WO2020255193A1 - エレベーターの終端階強制減速システム - Google Patents

エレベーターの終端階強制減速システム Download PDF

Info

Publication number
WO2020255193A1
WO2020255193A1 PCT/JP2019/023864 JP2019023864W WO2020255193A1 WO 2020255193 A1 WO2020255193 A1 WO 2020255193A1 JP 2019023864 W JP2019023864 W JP 2019023864W WO 2020255193 A1 WO2020255193 A1 WO 2020255193A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
section
detection material
hoistway
position information
Prior art date
Application number
PCT/JP2019/023864
Other languages
English (en)
French (fr)
Inventor
英敬 石黒
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/023864 priority Critical patent/WO2020255193A1/ja
Publication of WO2020255193A1 publication Critical patent/WO2020255193A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/04Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed
    • B66B5/06Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed electrical

Definitions

  • the present invention relates to a forced deceleration system on the terminal floor of an elevator.
  • Patent Document 1 discloses an example of a forced speed reduction device on the terminal floor of an elevator.
  • the end-floor forced speed reducer reads out a preset speed corresponding to the position of the car.
  • the terminal floor forced deceleration device decelerates or stops the car when the traveling speed of the car exceeds the read set speed.
  • An object of the present invention is to provide a terminal floor forced deceleration system that suppresses the occurrence of malfunction due to the accumulation of errors between the rotation angle of the sheave and the position of the car.
  • the forced deceleration system on the terminal floor of the elevator provides car position information based on the number of rotations of the sheave around which the rope moving inside the hoistway is wound when the car of the elevator travels inside the hoistway.
  • a position detection unit to detect a monitoring speed generation unit that generates the monitoring speed of the car based on the position information of the car, and a traveling section determination unit that determines whether or not the car is in the deceleration section on the terminal side of the hoistway.
  • the in-section detection material provided at the floor position in the deceleration section of the hoistway, and the car side that detects the in-section detection material when there is a car at the floor position where the in-section detection material is provided in the car.
  • the detector and the traveling section determination unit determine that the car is in the deceleration section
  • the car side detector detects the detection material in the section, it is based on the position information of the detection material in the section in the hoistway.
  • a position correction unit for correcting the position information of the car is provided.
  • the terminal floor forced deceleration system includes a position detection unit, a monitoring speed generation unit, a traveling section determination unit, an in-section detection material, a car side detector, and a position correction unit.
  • the position detection unit detects the position information of the car based on the rotation speed of the sheave.
  • a sheave is a device on which a rope is wound. The rope moves inside the hoistway as the elevator car travels inside the hoistway.
  • the monitoring speed generation unit generates the monitoring speed of the car based on the position information of the car.
  • the traveling section determination unit determines whether or not the car is in the deceleration section.
  • the deceleration section is the section on the terminal side of the hoistway.
  • the intra-section detection material is provided at the floor position in the deceleration section of the hoistway.
  • the car side detector is provided in the car.
  • the car side detector detects the section detection material when the car is located on the floor where the section detection material is provided.
  • the traveling section determination unit determines that the car is in the deceleration section.
  • the position correction unit corrects the position information of the car based on the position information in the hoistway of the in-section detection material.
  • FIG. 1 It is a block diagram of the terminal floor forced deceleration system which concerns on Embodiment 1.
  • FIG. It is a figure which shows the monitoring speed by the terminal floor forced deceleration system which concerns on Embodiment 1. It is a figure which shows the example of the operation of the terminal floor forced deceleration system which concerns on Embodiment 1.
  • FIG. It is a figure which shows the hardware composition of the main part of the terminal floor forced reduction apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram of the terminal floor forced deceleration system which concerns on Embodiment 2.
  • FIG. 1 It is a block diagram of the terminal floor forced deceleration system which concerns on Embodiment 1.
  • FIG. 1 is a configuration diagram of a terminal floor forced deceleration system according to the first embodiment.
  • the terminal floor forced deceleration system 1 is applied to the elevator 2.
  • the elevator 2 is provided in a building having a plurality of floors.
  • the hoistway 3 of the elevator 2 is provided.
  • the hoistway 3 is provided over a plurality of floors from the lowest floor to the top floor.
  • the bottom floor and the top floor are the terminal floors.
  • the end side of the hoistway 3 is the lower end side of the hoistway 3 or the upper end side of the hoistway 3.
  • the building may have a floor below the lowest floor of the hoistway 3.
  • the building may have a floor above the top floor of the hoistway 3.
  • Elevator 2 includes a hoisting machine 4, a main rope 5, a basket 6, and a balance weight 7.
  • the hoisting machine 4 is provided, for example, in the upper part of the hoistway 3.
  • the hoisting machine 4 has a sheave and a motor that generates a driving force for rotating the sheave.
  • the main rope 5 is wound around the sheave of the hoisting machine 4.
  • the car 6 is a device for transporting a passenger on board between a plurality of floors by traveling in the vertical direction inside the hoistway 3. The car 6 is hung on one side of the main rope 5 with respect to the sheave of the hoisting machine 4 inside the hoistway 3.
  • the balance weight 7 is suspended on the other side of the main rope 5 with respect to the sheave of the hoisting machine 4 inside the hoistway 3.
  • the balancing weight 7 is a device that balances the load due to the weight of the car 6 on the sheave of the hoisting machine 4 by its own weight.
  • the elevator 2 includes a shock absorber 8a on the car 6 side and a shock absorber 8b on the balance weight 7 side.
  • the shock absorber 8a on the car 6 side is provided at the lower end of the hoistway 3.
  • the shock absorber 8a on the car 6 side is arranged below the car 6.
  • the shock absorber 8b on the counterweight 7 side is provided at the lower end of the hoistway 3.
  • the shock absorber 8b on the counterweight 7 side is arranged below the counterweight 7.
  • the shock absorber 8 is a device that alleviates the impact caused by the collision even if the car 6 or the counterweight 7 collides with the lower end of the hoistway 3.
  • the running of the car 6 is controlled by the control panel of the elevator 2 (not shown).
  • the control panel When the car 6 is driven, the control panel generates a driving force in the motor of the hoisting machine 4.
  • the main rope 5 moves in the vertical direction inside the hoistway 3 as the sheave of the hoisting machine 4 rotates due to the generated driving force.
  • the car 6 moves in the vertical direction inside the hoistway 3 as the main rope 5 moves.
  • the main rope 5 is an example of a rope that moves inside the hoistway 3 when the car 6 travels inside the hoistway 3.
  • the hoistway 3 of the elevator 2 is divided into a plurality of types of traveling sections.
  • the traveling section is, for example, a constant speed traveling section or a deceleration section.
  • the deceleration section is a section on the terminal side of the hoistway 3.
  • the deceleration section is provided on the upper end side of the hoistway 3 and the lower end side of the hoistway 3.
  • the constant speed traveling section is a section including the central region of the hoistway 3 in the vertical direction.
  • the constant speed traveling section is a section excluding the deceleration section.
  • the length of the constant speed traveling section is longer than the length of the deceleration section on the lower end side and the length of the deceleration section on the upper end side.
  • the control panel decelerates the car 6 in the deceleration section.
  • the control panel does not have to immediately decelerate the car 6 when the car 6 passes the boundary between the constant speed traveling section and the deceleration section. That is, when the car 6 passes the boundary between the constant speed traveling section and the deceleration section to the terminal floor side, the control panel decelerates the car 6 after continuing the traveling at the rated speed of the car 6 in the deceleration section. You may.
  • the terminal floor forced deceleration system 1 includes a speed governor rope 9, a speed governor sheave 10, a rotation speed detection unit 11, a plurality of detection materials 12, a car side detector 13, and a terminal floor forced deceleration device 14. Be prepared.
  • the speed governor rope 9 moves in the vertical direction inside the hoistway 3 as the car 6 travels. That is, the speed governor rope 9 is an example of a rope that moves inside the hoistway 3 when the car 6 travels inside the hoistway 3.
  • the governor sheave 10 is provided, for example, in the upper part of the hoistway 3.
  • the speed governor sheave 10 is a sheave around which the speed governor rope 9 is wound.
  • the rotation speed detection unit 11 is a part that detects the rotation speed of the sheave.
  • the rotation speed detection unit 11 is provided on, for example, the speed governor rope 9.
  • the rotation speed detection unit 11 has, for example, an encoder or a resolver.
  • Each of the plurality of detection materials 12 is discretely provided on the wall surface of the hoistway 3.
  • Each of the plurality of detection materials 12 is, for example, a metal plate.
  • each of the plurality of detection materials 12 has the same shape as each other.
  • each of the plurality of detection materials 12 is installed so as to face each other in the same direction.
  • a detection material 12a, a detection material 12b, a detection material 12c, a detection material 12d, a detection material 12e, and a detection material 12f are provided as a plurality of detection materials 12.
  • the elevator 2 is an elevator for which a non-stop floor is set, such as a shuttle elevator, each of the plurality of detection materials 12 may be appropriately provided at the floor position of the non-stop floor.
  • the detection material 12a and the detection material 12b are provided at the floor position included in the deceleration section on the lower end side.
  • the detection material 12a and the detection material 12b are examples of the detection material in the section.
  • the detection material 12c is provided at the upper boundary of the deceleration section on the lower end side.
  • the detection material 12c is an example of a boundary detection material.
  • the detection material 12a is provided at the floor position of the lowest floor of the hoistway 3.
  • the detection material 12b is provided at the floor position of the floor one floor above the lowest floor of the hoistway 3.
  • the detection material 12c is provided at the floor position of the floor one floor above the floor on which the detection material 12b is provided.
  • the detection material 12 is provided at the floor position of all the floors included in the deceleration section on the lower end side.
  • the detection material 12d is provided at the lower boundary of the deceleration section on the upper end side.
  • the detection material 12d is an example of a boundary detection material.
  • the detection material 12e and the detection material 12f are provided at the floor position included in the deceleration section on the upper end side.
  • the detection material 12e and the detection material 12f are examples of the detection material in the section.
  • the detection material 12f is provided at the floor position of the uppermost floor of the hoistway 3.
  • the detection material 12e is provided at the floor position of the floor one floor below the top floor of the hoistway 3.
  • the detection material 12d is provided at the floor position of the floor one floor below the floor on which the detection material 12e is provided.
  • the detection material 12 is provided at the floor position of all the floors included in the deceleration section on the upper end side.
  • the car side detector 13 is provided in the car 6.
  • the car side detector 13 moves on the hoistway 3 as the car 6 travels.
  • the car side detector 13 is provided, for example, on the upper part of the car 6.
  • the car side detector 13 is a device that detects the presence of the detection material 12 when the car 6 is located at a position where each of the plurality of detection materials 12 provided on the wall surface of the hoistway 3 is provided.
  • the car side detector 13 outputs a detection signal when detecting the presence of the detection material 12.
  • the car side detector 13 detects the detection material 12 by, for example, a mechanical switch.
  • the car-side detector 13 detects the detection material 12 by, for example, a sensor that detects light, ultrasonic waves, or an electromagnetic action such as capacitance or electromagnetic induction.
  • the car side detector 13 detects each of the plurality of detection materials 12 without distinguishing them.
  • the terminal floor forced deceleration device 14 is a device that forcibly decelerates the car 6 traveling at an excessive speed.
  • the terminal floor forced deceleration device 14 includes a position detection unit 15, a traveling section determination unit 16, a position correction unit 17, a monitoring speed generation unit 18, a speed detection unit 19, and a speed monitoring unit 20.
  • the position detection unit 15 is a part that detects the position information 21 of the car 6 based on the rotation speed of the sheave detected by the rotation speed detection unit 11.
  • the position information 21 of the car 6 when the car side detector 13 detects each of the plurality of detection materials 12 is stored as learning data 22.
  • the learning data 22 is stored, for example, in a storage unit of a terminal floor speed reducer (not shown).
  • the learning data 22 is generated, for example, by a learning unit of a terminal floor speed reducer (not shown).
  • the learning unit generates learning data 22 based on the position information 21 of the car 6 detected by the position detecting unit 15 when the car side detector 13 outputs a detection signal.
  • the learning unit may generate learning data 22 from, for example, input data from the outside.
  • the traveling section determination unit 16 is a portion that determines a traveling section in which the car 6 is located in the hoistway 3. The traveling section determination unit 16 determines whether or not the car 6 is in the deceleration section. In this example, the traveling section determination unit 16 switches the determination of whether or not the car 6 is in the deceleration section when the car side detector 13 detects the boundary detection material. The traveling section determination unit 16 determines the traveling section, for example, as follows.
  • the traveling section determination unit 16 determines that the car 6 is in the deceleration section. To do.
  • the traveling section determination unit 16 determines the traveling section, assuming that the detection material 12 detected while traveling in the constant speed traveling section is the boundary detecting material, for example.
  • the traveling section determination unit 16 determines, for example, the boundary detecting material on the lower end side and the boundary detecting material on the upper end side based on the traveling direction of the car 6. That is, the traveling section determination unit 16 determines that the boundary detecting material detected when the car 6 is traveling downward in the constant speed traveling section is the lower boundary detecting material. Further, the traveling section determination unit 16 determines that the boundary detecting material detected when the car 6 is traveling upward in the constant speed traveling section is the upper boundary detecting material.
  • the traveling section determination unit 16 determines that the car 6 is in the constant speed traveling section. To do. That is, the traveling section determination unit 16 determines that the car 6 is not in the deceleration section.
  • the traveling section determination unit 16 detects whether the detected detection material 12 is a boundary detection material or is detected within the section, for example, based on the position information 21 when the detection material 12 is detected and the learning data 22. Determine if it is a material.
