WO2020248415A1 - 储能供电系统和储能供电箱 - Google Patents

储能供电系统和储能供电箱 Download PDF

Info

Publication number
WO2020248415A1
WO2020248415A1 PCT/CN2019/105718 CN2019105718W WO2020248415A1 WO 2020248415 A1 WO2020248415 A1 WO 2020248415A1 CN 2019105718 W CN2019105718 W CN 2019105718W WO 2020248415 A1 WO2020248415 A1 WO 2020248415A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
power supply
supply system
monitoring terminal
energy
Prior art date
Application number
PCT/CN2019/105718
Other languages
English (en)
French (fr)
Inventor
申望屏
张华农
Original Assignee
深圳市雄韬电源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市雄韬电源科技股份有限公司 filed Critical 深圳市雄韬电源科技股份有限公司
Publication of WO2020248415A1 publication Critical patent/WO2020248415A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • H02J13/0062
    • H02J13/0075
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • This application relates to the field of electric power technology, in particular to an energy storage power supply system and an energy storage power supply box.
  • the power load of the grid is also gradually increasing.
  • the traditional technology adds wind, solar and other renewable energy auxiliary power supply to share the power supply load of the distribution station.
  • an embodiment of the present invention provides an energy storage power supply system, including: an energy storage device, an energy storage management device, a two-way converter device, an energy storage monitoring terminal, and an energy storage monitoring background device set in a power grid control center;
  • the energy storage device is electrically connected to the DC end of the two-way converter device, the AC end of the two-way converter device is used to connect to the grid, the energy storage device and the energy storage management device are electrically connected, and the energy storage monitoring terminal is connected to the energy storage management device and the two-way Communication connection of converter device and energy storage monitoring background equipment;
  • Energy storage management device used to monitor the operating status of the energy storage device, send energy storage status information to the energy storage monitoring terminal, and receive charging and discharging instructions from the energy storage monitoring terminal to control the charging and discharging of the energy storage device; energy storage status information labeling The operating status of the energy storage device;
  • the energy storage monitoring terminal is used to forward the received commutation status information and energy storage status information to the energy storage monitoring background device, and receive charge and discharge information from the energy storage monitoring background device, and send charge and discharge instructions to the storage device according to the charge and discharge information.
  • the terminal can be monitored; the commutation status information indicates the operating status of the two-way commutation device.
  • a temperature control device is further included.
  • the temperature control device is used to detect the temperature of the energy storage device and control the temperature of the energy storage device within a certain range.
  • the temperature control device includes a temperature detection module and a fire extinguishing device, and the temperature control detection module is connected to the fire extinguishing device for starting the fire extinguishing device when the temperature of the energy storage device is higher than a threshold.
  • the energy storage device includes a plurality of battery packs connected in parallel, and the battery packs are connected in parallel to the DC terminal of the bidirectional converter device.
  • it further includes a direct current converging device, one end of the direct current converging device is electrically connected to each battery pack, and the other end is electrically connected to the direct current end of the bidirectional converter device.
  • the battery pack includes a plurality of iron phosphate batteries connected in series.
  • an insulation detection device is further included, and the insulation detection device is electrically connected to the energy storage device and the energy storage management device respectively.
  • the energy storage monitoring terminal and the energy storage background device are connected through wireless public network communication; the energy storage monitoring terminal is connected to the energy storage management device and the two-way converter device through Ethernet or LAN bus, respectively.
  • the energy storage state information includes remaining power and first state information; the first state information indicates that the energy storage device is in a normal or abnormal state;
  • the energy storage monitoring background device is used to obtain the current grid load, determine the charging and discharging information according to the current grid load, remaining power, first status information, and commutation status information, and send it to the energy storage monitoring terminal.
  • an embodiment of the present invention also provides an energy storage power supply box, including a box body and the above-mentioned energy storage power supply system, and the energy storage power supply system is arranged in the box body.
  • the above-mentioned energy storage power supply system and energy storage power supply box report energy storage status information and commutation status information through the energy storage management device and the two-way converter device, and the energy storage monitoring terminal and the energy storage monitoring background device determine the charging and discharging requirements in real time. Control the charging and discharging of the energy storage device.
  • the grid load When the grid load is high, it can stably provide additional power to the grid to ensure the power supply and safe operation of the grid; when the grid load is low, it will automatically charge to complete the power reserve, make full use of the remaining power of the grid, energy saving, environmental protection, stable and reliable.
  • Figure 1 is a schematic structural diagram of an energy storage power supply system in an embodiment
