PLMN ID是实际共享载波区域使用的PLMN ID,第三实施例中,共享载波由运营商A提供,另外4家运营商即运营商B,运营商C,运营商D,运营商E在共享载波区域可以接入或者使用运营商A的载波,在非共享区域不能使用而只能使用自己的载波。
接着,当一个归属PLMN用户终端初始接入到共享载波区域的一边界小区,通过切换到该边界小区时,启动本申请确定异频邻区的方法。
在一种示例性实例中,初始接入共享载波区域的一边界小区,可以是通过RRC连接请求以及RRC重建立请求接入到该边界小区。,通过切换到该边界小区包括:用户终端从其他小区切换到该边界小区,并且此小区是主服务小区。
在一种示例性实例中,该边界小区针对该UE的PLMN的异频频点列表为该UE的小区级的异频频点列表。
结合图9所示的共享载波边界区域的异频切换示意图,图11(a)为本申请第三实施例提供的网络A的用户终端的第二列表的邻区关系示意图,图11(b)为本申请第三实施例提供的网络B的用户终端的第二列表的邻区关系示意图,图 11(c)为本申请第三实施例提供的网络C的用户终端的第二列表的邻区关系示意图,图11(d)为本申请第三实施例提供的网络D的用户终端的第二列表的邻区关系示意图,图11(e)为本申请第三实施例提供的网络E的用户终端的第二列表的邻区关系示意图。
最后,eNode或者gNodeb会将处理后的异频邻区信息中包括的异频频点通过测量控制消息发送给UE,以触发UE进行异频邻区的测量。
在UE将测量结果上报后,eNode或者gNodeb会与配置的邻区进行匹配,匹配成功后执行切换动作。由于本申请中每个PLMN的UE的测量频点已经做了限制和区分,因此,邻区匹配阶段也只会匹配UE的小区级的异频频点列表对应的异频邻区,不会切换到其他频点的邻区。

Claims (21)