  • the traveling section determination unit 16 causes the car 6 to travel at a constant speed. Judge that it is in the section. That is, the traveling section determination unit 16 determines that the car 6 is not in the deceleration section.
  • the mileage of the car 6 is detected by, for example, the traveling section determination unit 16 based on the rotation speed of the sheave detected by the rotation speed detecting unit 11. Further, the mileage of the car 6 after the detection by the car side detector 13 and before the next detection by the car side detector 13 is the mileage of the car 6 while there is no detection by the car side detector 13. ..
  • the traveling section determination unit 16 may determine the traveling section by setting the traveling distance that is reset each time the vehicle side detector 13 is detected as the traveling distance of the car 6 while the car side detector 13 does not detect the traveling distance. Good.
  • the threshold value used for determining the traveling section is set in advance to be longer than the distance between the adjacent detection materials 12 in, for example, continuous deceleration sections.
  • the threshold value may be set by the traveling section determination unit 16 based on, for example, the learning data 22. Alternatively, the threshold value may be set, for example, by inputting data from the outside.
  • the position correction unit 17 is a part that corrects the position information 21 of the car 6 detected by the position detection unit 15.
  • the position correction unit 17 corrects the position information 21 based on the detection signal and the learning data 22 input from the car side detector 13.
  • the monitoring speed generation unit 18 is a part that generates the monitoring speed 23 based on the detected position information 21.
  • the monitoring speed 23 is a reference traveling speed for forcibly decelerating the car 6. That is, when the traveling speed of the car 6 exceeds the monitoring speed 23, the car 6 is decelerated.
  • the monitoring speed generation unit 18 generates a constant monitoring speed 23 when the car 6 is in a position included in the constant speed section.
  • the monitoring speed generation unit 18 generates a monitoring speed 23 that changes according to the position information 21 of the car 6 when the car 6 is in a position included in the deceleration section.
  • the speed detection unit 19 is a part that detects the speed information 24 of the car 6 based on the information of the rotation speed detected by the rotation speed detection unit 11.
  • the speed monitoring unit 20 is a part that monitors whether or not the speed represented by the speed information 24 detected by the speed detection unit 19 exceeds the monitoring speed 23 generated by the monitoring speed generation unit 18.
  • the speed monitoring unit 20 outputs an emergency stop command 25 to, for example, a control panel (not shown).
  • the control panel shuts off the power of the hoisting machine 4 when the emergency stop command 25 is input.
  • the control panel brakes the rotation of the sheave of the hoisting machine 4 by, for example, a brake (not shown).
  • the traveling section determination unit 16 uses the position information 21 of the car 6 used by the monitoring speed generation unit 18 to generate the monitoring speed 23, for example, as follows. To disable it.
  • the traveling section determination unit 16 overwrites the position information 21 detected by the position detecting unit 15 with the constant position information in the central region of the hoistway 3 included in the constant speed traveling section.
  • the traveling section determination unit 16 determines that the car 6 is in the deceleration section, the traveling section determination unit 16 enables the position information 21 of the car 6 used by the monitoring speed generation unit 18 to generate the monitoring speed 23.
  • FIG. 2 is a diagram showing a monitoring speed by the terminal floor forced deceleration system according to the first embodiment.
  • the horizontal axis of the graph represents the position information 21 of the car 6.
  • the vertical axis of the graph represents the speed of the car 6.
  • the thick solid line in the graph represents the monitoring speed 23.
  • the thick alternate long and short dash line in the graph represents the speed information 24 when the car 6 traveling at a constant rated speed in a constant speed traveling section stops at the terminal floor.
  • the value of the monitoring speed 23 is sufficiently decelerated to the collision allowable speed of the shock absorber 8a on the car 6 side or the shock absorber 8b on the balance weight 7 side when the car 6 suddenly stops at a position exceeding the monitoring speed 23. It is set to the value of the speed that can be done.
  • the value of the monitoring speed 23 is set to a constant value in the constant speed traveling section regardless of the position of the car 6.
  • the value of the monitoring speed 23 changes according to the position of the car 6 in the deceleration section. In this example, the value of the monitoring speed 23 is set to decrease monotonically as the position of the car 6 approaches the end side of the hoistway 3.
  • the traveling section including the constant speed traveling section and the deceleration section is a section defined with respect to the setting of the monitoring speed 23. Therefore, the control panel may control the traveling speed of the car 6 regardless of the traveling section within a range not exceeding the monitoring speed 23. That is, the control panel may decelerate the car 6 in the constant speed traveling section, for example, when stopping the car 6 on the floor included in the constant speed traveling section. The control panel may accelerate the car 6 in the constant speed traveling section, for example, when starting the traveling of the car 6 from the floor included in the constant speed traveling section. The control panel may accelerate the car 6 in the deceleration section, for example, when starting the running of the car 6 from the floor included in the deceleration section.
  • the control panel may run the car 6 at a constant speed that is sufficiently lower than the rated speed and does not exceed the monitoring speed 23 in the deceleration section, for example, when the car 6 is run between a plurality of floors included in the deceleration section. ..
  • FIG. 3 is a diagram showing an example of the operation of the terminal floor forced deceleration system according to the first embodiment.
  • FIG. 3 On the left side of FIG. 3, a schematic diagram of the hoistway 3 and the plurality of detection materials 12 provided on the lower end side is shown.
  • a graph showing the transition of the position of the car 6 with time is shown.
  • the horizontal axis represents time.
  • the vertical axis represents the position of the car 6.
  • the thick solid line in the graph represents the actual position of the car 6.
  • the hatched rectangular portion indicates that any one of the plurality of detection materials 12 is detected.
  • the processing of the traveling section determination unit 16 based on the determined traveling section is shown.
  • the car 6 Before time t1, the car 6 is stopped on the floor included in the deceleration section. The car 6 is stopped at the lowest floor of the hoistway 3, for example. At this time, the car side detector 13 detects the detection material 12a. At this time, the traveling section determination unit 16 determines that the car 6 is in the deceleration section. The traveling section determination unit 16 enables the position information 21 of the car 6 used by the monitoring speed generation unit 18 to generate the monitoring speed 23.
  • the control panel starts traveling upward of the car 6. Due to the movement of the car 6, the car side detector 13 does not detect the detection material 12a. At this time, since the position information 21 is valid, the monitoring speed generation unit 18 generates the monitoring speed 23 according to the position of the car 6. When the car 6 travels from the terminal floor toward the center of the hoistway 3, forced deceleration is not essential. Therefore, the monitoring speed generation unit 18 may generate a constant monitoring speed 23 generated in the constant speed traveling section when the car 6 travels upward in the deceleration section on the lower end side.
  • the control panel stops the car 6 on another floor included in the deceleration section.
  • the car 6 stops, for example, on the floor one floor above the lowest floor of the hoistway 3.
  • the car side detector 13 detects the detection material 12b.
  • the position correction unit 17 corrects the position information 21 of the car 6 detected by the position detection unit 15 to the position information of the detection material 12b included in the learning data 22.
  • the control panel starts running upward of the car 6. Due to the movement of the car 6, the car side detector 13 does not detect the detection material 12b. At this time, the traveling section determination unit 16 determines that the car 6 is in the deceleration section. The traveling section determination unit 16 enables the position information 21 of the car 6 used by the monitoring speed generation unit 18 to generate the monitoring speed 23. Since the position information 21 is valid, the monitoring speed generation unit 18 generates the monitoring speed 23 according to the position of the car 6.
  • the control panel drives the car 6 to pass the boundary between the deceleration section and the constant speed traveling section.
  • the car side detector 13 detects the detection material 12c. Since the car 6 is traveling at time t3, the car side detector 13 does not detect the detection material 12c.
  • the traveling section determination unit 16 determines that the car 6 is not in the deceleration section.
  • the traveling section determination unit 16 invalidates the position information 21 of the car 6 used by the monitoring speed generation unit 18 to generate the monitoring speed 23. Since the position information 21 is invalidated by being overwritten with a constant value, the monitoring speed generation unit 18 generates a constant monitoring speed 23 regardless of the position of the car 6.
  • the control panel stops the car 6 on another floor included in the constant speed traveling section.
  • the detection material 12 is not provided in the constant speed traveling section. Therefore, the car side detector 13 does not detect the detection material 12.
  • the control panel starts traveling downward of the car 6.
  • the traveling section determination unit 16 determines that the car 6 is not in the deceleration section.
  • the traveling section determination unit 16 invalidates the position information 21 of the car 6 used by the monitoring speed generation unit 18 to generate the monitoring speed 23. Since the position information 21 is invalid, the monitoring speed generation unit 18 generates a constant monitoring speed 23 regardless of the position of the car 6.
  • the control panel stops the car 6 on another floor included in the constant speed traveling section.
  • the detection material 12 is not provided in the constant speed traveling section. Therefore, the car side detector 13 does not detect the detection material 12.
  • the control panel causes the car 6 to repeatedly operate on the short floor between the floors included in the constant speed traveling section.
  • an error in the amount of movement of the governor rope 9 derived from the rotation speed of the governor sheave 10 due to a slip between the governor rope 9 and the governor sheave 10 or a temperature change in the diameter of the governor sheave 10 occurs. Accumulate.
  • the monitoring speed generation unit 18 does not erroneously generate the monitoring speed 23 in the deceleration section.
  • the control panel starts traveling downward of the car 6.
  • the control panel drives the car 6 to pass the boundary between the constant speed traveling section and the deceleration section.
  • the car side detector 13 detects the detection material 12c. Since the car 6 is traveling at time t8, the car side detector 13 does not detect the detection material 12c.
  • the traveling section determination unit 16 determines that the car 6 is in the deceleration section.
  • the traveling section determination unit 16 enables the position information 21 of the car 6 used by the monitoring speed generation unit 18 to generate the monitoring speed 23.
  • the position correction unit 17 corrects the position information 21 of the car 6 detected by the position detection unit 15 to the position information of the detection material 12c included in the learning data 22. Since the position information 21 is valid, the monitoring speed generation unit 18 generates the monitoring speed 23 according to the position of the car 6.
  • the terminal floor forced deceleration system 1 operates in the same manner as the operation in the deceleration section on the lower end side illustrated here.
  • the terminal floor forced deceleration system 1 includes the position detection unit 15, the monitoring speed generation unit 18, the traveling section determination unit 16, the section detection material, and the car side detection.
  • a device 13 and a position correction unit 17 are provided.
  • the position detection unit 15 detects the position information 21 of the car 6 based on the rotation speed of the sheave.
  • a sheave is a device on which a rope is wound. The rope moves inside the hoistway 3 when the car 6 of the elevator 2 travels inside the hoistway 3.
  • the monitoring speed generation unit 18 generates the monitoring speed 23 of the car 6 based on the position information 21 of the car 6.
  • the traveling section determination unit 16 determines whether or not the car 6 is in the deceleration section.
  • the deceleration section is a section on the terminal side of the hoistway 3.
  • the intra-section detection material is provided at the floor position in the deceleration section of the hoistway 3.
  • the car side detector 13 is provided in the car 6.
  • the car side detector 13 detects the section detection material when the car 6 is located on the floor where the section detection material is provided.
  • the traveling section determination unit 16 determines that the car 6 is in the deceleration section. In this case, when the car side detector 13 detects the in-section detection material, the position correction unit 17 corrects the position information 21 of the car 6 based on the position information in the hoistway 3 of the in-section detection material. To do.
  • the car side detector 13 detects the detection material 12 provided at the position included in the deceleration section and corrects the position information 21. That is, even when the control panel causes the car 6 to repeat the short-floor operation in the deceleration section, the position information of the car 6 is obtained at the timing of landing on the floor position included in the deceleration section or the timing of passing through the floor position. 21 is corrected. Therefore, an error in the amount of movement of the governor rope 9 derived from the rotation speed of the governor sheave 10 due to a slip between the governor rope 9 and the governor sheave 10 or a temperature change in the diameter of the governor sheave 10 occurs. The error of the position information 21 of the car 6 due to the accumulation is suppressed. As a result, in the terminal floor forced deceleration system 1, the occurrence of malfunction due to the accumulation of errors between the rotation angle of the sheave and the position of the car 6 is suppressed.
  • the installation interval of the terminal floor switch is set wider than that of the elevator 2 not traveling at high speed.
  • the installation interval of the terminal floor switch may be set to an interval of 10 m or more.
  • the distance between the floors where the car 6 stops is generally about 3 m to 4 m. Therefore, in the elevator 2 traveling at high speed, there is a possibility that a plurality of floors are included within the installation interval of the terminal floor switch.
  • the detection material 12 of the terminal floor forced deceleration system 1 according to the first embodiment is provided at the floor position.
  • each of the plurality of detection materials 12 can have a simple and same configuration such as a metal plate. Therefore, the detection material 12 can be easily installed at the floor position of the hoistway 3.
  • the terminal floor forced deceleration system 1 is equipped with a boundary detection material.
  • the boundary detection material is provided at the boundary of the deceleration section in the hoistway 3.
  • the boundary detection material is detected by the car side detector 13 when the car 6 is located at the boundary of the deceleration section.
  • the traveling section determination unit 16 switches the determination of whether or not the car 6 is in the deceleration section.
  • Both the in-section detection material and the boundary detection material are detected by the car side detector 13.
  • the terminal floor forced deceleration system 1 can correct the position information 21 of the car 6 and determine the traveling section by a single car side detector 13 and a plurality of detection materials 12 detected by the car side detector 13. it can.
