WO2020244444A1 - 射频能力配置方法及装置 - Google Patents

射频能力配置方法及装置 Download PDF

Info

Publication number
WO2020244444A1
WO2020244444A1 PCT/CN2020/093002 CN2020093002W WO2020244444A1 WO 2020244444 A1 WO2020244444 A1 WO 2020244444A1 CN 2020093002 W CN2020093002 W CN 2020093002W WO 2020244444 A1 WO2020244444 A1 WO 2020244444A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
radio frequency
carriers
information
capability
Prior art date
Application number
PCT/CN2020/093002
Other languages
English (en)
French (fr)
Inventor
徐舟
张立文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20818327.7A priority Critical patent/EP3972304A4/en
Publication of WO2020244444A1 publication Critical patent/WO2020244444A1/zh
Priority to US17/541,855 priority patent/US20220095358A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1682Allocation of channels according to the instantaneous demands of the users, e.g. concentrated multiplexers, statistical multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • H04W8/245Transfer of terminal data from a network towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for configuring radio frequency capabilities.
  • 5G fifth generation
  • NR new radio
  • the terminal is usually allocated more downlink time domain resources, and the terminal is allocated less uplink time domain resources.
  • the limited uplink time domain resources result in poor uplink transmission performance.
  • the embodiments of the present application provide a radio frequency capability configuration method and device, which are used to improve the uplink transmission performance of a terminal.
  • a radio frequency capability configuration method is provided, which can be applied to a terminal or a chip in the terminal.
  • the following uses the terminal as an example for description.
  • the radio frequency capability configuration method provided by the first aspect includes: a terminal receives configuration information for configuring multiple radio frequency capabilities of a first carrier from a network device, and the multiple radio frequency capabilities correspond to multiple indexes in a one-to-one relationship; The first indication information indicating the first index, where the first index is one of the multiple indexes.
  • the network device can configure multiple radio frequency capabilities of the carrier corresponding to multiple indexes for the terminal, and then indicate an index through the indication information, and the terminal can determine the use Which radio frequency capability among multiple radio frequency capabilities.
  • the network device can flexibly indicate the radio frequency capability of the carrier by indicating the index, so that in different time domain resources, the network device can indicate the radio frequency capability of the carrier for the terminal according to the radio frequency capability of the terminal's carrier, thereby improving the terminal's uplink transmission capability.
  • the method further includes: the terminal performs uplink transmission on the first carrier with the radio frequency capability corresponding to the first index.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is single-transmitted.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the method further includes: the terminal sends the capability information of the terminal to the network device, and the capability information of the terminal includes the radio frequency capability information of the first carrier when the first carrier is single-transmitted, and the first carrier and the other Information about the radio frequency capability of the first carrier when one or more carriers other than the first carrier are concurrent.
  • This possible implementation manner can enable the network device to determine the multiple radio frequency capabilities of the first carrier according to the capability information of the terminal, so that the multiple radio frequency capabilities of the first carrier determined by the network device more meet the actual needs of the terminal.
  • the method further includes: the terminal receives second indication information for indicating a second index from the network device, the second index is one of the multiple indexes; the terminal corresponds to the second index
  • the radio frequency capability is for uplink transmission on the first carrier.
  • the configuration information is carried in RRC signaling.
  • the first indication information is carried in MAC CE signaling or DCI.
  • a radio frequency capability configuration method is provided, which can be applied to a network device or a chip in a network device.
  • the following takes the application to network equipment as an example for description.
  • the radio frequency capability configuration method provided by the second aspect includes: a network device sends configuration information for configuring multiple radio frequency capabilities of a first carrier to a terminal, and the multiple radio frequency capabilities correspond to multiple indexes one-to-one; The first indication information indicating the first index, where the first index is one of the multiple indexes.
  • the network device can configure the terminal with multiple radio frequency capabilities of the carrier corresponding to multiple indexes, and then indicate an index through the indication information, and the terminal can determine the use Which radio frequency capability among multiple radio frequency capabilities.
  • the network device can flexibly indicate the radio frequency capability of the carrier by indicating the index, so that in different time domain resources, the network device can indicate the radio frequency capability of the carrier for the terminal according to the radio frequency capability of the terminal's carrier, thereby improving the terminal's uplink transmission capability.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is single-transmitted.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the method further includes: the network device receives the capability information of the terminal from the terminal, and the capability information of the terminal includes the radio frequency capability information of the first carrier when the first carrier is single-transmitted, and the first carrier and the other Information about the radio frequency capability of the first carrier when one or more carriers other than the first carrier are concurrent.
  • This possible implementation manner can enable the network device to determine the multiple radio frequency capabilities of the first carrier according to the capability information of the terminal, so that the multiple radio frequency capabilities of the first carrier determined by the network device more meet the actual needs of the terminal.
  • the network device sending the first indication information to the terminal includes: the network device sending the first indication to the terminal according to the uplink scheduling situation of the first carrier and one or more carriers other than the first carrier information.
  • the network device sends the first indication information to the terminal according to the uplink scheduling of the first carrier and one or more carriers other than the first carrier, including: the network device sends the first indication information according to the first carrier and one or more carriers. Or the position of the time-domain resources of the uplink scheduling of multiple carriers, determine the first carrier single transmission, or determine that the first carrier is concurrently transmitted with one or more carriers; when the first carrier single transmission is determined, the radio frequency corresponding to the first index When the capability is single transmission of the first carrier, the radio frequency capability of the first carrier; or, when it is determined that the first carrier is concurrent with one or more carriers, the radio frequency capability corresponding to the first index is the concurrent transmission of the first carrier and one or more carriers When the radio frequency capability of the first carrier.
  • the method further includes: the network device sends second indication information to the terminal, the second indication information is used to indicate a second index, and the second index is one of the multiple indexes.
  • the configuration information is carried in RRC signaling.
  • the first indication information is carried in MAC CE signaling or DCI.
  • a radio frequency capability configuration method is provided, which can be applied to a terminal or a chip in the terminal.
  • the following uses the terminal as an example for description.
  • the radio frequency capability configuration method provided by the third aspect includes: a terminal receives configuration information for configuring multiple radio frequency capabilities of a first carrier from a network device; and the terminal receives configuration information based on the first carrier and one or more carriers other than the first carrier.
  • uplink scheduling situation uplink transmission is performed on the first carrier with one radio frequency capability among multiple radio frequency capabilities.
  • the network equipment can configure one or more radio frequency capabilities of each of one or more carriers for the terminal, and the terminal can be based on whether the network equipment is on one carrier and one or more other than the carrier.
  • the uplink scheduling situation of a carrier selects one of the multiple radio frequency capabilities of the carrier for uplink transmission, without the network equipment instructing the terminal to use the radio frequency capability on the carrier.
  • the terminal can flexibly determine the radio frequency capability used on the carrier according to the radio frequency capability of the terminal, thereby improving the uplink transmission capability of the terminal.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is single-transmitted.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the terminal performs uplink transmission on the first carrier using one of the multiple radio frequency capabilities according to the uplink scheduling situation of the first carrier and one or more carriers other than the first carrier. Including: the terminal determines the first carrier single transmission according to the position of the first carrier and the uplink scheduled time domain resources of one or more carriers, or determines that the first carrier is concurrent with one or more carriers; when the terminal determines the first carrier single When the terminal uses the first carrier’s radio frequency capability for single transmission on the first carrier, the terminal performs uplink transmission; or, when the terminal determines that the first carrier is concurrent with one or more carriers, the terminal performs uplink transmission on the first carrier. When one or more carriers are concurrently transmitted, the radio frequency capability of the first carrier is transmitted upstream.
  • the method further includes: the terminal sends the capability information of the terminal to the network device, and the capability information of the terminal includes the radio frequency capability information of the first carrier when the first carrier is single-transmitted, and the first carrier and the other Information about the radio frequency capability of the first carrier when one or more carriers other than the first carrier are concurrent.
  • This possible implementation manner can enable the network device to determine the multiple radio frequency capabilities of the first carrier according to the capability information of the terminal, so that the multiple radio frequency capabilities of the first carrier determined by the network device more meet the actual needs of the terminal.
  • the configuration information is carried in RRC signaling.
  • a radio frequency capability configuration method is provided, which can be applied to a network device or a chip in a network device.
  • the following takes the application to network equipment as an example for description.
  • the radio frequency capability configuration method provided by the fourth aspect includes: a network device obtains configuration information, and the configuration information is used to configure multiple radio frequency capabilities corresponding to a first carrier; and the network device sends the configuration information to the terminal.
  • the network device can configure the terminal with one or more radio frequency capabilities of each of one or more carriers, and the terminal can be based on whether the network device is on one carrier and one or more other than the carrier.
  • the uplink scheduling situation of a carrier selects one of the multiple radio frequency capabilities of the carrier for uplink transmission, without the network equipment instructing the terminal to use the radio frequency capability on the carrier.
  • the terminal can flexibly determine the radio frequency capability used on the carrier according to the radio frequency capability of the terminal, thereby improving the uplink transmission capability of the terminal.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is single-transmitted.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the method further includes: the network device receives the capability information of the terminal from the terminal, and the capability information of the terminal includes the radio frequency capability information of the first carrier when the first carrier is single-transmitted, and the first carrier and the other Information about the radio frequency capability of the first carrier when one or more carriers other than the first carrier are concurrent.
  • This possible implementation manner can enable the network device to determine the multiple radio frequency capabilities of the first carrier according to the capability information of the terminal, so that the multiple radio frequency capabilities of the first carrier determined by the network device more meet the actual needs of the terminal.
  • the configuration information is carried in RRC signaling.
  • a radio frequency capability configuration method is provided, which can be applied to a terminal or a chip in the terminal.
  • the following uses the terminal as an example for description.
  • the radio frequency capability configuration method provided by the fifth aspect includes: a terminal receives configuration information from a network device, the configuration information is used to configure M sets of radio frequency capabilities, wherein at least one of the M sets of radio frequency capabilities includes multiple carriers M is an integer greater than 1; the terminal receives first indication information from the network device, where the first indication information is used to indicate the m1 set of radio frequency capabilities in the M sets of radio frequency capabilities,
  • the m1 set of radio frequency capabilities includes information about the radio frequency capabilities of x1 carriers, m1 is an integer greater than 0 and less than or equal to M, and x1 is an integer greater than 0; the terminal uses the radio frequency capabilities of the x1 carriers in the Uplink transmission is performed on x1 carriers.
  • the network device can configure multiple sets of radio frequency capabilities for the terminal, and then indicate a set of radio frequency capabilities through instruction information, and the terminal can determine which radio capability of the multiple radio capabilities to use through the instruction information.
  • the network equipment can flexibly instruct the terminal which set of radio frequency capabilities to use, so that in different time domain resources, the network equipment can indicate to the terminal which radio frequency capabilities to use according to the radio frequency capabilities of the terminal's carrier to improve the terminal's uplink transmission capability.
  • the radio frequency capability information of the x1 carriers is the information of each of the x1 carriers when the terminal performs uplink transmission on the x1 carriers in a time division multiplexing manner.
  • Radio frequency capability information the terminal uses the radio frequency capability of the x1 carriers to perform uplink transmission on the x1 carriers, including: the terminal uses the radio frequency capability of the x1 carriers to perform the uplink transmission on the x1 carriers Time division multiplexing mode for uplink transmission.
  • the radio frequency capability information of the x1 carriers is the radio frequency capability of each of the x1 carriers when the terminal performs uplink transmission on the x1 carriers in a concurrent manner
  • the information that the terminal uses the radio frequency capabilities of the x1 carriers to perform uplink transmission on the x1 carriers includes: the terminal uses the radio frequency capabilities of the x1 carriers to concurrently transmit on the x1 carriers Perform upstream transmission.
  • the method further includes: the terminal receives second indication information from the network device, where the second indication information is used to indicate the m2 set of radio frequency in the M sets of radio frequency capabilities Capabilities.
  • the m2 set of radio frequency capabilities includes information on radio frequency capabilities of x2 carriers, m2 is an integer greater than 0 and less than or equal to M, and x2 is an integer greater than 0; the terminal uses the radio frequency capabilities of x2 carriers to Uplink transmission is performed on the x2 carriers.
  • the method further includes: the terminal sends capability information of the terminal to the network device, and the capability information of the terminal includes N single carrier capability information and at least one carrier combination Capability information, one of the N single-carrier capability information is information about the radio frequency capability of one of the N carriers during single-carrier transmission, and the carrier combination capability information is at least one of the N carriers Information on the radio frequency capability of each carrier when two carriers are concurrent or TDM.
  • a radio frequency capability configuration method is provided, which can be applied to a network device or a chip in a network device.
  • the following takes the application to network equipment as an example for description.
  • the radio frequency capability configuration method provided by the sixth aspect includes: a network device sends configuration information to a terminal, the configuration information is used to configure M sets of radio frequency capabilities, wherein at least one set of the M sets of radio frequency capabilities includes multiple Information about the radio frequency capability of the carrier, M is an integer greater than 1; the network device sends first indication information to the terminal, and the first indication information is used to indicate the m1 set of radio frequency capabilities in the M sets of radio frequency capabilities ,
  • the m1 set of radio frequency capabilities includes information on radio frequency capabilities of x1 carriers, m1 is an integer greater than 0 and less than or equal to M, and x1 is an integer greater than 0.
  • the network device can configure multiple sets of radio frequency capabilities for the terminal, and then indicate a set of radio frequency capabilities through instruction information, and the terminal can determine which radio capability of the multiple radio capabilities to use through the instruction information.
  • the network equipment can flexibly instruct the terminal which set of radio frequency capabilities to use, so that in different time domain resources, the network equipment can indicate to the terminal which radio frequency capabilities to use according to the radio frequency capabilities of the terminal's carrier to improve the terminal's uplink transmission capability.
  • the radio frequency capability information of the x1 carriers is the information of each of the x1 carriers when the terminal performs uplink transmission on the x1 carriers in a time division multiplexing manner. Information about radio frequency capabilities.
  • the radio frequency capability information of the x1 carriers is the radio frequency capability of each of the x1 carriers when the terminal performs uplink transmission on the x1 carriers in a concurrent manner Information.
  • the method further includes: the network device sends second indication information to the terminal, where the second indication information is used to indicate the m2 set of radio frequency in the M sets of radio frequency capabilities Capabilities, the m2 set of radio frequency capabilities includes information about radio frequency capabilities of x2 carriers, m2 is an integer greater than 0 and less than or equal to M, and x2 is an integer greater than 0.
  • the method further includes: the network device receives capability information of the terminal from the terminal, and the capability information of the terminal includes N single carrier capability information and at least one carrier combination Capability information, one of the N single-carrier capability information is information about the radio frequency capability of one of the N carriers during single-carrier transmission, and the carrier combination capability information is at least one of the N carriers Information about the radio frequency capability of each carrier when two carriers are concurrent or TDM; the network device sending configuration information to the terminal includes: the network device sending configuration information to the terminal according to the capability information of the terminal.
  • a communication device including: a communication unit and a processing unit; the processing unit is configured to receive configuration information from a network device through the communication unit, and the configuration information is used to configure a multiple of the first carrier.
  • One radio frequency capability, the plurality of radio frequency capabilities correspond to a plurality of indexes; the processing unit is further configured to receive first indication information from the network device through the communication unit, and the first indication information is used for Indicates a first index, and the first index is one of the multiple indexes.
  • the processing unit is further configured to perform uplink transmission on the first carrier using the radio frequency capability corresponding to the first index through the communication unit.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is single-transmitted.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier .
  • the processing unit is further configured to send the capability information of the communication device to the network device through the communication unit, and the capability information of the communication device includes the first carrier Information about the radio frequency capability of the first carrier in single transmission and information about the radio frequency capability of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the processing unit is further configured to receive second indication information from the network device through the communication unit, the second indication information is used to indicate a second index, and the second The index is one of the multiple indexes; the processing unit is further configured to perform uplink transmission on the first carrier using the radio frequency capability corresponding to the second index through the communication unit.
  • the configuration information is carried in RRC signaling.
  • the first indication information is carried in MAC CE signaling or DCI.
  • a communication device including: a communication unit and a processing unit; the processing unit is configured to send configuration information to a terminal through the communication unit, and the configuration information is used to configure multiple Radio frequency capabilities, the multiple radio frequency capabilities correspond to multiple indexes one to one; the processing unit is further configured to send first indication information to the terminal through the communication unit, where the first indication information is used to indicate An index, and the first index is one of the multiple indexes.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is single-transmitted.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier .
  • the processing unit is further configured to receive capability information of the terminal from the terminal through the communication unit, and the capability information of the terminal includes the single transmission time of the first carrier Information about the radio frequency capability of the first carrier and information about the radio frequency capability of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the processing unit is specifically configured to send the communication unit to the communication unit according to the uplink scheduling of the first carrier and one or more carriers other than the first carrier.
  • the terminal sends the first indication information.
  • the processing unit is specifically configured to determine the single transmission of the first carrier according to the position of the first carrier and the uplink scheduled time domain resources of the one or more carriers, Alternatively, it is determined that the first carrier is concurrently transmitted with the one or more carriers; when it is determined that the first carrier is single-transmitted, and the radio frequency capability corresponding to the first index is single-transmitted by the first carrier, the The radio frequency capability of the first carrier; or, when it is determined that the first carrier is concurrent with the one or more carriers, the radio frequency capability corresponding to the first index is the first carrier and the one or more carriers When concurrent, the radio frequency capability of the first carrier.
  • the processing unit is further configured to send second indication information to the terminal through the communication unit, the second indication information is used to indicate a second index, and the second index Is one of the multiple indexes.
  • the configuration information is carried in RRC signaling.
  • the first indication information is carried in MAC CE signaling or DCI.
  • a communication device including: a communication unit and a processing unit; the processing unit is configured to receive configuration information from a network device through the communication unit, and the configuration information is used to configure the multiplex of the first carrier. Radio frequency capabilities; the processing unit is further configured to use the multiple radio frequencies on the first carrier according to the uplink scheduling of the first carrier and one or more carriers other than the first carrier One of the radio frequency capabilities of the capabilities performs uplink transmission through the communication unit.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is single-transmitted.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier .
  • the processing unit is specifically configured to: determine the first carrier single transmission according to the position of the first carrier and the uplink scheduled time domain resources of the one or more carriers, Alternatively, it is determined that the first carrier is concurrently transmitted with the one or more carriers; when it is determined that the first carrier is single-transmitted, and the processing unit uses the first carrier to single-transmit on the first carrier, the The radio frequency capability of the first carrier is transmitted uplink through the communication unit; or, when it is determined that the first carrier is concurrent with the one or more carriers, the processing unit is on the first carrier to communicate with the When one or more carriers are concurrently transmitted, the radio frequency capability of the first carrier is transmitted through the communication unit.
  • the processing unit is further configured to send the capability information of the communication device to the network device through the communication unit, and the capability information of the communication device includes the first carrier Information about the radio frequency capability of the first carrier in single transmission and information about the radio frequency capability of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the configuration information is carried in RRC signaling.
  • a communication device including: a communication unit and a processing unit; the processing unit is configured to obtain configuration information, and the configuration information is used to configure multiple radio frequency capabilities corresponding to a first carrier; the communication The unit is used to send the configuration information to the terminal.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is single-transmitted.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier .
  • the communication unit is further configured to receive capability information of the terminal from the terminal, and the capability information of the terminal includes the first carrier when the first carrier is single-transmitted Information about the radio frequency capability of and information about the radio frequency capability of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the configuration information is carried in RRC signaling.
  • a communication device in an eleventh aspect, has a function of implementing any one of the methods provided in the fifth aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the device may include a communication unit and a processing unit.
  • the processing unit is used to perform the processing actions in the fifth aspect (for example, actions other than sending and/or receiving), and the communication unit is used to perform the sending in the fifth aspect. And/or received actions.
  • the actions executed by the communication unit are executed under the control of the processing unit.
  • the communication unit includes a sending unit and a receiving unit. In this case, the sending unit is configured to execute the sending action in the fifth aspect, and the receiving unit is configured to execute the receiving action in the fifth aspect.
  • the device can exist in the form of a chip.
  • the communication device provided by the eleventh aspect includes: a communication unit and a processing unit; the processing unit is configured to receive configuration information from a network device through the communication unit, and the configuration information is used to configure M sets of radio frequencies Capability, wherein at least one of the M sets of radio frequency capabilities includes information about the radio frequency capabilities of multiple carriers, and M is an integer greater than 1.
  • the processing unit is further configured to obtain information from the The network device receives first indication information, where the first indication information is used to indicate the m1 set of radio frequency capabilities in the M sets of radio frequency capabilities, and the m1 set of radio frequency capabilities includes information about the radio frequency capabilities of x1 carriers, m1 Is an integer greater than 0 and less than or equal to M, and x1 is an integer greater than 0; the processing unit is further configured to perform uplink transmission on the x1 carriers with the radio frequency capability of the x1 carriers through the communication unit.
  • the radio frequency capability information of the x1 carriers is the information of each of the x1 carriers when the device performs uplink transmission on the x1 carriers in a time division multiplexing manner.
  • the processing unit is specifically configured to: use the radio frequency capability of the x1 carriers to perform uplink transmission on the x1 carriers through the communication unit in a time division multiplexing manner.
  • the radio frequency capability information of the x1 carriers is the radio frequency capability of each of the x1 carriers when the device performs uplink transmission on the x1 carriers in a concurrent manner
  • the processing unit is specifically configured to use the radio frequency capability of the x1 carriers to perform uplink transmission in a concurrent manner on the x1 carriers through the communication unit.
  • the processing unit is further configured to receive second indication information from the network device through the communication unit, and the second indication information is used to indicate one of the M sets of radio frequency capabilities
  • the m2 set of radio frequency capabilities, the m2 set of radio frequency capabilities includes information on radio frequency capabilities of x2 carriers, m2 is an integer greater than 0 and less than or equal to M, and x2 is an integer greater than 0; the processing unit is also used to pass The communication unit uses the radio frequency capability of the x2 carriers to perform uplink transmission on the x2 carriers.
  • the processing unit is further configured to send capability information of the apparatus to the network device through the communication unit, and the capability information of the apparatus includes N single-carrier capability information and At least one carrier combination capability information, one single carrier capability information in the N single carrier capability information is information about the radio frequency capability of one of the N carriers in single carrier transmission, and the carrier combination capability information is the N Information on the radio frequency capability of each carrier when at least two of the two carriers are concurrent or time-division multiplexed.
  • a communication device is provided, and the device has the function of implementing any one of the methods provided in the sixth aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the device may include a communication unit and a processing unit.
  • the processing unit is used to perform the processing actions in the sixth aspect (for example, actions other than sending and/or receiving), and the communication unit is used to perform the sending in the sixth aspect. And/or received actions.
  • the actions executed by the communication unit are executed under the control of the processing unit.
  • the communication unit includes a sending unit and a receiving unit.
  • the sending unit is configured to execute the sending action in the sixth aspect
  • the receiving unit is configured to execute the receiving action in the sixth aspect.
  • the device can exist in the form of a chip product.
  • the communication device includes: a communication unit and a processing unit; the processing unit is configured to send configuration information to the terminal through the communication unit, and the configuration information is used to configure M sets of radio frequency capabilities , Wherein, at least one of the M sets of radio frequency capabilities includes information on radio frequency capabilities of multiple carriers, and M is an integer greater than 1.
  • the processing unit is further configured to communicate to the terminal through the communication unit Send first indication information, the first indication information is used to indicate the m1 set of radio frequency capabilities in the M sets of radio frequency capabilities, the m1 set of radio frequency capabilities includes information about the radio frequency capabilities of x1 carriers, and m1 is greater than 0 is an integer less than or equal to M, and x1 is an integer greater than 0.
  • the radio frequency capability information of the x1 carriers is the information of each of the x1 carriers when the terminal performs uplink transmission on the x1 carriers in a time division multiplexing manner. Information about radio frequency capabilities.
  • the radio frequency capability information of the x1 carriers is the radio frequency capability of each of the x1 carriers when the terminal performs uplink transmission on the x1 carriers in a concurrent manner Information.
  • the processing unit is further configured to send second indication information to the terminal through the communication unit, and the second indication information is used to indicate the first of the M sets of radio frequency capabilities.
  • m2 sets of radio frequency capabilities the m2 th set of radio frequency capabilities includes information on radio frequency capabilities of x2 carriers, m2 is an integer greater than 0 and less than or equal to M, and x2 is an integer greater than 0.
  • the processing unit is further configured to receive capability information of the terminal from the terminal through the communication unit, and the capability information of the terminal includes N single-carrier capability information and at least One piece of carrier combination capability information, one piece of single carrier capability information in the N pieces of single carrier capability information is information about the radio frequency capability of one of the N carriers in single carrier transmission, and the carrier combination capability information is the N pieces Information about the radio frequency capability of each carrier when at least two of the carriers are concurrent or time-division multiplexed; the processing unit is specifically configured to send configuration information to the terminal through the communication unit according to the capability information of the terminal.
  • a communication device including a processor.
  • the processor is connected to the memory, the memory is used to store computer-executable instructions, and the processor executes the computer-executable instructions stored in the memory, so as to realize the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect or the sixth aspect Any one of the methods provided.
  • the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory may be located in the communication device or outside the communication device.
  • the processor includes a logic circuit and an input interface and/or an output interface.
  • the output interface is used to execute the sending action in the corresponding method
  • the input interface is used to execute the receiving action in the corresponding method.
  • the communication device further includes a communication interface and a communication bus, and the processor, the memory, and the communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface includes a transmitter and a receiver. In this case, the transmitter is used to perform the sending action in the corresponding method, and the receiver is used to perform the receiving action in the corresponding method.
  • the communication device exists in the form of a chip product.
  • a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect, or Any one of the methods provided in the sixth aspect.
  • a computer program product containing instructions is provided.
  • the computer executes the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect or the sixth aspect. Any one of the methods provided in the aspect.
  • a chip in a sixteenth aspect, includes a processor and an interface circuit, the interface circuit is coupled to the processor, and the processor is used to run a computer program or instruction to implement the aspects described in the first to sixth aspects In any aspect of the method, the interface circuit is used to communicate with modules other than the chip.