  1. 一种确定异频邻区的方法,包括:
    获取进入共享网络边界区域的用户终端归属网络的网络标识;
    根据所述网络标识对应的可执行异频切换的异频频点的配置信息,对用户终端可切换的邻区信息进行处理,得到包括属于所述异频频点的邻区的异频邻区信息。
  2. 根据权利要求1所述的方法,所述获取进入共享网络边界区域的用户终端归属网络的网络标识之前,还包括:
    所述用户终端进入共享网络边界区域;
    所述用户终端进入共享网络边界区域,包括:
    所述用户终端处于所述共享网络边界区域,并接入或者切换到所述共享网络边界区域的目标边界小区,且所述目标边界小区是主服务小区。
  3. 根据权利要求2所述的方法,其中,在通用路面无线接入UTRA网络中,所述主服务小区为激活集中的主小区;
    在演进通用路面无线接入E-UTRA和第五代移动通信技术新空口5G NR网络中,所述主服务小区为主小区PCell。
  4. 根据权利要求1所述的方法,其中,所述用户终端归属网络的网络标识包括:所述用户终端归属的公共陆地移动网络PLMN的PLMN标识PLMN ID。
  5. 根据权利要求4所述的方法,其中,所述对用户终端可切换的邻区信息进行处理,包括:
    根据所述用户终端归属的PLMN的PLMN ID,在归属的PLMN的可执行异频切换的异频频点的配置信息中,查找到所述用户终端接入或切换到的目标边界小区对应的异频频点;
    根据查找到的异频频点对所述用户终端可切换的邻区信息包括的所有的异频频点和异频邻区进行过滤,删除不属于查找到的异频频点的邻区。
  6. 根据权利要求5所述的方法,其中,对于UTRA网络,在过滤后的所述异频邻区中的邻区个数大于第三规定数目的情况下,还包括:
    根据优先级对过滤后的所述异频邻区中的邻区进行排序,从优先级级别最高开始,选择第三规定数目的邻区作为过滤后的异频邻区。
  7. 根据权利要求1、5或6所述的方法,所述对用户终端可切换的邻区信息进行处理之前,还包括:
    对所述共享网络边界区域的每个主服务小区下的每个运营商PLMN分配0到规定数目的异频频点,以形成所有可执行异频切换的异频频点的配置信息。
  8. 根据权利要求1、5或6所述的方法,所述对用户终端可切换的邻区信息进行处理之前,还包括:
    根据归属每个运营商的用户终端实际可以执行异频切换的异频邻区,配置所述共享网络边界区域的每个小区的异频邻区信息作为所述用户终端可切换的邻区信息。
  9. 根据权利要求8所述的方法,其中,对于UTRA网络,所述用户终端可切换的邻区信息包括:激活集内的所有小区合并后的邻区信息。
  10. 根据权利要求1所述的方法,还包括:
    通过测量控制消息将得到的所述异频邻区信息发送给所述用户终端。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~权利要求10中任一项所述的确定异频邻区的方法。
  12. 一种实现确定异频邻区的装置,包括处理器、存储器;其中,存储器上存储有可在处理器上运行的计算机程序:用于执行权利要求1~权利要求10中任一项所述的确定异频邻区的方法。
  13. 一种确定异频邻区的装置,包括:获取模块、处理模块;其中,
    获取模块,设置为在监测到用户终端进入共享网络边界区域,获取用户终端归属网络的网络标识;
    处理模块,设置为根据所述网络标识对应的可执行异频切换的异频频点的配置信息,对用户终端可切换的邻区信息进行处理,得到包括属于所述异频频点的邻区的异频邻区信息。
  14. 根据权利要求13所述的装置,所述用户终端进入共享网络边界区域,包括:
    所述用户终端处于共享网络边界区域,并接入或者切换到共享网络边界区 域的目标边界小区,且所述目标边界小区是主服务小区。
  15. 根据权利要求14所述的装置,其中,在通用路面无线接入UTRA网络中,所述主服务小区为激活集中的主小区;
    在演进通用路面无线接入E-UTRA和第五代移动通信技术新空口5G NR网络中,所述主服务小区为主小区PCell。
  16. 根据权利要求13所述的装置,其中,所述用户终端归属网络的网络标识包括:用户终端归属的公共陆地移动网络PLMN的PLMN标识PLMN ID。
  17. 根据权利要求16所述的装置,其中,所述处理模块是设置为:
    根据所述用户终端归属PLMN的PLMN ID,在归属的PLMN的可执行异频切换的异频频点的配置信息中,查找到所述用户终端接入或切换到的目标边界小区对应的异频频点;根据查找到的异频频点对所述用户终端可切换的邻区信息包括的所有的异频频点和异频邻区进行过滤,删除不属于查找到的异频频点的邻区。
  18. 根据权利要求17所述的装置,其中,所述处理模块还设置为:
    对于UTRA网络,在过滤后的所述异频邻区中的邻区个数大于第三规定数目的情况下,
    根据优先级对过滤后的所述异频邻区中的邻区进行排序,选择优先级级别高的前第三规定数目的邻区作为过滤后的异频邻区。
  19. 根据权利要求13、16或17所述的装置,还包括:
    第一配置模块,设置为对所述共享网络边界区域的每个主服务小区下的每个运营商PLMN分配0到规定数目的异频频点,以形成所有可执行异频切换的所述异频频点的配置信息。
  20. 根据权利要求13、16或17所述的装置,还包括:
    第二配置模块,设置为根据归属每个运营商的用户终端实际可以执行异频切换的异频邻区,配置所述共享网络边界区域的每个小区的异频邻区信息作为所述用户终端可切换的邻区信息。
  21. 根据权利要求13所述的装置,还包括:
    测量控制模块,设置为通过测量控制消息将得到的所述异频邻区信息发送 给用户终端。
PCT/CN2020/100541 2019-07-09 2020-07-07 一种确定异频临区的方法及装置 WO2021004440A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20837315.9A EP3979688A4 (en) 2019-07-09 2020-07-07 METHOD AND DEVICE FOR DETERMINING ADJACENT INTERMEDIATE FREQUENCY AREA
ZA2022/00172A ZA202200172B (en) 2019-07-09 2022-01-03 Method and apparatus for determining inter-frequency adjacent area

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910613787.1 2019-07-09
CN201910613787.1A CN112218304B (zh) 2019-07-09 2019-07-09 一种确定异频邻区的方法及装置

Publications (1)

Publication Number Publication Date
WO2021004440A1 true WO2021004440A1 (zh) 2021-01-14

Family

ID=74048324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100541 WO2021004440A1 (zh) 2019-07-09 2020-07-07 一种确定异频临区的方法及装置

Country Status (4)