  • the intra-section detection material and the boundary detection material can have the same configuration. Therefore, the number of types of members of the terminal floor reduction system can be reduced. Further, in the introduction of the terminal floor deceleration system, it becomes easy to install each of the plurality of detection materials 12.
  • the terminal floor forced deceleration system 1 includes a second section detection material.
  • the second section detection material is provided at a floor position other than the floor position where the section detection material is provided in the deceleration section of the hoistway.
  • the car side detector detects the detection material in the section and the detection material in the second section without distinguishing them.
  • the car side detector detects the intra-section detection material and the boundary detection material without distinguishing them.
  • the set of the detection material in the section and the detection material in the second section is, for example, any one of the detection material 12a, the detection material 12b, the detection material 12e, and the detection material 12f.
  • the set of the detection material in the section and the boundary detection material is, for example, a set of any one of the detection material 12a, the detection material 12b, the detection material 12e, and the detection material 12f, and any of the detection material 12c and the detection material 12d. That is, the car side detector detects each of the detection material 12a to the detection material 12f without distinguishing them from each other.
  • each of the plurality of detection materials 12 may have a simple and the same configuration. This facilitates the installation of the plurality of detection materials 12.
  • the position correction unit 17 corrects the position information 21 of the car 6 based on the position information 21 in the hoistway 3 of the boundary detection material.
  • the position information 21 of the car 6 is displayed at the timing of landing at the boundary position of the deceleration section or the timing of passing through the position. It will be corrected. Therefore, an error in the amount of movement of the governor rope 9 derived from the rotation speed of the governor sheave 10 due to a slip between the governor rope 9 and the governor sheave 10 or a temperature change in the diameter of the governor sheave 10 occurs. The error of the position information 21 of the car 6 due to the accumulation is suppressed. As a result, in the terminal floor forced deceleration system 1, the occurrence of malfunction due to the accumulation of errors between the rotation angle of the sheave and the position of the car 6 is suppressed.
  • the traveling section determination unit 16 detects the traveling distance of the car 6 based on the rotation speed of the sheave. The traveling section determination unit 16 determines that the car 6 is not in the deceleration section when the traveling distance of the car 6 exceeds a preset threshold value while there is no detection by the car side detector 13.
  • the traveling section determination unit 16 can determine that the car 6 is in the constant speed traveling section based on the traveling distance detected from the rotation speed of the sheave. That is, the traveling section determination unit 16 can determine that the car 6 is not in the deceleration section. As a result, in the terminal floor forced deceleration system 1, the occurrence of malfunction due to the failure to determine the traveling section in which the car 6 is located is suppressed.
  • the traveling section determination unit 16 determines that the car 6 is not in the deceleration section, the traveling section determination unit 16 invalidates the position information 21 of the car 6 used by the monitoring speed generation unit 18 to generate the monitoring speed 23.
  • the control panel may cause the car 6 to repeat short-floor operation in a constant speed traveling section.
  • an error in the amount of movement of the governor rope 9 derived from the rotation speed of the governor sheave 10 due to a slip between the governor rope 9 and the governor sheave 10 or a temperature change in the diameter of the governor sheave 10. Can accumulate.
  • the monitoring speed generation unit 18 when the vehicle is not in the deceleration section, the monitoring speed generation unit 18 generates a constant monitoring speed 23 regardless of the position of the car 6. Therefore, even if an error can accumulate in the movement amount of the governor rope 9 derived from the rotation speed of the governor sheave 10, the monitoring speed 23 in the deceleration section is applied before the car 6 actually enters the deceleration section. The malfunction of the terminal floor forced deceleration system 1 such as being stopped is suppressed.
  • the speed governor sheave 10 may be the sheave of the speed governor of the elevator 2.
  • the speed governor rope 9 may be the rope of the speed governor of the elevator 2.
  • the rotation speed detection unit 11 may be provided on a tension wheel that applies tension to the speed control rope 9 below the speed control rope 9.
  • the rotation speed detection unit 11 may be provided on the sheave of the hoisting machine 4.
  • the rotation speed detection unit 11 may be provided on a sheave such as a return wheel around which the main rope 5 or the like is wound.
  • FIG. 4 is a diagram showing a hardware configuration of a main part of the terminal floor forced speed reducer according to the first embodiment.
  • Each function of the terminal floor forced speed reducer 14 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 14b and at least one memory 14c.
  • the processing circuit may include at least one dedicated hardware 14a with or as a substitute for the processor 14b and the memory 14c.
  • each function of the terminal floor forced speed reducer 14 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in the memory 14c. The processor 14b realizes each function of the terminal floor forced deceleration device 14 by reading and executing the program stored in the memory 14c.
  • the processor 14b is also referred to as a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, and a DSP.
  • the memory 14c is composed of, for example, a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, or the like.
  • the processing circuit is provided with dedicated hardware 14a, the processing circuit is realized by, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • Each function of the terminal floor forced deceleration device 14 can be realized by a processing circuit.
  • each function of the terminal floor forced speed reduction device 14 can be collectively realized by a processing circuit.
  • a part may be realized by the dedicated hardware 14a, and the other part may be realized by software or firmware.
  • the processing circuit realizes each function of the terminal floor forced speed reducer 14 by hardware 14a, software, firmware, or a combination thereof.
  • Embodiment 2 In the second embodiment, the differences from the examples disclosed in the first embodiment will be described in detail. As for the features not described in the second embodiment, any of the features of the examples disclosed in the first embodiment may be adopted.
  • FIG. 5 is a configuration diagram of the terminal floor forced deceleration system according to the second embodiment.
  • the terminal floor forced deceleration system 1 includes a car side detector 26 and two hoistway side detectors 27.
  • the car side detection material 26 is provided in the car 6.
  • the car side detection material 26 moves on the hoistway 3 as the car 6 travels.
  • the car side detection material 26 is provided on, for example, the outer surface of the car 6.
  • the car side detection material 26 is, for example, a metal plate.
  • the car side detection material 26 has the same shape as each of the plurality of detection materials 12.
  • the detection material 12c and the detection material 12d are not provided at the boundary of the deceleration section.
  • Each of the two hoistway side detectors 27 is provided on the wall surface of the hoistway 3.
  • Each of the two hoistway side detectors 27 is a device that detects the presence of the car side detection material 26 provided in the car 6 when the car 6 is located at the position where the hoistway side detector 27 is provided.
  • Each of the two hoistway side detectors 27 outputs a detection signal when detecting the presence of the car side detection material 26.
  • the hoistway side detector 27 detects the car side detection material 26 by, for example, a mechanical switch.
  • the hoistway side detector 27 detects the car side detection material 26 by a sensor that detects, for example, light, ultrasonic waves, or an electromagnetic action such as capacitance or electromagnetic induction.
  • the hoistway side detector 27 detects the car side detection material 26 by the same method as the method in which the car side detector 13 detects each of the plurality of detection materials 12.
  • the hoistway side detector 27a and the hoistway side detector 27b are provided as the two hoistway side detectors 27.
  • the hoistway side detector 27a is provided at the upper boundary of the deceleration section on the lower end side.
  • the hoistway side detector 27b is provided at the lower boundary of the deceleration section on the upper end side.
  • the traveling section determination unit 16 of the terminal floor forced deceleration device 14 switches the determination of whether or not the car 6 is in the deceleration section.
  • the traveling section determination unit 16 determines the traveling section, for example, as follows.
  • the traveling section determination unit 16 determines that the car 6 is in the deceleration section. At this time, the traveling section determination unit 16 determines, for example, the hoistway side detector 27a on the lower end side and the hoistway side detector 27b on the upper end side based on the traveling direction of the car 6.
  • the traveling section determination unit 16 determines that the car 6 is in the constant speed traveling section. That is, the traveling section determination unit 16 determines that the car 6 is not in the deceleration section.
  • the traveling section determination unit 16 uses, for example, the hoistway side detector 27a on the lower end side and the hoistway side detector 27b on the upper end side based on the position information 21 and the learning data 22 when the detection material 12 is detected. Determine.
  • the traveling section determination unit 16 may be input independently so that the detection signals from each of the two hoistway side detectors 27 can be distinguished from each other. At this time, the traveling section determination unit 16 may discriminate between the hoistway side detector 27a on the lower end side and the hoistway side detector 27b on the upper end side based on the input detection signal.
  • the position correction unit 17 corrects the position information 21 based on the detection signals and the learning data 22 input from each of the car side detector 13 and the hoistway side detector 27.
  • the position correction unit 17 learns the position information 21 of the car 6 detected by the position detection unit 15 and the detection material 12 detected by the car side detector 13.
  • the position information included in the data 22 is corrected.
  • the position correction unit 17 uses the position information 21 of the car 6 detected by the position detection unit 15 and the hoistway side detector 27 that detects the car side detection material 26. Correct the position in the hoistway 3.
  • the terminal floor forced deceleration device 14 may include a dropout detection unit 28.
  • the dropout detection unit 28 is a part that detects the dropout of, for example, any of the plurality of detection materials 12, or the car side detection material 26.
  • the dropout detection unit 28 detects the dropout of any of the plurality of detection materials 12 as follows, for example.
  • the dropout detection unit 28 estimates the position information 21 of the car 6 in which the detection material 12 is detected based on the learning data 22 when the car 6 is in the deceleration section.
  • the dropout detection unit 28 detects the dropout of the detection material 12 when the detection material 12 is not detected in the range of the position of the car 6 including the estimated position information 21.
  • the range of the position of the car 6 used for determining the dropout is set in advance as a range corresponding to, for example, the detection accuracy of the position information 21 of the car 6.
  • the dropout detection unit 28 may detect the dropout of the car side detection material 26 as follows, for example.
  • the dropout detection unit 28 estimates the position information 21 of the car 6 in which the car side detection material 26 is detected based on the learning data 22 when the car 6 is in the deceleration section.
  • the position information 21 estimated here is the position of the boundary between the deceleration section and the constant speed traveling section.
  • the dropout detection unit 28 detects the dropout of the car side detection material 26 when the car side detection material 26 is not detected in the range of the position of the car 6 including the estimated position information 21.
  • the range of the position of the car 6 used for determining the dropout is set in advance as a range corresponding to, for example, the detection accuracy of the position information 21 of the car 6.
  • the terminal floor forced deceleration system 1 includes a car side detection material 26 and a hoistway side detector 27.
  • the car side detection material 26 is provided in the car 6.
  • the hoistway side detector 27 is provided at the boundary of the deceleration section in the hoistway 3.
  • the hoistway side detector 27 detects the car side detection material 26 when the car 6 is located at the boundary position.
  • the traveling section determination unit 16 switches the determination of whether or not the car 6 is in the deceleration section.
  • the terminal floor forced deceleration system 1 determines the traveling section and corrects the position of the car 6 by a device of another system. As a result, the traveling section can be determined more reliably. Further, the terminal floor forced deceleration system 1 can detect an abnormality such as dropping of any of the plurality of detection materials 12.
  • the position correction unit 17 corrects the position information 21 of the car 6 based on the position information in the hoistway 3 of the hoistway side detector 27. ..
  • the position information 21 of the car 6 is displayed at the timing of landing at the boundary position of the deceleration section or the timing of passing through the position. It will be corrected. Therefore, an error in the amount of movement of the governor rope 9 derived from the rotation speed of the governor sheave 10 due to a slip between the governor rope 9 and the governor sheave 10 or a temperature change in the diameter of the governor sheave 10 occurs. The error of the position information 21 of the car 6 due to the accumulation is suppressed. As a result, in the terminal floor forced deceleration system 1, the occurrence of malfunction due to the accumulation of errors between the rotation angle of the sheave and the position of the car 6 is suppressed.
  • the terminal floor forced deceleration system 1 may be provided with a boundary detection material at the boundary of the deceleration section.
  • the hoistway side detector 27 and the car side detection material 26 are used for determining the boundary of the traveling section by the traveling section determining unit 16.
  • the set of the detector and the detection material used for determining the boundary of the traveling section may be provided with the side of the car 6 and the side of the hoistway 3 interchanged. That is, a second car-side detector having the same function as the hoistway-side detector 27 may be provided in the car 6. Further, a boundary detection material having the same function as the car side detection material 26 may be provided on the wall surface of the hoistway 3 at the boundary of the deceleration section.
  • the set of the second car side detector and the boundary detection material may be provided separately from the set of the car side detector 13 and the detection material 12.
  • the dropout detection unit 28 may detect the dropout of the detection material 12 or the boundary detection material as follows, for example.
  • the dropout detection unit 28 estimates the position information of the car 6 in which the detection material 12 in the deceleration section is detected.
  • the dropout detection unit 28 detects the dropout of the detection material 12 when the detection material 12 is not detected in the range of the position of the car 6 including the estimated position information.
  • the dropout detection unit 28 estimates the position information of the car 6 in which the boundary detection material is detected when the car 6 is in the deceleration section.
  • the dropout detection unit 28 detects the dropout of the boundary detection material when the boundary detection material is not detected in the range of the position of the car 6 including the estimated position information.
  • the terminal floor forced deceleration system according to the present invention can be applied to an elevator.