  • FIG. 2 is a schematic structural diagram of an energy storage power supply system in another embodiment
  • FIG. 3 is a schematic structural diagram of an energy storage power supply system in another embodiment
  • Figure 4 is a schematic circuit diagram of an energy storage power supply system in an embodiment
  • Fig. 5 is a schematic diagram of a circuit connected to the power grid in the embodiment shown in Fig. 4.
  • an energy storage power supply system including: an energy storage device 10, an energy storage management device 20, a two-way converter device 30, an energy storage monitoring terminal 40, and an The central energy storage monitors the back-end equipment 50.
  • the energy storage device 10 is electrically connected to the DC end of the bidirectional converter device 30, the AC end of the bidirectional converter device 30 is used to connect to the power grid, the energy storage device 10 and the energy storage management device 20 are electrically connected, and the energy storage monitoring terminal 40 is respectively connected to The energy storage management device 20, the two-way converter device 30, and the energy storage monitoring background device 50 are in communication connection.
  • the energy storage management device 20 is used to monitor the operating status of the energy storage device 10, send energy storage status information to the energy storage monitoring terminal 40, receive charge and discharge instructions from the energy storage monitoring terminal 40, and control the charge and discharge of the energy storage device 10;
  • the energy storage state information indicates the operating state of the energy storage device 10.
  • the energy storage monitoring terminal 40 is used to forward the received commutation status information and energy storage status information to the energy storage monitoring background device 50, and receive charge and discharge information from the energy storage monitoring background device 50, and send charge and discharge information according to the charge and discharge information
  • the instruction is sent to the energy storage monitoring terminal 40; the commutation status information indicates the operating status of the bidirectional commutation device 30.
  • the energy storage management device 20 monitors the operating status of the energy storage device 10 (for example, charging and discharging status, remaining power, failure, etc.) and reports energy storage status information to the energy storage monitoring terminal 40.
  • the bidirectional commutation device 30 can perform commutation in both directions, converting direct current to alternating current or alternating current to direct current.
  • the monitoring terminal of the bidirectional converter device 30 is connected to the energy storage monitoring terminal 40, and reports the commutation status information of the bidirectional converter device 30, such as normal and abnormal.
  • the energy storage monitoring background device 50 sends discharge information according to the energy storage status information and the commutation status information, receives the identification discharge information through the energy storage monitoring terminal 40, and issues a discharge command to the energy storage management device 20,
  • the energy storage management device 20 controls the discharge of the energy storage device 10, and the bidirectional converter device 30 converts the direct current output from the energy storage device 10 into an alternating current output value in the grid to supply power to the load.
  • the energy storage monitoring background device 50 sends charging information according to the energy storage status information and the commutation status information, receives and identifies the charging information through the energy storage monitoring terminal 40, and issues charging instructions to the energy storage management device 20,
  • the energy storage management device 20 controls the charging of the energy storage device 10, and the bidirectional converter device 30 converts AC power of the grid into DC power and inputs it to the energy storage device 10 to charge the energy storage device 10.
  • the bidirectional converter device 30 may be a bidirectional converter PCS.
  • the above-mentioned energy storage power supply system can stably provide additional power to the grid when the grid load is high, ensuring the power supply and the safe operation of the grid; when the grid load is low, it will automatically charge to complete the electric energy reserve, make full use of the remaining power of the grid, and save energy and environmental protection. ,Stable and reliable.
  • the energy storage state information includes remaining power and first state information; the first state information indicates that the energy storage device 10 is in a normal or abnormal state.
  • the energy storage monitoring background device 50 is used to obtain the current grid load, determine charging and discharging information according to the current grid load, remaining power, first state information, and commutation state information, and send it to the energy storage monitoring terminal 40.
  • the energy storage monitoring background device 50 may be the power grid master control server, and the energy storage monitoring background device 50 will perform the charging and discharging determination process of the energy storage device 10, including: obtaining current grid load, energy storage status information, and commutation
  • the status information determines the charging information or the discharging information according to the current grid load, the remaining power, the first status information and the commutation status information, and sends it to the energy storage monitoring terminal 40.
  • the energy storage monitoring terminal 40 receives charging information or discharging information, recognizes and converts it into a charging instruction or a discharging instruction, and sends it to the energy storage management device 20.
  • the energy storage management device 20 receives a charging instruction or a discharging instruction, and controls the energy storage device 10 to charge or discharge.