Country Link
EP (1) EP3979688A4 (zh)
CN (1) CN112218304B (zh)
WO (1) WO2021004440A1 (zh)
ZA (1) ZA202200172B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472470A (zh) * 2021-05-31 2021-10-01 荣耀终端有限公司 一种多运营商下的小区搜索方法及电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112261698B (zh) * 2020-10-13 2023-09-26 北京小米移动软件有限公司 接入网络的方法及装置、终端、存储介质
CN115087055B (zh) * 2021-03-12 2024-07-02 中国电信股份有限公司 网络切换方法、装置、介质及电子设备
CN113645688B (zh) * 2021-09-27 2023-01-20 展讯通信(上海)有限公司 网络接入注册方法、装置、终端设备以及存储介质
CN114980240B (zh) * 2021-11-19 2024-01-16 广州华立科技职业学院 一种多运营商共建基站的共享通信方法、装置及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089069A1 (en) * 2012-12-03 2014-06-12 Interdigital Patent Holdings, Inc. Multi-site operation in shared spectrum
CN109819433A (zh) * 2017-11-20 2019-05-28 中国移动通信有限公司研究院 异网漫游处理方法、通信设备及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100922982B1 (ko) * 2005-01-27 2009-10-22 삼성전자주식회사 네트워크 공유 시스템에서 인접 셀들의 네트워크 정보를 송수신하는 방법 및 이를 위한 시스템
GB2500267A (en) * 2012-03-16 2013-09-18 Nec Corp Using subscription information for a mobile device to select parameters when handing over from a LTE network to a CDMA network
US10764798B2 (en) * 2016-11-16 2020-09-01 Corning Optical Communications LLC Discovery of neighbor radio access systems by a user mobile communications device serviced by a radio access network (RAN) for reporting discovered systems to a serving system in the RAN

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089069A1 (en) * 2012-12-03 2014-06-12 Interdigital Patent Holdings, Inc. Multi-site operation in shared spectrum
CN109819433A (zh) * 2017-11-20 2019-05-28 中国移动通信有限公司研究院 异网漫游处理方法、通信设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "PLMN per carrier for UTRAN and E-UTRAN Neighbor cell lists", 3GPP DRAFT; R2-083384 PLMN FOR NCELLS, vol. RAN WG2, 24 June 2008 (2008-06-24), Warsaw, Poland, pages 1 - 9, XP050603886, DOI: 20200911104429X *
See also references of EP3979688A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472470A (zh) * 2021-05-31 2021-10-01 荣耀终端有限公司 一种多运营商下的小区搜索方法及电子设备

Also Published As

Publication number Publication date
ZA202200172B (en) 2022-10-26
CN112218304A (zh) 2021-01-12
EP3979688A4 (en) 2022-07-27
EP3979688A1 (en) 2022-04-06
CN112218304B (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
WO2021004440A1 (zh) 一种确定异频临区的方法及装置
TWI583238B (zh) 支援用於無線通信裝置之多個用戶身分之平行通信之方法及設備
TWI586121B (zh) 用以管理用於無線通訊器件中多用戶身份之資料連結的方法及裝置
TWI559788B (zh) 在無線通訊裝置中針對多重用戶身份再使用無線電路之方法及設備
CN109246846B (zh) 双连接的测量配置方法、测量方法、调度方法及装置、存储介质、基站、终端
RU2668071C1 (ru) Способ и устройство оптимизации сигнализации
CN106134273B (zh) 在无线通信系统中由终端执行的装置对装置(d2d)操作的方法及使用该方法的终端
WO2014032502A1 (zh) 终端接入方法、系统和终端
KR20210109600A (ko) Plmn 선택 및 셀 (재)선택을 위한 방법 및 장치
US10616815B2 (en) Cell measurement reporting method and user equipment
TW201322677A (zh) 提供中繼行動性系統及/或方法
US10172052B2 (en) Method and device for dynamically constructing virtual cell
CN102413528B (zh) 切换失败的处理方法及用户设备
WO2017012299A1 (zh) 一种网络共享中重建立小区的选择方法及装置
WO2021135508A1 (zh) 一种切换方法及装置、存储介质、电子设备
CN113645673A (zh) 用于在电信网络中管理移动终端的移动性的方法
TWI587666B (zh) 用於在無線通信裝置中之複數個用戶識別的協同作用之方法及裝置
CN103906147A (zh) 一种确定目标小区的方法和设备
EP4322594A1 (en) Cell reselection method, communications apparatus, and computer-readable storage medium
CN112449404A (zh) 一种改变用户终端网络接入类型的方法及设备
CN113950108B (zh) 一种小区重选方法、装置、终端及网络节点
CN104284392A (zh) 一种信息发送及小区搜索的方法、装置
CN112956226B (zh) 在通信系统中隔离虚假基站
WO2022054267A1 (ja) 端末、基地局、通信方法及びプログラム
WO2021139464A1 (zh) 一种双连接的切换方法、切换设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020837315

Country of ref document: EP

Effective date: 20211231