Abstract

シーブの回転角およびかごの位置の間の誤差の累積による誤作動の発生を抑制する終端階強制減速システムを提供する。終端階強制減速システム(1)において、位置検出部(15)は、エレベーターのロープが巻き掛けられるシーブの回転数に基づいてかご(6)の位置情報(21)を検出する。監視速度生成部(18)は、かご(6)の位置情報(21)に基づいて監視速度(23)を生成する。走行区間判定部(16)は、かご(6)が昇降路(3)の終端側の減速区間にあるか否かを判定する。かご(6)に設けられるかご側検知器(13)は、区間内検知材が設けられる昇降路(3)の減速区間の階床位置にかご(6)があるときに当該区間内検知材を検知する。かご(6)が減速区間にある場合に、位置補正部(17)は、かご側検知器(13)が区間内検知材を検知するときに、当該区間内検知材の位置情報に基づいて、かご(6)の位置情報(21)を補正する。

Description

エレベーターの終端階強制減速システム
 本発明は、エレベーターの終端階強制減速システムに関する。
 特許文献1は、エレベーターの終端階強制減速装置の例を開示する。終端階強制減速装置は、かごの位置に対応して予め設定された設定速度を読み出す。終端階強制減速装置は、かごの走行速度が読み出した設定速度を超える場合に、かごを減速または停止させる。
日本特開2008-19052号公報
 しかしながら、特許文献1に記載の終端階強制減速システムにおいて、エンコーダーによって検出されたかごの位置に対応して設定速度が読み出される。このため、エンコーダーが設けられるシーブの回転角およびかごの位置の間に誤差が累積する場合に、誤った設定速度が読み出される可能性がある。この場合に、終端階強制減速装置が誤作動する可能性がある。
 本発明は、このような課題を解決するためになされた。本発明の目的は、シーブの回転角およびかごの位置の間の誤差の累積による誤作動の発生を抑制する終端階強制減速システムを提供することである。
 本発明に係るエレベーターの終端階強制減速システムは、エレベーターのかごが昇降路の内部を走行するときに昇降路の内部を移動するロープが巻き掛けられるシーブの回転数に基づいてかごの位置情報を検出する位置検出部と、かごの位置情報に基づいて、かごの監視速度を生成する監視速度生成部と、かごが昇降路の終端側の減速区間にあるか否かを判定する走行区間判定部と、昇降路の減速区間における階床位置に設けられる区間内検知材と、かごに設けられ、区間内検知材が設けられる階床位置にかごがあるときに区間内検知材を検知するかご側検知器と、かごが減速区間にあると走行区間判定部が判定する場合に、かご側検知器が区間内検知材を検知するときに、当該区間内検知材の昇降路における位置情報に基づいて、かごの位置情報を補正する位置補正部と、を備える。
 本発明によれば、終端階強制減速システムは、位置検出部と、監視速度生成部と、走行区間判定部と、区間内検知材と、かご側検知器と、位置補正部と、を備える。位置検出部は、シーブの回転数に基づいてかごの位置情報を検出する。シーブは、ロープが巻き掛けられる機器である。ロープは、エレベーターのかごが昇降路の内部を走行するときに昇降路の内部を移動する。監視速度生成部は、かごの位置情報に基づいて、かごの監視速度を生成する。走行区間判定部は、かごが減速区間にあるか否かを判定する。減速区間は、昇降路の終端側の区間である。区間内検知材は、昇降路の減速区間における階床位置に設けられる。かご側検知器は、かごに設けられる。かご側検知器は、区間内検知材が設けられる階床位置にかごがあるときに区間内検知材を検知する。走行区間判定部は、かごが減速区間にあると判定する。この場合に、位置補正部は、かご側検知器が区間内検知材を検知するときに、当該区間内検知材の昇降路における位置情報に基づいて、かごの位置情報を補正する。これにより、終端階強制減速システムにおいて、シーブの回転角およびかごの位置の間の誤差の累積による誤作動の発生が抑制される。
実施の形態1に係る終端階強制減速システムの構成図である。 実施の形態1に係る終端階強制減速システムによる監視速度を示す図である。 実施の形態1に係る終端階強制減速システムの動作の例を示す図である。 実施の形態1に係る終端階強制減速装置の主要部のハードウェア構成を示す図である。 実施の形態2に係る終端階強制減速システムの構成図である。
 本発明を実施するための形態について添付の図面を参照しながら説明する。各図において、同一または相当する部分には同一の符号を付して、重複する説明は適宜に簡略化または省略する。
 実施の形態1.
 図1は、実施の形態1に係る終端階強制減速システムの構成図である。
 終端階強制減速システム1は、エレベーター2に適用される。この例において、エレベーター2は、複数の階床を有する建築物に設けられる。建築物において、エレベーター2の昇降路3が設けられる。昇降路3は、最下階から最上階までの複数の階床にわたって設けられる。最下階および最上階は、終端階である。昇降路3の終端側は、昇降路3の下端側または昇降路3の上端側である。ここで、建築物は、昇降路3の最下階より下方に階床を有していてもよい。建築物は、昇降路3の最上階より上方に階床を有していてもよい。
 エレベーター2は、巻上機4と、主ロープ5と、かご6と、釣合いおもり7と、を備える。巻上機4は、例えば昇降路3の上部に設けられる。巻上機4は、シーブと、シーブを回転させる駆動力を発生させるモーターと、を有する。主ロープ5は、巻上機4のシーブに巻き掛けられる。かご6は、昇降路3の内部を鉛直方向に走行することによって、乗車している利用者を複数の階床の間で輸送する装置である。かご6は、昇降路3の内部において、巻上機4のシーブに対して主ロープ5の一方側に吊るされる。釣合いおもり7は、昇降路3の内部において、巻上機4のシーブに対して主ロープ5の他方側に吊るされる。釣合いおもり7は、巻上機4のシーブにかかるかご6側の重量による負荷との釣合いを自身の重量によって取る装置である。
 エレベーター2は、かご6側の緩衝器8aと、釣合いおもり7側の緩衝器8bと、を備える。かご6側の緩衝器8aは、昇降路3の下端に設けられる。かご6側の緩衝器8aは、かご6の下方に配置される。釣合いおもり7側の緩衝器8bは、昇降路3の下端に設けられる。釣合いおもり7側の緩衝器8bは、釣合いおもり7の下方に配置される。緩衝器8は、仮にかご6または釣合いおもり7が昇降路3の下端に衝突した場合においても、衝突による衝撃を緩和する装置である。
 エレベーター2において、かご6の走行は、図示されないエレベーター2の制御盤によって制御される。かご6を走行させるときに、制御盤は、巻上機4のモーターに駆動力を発生させる。主ロープ5は、発生した駆動力による巻上機4のシーブの回転に伴って昇降路3の内部を鉛直方向に移動する。かご6は、主ロープ5の移動に伴って昇降路3の内部を鉛直方向に移動する。主ロープ5は、かご6が昇降路3の内部を走行するときに昇降路3の内部を移動するロープの例である。
 エレベーター2の昇降路3は、複数の種類の走行区間に分けられる。走行区間は、例えば一定速度走行区間、または減速区間である。減速区間は、昇降路3の終端側の区間である。この例において、減速区間は、昇降路3の上端側および昇降路3の下端側の各々に設けられる。一定速度走行区間は、鉛直方向において昇降路3の中央の領域を含む区間である。この例において、一定速度走行区間は、減速区間を除く区間である。この例において、一定速度走行区間の長さは、下端側の減速区間の長さおよび上端側の減速区間の長さより長い。一定速度走行区間を一定の定格速度で走行しているかご6を終端階に停止させるときに、制御盤は、減速区間においてかご6を減速させる。制御盤は、かご6が一定速度走行区間と減速区間との境界を通過するときに、直ちにはかご6を減速させなくてもよい。すなわち、制御盤は、かご6が一定速度走行区間と減速区間との境界を終端階側に通過するときに、減速区間においてかご6の定格速度での走行を継続させた後にかご6を減速させてもよい。
 終端階強制減速システム1は、調速ロープ9と、調速シーブ10と、回転数検出部11と、複数の検知材12と、かご側検知器13と、終端階強制減速装置14と、を備える。
 調速ロープ9の両端は、かご6に取り付けられる。調速ロープ9は、かご6の走行に伴って昇降路3の内部を鉛直方向に移動する。すなわち、調速ロープ9は、かご6が昇降路3の内部を走行するときに昇降路3の内部を移動するロープの例である。
 調速シーブ10は、例えば昇降路3の上部に設けられる。調速シーブ10は、調速ロープ9が巻き掛けられるシーブである。
 回転数検出部11は、シーブの回転数を検出する部分である。回転数検出部11は、例えば調速ロープ9に設けられる。回転数検出部11は、例えばエンコーダーまたはレゾルバーを有する。
 複数の検知材12の各々は、昇降路3の壁面に離散的に設けられる。複数の検知材12の各々は、例えば金属板である。この例において、複数の検知材12の各々は、互いに同一の形状である。この例において、複数の検知材12の各々は、互いに同一の方向を向けて設置される。この例において、複数の検知材12として、検知材12a、検知材12b、検知材12c、検知材12d、検知材12e、および検知材12fが設けられる。なお、エレベーター2が例えばシャトルエレベーターなどのように非停止階が設定されるエレベーターである場合に、複数の検知材12の各々は、非停止階の階床位置に適宜設けられてもよい。
 検知材12aおよび検知材12bは、下端側の減速区間に含まれる階床位置に設けられる。検知材12aおよび検知材12bは、区間内検知材の例である。検知材12cは、下端側の減速区間の上側の境界に設けられる。検知材12cは、境界検知材の例である。この例において、検知材12aは、昇降路3の最下階の階床位置に設けられる。検知材12bは、昇降路3の最下階の1つ上の階床の階床位置に設けられる。検知材12cは、検知材12bが設けられる階床の1つ上の階床の階床位置に設けられる。この例において、下端側の減速区間に含まれる全ての階床の階床位置に検知材12が設けられる。
 検知材12dは、上端側の減速区間の下側の境界に設けられる。検知材12dは、境界検知材の例である。検知材12eおよび検知材12fは、上端側の減速区間に含まれる階床位置に設けられる。検知材12eおよび検知材12fは、区間内検知材の例である。この例において、検知材12fは、昇降路3の最上階の階床位置に設けられる。検知材12eは、昇降路3の最上階の1つ下の階床の階床位置に設けられる。検知材12dは、検知材12eが設けられる階床の1つ下の階床の階床位置に設けられる。この例において、上端側の減速区間に含まれる全ての階床の階床位置に検知材12が設けられる。
