WO2020252212A1 - Orbital surface cleaning apparatus - Google Patents

Orbital surface cleaning apparatus Download PDF

Info

Publication number
WO2020252212A1
WO2020252212A1 PCT/US2020/037316 US2020037316W WO2020252212A1 WO 2020252212 A1 WO2020252212 A1 WO 2020252212A1 US 2020037316 W US2020037316 W US 2020037316W WO 2020252212 A1 WO2020252212 A1 WO 2020252212A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
opening
polishing apparatus
additionally
floor cleaning
Prior art date
Application number
PCT/US2020/037316
Other languages
French (fr)
Inventor
Jeffrey T. HRUBY
Original Assignee
Hruby Jeffrey T
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hruby Jeffrey T filed Critical Hruby Jeffrey T
Priority to US16/954,668 priority Critical patent/US20230098260A1/en
Priority to EP20823459.1A priority patent/EP3982806A4/en
Publication of WO2020252212A1 publication Critical patent/WO2020252212A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/26Floor-scrubbing machines, hand-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/408Means for supplying cleaning or surface treating agents
    • A47L11/4083Liquid supply reservoirs; Preparation of the agents, e.g. mixing devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/10Floor surfacing or polishing machines motor-driven
    • A47L11/12Floor surfacing or polishing machines motor-driven with reciprocating or oscillating tools
    • A47L11/125Floor surfacing or polishing machines motor-driven with reciprocating or oscillating tools with supply of cleaning agents
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/10Floor surfacing or polishing machines motor-driven
    • A47L11/14Floor surfacing or polishing machines motor-driven with rotating tools
    • A47L11/16Floor surfacing or polishing machines motor-driven with rotating tools the tools being disc brushes
    • A47L11/162Floor surfacing or polishing machines motor-driven with rotating tools the tools being disc brushes having only a single disc brush
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/10Floor surfacing or polishing machines motor-driven
    • A47L11/14Floor surfacing or polishing machines motor-driven with rotating tools
    • A47L11/16Floor surfacing or polishing machines motor-driven with rotating tools the tools being disc brushes
    • A47L11/164Parts or details of the brushing tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • A47L11/4005Arrangements of batteries or cells; Electric power supply arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • A47L11/4008Arrangements of switches, indicators or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • A47L11/4038Disk shaped surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • A47L11/405Machines using UV-lamps, IR-lamps, ultrasound or plasma cleaning
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4069Driving or transmission means for the cleaning tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4072Arrangement of castors or wheels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4075Handles; levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/408Means for supplying cleaning or surface treating agents
    • A47L11/4088Supply pumps; Spraying devices; Supply conduits
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4091Storing or parking devices, arrangements therefor; Means allowing transport of the machine when it is not being used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/10Single-purpose machines or devices
    • B24B7/18Single-purpose machines or devices for grinding floorings, walls, ceilings or the like
    • B24B7/186Single-purpose machines or devices for grinding floorings, walls, ceilings or the like with disc-type tools