  • the commutation status information indicates whether the two-way converter is operating normally.
  • the discharge information is sent to the energy storage monitoring terminal 40.
  • the charging information is sent to the energy storage monitoring terminal 40.
  • the peak load threshold and the average load threshold are preset values, which are preset by the power engineer based on the power supply load statistics.
  • the peak load threshold is greater than the average load threshold.
  • the full power threshold is the power value when the energy storage device 10 is fully charged.
  • the determination process in the energy storage monitoring background device 50 includes:
  • the charging information is sent to the energy storage monitoring terminal 40.
  • the energy storage device 10 is automatically charged during the valley period of the night power load.
  • the preset time period at night can be set based on experience, such as 22:00-4:00.
  • a temperature control device 60 is further included.
  • the temperature control device 60 is used to detect the temperature of the energy storage device 10 and control the temperature of the energy storage device 10 within a certain range.
  • the temperature control device 60 ensures that the energy storage device 10 works at a safe temperature, and reduces the loss or safety hazards of the energy storage device 10 due to high temperature.
  • the temperature control device 60 includes a temperature detection module 61 and a fire extinguishing device 62.
  • the temperature control detection module 61 is connected to the fire extinguishing device 62 for when the temperature of the energy storage device 10 is higher than
  • the fire extinguishing device 62 is activated when the threshold is reached.
  • the temperature detection module is powered by the energy storage device 10, and the energy storage device 10 is connected to the temperature detection module through a DC/AC converter to provide AC power for the temperature detection module.
  • the energy storage device 10 includes a plurality of battery packs connected in series. In another embodiment, the energy storage device 10 includes a plurality of battery packs connected in parallel, and the battery packs are connected in parallel to the DC terminal of the bidirectional converter device 30. Compared with battery packs connected in series, the parallel connection of battery packs can reduce the abnormality of the energy storage device 10 due to individual battery failures. When one group of batteries fails, it will not affect the operation of other battery packs.
  • one battery pack includes multiple iron phosphate batteries connected in series.
  • the energy storage management device 20 may be a battery management system BMS, which is composed of multiple detection modules and a main control module CCU. Each detection module is electrically connected to the main control module CCU. Each detection module is arranged on each battery pack to detect the state of the battery. The main control module CCU receives the detection result of each detection module, and obtains energy storage status information after processing. The energy storage module provides 12V or 24V DC power supply for the main control module CCU through the DC/DC converter.
  • it further includes a direct current converging device 70, one end of the direct current converging device 70 is electrically connected to each battery pack, and the other end is electrically connected to the direct current end of the bidirectional converter device 30.
  • an insulation detection device is further included.
  • the insulation detection devices are respectively electrically connected to the energy storage device 10 and the energy storage management device 20 to detect whether the insulation protection of the energy storage device 10 and the energy storage management device 20 is normal.
  • the insulation detection device may provide direct current power supply by the energy storage module through a DCDC converter.
  • the energy storage monitoring terminal 40 and the energy storage background device are connected through wireless public network communication; the energy storage monitoring terminal 40 is respectively connected to the energy storage management device 20 and the two-way converter device 30 through an Ethernet or LAN bus.
  • wireless public network communication includes, but is not limited to, 2G, 3G, 4G, and 5G wireless communication.
  • an embodiment of the present invention also provides an energy storage power supply box, including a box body and the above-mentioned energy storage power supply system, and the energy storage power supply system is arranged in the box body.
  • the box may be a container.
  • the energy storage and power supply box can be mounted on a transportation tool to provide additional power supply for the grid, which is more flexible and convenient, and easy to deploy and dispatch.
  • a 1MWh energy storage power supply box is provided.
  • the energy storage device 10 includes 14 battery packs connected in parallel, and each battery pack consists of 4 boxes of 134.4V/160Ah iron phosphate
  • the lithium batteries are connected in series, and the battery management system BMS is responsible for the management of the battery pack.
  • the 14 battery packs are installed on two rows of battery racks and arranged on both sides of the container.
  • the positive poles of 14 battery packs are connected in parallel to the DC positive terminal of a 250W bidirectional converter, and the negative poles of 14 battery packs are connected in parallel to the DC negative terminal of a 250W bidirectional converter.
  • the AC end of the 250W two-way converter is divided into three electrical interfaces respectively connected to the grid-connected power distribution cabinet, and connected to the grid through the grid-connected power distribution cabinet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种储能供电系统,包括:储能装置(10)、储能管理装置(20)、双向换流装置(30)、储能监控终端(40)以及设置在电网控制中心的储能监控后台设备(50)。储能装置(10)和双向换流装置(30)的直流端电连接,双向换流装置(30)的交流端用于接入电网,储能装置(10)和储能管理装置(20)电连接,储能监控终端(40)分别与储能管理装置(20)、双向换流装置(30)以及储能监控后台设备(50)通信连接。通过储能管理装置(20)和双向换流装置(30)上报储能状态信息和换流状态信息,并由储能监控终端(40)和储能监控后台设备(50)实时判断充放电需求,控制储能装置(10)充放电。当电网负荷高时,可稳定为电网提供额外电能,保障电力供应和电网安全运行;在电网负荷低时,自动进行充电,完成电能储备,充分利用电网剩余电力,节能环保,稳定可靠。