 かご側検知器13は、かご6に設けられる。かご側検知器13は、かご6の走行とともに昇降路3を移動する。かご側検知器13は、例えばかご6の上部に設けられる。かご側検知器13は、昇降路3の壁面に設けられる複数の検知材12の各々が設けられる位置にかご6があるときに、当該検知材12の存在を検知する装置である。かご側検知器13は、検知材12の存在を検知するときに、検知信号を出力する。かご側検知器13は、例えば機械的なスイッチによって検知材12を検知する。あるいは、かご側検知器13は、例えば光、超音波、または静電容量もしくは電磁誘導などの電磁気的な作用などを検出するセンサーによって検知材12を検知する。この例において、かご側検知器13は、複数の検知材12の各々を区別せずに検知する。
 終端階強制減速装置14は、過剰な速度で走行するかご6を強制的に減速させる装置である。終端階強制減速装置14は、位置検出部15と、走行区間判定部16と、位置補正部17と、監視速度生成部18と、速度検出部19と、速度監視部20と、を備える。
 位置検出部15は、回転数検出部11が検出したシーブの回転数に基づいて、かご6の位置情報21を検出する部分である。
 終端階強制減速装置14において、複数の検知材12の各々をかご側検知器13が検知するときのかご6の位置情報21を、学習データ22として格納する。学習データ22は、例えば図示されない終端階減速装置の記憶部に格納される。学習データ22は、例えば図示されない終端階減速装置の学習部によって生成される。学習部は、かご側検知器13が検知信号を出力するときに位置検出部15が検出したかご6の位置情報21に基づいて学習データ22を生成する。あるいは、学習部は、例えば外部からの入力データによって学習データ22を生成してもよい。
 走行区間判定部16は、昇降路3においてかご6がある走行区間を判定する部分である。走行区間判定部16は、かご6が減速区間にあるか否かを判定する。この例において、走行区間判定部16は、かご側検知器13が境界検知材を検知するときに、かご6が減速区間にあるか否かの判定を切り替える。走行区間判定部16による走行区間の判定は、例えば次のように行われる。
 例えば、かご6が一定速度走行区間にあるときに境界検知材の例である検知材12cをかご側検知器13が検知した後に、走行区間判定部16は、かご6が減速区間にあると判定する。ここで、走行区間判定部16は、例えば一定速度走行区間を走行しているときに検知された検知材12を境界検知材であるとして走行区間の判定を行う。このとき、走行区間判定部16は、例えば、かご6の走行方向に基づいて、下端側の境界検知材および上端側の境界検知材を判別する。すなわち、走行区間判定部16は、かご6が一定速度走行区間を下方に走行しているときに検知された境界検知材を、下側の境界検知材であると判定する。また、走行区間判定部16は、かご6が一定速度走行区間を上方に走行しているときに検知された境界検知材を、上側の境界検知材であると判定する。
 例えば、かご6が減速区間にあるときに境界検知材の例である検知材12cをかご側検知器13が検知した後に、走行区間判定部16は、かご6が一定速度走行区間にあると判定する。すなわち、走行区間判定部16は、かご6が減速区間にないと判定する。ここで、走行区間判定部16は、例えば検知材12が検知されたときの位置情報21と学習データ22とに基づいて、検知された検知材12が境界検知材であるか、または区間内検知材であるかを判別する。
 例えば、かご側検知器13による検知の後のかご6の走行距離が、かご側検知器13による次の検知の前に閾値を超える場合に、走行区間判定部16は、かご6が一定速度走行区間にあると判定する。すなわち、走行区間判定部16は、かご6が減速区間にないと判定する。ここで、かご6の走行距離は、回転数検出部11が検出するシーブの回転数に基づいて、例えば走行区間判定部16に検出される。また、かご側検知器13による検知の後からかご側検知器13による次の検知の前までのかご6の走行距離は、かご側検知器13による検知がない間のかご6の走行距離である。あるいは、走行区間判定部16は、かご側検知器13による検知のたびにリセットされる走行距離をかご側検知器13による検知がない間のかご6の走行距離として、走行区間を判定してもよい。走行区間の判定に用いられる閾値は、例えば連続する減速区間において隣接する検知材12の間の距離より長い距離に予め設定される。閾値は、例えば学習データ22に基づいて走行区間判定部16によって設定されてもよい。あるいは、閾値は、例えば外部からのデータ入力によって設定されてもよい。
 位置補正部17は、位置検出部15が検出したかご6の位置情報21を補正する部分である。位置補正部17は、かご側検知器13から入力される検知信号および学習データ22に基づいて位置情報21の補正を行う。
 監視速度生成部18は、検出された位置情報21に基づいて監視速度23を生成する部分である。監視速度23は、かご6を強制的に減速させる基準の走行速度である。すなわち、かご6の走行速度が監視速度23を超えるときに、かご6は減速させられる。監視速度生成部18は、かご6が一定速度区間に含まれる位置にあるときに、一定の監視速度23を生成する。監視速度生成部18は、かご6が減速区間に含まれる位置にあるときに、かご6の位置情報21によって変化する監視速度23を生成する。
 速度検出部19は、回転数検出部11が検出する回転数の情報に基づいて、かご6の速度情報24を検出する部分である。
 速度監視部20は、速度検出部19に検出される速度情報24の表す速度が、監視速度生成部18が生成する監視速度23を超えるか否かを監視する部分である。速度監視部20は、速度情報24の表す速度が監視速度23を超えるときに、緊急停止指令25を例えば図示されない制御盤に出力する。制御盤は、緊急停止指令25が入力されるときに、巻上機4の動力を遮断する。このとき、制御盤は、例えば図示されないブレーキによって巻上機4のシーブの回転を制動する。
 ここで、走行区間判定部16は、かご6が一定速度走行区間にあると判定するときに、監視速度生成部18が監視速度23の生成に用いるかご6の位置情報21を、例えば次のようにして無効にする。走行区間判定部16は、位置検出部15が検出する位置情報21を、一定速度走行区間に含まれる昇降路3の中央の領域の一定の位置情報で上書きする。走行区間判定部16は、かご6が減速区間にあると判定するときに、監視速度生成部18が監視速度23の生成に用いるかご6の位置情報21を有効にする。
 図2は、実施の形態1に係る終端階強制減速システムによる監視速度を示す図である。
 図2において、グラフの横軸は、かご6の位置情報21を表す。グラフの縦軸は、かご6の速度を表す。グラフの太い実線は、監視速度23を表す。グラフの太い一点鎖線は、一定速度走行区間を一定の定格速度で走行しているかご6が終端階に停止するときの速度情報24を表す。
 監視速度23の値は、監視速度23を超えた位置においてかご6の急停止が発生した場合に、かご6側の緩衝器8aまたは釣合いおもり7側の緩衝器8bの衝突許容速度以下まで十分減速できる速度の値に設定される。監視速度23の値は、一定速度走行区間において、かご6の位置によらずに一定の値に設定される。監視速度23の値は、減速区間において、かご6の位置に応じて変化する。この例において、監視速度23の値は、かご6の位置が昇降路3の終端側に近づくにつれて単調減少するように設定されている。
 ここで、一定速度走行区間および減速区間を含む走行区間は、監視速度23の設定に関して定義された区間である。このため、制御盤は、監視速度23を超えない範囲で、走行区間に依らずにかご6の走行速度を制御してもよい。すなわち、制御盤は、例えば一定速度走行区間に含まれる階床にかご6を停止させるときなどに、一定速度走行区間においてかご6を減速させてもよい。制御盤は、例えば一定速度走行区間に含まれる階床からかご6の走行を開始させるときなどに、一定速度走行区間においてかご6を加速させてもよい。制御盤は、例えば減速区間に含まれる階床からかご6の走行を開始させるときなどに、減速区間においてかご6を加速させてもよい。制御盤は、例えば減速区間に含まれる複数の階床の間においてかご6を走行させるときなどに、減速区間において定格速度より十分低く監視速度23を超えない一定の速度でかご6を走行させてもよい。
 続いて、図3を用いて、終端階強制減速システム1の動作の例を説明する。
 図3は、実施の形態1に係る終端階強制減速システムの動作の例を示す図である。
 図3の左側において、昇降路3、および下端側に設けられる複数の検知材12の模式図が示される。図3の右側上部において、かご6の位置の時間による推移を表すグラフが示される。このグラフにおいて、横軸は時間を表す。グラフにおいて、縦軸はかご6の位置を表す。グラフの太い実線は、実際のかご6の位置を表す。図3の右側中間部において、かご側検知器13による検知信号の有無が示される。ここで、ハッチングを施した矩形の部分は、複数の検知材12のいずれかが検知されていることを示す。図3の右側下部において、判定した走行区間に基づく走行区間判定部16の処理が示される。
 時刻t1より前において、かご6は減速区間に含まれる階床に停止している。かご6は、例えば昇降路3の最下階に停止している。このとき、かご側検知器13は、検知材12aを検知している。このとき、走行区間判定部16は、かご6が減速区間にあると判定する。走行区間判定部16は、監視速度生成部18が監視速度23の生成に用いるかご6の位置情報21を有効にしている。
 時刻t1において、制御盤は、かご6の上方への走行を開始させる。かご6の移動によって、かご側検知器13は、検知材12aを検知しなくなる。このとき、位置情報21が有効であるので、監視速度生成部18は、かご6の位置に応じた監視速度23を生成する。なお、かご6が終端階から昇降路3の中央に向かって走行する場合に、強制減速は必須ではない。このため、監視速度生成部18は、下端側の減速区間においてかご6が上方に走行するときに、一定速度走行区間において生成される一定の監視速度23を生成してもよい。
 その後の時刻t2において、制御盤は、かご6を減速区間に含まれる他の階床に停止させる。かご6は、例えば昇降路3の最下階の1つ上の階床に停止する。このとき、かご側検知器13は、検知材12bを検知している。このとき、位置補正部17は、位置検出部15が検出したかご6の位置情報21を、学習データ22に含まれる検知材12bの位置情報に補正する。
 その後、制御盤は、かご6の上方への走行を開始させる。かご6の移動によって、かご側検知器13は、検知材12bを検知しなくなる。このとき、走行区間判定部16は、かご6が減速区間にあると判定する。走行区間判定部16は、監視速度生成部18が監視速度23の生成に用いるかご6の位置情報21を有効にしている。位置情報21が有効であるので、監視速度生成部18は、かご6の位置に応じた監視速度23を生成する。