Definitions

  • the present invention relates to a cleaning device for planar surfaces such as floors, patios and the like. More particularly, the invention relates to orbital surface cleaning device which is configured with a narrow width for use on floor surfaces which must be accessed in narrow and confined areas and which is useable with any of a plurality of polishing components.
  • Conventional floor cleaning devices generally include cleaning head assemblies with handles engaged thereon.
  • Head assemblies generally consist of a drive motor (electric or gas powered) which are mounted to a separate frame, which drives a flywheel and drive plate which are mounted on the end of a handled frame.
  • Orbital cleaning devices have a drive motor and frame but employ cleaning head assemblies with flywheels adapted to engage polishers and pads, where a drive plate causes an oscillation of the pad or polisher. Weights are conventionally employed to achieve a desirable cleaning oscillation. This oscillation has been shown to provide improved cleaning characteristics when used upon stone, tile, ceramic, cement, wood, carpet, and other surfaces of floors during cleaning.
  • orbital cleaners and polishers are large and heavy devices and not easily employed to clean surfaces which have narrow access such as in offices between furniture or homes with the same narrow constraints. Further, such orbital cleaners are heavy and hard to transport and use, and most simply rely on the rotating pad or polisher to support the full weight of the device during use while holding it in the proper parallel plane with that of the floor or underlying surface.
  • the device herein described and disclosed provides a light weight, narrow-configured orbital polishing device, which is adapted for the easy mixing or adding of cleaning, polishing, and other materials to the fluid supply used during the process. Additionally, the device has two pairs of wheels for ease of transport and ease of use. A first set of wheels are positions on opposite sides of an axle which is engaged to the body of the polisher. Tiling the polisher in a direction toward this first pair of wheels will elevate the polishing pad off of the supporting surface and make the device easy to roll to positioning and storage.
  • a second set of wheels are engaged to an axle connected to a retractable support.
  • This second pair of wheels has a first position elevated above the support surface or surface to be cleaned.
  • the second set of wheels has a deployed position in contact with the surface being cleaned. In this deployed position, the second set of wheels forms a rear support which supports a portion of the weight of the polisher thereon which has been calculated at half or more depending on the volume of fluid in the tank which imparts weight to the device.
  • the second pair of wheels when in contact with the support surface which is the surface being cleaned and polished, contact that surface at a contact point which is substantially aligned with the front surface of the cleaning pad when moving in a cleaning contact with the surface.
  • the cleaning pad forms a first or front support
  • the deployed secondary wheels form a second or rear support for the device, and the two supports are aligned and maintain the pad substantially level and parallel to the surface being cleaned.
  • this positioning of the second set of wheels rolling on the contact point supports the rear of the polisher and maintains the polishing pad parallel to and in the same plane as the surface being cleaned or polished. This is most preferred, in that experimentation has shown that with the second set of wheels in the deployed position, the device uses less electrical power and the electric motor runs cooler. Rotational speed and oscillation of the pad of the device during use may be controlled by the scanning of a barcode on the insertable containers holding different polishes, cleaners, and disinfectants and the like. By scanning the code and communicating the bar scan to a computer either onboard the polisher or running on a computer such as a smartphone, the task or purpose of the contents of the container can be determined.
  • a signal can be sent to the motor controller which controls the electric motor powering the pad, to change speed and/or oscillation for the determined task. For example, if the contents of the container is for cleaning the surface, then the computer will signal the motor controller to use a predetermined speed and/or oscillation for cleaning, and if polishing is determined as the task, then the computer will signal the motor controller to adjust for that task.
  • the disclosed device is configured narrowly in width of the motor handle and oscillating polishing driver and pad allowing use in narrowly confined areas. Further, by forming the pads and disks in a narrow configuration, in combination with the parallel movement relative to the underlying surface provided by the second set of wheels, the use of battery power is more easily accomplished as the motor will run for a longer time on a single charge.
  • the polishing pad and pad driver are adapted to be narrow and oscillate while spinning
  • the retractable second set of wheels when deployed, form an alined pad surface and second set of wheel support with the spinning driver and pad.
  • a foldable wheel support is engaged to the frame in a manner allowing the secondary pair of wheels to be placed in a first or retracted position elevated above the support or floor surface. Such allows the device to more easily navigate narrow confines rolling on the first set of wheels, to reach the surface to be cleaned or polished.
  • the secondary wheels moved to the deployed position by folding down the support, whereupon the support frame will self lock.
  • the secondary wheels in the deployed position are located with contact surfaces contacting the support surface, which are lower relative to the first set of wheels on the rear of the frame of the device. This elevates the first set of wheels above the support surface being cleaned and polished. So elevated with the pad surface aligned with the contact point of the rearward second set of wheels, the rotating and oscillating pad on the pad driver is maintained in contact with the underlying surface with sufficient bias thereto to operate. Further, the biased pad is held substantially parallel to the underlying surface being cleaned or polished and supporting the first set and second set of wheels.
  • the deployed set of secondary wheels significantly enhanced the performance of the device. Further, experimentation showed this enhanced performance was maintained even when the operator of the device lacked experience. Damage to the floor being cleaned or polished, from out of plane contact of the oscillating pad therewith, was also prevented. Further, as noted, when run on battery power, the device operated for a longer period of time.
  • an onboard reservoir for fluid such as water
  • a constant spray of liquid to the floor or other surface. This spray is accomplished by an onboard pump which communicates fluid under pressure from the reservoir tank to one or a plurality of spray jets.
  • the opening for input of fluid into the reservoir tank is configured to operatively engage pre measured containers therein.
  • the appropriate container holding the proper amount of cleaner, polish, disinfectant, or other dissolvable material is engaged within the fluid opening for the reservoir tank.
  • the tank is subsequently filled with the appropriate amount of fluid, such as water, through the fluid opening with the container operatively positioned in the tank opening thereby dissolving the fluid concentrate or dissolvable particulate held in the pre-measured container and properly mixing it with the fluid.
  • This barcode may be read by a code reader on the device such as on the handle, or by a smartphone, or computer in communication with a processor on the frame or handle of the orbital polisher.
  • the barcode can, thus, be employed to cause the processor operating the motor which spins and oscillates the pad driver and pad to change the operation depending on the barcode so read.
  • the barcode on each container, holding the pre-measured particulate or liquid material will inform the computer processor, once scanned, of the mixture held in the reservoir tank.
  • the speed of the motor, and the flow of fluid through the pump to the dispersing jet can be adjusted by the computing processor.
  • adjustments to motor speed, pump flow, and other operating parameters are caused by the computer processor using adjustments held in electronic memory which correlate to the barcode reading.
  • Such enhances operation of the overall device by adjusting operation to optimize such for each fluid additive identified by a barcode. Further, it allows users of less experience to employ the device which will self adjust operation depending on the barcode read on the container inserted in the reservoir fill opening.
  • operation of the device may be enhanced by the employment of any of a plurality of pads which have mating connectors on one side thereof, adapted to engage with cooperating mating connectors located on the pad driver.
  • Such may be hook and loop fabric, snaps, adhesive, or other removable connectors allowing firm engagement of each polishing or cleaning pad, yet easy removable and replacement thereof on the pad driver.
  • a particularly preferred pad for employment with the device herein has raised or nap fabric located in four quadrants.
  • Each of the quadrants, along with a central area of the pad, has a smooth material located therebetween.
  • the pads configured in this manner cleaned and polished the surface they contacted better than pads having the entire surface area with nap or polishing/cleaning type fabric.
  • experimentation showed the positioning of smooth areas that which are recessed below the surface of adjacent fabric areas did perform significantly better during use for polishing and/or cleaning by the device in operation. By significantly better is meant it took less time for the same cleaning or polishing result or the same amount of time for a cleaner or more polished result.
  • the device has an optional light emitting attachment for the elimination of pathogens on the support surface being cleaned.