Description

储能供电系统和储能供电箱 技术领域
本申请涉及电力技术领域,特别是涉及一种储能供电系统和储能供电箱。
背景技术
随着经济的发展,人民物质生活水平的提高,电网用电负荷也在逐步增长。在冬夏两季,因为居民的取暖和降温需求时间段集中,日用电负荷的波动非常大。为在用电负荷的峰值期尽量保证居民用电供给,传统技术中增加风力、太阳能等可再生能源辅助供电分担配电站的供电负荷。
然而,在实现过程中,发明人发现传统技术中至少存在如下问题:风电、太阳能等可再生能源具有随机性和间歇性,很难在用电负荷的高峰期为电网提供稳定匹配的辅助电能,当可再生能源供给过少,则导致居民用电供给不足;当可再生能源供给过多,电网系统安全可能会受到影响,而且也会造成能源浪费。
发明内容
基于此,有必要针对上述技术问题,提供一种储能供电系统和储能供电箱。
一方面,本发明实施例提供一种储能供电系统,包括:储能装置、储能管理装置、双向换流装置、储能监控终端以及设置在电网控制中心的储能监控后台设备;
储能装置和双向换流装置的直流端电连接,双向换流装置的交流端用于接入电网,储能装置和储能管理装置电连接,储能监控终端分别与储能管理装置、双向换流装置以及储能监控后台设备通信连接;
储能管理装置,用于监测储能装置的运行状态,将储能状态信息发送至储能监控终端,并从储能监控终端接收充放电指令,控制储能装置充放电;储能状态信息标示储能装置的运行状态;
储能监控终端,用于将接收的换流状态信息和储能状态信息转发至储能监 控后台设备,并从储能监控后台设备接收充放电信息,根据充放电信息,发送充放电指令至储能监控终端;换流状态信息表示双向换流装置的运行状态。
在其中一个实施例中,还包括温控装置,温控装置用于检测储能装置的温度,并控制储能装置的温度在一定范围内。
在其中一个实施例中,温控装置包括温度检测模块和灭火装置,温控检测模块连接灭火装置,用于当储能装置的温度高于阈值时启动灭火装置。
在其中一个实施例中,储能装置包括多个并联的电池组,电池组并联后与双向换流装置的直流端电连接。
在其中一个实施例中,还包括直流汇流装置,直流汇流装置一端与各电池组电连接,另一端与双向换流装置的直流端电连接。
在其中一个实施例中,电池组包括多个串联的磷酸铁电池。
在其中一个实施例中,还包括绝缘检测装置,绝缘检测装置分别电连接储能装置和储能管理装置电连接。
在其中一个实施例中,储能监控终端和储能后台设备通过无线公网通信连接;储能监控终端分别通过以太网或LAN总线连接储能管理装置和双向换流装置。
在其中一个实施例中,储能状态信息包括剩余电量、第一状态信息;第一状态信息指示储能装置处于正常或异常状态;
储能监控后台设备用于,获取当前电网负荷,根据当前电网负荷、剩余电量、第一状态信息和换流状态信息,确定充放电信息,并发送至储能监控终端。
另一方面,本发明实施例还提供一种储能供电箱,包括箱体和上述的储能供电系统,储能供电系统设置于箱体内。
上述储能供电系统和储能供电箱,通过储能管理装置和双向换流装置上报储能状态信息和换流状态信息,并由储能监控终端和储能监控后台设备实时判断充放电需求,控制储能装置充放电。当电网负荷高时,可稳定为电网提供额外电能,保障电力供应和电网安全运行;在电网负荷低时,自动进行充电,完成电能储备,充分利用电网剩余电力,节能环保,稳定可靠。
附图说明
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其它目的、特征和优势将变得更加清晰。在全部附图中相同的附图标记指示相同的部分,且并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本发明的主旨。
图1为一个实施例中储能供电系统的结构示意图;
图2为另一个实施例中储能供电系统的结构示意图;
图3为又一个实施例中储能供电系统的结构示意图;
图4为一个实施例中储能供电系统的电路示意图;
图5为图4所示实施例接入电网的电路示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
需要说明的是,当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件并与之结合为一体,或者可能同时存在居中元件。本文所使用的术语“安装”、“一端”、“另一端”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在一个实施例中,如图1所示,提供了一种储能供电系统,包括:储能装置10、储能管理装置20、双向换流装置30、储能监控终端40以及设置在电网控制中心的储能监控后台设备50。
储能装置10和双向换流装置30的直流端电连接,双向换流装置30的交流端用于接入电网,储能装置10和储能管理装置20电连接,储能监控终端40分 别与储能管理装置20、双向换流装置30以及储能监控后台设备50通信连接。
储能管理装置20,用于监测储能装置10的运行状态,将储能状态信息发送至储能监控终端40,并从储能监控终端40接收充放电指令,控制储能装置10充放电;储能状态信息标示储能装置10的运行状态。
储能监控终端40,用于将接收的换流状态信息和储能状态信息转发至储能监控后台设备50,并从储能监控后台设备50接收充放电信息,根据充放电信息,发送充放电指令至储能监控终端40;换流状态信息表示双向换流装置30的运行状态。
具体而言,储能管理装置20监测储能装置10的运行状态(例如充放电状态、剩余电量、是否故障等)上报储能状态信息至储能监控终端40。双向换流装置30可双向进行换流,将直流电转换为交流电或将交流电转换为直流电。双向换流装置30的监测端连接储能监控终端40,上报双向换流装置30的换流状态信息,例如正常、异常。
当电网处于负荷高峰时,储能监控后台设备50根据储能状态信息和换流状态信息,发送放电信息,通过储能监控终端40接收识别放电信息,下发放电指令至储能管理装置20,储能管理装置20控制储能装置10放电,双向换流装置30将储能装置10输出的直流电转换为交流电输出值电网中,为负载供电。
当电网不在负荷高峰时,储能监控后台设备50根据储能状态信息和换流状态信息,发送充电信息,通过储能监控终端40接收识别充电信息,下发充电指令至储能管理装置20,储能管理装置20控制储能装置10充电,双向换流装置30将电网的交流电转换为直流电输入储能装置10,为储能装置10充电。
其中,双向换流装置30可以是双向换流器PCS。
上述储能供电系统,当电网负荷高时,可稳定为电网提供额外电能,保障电力供应和电网安全运行;在电网负荷低时,自动进行充电,完成电能储备,充分利用电网剩余电力,节能环保,稳定可靠。
在一个实施例中,储能状态信息包括剩余电量、第一状态信息;第一状态信息指示储能装置10处于正常或异常状态。
储能监控后台设备50用于,获取当前电网负荷,根据当前电网负荷、剩余 电量、第一状态信息和换流状态信息,确定充放电信息,并发送至储能监控终端40。
具体而言,储能监控后台设备50可以是电网总控服务器,储能监控后台设备50中会进行储能装置10充放电的判定流程,包括:获取当前电网负荷、储能状态信息和换流状态信息,根据当前电网负荷、剩余电量、第一状态信息和换流状态信息判定充电信息或放电信息,并发送至储能监控终端40。储能监控终端40接收充电信息或放电信息,识别转换为充电指令或放电指令发送至储能管理装置20。储能管理装置20接收充电指令或放电指令,控制储能装置10充电或放电。其中,换流状态信息表示双向换流器是否正常运行。
进一步的,当储能监控后台设备50进行以下判断:
在当前电网负荷大于高峰负荷阈值、第一状态信息为正常运行、剩余电量大于放电阈值、且换流状态信息为正常运行时,发送放电信息至储能监控终端40。
在当前电网负荷小于平均负荷阈值、第一状态信息为正常运行、剩余电量小于满电阈值、且换流状态信息为正常运行时,发送充电信息至储能监控终端40。
其中,高峰负荷阈值、平均负荷阈值为预设值,由电力工程师根据供电负荷统计数据预设。高峰负荷阈值大于平均负荷阈值。满电阈值为储能装置10充满电时的电量值。
在一个实施例中,储能监控后台设备50中的判定流程包括:
在夜间预设时段,若剩余电量小于满电阈值,则发送充电信息至储能监控终端40。使储能装置10在夜间用电负荷谷值期自动充电。夜间预设时段可以根据经验设定,例如22:00-4:00。
在一个实施例中,还包括温控装置60,温控装置60用于检测储能装置10的温度,并控制储能装置10的温度在一定范围内。温控装置60保障储能装置10在安全温度下工作,减少储能装置10因高温造成损耗或安全隐患。
进一步的,在一个实施例中,如图2所示,温控装置60包括温度检测模块61和灭火装置62,温控检测模块61连接灭火装置62,用于当储能装置10的温 度高于阈值时启动灭火装置62。
在一个实施例中,温度检测模块由储能装置10供电,储能装置10通过DC/AC转换器连接温度检测模块,为温度检测模块提供交流供电。
在一个实施例中,储能装置10包括多个串联的电池组。在另一个实施例中,储能装置10包括多个并联的电池组,电池组并联后与双向换流装置30的直流端电连接。相比串联的电池组,电池组并联可减少因个别电池故障导致储能装置10异常,当其中一组电池出现故障也不会影响其他电池组工作。优选的,一个电池组包括多个串联的磷酸铁电池。
其中,储能管理装置20可以是电池管理系统BMS,它由多个检测模块和主控模块CCU组成。各检测模块电连接主控模块CCU。各检测模块设置在各电池组上,用于检测电池的状态,主控模块CCU接收各检测模块的检测结果,处理后得到储能状态信息。储能模块通过DC/DC转换器为主控模块CCU提供12V或24V的直流供电。
在一个实施例中,如图3所示,还包括直流汇流装置70,直流汇流装置70一端与各电池组电连接,另一端与双向换流装置30的直流端电连接。
在一个实施例中,还包括绝缘检测装置,绝缘检测装置分别电连接储能装置10和储能管理装置20电连接,用于检测储能装置10和储能管理装置20的绝缘保护是否正常。具体的,绝缘检测装置可由储能模块通过DCDC转换器提供直流供电。
在一个实施例中,储能监控终端40和储能后台设备通过无线公网通信连接;储能监控终端40分别通过以太网或LAN总线连接储能管理装置20和双向换流装置30。具体的,无线公网通信包括但不限于2G、3G、4G、5G制式的无线通信。
另一方面,本发明实施例还提供一种储能供电箱,包括箱体和上述的储能供电系统,储能供电系统设置于所述箱体内。其中,箱体可以是集装箱。储能供电箱可搭载在运输工具上,移动的为电网提供额外电源供电,更加灵活便捷,易于部署调度。
在一个具体实施例中,提供一种1MWh储能供电箱,如图4、5所示,储能 装置10包括14个并联的电池组,每个电池组由4箱134.4V/160Ah的磷酸铁锂电池串联而成,由电池管理系统BMS负责电池组的管理。14个电池组安装在两排电池架上,设置于集装箱两侧。14个电池组的正极并联接入250W双向换流器的直流正极端,14个电池组的负极并联接入250W双向换流器的直流负极端。250W双向换流器的交流端分为三个分别接入入网配电柜的三项电接口,通过入网配电柜接入电网中。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种储能供电系统,其特征在于,包括:储能装置、储能管理装置、双向换流装置、储能监控终端以及设置在电网控制中心的储能监控后台设备;
    所述储能装置和所述双向换流装置的直流端电连接,所述双向换流装置的交流端用于接入电网,所述储能装置和所述储能管理装置电连接,所述储能监控终端分别与所述储能管理装置、所述双向换流装置以及所述储能监控后台设备通信连接;
    所述储能管理装置,用于监测所述储能装置的运行状态,将储能状态信息发送至所述储能监控终端,并从所述储能监控终端接收充放电指令,控制所述储能装置充放电;所述储能状态信息标示所述储能装置的运行状态;
    所述储能监控终端,用于将接收的换流状态信息和所述储能状态信息转发至所述储能监控后台设备,并从所述储能监控后台设备接收充放电信息,根据所述充放电信息,发送所述充放电指令至所述储能监控终端;所述换流状态信息表示所述双向换流装置的运行状态。
  2. 根据权利要求1所述的储能供电系统,其特征在于,还包括温控装置,所述温控装置用于检测所述储能装置的温度,并控制所述储能装置的温度在一定范围内。
  3. 根据权利要求2所述的储能供电系统,其特征在于,所述温控装置包括温度检测模块和灭火装置,所述温控检测模块连接所述灭火装置,用于当所述储能装置的温度高于阈值时启动灭火装置。
  4. 根据权利要求3所述的储能供电系统,其特征在于,所述储能装置包括多个并联的电池组,所述电池组并联后与所述双向换流装置的直流端电连接。
  5. 根据权利要求4所述的储能供电系统,其特征在于,还包括直流汇流装置,所述直流汇流装置一端与各所述电池组电连接,另一端与所述双向换流装置的直流端电连接。
  6. 根据权利要求5所述的储能供电系统,其特征在于,所述电池组包括多个串联的磷酸铁电池。
  7. 根据权利要求6所述的储能供电系统,其特征在于,还包括绝缘检测装置,所述绝缘检测装置分别电连接所述储能装置和所述储能管理装置电连接。
  8. 根据权利要求7所述的储能供电系统,其特征在于,所述储能监控终端和所述储能后台设备通过无线公网通信连接;所述储能监控终端分别通过以太网或LAN总线连接所述储能管理装置和所述双向换流装置。
  9. 根据权利要求1所述的储能供电系统,其特征在于,所述储能状态信息包括剩余电量、第一状态信息;所述第一状态信息指示所述储能装置处于正常或异常状态;
    所述储能监控后台设备用于,获取当前电网负荷,根据所述当前电网负荷、所述剩余电量、第一状态信息和换流状态信息,确定所述充放电信息,并发送至所述储能监控终端。
  10. 一种储能供电箱,其特征在于,包括箱体和如权利要求1至9任意一项所述的储能供电系统,所述储能供电系统设置于所述箱体内。
PCT/CN2019/105718 2019-06-10 2019-09-12 储能供电系统和储能供电箱 WO2020248415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910498705.3A CN110098630A (zh) 2019-06-10 2019-06-10 储能供电系统和储能供电箱
CN201910498705.3 2019-06-10

Publications (1)

Publication Number Publication Date
WO2020248415A1 true WO2020248415A1 (zh) 2020-12-17

Family

ID=67450567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105718 WO2020248415A1 (zh) 2019-06-10 2019-09-12 储能供电系统和储能供电箱

Country Status (2)

Country Link
CN (1) CN110098630A (zh)
WO (1) WO2020248415A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114598008A (zh) * 2022-03-25 2022-06-07 清华大学 储能电源装置、储能电源控制方法、装置和单片机
CN115001135A (zh) * 2022-05-16 2022-09-02 国网智慧能源交通技术创新中心(苏州)有限公司 一种基于主动消防处理的充换电场站
CN115189384A (zh) * 2022-06-23 2022-10-14 深圳市鸿嘉利新能源有限公司 一种基于v2g的微网储能充放电管理方法
WO2024067790A1 (zh) * 2022-09-30 2024-04-04 格力博(江苏)股份有限公司 能源站系统、能源站控制方法及能源站

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098630A (zh) * 2019-06-10 2019-08-06 深圳市雄韬电源科技股份有限公司 储能供电系统和储能供电箱
CN114115006A (zh) * 2021-11-17 2022-03-01 南方电网科学研究院有限责任公司 一种储能控制系统
CN115864565B (zh) * 2022-11-16 2023-09-26 惠州因博利电子科技有限公司 一种基于储能变换器的锂离子电池储能系统和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319797A (zh) * 2014-10-21 2015-01-28 国网上海市电力公司 一种磷酸铁锂电池的移动式储能系统及其控制方法
JP2015056996A (ja) * 2013-09-13 2015-03-23 株式会社ピューズ 電力ピークカット装置
CN107332266A (zh) * 2017-08-25 2017-11-07 浙江南都电源动力股份有限公司 用户侧储能电站及其应用模式
CN108011386A (zh) * 2017-11-24 2018-05-08 国网北京市电力公司 电池储能系统
CN108832647A (zh) * 2018-06-21 2018-11-16 江苏英耐杰新能源有限公司 一种用于配电网削峰填谷的电池储能系统
CN109245140A (zh) * 2018-11-02 2019-01-18 谷明月 一种分时电价用工业储能系统及其充放电策略
CN110098630A (zh) * 2019-06-10 2019-08-06 深圳市雄韬电源科技股份有限公司 储能供电系统和储能供电箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056996A (ja) * 2013-09-13 2015-03-23 株式会社ピューズ 電力ピークカット装置
CN104319797A (zh) * 2014-10-21 2015-01-28 国网上海市电力公司 一种磷酸铁锂电池的移动式储能系统及其控制方法
CN107332266A (zh) * 2017-08-25 2017-11-07 浙江南都电源动力股份有限公司 用户侧储能电站及其应用模式
CN108011386A (zh) * 2017-11-24 2018-05-08 国网北京市电力公司 电池储能系统