 その後の時刻t3において、制御盤は、かご6を走行させて減速区間および一定速度走行区間の境界を通過させる。このとき、かご側検知器13は、検知材12cを検知する。時刻t3においてかご6は走行しているので、かご側検知器13は、検知材12cを検知しなくなる。このとき、走行区間判定部16は、かご6が減速区間にないと判定する。走行区間判定部16は、監視速度生成部18が監視速度23の生成に用いるかご6の位置情報21を無効にする。位置情報21が一定値に上書きされることで無効となっているので、監視速度生成部18は、かご6の位置によらずに一定の監視速度23を生成する。
 その後の時刻t4において、制御盤は、かご6を一定速度走行区間に含まれる他の階床に停止させる。一定速度走行区間において、検知材12は設けられていない。このため、かご側検知器13は、検知材12を検知しない。その後の時刻t5において、制御盤は、かご6の下方への走行を開始させる。この間、走行区間判定部16は、かご6が減速区間にないと判定する。走行区間判定部16は、監視速度生成部18が監視速度23の生成に用いるかご6の位置情報21を無効にしている。位置情報21が無効となっているので、監視速度生成部18は、かご6の位置によらずに一定の監視速度23を生成する。
 その後の時刻t6において、制御盤は、かご6を一定速度走行区間に含まれる他の階床に停止させる。一定速度走行区間において、検知材12は設けられていない。このため、かご側検知器13は、検知材12を検知しない。その後、制御盤は、一定速度走行区間に含まれる階床の間において、かご6に繰返し短階床運転をさせる。この間、調速ロープ9および調速シーブ10の間のスリップ、または調速シーブ10の直径の温度変化などによって、調速シーブ10の回転数から導出される調速ロープ9の移動量の誤差が累積する。一方、一定速度走行区間において位置情報21が無効となっているため、監視速度生成部18は、減速区間における監視速度23を誤って生成することがない。
 その後の時刻t7において、制御盤は、かご6の下方への走行を開始させる。その後の時刻t8において、制御盤は、かご6を走行させて一定速度走行区間および減速区間の境界を通過させる。このとき、かご側検知器13は、検知材12cを検知する。時刻t8においてかご6は走行しているので、かご側検知器13は、検知材12cを検知しなくなる。このとき、走行区間判定部16は、かご6が減速区間にあると判定する。走行区間判定部16は、監視速度生成部18が監視速度23の生成に用いるかご6の位置情報21を有効にする。このとき、位置補正部17は、位置検出部15が検出したかご6の位置情報21を、学習データ22に含まれる検知材12cの位置情報に補正する。位置情報21が有効であるので、監視速度生成部18は、かご6の位置に応じた監視速度23を生成する。
 上端側の減速区間においても、終端階強制減速システム1は、ここに例示した下端側の減速区間における動作と同様に動作する。
 以上に説明したように、実施の形態1に係る終端階強制減速システム1は、位置検出部15と、監視速度生成部18と、走行区間判定部16と、区間内検知材と、かご側検知器13と、位置補正部17と、を備える。位置検出部15は、シーブの回転数に基づいてかご6の位置情報21を検出する。シーブは、ロープが巻き掛けられる機器である。ロープは、エレベーター2のかご6が昇降路3の内部を走行するときに昇降路3の内部を移動する。監視速度生成部18は、かご6の位置情報21に基づいて、かご6の監視速度23を生成する。走行区間判定部16は、かご6が減速区間にあるか否かを判定する。減速区間は、昇降路3の終端側の区間である。区間内検知材は、昇降路3の減速区間における階床位置に設けられる。かご側検知器13は、かご6に設けられる。かご側検知器13は、区間内検知材が設けられる階床位置にかご6があるときに区間内検知材を検知する。走行区間判定部16は、かご6が減速区間にあると判定する。この場合に、位置補正部17は、かご側検知器13が区間内検知材を検知するときに、当該区間内検知材の昇降路3における位置情報に基づいて、かご6の位置情報21を補正する。
 終端階強制減速システム1において、減速区間に含まれる位置に設けられた検知材12をかご側検知器13が検出して位置情報21を補正する。すなわち、制御盤が減速区間において短階床運転をかご6に繰り返させる場合においても、減速区間に含まれる階床位置に着床するタイミングまたは当該階床位置を通過するタイミングでかご6の位置情報21が補正される。このため、調速ロープ9および調速シーブ10の間のスリップ、または調速シーブ10の直径の温度変化などによって調速シーブ10の回転数から導出される調速ロープ9の移動量の誤差が累積することによるかご6の位置情報21の誤差が抑制される。これにより、終端階強制減速システム1において、シーブの回転角およびかご6の位置の間の誤差の累積による誤作動の発生が抑制される。
 一般に、高速走行するエレベーター2において、終端階スイッチの設置間隔は、高速走行しないエレベーター2と比較して広く設定される。例えば、定格速度が240m/minを超えるエレベーター2において、終端階スイッチの設置間隔は、10m以上の間隔に設定される場合がある。一方、かご6が停止する階床の間隔は、一般に3mから4m程度である。このため、高速走行するエレベーター2において終端階スイッチの設置間隔の内に複数の階床が含まれる可能性がある。ここで、実施の形態1に係る終端階強制減速システム1の検知材12は、階床位置に設けられる。このため、終端階スイッチが設けられる昇降路3の終端側の領域においてかご6の短階床運転が繰り返される場合においても、検知材12の検知によってかご6の位置情報21が補正される。また、複数の検知材12の各々は、例えば金属板などの単純かつ同一の構成とすることができる。このため、昇降路3の階床位置において、検知材12の設置がしやすくなる。
 また、終端階強制減速システム1は、境界検知材を備える。境界検知材は、昇降路3において減速区間の境界に設けられる。境界検知材は、減速区間の境界の位置にかご6があるときに、かご側検知器13に検知される。走行区間判定部16は、かご側検知器13が境界検知材を検知するときに、かご6が減速区間にあるか否かの判定を切り替える。
 区間内検知材および境界検知材は、ともにかご側検知器13に検知される。終端階強制減速システム1は、単一のかご側検知器13およびかご側検知器13に検知される複数の検知材12によって、かご6の位置情報21の補正および走行区間の判定を行うことができる。この例において、区間内検知材および境界検知材は、同一の構成とすることができる。このため、終端階減速システムの部材の種類の数が抑えられる。また、終端階減速システムの導入において、複数の検知材12の各々の設置がしやすくなる。
 また、終端階強制減速システム1は、第2区間内検知材を備える。第2区間内検知材は、昇降路の減速区間において区間内検知材が設けられる階床位置の他の階床位置に設けられる。かご側検知器は、区間内検知材および第2区間内検知材を区別せずに検知する。
 また、かご側検知器は、区間内検知材および境界検知材を区別せずに検知する。
 区間内検知材および第2区間内検知材の組は、例えば検知材12a、検知材12b、検知材12e、および検知材12fのうちのいずれか一組である。区間内検知材および境界検知材の組は、例えば検知材12a、検知材12b、検知材12e、および検知材12fのうちのいずれかと、検知材12cおよび検知材12dのいずれかとの組である。すなわち、かご側検知器は、検知材12aから検知材12fの各々を互いに区別せずに検知する。このとき、複数の検知材12の各々は単純かつ同一の構成であってもよい。これにより、複数の検知材12の設置がしやすくなる。
 また、位置補正部17は、かご側検知器13が境界検知材を検知するときに、当該境界検知材の昇降路3における位置情報21に基づいてかご6の位置情報21を補正する。
 制御盤が一定速度走行区間において短階床運転をかご6に繰り返させていた場合においても、減速区間の境界の位置に着床するタイミングまたは当該位置を通過するタイミングでかご6の位置情報21が補正される。このため、調速ロープ9および調速シーブ10の間のスリップ、または調速シーブ10の直径の温度変化などによって調速シーブ10の回転数から導出される調速ロープ9の移動量の誤差が累積することによるかご6の位置情報21の誤差が抑制される。これにより、終端階強制減速システム1において、シーブの回転角およびかご6の位置の間の誤差の累積による誤作動の発生が抑制される。
 また、走行区間判定部16は、シーブの回転数に基づいてかご6の走行距離を検出する。走行区間判定部16は、かご側検知器13による検知がない間のかご6の走行距離が予め設定された閾値を超えるときに、かご6が減速区間にないと判定する。
 例えばエレベーター2の電源を投入した直後などにおいて、かご6の位置情報21が不明となる場合がある。この場合においても、走行区間判定部16は、シーブの回転数から検出される走行距離に基づいて、かご6が一定速度走行区間にあることを判定できる。すなわち、走行区間判定部16は、かご6が減速区間にないことを判定できる。これにより、終端階強制減速システム1において、かご6のある走行区間が判定されないことによる誤作動の発生が抑制される。
 また、走行区間判定部16は、かご6が減速区間にないと判定する場合に、監視速度生成部18が監視速度23の生成に用いるかご6の位置情報21を無効にする。
 制御盤は、一定速度走行区間において短階床運転をかご6に繰り返させることがある。このときに、調速ロープ9および調速シーブ10の間のスリップ、または調速シーブ10の直径の温度変化などによって調速シーブ10の回転数から導出される調速ロープ9の移動量の誤差が累積しうる。ここで、減速区間にない場合に、監視速度生成部18は、かご6の位置によらず一定の監視速度23を生成する。このため、調速シーブ10の回転数から導出される調速ロープ9の移動量に誤差が累積しうる場合においても、かご6が実際に減速区間に入る前に減速区間における監視速度23が適用されるなどの終端階強制減速システム1の誤作動が抑制される。
 なお、調速シーブ10は、エレベーター2の調速器のシーブであってもよい。このとき、調速ロープ9は、エレベーター2の調速器のロープであってもよい。また、回転数検出部11は、調速ロープ9の下方において調速ロープ9に張力を与える張り車に設けられてもよい。また、回転数検出部11は、巻上機4のシーブに設けられてもよい。回転数検出部11は、主ロープ5などが巻き掛けられる例えば返し車などのシーブに設けられてもよい。
 続いて、図4を用いて終端階強制減速装置14のハードウェア構成の例について説明する。
 図4は、実施の形態1に係る終端階強制減速装置の主要部のハードウェア構成を示す図である。