  • the light emitting component has a body which has connectors for removably attaching to the body of the cleaner during use. Such may be screws, bolts, clips, magnets, or other connectors as would occur to those in the art.
  • the body of the light emitting component has a plurality of light emitters engaged thereon, to project light onto the surface being cleaned.
  • the light emitters employed emit light in wavelengths from 405nm to 470nm which has been found to have excellent pathogen elimination and suppression characteristics.
  • light emitters in a range from 200nm to 470nm have been shown to also eliminate pathogens such as germs, bacteria, mold, fungi, and viruses.
  • light emitter is meant one or a combination of emitters from a group including LEDs, incandescent bulbs, fluorescent bulbs, lasers, and other light emitters capable of projecting light beams in the wavelengths herein described as would occur to those skilled in the art. Such may be powered by battery power located on the body of the light emitting component or may have a cable to engage to onboard power of the polishing device. In this fashion, a plurality of such light emitters, positioned on the body of a light emitting component, may emit light in such wavelengths and patterns to eliminate pathogens.
  • lens which projects a plurality of overlapping light patterns on the surface being cleaned, has shown to be particularly effective rather than just having a plurality of emitters project their light unfocused.
  • lens is meant an optical lens in front of the light emitter to refract emitted light to a contact pattern, and/or a reflective surface surrounding the light emitter to focus emitted light to a contact pattern, either of which singularly or in combination forms a shaped pattern on the surface being cleaned.
  • a plurality of adjacent overlapping illuminated areas may be formed to insure the entire surface being cleaned in front of the device is contacted by the emitted light waves.
  • “comprising” means including, but not limited to, whatever follows the word “comprising”. Thus, use of the term “comprising” indicates that the listed elements are required or mandatory, but that other elements are optional and may or may not be present.
  • Yet an additional object of this invention is the inclusion of light emitters to form a patter of overlapping contact areas to eliminate pathogens.
  • Figure 1 is a perspective view of the narrow configured orbital polisher/cleaner showing the handle upright in a stowed position and also showing an enlarged view of the filler opening of a reservoir tank where the filler opening is adapted to engage with cups holding particulate or liquid concentrate for missing with fluid in the container.
  • Figure 2 shows views of the engageable containers which may hold particulate or fluid therein to be mixed with fluid filling the reservoir tank and also showing a barcode which may be scanned to communicate to a computer processor to cause performance changes during subsequent operation of the device.
  • Figure 2 A shows a preferred configuration of the container with a thin lower surface which is easily pierced by a blade located within the opening of the filler for the tank.
  • Figure 3 shows the first set of wheels operatively engaged to a rearward side of the device allowing for easy movement to work or storage by tilting the device rearward to an elevated position supported on wheels.
  • Figure 3 A depicts the device in an operating position for cleaning and polishing, and shows secondary wheels on a foldable axle moved from the retracted position of Figure 3 to a deployed position forming a rear support in which they maintain the spinning pad support and engaged pad, substantially parallel to the underlying surface to be cleaned or polished.
  • Figure 4 depicts a preferred polishing/cleaning pad for use herewith having smooth surface areas located in between sections of nap or other cleaning fabric or material.
  • Figure 4A shows a sectional view through figure 4 and depicts the recessed smooth material area in between the higher positioned fabric areas.
  • Figures 5-6 depict pad drivers which are engaged to the motor and an oscillating assembly and have mating connectors thereon adapted to removably engage with mating connectors located on the rear of the cleaning/polishing pad of figure 4 and the like.
  • Figure 7 depicts a particularly preferred mode of the pad which has a plurality of having a plurality of nap sections and crisscrossing smooth sections therebetween.
  • Figure 8 shows a light projector component which is engageable to the body of the polisher using connectors and showing the projector body have a plurality of light emitters thereon with lenses to focus emitted light in overlapping illuminated areas.
  • the directional prepositions of up, upwardly, down, downwardly, front, back, top, upper, bottom, lower, left, right and other such terms refer to the device as it is oriented and appears in the drawings and are used for convenience only. They are not intended to be limiting or to imply that the device has to be used or positioned in any particular orientation.
  • FIG 1 a particularly preferred mode of the narrowly configured orbital polisher device 10 which oscillates using an onboard electric motor 16 and oscillating assembly connected to a planar pad driver 12 as shown and as disclosed in U.S. Patent 9119518B2, which is made part of this application by this reference thereto.
  • the device 10 is configured wherein the diameter or width of the pad driver 12 and engaged pad 14 and frame 18 are all narrow and between 12-20 inches such that the device 10 will operate in narrow confines.
  • the device 10 has a motor 16 engaged to the frame 18 to provide the spinning and oscillation of the pad driver 12 and pad 14.
  • a handle 20 is rotationally engaged to the frame 18 at an engagement end and extends to a distal end with handle grips 22 thereon.
  • the handle 20, as shown in figure 1, is substantially upright and in a stowed position and held in that position until a lock 11 is released.
  • substantially upright is meant that the handle 20 has an angle of extension running along a line extending from the engagement end to the distal end, which is between 60 to 120 degrees relative to the planar surface 41 (figure 3) on which the device 10 is supported. As shown in figure 1, this angle of extension, from the engagement end through the distal end, is substantially 80-110 degrees, which has shown to work well for the user to move the device 10 about on a first set of wheels 40, in an elevated position.
  • elevated position is meant that the frame 18 and attached components are tilted as in figure 3, wherein they are supported on the first set of wheels 40. In this elevated position, the user may roll the device 10 with the handle 20 locked, as noted below.
  • the attachment end of the handle 20 is held locked to the frame 18 while in this elevated position by the lock 11 or other means of removably locked engagement thereto.
  • the lock 11 holds the handle 20 in the substantially upright position and allows the user to tilt the frame 18 and the device 10 to a tilted position, as shown in figure 3, by communicating force to the distal end of the handle 20. While in this tilted elevated position it may be rolled upon a first pair of wheels 40 engaged with the frame 18 on a rear end thereof substantially aligned with the handle 20. The user simply tilts the frame 18 using the handle 20 and rolls the device 10 on the first pair of wheels 40.
  • the handle 20 is moved to an operating position of figure 3A.
  • operating position By the term“operating position” is meant, the handle 20 is rotated rearward from the rear side of the frame 18 to extend over and past the location of the first set of wheels 40. To move the handle 20 to this operating position of the handle 20, the user will release the lock 11 and rotate the handle 20.
  • a reservoir tank 24 which has a cap 28 removably engageable such as with a threaded connection 23, with an opening 26 used for filling the reservoir tank 24 with fluid.
  • This opening 26 is shown in the enlargement portion of figure 1, with the cap 28 removed.
  • a removably engageable additive container 30 which is positionable within the opening 26 during fluid filling of the reservoir tank 24. So positioned, any dissolvable particulate or fluid premeasured and located within the container 30 is automatically and evenly mixed and disbursed in the fluid subsequently added to the reservoir tank 24 while the container 30 is positioned therein.
  • FIG. 1 An additional option for enhanced operation for cleaning and disinfecting surfaces 41 is shown in figure 1 where an ozone reservoir 19 is positioned to hold a supply of ozone for inclusion in the spray of fluid emitted by the fluid jets 34 during use.
  • a fluid valve (not shown but well known) can be positioned to allow communication of ozone through conduits 13 to the fluid pump 21 and through conduits 13 which communicate fluid to the fluid jets 34.
  • FIG. 2 Depicted in figure 2 are a closed container 30 having a removable or pierceable cover 31 thereon.
  • This allows such closed containers 30, having the additive pre-measured and located therein, to be easily stored and transported.
  • the container 30 is inserted into the opening 26 of the tank 24 and the cover 31 is either removed or if on the lower end the cover 31 may be pierced so that fluid such as water can flow through the container 30.
  • Openings in the bottom and/or sides of the container 30 (not shown) which are covered or otherwise sealed, and which may be user-opened or caused to open by contact with fluid flowing into the container 30, allow the fluid to flow through the container 30 to carry the contents thereof into the reservoir tank 24.
  • a barcode 32 which is employable as an identifier of the contents of the container 30.
  • the barcode 30 maybe scanned by a smartphone or a scanner engaged to an onboard computer (not shown) or the like, either of which is in communication with a computer processor (not shown but well known), such as those employed in a motor controller 15 or small computing device.
  • the electronic signal generated from the read barcode 30, once received by the computer processor, such as a smartphone or pad computer (not shown but well known), is employed to adjust the subsequent operation of the device 10. This function is achieved by signaling the motor controller 15 to adjust the movement of the pad 14, such as by adjusting the motor 16 speed and/or to adjust the flow of fluid from the reservoir tank 24 through an onboard pump 21 to one or more fluid jets 34.
  • a scan of the barcode 32 communicated to the computer processor allows it to match the barcode 32 read to operating parameters stored in electronic memory for that respective barcode 32 and to signal the motor controller 15 adjust the motor 16 speed and/or pump 21 operation to the barcode-matching operation identified by the scanned barcode 32.
  • the device 10 may itself have an onboard scanner 25 proximate to the opening 26 for convenience to read the barcode and communicate a signal to the motor controller 15 to adjust the functions of the motor 16 and/or pump 21, where the motor controller 15 itself has onboard memory and a microprocessor to receive scanned barcode signals and choose an operating mode from those held in electronic memory.
  • Figure 2 A shows a preferred configuration of the container 30 holding an additive 35 for mixing with water or liquid held in the interior cavity 29 of the reservoir tank 24.
  • a lower surface layer 27 formed of paper, foil, polymeric material or another material which is easily pierced by a blade 33 located within the opening 26 of the filler which communicates with the interior cavity 29 of the tank 24, thereby forming an opening (not shown) in the lower surface layer 27.
  • the additive 35 is thereafter disbursed into the fluid in the interior cavity 29 once the blade 33 forms the opening.
  • This configuration is preferred in that the opening of the sealed container 30 is automatic and the user needs no tools or dexterity to do so. In experimentation, this configuration was shown to also reduce spillage of the additive 35 from the container 30 which occurred when users had to pull off a cover and pour the additive 35 into the tank 24.
  • FIG 3 Depicted in Figure 3 is the preferred first set of wheels 40 operatively engaged to a side of the frame 18 of the device 10 from which the handle 20 extends.
  • the first set of wheels 40 provide for rolling of the device 10 when tilted as shown in figure 3. It is this tilting which causes the first set or pair of wheels 40 to contact the surface 41 while concurrently elevating the pad 14 out of contact with the surface 41.
  • the default position of the first set of wheels 40 is elevated above the surface 41 and out of contact with it as shown in figure 3A.
  • FIG 3 A Shown in figure 3 A is the device 10 in a cleaning position.
  • cleaning position is meant that the handle 20 is moved to the operating position where the handle extends away from the rearward side of said frame 18 and is positioned above said first set of wheels 40 and the secondary wheels 36 are moved to a deployed position from the retracted position shown in figure 1 and figure 3.
  • the secondary wheels 36 In the deployed position of the secondary wheels 36, they contact the surface 31 and lift or elevate the first set of wheels 40 off the surface 41.
  • the secondary wheels 36 are engaged to a foldable axle 38 which rotates between the retracted or stored configuration of figure 3, to the deployed position of figure 3 A.
  • the foldable axle 38 has been moved to a deployed position which locates the secondary wheels 36 in contact at a contact point, with the support surface 41 such as the surface in contact with the pad 14 during cleaning.
  • the device 10 forms a rear support for the device 10 in that it maintains the pad 14 located on the pad driver 12 substantially parallel and in the same plane P with the underlying surface 41 being cleaned or polished.
  • substantially parallel is meant that the surface of the pad 14 contacting the support surface 41 is within five degrees of being parallel to the surface 41.
  • This parallel P pad 14 contact maximizes a full even contact of the contacting surface of the pad 12 with the support surface 41 being cleaned or polished as noted above.
  • the secondary wheels 36 in contact with the support surface 41 and the contact of the pad 14 in the same plane P, cause the first set of wheels 40 engaged to the frame 18 to be elevated and out of contact with the underlying surface 41.
  • the secondary wheels 36 can be taken out of the deployed position of figure 3 A by a simple folding of the foldable axle 38 back to the stored position of figures 1 and 3.
  • a handle-activated switch 17 such as a reed switch, magnetic switch, or mercury switch or a mechanically activated switch.
  • the switch 17 is configured to close the electric circuit between the motor 16 and onboard battery or AC connect electric power, thereby providing rotation force to the pad driver 12.
  • This closed configuration of the switch 17 occurs only when the handle 20 has the lock 11 disengaged and is rotated to the full“operating position” angled and extending rearward over the wheels 40, as shown in figure 3A.
  • the switch 17 is open and interrupts electric power to the motor 16 from AC power or an onboard battery and thereby prevents rotation of the pad driver 12 and pad 14.
  • This automatic switch 17 is especially preferred as it eliminates the need for the handle grip safety levers conventionally employed, which must be continuously contracted or compressed in order to communicate power to the motor 16 to spin the pad driver 12.
  • This switch 17 may also be configured such that once the handle 20 is in the operating position, the user must press down slightly on the distal end of the handle 20 when it is in the operating position of figure 3A. Thus, there would be a secondary operating position for the handle 20 wherein the distal end where the grips 20 are located is depressed slightly once in the operating position.
  • Shown in figure 4 is a particularly preferred configuration of the polishing/cleaning pad 14 has a first side, which is removably engageable to the pad driver 12, using first cooperative fasteners 43 (Figure 4A) which engaged with the second cooperative fasteners 42 located on the pad driver 12 shown in figures 5-6.
  • the pad 14 has a second side opposite the first side engaging the pad driver 12 with a plurality of fabric sections 44 such as nap fabric, which are employable for polishing and cleaning the surface 41 during use. These fabric sections are situated in between smooth surface material 46 areas. While four such fabric sections 44 are shown and work well, other pluralities such as six as shown in figure 7 or pads having from 2-20 fabric sections 44 could also be used and such is anticipated.
  • fabric sections 44 such as nap fabric, which are employable for polishing and cleaning the surface 41 during use.
  • These fabric sections are situated in between smooth surface material 46 areas. While four such fabric sections 44 are shown and work well, other pluralities such as six as shown in figure 7 or pads having from 2-20 fabric sections 44 could also be used and such is anticipated.
  • the pad 14 has a smooth surface material 46 area located between and separating the adjacent fabric sections 44 which are formed of woven or unwoven fabric or material adapted for polishing or cleaning the underlying surface.
  • fabric sections 44 can be formed of material such as terrycloth or microfiber cloth, or other fabrics with a nap.
  • smooth surface is meant that the smooth surface material 46 formed of fabric such as nylon smooth material used for flags, or cotton or polymeric materials in a weave similar to bed sheets, and which is thinner and recessed between the distal ends of the thicker nap or terrycloth style fabric forming the fabric sections 44.
  • the pad driver 12 which, as noted, is connected with the motor 16 and an oscillating assembly for rotation and oscillating movement of an engaged pad 14 during cleaning and polishing.
  • the pad drivers 12 have mating connectors or cooperative fasteners 42 located thereon which are configured to removably engage with mating cooperative fasteners 43 located on the rear of the cleaning/polishing pad 14, such as that of figure 4 A and the like.
  • Figure 7 depicts a particularly preferred mode of the pad 14 for the device 10 herein.
  • the pad 14 a plurality of having a plurality of nap fabric sections 44 with diagonal smooth areas 46 therebetween.
  • the smooth areas are covered by a smooth fabric without a nap or projecting fibers which the fabric sections 44 have.
  • rows of stitching 48 which form a plurality of humps 50 or curved smooth areas therebetween. This configuration positions the surface of the smooth areas 46 substantially aligned with the distal ends of the fibers extending in the fabric sections 44 and has been found to yield rotation of the pad 14 using less electric power to the motor 16 thereby keeping it cooler and enabling longer operation on battery power.
  • Figure 8 shows a light projector 54 having a body 56 configured to attach to the frame 18 of the device 10 herein.
  • a plurality of light emitters 58 Engaged to the body 56 are a plurality of light emitters 58 which are electrically powered either by an onboard battery, or by electric power from a power cord 60 which will plug into a power socket on the device 10.
  • Connectors 62 are configured to hold the body 56 to the frame 18. Such connectors 62 maybe screws, bolts, magnets, or other removably engageable connectors.
  • lenses 64 are operatively positioned with each light emitter 58 so as to focus emitted beams of light therefrom to patterns 66 on the surface 41 being cleaned which are filled with emitted light.
  • the light emitters 58 and the lenses 64 are positioned on the body 56 such that the projected patterns 66 on the surface 41 overlap. It was found, as noted above, that overlapping patterns 66 of projected light insured that ah of the surface 41 over which the light from the emitters passes, is exposed to the light waves.
  • the light emitters 58 project light upon the surface 41, in wavelengths between 200nm to 470nm, with emitted light in wavelengths of 405nm to 470nm being particularly preferred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Cleaning In General (AREA)

Abstract

A floor cleaning and polishing device has a polishing pad for a surface which is rotationally engaged upon a pad driver operatively engaged to a frame. A first set of wheels on the frame allow for tilted movement. A second set of wheels are positionable to a deployed position to elevate the first set of wheels from the surface and position the polishing pad parallel to the surface. The device may have a light projector engageable for light disinfecting. The polishing pads are configured with a plurality of polishing fabric sections separated by recesses therebetween.

Description

ORBITAL SURFACE CLEANING APPARATUS
BACKGROUND OF THE INVENTION
1. Field of the Invention
This application claims priority to U.S. Provisional Patent application serial number 62/860,559 filed on June 12, 2019, which is incorporated herein in its entirety by this reference thereto.
The present invention relates to a cleaning device for planar surfaces such as floors, patios and the like. More particularly, the invention relates to orbital surface cleaning device which is configured with a narrow width for use on floor surfaces which must be accessed in narrow and confined areas and which is useable with any of a plurality of polishing components.
2. Prior Art
Conventional floor cleaning devices generally include cleaning head assemblies with handles engaged thereon. Head assemblies generally consist of a drive motor (electric or gas powered) which are mounted to a separate frame, which drives a flywheel and drive plate which are mounted on the end of a handled frame.
Orbital cleaning devices have a drive motor and frame but employ cleaning head assemblies with flywheels adapted to engage polishers and pads, where a drive plate causes an oscillation of the pad or polisher. Weights are conventionally employed to achieve a desirable cleaning oscillation. This oscillation has been shown to provide improved cleaning characteristics when used upon stone, tile, ceramic, cement, wood, carpet, and other surfaces of floors during cleaning.
Currently, such orbital cleaners and polishers are large and heavy devices and not easily employed to clean surfaces which have narrow access such as in offices between furniture or homes with the same narrow constraints. Further, such orbital cleaners are heavy and hard to transport and use, and most simply rely on the rotating pad or polisher to support the full weight of the device during use while holding it in the proper parallel plane with that of the floor or underlying surface.
Additionally, most such devices employ a water supply from an onboard reservoir that is hard to mix with any cleaning or polishing or other solutions used during the polishing or cleaning of the floor surface. The forgoing examples of related art and limitation related therewith are intended to be illustrative and not exclusive, and they do not imply any limitations on the invention described and claimed herein. Various limitations of the related art will become apparent to those skilled in the art upon a reading and understanding of the specification below and the accompanying drawings.
SUMMARY OF THE INVENTION
The device herein described and disclosed provides a light weight, narrow-configured orbital polishing device, which is adapted for the easy mixing or adding of cleaning, polishing, and other materials to the fluid supply used during the process. Additionally, the device has two pairs of wheels for ease of transport and ease of use. A first set of wheels are positions on opposite sides of an axle which is engaged to the body of the polisher. Tiling the polisher in a direction toward this first pair of wheels will elevate the polishing pad off of the supporting surface and make the device easy to roll to positioning and storage.
A second set of wheels are engaged to an axle connected to a retractable support. This second pair of wheels has a first position elevated above the support surface or surface to be cleaned. The second set of wheels has a deployed position in contact with the surface being cleaned. In this deployed position, the second set of wheels forms a rear support which supports a portion of the weight of the polisher thereon which has been calculated at half or more depending on the volume of fluid in the tank which imparts weight to the device.
Further, the second pair of wheels, when in contact with the support surface which is the surface being cleaned and polished, contact that surface at a contact point which is substantially aligned with the front surface of the cleaning pad when moving in a cleaning contact with the surface. Thus, the cleaning pad forms a first or front support, and the deployed secondary wheels form a second or rear support for the device, and the two supports are aligned and maintain the pad substantially level and parallel to the surface being cleaned.
As noted herein, this positioning of the second set of wheels rolling on the contact point, supports the rear of the polisher and maintains the polishing pad parallel to and in the same plane as the surface being cleaned or polished. This is most preferred, in that experimentation has shown that with the second set of wheels in the deployed position, the device uses less electrical power and the electric motor runs cooler. Rotational speed and oscillation of the pad of the device during use may be controlled by the scanning of a barcode on the insertable containers holding different polishes, cleaners, and disinfectants and the like. By scanning the code and communicating the bar scan to a computer either onboard the polisher or running on a computer such as a smartphone, the task or purpose of the contents of the container can be determined. Using this determination, a signal can be sent to the motor controller which controls the electric motor powering the pad, to change speed and/or oscillation for the determined task. For example, if the contents of the container is for cleaning the surface, then the computer will signal the motor controller to use a predetermined speed and/or oscillation for cleaning, and if polishing is determined as the task, then the computer will signal the motor controller to adjust for that task.
The disclosed device is configured narrowly in width of the motor handle and oscillating polishing driver and pad allowing use in narrowly confined areas. Further, by forming the pads and disks in a narrow configuration, in combination with the parallel movement relative to the underlying surface provided by the second set of wheels, the use of battery power is more easily accomplished as the motor will run for a longer time on a single charge.
As noted above, because the polishing pad and pad driver are adapted to be narrow and oscillate while spinning, the retractable second set of wheels, when deployed, form an alined pad surface and second set of wheel support with the spinning driver and pad. As noted, this holds the frame supporting the motor substantially parallel to the floor and concurrently maintains the oscillating pad, which rotates on a pad driver, substantially parallel and in the same plane, as the underlying floor being cleaned and/or polished.
It was found in experimentation that while the spinning and oscillating pad engaged to the planar pad driver was maintainable substantially parallel to the floor or surface being cleaned or polished, because of the narrow configuration, it could tend to tilt or rotate out more easily out of plane. In the hands of an inexperienced user, oscillating rotation out of plane with the floor being cleaned or treated could cause damage from the higher speed perimeter of the pad contacting the surface in small portions rather than across the entire pad.
After experimenting with different ways and wheel configurations which help maintain the spinning and oscillating pad driver and pad parallel and in contact with the floor, it was found adding the retractable second set of wheels provided a solution. A foldable wheel support is engaged to the frame in a manner allowing the secondary pair of wheels to be placed in a first or retracted position elevated above the support or floor surface. Such allows the device to more easily navigate narrow confines rolling on the first set of wheels, to reach the surface to be cleaned or polished.
Once the device is in position to energize the motor to initiate the spin and oscillation to the pad driver and pad, these secondary wheels moved to the deployed position by folding down the support, whereupon the support frame will self lock. The secondary wheels in the deployed position are located with contact surfaces contacting the support surface, which are lower relative to the first set of wheels on the rear of the frame of the device. This elevates the first set of wheels above the support surface being cleaned and polished. So elevated with the pad surface aligned with the contact point of the rearward second set of wheels, the rotating and oscillating pad on the pad driver is maintained in contact with the underlying surface with sufficient bias thereto to operate. Further, the biased pad is held substantially parallel to the underlying surface being cleaned or polished and supporting the first set and second set of wheels.
By holding the pad in proper biased contact against the floor, and parallel to it, the deployed set of secondary wheels significantly enhanced the performance of the device. Further, experimentation showed this enhanced performance was maintained even when the operator of the device lacked experience. Damage to the floor being cleaned or polished, from out of plane contact of the oscillating pad therewith, was also prevented. Further, as noted, when run on battery power, the device operated for a longer period of time.
In an especially preferred mode of the device, an onboard reservoir for fluid, such as water, provides a constant spray of liquid to the floor or other surface. This spray is accomplished by an onboard pump which communicates fluid under pressure from the reservoir tank to one or a plurality of spray jets.
In this preferred mode, in order to allow for easy mixing of different polishes, cleaners, and disinfectants and the like with the water or fluid in the reservoir tank, the opening for input of fluid into the reservoir tank is configured to operatively engage pre measured containers therein. During use for a particular purpose such as cleaning or polishing, the appropriate container holding the proper amount of cleaner, polish, disinfectant, or other dissolvable material is engaged within the fluid opening for the reservoir tank. The tank is subsequently filled with the appropriate amount of fluid, such as water, through the fluid opening with the container operatively positioned in the tank opening thereby dissolving the fluid concentrate or dissolvable particulate held in the pre-measured container and properly mixing it with the fluid.
Additionally preferred is the positioning of barcodes on the container holding the pre measured liquid or solid material. This barcode may be read by a code reader on the device such as on the handle, or by a smartphone, or computer in communication with a processor on the frame or handle of the orbital polisher.
The barcode can, thus, be employed to cause the processor operating the motor which spins and oscillates the pad driver and pad to change the operation depending on the barcode so read.
The barcode on each container, holding the pre-measured particulate or liquid material, will inform the computer processor, once scanned, of the mixture held in the reservoir tank. Using operating adjustments held in electronic memory and available to the computing processor on the device, the speed of the motor, and the flow of fluid through the pump to the dispersing jet can be adjusted by the computing processor. Such would be done, for example, where the barcode is read and the computing processor receiving the barcode reading from a scanner matches it to a barcode reading held in memory. Thereafter, adjustments to motor speed, pump flow, and other operating parameters are caused by the computer processor using adjustments held in electronic memory which correlate to the barcode reading. Such enhances operation of the overall device by adjusting operation to optimize such for each fluid additive identified by a barcode. Further, it allows users of less experience to employ the device which will self adjust operation depending on the barcode read on the container inserted in the reservoir fill opening.
Still further, operation of the device may be enhanced by the employment of any of a plurality of pads which have mating connectors on one side thereof, adapted to engage with cooperating mating connectors located on the pad driver. Such may be hook and loop fabric, snaps, adhesive, or other removable connectors allowing firm engagement of each polishing or cleaning pad, yet easy removable and replacement thereof on the pad driver.
A particularly preferred pad for employment with the device herein, has raised or nap fabric located in four quadrants. Each of the quadrants, along with a central area of the pad, has a smooth material located therebetween. The pads configured in this manner cleaned and polished the surface they contacted better than pads having the entire surface area with nap or polishing/cleaning type fabric. This was an unexpected result since the smooth areas are recessed from the adjacent nap fabric areas and lower the total surface area of such, which should have reduced polishing and cleaning. However, experimentation showed the positioning of smooth areas that which are recessed below the surface of adjacent fabric areas did perform significantly better during use for polishing and/or cleaning by the device in operation. By significantly better is meant it took less time for the same cleaning or polishing result or the same amount of time for a cleaner or more polished result.
In an additional enhancement to cleaning and disinfecting, the device has an optional light emitting attachment for the elimination of pathogens on the support surface being cleaned. The light emitting component has a body which has connectors for removably attaching to the body of the cleaner during use. Such may be screws, bolts, clips, magnets, or other connectors as would occur to those in the art.
The body of the light emitting component, has a plurality of light emitters engaged thereon, to project light onto the surface being cleaned. Currently, the light emitters employed emit light in wavelengths from 405nm to 470nm which has been found to have excellent pathogen elimination and suppression characteristics. However, light emitters in a range from 200nm to 470nm have been shown to also eliminate pathogens such as germs, bacteria, mold, fungi, and viruses.
By light emitter is meant one or a combination of emitters from a group including LEDs, incandescent bulbs, fluorescent bulbs, lasers, and other light emitters capable of projecting light beams in the wavelengths herein described as would occur to those skilled in the art. Such may be powered by battery power located on the body of the light emitting component or may have a cable to engage to onboard power of the polishing device. In this fashion, a plurality of such light emitters, positioned on the body of a light emitting component, may emit light in such wavelengths and patterns to eliminate pathogens.
Further, in experimentation, it has been found, that including a lens to focus the light emitted by each light emitter, can increase the success in eliminating pathogens. Using a lens which projects a plurality of overlapping light patterns on the surface being cleaned, has shown to be particularly effective rather than just having a plurality of emitters project their light unfocused. By lens is meant an optical lens in front of the light emitter to refract emitted light to a contact pattern, and/or a reflective surface surrounding the light emitter to focus emitted light to a contact pattern, either of which singularly or in combination forms a shaped pattern on the surface being cleaned. Using such a lens on each emitter, a plurality of adjacent overlapping illuminated areas may be formed to insure the entire surface being cleaned in front of the device is contacted by the emitted light waves.
With respect to the above description, before explaining at least one preferred embodiment of the herein disclosed narrow configured orbital polisher invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangement of the components in the following description or illustrated in the drawings. The invention herein described is capable of other embodiments and of being practiced and carried out in various ways which will be obvious to those skilled in the art. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for designing of other narrow
configured rotating and orbital polishing and cleaning structures, methods and systems for carrying out the several purposes of the present disclosed device. It is important, therefore, that the claims be regarded as including such equivalent construction and methodology insofar as they do not depart from the spirit and scope of the present invention.
As used in the claims to describe the various inventive aspects and embodiments, "comprising" means including, but not limited to, whatever follows the word "comprising". Thus, use of the term "comprising" indicates that the listed elements are required or mandatory, but that other elements are optional and may or may not be present. By
"consisting of' is meant including, and limited to, whatever follows the phrase "consisting of'. Thus, the phrase "consisting of' indicates that the listed elements are required or mandatory, and that no other elements may be present. By "consisting essentially of' is meant including any elements listed after the phrase, and limited to other elements that do not interfere with or contribute to the activity or action specified in the disclosure for the listed elements. Thus, the phrase "consisting essentially of' indicates that the listed elements are required or mandatory, but that other elements are optional and may or may not be present depending upon whether or not they affect the activity or action of the listed elements.
Finally, unless provided a different respective definition, the term substantially herein means plus or minus five percent.
It is an object of this invention to provide an orbital polisher or cleaner configured for use in narrow confines. It is another object of this invention to provide such an orbital polishing and cleaning device which has secondary wheels to maintain the rotating, polishing, and cleaning pad parallel to and in even contact at a constant force across the entire pad surface.
It is a further object to provide such a rotating or orbital polisher which has pre measured containers engageable into the reservoir opening for ease of mixing and which may have barcodes thereon which once read adjust the operation of the polisher to optimize it for the fluid mixture.
Yet an additional object of this invention is the inclusion of light emitters to form a patter of overlapping contact areas to eliminate pathogens.
These and other objects of the invention will be brought out in the following part of the specification, wherein detailed description is for the purpose of fully disclosing the invention without placing limitations thereon.
BRIEF DESCRIPTION OF DRAWING FIGURES
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate some, but not the only or exclusive, examples of embodiments and/or features. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than limiting.
In the drawings:
Figure 1 is a perspective view of the narrow configured orbital polisher/cleaner showing the handle upright in a stowed position and also showing an enlarged view of the filler opening of a reservoir tank where the filler opening is adapted to engage with cups holding particulate or liquid concentrate for missing with fluid in the container.
Figure 2 shows views of the engageable containers which may hold particulate or fluid therein to be mixed with fluid filling the reservoir tank and also showing a barcode which may be scanned to communicate to a computer processor to cause performance changes during subsequent operation of the device.
Figure 2 A shows a preferred configuration of the container with a thin lower surface which is easily pierced by a blade located within the opening of the filler for the tank.
Figure 3 shows the first set of wheels operatively engaged to a rearward side of the device allowing for easy movement to work or storage by tilting the device rearward to an elevated position supported on wheels. Figure 3 A depicts the device in an operating position for cleaning and polishing, and shows secondary wheels on a foldable axle moved from the retracted position of Figure 3 to a deployed position forming a rear support in which they maintain the spinning pad support and engaged pad, substantially parallel to the underlying surface to be cleaned or polished.
Figure 4 depicts a preferred polishing/cleaning pad for use herewith having smooth surface areas located in between sections of nap or other cleaning fabric or material.
Figure 4A shows a sectional view through figure 4 and depicts the recessed smooth material area in between the higher positioned fabric areas.
Figures 5-6 depict pad drivers which are engaged to the motor and an oscillating assembly and have mating connectors thereon adapted to removably engage with mating connectors located on the rear of the cleaning/polishing pad of figure 4 and the like.
Figure 7 depicts a particularly preferred mode of the pad which has a plurality of having a plurality of nap sections and crisscrossing smooth sections therebetween.
Figure 8 shows a light projector component which is engageable to the body of the polisher using connectors and showing the projector body have a plurality of light emitters thereon with lenses to focus emitted light in overlapping illuminated areas.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
In this description, the directional prepositions of up, upwardly, down, downwardly, front, back, top, upper, bottom, lower, left, right and other such terms refer to the device as it is oriented and appears in the drawings and are used for convenience only. They are not intended to be limiting or to imply that the device has to be used or positioned in any particular orientation.
Now referring to drawings in figures 1-8, wherein similar components are identified by like reference numerals, there is seen in FIG 1 a particularly preferred mode of the narrowly configured orbital polisher device 10 which oscillates using an onboard electric motor 16 and oscillating assembly connected to a planar pad driver 12 as shown and as disclosed in U.S. Patent 9119518B2, which is made part of this application by this reference thereto.
The device 10 is configured wherein the diameter or width of the pad driver 12 and engaged pad 14 and frame 18 are all narrow and between 12-20 inches such that the device 10 will operate in narrow confines. The device 10 has a motor 16 engaged to the frame 18 to provide the spinning and oscillation of the pad driver 12 and pad 14. A handle 20 is rotationally engaged to the frame 18 at an engagement end and extends to a distal end with handle grips 22 thereon.
The handle 20, as shown in figure 1, is substantially upright and in a stowed position and held in that position until a lock 11 is released. By“substantially upright” is meant that the handle 20 has an angle of extension running along a line extending from the engagement end to the distal end, which is between 60 to 120 degrees relative to the planar surface 41 (figure 3) on which the device 10 is supported. As shown in figure 1, this angle of extension, from the engagement end through the distal end, is substantially 80-110 degrees, which has shown to work well for the user to move the device 10 about on a first set of wheels 40, in an elevated position. By“elevated position” is meant that the frame 18 and attached components are tilted as in figure 3, wherein they are supported on the first set of wheels 40. In this elevated position, the user may roll the device 10 with the handle 20 locked, as noted below. The attachment end of the handle 20 is held locked to the frame 18 while in this elevated position by the lock 11 or other means of removably locked engagement thereto.
The lock 11 holds the handle 20 in the substantially upright position and allows the user to tilt the frame 18 and the device 10 to a tilted position, as shown in figure 3, by communicating force to the distal end of the handle 20. While in this tilted elevated position it may be rolled upon a first pair of wheels 40 engaged with the frame 18 on a rear end thereof substantially aligned with the handle 20. The user simply tilts the frame 18 using the handle 20 and rolls the device 10 on the first pair of wheels 40.
To use the device 10 for cleaning and polishing, the handle 20 is moved to an operating position of figure 3A. By the term“operating position” is meant, the handle 20 is rotated rearward from the rear side of the frame 18 to extend over and past the location of the first set of wheels 40. To move the handle 20 to this operating position of the handle 20, the user will release the lock 11 and rotate the handle 20.
Engaged to the device 10 such as on the handle 20, is a reservoir tank 24 which has a cap 28 removably engageable such as with a threaded connection 23, with an opening 26 used for filling the reservoir tank 24 with fluid. This opening 26 is shown in the enlargement portion of figure 1, with the cap 28 removed. Also shown in the blow up section is a removably engageable additive container 30 which is positionable within the opening 26 during fluid filling of the reservoir tank 24. So positioned, any dissolvable particulate or fluid premeasured and located within the container 30 is automatically and evenly mixed and disbursed in the fluid subsequently added to the reservoir tank 24 while the container 30 is positioned therein.
An additional option for enhanced operation for cleaning and disinfecting surfaces 41 is shown in figure 1 where an ozone reservoir 19 is positioned to hold a supply of ozone for inclusion in the spray of fluid emitted by the fluid jets 34 during use. A fluid valve (not shown but well known) can be positioned to allow communication of ozone through conduits 13 to the fluid pump 21 and through conduits 13 which communicate fluid to the fluid jets 34.
Depicted in figure 2 are a closed container 30 having a removable or pierceable cover 31 thereon. This allows such closed containers 30, having the additive pre-measured and located therein, to be easily stored and transported. During use the container 30 is inserted into the opening 26 of the tank 24 and the cover 31 is either removed or if on the lower end the cover 31 may be pierced so that fluid such as water can flow through the container 30. Openings in the bottom and/or sides of the container 30 (not shown) which are covered or otherwise sealed, and which may be user-opened or caused to open by contact with fluid flowing into the container 30, allow the fluid to flow through the container 30 to carry the contents thereof into the reservoir tank 24.
Also shown in figure 2 is a barcode 32 which is employable as an identifier of the contents of the container 30. As noted above, the barcode 30 maybe scanned by a smartphone or a scanner engaged to an onboard computer (not shown) or the like, either of which is in communication with a computer processor (not shown but well known), such as those employed in a motor controller 15 or small computing device. The electronic signal generated from the read barcode 30, once received by the computer processor, such as a smartphone or pad computer (not shown but well known), is employed to adjust the subsequent operation of the device 10. This function is achieved by signaling the motor controller 15 to adjust the movement of the pad 14, such as by adjusting the motor 16 speed and/or to adjust the flow of fluid from the reservoir tank 24 through an onboard pump 21 to one or more fluid jets 34.
Thus, a scan of the barcode 32 communicated to the computer processor allows it to match the barcode 32 read to operating parameters stored in electronic memory for that respective barcode 32 and to signal the motor controller 15 adjust the motor 16 speed and/or pump 21 operation to the barcode-matching operation identified by the scanned barcode 32. The device 10 may itself have an onboard scanner 25 proximate to the opening 26 for convenience to read the barcode and communicate a signal to the motor controller 15 to adjust the functions of the motor 16 and/or pump 21, where the motor controller 15 itself has onboard memory and a microprocessor to receive scanned barcode signals and choose an operating mode from those held in electronic memory.
Figure 2 A shows a preferred configuration of the container 30 holding an additive 35 for mixing with water or liquid held in the interior cavity 29 of the reservoir tank 24. As shown, a lower surface layer 27 formed of paper, foil, polymeric material or another material which is easily pierced by a blade 33 located within the opening 26 of the filler which communicates with the interior cavity 29 of the tank 24, thereby forming an opening (not shown) in the lower surface layer 27. The additive 35 is thereafter disbursed into the fluid in the interior cavity 29 once the blade 33 forms the opening. This configuration is preferred in that the opening of the sealed container 30 is automatic and the user needs no tools or dexterity to do so. In experimentation, this configuration was shown to also reduce spillage of the additive 35 from the container 30 which occurred when users had to pull off a cover and pour the additive 35 into the tank 24.
Depicted in Figure 3 is the preferred first set of wheels 40 operatively engaged to a side of the frame 18 of the device 10 from which the handle 20 extends. The first set of wheels 40 provide for rolling of the device 10 when tilted as shown in figure 3. It is this tilting which causes the first set or pair of wheels 40 to contact the surface 41 while concurrently elevating the pad 14 out of contact with the surface 41. The default position of the first set of wheels 40 is elevated above the surface 41 and out of contact with it as shown in figure 3A.
Shown in figure 3 A is the device 10 in a cleaning position. By“cleaning position” is meant that the handle 20 is moved to the operating position where the handle extends away from the rearward side of said frame 18 and is positioned above said first set of wheels 40 and the secondary wheels 36 are moved to a deployed position from the retracted position shown in figure 1 and figure 3. In the deployed position of the secondary wheels 36, they contact the surface 31 and lift or elevate the first set of wheels 40 off the surface 41. As shown, the secondary wheels 36 are engaged to a foldable axle 38 which rotates between the retracted or stored configuration of figure 3, to the deployed position of figure 3 A.
As depicted in figure 3 A, the foldable axle 38 has been moved to a deployed position which locates the secondary wheels 36 in contact at a contact point, with the support surface 41 such as the surface in contact with the pad 14 during cleaning.
This positioning of the secondary wheels 36 on the support surface 41 being cleaned by the contact with the pad 14 is
particularly preferred because it forms a rear support for the device 10 in that it maintains the pad 14 located on the pad driver 12 substantially parallel and in the same plane P with the underlying surface 41 being cleaned or polished. By“substantially parallel” is meant that the surface of the pad 14 contacting the support surface 41 is within five degrees of being parallel to the surface 41.
This parallel P pad 14 contact maximizes a full even contact of the contacting surface of the pad 12 with the support surface 41 being cleaned or polished as noted above. When in the deployed position the secondary wheels 36 in contact with the support surface 41 and the contact of the pad 14 in the same plane P, cause the first set of wheels 40 engaged to the frame 18 to be elevated and out of contact with the underlying surface 41. The secondary wheels 36 can be taken out of the deployed position of figure 3 A by a simple folding of the foldable axle 38 back to the stored position of figures 1 and 3.
Particularly preferred for safety is the inclusion of a handle-activated switch 17 such as a reed switch, magnetic switch, or mercury switch or a mechanically activated switch. The switch 17 is configured to close the electric circuit between the motor 16 and onboard battery or AC connect electric power, thereby providing rotation force to the pad driver 12. This closed configuration of the switch 17 occurs only when the handle 20 has the lock 11 disengaged and is rotated to the full“operating position” angled and extending rearward over the wheels 40, as shown in figure 3A. When the handle 20 is vertical in the stowed position and substantially upright, as in figure 1, the switch 17 is open and interrupts electric power to the motor 16 from AC power or an onboard battery and thereby prevents rotation of the pad driver 12 and pad 14.
This automatic switch 17 is especially preferred as it eliminates the need for the handle grip safety levers conventionally employed, which must be continuously contracted or compressed in order to communicate power to the motor 16 to spin the pad driver 12. This switch 17 may also be configured such that once the handle 20 is in the operating position, the user must press down slightly on the distal end of the handle 20 when it is in the operating position of figure 3A. Thus, there would be a secondary operating position for the handle 20 wherein the distal end where the grips 20 are located is depressed slightly once in the operating position.
Experimentation has found that such grip type levers are hard to continuously hold closed, and because of such, users have been known to tie or tape them closed which is a major safety hazard. The provision of the automatic switch 17 eliminates the need for grip levers and thereby enhances safety and use.
Shown in figure 4 is a particularly preferred configuration of the polishing/cleaning pad 14 has a first side, which is removably engageable to the pad driver 12, using first cooperative fasteners 43 (Figure 4A) which engaged with the second cooperative fasteners 42 located on the pad driver 12 shown in figures 5-6.
As depicted, the pad 14 has a second side opposite the first side engaging the pad driver 12 with a plurality of fabric sections 44 such as nap fabric, which are employable for polishing and cleaning the surface 41 during use. These fabric sections are situated in between smooth surface material 46 areas. While four such fabric sections 44 are shown and work well, other pluralities such as six as shown in figure 7 or pads having from 2-20 fabric sections 44 could also be used and such is anticipated.
As shown in figure 4 and 4 A, the pad 14 has a smooth surface material 46 area located between and separating the adjacent fabric sections 44 which are formed of woven or unwoven fabric or material adapted for polishing or cleaning the underlying surface. Such fabric sections 44, while not limiting, can be formed of material such as terrycloth or microfiber cloth, or other fabrics with a nap. By smooth surface is meant that the smooth surface material 46 formed of fabric such as nylon smooth material used for flags, or cotton or polymeric materials in a weave similar to bed sheets, and which is thinner and recessed between the distal ends of the thicker nap or terrycloth style fabric forming the fabric sections 44. Such can be seen in figure 4A where the smooth surface 46 forms recessed areas in between the adjacent thicker fabric sections 44 which project for polishing and cleaning, and enhances operation. Currently, pads 14 with four fabric sections 44 or six fabric sections 44 in between smooth surface material 46 recessed portions are especially preferred.
Shown in figures 5-6, the pad driver 12 which, as noted, is connected with the motor 16 and an oscillating assembly for rotation and oscillating movement of an engaged pad 14 during cleaning and polishing. The pad drivers 12 have mating connectors or cooperative fasteners 42 located thereon which are configured to removably engage with mating cooperative fasteners 43 located on the rear of the cleaning/polishing pad 14, such as that of figure 4 A and the like.
Figure 7 depicts a particularly preferred mode of the pad 14 for the device 10 herein. As shown, the pad 14 a plurality of having a plurality of nap fabric sections 44 with diagonal smooth areas 46 therebetween. In this mode of the pad 14, the smooth areas are covered by a smooth fabric without a nap or projecting fibers which the fabric sections 44 have. Further included are rows of stitching 48 which form a plurality of humps 50 or curved smooth areas therebetween. This configuration positions the surface of the smooth areas 46 substantially aligned with the distal ends of the fibers extending in the fabric sections 44 and has been found to yield rotation of the pad 14 using less electric power to the motor 16 thereby keeping it cooler and enabling longer operation on battery power.
Figure 8 shows a light projector 54 having a body 56 configured to attach to the frame 18 of the device 10 herein. Engaged to the body 56 are a plurality of light emitters 58 which are electrically powered either by an onboard battery, or by electric power from a power cord 60 which will plug into a power socket on the device 10. Connectors 62 are configured to hold the body 56 to the frame 18. Such connectors 62 maybe screws, bolts, magnets, or other removably engageable connectors.
As noted, it is preferred that lenses 64 are operatively positioned with each light emitter 58 so as to focus emitted beams of light therefrom to patterns 66 on the surface 41 being cleaned which are filled with emitted light. Preferably the light emitters 58 and the lenses 64 are positioned on the body 56 such that the projected patterns 66 on the surface 41 overlap. It was found, as noted above, that overlapping patterns 66 of projected light insured that ah of the surface 41 over which the light from the emitters passes, is exposed to the light waves. As also noted, it is preferred that the light emitters 58 project light upon the surface 41, in wavelengths between 200nm to 470nm, with emitted light in wavelengths of 405nm to 470nm being particularly preferred.
While ah of the fundamental characteristics and features of the invention have been shown and described herein, with reference to particular embodiments thereof, a latitude of modification, various changes and substitutions are intended in the foregoing disclosure and it will be apparent that in some instances, some features of the invention may be employed without a corresponding use of other features without departing from the scope of the invention as set forth. It should also be understood that various substitutions, modifications, and variations may be made by those skilled in the art without departing from the spirit or scope of the invention. Consequently, all such modifications and variations and substitutions are included within the scope of the invention as defined by the following claims.

Claims

What is claimed is:
1. A floor cleaning and polishing apparatus comprising:
a frame, said frame having an electric motor thereon, said motor operatively connected to a planar pad driver;
an electric power supply for said motor;
a first pair of wheels engaged to a rearward side of said frame;
said planar pad driver having first cooperative fasteners thereon;
a pad, said pad having a first side having second cooperative fasteners thereon which are engageable to said first cooperative fasteners;
said pad having a second side for contacting a surface;
a tank having an interior cavity holding a fluid supply for communication through a conduit to fluid jets;
a handle rotationally engaged to said frame at an engagement end of said handle, said handle extending from said engagement end to a distal end;
said handle having a stowed position, extending at an angle substantially upright from said surface;
said handle having an operating position extending away from said rearward side of said frame and positioned above said first set of wheels;
said frame positionable to an elevated position supported upon said first pair of wheels, by tilting frame with said handle while held in said stowed position; and
said frame positionable to a cleaning position having a rotating contact of said second side of said pad with said surface, by positioning said handle to said operating position.
2. The floor cleaning and polishing apparatus of claim 1 additionally comprising:
a switch;
said switch actuated to an open position interrupting said
electric power supply to said motor by said handle located in said stowed position; and
said switch actuated to a closed position communicating said electric power supply to said motor by said handle located to said operating position.
3. The floor cleaning and polishing apparatus of claim 1 additionally comprising:
a pair of secondary wheels engaged to an axle; said secondary wheels having a retracted position elevated above said surface;
said secondary wheels having a deployed position contacting said surface;
said secondary wheels in said deployed position elevating said first set of wheels a distance above said surface; and
said secondary wheels in said deployed position supporting said rearward side of said frame in a position to place said second side of said pad to substantially parallel to said surface.
4. The floor cleaning and polishing apparatus of claim 2 additionally comprising:
a pair of secondary wheels engaged to an axle;
said secondary wheels having a retracted position elevated above said surface;
said secondary wheels having a deployed position contacting said surface;
said secondary wheels in said deployed position elevating said first set of wheels a distance above said surface; and
said secondary wheels in said deployed position supporting said rearward side of said frame in a position to place said second side of said pad to substantially parallel to said surface.
5. The floor cleaning and polishing apparatus of claim 1 additionally comprising:
an opening communicating with said interior cavity;
an additive container holding an additive supply therein;
a blade positioned within said opening;
said additive container sized for insertion into said opening; and
said additive container having a lower surface pierceable by said blade to form an opening therein, whereby insertion of said additive container into said opening causes said blade to form said opening through which said additive supply is disbursed into said interior cavity.
6. The floor cleaning and polishing apparatus of claim 2 additionally comprising:
an opening communicating with said interior cavity;
an additive container holding an additive supply therein;
a blade positioned within said opening; said additive container sized for insertion into said opening; and
said additive container having a lower surface pierceable by said blade to form an opening therein, whereby insertion of said additive container into said opening causes said blade to form said opening through which said additive supply is disbursed into said interior cavity.
7. The floor cleaning and polishing apparatus of claim 3 additionally comprising:
an opening communicating with said interior cavity;
an additive container holding an additive supply therein;
a blade positioned within said opening;
said additive container sized for insertion into said opening; and
said additive container having a lower surface pierceable by said blade to form an opening therein, whereby insertion of said additive container into said opening causes said blade to form said opening through which said additive supply is disbursed into said interior cavity.
8. The floor cleaning and polishing apparatus of claim 4 additionally comprising:
an opening communicating with said interior cavity;
an additive container holding an additive supply therein;
a blade positioned within said opening;
said additive container sized for insertion into said opening; and
said additive container having a lower surface pierceable by said blade to form an opening therein, whereby insertion of said additive container into said opening causes said blade to form said opening through which said additive supply is disbursed into said interior cavity.
9. The floor cleaning and polishing apparatus of claim 5 additionally comprising:
a motor controller operatively engaged to said electric motor;
a barcode reader in electronic communication with said motor controller;
said additive container having a barcode positioned on an exterior surface thereof; said barcode containing motor operation instructions which correlate to the additive supply held in said additive container; and said barcode reader communicating said motor operation instructions to said motor controller upon scanning said barcode.
10. The floor cleaning and polishing apparatus of claim 6 additionally comprising:
a motor controller operatively engaged to said electric motor;
a barcode reader in electronic communication with said motor controller;
said additive container having a barcode positioned on an exterior surface thereof; said barcode containing motor operation instructions which correlate to the additive supply held in said additive container; and
said barcode reader communicating said motor operation instructions to said motor controller upon scanning said barcode.
11. The floor cleaning and polishing apparatus of claim 1 additionally comprising:
said second side of said pad having a plurality of fabric sections located thereon; and said second side of said pad having smooth fabric areas forming recesses in between each of said plurality of fabric sections.
12. The floor cleaning and polishing apparatus of claim 2 additionally comprising:
said second side of said pad having a plurality of fabric sections located thereon; and said second side of said pad having smooth fabric areas forming recesses in between each of said plurality of fabric sections.
13. The floor cleaning and polishing apparatus of claim 3 additionally comprising:
said second side of said pad having a plurality of fabric sections located thereon; and said second side of said pad having smooth fabric areas forming recesses in between each of said plurality of fabric sections.
14. The floor cleaning and polishing apparatus of claim 4 additionally comprising:
said second side of said pad having a plurality of fabric sections located thereon; and said second side of said pad having smooth fabric areas forming recesses in-between each of said plurality of fabric sections.
15. The floor cleaning and polishing apparatus of claim 5 additionally comprising:
said second side of said pad having a plurality of fabric sections located thereon; and said second side of said pad having smooth fabric areas forming recesses in-between each of said plurality of fabric sections.
16. The floor cleaning and polishing apparatus of claim 1 additionally comprising:
a light projector having a body;
connectors for engaging said body to said frame;
a plurality of light emitters positioned on said frame, said light emitters powered by electric current; and
said light emitters projecting light therefrom in wavelengths in a range between 200nm to 470nm.
17. The floor cleaning and polishing apparatus of claim 3 additionally comprising:
a light projector having a body;
connectors for engaging said body to said frame;
a plurality of light emitters positioned on said frame, said light emitters powered by electric current; and
said light emitters projecting light therefrom in wavelengths in a range between 200nm to 470nm.
18. The floor cleaning and polishing apparatus of claim 16 additionally comprising:
lenses focusing said light from said emitters into patterns contacting said surface; and said lenses projecting said patterns to overlap upon said surface.
19. The floor cleaning and polishing apparatus of claim 17 additionally comprising:
lenses focusing said light from said emitters into patterns contacting said surface; and said lenses projecting said patterns to overlap upon said surface.
20. The floor cleaning and polishing apparatus of claim 1 additionally comprising:
an ozone supply; and
said ozone supply communicated to said fluid jets through said conduit.
PCT/US2020/037316 2019-06-12 2020-06-11 Orbital surface cleaning apparatus WO2020252212A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/954,668 US20230098260A1 (en) 2019-06-12 2020-06-11 Orbital surface cleaning apparatus
EP20823459.1A EP3982806A4 (en) 2019-06-12 2020-06-11 Orbital surface cleaning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962860559P 2019-06-12 2019-06-12
US62/860,559 2019-06-12

Publications (1)

Publication Number Publication Date
WO2020252212A1 true WO2020252212A1 (en) 2020-12-17

Family

ID=73781865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2020/037316 WO2020252212A1 (en) 2019-06-12 2020-06-11 Orbital surface cleaning apparatus

Country Status (3)

Country Link
US (1) US20230098260A1 (en)
EP (1) EP3982806A4 (en)
WO (1) WO2020252212A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355542A (en) * 1992-11-12 1994-10-18 Oreck Corporation Orbiter floor machine
WO2012139059A1 (en) * 2011-04-06 2012-10-11 Hruby Orbital Systems, Inc. Oribal surface cleaning apparatus
US9119518B2 (en) * 2009-12-11 2015-09-01 Jeffrey T. Hruby Orbitual surface cleaning apparatus
US9877624B2 (en) * 2012-08-07 2018-01-30 Kärcher North America, Inc. Floor cleaning tool having a mechanically operated pump

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1094945B (en) * 1954-09-18 1960-12-15 Robert Schoettle Floor care machine
US3464075A (en) * 1967-06-06 1969-09-02 Frank D Sullivan Pad holder for motor powered floor machines
US4485519A (en) * 1982-05-24 1984-12-04 Carpet Clinic Ltd. Ozone cleaning system
US4961243A (en) * 1989-05-18 1990-10-09 Stockwell Group, Inc. Carpet cleaning pad
AU1986697A (en) * 1996-11-06 1998-05-29 Minnesota Mining And Manufacturing Company Multiple abrasive assembly and method
US5765250A (en) * 1997-04-10 1998-06-16 Lee; Kyu H. Floor cleaner with tiltable handle and four wheel support for storage
WO2005011755A2 (en) * 2003-07-30 2005-02-10 Tennant Company Ultraviolet sanitation device
US20080092926A1 (en) * 2006-10-23 2008-04-24 Kimball James F Cleaning apparatus with disposable elements and methods of cleaning
KR20090009762U (en) * 2008-03-25 2009-09-30 황보기철 Sun heat source cleaner
US8522385B2 (en) * 2010-06-15 2013-09-03 John Franklin Geurkink High efficiency floor treating system and method
US9987645B2 (en) * 2015-07-17 2018-06-05 Butler's Brand, Inc. Concentrated cleaning capsule and atomizer for dispensing cleaning solution therefrom
US20170129067A1 (en) * 2015-11-06 2017-05-11 David Young Method and apparatus for stripping and cleaning floors
CN107485336A (en) * 2017-08-20 2017-12-19 郑州朗鑫智能电子科技有限公司 A kind of smart home sweeper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355542A (en) * 1992-11-12 1994-10-18 Oreck Corporation Orbiter floor machine
US9119518B2 (en) * 2009-12-11 2015-09-01 Jeffrey T. Hruby Orbitual surface cleaning apparatus
WO2012139059A1 (en) * 2011-04-06 2012-10-11 Hruby Orbital Systems, Inc. Oribal surface cleaning apparatus
US9877624B2 (en) * 2012-08-07 2018-01-30 Kärcher North America, Inc. Floor cleaning tool having a mechanically operated pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3982806A4 *

Also Published As

Publication number Publication date
EP3982806A4 (en) 2024-04-03
US20230098260A1 (en) 2023-03-30
EP3982806A1 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
AU2018102050A4 (en) Robotic cleaner with sweeper and rotating dusting pads
KR100667873B1 (en) Up-right type vacuum cleaner
US9757005B2 (en) Floor treatment apparatus
JP4489763B2 (en) Unattended spot cleaning device
US9119518B2 (en) Orbitual surface cleaning apparatus
US20060064844A1 (en) Floating deck for use with a floor cleaning apparatus
JP2020199264A (en) Autonomous floor cleaner with carry handle
US7140060B1 (en) Apparatus for cleaning floor surfaces
US20230098260A1 (en) Orbital surface cleaning apparatus
CN109414144A (en) Surface maintenance machine with quick pop-up maintenance tool component
KR101435166B1 (en) Multi-polishing machine
JP2022517565A (en) Floor treatment equipment
US5993563A (en) Combination of main scrubbing machine and attachment scrubbing machine
JP2000217759A (en) Floor polishing machine
KR101233027B1 (en) Multifunction polishers
JP2018042640A (en) Washing apparatus
JP2007520359A (en) Polishing machine
US20070294854A1 (en) Walk behind cleaning apparatus
CN211049252U (en) Driving type floor washing machine
KR20110096799A (en) Polishing apparatus
JPH11342097A (en) Cleaning device
KR102674554B1 (en) Apparatus for automatically flushing toilet
CN114947636B (en) Surface cleaning apparatus
WO2022064781A1 (en) Electric vacuum cleaner
US20240041289A1 (en) Floor cleaner dock

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020823459

Country of ref document: EP

Effective date: 20220112