CN108832647A (zh) * 2018-06-21 2018-11-16 江苏英耐杰新能源有限公司 一种用于配电网削峰填谷的电池储能系统
CN109245140A (zh) * 2018-11-02 2019-01-18 谷明月 一种分时电价用工业储能系统及其充放电策略
CN110098630A (zh) * 2019-06-10 2019-08-06 深圳市雄韬电源科技股份有限公司 储能供电系统和储能供电箱

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114598008A (zh) * 2022-03-25 2022-06-07 清华大学 储能电源装置、储能电源控制方法、装置和单片机
CN115001135A (zh) * 2022-05-16 2022-09-02 国网智慧能源交通技术创新中心(苏州)有限公司 一种基于主动消防处理的充换电场站
CN115001135B (zh) * 2022-05-16 2024-08-27 国网智慧能源交通技术创新中心(苏州)有限公司 一种基于主动消防处理的充换电场站
CN115189384A (zh) * 2022-06-23 2022-10-14 深圳市鸿嘉利新能源有限公司 一种基于v2g的微网储能充放电管理方法
CN115189384B (zh) * 2022-06-23 2024-04-30 深圳市鸿嘉利新能源有限公司 一种基于v2g的微网储能充放电管理方法
WO2024067790A1 (zh) * 2022-09-30 2024-04-04 格力博(江苏)股份有限公司 能源站系统、能源站控制方法及能源站

Also Published As

Publication number Publication date
CN110098630A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2020248415A1 (zh) 储能供电系统和储能供电箱
CN211790784U (zh) 一种光储充一体化充电站
CN203491707U (zh) 基于电池梯次利用的储能系统
CN209709744U (zh) 一种退役动力电池梯次利用的通信基站供电系统
CN107069976A (zh) 一种可扩展的组串式大规模储能系统
WO2024041383A1 (zh) 储能系统及电池管理系统的供电控制方法
US20200169089A1 (en) Energy storage system
CN202888862U (zh) 一种适用于分布式新能源电力的蓄能逆变器
CN210109280U (zh) 一种电力直流电源蓄电池远方核容系统
CN104882936B (zh) 一种通信储能电源系统
CN204131151U (zh) 一种蓄电池自动在线放电装置
CN206820086U (zh) 一种蓄电池在线维护控制电路及系统
CN102916484A (zh) 基于iec61850协议的分布式一体化电源系统
CN112510768A (zh) 供电系统
CN201898362U (zh) 锂电池充放电监控装置
CN208571667U (zh) 一种延长变电站通信设备供电时间装置
CN106058899A (zh) 储能系统的监控系统
CN208127888U (zh) 一种储能备电一体化ups电源系统
CN106532893B (zh) 光伏空调器、电池管理系统及其控制方法
CN213960018U (zh) 安装于箱式发电机组的光伏系统
CN211351805U (zh) 交直流一体储能设备和系统
CN203135554U (zh) 一种电力设备监控装置
CN202435129U (zh) 节能型远程安全放电装置
CN106786688B (zh) 一种用于大规模电动汽车充电站的储能控制系统
CN105429283A (zh) 用于变电站的供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932758

Country of ref document: EP

Kind code of ref document: A1