 終端階強制減速装置14の各機能は、処理回路により実現し得る。処理回路は、少なくとも1つのプロセッサ14bと少なくとも1つのメモリ14cとを備える。処理回路は、プロセッサ14bおよびメモリ14cと共に、あるいはそれらの代用として、少なくとも1つの専用のハードウェア14aを備えてもよい。
 処理回路がプロセッサ14bとメモリ14cとを備える場合、終端階強制減速装置14の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。そのプログラムはメモリ14cに格納される。プロセッサ14bは、メモリ14cに記憶されたプログラムを読み出して実行することにより、終端階強制減速装置14の各機能を実現する。
 プロセッサ14bは、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。メモリ14cは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等により構成される。
 処理回路が専用のハードウェア14aを備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。
 終端階強制減速装置14の各機能は、それぞれ処理回路で実現することができる。あるいは、終端階強制減速装置14の各機能は、まとめて処理回路で実現することもできる。終端階強制減速装置14の各機能について、一部を専用のハードウェア14aで実現し、他部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路は、ハードウェア14a、ソフトウェア、ファームウェア、またはこれらの組み合わせで終端階強制減速装置14の各機能を実現する。
 実施の形態2.
 実施の形態2では、実施の形態1で開示された例と相違する点について詳しく説明する。実施の形態2で説明しない特徴については、実施の形態1で開示された例のいずれの特徴が採用されてもよい。
 図5は、実施の形態2に係る終端階強制減速システムの構成図である。
 終端階強制減速システム1は、かご側検知材26と、2つの昇降路側検知器27と、を備える。
 かご側検知材26は、かご6に設けられる。かご側検知材26は、かご6の走行とともに昇降路3を移動する。かご側検知材26は、例えばかご6の外側面に設けられる。かご側検知材26は、例えば金属板である。この例において、かご側検知材26は、複数の検知材12の各々と同一の形状である。この例において、検知材12cおよび検知材12dは、減速区間の境界に設けられていない。
 2つの昇降路側検知器27の各々は、昇降路3の壁面に設けられる。2つの昇降路側検知器27の各々は、当該昇降路側検知器27が設けられる位置にかご6があるときに、かご6に設けられるかご側検知材26の存在を検知する装置である。2つの昇降路側検知器27の各々は、かご側検知材26の存在を検知するときに、検知信号を出力する。昇降路側検知器27は、例えば機械的なスイッチによってかご側検知材26を検知する。あるいは、昇降路側検知器27は、例えば光、超音波、または静電容量もしくは電磁誘導などの電磁気的な作用などを検出するセンサーによってかご側検知材26を検知する。この例において、昇降路側検知器27は、かご側検知器13が複数の検知材12の各々を検知する方式と同一の方式によってかご側検知材26を検知する。この例において、2つの昇降路側検知器27として、昇降路側検知器27a、および昇降路側検知器27bが設けられる。昇降路側検知器27aは、下端側の減速区間の上側の境界に設けられる。昇降路側検知器27bは、上端側の減速区間の下側の境界に設けられる。
 終端階強制減速装置14の走行区間判定部16は、昇降路側検知器27がかご側検知材26を検知するときに、かご6が減速区間にあるか否かの判定を切り替える。走行区間判定部16による走行区間の判定は、例えば次のように行われる。
 例えば、かご6が一定速度走行区間にあるときにかご側検知材26を昇降路側検知器27aが検知した後に、走行区間判定部16は、かご6が減速区間にあると判定する。このとき、走行区間判定部16は、例えば、かご6の走行方向に基づいて、下端側の昇降路側検知器27aおよび上端側の昇降路側検知器27bを判別する。
 例えば、かご6が減速区間にあるときにかご側検知材26を昇降路側検知器27が検知した後に、走行区間判定部16は、かご6が一定速度走行区間にあると判定する。すなわち、走行区間判定部16は、かご6が減速区間にないと判定する。ここで、走行区間判定部16は、例えば検知材12が検知されたときの位置情報21と学習データ22とに基づいて、下端側の昇降路側検知器27aおよび上端側の昇降路側検知器27bを判別する。なお、走行区間判定部16は、2つの昇降路側検知器27の各々からの検知信号が互いに識別可能であるように独立に入力されてもよい。このとき、走行区間判定部16は、入力される検知信号によって下端側の昇降路側検知器27aおよび上端側の昇降路側検知器27bを判別してもよい。
 位置補正部17は、かご側検知器13および昇降路側検知器27の各々から入力される検知信号および学習データ22に基づいて位置情報21の補正を行う。かご側検知器13から検知信号が入力されるときに、位置補正部17は、位置検出部15が検出したかご6の位置情報21を、かご側検知器13に検知された検知材12の学習データ22に含まれる位置情報に補正する。昇降路側検知器27から検知信号が入力されるときに、位置補正部17は、位置検出部15が検出したかご6の位置情報21を、かご側検知材26を検知した昇降路側検知器27の昇降路3における位置に補正する。
 終端階強制減速装置14は、脱落検知部28を備えてもよい。脱落検知部28は、例えば複数の検知材12のいずれか、またはかご側検知材26などの脱落を検知する部分である。
 脱落検知部28は、例えば次のように複数の検知材12のいずれかの脱落を検知する。脱落検知部28は、かご6が減速区間にあるときに、学習データ22に基づいて検知材12が検知されるかご6の位置情報21を推定する。脱落検知部28は、推定された位置情報21を含むかご6の位置の範囲において検知材12が検知されない場合に、当該検知材12の脱落を検知する。ここで、脱落の判定に用いられるかご6の位置の範囲は、例えばかご6の位置情報21の検出精度に相当する範囲として予め設定される。
 脱落検知部28は、例えば次のようにかご側検知材26の脱落を検知してもよい。脱落検知部28は、かご6が減速区間にあるときに、学習データ22に基づいてかご側検知材26が検知されるかご6の位置情報21を推定する。ここで推定される位置情報21は、減速区間および一定速度走行区間の境界の位置である。脱落検知部28は、推定された位置情報21を含むかご6の位置の範囲においてかご側検知材26が検知されない場合に、かご側検知材26の脱落を検知する。ここで、脱落の判定に用いられるかご6の位置の範囲は、例えばかご6の位置情報21の検出精度に相当する範囲として予め設定される。
 以上に説明したように、実施の形態2に係る終端階強制減速システム1は、かご側検知材26と、昇降路側検知器27と、を備える。かご側検知材26は、かご6に設けられる。昇降路側検知器27は、昇降路3において減速区間の境界に設けられる。昇降路側検知器27は、境界の位置にかご6があるときにかご側検知材26を検知する。走行区間判定部16は、昇降路側検知器27がかご側検知材26を検知するときに、かご6が減速区間にあるか否かの判定を切り替える。
 終端階強制減速システム1は、走行区間の判定およびかご6の位置の補正を別系統の装置によって行う。これにより、走行区間の判定がより確実に行われる。また、終端階強制減速システム1は、複数の検知材12のいずれかの脱落などの異常を検知することができる。
 また、位置補正部17は、昇降路側検知器27がかご側検知材26を検知するときに、当該昇降路側検知器27の昇降路3における位置情報に基づいてかご6の位置情報21を補正する。
 制御盤が一定速度走行区間において短階床運転をかご6に繰り返させていた場合においても、減速区間の境界の位置に着床するタイミングまたは当該位置を通過するタイミングでかご6の位置情報21が補正される。このため、調速ロープ9および調速シーブ10の間のスリップ、または調速シーブ10の直径の温度変化などによって調速シーブ10の回転数から導出される調速ロープ9の移動量の誤差が累積することによるかご6の位置情報21の誤差が抑制される。これにより、終端階強制減速システム1において、シーブの回転角およびかご6の位置の間の誤差の累積による誤作動の発生が抑制される。
 なお、実施の形態2に係る終端階強制減速システム1は、減速区間の境界において境界検知材を備えてもよい。
 また、昇降路側検知器27およびかご側検知材26は、走行区間判定部16による走行区間の境界の判定に用いられる。このとき、走行区間の境界の判定に用いられる検知器および検知材の組は、かご6の側および昇降路3の側を入れ替えて設けられてもよい。すなわち、昇降路側検知器27と同様の機能を有する第2かご側検知器が、かご6に設けられていてもよい。また、かご側検知材26と同様の機能を有する境界検知材が、減速区間の境界において昇降路3の壁面に設けられていてもよい。当該第2かご側検知器および境界検知材の組は、かご側検知器13および検知材12の組と別に設けられていてもよい。
 このとき、脱落検知部28は、例えば次のように検知材12または境界検知材の脱落を検知してもよい。脱落検知部28は、かご6が減速区間にあるときに、当該減速区間の検知材12が検知されるかご6の位置情報を推定する。脱落検知部28は、推定した位置情報を含むかご6の位置の範囲において当該検知材12が検知されない場合に、当該検知材12の脱落を検知する。あるいは、脱落検知部28は、かご6が減速区間にあるときに境界検知材が検知されるかご6の位置情報を推定する。脱落検知部28は、推定した位置情報を含むかご6の位置の範囲において当該境界検知材が検知されない場合に当該境界検知材の脱落を検知する。
 本発明に係る終端階強制減速システムは、エレベーターに適用できる。
 1 終端階強制減速システム、 2 エレベーター、 3 昇降路、 4 巻上機、 5 主ロープ、 6 かご、 7 釣合いおもり、 8、8a、8b 緩衝器、 9 調速ロープ、 10 調速シーブ、 11 回転数検出部、 12、12a、12b、12c、12d、12e、12f 検知材、 13 かご側検知器、 14 終端階強制減速装置、 15 位置検出部、 16 走行区間判定部、 17 位置補正部、 18 監視速度生成部、 19 速度検出部、 20 速度監視部、 21 位置情報、 22 学習データ、 23 監視速度、 24 速度情報、 25 緊急停止指令、 26 かご側検知材、 27、27a、27b 昇降路側検知器、 28 脱落検知部、 14a ハードウェア、 14b プロセッサ、 14c メモリ