  • a communication device is provided, and the communication device is used to implement the method of any one of the first to sixth aspects.
  • Figure 1 is a schematic diagram of communication between a terminal and a network device
  • Figure 2 is a schematic diagram of a CA scenario
  • Figure 3 is a schematic diagram of a DC scenario
  • Figure 4 is a schematic diagram of a SUL scenario
  • FIG. 5 is a schematic diagram of a radio frequency channel provided by an embodiment of the application.
  • 6 to 8 are schematic diagrams of a time sequence ratio provided by embodiments of the application.
  • FIG. 9 is a flowchart of a radio frequency capability configuration method provided by an embodiment of the application.
  • FIG. 10 and FIG. 11 are schematic diagrams of a radio frequency channel provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of a time sequence ratio provided by an embodiment of the application.
  • 13 and 14 are respectively flowcharts of a radio frequency capability configuration method provided by an embodiment of the application.
  • 15 is a schematic diagram of a time sequence ratio provided by an embodiment of the application.
  • 16 is a schematic diagram of the composition of a communication device provided by an embodiment of the application.
  • 17 and 18 are respectively schematic diagrams of the hardware structure of a communication device provided by an embodiment of this application.
  • FIG. 19 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the application.
  • FIG. 20 is a schematic diagram of the hardware structure of a network device provided by an embodiment of this application.
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • An embodiment of the present application provides a communication system.
  • the communication system includes at least one network device and at least one terminal.
  • the at least one terminal can communicate with one or more of the at least one network device.
  • the network device and the terminal can communicate wirelessly.
  • the network equipment and terminals included in the communication system as shown in FIG. 1 are only an example.
  • the type and number of network elements included in the communication system, and the number of network elements The connection relationship is not limited to this.
  • the communication system in the embodiment of the present application may be a communication system supporting fourth generation (4G) access technology, such as long term evolution (LTE) access technology; or, the communication system may also support A communication system with 5G access technology, such as NR access technology; or, the communication system may also be a communication system supporting multiple wireless technologies, for example, a communication system supporting LTE technology and NR technology.
  • 4G fourth generation
  • LTE long term evolution
  • NR NR access technology
  • the communication system may also be a communication system supporting multiple wireless technologies, for example, a communication system supporting LTE technology and NR technology.
  • the communication system can also be applied to future-oriented communication technologies.
  • the network equipment in the embodiments of the present application may be equipment used on the access network side to support terminal access to the communication system.
  • it may be an evolved nodeB (eNB) or 5G access in a 4G access technology communication system.
  • the network device can be called a base station, node, or access network device.
  • the terminal in the embodiment of this application may be a device that provides voice or data connectivity to users, and may also be referred to as user equipment (UE), mobile station (mobile station), subscriber unit (subscriber unit), station (station), terminal equipment (terminal equipment, TE), etc.
  • the terminal may be a cellular phone, a personal digital assistant (PDA), a wireless modem (modem), a handheld device, a laptop computer, and a cordless phone.
  • PDA personal digital assistant
  • modem wireless modem
  • WLL wireless local loop
  • WLL tablet computer
  • smart phone smart phone
  • customer premise equipment customer premise equipment
  • CPE customer premise equipment
  • devices that can access the communication system, communicate with the network side of the communication system, or communicate with other objects through the communication system can all be the terminals in the embodiments of the present application, such as intelligent transportation Terminals and cars in smart homes, household equipment in smart homes, power meter reading equipment in smart grids, voltage monitoring equipment, environmental monitoring equipment, video monitoring equipment in smart security networks, cash registers, etc.
  • a time slot is the smallest scheduling unit of time domain resources, and a time slot includes at least one symbol.
  • Symbols include uplink symbols (that is, symbols used for uplink transmission), downlink symbols (that is, symbols used for downlink transmission), and flexible symbols (which can be used for uplink transmission or downlink transmission or used as a guard interval according to network configuration).
  • a time slot containing all uplink symbols may be referred to as an uplink time slot, which is represented by U in the embodiment of the present application.
  • a time slot containing all downlink symbols may be referred to as a downlink time slot, which is represented by D in the embodiment of the present application.
  • a time slot containing multiple symbols among uplink symbols, downlink symbols, and flexible symbols may be referred to as flexible time slots, which is represented by S in the embodiment of the present application.
  • 1 millisecond can include different numbers of time slots.
  • the sub-carrier interval is 15 kilohertz (kHz)
  • 1 ms includes 1 time slot, which occupies 1ms.
  • the subcarrier spacing is 30kHz
  • 1ms includes 2 time slots, and each time slot occupies 0.5ms.
  • the uplink symbol may be called a single carrier-frequency division multiple access (SC-FDMA) symbol or an orthogonal frequency division multiple access (OFDM) symbol, for example.
  • SC-FDMA single carrier-frequency division multiple access
  • OFDM orthogonal frequency division multiple access
  • the downlink symbols may be called OFDM symbols, for example.
  • Time division duplex time division deplux, TDD
  • a duplex communication technology of the communication system used to separate the receiving and sending channels, that is, the uplink and the downlink.
  • the same frequency domain resources are used for the uplink and downlink, and the uplink and the downlink are distinguished by different time domain resources.
  • Frequency division duplex time division depluxing, FDD
  • a duplex communication technology of the communication system used to separate the receiving and sending channels, that is, the uplink and the downlink.
  • the uplink and downlink use the same time domain resources, and the uplink and the downlink are distinguished by different frequency domain resources, for example, the uplink frequency range is different from the downlink frequency range.
  • Multi-carrier uplink transmission refers to the presence of multiple carriers between the terminal and network equipment in the uplink direction.
  • a terminal can access one network device, and multiple carriers can include the carrier between the terminal and one network device, or the terminal can access two network devices at the same time, and multiple carriers can include the communication between the terminal and the two network devices. Carrier.
  • scenarios of multi-carrier uplink transmission may include scenarios such as carrier aggregation (CA), dual connectivity (DC), and supplementary uplink (SUL).
  • CA carrier aggregation
  • DC dual connectivity
  • SUL supplementary uplink
  • the uplink transmission may be performed in a time division multiplexing (TDM) manner, or the uplink transmission may be performed in a concurrent manner.
  • TDM time division multiplexing
  • CA is a technology that aggregates two or more carriers to support a larger transmission bandwidth.
  • CA can be divided into uplink CA and downlink CA.
  • the terminal can simultaneously receive or transmit on multiple carriers according to its capabilities.
  • the terminal can perform uplink CA between carrier 1 and carrier 2, thereby supporting a larger uplink transmission bandwidth between the network device and the terminal, and improving uplink transmission performance.
  • the terminal supports simultaneous access to two different nodes.
  • This access method is called DC.
  • the terminal may use the radio resources of one or more of the two nodes for transmission, and the two nodes may be of the same standard or of different standards.
  • One of the two different nodes is the primary node, and the other node is the secondary node.
  • the link between two nodes can be a non-ideal backhaul link or an ideal backhaul link.
  • the two different nodes can be different network devices, or different modules in the same network device, and one module can correspond to one cell.
  • the two different nodes may be two base stations in a non-standalone (NSA) networking scenario based on evolved packet core (EPC).
  • the two The base station may be an LTE base station and an NR base station.
  • the two different nodes may also be two base stations in a standalone (SA) scenario.
  • SA standalone
  • the two base stations may be both LTE base stations or NR base stations.
  • a DC scenario in which both base stations are NR base stations can be called an NR DC scenario.
  • the DC scenario where both base stations are LTE base stations can be referred to as an LTE DC scenario.
  • DC may be multi-radio (MR)-DC
  • MR-DC may include evolved universal terrestrial radio access (Evolved Universal Terrestrial Radio Access, E-UTRA) and NR DC (E-UTRA) -NR Dual Connectivity (EN-DC), Next Generation (Next Generation, NG) Radio Access Network (RAN) E-UTRA and NR's DC (NG-RAN E-UTRA-NR Dual Connectivity, NGEN- DC), NR and E-UTRA DC (NR-E-UTRA Dual Connectivity, NE-DC), or NR and NR DC (NR-DC).
  • the terminal can communicate with one of the two different nodes through multiple carriers.
  • the two different nodes are an LTE base station and an NR base station
  • the terminal can communicate with LTE through multiple carriers.
  • uplink CA and/or downlink CA can be performed between these multiple carriers.
  • Multiple carriers can also be used to communicate with the NR base station, and uplink CA and/or downlink CA can be performed between these multiple carriers.
  • SUL is a supplementary uplink configured for the terminal.
  • the purpose is to improve the uplink coverage of the terminal.
  • the terminal may send uplink information through a normal uplink (NUL), and may also send uplink information through SUL.
  • NUL normal uplink
  • the coverage of NUL may be smaller than that of SUL.
  • the multiple carriers in the SUL scenario refer to SUL and NUL.
  • the radio frequency capabilities in the embodiments of the present application include radio frequency channel capabilities and/or other radio frequency capabilities.
  • the radio frequency channel capability may include one or more of the following information: the number of multiple-input multiple-output (MIMO) layers, sounding reference signal (sounding reference signal, SRS) selection capability, radio frequency channel The number and so on.
  • Other radio frequency capabilities may include one or more of the following information: uplink transmit power, single carrier power (ue-PowerClass), and information about whether transmitter switching will affect the receiver (txSwitchImpactToRx).
  • the radio frequency channel capability of a carrier represents the number of radio frequency channels of the carrier.
  • the capability of a radio frequency channel supported by a carrier (that is, the maximum adoptable) represents the number of radio frequency channels supported by the carrier (that is, the maximum adoptable).
  • the radio frequency channel capability of a carrier may include one or more of the following information: a numerical value indicating the number of radio frequency channels of the carrier, the number of MIMO layers of the carrier, the SRS selection capability of the carrier, etc., the radio frequency channel capability of the carrier It can be characterized by the information included in the radio frequency channel capability.
  • the SRS antenna selection capability refers to the number of transmit antennas and receive antennas supported by the carrier. If the number of transmitting antennas is denoted as x, the number of receiving antennas is denoted as y, the transmitting antenna is denoted as T, and the receiving antenna is denoted as R, then the SRS antenna selection capability of the carrier can be denoted as xTyR, and x and y are both integers greater than 0.
  • the number of MIMO layers of a carrier is the same as the number of radio frequency channels of the carrier.
  • the maximum number of MIMO layers of a carrier is the same as the number of radio frequency channels supported by the carrier.
  • the number of transmitting antennas in the SRS selection capability of a carrier is the same as the number of radio frequency channels of the carrier.
  • the maximum number of transmitting antennas in the SRS selection capability of a carrier is the same as the number of radio frequency channels supported by the carrier.
  • the radio frequency channel capability characterizes x radio frequency channels
  • the radio frequency channel capability is xT
  • x is an integer greater than 0.
  • a carrier can support one radio frequency channel or multiple radio frequency channels.
  • different carriers can share radio frequency channels, that is, the same radio frequency channel can be used by different carriers at different times.
  • carrier 1 can support radio frequency channel 1 and radio frequency channel 2, and carrier 2 only supports radio frequency channel 2.
  • RF channel 2 can be used for different carriers at different times.
  • radio frequency channel 2 can be used for carrier 1.
  • switch 1 works in state 1.
  • radio frequency channel 2 can be used for carrier 2.
  • switch 1 works in state 2.
  • Single carrier transmission refers to only uplink transmission on this carrier.
  • the terminal There are two cases for single carrier transmission.
  • One is to send on a single carrier, that is, the terminal always performs uplink transmission on this carrier.
  • the other is TDM between this carrier and other carriers.
  • the time domain resources used for uplink transmission of this carrier and any one of the other carriers do not overlap.
  • the carrier is single shot, and for multiple carriers composed of the carrier and other carriers, the multiple carriers are TDM.
  • the time domain resource used for uplink transmission of each of the multiple carriers is not the same as the time domain resource used for uplink transmission of any other carrier in the multiple carriers overlapping.
  • the multiple carriers may be part or all of all carriers supported by the terminal. It can be understood that multiple carriers will not perform uplink transmission on the same time domain resource.
  • the terminal can Through the 2.6G carrier for uplink transmission in the time slot 3 corresponding to the 2.6G carrier, the terminal can use the 3.5G carrier in the time slot 9 corresponding to the 3.5G carrier and the time slot 4 corresponding to the 3.5 carrier (that is, the time slot 2 of the 2.6G carrier) The first half of the time slot) for uplink transmission, then the 2.6G carrier or 3.5G carrier is TDM.
  • Hz 2.6G Hertz
  • 3.5G carrier hereinafter referred to as a 3.5G carrier
  • the TDM transmission method may also be referred to as a time-sharing transmission method.
  • the single carrier transmission in the embodiment of the present application may include single carrier transmission and/or TDM between the carrier and other carriers.
  • the radio frequency capability of a single carrier includes the radio frequency capability of the carrier when the carrier is transmitted on a single carrier, and/or the radio frequency capability of the carrier and other carriers in TDM.
  • the radio frequency capability of a carrier when transmitted by a single carrier and the radio frequency capability of the carrier and other carriers in TDM may be the same or different.
  • Concurrency is a way of data transmission.
  • the time domain resources used for uplink transmission of each of the multiple carriers overlap with the time domain resources used for uplink transmission of each of the other carriers.
  • the multiple carriers may be part or all of all carriers supported by the terminal.
  • the terminal performs uplink transmission on the 2.6G carrier and 3.5G carrier at the same time, then In the first half of time slot 2 corresponding to the 2.6G carrier (ie, time slot 4 corresponding to the 3.5G carrier), the 2.6G carrier and the 3.5G carrier are concurrent.
  • how the multiple carriers are transmitted on the overlapped uplink time domain resources can determine whether the multiple carriers are TDM or concurrent. For example, for a 2.6G carrier and a 3.5G carrier, if the time slot configuration of the two carriers is shown in Figure 7, if the terminal transmits through the 3.5G carrier in the time slot 4 and time slot 9 corresponding to the 3.5G carrier, the terminal transmits through 2.6G The carrier is only sent on the time slot 3 corresponding to the 2.6G carrier, and the 3.5 carrier and the 2.6 carrier are sent in the uplink by TDM.
  • time slot 4 and time slot 9 corresponding to 3.5G carrier through 3.5G carrier If the terminal transmits on time slot 4 and time slot 9 corresponding to 3.5G carrier through 3.5G carrier, and the terminal transmits on time slot 2, time slot 3 and time slot 4 corresponding to 2.6G carrier through 2.6G carrier, it will be transmitted at 3.5G On time slot 4 and time slot 9 corresponding to the carrier, 3.5G carrier and 2.6G carrier are concurrent.
  • the terminal may support multiple carriers, some of the multiple carriers may be TDM, and some of the carriers may be concurrent.
  • the terminal transmits on time slot 4 and time slot 9 corresponding to the 3.5G carrier through the 3.5G carrier, the terminal transmits on time slot 3 corresponding to the 2.6G carrier through the 2.6G carrier, and the terminal transmits through
  • the 1.8G carrier is transmitted in time slot 0 to time slot 4 corresponding to the 1.8G carrier, then the 3.5G carrier and 2.6G carrier are transmitted in TDM mode, and the 3.5G carrier and 1.8G carrier are transmitted in the 3.5G corresponding time slot 4 It is concurrent with time slot 9, and the 2.6G carrier and 1.8G carrier are concurrent on time slot 3 corresponding to 2.6G.
  • the radio frequency channel capability supported by each carrier is the radio frequency channel capability supported by the carrier when multiple carriers are concurrent.
  • the radio frequency channel capability supported by each carrier, the network equipment and the terminal may not distinguish when the multiple carriers are concurrent, and all time domain resources are based on the concurrent time of each carrier. Support the scheduling of radio frequency channel capabilities.
  • carrier 1 and carrier 2 are concurrent, carrier 1 supports 1T, and carrier 2 supports 1T. Then, when carrier 1 and carrier 2 are concurrent, carrier 1 supports 1T and carrier 2 supports 1T.
  • Network equipment can be scheduled on all time domain resources according to carrier 1 supporting 1T and carrier 2 supporting 1T.
  • network equipment can transmit the radio frequency channel capabilities of one or more carriers to the terminal according to the radio frequency channel capabilities of each carrier for a long time. Or uplink transmission on multiple carriers will limit the uplink transmission capability of the terminal.
  • carrier 1 supports radio frequency channel 1 and radio frequency channel 2
  • carrier 2 supports radio frequency channel 2.
  • Carrier 1 is a 2.6G carrier
  • carrier 2 is a 3.5G carrier.
  • Figure 6 for the time slot configuration of 2.6G and 3.5G carriers.
  • time slot 3 instructs the terminal to use 1T on the 3.5G carrier
  • the terminal uses 1T on the 2.6G carrier
  • the terminal uses 1T for uplink transmission in time slot 4 and time slot 9 of the 3.5G carrier
  • the terminal can use 2T for uplink transmission in the time slot 3 of the 2.6G carrier. It can be seen that the existing method limits the uplink transmission capability of the terminal.
  • the embodiments of this application provide the methods described in the following embodiments 1 to 3.
  • the network device can flexibly indicate the terminal's connection on one or more carriers. Radio frequency channel capabilities.
  • the terminal can determine the radio frequency channel capabilities on one or more carriers according to the uplink scheduling situation of the network equipment on each carrier.
  • the terminal can be flexibly adjusted in one or more carriers. The radio frequency channel capability on multiple carriers improves the uplink transmission capability of the terminal.
  • the method provided in the embodiments of the present application can be applied to any multi-carrier scenario.
  • the terminal may be located in the overlapping coverage area of multiple carriers, and the terminal may select different carriers for uplink transmission.
  • Multi-carrier scenarios include, but are not limited to, any of the aforementioned DC scenarios, CA scenarios, or SUL scenarios.
  • the carrier in the embodiment of the present application may be an FDD carrier or a TDD carrier.
  • the carrier in the embodiment of the present application may be, for example, a 3.5G carrier, a 2.6G carrier, a 1.8G carrier, a 900 mega (M) carrier, and so on.
  • Embodiment 1 provides a radio frequency capability configuration method, as shown in FIG. 9, including:
  • the terminal sends capability information of the terminal to the network device.
  • the network device receives the capability information of the terminal from the terminal.
  • the capability information may include multiple radio frequency capabilities.
  • the capability information of the terminal includes information about the radio frequency capability of the first carrier when the first carrier is single-transmitted.
  • the capability information of the terminal further includes information about the radio frequency capability of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the capability information of the terminal further includes radio frequency capability information of each of the one or more carriers when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the capability information of the terminal includes the radio frequency capability information of one or more of the N carriers (N is an integer greater than 1) when each carrier is single-transmitted, and multiple carriers of the N carriers Information on the radio frequency capability of each of the multiple carriers during concurrency.
  • the N carriers are part or all of the carriers of the terminal.
  • the N carriers include the first carrier.
  • the capability information of the terminal includes information about the radio frequency capability of the first carrier when the first carrier is single-transmitted, and the radio frequency of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the capability information and the radio frequency capability information of each of the one or more carriers also includes the radio frequency capability of each of the N carriers except the first carrier when single-transmitted And/or, information on the radio frequency capability of each of the multiple carriers when multiple carriers excluding the first carrier among the N carriers are concurrent.
  • the terminal when the terminal reports the radio frequency capability of each carrier in the frequency band combination, it may indicate in a display manner whether a carrier is single-transmitted or is combined with other carriers or multiple carriers. Two carriers are concurrent.
  • the terminal when the terminal reports the radio frequency capability of each carrier in the carrier combination, it may indicate that the reported radio frequency capability is the radio frequency when each carrier is single-transmitted. Capability is also the radio frequency capability of each carrier when multiple carriers are concurrent.
  • the terminal and network equipment can determine whether the radio frequency capability reported by the terminal is the radio frequency capability of each carrier single transmission or multiple carriers according to whether the time domain resources of multiple carriers overlap The radio frequency capability of each carrier. For example, when the time domain resources of multiple carriers overlap, the radio frequency capability of each carrier reported by the terminal is the radio frequency capability of each carrier when multiple carriers are concurrent. When the time domain resources of multiple carriers do not overlap, the terminal reports The radio frequency capability of each carrier is the radio frequency capability of each carrier in single transmission.
  • the radio frequency capability when the carrier is transmitted in a single carrier includes the radio frequency capability when the carrier is transmitted in a single carrier, and/or the radio frequency capability when the carrier is TDMed with other carriers.
  • the reported capability is the capability of the carrier, for example, carrier A 2T.
  • the reported capability may be a combination of frequency bands, for example: frequency band combination: frequency band A + frequency band B, carrier A 2T, carrier B 2T.
  • frequency band combination frequency band A + frequency band B, carrier A 2T, carrier B 2T.
  • the time domain resources of carrier A and carrier B do not overlap, and the terminal and network equipment can regard the ability of combining this frequency band as the ability of carrier A and carrier B in TDM mode.
  • the reported capability may be a combination of frequency bands, for example: frequency band combination: frequency band A + frequency band B, carrier A 1T, carrier B 1T.
  • frequency band combination frequency band A + frequency band B, carrier A 1T, carrier B 1T.
  • Example 1 Assuming that the N carriers are carrier A and carrier B, referring to Fig. 10, both carrier A and carrier B support radio frequency channel 1 and radio frequency channel 2. Then when carrier A is single-shot, carrier A supports up to 2T. When carrier B is single-shot, carrier B supports up to 2T. When carrier A and carrier B are concurrent, both carrier A and carrier B support 1T. In this case, see Table 1 for information included in the capability information of the terminal.
  • Carrier RF channel capability in single shot RF channel capability when carrier A and carrier B are concurrent A 2T 1T B 2T 1T
  • Example 2 Assume that the N carriers are carrier A, carrier B, and carrier C. Refer to Figure 11. Carrier A supports RF channel 1, RF channel 2 and RF channel 3, and both carrier B and carrier C support RF channel 2 and RF channel 3. . Then when carrier A is single-shot, carrier A supports up to 3T. When carrier B is single-shot, carrier B supports up to 2T. When carrier C is single-shot, carrier C supports up to 2T. When carrier A and carrier B are concurrent, carrier A supports up to 2T and carrier B supports up to 1T, or carrier A supports up to 1T and carrier B supports up to 2T.
  • carrier A and carrier C When carrier A and carrier C are concurrent, carrier A supports up to 2T, carrier C supports up to 1T, or carrier A supports up to 1T, and carrier C supports up to 2T.
  • carrier B and carrier C When carrier B and carrier C are concurrent, carrier B supports up to 1T, and carrier C supports up to 1T.
  • carrier A, carrier B and carrier C When carrier A, carrier B and carrier C are concurrent, carrier A supports up to 1T, carrier B supports up to 1T, and carrier C supports up to 1T. In this case, see Table 2 for information included in the capability information of the terminal.
  • the network device may be the main network device or the auxiliary network device.
  • the first carrier may be a carrier between the terminal and the main network device, or may be a carrier between the terminal and the auxiliary network device.
  • Step 901 is an optional step.
  • the terminal and the network device can pre-configure the capabilities of the terminal, and in this case, the terminal may not report to the network device.
  • the capability information of the terminal also includes whether the terminal supports dynamic switching of radio frequency capabilities. If the terminal supports dynamic switching of radio frequency capabilities, the terminal can switch between multiple radio frequency capabilities of a carrier.
  • the network device sends configuration information to the terminal, where the configuration information is used to configure multiple radio frequency capabilities of the first carrier, and the multiple radio frequency capabilities are in one-to-one correspondence with the multiple indexes.
  • the terminal receives configuration information from the network device.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is single-transmitted.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the radio frequency capabilities of the carrier may also be different.
  • Table 2 When carrier A and carrier B are concurrent, carrier A supports 2T, and when carrier A is concurrent with carrier B and carrier C. , Carrier A supports 1T. It can be seen from this that when the first carrier is concurrent with one or more carriers other than the first carrier, the radio frequency capability of the first carrier may be one or more.
  • the configuration information is used to configure the radio frequency capabilities of N′ (N′ is an integer greater than 0) carriers, at least one of the N′ carriers is configured with multiple radio capabilities, and each of the N′ carriers Each radio frequency capability corresponds to an index.
  • the indexes corresponding to multiple radio frequency capabilities of a carrier are different, and the indexes corresponding to the radio frequency capabilities of different carriers may be the same or different.
  • N′ carriers include the first carrier, and N′ carriers belong to N carriers.
  • N′ may be the same as N or less than N.
  • the configuration information is also used to configure one or more radio frequency capabilities of each of the N′ carriers except the first carrier.
  • the multiple radio frequency capabilities of any one carrier may include the radio frequency capabilities of the carrier when the carrier is single transmitted, and may also include the radio frequency capabilities of the carrier when the carrier is concurrent with one or more carriers other than the carrier.
  • the configuration information is carried in radio resource control (radio resource control, RRC for short) signaling.
  • RRC radio resource control
  • the network device can pass the sequence of the cell uplink configuration list ("uplinkConfigList") in section 6.3.2 of 3GPP technical specification (technical specification, TS) 38.331 version (version, V) 15.5.0
  • the cell uplink configuration identifier (“UplinkConfig-Id") included in the (sequence) configures one or more radio frequency capabilities of the carrier.
  • the carrier has SUL
  • one or more radio frequency capabilities of the SUL can also be configured through the information element "UplinkConfig-Id" included in the sequence of the information element assisted uplink list ("supplementaryUplinkList”).
  • a value of Id in "UplinkConfig-Id” is used to configure a radio frequency capability.
  • the information contained in "uplinkConfigList” may be:
  • step 902 may include the following in specific implementation: the network device sends configuration information to the terminal according to the capability information of the terminal. Specifically, the network device may first determine the radio frequency capability of each carrier in single transmission and the radio frequency capability of each carrier when concurrent with different carriers according to the capability information reported by the terminal, and then determine how many radio capabilities each carrier has.
  • the configuration information may be pre-configured in the network device, or the network device may be directly obtained from other devices.
  • N′ carriers are carrier A and carrier B, carrier A supports 2T and 1T, and carrier B supports 2T and 1T, then N′ of the configuration information configuration Refer to Table 3 for the radio frequency channel capability of the carrier and the corresponding index of the radio frequency channel capability.
  • the radio frequency channel capabilities of the N′ carriers configured by the configuration information and the corresponding indexes of the radio frequency channel capabilities can be seen in Table 4.
  • the network device may perform step 902 when the terminal supports dynamic switching of radio frequency capabilities.
  • the network device sends first indication information to the terminal, where the first indication information is used to indicate a first index, and the first index is one of multiple indexes.
  • the terminal receives the first indication information from the network device.
  • the first indication information is used to indicate n1 indexes, the n1 indexes correspond to n1 carriers out of the N′ carriers, the n1 indexes include the first index, and n1 is an integer greater than 0 and less than or equal to N′. That is, in addition to indicating the first index, the first indication information is also used to indicate other indexes among the n1 indexes except the first index.
  • the first indication information may indicate index 2 corresponding to carrier A and index 1 corresponding to carrier B.
  • the first index may be index 2 corresponding to carrier A or index 1 corresponding to carrier B.
  • the first indication information is carried in media access control (media access control, MAC) control element (CE) signaling or downlink control information (downlink control information, DCI).
  • media access control media access control
  • CE control element
  • DCI downlink control information
  • a new field may be added to the MAC CE or DCI to indicate the index of the carrier.
  • This field may include 1 or more bits.
  • the name of this field may be uplink configuration indication (uplinkconfigindication).
  • step 903 may include in specific implementation: 903-a.
  • the network device sends the first indication information to the terminal according to the uplink scheduling situation of the first carrier and one or more carriers other than the first carrier.
  • the network device may determine the first carrier to be single-transmitted according to the location of the uplink scheduled time domain resources of the first carrier and one or more carriers, or determine whether the first carrier and one or more Carrier concurrency. Specifically, the network device may determine the single transmission of the first carrier according to the overlap of the uplink scheduled time domain resources of the first carrier and one or more carriers, or determine which carriers the first carrier is concurrent with.
  • a method for network equipment to determine whether the first carrier is single-transmitted or concurrent with one or more carriers It can be: if the uplink scheduling time domain resource of this segment does not overlap with the uplink scheduling time domain resource of any carrier, the network device can determine that the terminal is on the first carrier on the uplink scheduling time domain resource of the first carrier. Single issue.
  • the network equipment can determine the time domain of this segment of uplink scheduling on the first carrier In terms of resources, the terminal concurrently on the first carrier and one or more of the one or more other carriers (for example, 2 carriers) (for example, 1 or 2 of the 2 carriers).
  • the network device determines which radio frequency capability of the first carrier is to be indicated after determining the single transmission of the first carrier, or after determining which carriers the first carrier is concurrent with.
  • the radio frequency capability of the first carrier when the network device determines that the first carrier is single-transmitted, and the first indication information indicates that the first carrier is single-transmitted, the radio frequency capability of the first carrier, that is, when the radio frequency capability corresponding to the first index is the first carrier single-transmit, The radio frequency capability of the first carrier.
  • the first indication information indicates that when the first carrier is concurrent with one or more carriers, the radio frequency capability of the first carrier, that is, the first index corresponds to The radio frequency capability is the radio frequency capability of the first carrier when the first carrier is concurrent with one or more carriers. Further, if the first carrier is concurrent with different carriers, there are multiple radio frequency capabilities of the first carrier.
  • the first indication information specifically indicates which radio frequency of the first carrier The capability depends on which carriers the one or more carriers are. At this time, the network device can determine the radio frequency capability of the first carrier according to the capability information reported by the terminal.
  • the network equipment determines and instructs the terminal to perform single transmission of carrier 3 on uplink time slot 0 of carrier 3, and the radio frequency channel capability of carrier 3 when single transmission is 2T.
  • the network equipment determines and instructs the terminal to concurrently perform carrier 1, carrier 2, and carrier 3 on time slot 4 of carrier 1 (that is, the first half time slot of uplink time slot 2 of carrier 2 and carrier 3), and carrier 1, carrier 2 and carrier 3
  • the radio frequency channel capacity of carrier 1, carrier 2 and carrier 3 are all 1T.
  • the network equipment determines and instructs the terminal to concurrently perform carrier 2 and carrier 3 in the second half of the uplink time slot 2 of carrier 2 and carrier 3.
  • the radio frequency channel capabilities of carrier 2 and carrier 3 are both 1T .
  • the process for the network device to determine each of the n1 indexes indicated by the first indication information is similar to the first index.
  • the terminal performs uplink transmission on the first carrier using the radio frequency capability corresponding to the first index.
  • the terminal also uses the radio frequency capability corresponding to the index to perform uplink transmission on the carrier corresponding to the index.
  • the terminal performs uplink transmission on carrier A at 1T. If the first indication information also indicates index 1 corresponding to carrier B, the terminal also performs uplink transmission on carrier B with 1T.
  • Step 904 is an optional step.
  • the network device sends second indication information to the terminal, where the second indication information is used to indicate a second index, and the second index is one of the multiple indexes.
  • the terminal receives the second indication information from the network device.
  • the second indication information is used to indicate n2 indexes, the n2 indexes correspond to n2 carriers in the N′ carriers, the n2 indexes include the second index, and n2 is an integer greater than 0 and less than or equal to N′. That is, in addition to indicating the second index, the second indication information is also used to indicate indexes other than the second index among the n2 indexes.
  • the first index and the second index may be the same or different, which is not specifically limited in the embodiment of the present application.
  • the process for the network device to determine each of the n2 indexes indicated by the second indication information is similar to the first index, and will not be described again.
  • the second indication information may indicate index 1 corresponding to carrier A and index 1 corresponding to carrier B.
  • the second index may be index 1 corresponding to carrier A or index 1 corresponding to carrier B.
  • the second indication information is carried in MAC CE signaling or DCI.
  • the first indication information and the second indication information may both be carried in MAC CE signaling, or both may be carried in DCI, or one may be carried in MAC CE signaling, and the other may be carried in DCI.
  • the first carrier is taken as an example to illustrate the process of configuring the radio frequency capability of the carrier used by the network equipment. Therefore, the first indication information and the second indication information both include the index corresponding to the radio frequency capability of the first carrier .
  • the carriers corresponding to the indexes indicated by the two indication information sent by the network device may or may not have the same carrier, which is not specifically limited in the embodiment of the present application.
  • Step 905 is an optional step.
  • the terminal performs uplink transmission on the first carrier using the radio frequency capability corresponding to the second index.
  • the terminal also uses the radio frequency capability corresponding to the index to perform uplink transmission on the carrier corresponding to the index.
  • the terminal performs uplink transmission on carrier A at 2T. If the second indication information also indicates index 1 corresponding to carrier B, the terminal also performs uplink transmission on carrier B at 1T.
  • Step 906 is optional.
  • the network device can configure multiple radio frequency capabilities of the carrier corresponding to multiple indexes one by one for the terminal, and then indicate an index through the indication information, and the terminal can determine to use the index through the index. Which radio frequency capability among multiple radio frequency capabilities.
  • the network device can flexibly indicate the radio frequency capability of the carrier by indicating the index, so that in different time domain resources, the network device can indicate the radio frequency capability of the carrier for the terminal according to the radio frequency capability of the terminal's carrier, thereby improving the terminal's uplink transmission capability.
  • the second embodiment provides a radio frequency capability configuration method.
  • the main difference from the first embodiment is that after the network device configures multiple radio frequency capabilities of the first carrier for the terminal, the terminal can be based on whether the network device is on the first carrier or in addition to the first carrier.
  • the uplink scheduling situation of one or more other carriers selects one of the multiple radio frequency capabilities of the first carrier for uplink transmission, without the network equipment instructing the terminal to use the radio frequency capability on the first carrier.
  • the radio frequency capability configuration method provided in the second embodiment includes:
  • the terminal sends capability information of the terminal to a network device.
  • the network device receives the capability information of the terminal from the terminal.
  • the capability information of the terminal includes information about the radio frequency capability of the first carrier when the first carrier is single-transmitted.
  • the capability information of the terminal further includes information about the radio frequency capability of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the capability information of the terminal further includes radio frequency capability information of each of the one or more carriers when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the capability information of the terminal includes the radio frequency capability information of one or more of the N carriers (N is an integer greater than 1) when each carrier is single-transmitted, and multiple carriers of the N carriers Information on the radio frequency capability of each of the multiple carriers during concurrency.
  • the N carriers are part or all of the carriers of the terminal.
  • the N carriers include the first carrier.
  • the capability information of the terminal includes information about the radio frequency capability of the first carrier when the first carrier is single-transmitted, and the radio frequency of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the capability information and the radio frequency capability information of each of the one or more carriers also includes the radio frequency capability of each of the N carriers except the first carrier when single-transmitted And/or, information on the radio frequency capability of each of the multiple carriers when multiple carriers excluding the first carrier among the N carriers are concurrent.
  • step 901 For a specific example of the capability information of the terminal, reference may be made to the related description of step 901 above, which is not repeated here.
  • the network device may be the main network device or the auxiliary network device.
  • the first carrier may be a carrier between the terminal and the main network device, or may be a carrier between the terminal and the auxiliary network device.
  • Step 1301 is optional.
  • the terminal and the network device can pre-configure the capabilities of the terminal, and in this case, the terminal may not report to the network device.
  • the capability information of the terminal also includes whether the terminal supports dynamic switching of radio frequency capabilities. If the terminal supports dynamic switching of radio frequency capabilities, the terminal can switch between multiple radio frequency capabilities of a carrier.
  • the network device obtains configuration information, where the configuration information is used to configure multiple radio frequency capabilities of the first carrier.
  • the multiple radio frequency capabilities of the first carrier have a one-to-one correspondence with multiple indexes.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is single-transmitted.
  • the multiple radio frequency capabilities of the first carrier include the radio frequency capabilities of the first carrier when the first carrier is concurrent with one or more carriers other than the first carrier.
  • the radio frequency capabilities of the carrier may also be different.
  • Table 2 When carrier A and carrier B are concurrent, carrier A supports 2T, and when carrier A is concurrent with carrier B and carrier C. , Carrier A supports 1T. It can be seen from this that when the first carrier is concurrent with one or more carriers other than the first carrier, the radio frequency capability of the first carrier may be one or more.
  • the configuration information is used to configure the radio frequency capabilities of N′ (N′ is an integer greater than 0) carriers, at least one of the N′ carriers is configured with multiple radio capabilities, and each of the N′ carriers Each radio frequency capability corresponds to an index.
  • the indexes corresponding to multiple radio frequency capabilities of a carrier are different, and the indexes corresponding to the radio frequency capabilities of different carriers may be the same or different.
  • N′ carriers include the first carrier, and N′ carriers belong to N carriers.
  • N′ may be the same as N or less than N.
  • the configuration information is also used to configure one or more radio frequency capabilities of each of the N′ carriers except the first carrier.
  • the multiple radio frequency capabilities of any one carrier may include the radio frequency capabilities of the carrier when the carrier is single transmitted, and may also include the radio frequency capabilities of the carrier when the carrier is concurrent with one or more carriers other than the carrier.
  • the network device may obtain configuration information according to the capability information of the terminal. Specifically, the network device may first determine the radio frequency capability of each carrier in single transmission and the radio frequency capability of each carrier when concurrent with different carriers according to the capability information reported by the terminal, and then determine how many radio capabilities each carrier has. For specific examples, refer to the related description of step 902 above.
  • the configuration information may be pre-configured in the network device, or the network device may be directly obtained from other devices.
  • Step 1302 is optional.
  • the network device sends configuration information to the terminal.
  • the terminal receives configuration information from the network device.
  • the configuration information is carried in RRC signaling.
  • RRC signaling For specific examples, please refer to the relevant description of step 902 above, which will not be repeated here.
  • the network device may execute step 1302 and step 1303 when the terminal supports dynamic switching of radio frequency capabilities.
  • the terminal performs uplink transmission on the first carrier with one of the multiple radio frequency capabilities according to the uplink scheduling conditions of the first carrier and one or more carriers other than the first carrier.
  • the terminal may determine the first carrier single transmission according to the location of the uplink scheduled time domain resources of the first carrier and one or more carriers, or determine that the first carrier is concurrent with one or more carriers. Specifically, the terminal may determine the single transmission of the first carrier according to the overlap of the uplink scheduled time domain resources of the first carrier and one or more carriers, or determine which carriers the first carrier is concurrent with.
  • the terminal may determine the time domain resources for uplink scheduling on different carriers according to the DCI for scheduling uplink data on different carriers sent by the network device. For a segment of uplink scheduled time domain resources of the first carrier, the method for the terminal to determine whether the first carrier is single-transmitted or concurrently with one or more carriers is similar to that of network equipment. For details, please refer to the relevant description in Embodiment 1, which will not be repeated here. Repeat.
  • the terminal determines the single transmission of the first carrier, or determines which carriers the first carrier is concurrent with, and then determines the radio frequency capability used on the first carrier.
  • the terminal determines that the first carrier is single-transmitted, and the terminal uses the first carrier to single-transmit on the first carrier, the radio frequency capability of the first carrier performs uplink transmission.
  • the terminal when the terminal determines that the first carrier is concurrent with one or more carriers, the terminal performs uplink transmission on the first carrier with the radio frequency capability of the first carrier when concurrent with the one or more carriers. Further, if the first carrier is concurrent with different carriers, there are multiple radio frequency capabilities of the first carrier. After the terminal determines that the first carrier is concurrent with one or more carriers, it determines which radio frequency capability of the first carrier to use depends on the one. Or which carriers are multiple carriers.
  • the terminal knows the radio frequency channel capability of a single carrier and the radio frequency channel capability of a carrier and different carriers concurrently. Therefore, the terminal can first determine the radio frequency channel capability of a carrier when it is single or concurrently transmitted, and then determine other radio frequency capabilities based on the radio frequency channel capabilities, thereby determining the radio frequency capabilities used on the carrier.
  • carrier A and carrier B have two radio frequency capabilities, which are denoted as radio frequency capability 1 and radio frequency capability 2.
  • radio frequency capability 1 and radio frequency capability 2 Refer to Table 5 for the radio frequency channel capabilities and other radio frequency capabilities of carrier A and carrier B.
  • the RF channel capability of carrier A is 2T corresponding to other RF capability 1
  • the RF channel capability of carrier B is 2T corresponds to other RF capability 2
  • the RF channel capability of carrier A is 1T RF channel capability
  • the radio frequency channel capability of carrier B whose radio frequency channel capability is 1T corresponds to other radio frequency capabilities 4.
  • the terminal determines that carrier A is single-transmitted, it can further determine that the radio frequency channel capability of carrier A is 2T, then the terminal can determine that other radio capabilities corresponding to carrier A are other radio capabilities 1, and the terminal can use the determined radio frequency of carrier A Channel capability and other radio frequency capabilities are single-shot on carrier A. If the terminal determines that carrier A and carrier B are single-transmitted, it can further determine that the radio frequency channel capability of carrier A is 1T, then the terminal can determine that other radio capabilities corresponding to carrier A are other radio capabilities 3, and other radio capabilities corresponding to carrier B are other radios Capability 4: The terminal can use the determined radio frequency channel capabilities of carrier A and carrier B and other radio frequency capabilities to concurrently use carrier A and carrier B.
  • the network device can configure the terminal with one or more radio frequency capabilities of each of one or more carriers, and the terminal can be based on whether the network device is on one carrier and one or more other than the carrier.
  • the uplink scheduling situation of a carrier selects one of the multiple radio frequency capabilities of the carrier for uplink transmission, without the network equipment instructing the terminal to use the radio frequency capability on the carrier.
  • the terminal can flexibly determine the radio frequency capability used on the carrier according to the radio frequency capability of the terminal, thereby improving the uplink transmission capability of the terminal.
  • the third embodiment provides a radio frequency capability configuration method.
  • the difference between the third embodiment and the first and second embodiments is mainly that, in the third embodiment, the network equipment does not configure multiple radio frequency capabilities for each carrier, but
  • the terminal is configured with multiple sets of radio frequency capabilities.
  • One set of radio frequency capabilities includes the radio frequency capabilities of one carrier when single-carrier transmission or the radio frequency capabilities of each carrier when multiple carriers are concurrent or the radio frequency capabilities of each carrier when multiple carriers are TDM, and subsequent network equipment Indicate a set of radio frequency capabilities for the terminal, and the terminal performs uplink transmission on one or more carriers in the set of radio frequency capabilities according to the radio frequency capabilities of one or more carriers in the set of radio frequency capabilities.
  • the radio frequency capability configuration method provided in the third embodiment includes:
  • a terminal sends capability information of the terminal to a network device.
  • the capability information of the terminal includes N single carrier capability information and at least one carrier combination capability information.
  • One of the N single carrier capability information is in N carriers.
  • the information about the radio frequency capability of one carrier during single carrier transmission, and the carrier combination capability information is information about the radio frequency capability of each carrier in the concurrent or TDM of at least two of the N carriers.
  • the network device receives the capability information of the terminal from the terminal.
  • the information included in the capability information of the terminal may refer to Table 6 or Table 7.
  • the information included in the capability information of the terminal may refer to Table 8 or Table 9.
  • the network device may be the main network device or the auxiliary network device.
  • the N carriers may include the carriers with the main network device, and may also include the carriers with the auxiliary network device.
  • Step 1401 is optional.
  • the terminal and the network device can pre-configure the capabilities of the terminal, and in this case, the terminal may not report to the network device.
  • the capability information of the terminal also includes whether the terminal supports dynamic switching of radio frequency capabilities. If the terminal supports dynamic switching of radio frequency capabilities, the terminal can switch between multiple radio frequency capabilities of a carrier.
  • the network device sends configuration information to the terminal.
  • the configuration information is used to configure M sets of radio frequency capabilities, where at least one of the M sets of radio frequency capabilities includes information on radio frequency capabilities of multiple carriers, and M is an integer greater than 1.
  • the terminal receives configuration information from the network device.
  • M sets of radio frequency capabilities are in one-to-one correspondence with M indexes.
  • the set of radio frequency capabilities includes information on the radio frequency capabilities of multiple carriers
  • the information on the radio frequency capabilities of these multiple carriers can be used by the terminal in TDM on these multiple carriers.
  • the radio frequency capability of concurrent uplink transmission can be used by the terminal in TDM on these multiple carriers.
  • step 1402 when implemented specifically includes: the network device sends configuration information to the terminal according to the capability information of the terminal.
  • the network equipment can determine the radio frequency capability of each carrier in single carrier transmission based on the single carrier transmission capability information reported by the terminal, and determine the radio frequency of each carrier in multiple carriers concurrency or TDM based on the capability information of multiple carriers concurrently. ability.
  • the configuration information may be pre-configured in the network device, or the network device may be directly obtained from other devices.
  • the configuration information can configure 4 sets of radio frequency capabilities. For details, see Table 10.
  • the configuration information can configure 11 sets of radio frequency capabilities. For details, see Table 11.
  • the configuration information is carried in RRC signaling.
  • the network device may perform step 1302 and step 1402 when the terminal supports dynamic switching of radio frequency capabilities.
  • the network device sends first indication information to the terminal.
  • the first indication information is used to indicate the m1 set of radio frequency capabilities in the M sets of radio frequency capabilities.
  • the m1 set of radio frequency capabilities includes information on the radio frequency capabilities of x1 carriers, and m1 is greater than 0 is an integer less than or equal to M, and x1 is an integer greater than 0.
  • the terminal receives the first indication information from the network device.
  • the first indication information may indicate the m1 set of radio frequency capabilities to the terminal by indicating the identifier corresponding to the m1 set of radio frequency capabilities.
  • the network device may send the first indication information to the terminal through one of the x1 carriers.
  • the terminal performs uplink transmission on x1 carriers with the radio frequency capability of x1 carriers.
  • the radio frequency capability information of x1 carriers is the radio frequency capability information of each of the x1 carriers when the terminal performs uplink transmission on the x1 carriers in a TDM manner.
  • step 1404 during specific implementation includes: the terminal uses the radio frequency capability of x1 carriers to perform uplink transmission on x1 carriers in a TDM manner.
  • the terminal determines according to the first indication information to perform uplink transmission on carrier A and carrier B in TDM mode. And it is determined that 3T is used for uplink transmission on carrier A, and 2T is used for uplink transmission on carrier B.
  • the radio frequency capability information of x1 carriers is the radio frequency capability information of each of the x1 carriers when the terminal performs uplink transmission on the x1 carriers in a concurrent manner.
  • the step 1404 in specific implementation includes: the terminal uses the radio frequency capability of x1 carriers to perform uplink transmission in a concurrent manner on x1 carriers.
  • the terminal determines, according to the first indication information, to perform uplink transmission in a concurrent manner on carrier A and carrier B. And it is determined to use 2T for uplink transmission on carrier A, and 1T for uplink transmission on carrier B.
  • the network device performs uplink reception on the one or more carriers.
  • the network device can change the radio frequency capability used by the terminal as required.
  • the above method further includes:
  • the network device sends second indication information to the terminal.
  • the second indication information is used to indicate the m2 set of radio frequency capabilities among the M sets of radio frequency capabilities.
  • the m2 set of radio frequency capabilities includes information about the radio frequency capabilities of x2 carriers, and m2 is greater than 0 is an integer less than or equal to M, and x2 is an integer greater than 0.
  • the terminal receives the second indication information from the network device.
  • the first indication information and the second indication information may both be carried in MAC CE signaling, or both may be carried in DCI, or one may be carried in MAC CE signaling, and the other may be carried in DCI.
  • the network device may send the second indication information to the terminal through one of the x2 carriers.
  • Step 1405 is optional.
  • the terminal performs uplink transmission on x2 carriers with the radio frequency capability of x2 carriers.
  • the radio frequency capability information of x2 carriers is the radio frequency capability information of each of the x2 carriers when the terminal performs uplink transmission on the x2 carriers in a time division multiplexing manner.
  • step 1406 during specific implementation includes: the terminal uses the radio frequency capability of x2 carriers to perform uplink transmission on x2 carriers in a time division multiplexing manner.
  • the radio frequency capability information of x2 carriers is the radio frequency capability information of each of the x2 carriers when the terminal performs uplink transmission on the x2 carriers in a concurrent manner.
  • the step 1406 in specific implementation includes: the terminal uses the radio frequency capability of x2 carriers to perform uplink transmission in a concurrent manner on x2 carriers.
  • the network device performs uplink reception on the one or more carriers.
  • the network device can configure multiple sets of radio frequency capabilities for the terminal, and then indicate a set of radio frequency capabilities through instruction information, and the terminal can determine which radio capability of the multiple sets of radio capabilities to use through the instruction information.
  • the network equipment can flexibly instruct the terminal which set of radio frequency capabilities to use, so that in different time domain resources, the network equipment can indicate to the terminal which radio frequency capabilities to use according to the radio frequency capabilities of the terminal's carrier to improve the terminal's uplink transmission capability.
  • the different carriers in the foregoing embodiments may be asynchronous, that is, the start symbols of the time slots of the different carriers are not aligned.
  • the start symbols of the time slots of carrier 1, carrier 2, and carrier 3 are not aligned, and the start symbols of the time slots of carrier 3 and carrier 4 are aligned.
  • the terminal can measure the system frame number and frame timing difference (i.e. SFTD, SFTD is the information element "SFN and frame timing difference" in Section 5.1.14 of 3GPP TS 38.215 V15.4.0, SFN refers to the system frame number ( system frame number) and uplink timing advance (timing advance, TA) information, and send SFTD and uplink TA information to the network device.
  • the network device can obtain the delay difference between time slots of different carriers according to the SFTD and/or uplink TA information reported by the terminal.
  • each network element for example, a network device and a terminal, includes at least one of a hardware structure and a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the network device and the terminal into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 16 shows a possible structural diagram of the communication device (denoted as the communication device 160) involved in the above-mentioned embodiment.
  • the communication device 160 includes a processing unit 1601 and a communication unit 1602. , May also include a storage unit 1603.
  • the schematic structural diagram shown in FIG. 16 may be used to illustrate the structure of the network device and the terminal involved in the foregoing embodiment.
  • the processing unit 1601 is used to control and manage the actions of the terminal.
  • the processing unit 1601 is used to execute FIG. 9 through the communication unit 1602. 901 to 906 in FIG. 13, 1301, 1303, and 1304 in FIG. 13, 1401 to 1406 in FIG. 14, and/or actions performed by the terminal in other processes described in the embodiments of the present application.
  • the processing unit 1601 may communicate with other network entities through the communication unit 1602, for example, communicate with the network device shown in FIG. 9.
  • the storage unit 1603 is used to store program codes and data of the terminal.
  • the communication device 160 may be a terminal or a chip in the terminal.
  • the processing unit 1601 is used to control and manage the actions of the network device, for example, the processing unit 1601 is used to perform execution through the communication unit 1602 901 to 906 in FIG. 9, 1301 to 1304 in FIG. 13, 1401 to 1406 in FIG. 14, and/or actions performed by the network device in other processes described in the embodiments of the present application.
  • the processing unit 1601 may communicate with other network entities through the communication unit 1602, for example, communicate with the terminal shown in FIG. 9.
  • the storage unit 1603 is used to store program codes and data of the network device.
  • the communication device 160 may be a network device or a chip in the network device.
  • the processing unit 1601 may be a processor or a controller, and the communication unit 1602 may be a communication interface, a transceiver, a transceiver, a transceiver circuit, a transceiver, etc.
  • the communication interface is a general term and may include one or more interfaces.
  • the storage unit 1603 may be a memory.
  • the processing unit 1601 may be a processor or a controller, and the communication unit 1602 may be an input/output interface, a pin, or a circuit.
  • the storage unit 1603 may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit (for example, a read-only memory (ROM), a read-only memory, etc.) located outside the chip in a terminal or a network device. Random access memory (random access memory, RAM), etc.).
  • the communication unit may also be referred to as a transceiver unit.
  • the antenna and control circuit with the transceiver function in the communication device 160 can be regarded as the communication unit 1602 of the communication device 160, and the processor with processing function can be regarded as the processing unit 1601 of the communication device 160.
  • the device for implementing the receiving function in the communication unit 1602 may be regarded as a receiving unit, which is used to perform the receiving steps in the embodiment of the present application, and the receiving unit may be a receiver, a receiver, a receiving circuit, and the like.
  • the device used for implementing the sending function in the communication unit 1602 can be regarded as a sending unit.
  • the sending unit is used to execute the sending steps in the embodiment of the present application.
  • the sending unit can be a transmitter, a transmitter, a sending circuit, and the like.
  • the integrated unit in FIG. 16 is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • a computer readable storage medium includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • Storage media for storing computer software products include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program code.
  • the unit in FIG. 16 may also be called a module, for example, the processing unit may be called a processing module.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a communication device.
  • the communication device includes a processor 1701, and optionally, a memory 1702 connected to the processor 1701.
  • the communication device further includes a transceiver 1703.
  • the processor 1701, the memory 1702, and the transceiver 1703 are connected by a bus.
  • the transceiver 1703 is used to communicate with other devices or communication networks.
  • the transceiver 1703 may include a transmitter and a receiver.
  • the device used for implementing the receiving function in the transceiver 1703 can be regarded as a receiver, and the receiver is used to perform the receiving steps in the embodiment of the present application.
  • the device in the transceiver 1703 for implementing the sending function can be regarded as a transmitter, and the transmitter is used to perform the sending steps in the embodiment of the present application.
  • FIG. 17 may be used to illustrate the structure of the network device or terminal involved in the foregoing embodiment.
  • the processor 1701 is used to control and manage the actions of the terminal.
  • the processor 1701 is used to support the terminal to execute the terminal shown in FIG. 9 901 to 906, 1301, 1303, and 1304 in FIG. 13, 1401 to 1406 in FIG. 14, and/or actions performed by the terminal in other processes described in the embodiments of the present application.
  • the processor 1701 may communicate with other network entities through the transceiver 1703, for example, communicate with the network device shown in FIG. 9.
  • the memory 1702 is used to store program codes and data of the terminal.
  • the processor 1701 is used to control and manage the actions of the network device.
  • the processor 1701 is used to support the network device to execute the diagram. 901 to 906 in 9, 1301 to 1304 in FIG. 13, 1401 to 1406 in FIG. 14, and/or actions performed by the network device in other processes described in the embodiments of this application.
  • the processor 1701 may communicate with other network entities through the transceiver 1703, for example, communicate with the terminal shown in FIG. 9.
  • the memory 1702 is used to store program codes and data of the network device.
  • the processor 1701 includes a logic circuit and at least one of an input interface and an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • FIG. 18 The schematic structural diagram shown in FIG. 18 may be used to illustrate the structure of the network device or terminal involved in the foregoing embodiment.
  • the processor 1701 is used to control and manage the actions of the terminal.
  • the processor 1701 is used to support the terminal to execute the terminal in FIG. 9 901 to 906, 1301, 1303, and 1304 in FIG. 13, 1401 to 1406 in FIG. 14, and/or actions performed by the terminal in other processes described in the embodiments of the present application.
  • the processor 1701 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the network device shown in FIG. 9.
  • the memory 1702 is used to store program codes and data of the terminal.
  • the processor 1701 is used to control and manage the actions of the network device.
  • the processor 1701 is used to support the network device to execute the diagram. 901 to 906 in 9, 1301 to 1304 in FIG. 13, 1401 to 1406 in FIG. 14, and/or actions performed by the network device in other processes described in the embodiments of this application.
  • the processor 1701 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the terminal shown in FIG. 9.
  • the memory 1702 is used to store program codes and data of the network device.
  • FIG. 17 and FIG. 18 may also illustrate the system chip in the network device.
  • the actions performed by the above-mentioned network device can be implemented by the system chip, and the specific actions performed can be referred to above, and will not be repeated here.
  • Figures 17 and 18 can also illustrate the system chip in the terminal. In this case, the actions performed by the above-mentioned terminal can be implemented by the system chip, and the specific actions performed can be referred to the above, and will not be repeated here.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a terminal (denoted as terminal 190) and a network device (denoted as network device 200). For details, refer to FIG. 19 and FIG. 20, respectively.
  • FIG. 19 is a schematic diagram of the hardware structure of the terminal 190.
  • the terminal 190 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program. For example, it is used to control the terminal to execute 901 to 906 in FIG. 9 and the data in FIG. 13 1301, 1303, and 1304, 1401 to 1406 in FIG. 14, and/or actions performed by the terminal in other processes described in the embodiments of the present application.
  • the memory is mainly used to store software programs and data.
  • the control circuit also called a radio frequency circuit
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the control circuit in the control circuit.
  • the control circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. send.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 19 only shows a memory and a processor. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal and execute software. Programs, which process the data of software programs.
  • the processor in FIG. 19 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as buses.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • FIG. 20 is a schematic diagram of the hardware structure of the network device 200.
  • the network device 200 may include one or more radio frequency units, such as a remote radio unit (RRU) 2001, and one or more baseband units (BBU) (also known as digital units (DU)) 2002 and one or more antennas 2003.
  • RRU remote radio unit
  • BBU baseband units
  • DU digital units
  • the RRU 2001 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include a radio frequency unit 2011.
  • the RRU2001 part is mainly used for the transceiver of radio frequency signals and the conversion between radio frequency signals and baseband signals.
  • the RRU2001 and the BBU2002 may be physically set together, or physically separated, for example, a distributed base station.
  • the BBU2002 is the control center of the network equipment, which can also be called the processing unit, which is mainly used to complete the baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum and so on.
  • the BBU 2002 can be composed of one or more single boards, and multiple single boards can jointly support a single access standard radio access network (such as an LTE network), or can respectively support different access standard radio access networks. Access network (such as LTE network, 5G network or other networks).
  • the BBU 2002 also includes a memory 2021 and a processor 2022, and the memory 2021 is used to store necessary instructions and data.
  • the processor 2022 is used to control the network device to perform necessary actions.
  • the memory 2021 and the processor 2022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the network device 200 shown in FIG. 20 can execute 901 to 906 in FIG. 9, 1301 to 1304 in FIG. 13, 1401 to 1406 in FIG. 14, and/or other processes described in the embodiments of the present application
  • the operations, functions, or operations and functions of each module in the network device 200 are respectively set to implement the corresponding processes in the foregoing method embodiments.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the processor in this application may include, but is not limited to, at least one of the following: central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU), or Various computing devices such as artificial intelligence processors that run software. Each computing device may include one or more cores for executing software instructions for calculations or processing.
  • the processor can be a single semiconductor chip, or it can be integrated with other circuits to form a semiconductor chip. For example, it can form an SoC (on-chip) with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits).
  • the processor can also include necessary hardware accelerators, such as field programmable gate array (FPGA) and PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) , RAM) or other types of dynamic storage devices that can store information and instructions, and may also be Electrically Erasable Programmable-only Memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM Electrically Erasable Programmable-only Memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , A magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • a magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the embodiments of the present application also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer, cause the computer to execute any of the above methods.
  • An embodiment of the present application also provides a communication system, including: the above-mentioned network device and terminal.
  • the embodiment of the application also provides a chip, the chip includes a processor and an interface circuit, the interface circuit is coupled to the processor, the processor is used to run a computer program or instructions to implement the above method, and the interface circuit is used to communicate with Modules other than the chip communicate.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or may include one or more data storage devices such as a server or a data center that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种射频能力配置方法及装置, 涉及通信技术领域。在该方法中, 网络设备可以向终端发送用于配置一个载波的多个射频能力的配置信息, 并通过指示信息向终端指示在该载波上采用的射频能力对应的索引, 终端可以根据该索引确定在载波上采用的射频能力。该方法中, 网络设备通过指示索引, 可以灵活的指示载波的射频能力, 从而在不同的时域资源上, 网络设备可以根据终端的载波的射频能力为终端指示载波的射频能力, 提高终端的上行发送能力。

Description

射频能力配置方法及装置
本申请要求于2019年06月04日提交国家知识产权局、申请号为201910483197.1、申请名称为“射频能力配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种射频能力配置方法及装置。
背景技术
随着无线通信技术的发展,移动通信网络逐渐向第五代(fifth generation,5G)即新无线(new radio,NR)网络演进,终端对下行传输性能和上行传输性能均提出了更高的要求。
实际网络中考虑到下行数据量较大,通常为终端分配较多的下行时域资源,而为终端分配较少的上行时域资源,上行时域资源有限导致上行传输性能较差。
如何提升终端的上行传输性能为一个亟待解决的问题。
发明内容
本申请实施例提供了一种射频能力配置方法及装置,用于提高终端的上行传输性能。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,提供了一种射频能力配置方法,可以应用于终端或终端中的芯片。以下以应用于终端为例进行说明。
第一方面提供的射频能力配置方法包括:终端从网络设备接收用于配置第一载波的多个射频能力的配置信息,多个射频能力与多个索引一一对应;终端从网络设备接收用于指示第一索引的第一指示信息,第一索引为多个索引中的一个索引。第一方面提供的方法,针对一个载波,网络设备可以为终端配置该载波的、与多个索引一一对应的多个射频能力,再通过指示信息指示一个索引,终端通过该索引即可确定采用多个射频能力中的哪个射频能力。网络设备通过指示索引,可以灵活的指示载波的射频能力,从而在不同的时域资源上,网络设备可以根据终端的载波的射频能力为终端指示载波的射频能力,提高终端的上行发送能力。
在一种可能的实现方式中,该方法还包括:终端以第一索引对应的射频能力在第一载波上进行上行发送。
在一种可能的实现方式中,第一载波的多个射频能力包括第一载波单发时第一载波的射频能力。
在一种可能的实现方式中,第一载波的多个射频能力包括第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力。
在一种可能的实现方式中,该方法还包括:终端向网络设备发送终端的能力信息,终端的能力信息中包括第一载波单发时第一载波的射频能力的信息和第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力的信息。该种可能的实现方式,可以使得网络设备根据终端的能力信息确定第一载波的多个射频能力,从而使得网络设备确定的第一载波的多个射频能力更加的符合终端的实际需求。
在一种可能的实现方式中,该方法还包括:终端从网络设备接收用于指示第二索引的第二指示信息,第二索引为多个索引中的一个索引;终端以第二索引对应的射频能力在第一载波上进行上行发送。
在一种可能的实现方式中,配置信息携带在RRC信令中。
在一种可能的实现方式中,第一指示信息携带在MAC CE信令或DCI中。
第二方面,提供了一种射频能力配置方法,可以应用于网络设备或网络设备中的芯片。以下以应用于网络设备为例进行说明。
第二方面提供的射频能力配置方法包括:网络设备向终端发送用于配置第一载波的多个射频能力的配置信息,多个射频能力与多个索引一一对应;网络设备向终端发送用于指示第一索引的第一指示信息,第一索引为多个索引中的一个索引。第二方面提供的方法,针对一个载波,网络设备可以为终端配置该载波的、与多个索引一一对应的多个射频能力,再通过指示信息指示一个索引,终端通过该索引即可确定采用多个射频能力中的哪个射频能力。网络设备通过指示索引,可以灵活的指示载波的射频能力,从而在不同的时域资源上,网络设备可以根据终端的载波的射频能力为终端指示载波的射频能力,提高终端的上行发送能力。
在一种可能的实现方式中,第一载波的多个射频能力包括第一载波单发时第一载波的射频能力。
在一种可能的实现方式中,第一载波的多个射频能力包括第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力。
在一种可能的实现方式中,该方法还包括:网络设备从终端接收终端的能力信息,终端的能力信息中包括第一载波单发时第一载波的射频能力的信息和第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力的信息。该种可能的实现方式,可以使得网络设备根据终端的能力信息确定第一载波的多个射频能力,从而使得网络设备确定的第一载波的多个射频能力更加的符合终端的实际需求。
在一种可能的实现方式中,网络设备向终端发送第一指示信息,包括:网络设备根据第一载波和除第一载波之外的一个或多个载波的上行调度情况向终端发送第一指示信息。
在一种可能的实现方式中,网络设备根据第一载波和除第一载波之外的一个或多个载波的上行调度情况向终端发送第一指示信息,包括:网络设备根据第一载波和一个或多个载波的上行调度的时域资源的位置,确定第一载波单发,或者,确定第一载波与一个或多个载波并发;当确定第一载波单发时,第一索引对应的射频能力为第一载波单发时,第一载波的射频能力;或者,当确定第一载波与一个或多个载波并发时,第一索引对应的射频能力为第一载波与一个或多个载波并发时,第一载波的射频能力。
在一种可能的实现方式中,该方法还包括:网络设备向终端发送第二指示信息,第二指示信息用于指示第二索引,第二索引为多个索引中的一个索引。
在一种可能的实现方式中,配置信息携带在RRC信令中。
在一种可能的实现方式中,第一指示信息携带在MAC CE信令或DCI中。
第三方面,提供了一种射频能力配置方法,可以应用于终端或终端中的芯片。以下以应用于终端为例进行说明。
第三方面提供的射频能力配置方法包括:终端从网络设备接收用于配置第一载波的 多个射频能力的配置信息;终端根据第一载波和除第一载波之外的一个或多个载波的上行调度情况在第一载波上以多个射频能力中的一个射频能力进行上行发送。第三方面提供的方法,网络设备可以为终端配置一个或多个载波中的每个载波的一种或多种射频能力,终端可以根据网络设备在一个载波和除该载波之外的一个或多个载波的上行调度情况选择该载波的多个射频能力中的一个射频能力进行上行发送,而不需要网络设备为终端指示终端在载波上采用的射频能力。在不同的时域资源上,终端可以根据终端的射频能力灵活的确定在载波上采用的射频能力,提高终端的上行发送能力。
在一种可能的实现方式中,第一载波的多个射频能力包括第一载波单发时第一载波的射频能力。
在一种可能的实现方式中,第一载波的多个射频能力包括第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力。
在一种可能的实现方式中,终端根据第一载波和除第一载波之外的一个或多个载波的上行调度情况在第一载波上以多个射频能力中的一个射频能力进行上行发送,包括:终端根据第一载波和一个或多个载波的上行调度的时域资源的位置确定第一载波单发,或者,确定第一载波与一个或多个载波并发;当终端确定第一载波单发,终端在第一载波上以第一载波单发时第一载波的射频能力进行上行发送;或者,当终端确定第一载波与一个或多个载波并发时,终端在第一载波上以与一个或多个载波并发时第一载波的射频能力进行上行发送。
在一种可能的实现方式中,该方法还包括:终端向网络设备发送终端的能力信息,终端的能力信息中包括第一载波单发时第一载波的射频能力的信息和第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力的信息。该种可能的实现方式,可以使得网络设备根据终端的能力信息确定第一载波的多个射频能力,从而使得网络设备确定的第一载波的多个射频能力更加的符合终端的实际需求。
在一种可能的实现方式中,配置信息携带在RRC信令中。
第四方面,提供了一种射频能力配置方法,可以应用于网络设备或网络设备中的芯片。以下以应用于网络设备为例进行说明。
第四方面提供的射频能力配置方法,包括:网络设备获取配置信息,配置信息用于配置第一载波对应的多个射频能力;网络设备向终端发送配置信息。第四方面提供的方法,网络设备可以为终端配置一个或多个载波中的每个载波的一种或多种射频能力,终端可以根据网络设备在一个载波和除该载波之外的一个或多个载波的上行调度情况选择该载波的多个射频能力中的一个射频能力进行上行发送,而不需要网络设备为终端指示终端在载波上采用的射频能力。在不同的时域资源上,终端可以根据终端的射频能力灵活的确定在载波上采用的射频能力,提高终端的上行发送能力。
在一种可能的实现方式中,第一载波的多个射频能力包括第一载波单发时第一载波的射频能力。
在一种可能的实现方式中,第一载波的多个射频能力包括第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力。
在一种可能的实现方式中,该方法还包括:网络设备从终端接收终端的能力信息,终端的能力信息中包括第一载波单发时第一载波的射频能力的信息和第一载波与除第一载 波之外的一个或多个载波并发时第一载波的射频能力的信息。该种可能的实现方式,可以使得网络设备根据终端的能力信息确定第一载波的多个射频能力,从而使得网络设备确定的第一载波的多个射频能力更加的符合终端的实际需求。
在一种可能的实现方式中,配置信息携带在RRC信令中。
第五方面,提供了一种射频能力配置方法,可以应用于终端或终端中的芯片。以下以应用于终端为例进行说明。
第五方面提供的射频能力配置方法包括:终端从网络设备接收配置信息,所述配置信息用于配置M套射频能力,其中,所述M套射频能力中至少有一套射频能力中包括多个载波的射频能力的信息,M为大于1的整数;所述终端从所述网络设备接收第一指示信息,所述第一指示信息用于指示所述M套射频能力中的第m1套射频能力,所述第m1套射频能力中包括x1个载波的射频能力的信息,m1为大于0小于等于M的整数,x1为大于0的整数;所述终端以所述x1个载波的射频能力在所述x1个载波上进行上行发送。第五方面提供的方法,网络设备可以为终端配置多套射频能力,再通过指示信息指示一套射频能力,终端通过该指示信息即可确定采用多套射频能力中的哪套射频能力。网络设备可以灵活的指示终端采用哪套射频能力,从而在不同的时域资源上,网络设备可以根据终端的载波的射频能力为终端指示采用哪套射频能力,提高终端的上行发送能力。
在一种可能的实现方式中,所述x1个载波的射频能力的信息为所述终端在所述x1个载波上以时分复用方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息,所述终端以所述x1个载波的射频能力在所述x1个载波上进行上行发送,包括:所述终端采用所述x1个载波的射频能力在所述x1个载波上以时分复用方式进行上行发送。
在一种可能的实现方式中,所述x1个载波的射频能力的信息为所述终端在所述x1个载波上以并发方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息,所述终端以所述x1个载波的射频能力在所述x1个载波上进行上行发送,包括:所述终端采用所述x1个载波的射频能力在所述x1个载波上以并发方式进行上行发送。
在一种可能的实现方式中,所述方法还包括:所述终端从所述网络设备接收第二指示信息,所述第二指示信息用于指示所述M套射频能力中的第m2套射频能力,所述第m2套射频能力中包括x2个载波的射频能力的信息,m2为大于0小于等于M的整数,x2为大于0的整数;所述终端以所述x2个载波的射频能力在所述x2个载波上进行上行发送。
在一种可能的实现方式中,所述方法还包括:所述终端向所述网络设备发送所述终端的能力信息,所述终端的能力信息中包括N个单载波能力信息和至少一个载波组合能力信息,所述N个单载波能力信息中的一个单载波能力信息为N个载波中的一个载波单载波发送时的射频能力的信息,所述载波组合能力信息为所述N个载波中至少两个载波并发或TDM时每个载波的射频能力的信息。
第六方面,提供了一种射频能力配置方法,可以应用于网络设备或网络设备中的芯片。以下以应用于网络设备为例进行说明。
第六方面提供的射频能力配置方法,包括:网络设备向终端发送配置信息,所述配置信息用于配置M套射频能力,其中,所述M套射频能力中至少有一套射频能力中包括多个载波的射频能力的信息,M为大于1的整数;所述网络设备向所述终端发送第一指示信息,所述第一指示信息用于指示所述M套射频能力中的第m1套射频能力,所述第m1套射频能力 中包括x1个载波的射频能力的信息,m1为大于0小于等于M的整数,x1为大于0的整数。第六方面提供的方法,网络设备可以为终端配置多套射频能力,再通过指示信息指示一套射频能力,终端通过该指示信息即可确定采用多套射频能力中的哪套射频能力。网络设备可以灵活的指示终端采用哪套射频能力,从而在不同的时域资源上,网络设备可以根据终端的载波的射频能力为终端指示采用哪套射频能力,提高终端的上行发送能力。
在一种可能的实现方式中,所述x1个载波的射频能力的信息为所述终端在所述x1个载波上以时分复用方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息。
在一种可能的实现方式中,所述x1个载波的射频能力的信息为所述终端在所述x1个载波上以并发方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息。
在一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端发送第二指示信息,所述第二指示信息用于指示所述M套射频能力中的第m2套射频能力,所述第m2套射频能力中包括x2个载波的射频能力的信息,m2为大于0小于等于M的整数,x2为大于0的整数。
在一种可能的实现方式中,所述方法还包括:所述网络设备从所述终端接收所述终端的能力信息,所述终端的能力信息中包括N个单载波能力信息和至少一个载波组合能力信息,所述N个单载波能力信息中的一个单载波能力信息为N个载波中的一个载波单载波发送时的射频能力的信息,所述载波组合能力信息为所述N个载波中至少两个载波并发或TDM时每个载波的射频能力的信息;所述网络设备向终端发送配置信息,包括:所述网络设备根据所述终端的能力信息向所述终端发送配置信息。
第七方面,提供了一种通信装置,包括:通信单元和处理单元;所述处理单元,用于通过所述通信单元从网络设备接收配置信息,所述配置信息用于配置第一载波的多个射频能力,所述多个射频能力与多个索引一一对应;所述处理单元,还用于通过所述通信单元从所述网络设备接收第一指示信息,所述第一指示信息用于指示第一索引,所述第一索引为所述多个索引中的一个索引。
在一种可能的实现方式中,所述处理单元,还用于通过所述通信单元以所述第一索引对应的射频能力在所述第一载波上进行上行发送。
在一种可能的实现方式中,所述第一载波的多个射频能力包括所述第一载波单发时所述第一载波的射频能力。
在一种可能的实现方式中,所述第一载波的多个射频能力包括所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力。
在一种可能的实现方式中,所述处理单元,还用于通过所述通信单元向所述网络设备发送所述通信装置的能力信息,所述通信装置的能力信息中包括所述第一载波单发时所述第一载波的射频能力的信息和所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力的信息。
在一种可能的实现方式中,所述处理单元,还用于通过所述通信单元从所述网络设备接收第二指示信息,所述第二指示信息用于指示第二索引,所述第二索引为所述多个索引中的一个索引;所述处理单元,还用于通过所述通信单元以所述第二索引对应的射频能力在所述第一载波上进行上行发送。
在一种可能的实现方式中,所述配置信息携带在RRC信令中。
在一种可能的实现方式中,所述第一指示信息携带在MAC CE信令或DCI中。
第八方面,提供了一种通信装置,包括:通信单元和处理单元;所述处理单元,用于通过所述通信单元向终端发送配置信息,所述配置信息用于配置第一载波的多个射频能力,所述多个射频能力与多个索引一一对应;所述处理单元,还用于通过所述通信单元向所述终端发送第一指示信息,所述第一指示信息用于指示第一索引,所述第一索引为所述多个索引中的一个索引。
在一种可能的实现方式中,所述第一载波的多个射频能力包括所述第一载波单发时所述第一载波的射频能力。
在一种可能的实现方式中,所述第一载波的多个射频能力包括所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力。
在一种可能的实现方式中,所述处理单元,还用于通过所述通信单元从所述终端接收所述终端的能力信息,所述终端的能力信息中包括所述第一载波单发时所述第一载波的射频能力的信息和所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力的信息。
在一种可能的实现方式中,所述处理单元,具体用于根据所述第一载波和除所述第一载波之外的一个或多个载波的上行调度情况通过所述通信单元向所述终端发送所述第一指示信息。
在一种可能的实现方式中,所述处理单元,具体用于根据所述第一载波和所述一个或多个载波的上行调度的时域资源的位置,确定所述第一载波单发,或者,确定所述第一载波与所述一个或多个载波并发;当确定所述第一载波单发时,所述第一索引对应的射频能力为所述第一载波单发时,所述第一载波的射频能力;或者,当确定所述第一载波与所述一个或多个载波并发时,所述第一索引对应的射频能力为所述第一载波与所述一个或多个载波并发时,所述第一载波的射频能力。
在一种可能的实现方式中,所述处理单元,还用于通过所述通信单元向所述终端发送第二指示信息,所述第二指示信息用于指示第二索引,所述第二索引为所述多个索引中的一个索引。
在一种可能的实现方式中,所述配置信息携带在RRC信令中。
在一种可能的实现方式中,所述第一指示信息携带在MAC CE信令或DCI中。
第九方面,提供了一种通信装置,包括:通信单元和处理单元;所述处理单元,用于通过所述通信单元从网络设备接收配置信息,所述配置信息用于配置第一载波的多个射频能力;所述处理单元,还用于根据所述第一载波和除所述第一载波之外的一个或多个载波的上行调度情况在所述第一载波上以所述多个射频能力中的一个射频能力通过所述通信单元进行上行发送。
在一种可能的实现方式中,所述第一载波的多个射频能力包括所述第一载波单发时所述第一载波的射频能力。
在一种可能的实现方式中,所述第一载波的多个射频能力包括所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力。
在一种可能的实现方式中,所述处理单元,具体用于:根据所述第一载波和所述一个或多个载波的上行调度的时域资源的位置确定所述第一载波单发,或者,确定所述第一载 波与所述一个或多个载波并发;当确定所述第一载波单发,所述处理单元在所述第一载波上以所述第一载波单发时所述第一载波的射频能力通过所述通信单元进行上行发送;或者,当确定所述第一载波与所述一个或多个载波并发时,所述处理单元在所述第一载波上以与所述一个或多个载波并发时所述第一载波的射频能力通过所述通信单元进行上行发送。
在一种可能的实现方式中,所述处理单元,还用于通过所述通信单元向所述网络设备发送所述通信装置的能力信息,所述通信装置的能力信息中包括所述第一载波单发时所述第一载波的射频能力的信息和所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力的信息。
在一种可能的实现方式中,所述配置信息携带在RRC信令中。
第十方面,提供了一种通信装置,包括:通信单元和处理单元;所述处理单元,用于获取配置信息,所述配置信息用于配置第一载波对应的多个射频能力;所述通信单元,用于向终端发送所述配置信息。
在一种可能的实现方式中,所述第一载波的多个射频能力包括所述第一载波单发时所述第一载波的射频能力。
在一种可能的实现方式中,所述第一载波的多个射频能力包括所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力。
在一种可能的实现方式中,所述通信单元,还用于从所述终端接收所述终端的能力信息,所述终端的能力信息中包括所述第一载波单发时所述第一载波的射频能力的信息和所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力的信息。
在一种可能的实现方式中,所述配置信息携带在RRC信令中。
第十一方面,提供了一种通信装置,该装置具有实现第五方面提供的任意一种方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。例如,该装置可以包括通信单元和处理单元,处理单元用于执行第五方面中的处理的动作(例如,发送和/或接收之外的动作),通信单元用于执行第五方面中的发送和/或接收的动作。可选的,通信单元执行的动作是在处理单元的控制下执行的。可选的,通信单元包括发送单元和接收单元,该情况下,发送单元用于执行第五方面中的发送的动作,接收单元用于执行第五方面中的接收的动作。该装置可以以芯片的产品形态存在。
示例性的,第十一方面提供的通信装置,包括:通信单元和处理单元;所述处理单元,用于通过所述通信单元从网络设备接收配置信息,所述配置信息用于配置M套射频能力,其中,所述M套射频能力中至少有一套射频能力中包括多个载波的射频能力的信息,M为大于1的整数;所述处理单元,还用于通过所述通信单元从所述网络设备接收第一指示信息,所述第一指示信息用于指示所述M套射频能力中的第m1套射频能力,所述第m1套射频能力中包括x1个载波的射频能力的信息,m1为大于0小于等于M的整数,x1为大于0的整数;所述处理单元,还用于通过所述通信单元以所述x1个载波的射频能力在所述x1个载波上进行上行发送。
在一种可能的实现方式中,所述x1个载波的射频能力的信息为所述装置在所述x1个载波上以时分复用方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息,所述 处理单元,具体用于:采用所述x1个载波的射频能力通过所述通信单元在所述x1个载波上以时分复用方式进行上行发送。
在一种可能的实现方式中,所述x1个载波的射频能力的信息为所述装置在所述x1个载波上以并发方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息,所述处理单元,具体用于:采用所述x1个载波的射频能力通过所述通信单元在所述x1个载波上以并发方式进行上行发送。
在一种可能的实现方式中,所述处理单元,还用于通过所述通信单元从所述网络设备接收第二指示信息,所述第二指示信息用于指示所述M套射频能力中的第m2套射频能力,所述第m2套射频能力中包括x2个载波的射频能力的信息,m2为大于0小于等于M的整数,x2为大于0的整数;所述处理单元,还用于通过所述通信单元以所述x2个载波的射频能力在所述x2个载波上进行上行发送。
在一种可能的实现方式中,所述处理单元,还用于通过所述通信单元向所述网络设备发送所述装置的能力信息,所述装置的能力信息中包括N个单载波能力信息和至少一个载波组合能力信息,所述N个单载波能力信息中的一个单载波能力信息为N个载波中的一个载波单载波发送时的射频能力的信息,所述载波组合能力信息为所述N个载波中至少两个载波并发或时分复用时每个载波的射频能力的信息。
第十二方面,提供了一种通信装置,该装置具有实现第六方面提供的任意一种方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。例如,该装置可以包括通信单元和处理单元,处理单元用于执行第六方面中的处理的动作(例如,发送和/或接收之外的动作),通信单元用于执行第六方面中的发送和/或接收的动作。可选的,通信单元执行的动作是在处理单元的控制下执行的。可选的,通信单元包括发送单元和接收单元,该情况下,发送单元用于执行第六方面中的发送的动作,接收单元用于执行第六方面中的接收的动作。该装置可以以芯片的产品形态存在。
示例性的,第十二方面提供的通信装置,包括:通信单元和处理单元;所述处理单元,用于通过所述通信单元向终端发送配置信息,所述配置信息用于配置M套射频能力,其中,所述M套射频能力中至少有一套射频能力中包括多个载波的射频能力的信息,M为大于1的整数;所述处理单元,还用于通过所述通信单元向所述终端发送第一指示信息,所述第一指示信息用于指示所述M套射频能力中的第m1套射频能力,所述第m1套射频能力中包括x1个载波的射频能力的信息,m1为大于0小于等于M的整数,x1为大于0的整数。
在一种可能的实现方式中,所述x1个载波的射频能力的信息为所述终端在所述x1个载波上以时分复用方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息。
在一种可能的实现方式中,所述x1个载波的射频能力的信息为所述终端在所述x1个载波上以并发方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息。
在一种可能的实现方式中,所述处理单元,还用于通过所述通信单元向所述终端发送第二指示信息,所述第二指示信息用于指示所述M套射频能力中的第m2套射频能力,所述第m2套射频能力中包括x2个载波的射频能力的信息,m2为大于0小于等于M的整数,x2为大于0的整数。
在一种可能的实现方式中,所述处理单元,还用于通过所述通信单元从所述终端接收 所述终端的能力信息,所述终端的能力信息中包括N个单载波能力信息和至少一个载波组合能力信息,所述N个单载波能力信息中的一个单载波能力信息为N个载波中的一个载波单载波发送时的射频能力的信息,所述载波组合能力信息为所述N个载波中至少两个载波并发或时分复用时每个载波的射频能力的信息;所述处理单元,具体用于根据所述终端的能力信息通过所述通信单元向所述终端发送配置信息。
第十三方面,提供了一种通信装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第一方面,第二方面,第三方面、第四方面、第五方面或第六方面中提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于通信装置内,也可以位于通信装置外。
在一种可能的实现方式中,处理器包括逻辑电路以及输入接口和/或输出接口。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,通信装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,通信装置以芯片的产品形态存在。
第十四方面,提供了一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,使得计算机执行第一方面,第二方面,第三方面、第四方面、第五方面或第六方面中提供的任意一种方法。
第十五方面,提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行第一方面,第二方面,第三方面、第四方面、第五方面或第六方面中提供的任意一种方法。
第十六方面,提供了一种芯片,该芯片包括处理器和接口电路,该接口电路和该处理器耦合,该处理器用于运行计算机程序或指令,以实现如第一方面至第六方面中任一方面的方法,该接口电路用于与该芯片之外的其它模块进行通信。
第十七方面,提供了一种通信装置,所述通信装置用于实现如第一方面至第六方面中任一方面的方法。
第七方面至第十七方面中的任一种实现方式所带来的技术效果可参见第一方面、第二方面、第三方面、第四方面、第五方面和第六方面中对应实现方式所带来的技术效果,此处不再赘述。
其中,需要说明的是,上述各个方面中的任意一个方面的各种可能的实现方式,在方案不矛盾的前提下,均可以进行组合。
附图说明
图1为一种终端与网络设备的通信示意图;
图2为一种CA场景的示意图;
图3为一种DC场景的示意图;
图4为一种SUL场景的示意图;
图5为本申请实施例提供的一种射频通道的示意图;
图6至图8分别为本申请实施例提供的一种时序配比示意图;
图9为本申请实施例提供的一种射频能力配置方法的流程图;
图10和图11分别为本申请实施例提供的一种射频通道的示意图;
图12为本申请实施例提供的一种时序配比示意图;
图13和图14分别为本申请实施例提供的一种射频能力配置方法的流程图;
图15为本申请实施例提供的一种时序配比示意图;
图16为本申请实施例提供的一种通信装置的组成示意图;
图17和图18分别为本申请实施例提供的一种通信装置的硬件结构示意图;
图19为本申请实施例提供的一种终端的硬件结构示意图;
图20为本申请实施例提供的一种网络设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例提供了一种通信系统,该通信系统包括至少一个网络设备和至少一个终端,该至少一个终端可以与该至少一个网络设备中的一个或多个通信。以一个网络设备和一个终端为例,参见图1,网络设备和终端可以进行无线通信。需要说明的是,在如图1所述的通信系统包含的网络设备和终端仅是一种示例,在本申请实施例中,所述通信系统包含的网元的类型、数量,以及网元之间的连接关系不限于此。
本申请实施例中的通信系统可以是支持第四代(fourth generation,4G)接入技术的通信系统,例如长期演进(long term evolution,LTE)接入技术;或者,该通信系统也可以是支持5G接入技术的通信系统,例如NR接入技术;或者,该通信系统还可以是支持多种无线技术的通信系统,例如支持LTE技术和NR技术的通信系统。另外,该通信系统也可以适用于面向未来的通信技术。
本申请实施例中的网络设备可以是接入网侧用于支持终端接入通信系统的设备,例如,可以是4G接入技术通信系统中的演进型基站(evolved nodeB,eNB)、5G接入技术通信系统中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等等。网络设备可以称为基站、节点或者接入网设备等。
本申请实施例中的终端可以是一种向用户提供语音或者数据连通性的设备,也可以称为用户设备(user equipment,UE),移动台(mobile station),用户单元(subscriber unit),站台(station),终端设备(terminal equipment,TE)等。例如,终端可以为蜂窝电话(cellular phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),手持设备(handheld),膝上型电脑(laptop computer),无绳电话(cordless  phone),无线本地环路(wireless local loop,WLL)台,平板电脑(pad),智能手机(smartphone),用户驻地设备(customer premise equipment,CPE),具有网络接入功能的传感器等。随着无线通信技术的发展,可以接入通信系统、可以与通信系统的网络侧进行通信,或者通过通信系统与其它物体进行通信的设备都可以是本申请实施例中的终端,譬如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。
为便于理解本申请实施例,下面先对本文涉及的相关术语进行简单的介绍。
1、时隙(slot)
时隙是时域资源的最小调度单位,一个时隙包括至少一个符号。符号包括上行符号(即用于上行传输的符号)、下行符号(即用于下行传输的符号)和灵活符号(根据网络配置可以用于上行传输或下行传输或用作保护间隔)。包含的符号全部为上行符号的时隙可以称为上行时隙,本申请实施例中用U表示。包含的符号全部为下行符号的时隙可以称为下行时隙,本申请实施例中用D表示。包含的符号为上行符号、下行符号和灵活符号中的多种符号的时隙可以称为灵活时隙,本申请实施例中用S表示。
NR中,根据不同的子载波间隔,1毫秒(ms)中可以包括不同数量的时隙,例如,当子载波间隔为15千赫兹(kHz)时,1ms包括1个时隙,该时隙占用1ms。当子载波间隔为30kHz时,1ms包括2个时隙,每个时隙占用0.5ms。
其中,上行符号例如可以称为单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)符号或正交频分多址(orthogonal frequency division multiplexing,OFDM)符号。下行符号例如可以称为OFDM符号。
2、时分双工(time division deplux,TDD)
通信系统的一种双工通信技术,用于分离接收和发送的信道,即上下行链路。采用TDD模式的通信系统中,上下行链路使用相同的频域资源,通过不同时域资源来区分上行链路和下行链路。
3、频分双工(time division depluxing,FDD)
通信系统的一种双工通信技术,用于分离接收和发送的信道,即上下行链路。采用FDD模式的通信系统中,上下行链路使用相同的时域资源,通过不同频域资源来区分上行链路和下行链路,例如上行频率范围与下行频率范围不同。
4、多载波上行传输
多载波上行传输是指上行方向上,终端与网络设备之间存在多个载波。终端可以接入一个网络设备,多个载波可以包括终端与一个网络设备之间的载波,或者,终端可以同时接入两个网络设备,多个载波可以包括终端分别与两个网络设备之间的载波。
示例性地,多载波上行传输的场景可以包括载波聚合(carrier aggregation,CA)、双连接(dual connectivity,DC)和辅助上行链路(supplementary uplink,SUL)等场景。
示例性地,多载波上行传输时,可以通过时分复用(time division multiplexing,TDM)方式进行上行传输,或者,可以通过并发方式进行上行传输。
5、CA
CA是将2个或更多个载波聚合在一起以支持更大的传输带宽的技术。CA可以分为上行CA和下行CA。针对上行CA,终端可以根据其能力在多个载波上同时接收或发送。示 例性地,参见图2,终端可以在载波1和载波2之间进行上行CA,从而在网络设备和终端之间支持更大的上行传输带宽,提升上行传输性能。
6、DC
在目前的通信系统中,终端支持同时接入到两个不同节点,这种接入方式称为DC。该情况下,终端可以利用两个节点中的一个或多个的无线资源进行传输,该两个节点可以是相同制式或者是不同制式的。
这两个不同节点中一个节点为主节点,另一个节点为辅节点。两个节点之间的链路可以是非理想回传链路,也可以是理想回传链路。这两个不同节点可以为不同的网络设备,也可以为同一网络设备中的不同的模块,一个模块可以对应一个小区。
示例性地,这两个不同节点可以为基于演进型分组核心网(evolved packet core,EPC)的非独立(Non-Standalone,NSA)组网场景下的两个基站,该情况下,这两个基站可以为LTE基站和NR基站。这两个不同节点也可以为独立组网(Standalone,SA)场景下的两个基站,该情况下,这两个基站可以均为LTE基站,或者,均为NR基站。其中,两个基站均为NR基站的DC场景可以称为NR DC场景。两个基站均为LTE基站的DC场景可以称为LTE DC场景。
示例性地,DC可以是多制式(multi-radio,MR)-DC,MR-DC可以包括演进的通用陆地无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)与NR的DC(E-UTRA-NR Dual Connectivity,EN-DC)、下一代(Next Generation,NG)无线接入网络(Radio Access Network,RAN)E-UTRA与NR的DC(NG-RAN E-UTRA-NR Dual Connectivity,NGEN-DC)、NR与E-UTRA的DC(NR-E-UTRA Dual Connectivity,NE-DC)、或者NR与NR的DC(NR-DC)。
其中,终端与两个不同节点中的一个节点之间可以通过多个载波进行通信,示例性地,参见图3,若两个不同节点为LTE基站和NR基站,终端可以通过多个载波与LTE基站通信,这多个载波之间可以进行上行CA和/或下行CA。也可以采用多个载波与NR基站通信,这多个载波之间可以进行上行CA和/或下行CA。
7、SUL
SUL是为终端配置的补充上行链路。目的是为了提高终端的上行覆盖。示例性的,参见图4,终端可以通过正常上行链路(normal uplink,NUL)发送上行信息,也可以通过SUL发送上行信息。NUL的覆盖范围可以小于SUL的覆盖范围。SUL场景下的多个载波是指SUL和NUL。
8、射频能力
本申请实施例中的射频能力包括射频通道能力和/或其他射频能力。其中,射频通道能力可以包括以下信息中的一种或多种:多输入多输出(multiple-input multiple-output,MIMO)层数、探测参考信号(sounding reference signal,SRS)天选能力、射频通道的数量等。其他射频能力可以包括以下信息中的一种或多种:上行发射功率、单载波功率(ue-PowerClass)、发射机切换是否会影响接收机(txSwitchImpactToRx)的信息。
9、载波的射频通道能力
一个载波的射频通道能力表征了该载波的射频通道的数量。例如,一个载波支持的(即最大可以采用的)射频通道能力表征了该载波支持的(即最大可以采用的)射频通道的数 量。
由于载波的射频通道的数量可以直接通过一个数值显示指示,也可以通过该载波的MIMO层数,SRS天选能力等隐式指示。因此,载波的射频通道能力可以包括以下信息中的一个或多个:指示该载波的射频通道的数量的数值、该载波的MIMO层数、该载波的SRS天选能力等,载波的射频通道能力可以通过该射频通道能力中包括的信息表征。
其中,SRS天选能力是指该载波支持的发送天线和接收天线的数量。若发送天线数量记为x,接收天线数量记为y,发送天线记为T,接收天线记为R,则该载波的SRS天选能力可以记为xTyR,x和y均为大于0的整数。
其中,一个载波的MIMO层数与该载波的射频通道的数量相同,例如一个载波的最大MIMO层数与该载波支持的射频通道的数量相同。一个载波的SRS天选能力中的发送天线的数量与该载波的射频通道的数量相同,例如一个载波的SRS天选能力中的最大发送的天线数量与该载波支持的射频通道的数量相同。
为了方便,在下文的描述中“射频通道能力表征x个射频通道”描述为“射频通道能能力为xT”,x为大于0的整数。
10、射频通道的共享机制
一个载波可以支持1个射频通道,也可以支持多个射频通道。在实际实现时,不同的载波可以共享射频通道,即同一个射频通道在不同的时间可以给不同的载波使用。示例性地,参见图5,载波1可以支持射频通道1和射频通道2,载波2仅支持射频通道2。射频通道2在不同的时间可以给不同的载波使用。例如,在时间段1中,射频通道2可以给载波1使用,该情况下,在时间段1中,开关1工作在状态1。在时间段2中,射频通道2可以给载波2使用,该情况下,在时间段2中,开关1工作在状态2。
11、载波单发
载波单发是指只在该载波上进行上行发送。
载波单发可以有两种情况,一种是以单载波发送,即终端始终在该载波上进行上行发送。另一种是该载波与其他载波TDM,该情况下,该载波与其他载波中的任意一个载波的上行发送所采用的时域资源不重叠。针对该载波而言,该载波是单发的,针对由该载波和其他载波组成的多个载波而言,该多个载波是TDM的。
终端在多个载波上采用TDM方式进行发送时,多个载波中每个载波的上行发送所采用的时域资源不与该多个载波中的其他任意一个载波的上行发送所采用的时域资源重叠。其中,该多个载波可以为终端支持的全部载波中的部分或全部。可以理解,多个载波不会在相同的时域资源上进行上行发送。
示例性地,针对2.6G赫兹(Hz)的载波(以下简称2.6G载波)和3.5GHz的载波(以下简称3.5G载波),若两个载波的时隙配置如图6所示,则终端可以通过2.6G载波在2.6G载波对应的时隙3进行上行发送,终端可以通过3.5G载波在3.5G载波对应的时隙9和3.5载波对应的时隙4(即2.6G载波的时隙2的前半个时隙)进行上行发送,则2.6G载波或3.5G载波是TDM的。
TDM发送方式也可以称为分时发送方式等。
本申请实施例中的载波单发可以包括单载波发送和/或该载波与其他载波TDM。
12、载波单发时的射频能力
载波单发时的射频能力包括该载波以单载波发送时的射频能力,和/或,该载波与其他载波TDM时的射频能力。一个载波以单载波发送时的射频能力和该载波与其他载波TDM时的射频能力可以相同也可以不同。
13、多个载波并发
并发为数据发送的一种方式。终端在多个载波上并发时,多个载波中每个载波的上行发送所采用的时域资源与其他载波中的每个载波的上行发送所采用的时域资源重叠。其中,多个载波可以为终端支持的全部载波中的部分或全部。
示例性地,参见图6,在2.6G载波对应的时隙2的前半个时隙(即3.5G载波对应的时隙4),终端在2.6G载波和3.5G载波上同时进行上行发送,则在2.6G载波对应的时隙2的前半个时隙(即3.5G载波对应的时隙4),2.6G载波和3.5G载波是并发的。
需要说明的是,多个载波重叠的上行时域资源中,多个载波如何在该重叠的上行时域资源上发送,可以决定该多个载波是TDM的还是并发的。例如,针对2.6G载波和3.5G载波,若两个载波的时隙配置如图7所示,若终端通过3.5G载波在3.5G载波对应的时隙4和时隙9发送,终端通过2.6G载波仅在2.6G载波对应的时隙3上发送,则3.5载波和2.6载波是以TDM方式进行上行发送的。若终端通过3.5G载波在3.5G载波对应的时隙4和时隙9发送,终端通过2.6G载波在2.6G载波对应的时隙2、时隙3和时隙4上发送,则在3.5G载波对应的时隙4和时隙9上,3.5G载波和2.6G载波并发的。
另外,需要说明的是,终端可能支持多个载波,该多个载波中的部分载波可能是TDM的,部分载波可能是并发的。例如,如图8所示,终端通过3.5G载波在3.5G载波对应的时隙4和时隙9上进行发送,终端通过2.6G载波在2.6G载波对应的时隙3上进行发送,终端通过1.8G载波在1.8G载波对应的时隙0至时隙4上进行发送,那么3.5G载波和2.6G载波是TDM方式进行发送的,3.5G载波和1.8G载波在3.5G对应的时隙4和时隙9上是并发的,2.6G载波和1.8G载波在2.6G对应的时隙3上是并发的。
14、多个载波并发时,多个载波中每个载波支持的射频通道能力
可以理解,至少存在一个时刻,多个载波并发,在该时刻中,每个载波支持的射频通道能力为多个载波并发时,该载波支持的射频通道能力。
需要说明的是,终端在上报多个载波并发时,每个载波支持的射频通道能力,网络设备和终端可以不区分该多个载波什么时候并发,在所有时域资源上都按照各个载波并发时支持的射频通道能力进行调度。
例如,在t1时刻,载波1和载波2是并发的,载波1支持1T,载波2支持1T,那么载波1和载波2并发时,载波1支持1T,载波2支持1T。网络设备可以在所有时域资源上,都按照载波1支持1T,载波2支持1T进行调度。
目前,在一些方案中,网络设备可以按照满足较长时间内各个载波的射频通道能力向终端发送一个或多个载波的射频通道能力,终端根据该一个或多个载波的射频通道能力在该一个或多个载波上进行上行发送,会限制终端的上行发送能力。例如,参见图5,载波1支持射频通道1和射频通道2,载波2支持射频通道2。载波1为2.6G载波,载波2为3.5G载波,2.6G载波和3.5G载波的时隙配置参见图6,若网络设备在3.5G载波的时隙3指示终端在3.5G载波采用1T,指示终端在2.6G载波采用1T,终端在3.5G载波的时隙4和时隙9采用1T进行上行发送,在2.6G载波的时隙2和时隙3采用1T进行上行发送。 而实际上,由于2.6G载波支持2T,终端在2.6G载波的时隙3可以采用2T进行上行发送,由此可知,现有的方法限制了终端的上行发送能力。
为了提高终端的上行发送能力,本申请实施例提供了以下实施例一至实施例三所述的方法,实施例一和实施例三中,网络设备可以灵活的指示终端在一个或多个载波上的射频通道能力,实施例二中,终端可以根据网络设备在各个载波上的上行调度情况确定在一个或多个载波上的射频通道能力,实施例一至实施例三均可以灵活的调整终端在一个或多个载波上的射频通道能力,提高终端的上行发送能力。
本申请实施例提供的方法可以应用于任何多载波场景。该情况下,终端可以位于多个载波的覆盖重叠区域中,终端可以选择不同的载波进行上行发送。多载波场景包括但不限于上述任何一种DC场景或CA场景或SUL场景等。
本申请实施例中的载波可以为FDD载波,也可以为TDD载波。
本申请实施例中的载波例如可以为3.5G载波、2.6G载波、1.8G载波、900兆(M)载波等。
实施例一
实施例一提供了一种射频能力配置方法,如图9所示,包括:
901、终端向网络设备发送终端的能力信息。
相应的,网络设备从终端接收终端的能力信息。
该能力信息可以包括多个射频能力。
可选的,终端的能力信息中包括第一载波单发时第一载波的射频能力的信息。
可选的,终端的能力信息中还包括第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力的信息。
可选的,终端的能力信息中还包括第一载波与除第一载波之外的一个或多个载波并发时该一个或多个载波中的每个载波的射频能力的信息。
可以理解,终端的能力信息中包括N(N为大于1的整数)个载波中的一个或多个载波中的每个载波单发时的射频能力的信息,以及N个载波中的多个载波并发时该多个载波中的每个载波的射频能力的信息。N个载波为终端的部分或全部载波。N个载波包括第一载波。
也就是说,终端的能力信息除了包括第一载波单发时第一载波的射频能力的信息,和,第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力的信息和该一个或多个载波中的每个载波的射频能力的信息,还包括N个载波中除第一载波之外的一个或多个载波中的每个载波单发时的射频能力的信息,和/或,N个载波中的不包括第一载波在内的多个载波并发时该多个载波中的每个载波的射频能力的信息。
作为一种可选的实施方式,本申请实施例一至实施例三中,终端上报频段组合中的每个载波的射频能力时,可以以显示方式指示一个载波是单发还是与其他一个载波或者多个载波并发。
作为另一种可选的实施方式,本申请实施例一至实施例三中,终端在上报载波组合中的每个载波的射频能力时,可以指示上报的射频能力是每个载波单发时的射频能力还是多个载波并发时每个载波的射频能力,终端和网络设备可以根据多个载波的时域资源是否重叠确定终端上报的射频能力是每个载波单发时的射频能力还是多个载波并发时每个载波的射频能力。例如,当多个载波的时域资源存在重叠时,终端上报的每个载波的射频能力 为多个载波并发时每个载波的射频能力,当多个载波的时域资源不重叠时,终端上报的每个载波的射频能力为每个载波单发时的射频能力。
可选的,载波单发时的射频能力包括该载波以单载波发送时的射频能力,和/或,该载波与其他载波TDM时的射频能力。
可选的,当该载波以单载波方式发送时,上报的能力是该载波的能力,例如:载波A 2T。
可选的,当该载波与其他载波TDM时,上报的可能是一个频段组合下的能力,例如:频段组合:频段A+频段B,载波A 2T,载波B 2T。载波A和载波B的时域资源没有重叠,终端和网络设备可以将该频段组合的能力认为是TDM方式下的载波A和载波B的能力。
可选的,当该载波与其他载波并发时,上报的可能是一个频段组合下的能力,例如:频段组合:频段A+频段B,载波A 1T,载波B 1T。载波A和载波B的时域资源存在重叠,终端和网络设备可以将该频段组合的能力认为是并发方式下的载波A和载波B的能力。
示例1,假设N个载波为载波A和载波B,参见图10,载波A和载波B均支持射频通道1和射频通道2。那么在载波A单发时,载波A最多支持2T。在载波B单发时,载波B最多支持2T。在载波A和载波B并发时,载波A和载波B均支持1T。该情况下,终端的能力信息中包括的信息可参见表1。
表1
载波 单发时的射频通道能力 载波A和载波B并发时的射频通道能力
A 2T 1T
B 2T 1T
示例2,假设N个载波为载波A、载波B和载波C,参见图11,载波A支持射频通道1、射频通道2和射频通道3,载波B和载波C均支持射频通道2和射频通道3。那么在载波A单发时,载波A最多支持3T。在载波B单发时,载波B最多支持2T。在载波C单发时,载波C最多支持2T。在载波A和载波B并发时,载波A最多支持2T,载波B最多支持1T,或者,载波A最多支持1T,载波B最多支持2T。在载波A和载波C并发时,载波A最多支持2T,载波C最多支持1T,或者,载波A最多支持1T,载波C最多支持2T。在载波B和载波C并发时,载波B最多支持1T,载波C最多支持1T。在载波A、载波B和载波C并发时,载波A最多支持1T,载波B最多支持1T,载波C最多支持1T。该情况下,终端的能力信息中包括的信息可参见表2。
表2
发送方式 A的射频通道能力 B的射频通道能力 C的射频通道能力
A单发 3T - -
B单发 - 2T  
C单发 - - 2T
A和B并发 2T 1T -
A和C并发 2T - 1T
B和C并发 - 1T 1T
A、B和C并发 1T 1T 1T
当实施例一提供的方法应用于DC场景中时,网络设备可以为主网络设备,也可以为辅网络设备。第一载波可以为终端与主网络设备之间的载波,也可以为终端与辅网络设备之间的载波。
步骤901为可选步骤。例如,终端和网络设备可以预配置终端的能力,此时可以不用终端上报给网络设备。
可选的,终端的能力信息中还包括终端是否支持射频能力动态切换。若终端支持射频能力动态切换,终端可以在一个载波的多个射频能力之间进行切换。
902、网络设备向终端发送配置信息,配置信息用于配置第一载波的多个射频能力,多个射频能力与多个索引一一对应。
相应的,终端从网络设备接收配置信息。
可选的,第一载波的多个射频能力包括第一载波单发时第一载波的射频能力。
可选的,第一载波的多个射频能力包括第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力。其中,当一个载波与不同的载波并发时,该载波的射频能力也可以不同,例如,参见上述表2,载波A与载波B并发时载波A支持2T,载波A与载波B和载波C并发时,载波A支持1T。由此可知,第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力可以有一个,也可以有多个。
可选的,配置信息用于配置N′(N′为大于0的整数)个载波的射频能力,N′个载波中至少一个载波被配置多个射频能力,N′个载波中的每个载波的每个射频能力对应一个索引。一个载波的多个射频能力对应的索引均不同,不同载波的射频能力对应的索引可以相同也可以不同。其中,N′个载波包括第一载波,N′个载波属于N个载波。N′可以与N相同,也可以小于N,本申请实施例中以N=N′为例对本申请实施例提供的方法作示例性说明。
也就是说,配置信息除了用于配置第一载波的多个射频能力之外,还用于配置N′个载波中的除第一载波之外的每个载波的一个或多个射频能力。其中,任意一个载波的多个射频能力可以包括该载波单发时该载波的射频能力,还可以包括该载波与除该载波之外的一个或多个载波并发时该载波的射频能力。
可选的,配置信息携带在无线资源控制(radio resource control,简称RRC)信令中。示例性的,针对一个载波,网络设备可以通过3GPP技术规范(technical specification,TS)38.331版本(version,V)15.5.0的章节6.3.2中的信元上行配置列表(“uplinkConfigList”)的序列(sequence)中包括的信元上行配置标识(“UplinkConfig–Id”)配置该载波的一种或多种射频能力。进一步的,若该载波具有SUL,还可以通过信元辅助上行列表(“supplementaryUplinkList”)的sequence中包括的信元“UplinkConfig–Id”配置该SUL的一种或多种射频能力。其中,“UplinkConfig–Id”中Id的一个取值用于配置一种射频能力。示例性的,“uplinkConfigList”中包含的信息可以为:
Figure PCTCN2020093002-appb-000001
Figure PCTCN2020093002-appb-000002
在步骤901存在的情况下,步骤902在具体实现时可以包括:网络设备根据终端的能力信息向终端发送配置信息。具体的,网络设备可以先根据终端上报的能力信息确定每个载波单发时的射频能力和每个载波与不同载波并发时的射频能力,再确定每个载波共有几个射频能力。
在步骤901不存在的情况下,配置信息可以预先配置在网络设备中,或网络设备从其他设备直接获取到的。
基于上述示例1,以射频能力仅包括射频通道能力为例,若N′个载波为载波A和载波B,载波A支持2T和1T,载波B支持2T和1T,则配置信息配置的N′个载波的射频通道能力,以及射频通道能力对应的索引可参见表3。
表3
Figure PCTCN2020093002-appb-000003
基于上述示例2,以射频能力仅包括射频通道能力为例,若N′个载波为载波A、载波B和载波C,载波A支持3T、2T和1T,载波B支持2T和1T,载波C支持2T和1T,则配置信息配置的N′个载波的射频通道能力,以及射频通道能力对应的索引可参见表4。
表4
Figure PCTCN2020093002-appb-000004
可选的,网络设备可以在终端支持射频能力动态切换的情况下执行步骤902。
903、网络设备向终端发送第一指示信息,第一指示信息用于指示第一索引,第一索引为多个索引中的一个索引。相应的,终端从网络设备接收第一指示信息。
可选的,第一指示信息用于指示n1个索引,n1个索引对应N′个载波中的n1个载波,n1个索引包括第一索引,n1为大于0小于等于N′的整数。也就是说,第一指示信息除了用于指示第一索引之外,还用于指示n1个索引中的除第一索引之外的其他索引。
示例性的,参见表4,第一指示信息可以指示载波A对应的索引2和载波B对应的索引1。第一索引可以为载波A对应的索引2或载波B对应的索引1。
可选的,第一指示信息携带在媒介接入控制(media access control,MAC)控制元素(controlelement,CE)信令或下行控制信息(downlink control information,DCI)中。
示例性的,MAC CE或DCI中可以新增一个字段用于指示载波的索引。该字段可以包括1个或多个比特(bit)。示例性的,该字段的名称可以为上行配置指示 (uplinkconfigindication)。
可选的,步骤903在具体实现时可以包括:903-a、网络设备根据第一载波和除第一载波之外的一个或多个载波的上行调度情况向终端发送第一指示信息。
步骤903-a在具体实现时,网络设备可以根据第一载波和一个或多个载波的上行调度的时域资源的位置,确定第一载波单发,或者,确定第一载波与一个或多个载波并发。具体的,网络设备可以根据第一载波和一个或多个载波的上行调度的时域资源的重叠情况,确定第一载波单发,或者,确定第一载波与哪些载波并发。
针对第一载波的一段上行调度的时域资源(例如,多个上行时隙或一个上行时隙或若干个上行符号),网络设备确定第一载波单发还是与一个或多个载波并发的方法可以为:若该段上行调度的时域资源不与任意一个载波的上行调度的时域资源重叠,网络设备可以确定在第一载波的该段上行调度的时域资源上,终端在第一载波上单发。若该段上行调度的时域资源与一个或多个其他载波(例如,2个载波)的上行调度的时域资源重叠,那么,网络设备可以确定在第一载波的该段上行调度的时域资源上,终端在第一载波上与该一个或多个其他载波(例如,2个载波)中的一个或多个载波(例如,2个载波中的1个载波或2个载波)并发。
网络设备在确定第一载波单发,或者,确定第一载波与哪些载波并发之后,再确定指示第一载波的哪个射频能力。
示例性的,当网络设备确定第一载波单发时,第一指示信息指示第一载波单发时,第一载波的射频能力,即第一索引对应的射频能力为第一载波单发时,第一载波的射频能力。
示例性的,当网络设备确定第一载波与一个或多个载波并发时,第一指示信息指示第一载波与一个或多个载波并发时,第一载波的射频能力,即第一索引对应的射频能力为第一载波与一个或多个载波并发时,第一载波的射频能力。进一步的,若第一载波与不同载波并发时第一载波的射频能力有多种,当网络设备确定第一载波与一个或多个载波并发时,第一指示信息具体指示第一载波的哪个射频能力取决于该一个或多个载波为哪些载波。此时网络设备可以根据终端上报的能力信息确定第一载波的射频能力。
示例性的,基于表2所示的示例,若网络设备在载波1、载波2和载波3上的上行调度的时域资源如图12所示。网络设备确定并指示终端在载波3的上行时隙0上载波3单发,载波3单发时的射频通道能力为2T。网络设备确定并指示终端在载波1的时隙4(即载波2和载波3的上行时隙2的前半个时隙)上载波1、载波2和载波3并发,载波1、载波2和载波3并发时载波1、载波2和载波3的射频通道能力均为1T。网络设备确定并指示终端在载波2和载波3的上行时隙2的后半个时隙上载波2和载波3并发,载波2和载波3并发时载波2和载波3的射频通道能力均为1T。
其中,网络设备确定第一指示信息指示的n1个索引中的每个索引的过程与第一索引类似。
904、终端以第一索引对应的射频能力在第一载波上进行上行发送。
可选的,针对n1个索引中除第一索引之外的每个索引,终端还以该索引对应的射频能力在该索引对应的载波上进行上行发送。
示例性的,参见表4,若第一索引为载波A对应的索引2,那么终端以1T在载波A上进行上行发送。若第一指示信息还指示了载波B对应的索引1,那么终端还以1T在载波B上进 行上行发送。
步骤904为可选步骤。
905、网络设备向终端发送第二指示信息,第二指示信息用于指示第二索引,第二索引为多个索引中的一个索引。相应的,终端从网络设备接收第二指示信息。
可选的,第二指示信息用于指示n2个索引,n2个索引对应N′个载波中的n2个载波,n2个索引包括第二索引,n2为大于0小于等于N′的整数。也就是说,第二指示信息除了用于指示第二索引之外,还用于指示n2个索引中除第二索引之外的其他索引。
其中,第一索引和第二索引可以相同,也可以不同,本申请实施例对此不作具体限定。网络设备确定第二指示信息指示的n2个索引中的每个索引的过程与第一索引类似,不再赘述。
示例性的,参见表4,第二指示信息可以指示载波A对应的索引1和载波B对应的索引1。第二索引可以为载波A对应的索引1或载波B对应的索引1。
可选的,第二指示信息携带在MAC CE信令或DCI中。
可选的,第一指示信息和第二指示信息可以均携带在MAC CE信令中,也可以均携带在DCI中,也可以一个携带在MAC CE信令中,另一个携带在DCI中。
实施例一是以第一载波为例对网络设备配置载波采用的射频能力的过程作示例性说明的,因此,第一指示信息和第二指示信息中均包含第一载波的射频能力对应的索引。在实际实现时,网络设备发送的两个指示信息指示的索引对应的载波之间可以有相同的载波,也可以没有相同的载波,本申请实施例对此不作具体限制。
步骤905为可选步骤。
906、终端以第二索引对应的射频能力在第一载波上进行上行发送。
可选的,针对n2个索引中除第二索引之外的每个索引,终端还以该索引对应的射频能力在该索引对应的载波上进行上行发送。
示例性的,参见表4,若第二索引为载波A对应的索引1,那么终端以2T在载波A上进行上行发送。若第二指示信息还指示了载波B对应的索引1,那么终端还以1T在载波B上进行上行发送。
步骤906为可选步骤。
实施例一提供的方法,针对一个载波,网络设备可以为终端配置该载波的、与多个索引一一对应的多个射频能力,再通过指示信息指示一个索引,终端通过该索引即可确定采用多个射频能力中的哪个射频能力。网络设备通过指示索引,可以灵活的指示载波的射频能力,从而在不同的时域资源上,网络设备可以根据终端的载波的射频能力为终端指示载波的射频能力,提高终端的上行发送能力。
实施例二
实施例二提供了一种射频能力配置方法,与实施例一的区别主要在于,网络设备为终端配置第一载波的多个射频能力之后,终端可以根据网络设备在第一载波和除第一载波之外的一个或多个载波的上行调度情况选择第一载波的多个射频能力中的一个射频能力进行上行发送,而不需要网络设备为终端指示终端在第一载波上采用的射频能力。
如图13所示,实施例二提供的射频能力配置方法包括:
1301、终端向网络设备发送终端的能力信息。
相应的,网络设备从终端接收终端的能力信息。
可选的,终端的能力信息中包括第一载波单发时第一载波的射频能力的信息。
可选的,终端的能力信息中还包括第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力的信息。
可选的,终端的能力信息中还包括第一载波与除第一载波之外的一个或多个载波并发时该一个或多个载波中的每个载波的射频能力的信息。
可以理解,终端的能力信息中包括N(N为大于1的整数)个载波中的一个或多个载波中的每个载波单发时的射频能力的信息,以及N个载波中的多个载波并发时该多个载波中的每个载波的射频能力的信息。N个载波为终端的部分或全部载波。N个载波包括第一载波。
也就是说,终端的能力信息除了包括第一载波单发时第一载波的射频能力的信息,和,第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力的信息和该一个或多个载波中的每个载波的射频能力的信息,还包括N个载波中除第一载波之外的一个或多个载波中的每个载波单发时的射频能力的信息,和/或,N个载波中的不包括第一载波在内的多个载波并发时该多个载波中的每个载波的射频能力的信息。
关于终端的能力信息的具体示例可参见上述步骤901的相关描述,在此不再赘述。
当实施例二提供的方法应用于DC场景中时,网络设备可以为主网络设备,也可以为辅网络设备。第一载波可以为终端与主网络设备之间的载波,也可以为终端与辅网络设备之间的载波。
步骤1301为可选步骤。例如,终端和网络设备可以预配置终端的能力,此时可以不用终端上报给网络设备。
可选的,终端的能力信息中还包括终端是否支持射频能力动态切换。若终端支持射频能力动态切换,终端可以在一个载波的多个射频能力之间进行切换。
1302、网络设备获取配置信息,配置信息用于配置第一载波的多个射频能力。
可选的,第一载波的多个射频能力与多个索引一一对应。
可选的,第一载波的多个射频能力包括第一载波单发时第一载波的射频能力。
可选的,第一载波的多个射频能力包括第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力。其中,当一个载波与不同的载波并发时,该载波的射频能力也可以不同,例如,参见上述表2,载波A与载波B并发时载波A支持2T,载波A与载波B和载波C并发时,载波A支持1T。由此可知,第一载波与除第一载波之外的一个或多个载波并发时第一载波的射频能力可以有一个,也可以有多个。
可选的,配置信息用于配置N′(N′为大于0的整数)个载波的射频能力,N′个载波中至少一个载波被配置多个射频能力,N′个载波中的每个载波的每个射频能力对应一个索引。一个载波的多个射频能力对应的索引均不同,不同载波的射频能力对应的索引可以相同也可以不同。其中,N′个载波包括第一载波,N′个载波属于N个载波。N′可以与N相同,也可以小于N,本申请实施例中以N=N′为例对本申请实施例提供的方法作示例性说明。
也就是说,配置信息除了用于配置第一载波的多个射频能力之外,还用于配置N′个载波中的除第一载波之外的每个载波的一个或多个射频能力。其中,任意一个载波的多个射频能力可以包括该载波单发时该载波的射频能力,还可以包括该载波与除该载波之外的一个或多个载波并发时该载波的射频能力。
在步骤1301存在的情况下,步骤1302在具体实现时,网络设备可以根据终端的能力信息获取配置信息。具体的,网络设备可以先根据终端上报的能力信息确定每个载波单发时的射频能力和每个载波与不同载波并发时的射频能力,再确定每个载波共有几个射频能力。具体示例可参见上述步骤902的相关描述。
在步骤1301不存在的情况下,配置信息可以预先配置在网络设备中,或网络设备从其他设备直接获取到的。
步骤1302为可选步骤。
1303、网络设备向终端发送配置信息。相应的,终端从网络设备接收配置信息。
可选的,配置信息携带在RRC信令中。具体示例可参见上述步骤902的相关描述,在此不再赘述。
可选的,网络设备可以在终端支持射频能力动态切换的情况下执行步骤1302和步骤1303。
1304、终端根据第一载波和除第一载波之外的一个或多个载波的上行调度情况在第一载波上以多个射频能力中的一个射频能力进行上行发送。
步骤1304在具体实现时,终端可以根据第一载波和一个或多个载波的上行调度的时域资源的位置确定第一载波单发,或者,确定第一载波与一个或多个载波并发。具体的,终端可以根据第一载波和一个或多个载波的上行调度的时域资源的重叠情况,确定第一载波单发,或者,确定第一载波与哪些载波并发。
具体的,终端可以根据网络设备发送的调度不同载波上的上行数据的DCI确定不同载波上的上行调度的时域资源。针对第一载波的一段上行调度的时域资源,终端确定第一载波单发还是与一个或多个载波并发的方法与网络设备类似,具体可参见实施例一中的相关描述,在此不再赘述。
终端在确定第一载波单发,或者,确定第一载波与哪些载波并发之后,再确定在第一载波上采用的射频能力。
示例性的,当终端确定第一载波单发,终端在第一载波上以第一载波单发时第一载波的射频能力进行上行发送。
示例性的,当终端确定第一载波与一个或多个载波并发时,终端在第一载波上以与一个或多个载波并发时第一载波的射频能力进行上行发送。进一步的,若第一载波与不同载波并发时第一载波的射频能力有多种,当终端确定第一载波与一个或多个载波并发后,确定采用第一载波的哪个射频能力取决于该一个或多个载波为哪些载波。
具体的,配置信息中配置的一个载波的一个射频能力中的射频通道能力和其他射频能力存在对应关系。由于终端知道一个载波单发时的射频通道能力和一个载波与不同载波并发时的射频通道能力。因此,终端可以先确定一个载波单发或并发时的射频通道能力,再根据射频通道能力确定其他射频能力,从而确定在该载波上采用的射频能力。
示例性的,基于示例1,载波A和载波B分别有两个射频能力,记为射频能力1和射频能力2。载波A和载波B的射频通道能力和其他射频能力可以参见表5。其中,载波A的射频通道能力为2T的射频通道能力对应其他射频能力1,载波B的射频通道能力为2T的射频通道能力对应其他射频能力2,载波A的射频通道能力为1T的射频通道能力对应其他射频能力3,载波B的射频通道能力为1T的射频通道能力对应其他射频能力4。
表5
Figure PCTCN2020093002-appb-000005
基于表5,若终端确定载波A单发,进一步可以确定载波A的射频通道能力为2T,则终端可以确定载波A对应的其他射频能力为其他射频能力1,终端可以采用确定的载波A的射频通道能力和其他射频能力在载波A上单发。若终端确定载波A和载波B单发,进一步可以确定载波A的射频通道能力为1T,则终端可以确定载波A对应的其他射频能力为其他射频能力3,载波B对应的其他射频能力为其他射频能力4,终端可以采用确定的载波A和载波B的射频通道能力和其他射频能力在载波A和载波B上并发。
实施例二提供的方法,网络设备可以为终端配置一个或多个载波中的每个载波的一种或多种射频能力,终端可以根据网络设备在一个载波和除该载波之外的一个或多个载波的上行调度情况选择该载波的多个射频能力中的一个射频能力进行上行发送,而不需要网络设备为终端指示终端在载波上采用的射频能力。在不同的时域资源上,终端可以根据终端的射频能力灵活的确定在载波上采用的射频能力,提高终端的上行发送能力。
实施例三
实施例三提供了一种射频能力配置方法,实施例三与实施例一和实施例二的区别主要在于,在实施例三中,网络设备不为每个载波配置多个射频能力,而是为终端配置多套射频能力,一套射频能力中包括一个载波单载波发送时的射频能力或多个载波并发时每个载波的射频能力或多个载波TDM时每个载波的射频能力,后续网络设备为终端指示一套射频能力,终端根据该套射频能力中的一个或多个载波的射频能力在该套射频能力中的一个或多个载波上进行上行发送。
如图14所示,实施例三提供的射频能力配置方法包括:
1401、终端向网络设备发送终端的能力信息,终端的能力信息中包括N个单载波能力信息和至少一个载波组合能力信息,N个单载波能力信息中的一个单载波能力信息为N个载波中的一个载波单载波发送时的射频能力的信息,载波组合能力信息为N个载波中至少两个载波并发或TDM时每个载波的射频能力的信息。相应的,网络设备从终端接收终端的能力信息。
基于上述示例1,终端的能力信息中包括的信息可参见表6或表7。
表6
Figure PCTCN2020093002-appb-000006
表7
Figure PCTCN2020093002-appb-000007
Figure PCTCN2020093002-appb-000008
基于上述示例2,终端的能力信息中包括的信息可参见表8或表9。
表8
发送方式 A的射频通道能力 B的射频通道能力 C的射频通道能力
A单载波发送 3T - -
B单载波发送 - 2T  
C单载波发送 - - 2T
A和B并发 2T 1T -
A和C并发 2T - 1T
B和C并发 - 1T 1T
A、B和C并发 1T 1T 1T
表9
Figure PCTCN2020093002-appb-000009
当实施例三提供的方法应用于DC场景中时,网络设备可以为主网络设备,也可以为辅网络设备。N个载波可以包括与主网络设备之间的载波,还可以包括与辅网络设备之间的载波。
步骤1401为可选步骤。例如,终端和网络设备可以预配置终端的能力,此时可以不用终端上报给网络设备。
可选的,终端的能力信息中还包括终端是否支持射频能力动态切换。若终端支持射频能力动态切换,终端可以在一个载波的多个射频能力之间进行切换。
1402、网络设备向终端发送配置信息,配置信息用于配置M套射频能力,其中,M套 射频能力中至少有一套射频能力中包括多个载波的射频能力的信息,M为大于1的整数。相应的,终端从网络设备接收配置信息。
可选的,M套射频能力与M个索引一一对应。
针对M套射频能力中的任意一套射频能力,若该套射频能力中包括多个载波的射频能力的信息,这多个载波的射频能力的信息可以为终端在这多个载波上以TDM方式或并发方式进行上行发送时的射频能力。
在步骤1401存在的情况下,步骤1402在具体实现时包括:网络设备根据终端的能力信息向终端发送配置信息。具体的,网络设备可以根据终端上报的单载波发送时能力信息确定每个载波单载波发送时的射频能力,根据多个载波并发时的能力信息确定多个载波并发或TDM时每个载波的射频能力。
在步骤1401不存在的情况下,配置信息可以预先配置在网络设备中,或网络设备从其他设备直接获取到的。
基于上述示例1,假设一套射频能力中的每个载波的射频能力仅包括射频通道能力,则配置信息可以配置4套射频能力,具体可参见表10。
表10
Figure PCTCN2020093002-appb-000010
基于上述示例2,假设一套射频能力中的每个载波的射频能力仅包括射频通道能力,则配置信息可以配置11套射频能力,具体可参见表11。
表11
Figure PCTCN2020093002-appb-000011
Figure PCTCN2020093002-appb-000012
可选的,配置信息携带在RRC信令中。
可选的,网络设备可以在终端支持射频能力动态切换的情况下执行步骤1302和步骤1402。
1403、网络设备向终端发送第一指示信息,第一指示信息用于指示M套射频能力中的第m1套射频能力,第m1套射频能力中包括x1个载波的射频能力的信息,m1为大于0小于等于M的整数,x1为大于0的整数。相应的,终端从网络设备接收第一指示信息。
其中,第一指示信息可以通过指示第m1套射频能力对应的标识向终端指示第m1套射频能力。
可选的,第一指示信息携带的MAC CE信令或DCI中。
可选的,网络设备可以通过x1个载波中的一个载波向终端发送第一指示信息。
1404、终端以x1个载波的射频能力在x1个载波上进行上行发送。
在一种情况下,x1个载波的射频能力的信息为终端在x1个载波上以TDM方式进行上行发送时x1个载波中的每个载波的射频能力的信息。该情况下,步骤1404在具体实现时包括:终端采用x1个载波的射频能力在x1个载波上以TDM方式进行上行发送。
示例性的,基于表11所示的示例,若第一指示信息指示了标识4对应的一套射频能力时,终端根据第一指示信息确定在载波A和载波B上以TDM方式进行上行发送,并确定在载波A上采用3T进行上行发送,在载波B上采用2T进行上行发送。
在另一种情况下,x1个载波的射频能力的信息为终端在x1个载波上以并发方式进行上行发送时x1个载波中的每个载波的射频能力的信息。该情况下,步骤1404在具体实现时包括:终端采用x1个载波的射频能力在x1个载波上以并发方式进行上行发送。
示例性的,基于表11所示的示例,若第一指示信息指示了标识5对应的一套射频能力时,终端根据第一指示信息确定在载波A和载波B上以并发方式进行上行发送,并确定在载波A上采用2T进行上行发送,在载波B上采用1T进行上行发送。
其中,若x1个载波中有一个或多个载波为该终端与本申请实施例中的网络设备之间的载波,则网络设备在该一个或多个载波上进行上行接收。
在步骤1404之后,网络设备可以根据需要变更终端使用的射频能力。该情况下,可选的,上述方法还包括:
1405、网络设备向终端发送第二指示信息,第二指示信息用于指示M套射频能力中的第m2套射频能力,第m2套射频能力中包括x2个载波的射频能力的信息,m2为大于0小于等于M的整数,x2为大于0的整数。相应的,终端从网络设备接收第二指示信息。
可选的,第一指示信息携带的MAC CE信令或DCI中。
可选的,第一指示信息和第二指示信息可以均携带在MAC CE信令中,也可以均携带在DCI中,也可以一个携带在MAC CE信令中,另一个携带在DCI中。
可选的,网络设备可以通过x2个载波中的一个载波向终端发送第二指示信息。
步骤1405为可选步骤。
1406、终端以x2个载波的射频能力在x2个载波上进行上行发送。
在一种情况下,x2个载波的射频能力的信息为终端在x2个载波上以时分复用方式进行 上行发送时x2个载波中的每个载波的射频能力的信息。该情况下,步骤1406在具体实现时包括:终端采用x2个载波的射频能力在x2个载波上以时分复用方式进行上行发送。
在另一种情况下,x2个载波的射频能力的信息为终端在x2个载波上以并发方式进行上行发送时x2个载波中的每个载波的射频能力的信息。该情况下,步骤1406在具体实现时包括:终端采用x2个载波的射频能力在x2个载波上以并发方式进行上行发送。
其中,若x2个载波中有一个或多个载波为该终端与本申请实施例中的网络设备之间的载波,则网络设备在该一个或多个载波上进行上行接收。
实施例三提供的方法,网络设备可以为终端配置多套射频能力,再通过指示信息指示一套射频能力,终端通过该指示信息即可确定采用多套射频能力中的哪套射频能力。网络设备可以灵活的指示终端采用哪套射频能力,从而在不同的时域资源上,网络设备可以根据终端的载波的射频能力为终端指示采用哪套射频能力,提高终端的上行发送能力。
本申请上述实施例中的各个方案在不矛盾的前提下,均可以进行结合。
需要说明的是,在上述各个实施例中的不同载波之间可以是异步的,即不同载波的时隙的起始符号是不对齐的。例如,参见图15,载波1、载波2和载波3的时隙的起始符号是不对齐的,载波3和载波4的时隙的起始符号是对齐的。
该情况下,终端可以测量系统帧号和帧定时差异(即SFTD,SFTD为3GPP TS 38.215 V15.4.0的章节5.1.14中的信元“SFN and frame timing difference”,SFN是指系统帧号(system frame number))和上行定时提前(timing advance,TA)信息,并向网络设备发送SFTD和上行TA信息。网络设备可以根据终端上报的SFTD和/或上行TA信息获取不同载波的时隙之间的时延差异。该情况下,若多个载波的上行时域资源重叠,当终端仅在一个载波上进行上行发送时,在其他载波上网络设备需要进行符号级调度避让,避免终端在多个载波的重叠的上行时域资源上并发。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如,网络设备和终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和软件模块中的至少一个。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图16示出了上述实施例中所涉及的通信装置(记为通信装置160)的一种可能的结构示意图,该通信装置160包括处理单元1601和通信单元1602,还可以包括存储单元1603。图16所示的结构示意图可以用于示意上述实施例中所涉及的网络设备和终端的结构。
当图16所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理单元 1601用于对终端的动作进行控制管理,例如,处理单元1601用于通过通信单元1602执行图9中的901至906,图13中的1301、1303和1304,图14中的1401至1406,和/或本申请实施例中所描述的其他过程中的终端执行的动作。处理单元1601可以通过通信单元1602与其他网络实体通信,例如,与图9中示出的网络设备通信。存储单元1603用于存储终端的程序代码和数据。
当图16所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,通信装置160可以是终端,也可以是终端内的芯片。
当图16所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理单元1601用于对网络设备的动作进行控制管理,例如,处理单元1601用于通过通信单元1602执行图9中的901至906,图13中的1301至1304,图14中的1401至1406,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。处理单元1601可以通过通信单元1602与其他网络实体通信,例如,与图9中示出的终端通信。存储单元1603用于存储网络设备的程序代码和数据。
当图16所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,通信装置160可以是网络设备,也可以是网络设备内的芯片。
其中,当通信装置160为终端或网络设备时,处理单元1601可以是处理器或控制器,通信单元1602可以是通信接口、收发器、收发机、收发电路、收发装置等。其中,通信接口是统称,可以包括一个或多个接口。存储单元1603可以是存储器。当通信装置160为终端或网络设备内的芯片时,处理单元1601可以是处理器或控制器,通信单元1602可以是输入/输出接口、管脚或电路等。存储单元1603可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是终端或网络设备内的位于该芯片外部的存储单元(例如,只读存储器(read-onlymemory,ROM)、随机存取存储器(random access memory,RAM)等)。
其中,通信单元也可以称为收发单元。通信装置160中的具有收发功能的天线和控制电路可以视为通信装置160的通信单元1602,具有处理功能的处理器可以视为通信装置160的处理单元1601。可选的,通信单元1602中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤,接收单元可以为接收机、接收器、接收电路等。通信单元1602中用于实现发送功能的器件可以视为发送单元,发送单元用于执行本申请实施例中的发送的步骤,发送单元可以为发送机、发送器、发送电路等。
图16中的集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
图16中的单元也可以称为模块,例如,处理单元可以称为处理模块。
本申请实施例还提供了一种通信装置的硬件结构示意图,参见图17或图18,该通信 装置包括处理器1701,可选的,还包括与处理器1701连接的存储器1702。
在第一种可能的实现方式中,参见图17,通信装置还包括收发器1703。处理器1701、存储器1702和收发器1703通过总线相连接。收发器1703用于与其他设备或通信网络通信。可选的,收发器1703可以包括发射机和接收机。收发器1703中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。收发器1703中用于实现发送功能的器件可以视为发射机,发射机用于执行本申请实施例中的发送的步骤。
基于第一种可能的实现方式,图17所示的结构示意图可以用于示意上述实施例中所涉及的网络设备或终端的结构。
当图17所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理器1701用于对终端的动作进行控制管理,例如,处理器1701用于支持终端执行图9中的901至906,图13中的1301、1303和1304,图14中的1401至1406,和/或本申请实施例中所描述的其他过程中的终端执行的动作。处理器1701可以通过收发器1703与其他网络实体通信,例如,与图9中示出的网络设备通信。存储器1702用于存储终端的程序代码和数据。
当图17所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理器1701用于对网络设备的动作进行控制管理,例如,处理器1701用于支持网络设备执行图9中的901至906,图13中的1301至1304,图14中的1401至1406,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。处理器1701可以通过收发器1703与其他网络实体通信,例如,与图9中示出的终端通信。存储器1702用于存储网络设备的程序代码和数据。
在第二种可能的实现方式中,处理器1701包括逻辑电路以及输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
基于第二种可能的实现方式,参见图18,图18所示的结构示意图可以用于示意上述实施例中所涉及的网络设备或终端的结构。
当图18所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理器1701用于对终端的动作进行控制管理,例如,处理器1701用于支持终端执行图9中的901至906,图13中的1301、1303和1304,图14中的1401至1406,和/或本申请实施例中所描述的其他过程中的终端执行的动作。处理器1701可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图9中示出的网络设备通信。存储器1702用于存储终端的程序代码和数据。
当图18所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理器1701用于对网络设备的动作进行控制管理,例如,处理器1701用于支持网络设备执行图9中的901至906,图13中的1301至1304,图14中的1401至1406,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。处理器1701可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图9中示出的终端通信。存储器1702用于存储网络设备的程序代码和数据。
其中,图17和图18也可以示意网络设备中的系统芯片。该情况下,上述网络设备执行的动作可以由该系统芯片实现,具体所执行的动作可参见上文,在此不再赘述。图17和图18也可以示意终端中的系统芯片。该情况下,上述终端执行的动作可以由该系统芯 片实现,具体所执行的动作可参见上文,在此不再赘述。
另外,本申请实施例还提供了一种终端(记为终端190)和网络设备(记为网络设备200)的硬件结构示意图,具体可分别参见图19和图20。
图19为终端190的硬件结构示意图。为了便于说明,图19仅示出了终端的主要部件。如图19所示,终端190包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据,例如,用于控制终端执行图9中的901至906,图13中的1301、1303和1304,图14中的1401至1406,和/或本申请实施例中所描述的其他过程中的终端执行的动作。存储器主要用于存储软件程序和数据。控制电路(也可以称为射频电路)主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过天线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路中的控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图19仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图19中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
图20为网络设备200的硬件结构示意图。网络设备200可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)2001、一个或多个基带单元(basebandunit,BBU)(也可称为数字单元(digitalunit,DU))2002和一个或多个天线2003。
该RRU2001可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括射频单元2011。该RRU2001部分主要用于射频信号的收发以及射频信号与基带信号的转换。该RRU2001与BBU2002可以是物理上设置在一起,也可以物理上分离设置的,例如,分布式基站。
该BBU2002为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理 功能,如信道编码,复用,调制,扩频等等。
在一个实施例中,该BBU2002可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网)。该BBU2002还包括存储器2021和处理器2022,该存储器2021用于存储必要的指令和数据。该处理器2022用于控制网络设备进行必要的动作。该存储器2021和处理器2022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图20所示的网络设备200能够执行图9中的901至906,图13中的1301至1304,图14中的1401至1406,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。网络设备200中的各个模块的操作,功能,或者,操作和功能,分别设置为实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请中的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(片上系统),或者也可以作为一个ASIC的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种通信系统,包括:上述网络设备和终端。
本申请实施例还提供了一种芯片,该芯片包括处理器和接口电路,该接口电路和该处理器耦合,该处理器用于运行计算机程序或指令,以实现上述方法,该接口电路用于与该芯片之外的其它模块进行通信。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (73)

  1. 一种射频能力配置方法,其特征在于,包括:
    终端从网络设备接收配置信息,所述配置信息用于配置第一载波的多个射频能力,所述多个射频能力与多个索引一一对应;
    所述终端从所述网络设备接收第一指示信息,所述第一指示信息用于指示第一索引,所述第一索引为所述多个索引中的一个索引。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端以所述第一索引对应的射频能力在所述第一载波上进行上行发送。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一载波的多个射频能力包括所述第一载波单发时所述第一载波的射频能力。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一载波的多个射频能力包括所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述终端向所述网络设备发送所述终端的能力信息,所述终端的能力信息中包括所述第一载波单发时所述第一载波的射频能力的信息和所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力的信息。
  6. 一种射频能力配置方法,其特征在于,包括:
    网络设备向终端发送配置信息,所述配置信息用于配置第一载波的多个射频能力,所述多个射频能力与多个索引一一对应;
    所述网络设备向所述终端发送第一指示信息,所述第一指示信息用于指示第一索引,所述第一索引为所述多个索引中的一个索引。
  7. 根据权利要求6所述的方法,其特征在于,所述第一载波的多个射频能力包括所述第一载波单发时所述第一载波的射频能力。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一载波的多个射频能力包括所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备从所述终端接收所述终端的能力信息,所述终端的能力信息中包括所述第一载波单发时所述第一载波的射频能力的信息和所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力的信息。
  10. 根据权利要求6-9任一项所述的方法,其特征在于,所述网络设备向所述终端发送第一指示信息,包括:
    所述网络设备根据所述第一载波和除所述第一载波之外的一个或多个载波的上行调度情况向所述终端发送所述第一指示信息。
  11. 根据权利要求10所述的方法,其特征在于,所述网络设备根据所述第一载波和除所述第一载波之外的一个或多个载波的上行调度情况向所述终端发送所述第一指示信息,包括:
    所述网络设备根据所述第一载波和所述一个或多个载波的上行调度的时域资源的位置,确定所述第一载波单发,或者,确定所述第一载波与所述一个或多个载波并发;
    当确定所述第一载波单发时,所述第一索引对应的射频能力为所述第一载波单发时,所述第一载波的射频能力;或者,
    当确定所述第一载波与所述一个或多个载波并发时,所述第一索引对应的射频能力为所述第一载波与所述一个或多个载波并发时,所述第一载波的射频能力。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述配置信息携带在无线资源控制RRC信令中。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述第一指示信息携带在媒介接入控制控制元素MAC CE信令或下行控制信息DCI中。
  14. 一种射频能力配置方法,其特征在于,包括:
    终端从网络设备接收配置信息,所述配置信息用于配置第一载波的多个射频能力;
    所述终端根据所述第一载波和除所述第一载波之外的一个或多个载波的上行调度情况在所述第一载波上以所述多个射频能力中的一个射频能力进行上行发送。
  15. 根据权利要求14所述的方法,其特征在于,所述第一载波的多个射频能力包括所述第一载波单发时所述第一载波的射频能力。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一载波的多个射频能力包括所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述终端根据所述第一载波和除所述第一载波之外的一个或多个载波的上行调度情况在所述第一载波上以所述多个射频能力中的一个射频能力进行上行发送,包括:
    所述终端根据所述第一载波和所述一个或多个载波的上行调度的时域资源的位置确定所述第一载波单发,或者,确定所述第一载波与所述一个或多个载波并发;
    当所述终端确定所述第一载波单发,所述终端在所述第一载波上以所述第一载波单发时所述第一载波的射频能力进行上行发送;或者,
    当所述终端确定所述第一载波与所述一个或多个载波并发时,所述终端在所述第一载波上以与所述一个或多个载波并发时所述第一载波的射频能力进行上行发送。
  18. 根据权利要求14-17任一项所述的方法,其特征在于,所述方法还包括:
    所述终端向所述网络设备发送所述终端的能力信息,所述终端的能力信息中包括所述第一载波单发时所述第一载波的射频能力的信息和所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力的信息。
  19. 根据权利要求14-18任一项所述的方法,其特征在于,所述配置信息携带在无线资源控制RRC信令中。
  20. 一种射频能力配置方法,其特征在于,包括:
    网络设备获取配置信息,所述配置信息用于配置第一载波对应的多个射频能力;
    所述网络设备向所述终端发送所述配置信息。
  21. 根据权利要求20所述的方法,其特征在于,所述第一载波的多个射频能力包括所述第一载波单发时所述第一载波的射频能力。
  22. 根据权利要求20或21所述的方法,其特征在于,所述第一载波的多个射频能力包括所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能 力。
  23. 根据权利要求20-22任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备从所述终端接收所述终端的能力信息,所述终端的能力信息中包括所述第一载波单发时所述第一载波的射频能力的信息和所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力的信息。
  24. 根据权利要求20-23任一项所述的方法,其特征在于,所述配置信息携带在无线资源控制RRC信令中。
  25. 一种射频能力配置方法,其特征在于,包括:
    终端从网络设备接收配置信息,所述配置信息用于配置M套射频能力,其中,所述M套射频能力中至少有一套射频能力中包括多个载波的射频能力的信息,M为大于1的整数;
    所述终端从所述网络设备接收第一指示信息,所述第一指示信息用于指示所述M套射频能力中的第m1套射频能力,所述第m1套射频能力中包括x1个载波的射频能力的信息,m1为大于0小于等于M的整数,x1为大于0的整数;
    所述终端以所述x1个载波的射频能力在所述x1个载波上进行上行发送。
  26. 根据权利要求25所述的方法,其特征在于,所述x1个载波的射频能力的信息为所述终端在所述x1个载波上以时分复用方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息,所述终端以所述x1个载波的射频能力在所述x1个载波上进行上行发送,包括:
    所述终端采用所述x1个载波的射频能力在所述x1个载波上以时分复用方式进行上行发送。
  27. 根据权利要求25所述的方法,其特征在于,所述x1个载波的射频能力的信息为所述终端在所述x1个载波上以并发方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息,所述终端以所述x1个载波的射频能力在所述x1个载波上进行上行发送,包括:
    所述终端采用所述x1个载波的射频能力在所述x1个载波上以并发方式进行上行发送。
  28. 根据权利要求25-27任一项所述的方法,其特征在于,所述方法还包括:
    所述终端从所述网络设备接收第二指示信息,所述第二指示信息用于指示所述M套射频能力中的第m2套射频能力,所述第m2套射频能力中包括x2个载波的射频能力的信息,m2为大于0小于等于M的整数,x2为大于0的整数;
    所述终端以所述x2个载波的射频能力在所述x2个载波上进行上行发送。
  29. 根据权利要求25-28任一项所述的方法,其特征在于,所述方法还包括:
    所述终端向所述网络设备发送所述终端的能力信息,所述终端的能力信息中包括N个单载波能力信息和至少一个载波组合能力信息,所述N个单载波能力信息中的一个单载波能力信息为N个载波中的一个载波单载波发送时的射频能力的信息,所述载波组合能力信息为所述N个载波中至少两个载波并发或时分复用时每个载波的射频能力的信息。
  30. 一种射频能力配置方法,其特征在于,包括:
    网络设备向终端发送配置信息,所述配置信息用于配置M套射频能力,其中,所述M套射频能力中至少有一套射频能力中包括多个载波的射频能力的信息,M为大于1的整数;
    所述网络设备向所述终端发送第一指示信息,所述第一指示信息用于指示所述M套射频能力中的第m1套射频能力,所述第m1套射频能力中包括x1个载波的射频能力的信息, m1为大于0小于等于M的整数,x1为大于0的整数。
  31. 根据权利要求30所述的方法,其特征在于,所述x1个载波的射频能力的信息为所述终端在所述x1个载波上以时分复用方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息。
  32. 根据权利要求30所述的方法,其特征在于,所述x1个载波的射频能力的信息为所述终端在所述x1个载波上以并发方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息。
  33. 根据权利要求30-32任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端发送第二指示信息,所述第二指示信息用于指示所述M套射频能力中的第m2套射频能力,所述第m2套射频能力中包括x2个载波的射频能力的信息,m2为大于0小于等于M的整数,x2为大于0的整数。
  34. 根据权利要求30-33任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备从所述终端接收所述终端的能力信息,所述终端的能力信息中包括N个单载波能力信息和至少一个载波组合能力信息,所述N个单载波能力信息中的一个单载波能力信息为N个载波中的一个载波单载波发送时的射频能力的信息,所述载波组合能力信息为所述N个载波中至少两个载波并发或时分复用时每个载波的射频能力的信息;
    所述网络设备向终端发送配置信息,包括:所述网络设备根据所述终端的能力信息向所述终端发送配置信息。
  35. 一种通信装置,包括:通信单元和处理单元;
    所述处理单元,用于通过所述通信单元从网络设备接收配置信息,所述配置信息用于配置第一载波的多个射频能力,所述多个射频能力与多个索引一一对应;
    所述处理单元,还用于通过所述通信单元从所述网络设备接收第一指示信息,所述第一指示信息用于指示第一索引,所述第一索引为所述多个索引中的一个索引。
  36. 根据权利要求35所述的通信装置,其特征在于,
    所述处理单元,还用于通过所述通信单元以所述第一索引对应的射频能力在所述第一载波上进行上行发送。
  37. 根据权利要求35或36所述的通信装置,其特征在于,所述第一载波的多个射频能力包括所述第一载波单发时所述第一载波的射频能力。
  38. 根据权利要求35-37任一项所述的通信装置,其特征在于,所述第一载波的多个射频能力包括所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力。
  39. 根据权利要求35-38任一项所述的通信装置,其特征在于,
    所述处理单元,还用于通过所述通信单元向所述网络设备发送所述通信装置的能力信息,所述通信装置的能力信息中包括所述第一载波单发时所述第一载波的射频能力的信息和所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力的信息。
  40. 一种通信装置,其特征在于,包括:通信单元和处理单元;
    所述处理单元,用于通过所述通信单元向终端发送配置信息,所述配置信息用于配置第一载波的多个射频能力,所述多个射频能力与多个索引一一对应;
    所述处理单元,还用于通过所述通信单元向所述终端发送第一指示信息,所述第一指示信息用于指示第一索引,所述第一索引为所述多个索引中的一个索引。
  41. 根据权利要求40所述的通信装置,其特征在于,所述第一载波的多个射频能力包括所述第一载波单发时所述第一载波的射频能力。
  42. 根据权利要求40或41所述的通信装置,其特征在于,所述第一载波的多个射频能力包括所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力。
  43. 根据权利要求40-42任一项所述的通信装置,其特征在于,
    所述处理单元,还用于通过所述通信单元从所述终端接收所述终端的能力信息,所述终端的能力信息中包括所述第一载波单发时所述第一载波的射频能力的信息和所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力的信息。
  44. 根据权利要求40-43任一项所述的通信装置,其特征在于,
    所述处理单元,具体用于根据所述第一载波和除所述第一载波之外的一个或多个载波的上行调度情况通过所述通信单元向所述终端发送所述第一指示信息。
  45. 根据权利要求44所述的通信装置,其特征在于,
    所述处理单元,具体用于根据所述第一载波和所述一个或多个载波的上行调度的时域资源的位置,确定所述第一载波单发,或者,确定所述第一载波与所述一个或多个载波并发;当确定所述第一载波单发时,所述第一索引对应的射频能力为所述第一载波单发时,所述第一载波的射频能力;或者,当确定所述第一载波与所述一个或多个载波并发时,所述第一索引对应的射频能力为所述第一载波与所述一个或多个载波并发时,所述第一载波的射频能力。
  46. 根据权利要求35-45任一项所述的通信装置,其特征在于,所述配置信息携带在无线资源控制RRC信令中。
  47. 根据权利要求35-46任一项所述的通信装置,其特征在于,所述第一指示信息携带在媒介接入控制控制元素MAC CE信令或下行控制信息DCI中。
  48. 一种通信装置,其特征在于,包括:通信单元和处理单元;
    所述处理单元,用于通过所述通信单元从网络设备接收配置信息,所述配置信息用于配置第一载波的多个射频能力;
    所述处理单元,还用于根据所述第一载波和除所述第一载波之外的一个或多个载波的上行调度情况在所述第一载波上以所述多个射频能力中的一个射频能力通过所述通信单元进行上行发送。
  49. 根据权利要求48所述的通信装置,其特征在于,所述第一载波的多个射频能力包括所述第一载波单发时所述第一载波的射频能力。
  50. 根据权利要求48或49所述的通信装置,其特征在于,所述第一载波的多个射频能力包括所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力。
  51. 根据权利要求48-50任一项所述的通信装置,其特征在于,所述处理单元,具体用于:
    根据所述第一载波和所述一个或多个载波的上行调度的时域资源的位置确定所述第 一载波单发,或者,确定所述第一载波与所述一个或多个载波并发;当确定所述第一载波单发,所述处理单元在所述第一载波上以所述第一载波单发时所述第一载波的射频能力通过所述通信单元进行上行发送;或者,当确定所述第一载波与所述一个或多个载波并发时,所述处理单元在所述第一载波上以与所述一个或多个载波并发时所述第一载波的射频能力通过所述通信单元进行上行发送。
  52. 根据权利要求48-51任一项所述的通信装置,其特征在于,
    所述处理单元,还用于通过所述通信单元向所述网络设备发送所述通信装置的能力信息,所述通信装置的能力信息中包括所述第一载波单发时所述第一载波的射频能力的信息和所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力的信息。
  53. 根据权利要求48-52任一项所述的通信装置,其特征在于,所述配置信息携带在无线资源控制RRC信令中。
  54. 一种通信装置,其特征在于,包括:通信单元和处理单元;
    所述处理单元,用于获取配置信息,所述配置信息用于配置第一载波对应的多个射频能力;
    所述通信单元,用于向终端发送所述配置信息。
  55. 根据权利要求54所述的通信装置,其特征在于,所述第一载波的多个射频能力包括所述第一载波单发时所述第一载波的射频能力。
  56. 根据权利要求54或55所述的通信装置,其特征在于,所述第一载波的多个射频能力包括所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力。
  57. 根据权利要求54-56任一项所述的通信装置,其特征在于,
    所述通信单元,还用于从所述终端接收所述终端的能力信息,所述终端的能力信息中包括所述第一载波单发时所述第一载波的射频能力的信息和所述第一载波与除所述第一载波之外的一个或多个载波并发时所述第一载波的射频能力的信息。
  58. 根据权利要求54-57任一项所述的通信装置,其特征在于,所述配置信息携带在无线资源控制RRC信令中。
  59. 一种通信装置,其特征在于,包括:通信单元和处理单元;
    所述处理单元,用于通过所述通信单元从网络设备接收配置信息,所述配置信息用于配置M套射频能力,其中,所述M套射频能力中至少有一套射频能力中包括多个载波的射频能力的信息,M为大于1的整数;
    所述处理单元,还用于通过所述通信单元从所述网络设备接收第一指示信息,所述第一指示信息用于指示所述M套射频能力中的第m1套射频能力,所述第m1套射频能力中包括x1个载波的射频能力的信息,m1为大于0小于等于M的整数,x1为大于0的整数;
    所述处理单元,还用于通过所述通信单元以所述x1个载波的射频能力在所述x1个载波上进行上行发送。
  60. 根据权利要求59所述的通信装置,其特征在于,所述x1个载波的射频能力的信息为所述装置在所述x1个载波上以时分复用方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息,所述处理单元,具体用于:
    采用所述x1个载波的射频能力通过所述通信单元在所述x1个载波上以时分复用方式进行上行发送。
  61. 根据权利要求59所述的通信装置,其特征在于,所述x1个载波的射频能力的信息为所述装置在所述x1个载波上以并发方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息,所述处理单元,具体用于:
    采用所述x1个载波的射频能力通过所述通信单元在所述x1个载波上以并发方式进行上行发送。
  62. 根据权利要求59-61任一项所述的通信装置,其特征在于,
    所述处理单元,还用于通过所述通信单元从所述网络设备接收第二指示信息,所述第二指示信息用于指示所述M套射频能力中的第m2套射频能力,所述第m2套射频能力中包括x2个载波的射频能力的信息,m2为大于0小于等于M的整数,x2为大于0的整数;
    所述处理单元,还用于通过所述通信单元以所述x2个载波的射频能力在所述x2个载波上进行上行发送。
  63. 根据权利要求59-62任一项所述的通信装置,其特征在于,
    所述处理单元,还用于通过所述通信单元向所述网络设备发送所述装置的能力信息,所述装置的能力信息中包括N个单载波能力信息和至少一个载波组合能力信息,所述N个单载波能力信息中的一个单载波能力信息为N个载波中的一个载波单载波发送时的射频能力的信息,所述载波组合能力信息为所述N个载波中至少两个载波并发或时分复用时每个载波的射频能力的信息。
  64. 一种通信装置,其特征在于,包括:通信单元和处理单元;
    所述处理单元,用于通过所述通信单元向终端发送配置信息,所述配置信息用于配置M套射频能力,其中,所述M套射频能力中至少有一套射频能力中包括多个载波的射频能力的信息,M为大于1的整数;
    所述处理单元,还用于通过所述通信单元向所述终端发送第一指示信息,所述第一指示信息用于指示所述M套射频能力中的第m1套射频能力,所述第m1套射频能力中包括x1个载波的射频能力的信息,m1为大于0小于等于M的整数,x1为大于0的整数。
  65. 根据权利要求64所述的通信装置,其特征在于,所述x1个载波的射频能力的信息为所述终端在所述x1个载波上以时分复用方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息。
  66. 根据权利要求64所述的通信装置,其特征在于,所述x1个载波的射频能力的信息为所述终端在所述x1个载波上以并发方式进行上行发送时所述x1个载波中的每个载波的射频能力的信息。
  67. 根据权利要求64-66任一项所述的通信装置,其特征在于,
    所述处理单元,还用于通过所述通信单元向所述终端发送第二指示信息,所述第二指示信息用于指示所述M套射频能力中的第m2套射频能力,所述第m2套射频能力中包括x2个载波的射频能力的信息,m2为大于0小于等于M的整数,x2为大于0的整数。
  68. 根据权利要求64-67任一项所述的通信装置,其特征在于,
    所述处理单元,还用于通过所述通信单元从所述终端接收所述终端的能力信息,所述终端的能力信息中包括N个单载波能力信息和至少一个载波组合能力信息,所述N个单载波 能力信息中的一个单载波能力信息为N个载波中的一个载波单载波发送时的射频能力的信息,所述载波组合能力信息为所述N个载波中至少两个载波并发或时分复用时每个载波的射频能力的信息;
    所述处理单元,具体用于根据所述终端的能力信息通过所述通信单元向所述终端发送配置信息。
  69. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行所述存储器中存储的计算机程序或指令,使得所述通信装置执行如权利要求1至13任一项所述的方法,或者,使得所述通信装置执行如权利要求14至19任一项所述的方法,或者,使得所述通信装置执行如权利要求20至24任一项所述的方法,或者,使得所述通信装置执行如权利要求25至29任一项所述的方法,或者,使得所述通信装置执行如权利要求30至34任一项所述的方法。
  70. 一种计算机可读存储介质,其特征在于,所述存储介质用于存储计算机程序或指令,所述计算机程序或指令被执行时,使得所述计算机执行如权利要求1至13任一项所述的方法,或者,使得所述计算机执行如权利要求14至19任一项所述的方法,使得所述计算机执行如权利要求20至24任一项所述的方法,或者,使得所述计算机执行如权利要求25至29任一项所述的方法,或者,使得所述计算机执行如权利要求30至34任一项所述的方法。
  71. 一种包含指令的计算机程序产品,其特征在于,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至13任一项所述的方法,或者,使得所述计算机执行如权利要求14至19任一项所述的方法,或者,使得所述计算机执行如权利要求20至24任一项所述的方法,使得所述计算机执行如权利要求25至29任一项所述的方法,或者,使得所述计算机执行如权利要求30至34任一项所述的方法。
  72. 一种芯片,其特征在于,所述芯片包括处理器和接口电路,所述接口电路和所述处理器耦合,所述处理器用于运行计算机程序或指令,以实现如权利要求1至13任一项所述的方法,或者,实现如权利要求14至19任一项所述的方法,或者,实现如权利要求20至24任一项所述的方法,或者,实现如权利要求25至29任一项所述的方法,或者,实现如权利要求30至34任一项所述的方法。
  73. 一种通信装置,其特征在于,所述通信装置用于实现如权利要求1至13任一项所述的方法,或者,实现如权利要求14至19任一项所述的方法,或者,实现如权利要求20至24任一项所述的方法,或者,实现如权利要求25至29任一项所述的方法,或者,实现如权利要求30至34任一项所述的方法。
PCT/CN2020/093002 2019-06-04 2020-05-28 射频能力配置方法及装置 WO2020244444A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20818327.7A EP3972304A4 (en) 2019-06-04 2020-05-28 METHOD AND APPARATUS FOR CONFIGURATION OF RADIO FREQUENCY CAPABILITY
US17/541,855 US20220095358A1 (en) 2019-06-04 2021-12-03 Radio Frequency Capability Configuration Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910483197.1 2019-06-04
CN201910483197.1A CN112040474B (zh) 2019-06-04 2019-06-04 射频能力配置方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/541,855 Continuation US20220095358A1 (en) 2019-06-04 2021-12-03 Radio Frequency Capability Configuration Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2020244444A1 true WO2020244444A1 (zh) 2020-12-10

Family

ID=73576442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093002 WO2020244444A1 (zh) 2019-06-04 2020-05-28 射频能力配置方法及装置

Country Status (4)

Country Link
US (1) US20220095358A1 (zh)
EP (1) EP3972304A4 (zh)
CN (2) CN114339725A (zh)
WO (1) WO2020244444A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115119312A (zh) * 2021-03-23 2022-09-27 华为技术有限公司 一种通信方法及装置
WO2024011461A1 (zh) * 2022-07-13 2024-01-18 Oppo广东移动通信有限公司 一种基于多载波的通信方法及装置、终端设备、网络设备
WO2024011636A1 (en) * 2022-07-15 2024-01-18 Nec Corporation Methods, devices, and medium for communication
WO2024065088A1 (zh) * 2022-09-26 2024-04-04 北京小米移动软件有限公司 频段配置方法、指示方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098784A (zh) * 2009-12-14 2011-06-15 华为技术有限公司 一种资源配置方法和设备
CN102301669A (zh) * 2011-07-04 2011-12-28 华为技术有限公司 支持多个载波的射频模块、基站和载波分配方法
WO2018133700A1 (en) * 2017-01-20 2018-07-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data communication method and apparatus and storage medium
CN108471319A (zh) * 2017-02-21 2018-08-31 中兴通讯股份有限公司 基站、射频拉远单元及其主板、射频子卡和通道自建方法
CN109698739A (zh) * 2017-10-23 2019-04-30 华为技术有限公司 一种信号配置方法及相关设备
WO2019080138A1 (zh) * 2017-10-28 2019-05-02 Oppo广东移动通信有限公司 配置测量间隔的方法、终端设备和网络设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9537555B2 (en) * 2011-02-22 2017-01-03 Qualcomm Incorporated Uplink transmit antenna selection in carrier aggregation
WO2016161603A1 (en) * 2015-04-09 2016-10-13 Telefonaktiebolaget Lm Ericsson (Publ) Trigger conditions for measurement reports for relay selection
US10701692B2 (en) * 2015-08-10 2020-06-30 Qualcomm Incorporated Techniques for managing uplink transmissions in a shared radio frequency spectrum band and a dedicated radio frequency spectrum band
WO2017101011A1 (zh) * 2015-12-15 2017-06-22 华为技术有限公司 调度资源的配置方法、装置及用户设备、基站
EP3487252B1 (en) * 2016-07-15 2021-12-01 LG Electronics Inc. Method for transmitting or receiving data in wireless lan system and device therefor
KR102462764B1 (ko) * 2016-09-29 2022-11-03 삼성전자 주식회사 4g와 5g 공존 시스템에서 통신 방법 및 그 장치
CN108135031B (zh) * 2016-12-01 2022-11-29 中兴通讯股份有限公司 资源调度方法、装置及系统
CN109151810B (zh) * 2017-06-16 2023-02-03 北京三星通信技术研究有限公司 一种用户能力上报和处理的方法、用户设备及基站

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098784A (zh) * 2009-12-14 2011-06-15 华为技术有限公司 一种资源配置方法和设备
CN102301669A (zh) * 2011-07-04 2011-12-28 华为技术有限公司 支持多个载波的射频模块、基站和载波分配方法
WO2018133700A1 (en) * 2017-01-20 2018-07-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data communication method and apparatus and storage medium
CN108471319A (zh) * 2017-02-21 2018-08-31 中兴通讯股份有限公司 基站、射频拉远单元及其主板、射频子卡和通道自建方法
CN109698739A (zh) * 2017-10-23 2019-04-30 华为技术有限公司 一种信号配置方法及相关设备
WO2019080138A1 (zh) * 2017-10-28 2019-05-02 Oppo广东移动通信有限公司 配置测量间隔的方法、终端设备和网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.215
See also references of EP3972304A4

Also Published As

Publication number Publication date
CN114339725A (zh) 2022-04-12
CN112040474A (zh) 2020-12-04
EP3972304A1 (en) 2022-03-23
EP3972304A4 (en) 2022-08-03
US20220095358A1 (en) 2022-03-24
CN112040474B (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
EP3817479B1 (en) Communication method and communication apparatus
WO2020244444A1 (zh) 射频能力配置方法及装置
WO2019096248A1 (zh) 发送和接收信号的方法、装置和系统
KR102617239B1 (ko) 업링크 스위칭 방법, 통신 장치 및 통신 시스템
WO2020239041A1 (zh) 通信方法及装置
WO2020248897A1 (zh) 功率配置方法及装置
CN111107630B (zh) 通信方法和通信装置
WO2020233692A1 (zh) 通信方法及装置
US20200053659A1 (en) Communication Method, Network Device, and Terminal
WO2020164600A1 (zh) 信息指示的方法及装置
EP3876665A1 (en) User device and base station device
WO2019096232A1 (zh) 通信方法和通信装置
CN112584518A (zh) 一种资源确定方法及装置
CN113950856A (zh) 一种通信方法、通信装置和系统
CN114095981B (zh) 一种小区状态切换方法及装置
US20230140502A1 (en) Beam indication method and communications apparatus
WO2020192719A1 (zh) 更新波束的方法与通信装置
JP2024512823A (ja) 通信方法および通信装置
CN116266964A (zh) 射频链路切换方法和通信装置
CN114342519A (zh) 一种通信方法及装置
WO2023174141A1 (zh) 通信方法和装置
WO2023030205A1 (zh) 资源指示方法和通信装置
WO2023143011A1 (zh) 一种通信方法和装置
CN112771963B (zh) 一种信息通知的方法和装置
CN115942487A (zh) 资源配置方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020818327

Country of ref document: EP

Effective date: 20211217