Claims (15)

  1.  エレベーターのかごが昇降路の内部を走行するときに前記昇降路の内部を移動するロープが巻き掛けられるシーブの回転数に基づいて前記かごの位置情報を検出する位置検出部と、
     前記かごの位置情報に基づいて、前記かごの監視速度を生成する監視速度生成部と、
     前記かごが前記昇降路の終端側の減速区間にあるか否かを判定する走行区間判定部と、
     前記昇降路の前記減速区間における階床位置に設けられる区間内検知材と、
     前記かごに設けられ、前記区間内検知材が設けられる階床位置に前記かごがあるときに前記区間内検知材を検知するかご側検知器と、
     前記かごが前記減速区間にあると前記走行区間判定部が判定する場合に、前記かご側検知器が前記区間内検知材を検知するときに、当該区間内検知材の前記昇降路における位置情報に基づいて、前記かごの位置情報を補正する位置補正部と、
     を備えるエレベーターの終端階強制減速システム。
  2.  前記昇降路の前記減速区間において前記区間内検知材が設けられる階床位置の他の階床位置に設けられる第2区間内検知材
     を備え、
     前記かご側検知器は、前記区間内検知材および前記第2区間内検知材を区別せずに検知する
     請求項1に記載のエレベーターの終端階強制減速システム。
  3.  前記昇降路において前記減速区間の境界に設けられ、前記境界の位置に前記かごがあるときに前記かご側検知器に検知される境界検知材
     を備え、
     前記走行区間判定部は、前記かご側検知器が前記境界検知材を検知するときに、前記かごが前記減速区間にあるか否かの判定を切り替える
     請求項1または請求項2に記載のエレベーターの終端階強制減速システム。
  4.  前記かご側検知器は、前記区間内検知材および前記境界検知材を区別せずに検知する
     請求項3に記載のエレベーターの終端階強制減速システム。
  5.  前記位置補正部は、前記かご側検知器が前記境界検知材を検知するときに、当該境界検知材の前記昇降路における位置情報に基づいて前記かごの位置情報を補正する
     請求項3または請求項4に記載のエレベーターの終端階強制減速システム。
  6.  前記かごに設けられるかご側検知材と、
     前記昇降路において前記減速区間の境界に設けられ、前記境界の位置に前記かごがあるときに前記かご側検知材を検知する昇降路側検知器と、
     を備え、
     前記走行区間判定部は、前記昇降路側検知器が前記かご側検知材を検知するときに、前記かごが前記減速区間にあるか否かの判定を切り替える
     請求項1または請求項2に記載のエレベーターの終端階強制減速システム。
  7.  前記位置補正部は、前記昇降路側検知器が前記かご側検知材を検知するときに、当該昇降路側検知器の前記昇降路における位置情報に基づいて前記かごの位置情報を補正する
     請求項6に記載のエレベーターの終端階強制減速システム。
  8.  前記かごが前記減速区間にあるときに前記区間内検知材が検知される前記かごの位置情報を推定し、推定した位置情報を含む前記かごの位置の範囲において当該区間内検知材が検知されない場合に当該区間内検知材の脱落を検知する脱落検知部
     を備える請求項6または請求項7に記載のエレベーターの終端階強制減速システム。
  9.  前記かごが前記減速区間にあるときに前記かご側検知材が検知される前記かごの位置情報を推定し、推定した位置情報を含む前記かごの位置の範囲において当該かご側検知材が検知されない場合に当該かご側検知材の脱落を検知する脱落検知部
     を備える請求項6または請求項7に記載のエレベーターの終端階強制減速システム。
  10.  前記昇降路において前記減速区間の境界に設けられる境界検知材と、
     前記かごに設けられ、前記境界の位置に前記かごがあるときに前記境界検知材を検知する第2かご側検知器と、
     を備え、
     前記走行区間判定部は、前記第2かご側検知器が前記境界検知材を検知するときに、前記かごが前記減速区間にあるか否かの判定を切り替える
     請求項1または請求項2に記載のエレベーターの終端階強制減速システム。
  11.  前記位置補正部は、前記第2かご側検知器が前記境界検知材を検知するときに、当該境界検知材の前記昇降路における位置情報に基づいて前記かごの位置情報を補正する
     請求項10に記載のエレベーターの終端階強制減速システム。
  12.  前記かごが前記減速区間にあるときに前記区間内検知材が検知される前記かごの位置情報を推定し、推定した位置情報を含む前記かごの位置の範囲において当該区間内検知材が検知されない場合に当該区間内検知材の脱落を検知する脱落検知部
     を備える請求項10または請求項11に記載のエレベーターの終端階強制減速システム。
  13.  前記かごが前記減速区間にあるときに前記境界検知材が検知される前記かごの位置情報を推定し、推定した位置情報を含む前記かごの位置の範囲において当該境界検知材が検知されない場合に当該境界検知材の脱落を検知する脱落検知部
     を備える請求項10または請求項11に記載のエレベーターの終端階強制減速システム。
  14.  前記走行区間判定部は、前記シーブの回転数に基づいて前記かごの走行距離を検出し、前記かご側検知器による検知がない間の前記かごの走行距離が予め設定された閾値を超えるときに前記かごが前記減速区間にないと判定する
     請求項1から請求項13のいずれか一項に記載のエレベーターの終端階強制減速システム。
  15.  前記走行区間判定部は、前記かごが前記減速区間にないと判定する場合に、前記監視速度生成部が前記監視速度の生成に用いる前記かごの位置情報を無効にする
     請求項1から請求項14のいずれか一項に記載のエレベーターの終端階強制減速システム。
PCT/JP2019/023864 2019-06-17 2019-06-17 エレベーターの終端階強制減速システム WO2020255193A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023864 WO2020255193A1 (ja) 2019-06-17 2019-06-17 エレベーターの終端階強制減速システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023864 WO2020255193A1 (ja) 2019-06-17 2019-06-17 エレベーターの終端階強制減速システム

Publications (1)

Publication Number Publication Date
WO2020255193A1 true WO2020255193A1 (ja) 2020-12-24

Family

ID=74040164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023864 WO2020255193A1 (ja) 2019-06-17 2019-06-17 エレベーターの終端階強制減速システム

Country Status (1)

Country Link
WO (1) WO2020255193A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103769A1 (ja) * 2005-03-30 2006-10-05 Mitsubishi Denki Kabushiki Kaisha エレベータ装置
JP2007112561A (ja) * 2005-10-19 2007-05-10 Mitsubishi Electric Corp エレベータの制御装置
JP2008207943A (ja) * 2007-02-27 2008-09-11 Mitsubishi Electric Corp エレベータ速度監視装置
JP2008230758A (ja) * 2007-03-20 2008-10-02 Toshiba Elevator Co Ltd エレベータの終端階速度制御システム
WO2010084581A1 (ja) * 2009-01-21 2010-07-29 三菱電機株式会社 エレベータ装置
WO2012137279A1 (ja) * 2011-04-01 2012-10-11 三菱電機株式会社 エレベータ装置
WO2017013763A1 (ja) * 2015-07-22 2017-01-26 三菱電機株式会社 エレベータ装置
JP2018002387A (ja) * 2016-07-01 2018-01-11 株式会社日立製作所 エレベーター装置及びプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103769A1 (ja) * 2005-03-30 2006-10-05 Mitsubishi Denki Kabushiki Kaisha エレベータ装置
JP2007112561A (ja) * 2005-10-19 2007-05-10 Mitsubishi Electric Corp エレベータの制御装置
JP2008207943A (ja) * 2007-02-27 2008-09-11 Mitsubishi Electric Corp エレベータ速度監視装置
JP2008230758A (ja) * 2007-03-20 2008-10-02 Toshiba Elevator Co Ltd エレベータの終端階速度制御システム
WO2010084581A1 (ja) * 2009-01-21 2010-07-29 三菱電機株式会社 エレベータ装置
WO2012137279A1 (ja) * 2011-04-01 2012-10-11 三菱電機株式会社 エレベータ装置
WO2017013763A1 (ja) * 2015-07-22 2017-01-26 三菱電機株式会社 エレベータ装置
JP2018002387A (ja) * 2016-07-01 2018-01-11 株式会社日立製作所 エレベーター装置及びプログラム

Similar Documents

Publication Publication Date Title
US7448471B2 (en) Elevator installation
JP5516729B2 (ja) エレベータシステム
JP4896873B2 (ja) エレベータ装置
JP5214239B2 (ja) エレベータ装置
US8813919B2 (en) Elevator safety system preventing collision of cars
JP6351854B2 (ja) エレベータ装置
CN108349686B (zh) 电梯系统和用于控制电梯系统的方法
CA2861399A1 (en) Method and control device for monitoring travel movements of a lift cage
JP2006298538A (ja) エレベータ装置
EP3564170B1 (en) Elevator car control to address abnormal passenger behavior
US4673062A (en) Position control system for elevator
US11554933B2 (en) Elevator
JP5741746B2 (ja) エレベータシステム
CN110817614A (zh) 提高电梯系统的运送能力
JPWO2004028947A1 (ja) エレベーター安全システム
JP6299926B2 (ja) エレベータの制御システム
WO2020090286A1 (ja) エレベーターの制御システム
WO2020255193A1 (ja) エレベーターの終端階強制減速システム
WO2019130407A1 (ja) エレベーター並びにエレベーターの戸開走行保護方法
JP6220613B2 (ja) エレベータの制御システム
JP5084113B2 (ja) エレベーター装置の異常検出装置
JP2007137554A (ja) エレベーターの終端階強制減速装置
JP2013193841A (ja) エレベータの制御装置
JP3370920B2 (ja) エレベーターの地震時管制運転装置
JP2023014525A (ja) エレベータ用待機型ブレーキの試験方法および試験装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP