WO2020241598A1 - Spectrum determination device, spectrum determination method, spectrum determination program, illumination system, illumination device, and inspection device - Google Patents

Spectrum determination device, spectrum determination method, spectrum determination program, illumination system, illumination device, and inspection device Download PDF

Info

Publication number
WO2020241598A1
WO2020241598A1 PCT/JP2020/020621 JP2020020621W WO2020241598A1 WO 2020241598 A1 WO2020241598 A1 WO 2020241598A1 JP 2020020621 W JP2020020621 W JP 2020020621W WO 2020241598 A1 WO2020241598 A1 WO 2020241598A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
spectrum
inspection
region
sampling
Prior art date
Application number
PCT/JP2020/020621
Other languages
French (fr)
Japanese (ja)
Inventor
恒治 丹羽
草野 民男
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2021522763A priority Critical patent/JP7317957B2/en
Priority to CN202080035351.XA priority patent/CN113826001A/en
Publication of WO2020241598A1 publication Critical patent/WO2020241598A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present disclosure relates to a spectrum determination device, a spectrum determination method, a spectrum determination program, a lighting system, a lighting device, and an inspection device.
  • Patent Document 1 a lighting device for illuminating the object is known (see, for example, Patent Document 1).
  • the spectrum determination device includes a processor.
  • the processor acquires the captured image of the sampling target portion and the spectral information of the sampling light illuminating the sampling target portion in order to capture the captured image.
  • the sampling target portion includes a first region in which the first appearance abnormality included in a predetermined classification is located and a region in which the first appearance abnormality is not located while extending from the first region to at least a part within a predetermined range. Includes a second region having.
  • the processor calculates an evaluation index based on at least one of a brightness difference and a chromaticity difference between a portion of the captured image in which the first region is imaged and a portion in which the second region is imaged.
  • the processor uses the spectrum of the inspection light that illuminates the inspection target portion to detect whether the inspection target portion includes the second appearance abnormality included in the predetermined classification, the evaluation index, and the spectrum information of the sampling light. Determined based on.
  • the spectrum determination method includes a step of acquiring a captured image of a sampling target portion and spectrum information of sampling light illuminating the sampling target portion in order to capture the captured image.
  • the sampling target portion includes a first region in which a first appearance abnormality included in a predetermined classification is located, and a second region extending from the first region to at least a part within a predetermined range.
  • the spectrum determination method calculates an evaluation index based on at least one of a brightness difference and a chromaticity difference between a portion in which the first region is imaged and a portion in which the second region is imaged in the captured image. Including steps.
  • the spectrum of the inspection light that illuminates the inspection target portion in order to detect whether the inspection target portion contains the second appearance abnormality included in the predetermined classification is the spectrum of the evaluation index and the sampling light. Includes informed and informed decisions.
  • the spectrum determination program is executed by a processor.
  • the spectrum determination program includes a step of acquiring a captured image of a sampling target portion and spectral information of sampling light illuminating the sampling target portion in order to capture the captured image.
  • the sampling target portion includes a first region in which a first appearance abnormality included in a predetermined classification is located, and a second region extending from the first region to at least a part within a predetermined range.
  • the spectrum determination program calculates an evaluation index based on at least one of a brightness difference and a chromaticity difference between a portion of the captured image in which the first region is imaged and a portion in which the second region is imaged. Including steps.
  • the spectrum determination program uses the spectrum of the inspection light that illuminates the inspection target portion to detect whether the inspection target portion includes the second appearance abnormality included in the predetermined classification, and the spectrum of the evaluation index and the sampling light. Includes informed and informed decisions.
  • the lighting system includes a lighting device and a spectrum determining device.
  • the spectrum determination device acquires a captured image of the sampling target portion and spectrum information of the sampling light illuminating the sampling target portion in order to capture the captured image.
  • the sampling target portion includes a first region in which a first appearance abnormality included in a predetermined classification is located, and a second region extending from the first region to at least a part within a predetermined range.
  • the spectrum determining device calculates an evaluation index based on at least one of a brightness difference and a chromaticity difference between a portion of the captured image in which the first region is imaged and a portion in which the second region is imaged. ..
  • the spectrum determining device uses the spectrum of the inspection light that illuminates the inspection target portion to detect whether the inspection target portion includes the second appearance abnormality included in the predetermined classification, and the spectrum of the evaluation index and the sampling light. Make an informed decision.
  • the lighting device emits the inspection light to the inspection target portion.
  • the lighting device includes a light emitting unit and a lighting control unit that controls the light emitting unit.
  • the illumination control unit acquires information on the spectrum determined based on the evaluation index calculated based on the captured image of the sampling target unit illuminated by the sampling light and the spectrum information of the sampling light.
  • the illumination control unit emits the inspection light specified in the spectrum to the light emitting unit.
  • the sampling target portion includes a first region in which a first appearance abnormality included in a predetermined classification is located and a second region extending from the first region to at least a part within a predetermined range.
  • the evaluation index is based on at least one of a difference in brightness and a difference in chromaticity between the portion in which the first region is imaged and the portion in which the second region is imaged.
  • the light emitting unit emits the inspection light to the inspection target portion to be inspected for the second appearance abnormality included in the predetermined classification.
  • the inspection device includes a lighting device and a sample holder.
  • the lighting device emits inspection light specified by a spectrum determined based on an evaluation index calculated based on an image captured by a sampling target portion illuminated by the sampling light and spectral information of the sampling light.
  • the sampling target portion includes a first region in which a first appearance abnormality included in a predetermined classification is located and a second region extending from the first region to at least a part within a predetermined range.
  • the evaluation index is based on at least one of a difference in brightness and a difference in chromaticity between the portion in which the first region is imaged and the portion in which the second region is imaged.
  • the sample holder is configured so that the inspection object can be arranged so that the inspection object is illuminated by the inspection light.
  • the inspection target includes an inspection target portion to be inspected for the second appearance abnormality included in the predetermined classification.
  • FIG. 4 is a cross-sectional view taken along the line AA of FIG. It is an enlarged view of the circled part of FIG.
  • FIG. 4 is a block diagram which shows the structural example of the inspection apparatus which concerns on one Embodiment. It is sectional drawing which shows the structural example in which a sample is illuminated by ring illumination. It is sectional drawing which shows the structural example in which a sample is illuminated by telecentric illumination. It is a flowchart which shows the procedure example of the inspection method which concerns on one Embodiment.
  • appearance abnormalities such as defects or color unevenness contained in the inspection target may be easily detected or may be difficult to detect. It is required to improve the accuracy of visual inspection.
  • the lighting system 1 includes a lighting device 20 and a spectrum determining device 30.
  • the illuminating device 20 illuminates the sample 50.
  • the spectrum determination device 30 determines the spectrum of the light emitted by the illumination device 20 toward the sample 50.
  • the light emitted by the illuminating device 20 toward the sample 50 is also referred to as illuminating light.
  • the spectrum determination device 30 may determine the spectrum of the illumination light based on the information about the sample 50.
  • the lighting system 1 may further include an imaging device 40 that captures an image of the sample 50 as information about the sample 50.
  • the lighting device 20 includes a light emitting unit 10 and a lighting control unit 22.
  • the light emitting unit 10 emits light specified in a predetermined spectrum as illumination light.
  • the predetermined spectrum may have a peak wavelength in the wavelength region of 360 nm to 430 nm and a peak wavelength in the wavelength region of 360 nm to 780 nm, for example.
  • Light having a peak wavelength in the wavelength region of 360 nm to 430 nm is also referred to as purple light.
  • the wavelength region of 360 nm to 430 nm is also referred to as a purple light region.
  • Light having a peak wavelength in the wavelength region of 360 nm to 780 nm is also referred to as visible light.
  • the wavelength region of 360 nm to 780 nm is also referred to as a visible light region.
  • the spectrum that identifies light is measured by spectroscopic methods using, for example, a spectrophotometer.
  • the illumination control unit 22 controls the spectrum or intensity of the light emitted by the light emitting unit 10.
  • the illumination control unit 22 may include at least one processor in order to provide control and processing power for performing various functions.
  • the processor can execute a program that realizes various functions of the lighting control unit 22.
  • the processor may be implemented as a single integrated circuit.
  • the integrated circuit is also called an IC (Integrated Circuit).
  • the processor may be implemented as a plurality of communicably connected integrated circuits and discrete circuits.
  • the processor may be implemented on the basis of various other known techniques.
  • the lighting control unit 22 may include an interface.
  • the illumination control unit 22 may be communicably connected to the spectrum determining device 30 via an interface, either by wire or wirelessly.
  • the interface may include a communication interface such as a LAN (Local Area Network).
  • the interface may realize communication by various communication methods such as 4G (4th Generation), 5G (5th Generation), or LTE (Long Term Evolution).
  • the interface may include a communication interface for non-contact communication such as infrared communication or NFC (Near Field Communication) communication.
  • the interface may include a port capable of inputting and outputting signals based on a serial communication standard such as RS232C or RS485.
  • the lighting control unit 22 may include a storage unit.
  • the storage unit may include an electromagnetic storage medium such as a magnetic disk, or may include a memory such as a semiconductor memory or a magnetic memory.
  • the storage unit stores various information and programs executed by the lighting control unit 22.
  • the storage unit may function as a work memory of the lighting control unit 22. At least a part of the storage unit may be configured separately from the lighting control unit 22.
  • the spectrum determination device 30 may include a determination unit 32.
  • the determination unit 32 determines a spectrum that identifies the light emitted by the illuminating device 20.
  • the determination unit 32 may include at least one processor to provide control and processing power to perform various functions.
  • the processor included in the determination unit 32 may include the same or similar configuration as the processor of the lighting control unit 22.
  • the determination unit 32 may include an interface.
  • the determination unit 32 may be communicably connected to the lighting device 20 via an interface, either by wire or wirelessly.
  • the interface included in the determination unit 32 may include the same or similar configuration as the interface of the lighting control unit 22.
  • the imaging device 40 includes an imaging device such as a camera that images the sample 50.
  • the lighting system 1 is installed in the inspection process of the production line of the industrial product as the sample 50.
  • the sample 50 may include, for example, an electronic device or the like.
  • the sample 50 may include a circuit board mounted inside the electronic device, or may include an electronic component or wiring mounted on the circuit board.
  • Sample 50 may include the outer surface of the electronic device. Sample 50 is not limited to these examples.
  • the lighting system 1 is not limited to the inspection process of industrial products, and may be installed in the inspection process of various products such as agricultural products such as vegetables or dairy products such as cheese.
  • the lighting system 1 and the lighting device 20 may be for inspection of articles.
  • the lighting system 1 may be installed in an inspection device 200 (see FIG. 7) used by the inspector 8 to visually inspect the appearance of the sample 50.
  • the inspector 8 visually inspects the appearance of the sample 50 using the inspection device 200.
  • the inspector 8 may detect an appearance abnormality of the sample 50 by visual inspection of the appearance.
  • the lighting system 1 is required to control the irradiation light so that the inspector 8 can detect the appearance abnormality of the sample 50 with high accuracy.
  • the lighting system 1 may be installed in an abnormality detecting device that automatically detects an abnormality in the appearance of the sample 50 based on an image obtained by capturing the appearance of the sample 50 by the imaging device 40. Even when the lighting system 1 is installed in the abnormality detecting device, it is required to control the irradiation light so that the abnormality detecting device can detect the appearance abnormality of the sample 50 with high accuracy.
  • the illumination light emitted by the illumination system 1 toward the sample 50 to be inspected is also referred to as inspection light.
  • the spectrum determination device 30 determines the spectrum of the inspection light so that the appearance abnormality of the sample 50 is detected with high accuracy by the inspector 8 or the abnormality detection device.
  • the sample 50 includes a sampling target portion 51.
  • the sampling target portion 51 includes a first region 51a including the abnormal portion 55 and a second region 51b not including the abnormal portion 55.
  • the abnormal portion 55 corresponds to at least a part of the appearance abnormality of the sample 50. It is assumed that the second region 51b extends to at least a part of a predetermined range including the first region 51a. In other words, it is assumed that the second region 51b is located within a predetermined distance from the first region 51a.
  • Appearance abnormalities can include various aspects.
  • the appearance abnormality may include an embodiment having unintended irregularities such as dents, bulges, or protrusions existing on the surface of the sample 50.
  • the depression may include a dent.
  • the protrusions may include curls on the painted or exterior surfaces.
  • the appearance abnormality may include a damaged aspect such as a scratch, a crack or a crack contained in the sample 50.
  • the appearance abnormality may include an aspect as a foreign substance such as dust or dirt adhering to the surface of the sample 50.
  • the appearance abnormality may include an aspect in which the color of the surface of the sample 50 is different from the inspection standard or the color of the surface of the sample 50 is uneven.
  • the appearance abnormality may include an aspect in which the pattern is abnormal, such as a blurring of the wiring mounted on the circuit board or a pattern defect of the wiring.
  • Appearance abnormalities may be classified based on the mode. For example, scratches and adhesion of foreign matter may be classified as different aspects of appearance abnormality. That is, the appearance abnormality may be classified into a predetermined mode. When the appearance abnormality is classified into a predetermined mode, it is also expressed that the appearance abnormality is included in the predetermined classification. Appearance abnormalities may be classified based on their degree. For example, when the appearance abnormality includes an aspect having unevenness, the appearance abnormality may be classified based on the size of the unevenness.
  • the appearance abnormality included in the first region 51a is also referred to as a first appearance abnormality. When the first appearance abnormality is included in a predetermined classification, the classification is also referred to as the first classification.
  • Sample 50 may further include the inspection target portion 52.
  • the inspection target portion 52 may be included in another sample 50 different from the sample 50 including the sampling target portion 51.
  • the inspection target portion 52 is included in the same sample 50 as the sample 50 including the sampling target portion 51.
  • the inspection target portion 52 may include at least a part of the appearance abnormality and may not include the appearance abnormality. That is, it is unclear whether the inspection target portion 52 includes at least a part of the appearance abnormality or does not include the appearance abnormality.
  • the appearance abnormality is also referred to as a second appearance abnormality.
  • the second appearance abnormality may be included in the first category and may be included in the second category different from the first category. That is, it is unclear which classification the second appearance abnormality is included in. In the present embodiment, the second appearance abnormality is included in the first classification.
  • the spectrum determination device 30 is inspected based on the inspection result of the first appearance abnormality so that the second appearance abnormality can be detected with high accuracy even when it is unknown whether the inspection target portion 52 includes the second appearance abnormality. Determine the spectrum of the test light that illuminates.
  • the spectrum determination device 30 may determine the spectrum of the inspection light, for example, by executing the procedure of the flowchart shown in FIG.
  • the method in which the spectrum determination device 30 determines the spectrum of the inspection light is also referred to as a spectrum determination method.
  • the procedure illustrated in FIG. 3 may be implemented as a program executed by a processor.
  • the program executed by the spectrum determination device 30 to determine the spectrum of the inspection light is also referred to as a spectrum determination program.
  • the spectrum determination device 30 acquires an image in which the sampling target unit 51 is captured (step S1).
  • the image in which the sampling target unit 51 is captured is also referred to as the captured image of the sampling target unit 51.
  • the spectrum determination device 30 may acquire the captured image of the sampling target unit 51 from the imaging device 40, or may acquire the captured image of the sampling target unit 51 from an external device.
  • the captured image of the sampling target portion 51 includes a portion in which the first region 51a is imaged and a portion in which the second region 51b is imaged.
  • the portions obtained by imaging the first region 51a and the second region 51b are also referred to as a first captured image and a second captured image, respectively.
  • the first captured image includes the first appearance abnormality.
  • the spectrum determination device 30 acquires information regarding the spectrum of the light that was illuminating the sampling target unit 51 when the sampling target unit 51 was imaged (step S2).
  • the illumination light emitted toward the sampling target unit 51 when the sampling target unit 51 is imaged is also referred to as sampling light.
  • Information about the spectrum of the sampled light is also referred to as spectral information of the sampled light.
  • the spectrum determination device 30 calculates an evaluation index based on the captured image (step S3).
  • the spectrum determination device 30 may calculate at least one of the difference in brightness and the difference in chromaticity between the first captured image and the second captured image.
  • the spectrum determination device 30 may calculate the evaluation index based on the calculation result of at least one of the brightness difference and the chromaticity difference.
  • the spectrum determination device 30 may calculate a value obtained by weighting and adding at least one of the calculation results of the brightness difference and the chromaticity difference as an evaluation index.
  • the difference in brightness between the first captured image and the second captured image corresponds to the magnitude of the contrast of the gradation.
  • the larger the gradation contrast the easier it is for the inspector 8 to feel the difference between the first region 51a and the second region 51b, and that there is an appearance abnormality in either the first region 51a or the second region 51b. It will be easier to detect.
  • the larger the gradation contrast the easier it is for the abnormality detection device to determine that the first region 51a and the second region 51b are different, and there is an appearance abnormality in either the first region 51a or the second region 51b. It becomes easier to detect what to do.
  • the chromaticity difference between the first captured image and the second captured image corresponds to the magnitude of the color contrast.
  • the larger the color contrast the easier it is for the inspector 8 to feel the difference between the first region 51a and the second region 51b, and detect that there is an appearance abnormality in either the first region 51a or the second region 51b. It will be easier. Further, the larger the color contrast, the easier it is for the abnormality detection device to determine that the first region 51a and the second region 51b are different, and the appearance abnormality exists in either the first region 51a or the second region 51b. Is easier to detect.
  • the spectrum determination device 30 may calculate the evaluation index as a larger value as the brightness difference between the first captured image and the second captured image is larger, or calculate the evaluation index as a larger value as the chromaticity difference is larger. You may.
  • the spectrum determination device 30 may calculate the evaluation index to a larger value as at least one of the difference in brightness and the difference in chromaticity is larger.
  • the spectrum determination device 30 determines the spectrum of the inspection light based on the spectrum information of the sampled light and the evaluation index calculated by the sampling target unit 51 illuminated by the sampled light (step S4).
  • the spectrum determination device 30 associates the evaluation index with the spectrum information of the sampled light.
  • the spectrum determination device 30 may determine the spectrum of the sampled light associated with the high evaluation index as the spectrum of the inspection light.
  • the spectrum determining device 30 may estimate the spectrum of light that can correspond to a high evaluation index based on the correspondence between the evaluation index and the spectrum information of the sampled light, and determine the estimated spectrum as the spectrum of the inspection light. ..
  • the spectrum determination device 30 outputs the determined spectrum of the inspection light to the illumination device 20 (step S5). After step S5, the spectrum determination device 30 ends the execution of the procedure shown in the flowchart of FIG. In the lighting system 1, the lighting device 20 irradiates the inspection target portion 52 with the inspection light specified by the spectrum acquired from the spectrum determining device 30.
  • the inspection light determined according to the procedure example of FIG. 3 is based on the evaluation index calculated by the sampling target unit 51 including the first appearance abnormality. Therefore, when the first classification abnormality is included in the first classification, the appearance abnormality of the first classification is easily detected from the sample 50 illuminated by the determined inspection light. That is, when the inspection target portion 52 includes the appearance abnormality of the first category, the appearance abnormality is easily detected.
  • the inspector 8 or the abnormality detection device can determine with high accuracy whether the inspection target unit 52 includes the appearance abnormality of the first category.
  • the inspector 8 or the abnormality detection device can detect the appearance abnormality with high accuracy.
  • step S1 the spectrum determining device 30 obtains an image captured by the sampling target unit 51 when illuminated by the first sampling light and an image captured by the sampling target unit 51 when illuminated by the second sampling light. You may get it.
  • the spectrum determining device 30 may acquire the spectrum information of each of the first sampling light and the second sampling light in step S2.
  • the spectra that specify the first sampling light and the second sampling light are also referred to as the first spectrum and the second spectrum, respectively.
  • step S3 the spectrum determination device 30 may calculate the first evaluation index as the evaluation index when the sampling target unit 51 is illuminated with the first sampling light.
  • the spectrum determination device 30 may calculate a second evaluation index as an evaluation index when the sampling target unit 51 is illuminated with the second sampling light.
  • the spectrum determination device 30 may determine the spectrum of the sampling light when the larger evaluation index of the first evaluation index and the second evaluation index calculated in step S3 is obtained as the spectrum of the inspection light. ..
  • the spectrum determination device 30 may calculate an evaluation index for each of the three or more types of sampled light, and determine the spectrum of the sampled light from which the largest evaluation index is obtained as the spectrum of the inspection light.
  • the spectrum determination device 30 may acquire an captured image in which it is unknown whether or not the first appearance abnormality is included.
  • the spectrum determination device 30 may further acquire a captured image that is clearly free of the first appearance anomaly.
  • the captured image that is clearly free of the first appearance abnormality is also referred to as a non-defective image.
  • the spectrum determination device 30 may detect the difference by comparing the captured image in which it is unknown whether or not the first appearance abnormality is included with the non-defective image.
  • the spectrum determination device 30 may consider the detected difference as the first appearance abnormality.
  • the spectrum determination device 30 may set the position or range of the sampling target unit 51 so that the sampling target unit 51 includes a portion deemed to be the first appearance abnormality.
  • the spectrum determination device 30 may acquire a captured image of the sampling target unit 51 including the appearance abnormality of the second classification different from the first classification.
  • the spectrum determination device 30 may calculate an evaluation index associated with the sampled light based on the captured image.
  • the spectrum determination device 30 may determine the spectrum of the sampled light associated with the high evaluation index as the spectrum of the inspection light. From the sample 50 illuminated by the inspection light determined in this way, the appearance abnormality of the second category is easily detected.
  • the lighting system 1 determines the spectrum of the inspection light that facilitates the detection of the appearance abnormality of each classification, and changes the inspection light that illuminates the sample 50 when detecting the appearance abnormality of each classification. It is possible to improve the detection accuracy of appearance abnormalities.
  • the spectrum determination device 30 may determine the spectrum of a common inspection light that facilitates the detection of the abnormal portion 55 included in the plurality of classifications. By doing so, many kinds of appearance abnormalities can be easily detected by one kind of inspection light. As a result, inspection efficiency can be improved.
  • the spectrum determination device 30 may calculate the brightness of the captured image as a grayscale gradation.
  • the spectrum determination device 30 may calculate the gradation of a predetermined pixel included in the captured image as the brightness of the captured image.
  • the spectrum determination device 30 may calculate the gradation of each pixel included in at least a part of the captured image and calculate the average value as the brightness of the captured image, or may weight the gradation of each pixel. The added value may be calculated as the brightness of the captured image.
  • the spectrum determination device 30 may calculate the brightness of the captured image based on each gradation of the three primary colors of red, green, and blue.
  • the three primary colors of red, green and blue are collectively called RGB (Red Green Blue).
  • the brightness of the captured image may be associated with, for example, the intensity of the luminance signal in the YUV system.
  • the YUV method is a method of expressing a color space based on a luminance signal and two color difference signals. In the YUV method, the brightness of the captured image may be calculated based on the following formula (1).
  • Y 0.299 ⁇ R + 0.587 ⁇ G + 0.114 ⁇ B (1)
  • Y represents the intensity of the luminance signal and corresponds to the brightness.
  • R, G and B represent gradations of red, green and blue, respectively.
  • the brightness of the first captured image is 53 based on the equation (1). Is calculated.
  • the brightness of the second captured image is 160 based on the equation (1). Is calculated. In this case, the difference in brightness between the first captured image and the second captured image is calculated as 107.
  • the spectrum determination device 30 may calculate the brightness of a predetermined pixel included in the captured image.
  • the spectrum determination device 30 may calculate the average value of the brightness of each of the plurality of pixels as the brightness of the captured image.
  • the spectrum determination device 30 may calculate the chromaticity difference of the captured image based on each gradation of RGB of the captured image.
  • the spectrum determination device 30 may calculate the sum of the absolute values of the differences in gradations of R, G, and B as the chromaticity difference.
  • the absolute value of the difference in gradation of R is calculated as 111.
  • the absolute value of the difference in gradation of G is calculated as 106.
  • the absolute value of the difference in gradation of B is calculated as 102.
  • the chromaticity difference is calculated as 319 as the sum of the absolute values of the differences in the gradations of R, G, and B.
  • the chromaticity difference is calculated as 765.
  • the spectrum determination device 30 may calculate the value obtained by weighting and adding the absolute values of the differences in gradations of R, G, and B as the chromaticity difference.
  • the coefficient used in the above equation (1) may be applied as a coefficient for weighting the absolute value of the difference between the gradations of R, G, and B.
  • the chromaticity of the captured image may be specified by each gradation of RGB, but is not limited to this, and a CMYK color model that specifies the color by four components of cyan, magenta, yellow, and black is used. It may be represented.
  • the spectrum determining device 30 can determine the spectrum of the inspection light that makes it easy to detect the appearance abnormality included in the predetermined classification.
  • the inspection light that makes it easier to detect an appearance abnormality included in a predetermined classification is also referred to as an inspection light corresponding to the predetermined classification.
  • the illuminating device 20 acquires the spectrum determined by the spectrum determining device 30, and emits light specified in the spectrum as inspection light corresponding to a predetermined classification. When the lighting device 20 emits the inspection light corresponding to the predetermined classification toward the sample 50, the appearance abnormality included in the predetermined classification is easily detected in the sample 50.
  • the spectrum determining device 30 may determine, for example, the spectrum of the inspection light corresponding to the first classification and the spectrum of the inspection light corresponding to the second classification, respectively.
  • the lighting device 20 may emit inspection light corresponding to each of the first classification and the second classification to the sample 50. By doing so, appearance abnormalities included in each of the plurality of classifications can be easily detected. As a result, the detection accuracy of the appearance abnormality can be improved.
  • the lighting device 20 may change the inspection light based on the operation by the inspector 8, or may change the inspection light based on the control by the inspection device 200.
  • the lighting system 1 can determine the spectrum of the inspection light so that the appearance abnormality included in the predetermined classification can be detected with high accuracy.
  • the lighting system 1 can emit the inspection light specified by the determined spectrum toward the sample 50.
  • the inspection device 200 used by the inspector 8 includes the lighting system 1, the inspector 8 can easily determine the presence or absence of the appearance abnormality in the sample 50 and can easily detect the appearance abnormality.
  • the abnormality detection device makes it easy to determine the presence / absence of an appearance abnormality in the sample 50 and also makes it easy to detect an appearance abnormality. As a result, the accuracy of visual inspection can be improved.
  • the spectrum of the inspection light may be sequentially switched and adjusted by an arbitrary adjustment value so that the chromaticity difference or the brightness difference between the first captured image and the second captured image is maximized.
  • the inspector 8 may switch the adjustment value, or may automatically adjust the adjustment value by a program or the like.
  • the light emitting unit 10 includes a light emitting element 3 and a wavelength conversion member 6.
  • the light emitting unit 10 may further include an element substrate 2, a frame body 4, and a sealing member 5.
  • the light emitting element 3 emits light having a peak wavelength in a wavelength region of 360 nm to 430 nm, that is, a violet light region.
  • the wavelength conversion member 6 converts the light incident on the wavelength conversion member 6 from the light emitting element 3 into light having a peak wavelength in the visible light region, and emits the converted light. Visible light is assumed to include purple light. It is assumed that the visible light region includes a purple light region.
  • the wavelength conversion member 6 emits a peak wavelength region into a visible light region by being excited by the light emitted by the light emitting element 3.
  • the light emitted by the light emitting element 3 is also referred to as excitation light.
  • the light emitting element 3 included in the light emitting unit 10 is also referred to as an excitation light emitting element.
  • the light emitting unit 10 may have a plurality of wavelength conversion members 6.
  • the plurality of wavelength conversion members 6 may emit light having different peak wavelengths.
  • the light emitting unit 10 can emit light having various spectra by controlling the intensity of the light emitted by each wavelength conversion member 6.
  • the element substrate 2 may be formed of, for example, a material having an insulating property.
  • the element substrate 2 may be formed of, for example, a ceramic material such as alumina or mullite, a glass ceramic material, or a composite material obtained by mixing a plurality of these materials.
  • the element substrate 2 may be formed of a polymer resin material or the like in which metal oxide fine particles whose thermal expansion can be adjusted are dispersed.
  • the element substrate 2 may include a wiring conductor that electrically conducts components such as a light emitting element 3 mounted on the element substrate 2 inside the main surface 2A of the element substrate 2 or the element substrate 2.
  • the wiring conductor may be made of a conductive material such as tungsten, molybdenum, manganese, or copper.
  • the wiring conductor is formed, for example, by printing a metal paste obtained by adding an organic solvent to tungsten powder on a ceramic green sheet to be an element substrate 2 in a predetermined pattern, laminating a plurality of ceramic green sheets, and firing them. May be done.
  • a plating layer such as nickel or gold may be formed on the surface of the wiring conductor to prevent oxidation.
  • the element substrate 2 may be provided with a metal reflective layer at a distance from the wiring conductor and the plating layer in order to efficiently emit the light emitted by the light emitting element 3 to the outside.
  • the metal reflective layer may be formed of, for example, a metal material such as aluminum, silver, gold, copper or platinum.
  • the light emitting element 3 is an LED.
  • An LED emits light to the outside by recombination of electrons and holes in a PN junction in which a P-type semiconductor and an N-type semiconductor are bonded.
  • the light emitting element 3 is not limited to the LED, and may be another light emitting device.
  • the light emitting element 3 is mounted on the main surface 2A of the element substrate 2.
  • the light emitting element 3 is electrically connected to the plating layer provided on the surface of the wiring conductor provided on the element substrate 2 via, for example, a brazing material or solder.
  • the number of light emitting elements 3 mounted on the main surface 2A of the element substrate 2 is not particularly limited.
  • the light emitting element 3 may include a translucent substrate and an optical semiconductor layer formed on the translucent substrate.
  • the translucent substrate includes a material capable of growing an opto-semiconductor layer on it by using, for example, a chemical vapor deposition method such as an organic metal vapor phase growth method or a molecular beam epitaxial growth method.
  • the translucent substrate may be formed of, for example, sapphire, gallium nitride, aluminum nitride, zinc oxide, zinc selenide, silicon carbide, silicon (Si), zirconium dibodium or the like.
  • the thickness of the translucent substrate may be, for example, 50 ⁇ m or more and 1000 ⁇ m or less.
  • the optical semiconductor layer may include a first semiconductor layer formed on a translucent substrate, a light emitting layer formed on the first semiconductor layer, and a second semiconductor layer formed on the light emitting layer.
  • the first semiconductor layer, the light emitting layer, and the second semiconductor layer are, for example, a group III nitride semiconductor, a group III-V semiconductor such as gallium phosphorus or gallium arsenide, or a group III such as gallium nitride, aluminum nitride, or indium nitride. It may be formed of a nitride semiconductor or the like.
  • the thickness of the first semiconductor layer may be, for example, 1 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the light emitting layer may be, for example, 25 nm or more and 150 nm or less.
  • the thickness of the second semiconductor layer may be, for example, 50 nm or more and 600 nm or less.
  • the frame 4 may be formed of, for example, a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide, or yttrium oxide.
  • the frame body 4 may be made of a porous material.
  • the frame 4 may be formed of a resin material mixed with a powder containing a metal oxide such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide.
  • the frame body 4 is not limited to these materials, and may be formed of various materials.
  • the frame body 4 is connected to the main surface 2A of the element substrate 2 via, for example, resin, brazing material, solder, or the like.
  • the frame body 4 is provided on the main surface 2A of the element substrate 2 so as to surround the light emitting element 3 at a distance from the light emitting element 3.
  • the frame body 4 is provided so as to be inclined so that the inner wall surface expands outward as the distance from the main surface 2A of the element substrate 2 increases.
  • the inner wall surface functions as a reflecting surface that reflects the light emitted by the light emitting element 3.
  • the inner wall surface may include, for example, a metal layer formed of a metal material such as tungsten, molybdenum, or manganese, and a plating layer covering the metal layer and formed of a metal material such as nickel or gold.
  • the plating layer reflects the light emitted by the light emitting element 3.
  • the shape of the inner wall surface of the frame body 4 may be circular in a plan view. Since the shape of the inner wall surface is circular, the frame body 4 can reflect the light emitted by the light emitting element 3 substantially uniformly toward the outside.
  • the inclination angle of the inner wall surface of the frame body 4 may be set to, for example, an angle of 55 degrees or more and 70 degrees or less with respect to the main surface 2A of the element substrate 2.
  • the sealing member 5 is filled in the inner space surrounded by the element substrate 2 and the frame body 4, leaving a part of the upper part of the inner space surrounded by the frame body 4.
  • the sealing member 5 seals the light emitting element 3 and transmits the light emitted by the light emitting element 3.
  • the sealing member 5 may be made of, for example, a light-transmitting material.
  • the sealing member 5 may be made of, for example, a light-transmitting insulating resin material such as a silicon resin, an acrylic resin or an epoxy resin, or a light-transmitting glass material.
  • the refractive index of the sealing member 5 may be set to, for example, 1.4 or more and 1.6 or less.
  • the wavelength conversion member 6 converts the purple light incident from the light emitting element 3 into light having various peak wavelengths included in the visible light region.
  • the light emitting element 3 is positioned so that the emitted purple light is incident on the wavelength conversion member 6.
  • the wavelength conversion member 6 is positioned so that the light emitted from the light emitting element 3 is incident.
  • the wavelength conversion member 6 is located along the upper surface of the sealing member 5 in a part of the upper part of the inner space surrounded by the element substrate 2 and the frame body 4. ing.
  • the wavelength conversion member 6 may be positioned so as to protrude from the upper part of the inner space surrounded by the element substrate 2 and the frame body 4.
  • the wavelength conversion member 6 includes a translucent member 60 having translucency, a first phosphor 61, a second phosphor 62, a third phosphor 63, a fourth phosphor 64, and a third. 5 Fluorescent material 65 may be provided.
  • the first phosphor 61, the second phosphor 62, the third phosphor 63, the fourth phosphor 64, and the fifth phosphor 65 are also simply referred to as phosphors. It is assumed that the phosphor is contained inside the translucent member 60.
  • the phosphor may be dispersed substantially uniformly inside the translucent member 60.
  • the phosphor converts the purple light incident on the wavelength conversion member 6 into light having a peak wavelength included in the wavelength region of 360 nm to 780 nm, and emits the converted light.
  • the translucent member 60 may be formed of, for example, a translucent insulating resin such as a fluororesin, a silicon resin, an acrylic resin or an epoxy resin, or a translucent glass material or the like.
  • a translucent insulating resin such as a fluororesin, a silicon resin, an acrylic resin or an epoxy resin, or a translucent glass material or the like.
  • the phosphor converts the incident purple light into light having various peak wavelengths.
  • the first phosphor 61 may convert violet light into light specified in a spectrum having a peak wavelength in, for example, a wavelength region of 400 nm to 500 nm, that is, blue light.
  • the first phosphor 61 is, for example, BaMgAl 10 O 17 : Eu, or (Sr, Ca, Ba) 10 (PO 4 ) 6 Cl 2 : Eu, (Sr, Ba) 10 (PO 4 ) 6 Cl 2 : Eu. Etc. can be used.
  • the second phosphor 62 may convert violet light into light specified in the spectrum having a peak wavelength in the wavelength region of, for example, 450 nm to 550 nm, that is, blue-green light.
  • the second phosphor 62 for example, (Sr, Ba, Ca) 5 (PO 4 ) 3 Cl: Eu, Sr 4 Al 14 O 25 : Eu and the like can be used.
  • the third phosphor 63 may convert violet light into light specified in the spectrum having a peak wavelength in, for example, a wavelength region of 500 nm to 600 nm, that is, green light.
  • the third phosphor 63 is, for example, SrSi 2 (O, Cl) 2 N 2 : Eu, (Sr, Ba, Mg) 2 SiO 4 : Eu 2+ , or ZnS: Cu, Al, Zn 2 SiO 4 : Mn. Etc. can be used.
  • the fourth phosphor 64 may convert violet light into light specified in the spectrum having a peak wavelength in the wavelength region of, for example, 600 nm to 700 nm, that is, red light.
  • Y 2 O 2 S Eu
  • Y 2 O 3 Eu
  • SrCaClAlSiN 3 Eu 2+
  • CaAlSiN 3 Eu
  • CaAlSi (ON) 3 Eu
  • or the like can be used. ..
  • the fifth phosphor 65 may convert violet light into light specified in the spectrum having a peak wavelength in the wavelength region of, for example, 680 nm to 800 nm, that is, near infrared light. Near-infrared light may include light in the wavelength region of 680 to 2500 nm.
  • the fifth phosphor 65 for example, 3Ga 5 O 12 : Cr or the like can be used.
  • the combination of types of phosphors contained in the wavelength conversion member 6 is not particularly limited. As shown in the region X of FIGS. 5 and 6, the wavelength conversion member 6 includes the first phosphor 61, the second phosphor 62, the third phosphor 63, the fourth phosphor 64, and the fifth phosphor 65. May have.
  • the wavelength conversion member 6 may have another type of phosphor.
  • the light emitting unit 10 may include a plurality of wavelength conversion members 6. Each wavelength conversion member 6 may have a different combination of phosphors.
  • the light emitting unit 10 may include a light emitting element 3 that emits purple light to each wavelength conversion member 6.
  • the light emitting unit 10 can emit light having various spectra by controlling the intensity of purple light incident on each wavelength conversion member 6.
  • One wavelength conversion member 6 may include, for example, a phosphor that emits blue fluorescence, a phosphor that emits blue-green fluorescence, and a phosphor that emits green fluorescence.
  • One wavelength conversion member 6 may include only one type of phosphor.
  • One wavelength conversion member 6 is not limited to these examples, and may contain a phosphor in various combinations. The color of the light emitted from the wavelength conversion member 6 is determined based on the type of phosphor contained in the wavelength conversion member 6.
  • the light emitting unit 10 can emit light having various spectra depending on the combination of the wavelength conversion members 6.
  • the light emitting unit 10 emits, for example, a spectrum of direct sunlight from the sun, a spectrum of sunlight reaching a predetermined depth in the sea, a spectrum of light emitted by a candle flame, a spectrum of light of a firefly, or the like. it can.
  • the light emitting unit 10 can emit light having various colors.
  • the light emitting unit 10 can emit light having various color temperatures.
  • the lighting device 20 may have a plurality of light emitting units 10.
  • the plurality of light emitting units 10 may include a first light emitting unit and a second light emitting unit.
  • the illumination control unit 22 may independently control the intensity of the light emitted by the first light emitting unit and the intensity of the light emitted by the second light emitting unit, or may control them in association with each other.
  • the light emitting element 3 included in the first light emitting unit is also referred to as a first excited light emitting element.
  • the light emitting element 3 included in the second light emitting unit is also referred to as a second excited light emitting element.
  • the illumination control unit 22 controls the intensity of the first excitation light emitted by the first excitation light emitting element and the intensity of the second excitation light emitted by the second excitation light emitting element, respectively, to form the first light emitting unit.
  • the intensity of the light emitted by the second light emitting unit and the intensity of the light emitted by the second light emitting unit may be controlled.
  • the spectrum of the light emitted by the first light emitting unit may be different from the spectrum of the light emitted by the second light emitting unit.
  • the illumination control unit 22 controls the intensity of the light emitted by the first light emitting unit and the intensity of the light emitted by the second light emitting unit in association with each other to control the light emitted by the first light emitting unit and the second light emitting unit. You may control the spectrum of the combined light with the light emitted by.
  • the light obtained by combining the light emitted by the first light emitting unit and the light emitted by the second light emitting unit is also referred to as synthetic light.
  • the lighting device 20 may emit synthetic light as illumination light.
  • the lighting device 20 may select at least one of the first light emitting unit and the second light emitting unit to emit the illumination light.
  • the inspection device 200 includes a lighting device 20 and a sample holder 210.
  • the sample holder 210 is configured so that the sample 50 can be mounted.
  • the lighting device 20 is configured so that the sample 50 mounted on the sample holder 210 can be illuminated with the illumination light.
  • the inspection device 200 may further include an optical microscope.
  • the sample holder 210 may be configured as a stage of an optical microscope.
  • the inspection device 200 may further include a spectrum determination device 30.
  • the inspection device 200 may be communicably connected to the spectrum determination device 30 provided outside without the spectrum determination device 30.
  • the illuminating device 20 acquires the spectrum of the inspection light from the spectrum determining device 30.
  • the inspection device 200 may further include an optical system 220 that forms an image of the sample 50 mounted on the sample holder 210 so that the inspector 8 can observe it.
  • the inspection device 200 may further include an eyepiece 230 that allows the light imaged by the optical system 220 to enter the eyes of the examiner 8.
  • the inspector 8 may observe the sample 50 through the optical system 220 and the eyepiece lens 230 and detect an abnormality in the appearance of the sample 50.
  • the optical system 220 may be configured so that the magnification at which the sample 50 is imaged can be changed.
  • the sample holder 210, the optical system 220, and the eyepiece 230 may be configured as an optical microscope. The inspector 8 may directly observe the sample 50 on the sample holder 210 without going through the optical system 220 and the eyepiece 230, and detect an abnormality in the appearance of the sample 50.
  • the inspection device 200 may further include an image pickup device 40.
  • the image pickup apparatus 40 may take an image of the sample 50 illuminated by the inspection light.
  • the captured image of the sample 50 illuminated with the inspection light is also referred to as an inspection image.
  • the image pickup apparatus 40 may image the sample 50 imaged by the optical system 220, or may image the sample 50 without going through the optical system 220.
  • the inspection device 200 may further include a display unit 240.
  • the display unit 240 may acquire an inspection image from the image pickup apparatus 40 and display it.
  • the inspector 8 may detect an appearance abnormality contained in the sample 50 based on the inspection image displayed on the display unit 240.
  • the inspection device 200 may further include an image processing unit 250.
  • the image processing unit 250 may acquire an inspection image from the image pickup apparatus 40.
  • the image processing unit 250 may analyze the inspection image and detect an appearance abnormality contained in the sample 50.
  • the image processing unit 250 may detect a portion of the inspection image in which the difference in brightness or the difference in chromaticity is equal to or greater than a predetermined value as an appearance abnormality.
  • the image processing unit 250 may detect an appearance abnormality based on various conditions.
  • the inspection device 200 may output the captured image of the sample 50 illuminated by the sampled light to the spectrum determination device 30 by emitting the sampled light to the lighting device 20 and causing the imaging device 40 to image the sample 50.
  • the inspection device 200 includes the spectrum determination device 30, the inspection device 200 can internally determine the spectrum of the inspection light.
  • the lighting device 20 may include a ring-shaped housing 24 arranged so as to surround the sample 50. It can be said that the ring-shaped housing 24 constitutes ring illumination by mounting a light emitting unit 10 that emits illumination light toward the inside of the ring.
  • the optical system 220 is located inside the ring-shaped housing 24. In this case, the direction in which the illumination light is incident on the sample 50 has a predetermined angle with respect to the optical axis of the optical system 220. As a result, the image formed by the optical system 220 is less likely to include shadows due to illumination.
  • the illuminating device 20 may be configured so that the illuminating light emitted by the light emitting unit 10 via the half mirror 224 included in the optical system 220 is incident substantially perpendicular to the sample 50.
  • the lighting device 20 constitutes telecentric lighting.
  • the direction in which the illumination light is incident on the sample 50 is substantially the same with respect to the optical axis of the optical system 220.
  • the image formed by the optical system 220 tends to include shadows due to illumination.
  • the configuration in which the illumination light is incident on the sample 50 is not limited to the above example.
  • the lighting device 20 may be configured in various forms.
  • the illuminating device 20 may control the direction in which the illuminating light is incident on the sample 50.
  • the image captured by the image pickup apparatus 40 of the sample 50 may be different, and the appearance of the sample 50 by the inspector 8 may be different.
  • the inspection device 200 may control the direction in which the illumination light is incident on the sample 50 so that the appearance abnormality included in the predetermined classification can be easily detected.
  • the inspection device 200 may change the illumination form based on the aspect of the sample 50 or the classification of appearance abnormalities that may be contained in the sample 50.
  • the spectrum determination device 30 may determine the spectrum of the inspection light based on the illumination form. By determining the spectrum of the inspection light based on the illumination form, the appearance abnormality included in the predetermined classification becomes more easily detected.
  • the inspection device 200 may detect the appearance abnormality from the sample 50 by executing the procedure of the flowchart illustrated in FIG.
  • the lighting device 20 acquires the spectrum of the inspection light corresponding to the predetermined classification from the spectrum determining device 30 (step S11).
  • the lighting device 20 may output information for designating the classification to the spectrum determining device 30 and acquire the spectrum of the inspection light corresponding to the classification from the spectrum determining device 30.
  • the lighting device 20 emits inspection light (step S12).
  • the lighting device 20 emits the inspection light specified by the spectrum acquired from the spectrum determining device 30 to the light emitting unit 10.
  • the image processing unit 250 acquires an inspection image from the image pickup device 40 (step S13).
  • the image pickup apparatus 40 takes an image of the sample 50 in a state where the light emitting unit 10 emits the inspection light corresponding to the predetermined classification toward the sample 50, and outputs the inspection image.
  • the image processing unit 250 calculates an evaluation value for determining whether the inspection target unit 52 includes an appearance abnormality (step S14).
  • the image processing unit 250 may calculate at least one of the difference in brightness and the difference in chromaticity between the comparison target unit and the inspection target unit 52 as an evaluation value.
  • the image processing unit 250 may calculate the evaluation value based on at least one of the difference in brightness and the difference in chromaticity.
  • the image processing unit 250 may calculate as an evaluation value a value obtained by weighting and adding at least one of a lightness difference and a chromaticity difference.
  • the image processing unit 250 may set a part of the inspection image as the inspection target unit 52 (see FIG. 2) and calculate the evaluation value for the inspection target unit 52.
  • the image processing unit 250 may divide the inspection image into a plurality of parts, set each part as an inspection target part 52, and calculate an evaluation value for each inspection target part 52.
  • the image processing unit 250 determines whether the inspection target unit 52 for which the evaluation value is calculated satisfies the appearance abnormality detection condition (step S15). When the evaluation value is equal to or higher than a predetermined value, the image processing unit 250 may determine that the inspection target unit 52 satisfies the condition for detecting the appearance abnormality, that is, includes the appearance abnormality. The image processing unit 250 may determine that the inspection target unit 52 satisfies the condition for detecting an appearance abnormality when the difference in brightness or the difference in chromaticity is equal to or greater than a predetermined value.
  • the image processing unit 250 determines whether each inspection target unit 52 satisfies the detection condition of the appearance abnormality. Good.
  • step S15 determines that the appearance abnormality detection condition is not satisfied (step S15: NO)
  • the image processing unit 250 proceeds to the procedure of step S17.
  • step S15: YES determines that the condition for detecting the appearance abnormality is satisfied (step S15: YES)
  • step S16 detects the inspection target unit 52 as the appearance abnormality
  • the lighting device 20 determines whether to change to the inspection light corresponding to another classification (step S17). From steps S11 to S16, the inspection device 200 can detect the appearance abnormality included in the predetermined classification with high accuracy. On the other hand, the inspection device 200 may not be able to detect the appearance abnormality included in other classifications. By emitting the inspection light corresponding to the other classification to the lighting device 20, the inspection device 200 may be able to detect the appearance abnormality included in the other classification, which has not been detected yet. The lighting device 20 may determine to change to the inspection light corresponding to another classification based on the operation of the administrator of the inspection device 200, or may automatically determine to change to the inspection light corresponding to the other classification. You may.
  • the illuminating device 20 may acquire information regarding which classification the spectrum of the inspection light corresponding to the spectrum determining device 30 can output. Based on the information, the illuminating device 20 may determine whether to change to the inspection light corresponding to another classification, or may determine which classification to change to the inspection light.
  • step S17: NO When it is determined that the lighting device 20 does not change to the inspection light corresponding to another classification (step S17: NO), the processing of the flowchart of FIG. 10 ends.
  • the illumination device 20 determines that the inspection light is changed to the inspection light corresponding to another classification (step S17: YES)
  • the illumination device 20 acquires the spectrum of the inspection light corresponding to the other classification from the spectrum determining device 30 (step S18).
  • the lighting device 20 may output information for designating the classification to the spectrum determining device 30 and acquire the spectrum of the inspection light corresponding to the classification from the spectrum determining device 30.
  • the lighting device 20 returns to the procedure of step S12 after executing the procedure of step S18.
  • step S12 the lighting device 20 emits the inspection light specified by the spectrum acquired from the spectrum determining device 30 to the light emitting unit 10.
  • the inspection device 200 continues the procedure after step S13.
  • the inspection device 200 can improve the detection accuracy of the appearance abnormality in the sample 50 by emitting the inspection light corresponding to the predetermined classification to the lighting device 20.
  • the procedure for detecting the appearance abnormality in steps S15 and S16 may be replaced by the step of the inspector 8 inspecting.
  • the procedure for changing the inspection light in step S17 may be replaced by a step in which the inspector 8 operates to change the inspection light.
  • the spectrum determination device 30 may acquire information associated with the sample 50 to be inspected.
  • the information associated with the sample 50 as an inspection target is also referred to as inspection target information.
  • the inspection target information may include information that identifies the classification of appearance abnormalities that may be contained in the sample 50.
  • the inspection target information may include information regarding the color or outer shape of the sample 50.
  • the inspection target information may include information that identifies the sample 50.
  • the sample 50 may be specified by information such as a part number of an electronic device.
  • the inspection target information may be stored in an IC tag or the like attached to the sample 50.
  • the spectrum determination device 30 may acquire inspection target information from an IC tag or the like.
  • the inspection target information of the sample 50 referred to for determining the spectrum may be associated with the determined spectrum. ..
  • the spectrum determination device 30 may generate a database in which the inspection target information and the determined spectrum are associated with each other.
  • the spectrum determination device 30 may extract a spectrum associated with the inspection target information of the sample 50 from the database and output the extracted spectrum to the illumination device 20 as a spectrum of the inspection light.
  • the inspection target information associated with the spectrum in the database may include the classification of appearance anomalies referenced to determine the spectrum.
  • the database may be stored in the inspection device 200.
  • the inspection device 200 may extract the spectrum of the inspection light from the database based on the inspection target information and emit the inspection light to the lighting device 20.
  • the inspection device 200 extracts the spectrum of the inspection light from the database, it becomes easy to control the spectrum of the inspection light based on the inspection target information. As a result, the detection accuracy of the appearance abnormality is likely to be improved.
  • the spectrum determination device 30 may be configured independently of the inspection device 200.
  • the spectrum determination device 30 may acquire an image captured from an image pickup device 40 not included in the inspection device 200 and determine the spectrum of the inspection light based on the captured image.
  • the time used for the inspection in the operating time of the inspection device 200 is compared with the case where the captured image is acquired by using the inspection device 200. It can be long. As a result, the operating rate of the inspection device 200 can be increased.
  • the spectrum determination device 30 may determine the spectrum of the inspection light corresponding to a plurality of different classifications. In this case, the spectrum determining device 30 may select an appropriate spectrum based on the inspection target information and output it to the lighting device 20. The spectrum determination device 30 may select a spectrum based on the classification specified by the lighting device 20 and output the spectrum to the lighting device 20. The spectrum may be automatically selected in the inspection device 200, or may be selected based on an operation from the operator of the inspection device 200.
  • the spectrum determination device 30 can detect the appearance abnormality contained in the sample 50 with high accuracy after the sample 50 to be inspected is carried into the inspection device 200.
  • the spectrum of the inspection light may be determined.
  • the first light emitting unit and the second light emitting unit can emit inspection light corresponding to the first classification and the second classification, respectively. It may be configured.
  • the inspection device 200 may select either the first light emitting unit or the second light emitting unit and emit the inspection light based on the inspection target information.
  • the descriptions such as “first” and “second” are identifiers for distinguishing the configuration.
  • the configurations distinguished by the descriptions such as “first” and “second” in the present disclosure can exchange numbers in the configurations.
  • the identifiers “first” and “second” can be exchanged with the second classification.
  • the exchange of identifiers takes place at the same time.
  • the configuration is distinguished.
  • the identifier may be deleted.
  • the configuration with the identifier removed is distinguished by a code. Based solely on the description of identifiers such as “first” and “second” in the present disclosure, it shall not be used as a basis for interpreting the order of the configurations and for the existence of identifiers with smaller numbers.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

This spectrum determination device: acquires a captured image of a sampling subject part that includes a first region in which a first exterior abnormality included in a prescribed classification is positioned, as well as a second region, and also acquires spectrum information pertaining to sampling light with which the sampling subject part is irradiated in order to capture the captured image; calculates an evaluation index based on a brightness difference and/or a color difference between a portion of the captured image in which the first region is captured and a portion of the captured image in which the second region is captured; and determines, on the basis of the evaluation index and the spectrum information pertaining to the sampling light, the spectrum of inspection light with which an inspection subject part is irradiated in order to detect whether the inspection subject part includes a second exterior abnormality included in the prescribed classification.

Description

スペクトル決定装置、スペクトル決定方法、スペクトル決定プログラム、照明システム、照明装置及び検査装置Spectral determination device, spectrum determination method, spectrum determination program, lighting system, lighting device and inspection device 関連出願へのクロスリファレンスCross-reference to related applications
 本出願は、日本国特許出願2019-99723号(2019年5月28日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2019-99723 (filed May 28, 2019), and the entire disclosure of the application is incorporated herein by reference.
 本開示は、スペクトル決定装置、スペクトル決定方法、スペクトル決定プログラム、照明システム、照明装置及び検査装置に関する。 The present disclosure relates to a spectrum determination device, a spectrum determination method, a spectrum determination program, a lighting system, a lighting device, and an inspection device.
 対象物の外観を検査する外観検査装置において、対象物を照明する照明装置が知られている(例えば、特許文献1参照)。 Among the visual inspection devices for inspecting the appearance of an object, a lighting device for illuminating the object is known (see, for example, Patent Document 1).
国際公開第2018/150607号International Publication No. 2018/150607
 本開示の一実施形態に係るスペクトル決定装置は、プロセッサを備える。前記プロセッサは、サンプリング対象部の撮像画像と、前記撮像画像を撮像するために前記サンプリング対象部を照らしているサンプリング光のスペクトル情報とを取得する。前記サンプリング対象部は、所定の分類に含まれる第1外観異常が位置する第1領域と、前記第1領域から所定範囲内の少なくとも一部に広がるとともに、前記第1外観異常が位置しない領域を有する第2領域とを含む。前記プロセッサは、前記撮像画像における、前記第1領域を撮像した部分と前記第2領域を撮像した部分との間の、明度差及び色度差のうち少なくとも一方に基づく評価指標を算出する。前記プロセッサは、検査対象部が前記所定の分類に含まれる第2外観異常を含んでいるか検出するために前記検査対象部を照らす検査光のスペクトルを、前記評価指標と前記サンプリング光のスペクトル情報とに基づいて決定する。 The spectrum determination device according to the embodiment of the present disclosure includes a processor. The processor acquires the captured image of the sampling target portion and the spectral information of the sampling light illuminating the sampling target portion in order to capture the captured image. The sampling target portion includes a first region in which the first appearance abnormality included in a predetermined classification is located and a region in which the first appearance abnormality is not located while extending from the first region to at least a part within a predetermined range. Includes a second region having. The processor calculates an evaluation index based on at least one of a brightness difference and a chromaticity difference between a portion of the captured image in which the first region is imaged and a portion in which the second region is imaged. The processor uses the spectrum of the inspection light that illuminates the inspection target portion to detect whether the inspection target portion includes the second appearance abnormality included in the predetermined classification, the evaluation index, and the spectrum information of the sampling light. Determined based on.
 本開示の一実施形態に係るスペクトル決定方法は、サンプリング対象部の撮像画像と、前記撮像画像を撮像するために前記サンプリング対象部を照らしているサンプリング光のスペクトル情報とを取得するステップを含む。前記サンプリング対象部は、所定の分類に含まれる第1外観異常が位置する第1領域と、前記第1領域から所定範囲内の少なくとも一部に広がる第2領域とを含む。前記スペクトル決定方法は、前記撮像画像における、前記第1領域を撮像した部分と前記第2領域を撮像した部分との間の、明度差及び色度差のうち少なくとも一方に基づく評価指標を算出するステップを含む。前記スペクトル決定方法は、検査対象部が前記所定の分類に含まれる第2外観異常を含んでいるか検出するために前記検査対象部を照らす検査光のスペクトルを、前記評価指標と前記サンプリング光のスペクトル情報とに基づいて決定するステップを含む。 The spectrum determination method according to the embodiment of the present disclosure includes a step of acquiring a captured image of a sampling target portion and spectrum information of sampling light illuminating the sampling target portion in order to capture the captured image. The sampling target portion includes a first region in which a first appearance abnormality included in a predetermined classification is located, and a second region extending from the first region to at least a part within a predetermined range. The spectrum determination method calculates an evaluation index based on at least one of a brightness difference and a chromaticity difference between a portion in which the first region is imaged and a portion in which the second region is imaged in the captured image. Including steps. In the spectrum determination method, the spectrum of the inspection light that illuminates the inspection target portion in order to detect whether the inspection target portion contains the second appearance abnormality included in the predetermined classification is the spectrum of the evaluation index and the sampling light. Includes informed and informed decisions.
 本開示の一実施形態に係るスペクトル決定プログラムは、プロセッサによって実行される。前記スペクトル決定プログラムは、サンプリング対象部の撮像画像と、前記撮像画像を撮像するために前記サンプリング対象部を照らしているサンプリング光のスペクトル情報とを取得するステップを含む。前記サンプリング対象部は、所定の分類に含まれる第1外観異常が位置する第1領域と、前記第1領域から所定範囲内の少なくとも一部に広がる第2領域とを含む。前記スペクトル決定プログラムは、前記撮像画像における、前記第1領域を撮像した部分と前記第2領域を撮像した部分との間の、明度差及び色度差のうち少なくとも一方に基づく評価指標を算出するステップを含む。前記スペクトル決定プログラムは、検査対象部が前記所定の分類に含まれる第2外観異常を含んでいるか検出するために前記検査対象部を照らす検査光のスペクトルを、前記評価指標と前記サンプリング光のスペクトル情報とに基づいて決定するステップを含む。 The spectrum determination program according to the embodiment of the present disclosure is executed by a processor. The spectrum determination program includes a step of acquiring a captured image of a sampling target portion and spectral information of sampling light illuminating the sampling target portion in order to capture the captured image. The sampling target portion includes a first region in which a first appearance abnormality included in a predetermined classification is located, and a second region extending from the first region to at least a part within a predetermined range. The spectrum determination program calculates an evaluation index based on at least one of a brightness difference and a chromaticity difference between a portion of the captured image in which the first region is imaged and a portion in which the second region is imaged. Including steps. The spectrum determination program uses the spectrum of the inspection light that illuminates the inspection target portion to detect whether the inspection target portion includes the second appearance abnormality included in the predetermined classification, and the spectrum of the evaluation index and the sampling light. Includes informed and informed decisions.
 本開示の一実施形態に係る照明システムは、照明装置と、スペクトル決定装置とを備える。前記スペクトル決定装置は、サンプリング対象部の撮像画像と、前記撮像画像を撮像するために前記サンプリング対象部を照らしているサンプリング光のスペクトル情報とを取得する。前記サンプリング対象部は、所定の分類に含まれる第1外観異常が位置する第1領域と、前記第1領域から所定範囲内の少なくとも一部に広がる第2領域とを含む。前記スペクトル決定装置は、前記撮像画像における、前記第1領域を撮像した部分と前記第2領域を撮像した部分との間の、明度差及び色度差のうち少なくとも一方に基づく評価指標を算出する。前記スペクトル決定装置は、検査対象部が前記所定の分類に含まれる第2外観異常を含んでいるか検出するために前記検査対象部を照らす検査光のスペクトルを、前記評価指標と前記サンプリング光のスペクトル情報とに基づいて決定する。前記照明装置は、前記検査光を前記検査対象部に射出する。 The lighting system according to the embodiment of the present disclosure includes a lighting device and a spectrum determining device. The spectrum determination device acquires a captured image of the sampling target portion and spectrum information of the sampling light illuminating the sampling target portion in order to capture the captured image. The sampling target portion includes a first region in which a first appearance abnormality included in a predetermined classification is located, and a second region extending from the first region to at least a part within a predetermined range. The spectrum determining device calculates an evaluation index based on at least one of a brightness difference and a chromaticity difference between a portion of the captured image in which the first region is imaged and a portion in which the second region is imaged. .. The spectrum determining device uses the spectrum of the inspection light that illuminates the inspection target portion to detect whether the inspection target portion includes the second appearance abnormality included in the predetermined classification, and the spectrum of the evaluation index and the sampling light. Make an informed decision. The lighting device emits the inspection light to the inspection target portion.
 本開示の一実施形態に係る照明装置は、発光部と、前記発光部を制御する照明制御部とを備える。前記照明制御部は、サンプリング光で照らされているサンプリング対象部の撮像画像に基づいて算出された評価指標と、前記サンプリング光のスペクトル情報とに基づいて決定されたスペクトルに関する情報を取得する。前記照明制御部は、前記発光部に、前記スペクトルで特定される検査光を射出させる。前記サンプリング対象部は、所定の分類に含まれる第1外観異常が位置する第1領域と前記第1領域から所定範囲内の少なくとも一部に広がる第2領域とを含む。前記評価指標は、前記第1領域を撮像した部分と前記第2領域を撮像した部分との間の、明度差及び色度差のうち少なくとも一方に基づく。前記発光部は、前記所定の分類に含まれる第2外観異常の検査対象となる検査対象部に前記検査光を射出する。 The lighting device according to the embodiment of the present disclosure includes a light emitting unit and a lighting control unit that controls the light emitting unit. The illumination control unit acquires information on the spectrum determined based on the evaluation index calculated based on the captured image of the sampling target unit illuminated by the sampling light and the spectrum information of the sampling light. The illumination control unit emits the inspection light specified in the spectrum to the light emitting unit. The sampling target portion includes a first region in which a first appearance abnormality included in a predetermined classification is located and a second region extending from the first region to at least a part within a predetermined range. The evaluation index is based on at least one of a difference in brightness and a difference in chromaticity between the portion in which the first region is imaged and the portion in which the second region is imaged. The light emitting unit emits the inspection light to the inspection target portion to be inspected for the second appearance abnormality included in the predetermined classification.
 本開示の一実施形態に係る検査装置は、照明装置と、サンプルホルダとを備える。前記照明装置は、サンプリング光で照らされているサンプリング対象部の撮像画像に基づいて算出された評価指標と、前記サンプリング光のスペクトル情報とに基づいて決定されたスペクトルで特定される検査光を射出する。前記サンプリング対象部は、所定の分類に含まれる第1外観異常が位置する第1領域と前記第1領域から所定範囲内の少なくとも一部に広がる第2領域とを含む。前記評価指標は、前記第1領域を撮像した部分と前記第2領域を撮像した部分との間の、明度差及び色度差のうち少なくとも一方に基づく。前記サンプルホルダは、検査対象物が前記検査光で照明されるように、前記検査対象物を配置可能に構成される。前記検査対象物は、前記所定の分類に含まれる第2外観異常の検査対象となる検査対象部を含む。 The inspection device according to the embodiment of the present disclosure includes a lighting device and a sample holder. The lighting device emits inspection light specified by a spectrum determined based on an evaluation index calculated based on an image captured by a sampling target portion illuminated by the sampling light and spectral information of the sampling light. To do. The sampling target portion includes a first region in which a first appearance abnormality included in a predetermined classification is located and a second region extending from the first region to at least a part within a predetermined range. The evaluation index is based on at least one of a difference in brightness and a difference in chromaticity between the portion in which the first region is imaged and the portion in which the second region is imaged. The sample holder is configured so that the inspection object can be arranged so that the inspection object is illuminated by the inspection light. The inspection target includes an inspection target portion to be inspected for the second appearance abnormality included in the predetermined classification.
一実施形態に係る照明システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the lighting system which concerns on one Embodiment. サンプルの構成例を示す図である。It is a figure which shows the structural example of a sample. 一実施形態に係るスペクトル決定方法の手順例を示すフローチャートである。It is a flowchart which shows the procedure example of the spectrum determination method which concerns on one Embodiment. 発光部の構成例を示す外観斜視図である。It is an external perspective view which shows the structural example of the light emitting part. 図4のA-A断面図である。FIG. 4 is a cross-sectional view taken along the line AA of FIG. 図5の丸囲み部の拡大図である。It is an enlarged view of the circled part of FIG. 一実施形態に係る検査装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the inspection apparatus which concerns on one Embodiment. サンプルがリング照明で照明される構成例を示す断面図である。It is sectional drawing which shows the structural example in which a sample is illuminated by ring illumination. サンプルがテレセントリック照明で照明される構成例を示す断面図である。It is sectional drawing which shows the structural example in which a sample is illuminated by telecentric illumination. 一実施形態に係る検査方法の手順例を示すフローチャートである。It is a flowchart which shows the procedure example of the inspection method which concerns on one Embodiment.
 検査対象の照明方法によって、検査対象に含まれる欠陥又は色むら等の外観異常が検出されやすくなったり、検出されにくくなったりする。外観検査の精度の向上が求められる。 Depending on the lighting method of the inspection target, appearance abnormalities such as defects or color unevenness contained in the inspection target may be easily detected or may be difficult to detect. It is required to improve the accuracy of visual inspection.
 図1に示されるように、一実施形態に係る照明システム1は、照明装置20と、スペクトル決定装置30とを備える。照明装置20は、サンプル50を照明する。スペクトル決定装置30は、照明装置20がサンプル50に向けて射出する光のスペクトルを決定する。照明装置20がサンプル50に向けて射出する光は、照明光とも称される。スペクトル決定装置30は、サンプル50に関する情報に基づいて、照明光のスペクトルを決定してよい。照明システム1は、サンプル50に関する情報として、サンプル50の画像を撮像する撮像装置40をさらに備えてよい。 As shown in FIG. 1, the lighting system 1 according to the embodiment includes a lighting device 20 and a spectrum determining device 30. The illuminating device 20 illuminates the sample 50. The spectrum determination device 30 determines the spectrum of the light emitted by the illumination device 20 toward the sample 50. The light emitted by the illuminating device 20 toward the sample 50 is also referred to as illuminating light. The spectrum determination device 30 may determine the spectrum of the illumination light based on the information about the sample 50. The lighting system 1 may further include an imaging device 40 that captures an image of the sample 50 as information about the sample 50.
 照明装置20は、発光部10と、照明制御部22とを備える。 The lighting device 20 includes a light emitting unit 10 and a lighting control unit 22.
 発光部10は、後述するように、所定のスペクトルで特定される光を照明光として射出する。所定のスペクトルは、例えば、360nm~430nmの波長領域にピーク波長を有するとともに、360nm~780nmの波長領域にピーク波長を有してよい。360nm~430nmの波長領域にピーク波長を有する光は、紫色光ともいう。360nm~430nmの波長領域は、紫色光領域ともいう。360nm~780nmの波長領域にピーク波長を有する光は、可視光ともいう。360nm~780nmの波長領域は、可視光領域ともいう。光を特定するスペクトルは、例えば、分光測光装置などにより分光法を用いて測定される。 As will be described later, the light emitting unit 10 emits light specified in a predetermined spectrum as illumination light. The predetermined spectrum may have a peak wavelength in the wavelength region of 360 nm to 430 nm and a peak wavelength in the wavelength region of 360 nm to 780 nm, for example. Light having a peak wavelength in the wavelength region of 360 nm to 430 nm is also referred to as purple light. The wavelength region of 360 nm to 430 nm is also referred to as a purple light region. Light having a peak wavelength in the wavelength region of 360 nm to 780 nm is also referred to as visible light. The wavelength region of 360 nm to 780 nm is also referred to as a visible light region. The spectrum that identifies light is measured by spectroscopic methods using, for example, a spectrophotometer.
 照明制御部22は、発光部10が射出する光のスペクトル又は強度を制御する。照明制御部22は、種々の機能を実行するための制御及び処理能力を提供するために、少なくとも1つのプロセッサを含んでよい。プロセッサは、照明制御部22の種々の機能を実現するプログラムを実行しうる。プロセッサは、単一の集積回路として実現されてよい。集積回路は、IC(Integrated Circuit)ともいう。プロセッサは、複数の通信可能に接続された集積回路及びディスクリート回路として実現されてよい。プロセッサは、他の種々の既知の技術に基づいて実現されてよい。 The illumination control unit 22 controls the spectrum or intensity of the light emitted by the light emitting unit 10. The illumination control unit 22 may include at least one processor in order to provide control and processing power for performing various functions. The processor can execute a program that realizes various functions of the lighting control unit 22. The processor may be implemented as a single integrated circuit. The integrated circuit is also called an IC (Integrated Circuit). The processor may be implemented as a plurality of communicably connected integrated circuits and discrete circuits. The processor may be implemented on the basis of various other known techniques.
 照明制御部22は、インタフェースを含んでよい。照明制御部22は、インタフェースを介して、有線又は無線によって、スペクトル決定装置30と通信可能に接続されてよい。インタフェースは、LAN(Local Area Network)等の通信インタフェースを含んでよい。インタフェースは、4G(4th Generation)若しくは5G(5th Generation)又はLTE(Long Term Evolution)等の種々の通信方式による通信を実現してもよい。インタフェースは、赤外線通信又はNFC(Near Field Communication)通信等の非接触通信の通信インタフェースを備えてもよい。インタフェースは、RS232C又はRS485等のシリアル通信規格に基づく信号を入出力可能なポートを含んでもよい。 The lighting control unit 22 may include an interface. The illumination control unit 22 may be communicably connected to the spectrum determining device 30 via an interface, either by wire or wirelessly. The interface may include a communication interface such as a LAN (Local Area Network). The interface may realize communication by various communication methods such as 4G (4th Generation), 5G (5th Generation), or LTE (Long Term Evolution). The interface may include a communication interface for non-contact communication such as infrared communication or NFC (Near Field Communication) communication. The interface may include a port capable of inputting and outputting signals based on a serial communication standard such as RS232C or RS485.
 照明制御部22は、記憶部を含んでよい。記憶部は、磁気ディスク等の電磁記憶媒体を含んでよいし、半導体メモリ又は磁気メモリ等のメモリを含んでもよい。記憶部は、各種情報及び照明制御部22で実行されるプログラム等を格納する。記憶部は、照明制御部22のワークメモリとして機能してよい。記憶部の少なくとも一部は、照明制御部22と別体で構成されてもよい。 The lighting control unit 22 may include a storage unit. The storage unit may include an electromagnetic storage medium such as a magnetic disk, or may include a memory such as a semiconductor memory or a magnetic memory. The storage unit stores various information and programs executed by the lighting control unit 22. The storage unit may function as a work memory of the lighting control unit 22. At least a part of the storage unit may be configured separately from the lighting control unit 22.
 スペクトル決定装置30は、決定部32を含んでよい。決定部32は、照明装置20が射出する光を特定するスペクトルを決定する。決定部32は、種々の機能を実行するための制御及び処理能力を提供するために、少なくとも1つのプロセッサを含んでよい。決定部32が含むプロセッサは、照明制御部22のプロセッサと同一又は類似の構成を含んでよい。決定部32は、インタフェースを含んでよい。決定部32は、インタフェースを介して、有線又は無線によって、照明装置20と通信可能に接続されてよい。決定部32が含むインタフェースは、照明制御部22のインタフェースと同一又は類似の構成を含んでよい。 The spectrum determination device 30 may include a determination unit 32. The determination unit 32 determines a spectrum that identifies the light emitted by the illuminating device 20. The determination unit 32 may include at least one processor to provide control and processing power to perform various functions. The processor included in the determination unit 32 may include the same or similar configuration as the processor of the lighting control unit 22. The determination unit 32 may include an interface. The determination unit 32 may be communicably connected to the lighting device 20 via an interface, either by wire or wirelessly. The interface included in the determination unit 32 may include the same or similar configuration as the interface of the lighting control unit 22.
 撮像装置40は、サンプル50を撮像するカメラ等の撮像デバイスを含む。 The imaging device 40 includes an imaging device such as a camera that images the sample 50.
 本実施形態に係る照明システム1は、サンプル50となる工業製品の製造ラインの検査工程に設置されるとする。サンプル50は、例えば、電子機器等を含んでもよい。サンプル50は、電子機器の内部に実装されている回路基板を含んでもよいし、回路基板の上に実装されている電子部品又は配線を含んでもよい。サンプル50は、電子機器の外面を含んでもよい。サンプル50は、これらの例に限られない。照明システム1は、工業製品の検査工程に限られず、例えば、野菜等の農業製品、又は、チーズ等の酪農製品等の種々の製品の検査工程に設置されてもよい。照明システム1及び照明装置20は、物品の検査用であっってよい。 It is assumed that the lighting system 1 according to the present embodiment is installed in the inspection process of the production line of the industrial product as the sample 50. The sample 50 may include, for example, an electronic device or the like. The sample 50 may include a circuit board mounted inside the electronic device, or may include an electronic component or wiring mounted on the circuit board. Sample 50 may include the outer surface of the electronic device. Sample 50 is not limited to these examples. The lighting system 1 is not limited to the inspection process of industrial products, and may be installed in the inspection process of various products such as agricultural products such as vegetables or dairy products such as cheese. The lighting system 1 and the lighting device 20 may be for inspection of articles.
 照明システム1は、検査員8がサンプル50の外観を目視で検査するために用いる検査装置200(図7参照)に設置されてもよい。照明システム1が検査装置200に設置される場合、検査員8は、検査装置200を用いてサンプル50の外観を目視で検査する。検査員8は、外観の目視検査によって、サンプル50の外観異常を検出してよい。照明システム1は、検査員8がサンプル50の外観異常を高精度で検出できるように照射光を制御することが求められる。 The lighting system 1 may be installed in an inspection device 200 (see FIG. 7) used by the inspector 8 to visually inspect the appearance of the sample 50. When the lighting system 1 is installed in the inspection device 200, the inspector 8 visually inspects the appearance of the sample 50 using the inspection device 200. The inspector 8 may detect an appearance abnormality of the sample 50 by visual inspection of the appearance. The lighting system 1 is required to control the irradiation light so that the inspector 8 can detect the appearance abnormality of the sample 50 with high accuracy.
 照明システム1は、サンプル50の外観を撮像装置40によって撮像した画像に基づいて、サンプル50の外観異常を自動で検出する異常検出装置に設置されてもよい。照明システム1は、異常検出装置に設置される場合においても、異常検出装置がサンプル50の外観異常を高精度で検出できるように照射光を制御することが求められる。 The lighting system 1 may be installed in an abnormality detecting device that automatically detects an abnormality in the appearance of the sample 50 based on an image obtained by capturing the appearance of the sample 50 by the imaging device 40. Even when the lighting system 1 is installed in the abnormality detecting device, it is required to control the irradiation light so that the abnormality detecting device can detect the appearance abnormality of the sample 50 with high accuracy.
 照明システム1が検査対象となるサンプル50に向けて射出する照明光は、検査光とも称される。スペクトル決定装置30は、サンプル50の外観異常が検査員8又は異常検出装置によって高精度で検出されるように、検査光のスペクトルを決定する。 The illumination light emitted by the illumination system 1 toward the sample 50 to be inspected is also referred to as inspection light. The spectrum determination device 30 determines the spectrum of the inspection light so that the appearance abnormality of the sample 50 is detected with high accuracy by the inspector 8 or the abnormality detection device.
 図2に示されるように、サンプル50は、サンプリング対象部51を含む。サンプリング対象部51は、異常部55を含む第1領域51aと、異常部55を含まない第2領域51bとを含む。異常部55は、サンプル50が有している外観異常の少なくとも一部に対応する。第2領域51bは、第1領域51aを含む所定範囲内の少なくとも一部に広がっているとする。言い換えれば、第2領域51bは、第1領域51aから所定距離以内に位置しているとする。 As shown in FIG. 2, the sample 50 includes a sampling target portion 51. The sampling target portion 51 includes a first region 51a including the abnormal portion 55 and a second region 51b not including the abnormal portion 55. The abnormal portion 55 corresponds to at least a part of the appearance abnormality of the sample 50. It is assumed that the second region 51b extends to at least a part of a predetermined range including the first region 51a. In other words, it is assumed that the second region 51b is located within a predetermined distance from the first region 51a.
 外観異常は、種々の態様を含みうる。外観異常は、サンプル50の表面に存在する窪み、膨れ、又は突起等の意図しない凹凸を有している態様を含んでよい。窪みは、打痕を含んでもよい。突起は、塗装面又は外装面の捲れを含んでもよい。外観異常は、サンプル50に入っているキズ、クラック又は割れ等の、破損している態様を含んでよい。外観異常は、サンプル50の表面に付着しているゴミ又は埃等の異物としての態様を含んでよい。外観異常は、サンプル50の表面の色味が検査基準と異なっていたりサンプル50の表面の色にムラがあったりする態様を含んでよい。サンプル50が回路基板である場合、外観異常は、回路基板の上に実装されている配線のカスレ又は配線のパターン欠損等の、パターンに異常が生じている態様を含んでよい。 Appearance abnormalities can include various aspects. The appearance abnormality may include an embodiment having unintended irregularities such as dents, bulges, or protrusions existing on the surface of the sample 50. The depression may include a dent. The protrusions may include curls on the painted or exterior surfaces. The appearance abnormality may include a damaged aspect such as a scratch, a crack or a crack contained in the sample 50. The appearance abnormality may include an aspect as a foreign substance such as dust or dirt adhering to the surface of the sample 50. The appearance abnormality may include an aspect in which the color of the surface of the sample 50 is different from the inspection standard or the color of the surface of the sample 50 is uneven. When the sample 50 is a circuit board, the appearance abnormality may include an aspect in which the pattern is abnormal, such as a blurring of the wiring mounted on the circuit board or a pattern defect of the wiring.
 外観異常は、その態様に基づいて分類されてよい。例えば、キズと、異物の付着とは、異なる態様の外観異常として分類されてよい。つまり、外観異常は、所定の態様に分類されてよい。外観異常が所定の態様に分類される場合、外観異常が所定の分類に含まれるとも表現される。外観異常は、その程度に基づいて分類されてもよい。例えば、外観異常が凹凸を有する態様を含む場合、外観異常は、凹凸の大きさに基づいて分類されてもよい。第1領域51aに含まれる外観異常は、第1外観異常とも称される。第1外観異常が所定の分類に含まれる場合、その分類は、第1分類とも称される。 Appearance abnormalities may be classified based on the mode. For example, scratches and adhesion of foreign matter may be classified as different aspects of appearance abnormality. That is, the appearance abnormality may be classified into a predetermined mode. When the appearance abnormality is classified into a predetermined mode, it is also expressed that the appearance abnormality is included in the predetermined classification. Appearance abnormalities may be classified based on their degree. For example, when the appearance abnormality includes an aspect having unevenness, the appearance abnormality may be classified based on the size of the unevenness. The appearance abnormality included in the first region 51a is also referred to as a first appearance abnormality. When the first appearance abnormality is included in a predetermined classification, the classification is also referred to as the first classification.
 サンプル50は、さらに検査対象部52を含んでよい。検査対象部52は、サンプリング対象部51を含むサンプル50とは異なる他のサンプル50に含まれてもよい。図2において、検査対象部52は、サンプリング対象部51が含まれるサンプル50と同じサンプル50に含まれる。検査対象部52は、外観異常の少なくとも一部を含む可能性があるとともに、外観異常を含まない可能性もある。つまり、検査対象部52が外観異常の少なくとも一部を含むか外観異常を含まないかは不明であるとする。検査対象部52が外観異常を含む場合、その外観異常は、第2外観異常とも称される。第2外観異常は、第1分類に含まれる可能性があるとともに、第1分類とは異なる第2分類に含まれる可能性もある。つまり、第2外観異常がどの分類に含まれるかは不明であるとする。本実施形態において、第2外観異常は、第1分類に含まれるとする。 Sample 50 may further include the inspection target portion 52. The inspection target portion 52 may be included in another sample 50 different from the sample 50 including the sampling target portion 51. In FIG. 2, the inspection target portion 52 is included in the same sample 50 as the sample 50 including the sampling target portion 51. The inspection target portion 52 may include at least a part of the appearance abnormality and may not include the appearance abnormality. That is, it is unclear whether the inspection target portion 52 includes at least a part of the appearance abnormality or does not include the appearance abnormality. When the inspection target portion 52 includes an appearance abnormality, the appearance abnormality is also referred to as a second appearance abnormality. The second appearance abnormality may be included in the first category and may be included in the second category different from the first category. That is, it is unclear which classification the second appearance abnormality is included in. In the present embodiment, the second appearance abnormality is included in the first classification.
 スペクトル決定装置30は、検査対象部52が第2外観異常を含むか不明である場合でも、第2外観異常を高精度で検出できるように第1外観異常の検査結果に基づいて検査対象部52を照らす検査光のスペクトルを決定する。 The spectrum determination device 30 is inspected based on the inspection result of the first appearance abnormality so that the second appearance abnormality can be detected with high accuracy even when it is unknown whether the inspection target portion 52 includes the second appearance abnormality. Determine the spectrum of the test light that illuminates.
 スペクトル決定装置30は、例えば図3に示されるフローチャートの手順を実行することによって、検査光のスペクトルを決定してよい。スペクトル決定装置30が検査光のスペクトルを決定する方法は、スペクトル決定方法とも称される。図3に例示される手順は、プロセッサによって実行されるプログラムとして実現されてもよい。スペクトル決定装置30が検査光のスペクトルを決定するために実行するプログラムは、スペクトル決定プログラムとも称される。 The spectrum determination device 30 may determine the spectrum of the inspection light, for example, by executing the procedure of the flowchart shown in FIG. The method in which the spectrum determination device 30 determines the spectrum of the inspection light is also referred to as a spectrum determination method. The procedure illustrated in FIG. 3 may be implemented as a program executed by a processor. The program executed by the spectrum determination device 30 to determine the spectrum of the inspection light is also referred to as a spectrum determination program.
 スペクトル決定装置30は、サンプリング対象部51が撮像されている画像を取得する(ステップS1)。サンプリング対象部51が撮像されている画像は、サンプリング対象部51の撮像画像とも称される。スペクトル決定装置30は、撮像装置40からサンプリング対象部51の撮像画像を取得してもよいし、外部装置からサンプリング対象部51の撮像画像を取得してもよい。サンプリング対象部51の撮像画像は、第1領域51aを撮像した部分と第2領域51bを撮像した部分とを含む。第1領域51a及び第2領域51bを撮像した部分は、それぞれ第1撮像画像及び第2撮像画像とも称される。第1撮像画像は、第1外観異常を含む。 The spectrum determination device 30 acquires an image in which the sampling target unit 51 is captured (step S1). The image in which the sampling target unit 51 is captured is also referred to as the captured image of the sampling target unit 51. The spectrum determination device 30 may acquire the captured image of the sampling target unit 51 from the imaging device 40, or may acquire the captured image of the sampling target unit 51 from an external device. The captured image of the sampling target portion 51 includes a portion in which the first region 51a is imaged and a portion in which the second region 51b is imaged. The portions obtained by imaging the first region 51a and the second region 51b are also referred to as a first captured image and a second captured image, respectively. The first captured image includes the first appearance abnormality.
 スペクトル決定装置30は、サンプリング対象部51が撮像されたときにサンプリング対象部51を照明していた光のスペクトルに関する情報を取得する(ステップS2)。サンプリング対象部51が撮像されたときにサンプリング対象部51に向けて射出されている照明光は、サンプリング光とも称される。サンプリング光のスペクトルに関する情報は、サンプリング光のスペクトル情報とも称される。 The spectrum determination device 30 acquires information regarding the spectrum of the light that was illuminating the sampling target unit 51 when the sampling target unit 51 was imaged (step S2). The illumination light emitted toward the sampling target unit 51 when the sampling target unit 51 is imaged is also referred to as sampling light. Information about the spectrum of the sampled light is also referred to as spectral information of the sampled light.
 スペクトル決定装置30は、撮像画像に基づいて評価指標を算出する(ステップS3)。スペクトル決定装置30は、第1撮像画像と第2撮像画像との間の明度差及び色度差のうち少なくとも一方を算出してよい。スペクトル決定装置30は、明度差及び色度差の少なくとも一方の算出結果に基づいて評価指標を算出してよい。スペクトル決定装置30は、明度差及び色度差の少なくとも一方の算出結果を重みづけして加算した値を評価指標として算出してもよい。 The spectrum determination device 30 calculates an evaluation index based on the captured image (step S3). The spectrum determination device 30 may calculate at least one of the difference in brightness and the difference in chromaticity between the first captured image and the second captured image. The spectrum determination device 30 may calculate the evaluation index based on the calculation result of at least one of the brightness difference and the chromaticity difference. The spectrum determination device 30 may calculate a value obtained by weighting and adding at least one of the calculation results of the brightness difference and the chromaticity difference as an evaluation index.
 第1撮像画像及び第2撮像画像の明度差は、階調のコントラストの大きさに対応する。階調のコントラストが大きいほど、検査員8は、第1領域51aと第2領域51bとの差を感じやすくなり、第1領域51a及び第2領域51bのいずれかに外観異常が存在することを検出しやすくなる。また、階調のコントラストが大きいほど、異常検出装置は、第1領域51aと第2領域51bとが異なると判定しやすくなり、第1領域51a及び第2領域51bのいずれかに外観異常が存在することを検出しやすくなる。 The difference in brightness between the first captured image and the second captured image corresponds to the magnitude of the contrast of the gradation. The larger the gradation contrast, the easier it is for the inspector 8 to feel the difference between the first region 51a and the second region 51b, and that there is an appearance abnormality in either the first region 51a or the second region 51b. It will be easier to detect. Further, the larger the gradation contrast, the easier it is for the abnormality detection device to determine that the first region 51a and the second region 51b are different, and there is an appearance abnormality in either the first region 51a or the second region 51b. It becomes easier to detect what to do.
 第1撮像画像及び第2撮像画像の色度差は、カラーコントラストの大きさに対応する。カラーコントラストが大きいほど、検査員8は、第1領域51aと第2領域51bとの差を感じやすくなり、第1領域51a及び第2領域51bのいずれかに外観異常が存在することを検出しやすくなる。また、カラーコントラストが大きいほど、異常検出装置は、第1領域51aと第2領域51bとが異なると判定しやすくなり、第1領域51a及び第2領域51bのいずれかに外観異常が存在することを検出しやすくなる。 The chromaticity difference between the first captured image and the second captured image corresponds to the magnitude of the color contrast. The larger the color contrast, the easier it is for the inspector 8 to feel the difference between the first region 51a and the second region 51b, and detect that there is an appearance abnormality in either the first region 51a or the second region 51b. It will be easier. Further, the larger the color contrast, the easier it is for the abnormality detection device to determine that the first region 51a and the second region 51b are different, and the appearance abnormality exists in either the first region 51a or the second region 51b. Is easier to detect.
 スペクトル決定装置30は、第1撮像画像と第2撮像画像との間の明度差が大きいほど評価指標を大きい値に算出してもよいし、色度差が大きいほど評価指標を大きい値に算出してもよい。スペクトル決定装置30は、明度差及び色度差の少なくとも一方が大きいほど評価指標を大きい値に算出してもよい。 The spectrum determination device 30 may calculate the evaluation index as a larger value as the brightness difference between the first captured image and the second captured image is larger, or calculate the evaluation index as a larger value as the chromaticity difference is larger. You may. The spectrum determination device 30 may calculate the evaluation index to a larger value as at least one of the difference in brightness and the difference in chromaticity is larger.
 スペクトル決定装置30は、サンプリング光のスペクトル情報と、そのサンプリング光に照明されたサンプリング対象部51で算出された評価指標とに基づいて、検査光のスペクトルを決定する(ステップS4)。スペクトル決定装置30は、評価指標とサンプリング光のスペクトル情報とを対応づける。スペクトル決定装置30は、高い評価指標に対応づけられるサンプリング光のスペクトルを検査光のスペクトルとして決定してよい。スペクトル決定装置30は、評価指標とサンプリング光のスペクトル情報との対応関係に基づいて、高い評価指標に対応しうる光のスペクトルを推定し、推定したスペクトルを検査光のスペクトルとして決定してもよい。 The spectrum determination device 30 determines the spectrum of the inspection light based on the spectrum information of the sampled light and the evaluation index calculated by the sampling target unit 51 illuminated by the sampled light (step S4). The spectrum determination device 30 associates the evaluation index with the spectrum information of the sampled light. The spectrum determination device 30 may determine the spectrum of the sampled light associated with the high evaluation index as the spectrum of the inspection light. The spectrum determining device 30 may estimate the spectrum of light that can correspond to a high evaluation index based on the correspondence between the evaluation index and the spectrum information of the sampled light, and determine the estimated spectrum as the spectrum of the inspection light. ..
 スペクトル決定装置30は、決定した検査光のスペクトルを照明装置20に出力する(ステップS5)。スペクトル決定装置30は、ステップS5の後、図3のフローチャートの手順の実行を終了する。照明システム1において、照明装置20は、スペクトル決定装置30から取得したスペクトルで特定される検査光を検査対象部52に向けて照射する。図3の手順例に沿って決定された検査光は、第1外観異常を含むサンプリング対象部51で算出された評価指標に基づく。したがって、第1外観異常が第1分類に含まれる場合、決定された検査光によって照明されるサンプル50から、第1分類の外観異常が検出されやすくなる。つまり、検査対象部52が第1分類の外観異常を含む場合、その外観異常が検出されやすくなる。その結果、検査員8又は異常検出装置は、検査対象部52が第1分類の外観異常を含むか高精度で判定できる。検査対象部52が第1分類の外観異常を含む場合、検査員8又は異常検出装置は、その外観異常を高精度で検出できる。 The spectrum determination device 30 outputs the determined spectrum of the inspection light to the illumination device 20 (step S5). After step S5, the spectrum determination device 30 ends the execution of the procedure shown in the flowchart of FIG. In the lighting system 1, the lighting device 20 irradiates the inspection target portion 52 with the inspection light specified by the spectrum acquired from the spectrum determining device 30. The inspection light determined according to the procedure example of FIG. 3 is based on the evaluation index calculated by the sampling target unit 51 including the first appearance abnormality. Therefore, when the first classification abnormality is included in the first classification, the appearance abnormality of the first classification is easily detected from the sample 50 illuminated by the determined inspection light. That is, when the inspection target portion 52 includes the appearance abnormality of the first category, the appearance abnormality is easily detected. As a result, the inspector 8 or the abnormality detection device can determine with high accuracy whether the inspection target unit 52 includes the appearance abnormality of the first category. When the inspection target unit 52 includes the appearance abnormality of the first category, the inspector 8 or the abnormality detection device can detect the appearance abnormality with high accuracy.
 スペクトル決定装置30は、ステップS1において、第1サンプリング光で照明されているときのサンプリング対象部51の撮像画像と、第2サンプリング光で照明されているときのサンプリング対象部51の撮像画像とを取得してよい。スペクトル決定装置30は、ステップS2において、第1サンプリング光及び第2サンプリング光それぞれのスペクトル情報を取得してよい。第1サンプリング光及び第2サンプリング光を特定するスペクトルは、それぞれ第1スペクトル及び第2スペクトルとも称される。スペクトル決定装置30は、ステップS3において、サンプリング対象部51が第1サンプリング光で照明されているときの評価指標として第1評価指標を算出してよい。スペクトル決定装置30は、サンプリング対象部51が第2サンプリング光で照明されているときの評価指標として第2評価指標を算出してよい。スペクトル決定装置30は、ステップS4において、ステップS3で算出した第1評価指標及び第2評価指標のうち大きい方の評価指標が得られる場合のサンプリング光のスペクトルを検査光のスペクトルとして決定してよい。スペクトル決定装置30は、3種類以上のサンプリング光それぞれについて評価指標を算出し、最も大きい評価指標が得られるサンプリング光のスペクトルを検査光のスペクトルとして決定してもよい。 In step S1, the spectrum determining device 30 obtains an image captured by the sampling target unit 51 when illuminated by the first sampling light and an image captured by the sampling target unit 51 when illuminated by the second sampling light. You may get it. The spectrum determining device 30 may acquire the spectrum information of each of the first sampling light and the second sampling light in step S2. The spectra that specify the first sampling light and the second sampling light are also referred to as the first spectrum and the second spectrum, respectively. In step S3, the spectrum determination device 30 may calculate the first evaluation index as the evaluation index when the sampling target unit 51 is illuminated with the first sampling light. The spectrum determination device 30 may calculate a second evaluation index as an evaluation index when the sampling target unit 51 is illuminated with the second sampling light. In step S4, the spectrum determination device 30 may determine the spectrum of the sampling light when the larger evaluation index of the first evaluation index and the second evaluation index calculated in step S3 is obtained as the spectrum of the inspection light. .. The spectrum determination device 30 may calculate an evaluation index for each of the three or more types of sampled light, and determine the spectrum of the sampled light from which the largest evaluation index is obtained as the spectrum of the inspection light.
 スペクトル決定装置30は、ステップS1において、第1外観異常が含まれるか含まれないか不明な撮像画像を取得してもよい。スペクトル決定装置30は、第1外観異常を含まないことが明白になっている撮像画像をさらに取得してもよい。第1外観異常を含まないことが明白になっている撮像画像は、良品画像とも称される。スペクトル決定装置30は、第1外観異常が含まれるか含まれないか不明な撮像画像を良品画像と比較することによって差異を検出してよい。スペクトル決定装置30は、検出した差異を第1外観異常とみなしてよい。スペクトル決定装置30は、サンプリング対象部51が第1外観異常とみなした部分を含むように、サンプリング対象部51の位置又は範囲を設定してよい。 In step S1, the spectrum determination device 30 may acquire an captured image in which it is unknown whether or not the first appearance abnormality is included. The spectrum determination device 30 may further acquire a captured image that is clearly free of the first appearance anomaly. The captured image that is clearly free of the first appearance abnormality is also referred to as a non-defective image. The spectrum determination device 30 may detect the difference by comparing the captured image in which it is unknown whether or not the first appearance abnormality is included with the non-defective image. The spectrum determination device 30 may consider the detected difference as the first appearance abnormality. The spectrum determination device 30 may set the position or range of the sampling target unit 51 so that the sampling target unit 51 includes a portion deemed to be the first appearance abnormality.
 スペクトル決定装置30は、第1分類とは異なる第2分類の外観異常を含むサンプリング対象部51の撮像画像を取得してよい。スペクトル決定装置30は、撮像画像に基づいて、サンプリング光に対応づけられる評価指標を算出してよい。スペクトル決定装置30は、高い評価指標に対応づけられるサンプリング光のスペクトルを、検査光のスペクトルとして決定してよい。このように決定された検査光によって照明されるサンプル50から、第2分類の外観異常が検出されやすくなる。照明システム1は、異なる分類の外観異常を検出しやすくする検査光のスペクトルをそれぞれ決定し、各分類の外観異常を検出する場合にサンプル50を照明する検査光を変更することによって、各分類の外観異常の検出精度を高めることができる。 The spectrum determination device 30 may acquire a captured image of the sampling target unit 51 including the appearance abnormality of the second classification different from the first classification. The spectrum determination device 30 may calculate an evaluation index associated with the sampled light based on the captured image. The spectrum determination device 30 may determine the spectrum of the sampled light associated with the high evaluation index as the spectrum of the inspection light. From the sample 50 illuminated by the inspection light determined in this way, the appearance abnormality of the second category is easily detected. The lighting system 1 determines the spectrum of the inspection light that facilitates the detection of the appearance abnormality of each classification, and changes the inspection light that illuminates the sample 50 when detecting the appearance abnormality of each classification. It is possible to improve the detection accuracy of appearance abnormalities.
 スペクトル決定装置30は、複数の分類に含まれる異常部55をそれぞれ検出しやすくする、共通の検査光のスペクトルを決定してもよい。このようにすることで、多くの種類の外観異常が1種類の検査光によって検出されやすくなる。その結果、検査効率が向上しうる。 The spectrum determination device 30 may determine the spectrum of a common inspection light that facilitates the detection of the abnormal portion 55 included in the plurality of classifications. By doing so, many kinds of appearance abnormalities can be easily detected by one kind of inspection light. As a result, inspection efficiency can be improved.
 撮像画像がモノクロ画像である場合、スペクトル決定装置30は、撮像画像の明度をグレースケールの階調として算出してよい。スペクトル決定装置30は、撮像画像に含まれる所定の画素の階調を撮像画像の明度として算出してよい。スペクトル決定装置30は、撮像画像のうち少なくとも一部に含まれる各画素の階調を算出し、その平均値を撮像画像の明度として算出してもよいし、各画素の階調を重みづけして加算した値を撮像画像の明度として算出してもよい。 When the captured image is a monochrome image, the spectrum determination device 30 may calculate the brightness of the captured image as a grayscale gradation. The spectrum determination device 30 may calculate the gradation of a predetermined pixel included in the captured image as the brightness of the captured image. The spectrum determination device 30 may calculate the gradation of each pixel included in at least a part of the captured image and calculate the average value as the brightness of the captured image, or may weight the gradation of each pixel. The added value may be calculated as the brightness of the captured image.
 撮像画像がカラー画像である場合、スペクトル決定装置30は、赤、緑及び青の3原色の各階調に基づいて、撮像画像の明度を算出してよい。赤、緑及び青の3原色は、RGB(Red Green Blue)と総称される。撮像画像の明度は、例えば、YUV方式における輝度信号の強度に対応づけられてよい。YUV方式は、輝度信号と2つの色差信号とに基づいて色空間を表現する方式である。YUV方式において、以下の式(1)に基づいて撮像画像の明度が算出されてよい。
 Y=0.299×R+0.587×G+0.114×B    (1)
ここで、Yは、輝度信号の強度を表しており、明度に対応する。R、G及びBは、それぞれ赤色、緑色及び青色の階調を表す。
When the captured image is a color image, the spectrum determination device 30 may calculate the brightness of the captured image based on each gradation of the three primary colors of red, green, and blue. The three primary colors of red, green and blue are collectively called RGB (Red Green Blue). The brightness of the captured image may be associated with, for example, the intensity of the luminance signal in the YUV system. The YUV method is a method of expressing a color space based on a luminance signal and two color difference signals. In the YUV method, the brightness of the captured image may be calculated based on the following formula (1).
Y = 0.299 × R + 0.587 × G + 0.114 × B (1)
Here, Y represents the intensity of the luminance signal and corresponds to the brightness. R, G and B represent gradations of red, green and blue, respectively.
 例えば、第1撮像画像の3原色の各階調が(R,G,B)=(56,54,42)で特定される場合、第1撮像画像の明度は、式(1)に基づいて53と算出される。例えば、第2撮像画像の3原色の各階調が(R,G,B)=(167,160,144)で特定される場合、第2撮像画像の明度は、式(1)に基づいて160と算出される。この場合、第1撮像画像と第2撮像画像との間の明度差は、107と算出される。 For example, when each gradation of the three primary colors of the first captured image is specified by (R, G, B) = (56, 54, 42), the brightness of the first captured image is 53 based on the equation (1). Is calculated. For example, when each gradation of the three primary colors of the second captured image is specified by (R, G, B) = (167, 160, 144), the brightness of the second captured image is 160 based on the equation (1). Is calculated. In this case, the difference in brightness between the first captured image and the second captured image is calculated as 107.
 スペクトル決定装置30は、撮像画像に含まれる所定の画素について明度を算出してよい。スペクトル決定装置30は、複数の画素それぞれの明度の平均値を撮像画像の明度として算出してもよい。 The spectrum determination device 30 may calculate the brightness of a predetermined pixel included in the captured image. The spectrum determination device 30 may calculate the average value of the brightness of each of the plurality of pixels as the brightness of the captured image.
 撮像画像がカラー画像である場合、スペクトル決定装置30は、撮像画像のRGBの各階調に基づいて、撮像画像の色度差を算出してよい。スペクトル決定装置30は、R、G及びBそれぞれの階調の差の絶対値の和を色度差として算出してもよい。例えば、第1撮像画像のRGBの各階調が(R,G,B)=(56,54,42)で特定され、且つ、第2撮像画像のRGBの各階調が(R,G,B)=(167,160,144)で特定されるとする。この場合、Rの階調の差の絶対値は、111と算出される。Gの階調の差の絶対値は、106と算出される。Bの階調の差の絶対値は、102と算出される。色度差は、R、G及びBそれぞれの階調の差の絶対値の和として319と算出される。例えば、第1撮像画像のRGBの各階調が(R,G,B)=(0,0,255)で特定され、且つ、第2撮像画像のRGBの各階調が(R,G,B)=(255,255,0)で特定される場合、色度差は765と算出される。スペクトル決定装置30は、R、G及びBそれぞれの階調の差の絶対値を重みづけして加算した値を色度差として算出してもよい。R、G及びBそれぞれの階調の差の絶対値を重みづける係数として、上述の式(1)で用いられている係数が適用されてもよい。 When the captured image is a color image, the spectrum determination device 30 may calculate the chromaticity difference of the captured image based on each gradation of RGB of the captured image. The spectrum determination device 30 may calculate the sum of the absolute values of the differences in gradations of R, G, and B as the chromaticity difference. For example, each RGB gradation of the first captured image is specified by (R, G, B) = (56, 54, 42), and each RGB gradation of the second captured image is (R, G, B). = (167,160,144). In this case, the absolute value of the difference in gradation of R is calculated as 111. The absolute value of the difference in gradation of G is calculated as 106. The absolute value of the difference in gradation of B is calculated as 102. The chromaticity difference is calculated as 319 as the sum of the absolute values of the differences in the gradations of R, G, and B. For example, each RGB gradation of the first captured image is specified by (R, G, B) = (0,0,255), and each RGB gradation of the second captured image is (R, G, B). When specified by = (255,255,0), the chromaticity difference is calculated as 765. The spectrum determination device 30 may calculate the value obtained by weighting and adding the absolute values of the differences in gradations of R, G, and B as the chromaticity difference. The coefficient used in the above equation (1) may be applied as a coefficient for weighting the absolute value of the difference between the gradations of R, G, and B.
 撮像画像がカラー画像である場合、撮像画像の色度は、RGBの各階調で特定されてよいがこれに限られず、シアン、マゼンタ、イエロー及びブラックの4成分で色を特定するCMYKカラーモデルによって表されてもよい。 When the captured image is a color image, the chromaticity of the captured image may be specified by each gradation of RGB, but is not limited to this, and a CMYK color model that specifies the color by four components of cyan, magenta, yellow, and black is used. It may be represented.
 以上説明してきたように、照明システム1において、スペクトル決定装置30は、所定の分類に含まれる外観異常を検出しやすくする検査光のスペクトルを決定できる。所定の分類に含まれる外観異常を検出しやすくする検査光は、所定の分類に対応する検査光とも称される。照明装置20は、スペクトル決定装置30が決定したスペクトルを取得し、所定の分類に対応する検査光として、そのスペクトルで特定される光を射出する。照明装置20が所定の分類に対応する検査光をサンプル50に向けて射出することによって、サンプル50において、所定の分類に含まれる外観異常が検出されやすくなる。 As described above, in the lighting system 1, the spectrum determining device 30 can determine the spectrum of the inspection light that makes it easy to detect the appearance abnormality included in the predetermined classification. The inspection light that makes it easier to detect an appearance abnormality included in a predetermined classification is also referred to as an inspection light corresponding to the predetermined classification. The illuminating device 20 acquires the spectrum determined by the spectrum determining device 30, and emits light specified in the spectrum as inspection light corresponding to a predetermined classification. When the lighting device 20 emits the inspection light corresponding to the predetermined classification toward the sample 50, the appearance abnormality included in the predetermined classification is easily detected in the sample 50.
 スペクトル決定装置30は、例えば第1分類に対応する検査光のスペクトルと、第2分類に対応する検査光のスペクトルとをそれぞれ決定してよい。照明装置20は、サンプル50に対して、第1分類及び第2分類それぞれに対応する検査光を射出してよい。このようにすることで、複数の分類それぞれに含まれる外観異常が検出されやすくなる。その結果、外観異常の検出精度が高められうる。照明装置20は、検査員8による操作に基づいて検査光を変更してもよいし、検査装置200による制御に基づいて検査光を変更してもよい。 The spectrum determining device 30 may determine, for example, the spectrum of the inspection light corresponding to the first classification and the spectrum of the inspection light corresponding to the second classification, respectively. The lighting device 20 may emit inspection light corresponding to each of the first classification and the second classification to the sample 50. By doing so, appearance abnormalities included in each of the plurality of classifications can be easily detected. As a result, the detection accuracy of the appearance abnormality can be improved. The lighting device 20 may change the inspection light based on the operation by the inspector 8, or may change the inspection light based on the control by the inspection device 200.
 以上述べてきたように本実施形態に係る照明システム1は、所定の分類に含まれる外観異常を高精度で検出できるように検査光のスペクトルを決定できる。また、照明システム1は、決定したスペクトルで特定される検査光をサンプル50に向けて射出することができる。検査員8が用いる検査装置200が照明システム1を備える場合、検査員8は、サンプル50における外観異常の有無を判定しやすくなるとともに、外観異常を検出しやすくなる。異常検出装置は、照明システム1を備えることによって、サンプル50における外観異常の有無を判定しやすくなるとともに、外観異常を検出しやすくなる。その結果、外観検査の精度が高められうる。
また、第1撮像画像と第2撮像画像の色度差または明度差が最大となるように検査光のスペクトルを任意の調整値で順次切り替えて調整を行ってもよい。調整値の切り替えは検査員8が行ってもよいし、プログラム等で自動調整させてもよい。
As described above, the lighting system 1 according to the present embodiment can determine the spectrum of the inspection light so that the appearance abnormality included in the predetermined classification can be detected with high accuracy. In addition, the lighting system 1 can emit the inspection light specified by the determined spectrum toward the sample 50. When the inspection device 200 used by the inspector 8 includes the lighting system 1, the inspector 8 can easily determine the presence or absence of the appearance abnormality in the sample 50 and can easily detect the appearance abnormality. By including the lighting system 1, the abnormality detection device makes it easy to determine the presence / absence of an appearance abnormality in the sample 50 and also makes it easy to detect an appearance abnormality. As a result, the accuracy of visual inspection can be improved.
Further, the spectrum of the inspection light may be sequentially switched and adjusted by an arbitrary adjustment value so that the chromaticity difference or the brightness difference between the first captured image and the second captured image is maximized. The inspector 8 may switch the adjustment value, or may automatically adjust the adjustment value by a program or the like.
<発光部>
 図4、図5及び図6に示されるように、発光部10は、発光素子3と、波長変換部材6とを備える。発光部10は、素子基板2と、枠体4と、封止部材5とをさらに備えてもよい。
<Light emitting part>
As shown in FIGS. 4, 5 and 6, the light emitting unit 10 includes a light emitting element 3 and a wavelength conversion member 6. The light emitting unit 10 may further include an element substrate 2, a frame body 4, and a sealing member 5.
 発光素子3は、360nm~430nmの波長領域、つまり紫色光領域にピーク波長を有する光を射出する。 The light emitting element 3 emits light having a peak wavelength in a wavelength region of 360 nm to 430 nm, that is, a violet light region.
 波長変換部材6は、発光素子3から波長変換部材6に入射してきた光を、可視光領域にピーク波長を有する光に変換し、変換した光を射出する。可視光は、紫色光を含むとする。可視光領域は、紫色光領域を含むとする。波長変換部材6は、発光素子3が射出する光によって励起されることによって、可視光領域にピーク波長領域を射出する。発光素子3が射出する光は、励起光とも称される。発光部10が備える発光素子3は、励起光発光素子とも称される。 The wavelength conversion member 6 converts the light incident on the wavelength conversion member 6 from the light emitting element 3 into light having a peak wavelength in the visible light region, and emits the converted light. Visible light is assumed to include purple light. It is assumed that the visible light region includes a purple light region. The wavelength conversion member 6 emits a peak wavelength region into a visible light region by being excited by the light emitted by the light emitting element 3. The light emitted by the light emitting element 3 is also referred to as excitation light. The light emitting element 3 included in the light emitting unit 10 is also referred to as an excitation light emitting element.
 発光部10は、複数の波長変換部材6を有してよい。複数の波長変換部材6は、それぞれ異なるピーク波長を有する光を射出してよい。発光部10は、各波長変換部材6が射出する光の強度を制御することによって、種々のスペクトルを有する光を射出できる。 The light emitting unit 10 may have a plurality of wavelength conversion members 6. The plurality of wavelength conversion members 6 may emit light having different peak wavelengths. The light emitting unit 10 can emit light having various spectra by controlling the intensity of the light emitted by each wavelength conversion member 6.
 素子基板2は、例えば、絶縁性を有する材料で形成されてよい。素子基板2は、例えば、アルミナ若しくはムライト等のセラミック材料、ガラスセラミック材料、又は、これらの材料のうち複数の材料を混合した複合系材料等で形成されてよい。素子基板2は、熱膨張を調整することが可能な金属酸化物微粒子を分散させた高分子樹脂材料等で形成されてもよい。 The element substrate 2 may be formed of, for example, a material having an insulating property. The element substrate 2 may be formed of, for example, a ceramic material such as alumina or mullite, a glass ceramic material, or a composite material obtained by mixing a plurality of these materials. The element substrate 2 may be formed of a polymer resin material or the like in which metal oxide fine particles whose thermal expansion can be adjusted are dispersed.
 素子基板2は、素子基板2の主面2A又は素子基板2の内部に、素子基板2に実装している発光素子3等の部品を電気的に導通する配線導体を備えてよい。配線導体は、例えば、タングステン、モリブデン、マンガン、又は銅等の導電材料で形成されてよい。配線導体は、例えば、タングステンの粉末に有機溶剤が添加された金属ペーストを、素子基板2となるセラミックグリーンシートに所定パターンで印刷し、複数のセラミックグリーンシートを積層して、焼成することにより形成されてよい。配線導体は、酸化防止のために、その表面に、例えば、ニッケル又は金等のめっき層が形成されてよい。 The element substrate 2 may include a wiring conductor that electrically conducts components such as a light emitting element 3 mounted on the element substrate 2 inside the main surface 2A of the element substrate 2 or the element substrate 2. The wiring conductor may be made of a conductive material such as tungsten, molybdenum, manganese, or copper. The wiring conductor is formed, for example, by printing a metal paste obtained by adding an organic solvent to tungsten powder on a ceramic green sheet to be an element substrate 2 in a predetermined pattern, laminating a plurality of ceramic green sheets, and firing them. May be done. A plating layer such as nickel or gold may be formed on the surface of the wiring conductor to prevent oxidation.
 素子基板2は、発光素子3が発光する光を効率良く外部へと放出させるため、配線導体、及びめっき層と間隔を空けて、金属反射層を備えてもよい。金属反射層は、例えば、アルミニウム、銀、金、銅又はプラチナ等の金属材料で形成されてよい。 The element substrate 2 may be provided with a metal reflective layer at a distance from the wiring conductor and the plating layer in order to efficiently emit the light emitted by the light emitting element 3 to the outside. The metal reflective layer may be formed of, for example, a metal material such as aluminum, silver, gold, copper or platinum.
 本実施形態において、発光素子3は、LEDであるとする。LEDは、P型半導体とN型半導体とが接合されたPN接合中で、電子と正孔とが再結合することによって、外部へと光を発光する。発光素子3は、LEDに限られず、他の発光デバイスであってもよい。 In this embodiment, the light emitting element 3 is an LED. An LED emits light to the outside by recombination of electrons and holes in a PN junction in which a P-type semiconductor and an N-type semiconductor are bonded. The light emitting element 3 is not limited to the LED, and may be another light emitting device.
 発光素子3は、素子基板2の主面2A上に実装される。発光素子3は、素子基板2に設けられる配線導体の表面に被着するめっき層上に、例えば、ろう材又は半田等を介して、電気的に接続される。素子基板2の主面2A上に実装される発光素子3の個数は、特に限定されるものではない。 The light emitting element 3 is mounted on the main surface 2A of the element substrate 2. The light emitting element 3 is electrically connected to the plating layer provided on the surface of the wiring conductor provided on the element substrate 2 via, for example, a brazing material or solder. The number of light emitting elements 3 mounted on the main surface 2A of the element substrate 2 is not particularly limited.
 発光素子3は、透光性基体と、透光性基体上に形成される光半導体層とを含んでよい。透光性基体は、例えば、有機金属気相成長法、又は分子線エピタキシャル成長法等の化学気相成長法を用いて、その上に光半導体層を成長させることが可能な材料を含む。透光性基体は、例えば、サファイア、窒化ガリウム、窒化アルミニウム、酸化亜鉛、セレン化亜鉛、シリコンカーバイド、シリコン(Si)、又は二ホウ化ジルコニウム等で形成されてよい。透光性基体の厚みは、例えば、50μm以上1000μm以下であってよい。 The light emitting element 3 may include a translucent substrate and an optical semiconductor layer formed on the translucent substrate. The translucent substrate includes a material capable of growing an opto-semiconductor layer on it by using, for example, a chemical vapor deposition method such as an organic metal vapor phase growth method or a molecular beam epitaxial growth method. The translucent substrate may be formed of, for example, sapphire, gallium nitride, aluminum nitride, zinc oxide, zinc selenide, silicon carbide, silicon (Si), zirconium dibodium or the like. The thickness of the translucent substrate may be, for example, 50 μm or more and 1000 μm or less.
 光半導体層は、透光性基体上に形成される第1半導体層と、第1半導体層上に形成される発光層と、発光層上に形成される第2半導体層とを含んでよい。第1半導体層、発光層、及び第2半導体層は、例えば、III族窒化物半導体、ガリウム燐若しくはガリウムヒ素等のIII-V族半導体、又は、窒化ガリウム、窒化アルミニウム若しくは窒化インジウム等のIII族窒化物半導体等で形成されてよい。 The optical semiconductor layer may include a first semiconductor layer formed on a translucent substrate, a light emitting layer formed on the first semiconductor layer, and a second semiconductor layer formed on the light emitting layer. The first semiconductor layer, the light emitting layer, and the second semiconductor layer are, for example, a group III nitride semiconductor, a group III-V semiconductor such as gallium phosphorus or gallium arsenide, or a group III such as gallium nitride, aluminum nitride, or indium nitride. It may be formed of a nitride semiconductor or the like.
 第1半導体層の厚みは、例えば、1μm以上5μm以下であってよい。発光層の厚みは、例えば、25nm以上150nm以下であってよい。第2半導体層の厚みは、例えば、50nm以上600nm以下であってよい。 The thickness of the first semiconductor layer may be, for example, 1 μm or more and 5 μm or less. The thickness of the light emitting layer may be, for example, 25 nm or more and 150 nm or less. The thickness of the second semiconductor layer may be, for example, 50 nm or more and 600 nm or less.
 枠体4は、例えば、酸化アルミニウム、酸化チタン、酸化ジルコニウム又は酸化イットリウム等のセラミック材料で形成されてよい。枠体4は、多孔質材料で形成されてよい。枠体4は、酸化アルミニウム、酸化チタン、酸化ジルコニウム又は酸化イットリウム等の金属酸化物を含む粉末を混合した樹脂材料で形成されてよい。枠体4は、これらの材料に限られず、種々の材料で形成されてよい。 The frame 4 may be formed of, for example, a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide, or yttrium oxide. The frame body 4 may be made of a porous material. The frame 4 may be formed of a resin material mixed with a powder containing a metal oxide such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide. The frame body 4 is not limited to these materials, and may be formed of various materials.
 枠体4は、素子基板2の主面2Aに、例えば、樹脂、ろう材又は半田等を介して、接続される。枠体4は、発光素子3と間隔を空けて、発光素子3を取り囲むように素子基板2の主面2A上に設けられる。枠体4は、内壁面が、素子基板2の主面2Aから遠ざかる程、外方に向かって広がるように傾斜して設けられている。内壁面は、発光素子3が発光する光を反射させる反射面として機能する。内壁面は、例えば、タングステン、モリブデン、又はマンガン等の金属材料で形成される金属層と、金属層を被覆し、ニッケル又は金等の金属材料で形成されるめっき層とを含んでよい。めっき層は、発光素子3が発光する光を反射する。 The frame body 4 is connected to the main surface 2A of the element substrate 2 via, for example, resin, brazing material, solder, or the like. The frame body 4 is provided on the main surface 2A of the element substrate 2 so as to surround the light emitting element 3 at a distance from the light emitting element 3. The frame body 4 is provided so as to be inclined so that the inner wall surface expands outward as the distance from the main surface 2A of the element substrate 2 increases. The inner wall surface functions as a reflecting surface that reflects the light emitted by the light emitting element 3. The inner wall surface may include, for example, a metal layer formed of a metal material such as tungsten, molybdenum, or manganese, and a plating layer covering the metal layer and formed of a metal material such as nickel or gold. The plating layer reflects the light emitted by the light emitting element 3.
 枠体4の内壁面の形状は、平面視において、円形状であってよい。内壁面の形状が円形状であることによって、枠体4は、発光素子3が発光する光を略一様に、外方に向かって反射させることができる。枠体4の内壁面の傾斜角度は、素子基板2の主面2Aに対して、例えば、55度以上70度以下の角度に設定されていてよい。 The shape of the inner wall surface of the frame body 4 may be circular in a plan view. Since the shape of the inner wall surface is circular, the frame body 4 can reflect the light emitted by the light emitting element 3 substantially uniformly toward the outside. The inclination angle of the inner wall surface of the frame body 4 may be set to, for example, an angle of 55 degrees or more and 70 degrees or less with respect to the main surface 2A of the element substrate 2.
 封止部材5は、素子基板2及び枠体4で囲まれる内側の空間に、枠体4で囲まれる内側の空間の上部の一部を残して充填されている。封止部材5は、発光素子3を封止するとともに、発光素子3が発光する光を透過させる。封止部材5は、例えば、光透過性を有する材料で形成されてよい。封止部材5は、例えば、シリコン樹脂、アクリル樹脂若しくはエポキシ樹脂等の光透過性を有する絶縁樹脂材料、又は光透過性を有するガラス材料、等で形成されてよい。封止部材5の屈折率は、例えば、1.4以上1.6以下に設定されていてよい。 The sealing member 5 is filled in the inner space surrounded by the element substrate 2 and the frame body 4, leaving a part of the upper part of the inner space surrounded by the frame body 4. The sealing member 5 seals the light emitting element 3 and transmits the light emitted by the light emitting element 3. The sealing member 5 may be made of, for example, a light-transmitting material. The sealing member 5 may be made of, for example, a light-transmitting insulating resin material such as a silicon resin, an acrylic resin or an epoxy resin, or a light-transmitting glass material. The refractive index of the sealing member 5 may be set to, for example, 1.4 or more and 1.6 or less.
 発光部10が封止部材5を備える場合、発光素子3から射出された紫色光は、封止部材5を通過して波長変換部材6に入射する。上述したように、波長変換部材6は、発光素子3から入射してきた紫色光を、可視光領域に含まれる種々のピーク波長を有する光に変換する。発光素子3は、射出した紫色光が波長変換部材6に入射するように位置する。言い換えれば、波長変換部材6は、発光素子3から射出された光が入射してくるように位置する。図4から図6に例示されている構成において、波長変換部材6は、素子基板2及び枠体4で囲まれる内側の空間の上部の一部に、封止部材5の上面に沿って位置している。この例に限定されることなく、例えば、波長変換部材6は、素子基板2及び枠体4で囲まれる内側の空間の上部からはみ出すように位置してもよい。 When the light emitting unit 10 includes the sealing member 5, the purple light emitted from the light emitting element 3 passes through the sealing member 5 and is incident on the wavelength conversion member 6. As described above, the wavelength conversion member 6 converts the purple light incident from the light emitting element 3 into light having various peak wavelengths included in the visible light region. The light emitting element 3 is positioned so that the emitted purple light is incident on the wavelength conversion member 6. In other words, the wavelength conversion member 6 is positioned so that the light emitted from the light emitting element 3 is incident. In the configurations illustrated in FIGS. 4 to 6, the wavelength conversion member 6 is located along the upper surface of the sealing member 5 in a part of the upper part of the inner space surrounded by the element substrate 2 and the frame body 4. ing. Not limited to this example, for example, the wavelength conversion member 6 may be positioned so as to protrude from the upper part of the inner space surrounded by the element substrate 2 and the frame body 4.
 図6に示されるように、波長変換部材6は、透光性を有する透光部材60と、第1蛍光体61、第2蛍光体62、第3蛍光体63、第4蛍光体64及び第5蛍光体65とを備えてよい。第1蛍光体61、第2蛍光体62、第3蛍光体63、第4蛍光体64及び第5蛍光体65は、単に蛍光体ともいう。蛍光体は、透光部材60の内部に含有されているとする。蛍光体は、透光部材60の内部で略均一に分散されていてよい。蛍光体は、波長変換部材6に入射してきた紫色光を、360nm~780nmの波長領域に含まれるピーク波長を有する光に変換し、変換した光を射出する。 As shown in FIG. 6, the wavelength conversion member 6 includes a translucent member 60 having translucency, a first phosphor 61, a second phosphor 62, a third phosphor 63, a fourth phosphor 64, and a third. 5 Fluorescent material 65 may be provided. The first phosphor 61, the second phosphor 62, the third phosphor 63, the fourth phosphor 64, and the fifth phosphor 65 are also simply referred to as phosphors. It is assumed that the phosphor is contained inside the translucent member 60. The phosphor may be dispersed substantially uniformly inside the translucent member 60. The phosphor converts the purple light incident on the wavelength conversion member 6 into light having a peak wavelength included in the wavelength region of 360 nm to 780 nm, and emits the converted light.
 透光部材60は、例えば、フッ素樹脂、シリコン樹脂、アクリル樹脂若しくはエポキシ樹脂等の透光性を有する絶縁樹脂、又は透光性を有するガラス材料等で形成されていてよい。 The translucent member 60 may be formed of, for example, a translucent insulating resin such as a fluororesin, a silicon resin, an acrylic resin or an epoxy resin, or a translucent glass material or the like.
 蛍光体は、入射してきた紫色光を種々のピーク波長を有する光に変換する。 The phosphor converts the incident purple light into light having various peak wavelengths.
 第1蛍光体61は、紫色光を、例えば400nm~500nmの波長領域内にピーク波長を有するスペクトルで特定される光、つまり青色の光に変換してよい。第1蛍光体61は、例えば、BaMgAl1017:Eu、又は(Sr,Ca,Ba)10(PO46Cl2:Eu,(Sr,Ba)10(PO46Cl2:Eu等を用いることができる。 The first phosphor 61 may convert violet light into light specified in a spectrum having a peak wavelength in, for example, a wavelength region of 400 nm to 500 nm, that is, blue light. The first phosphor 61 is, for example, BaMgAl 10 O 17 : Eu, or (Sr, Ca, Ba) 10 (PO 4 ) 6 Cl 2 : Eu, (Sr, Ba) 10 (PO 4 ) 6 Cl 2 : Eu. Etc. can be used.
 第2蛍光体62は、紫色光を、例えば450nm~550nmの波長領域内にピーク波長を有するスペクトルで特定される光、つまり青緑色の光に変換してよい。第2蛍光体62は、例えば、(Sr,Ba,Ca)5(PO43Cl:Eu,Sr4Al1425:Eu等を用いることができる。 The second phosphor 62 may convert violet light into light specified in the spectrum having a peak wavelength in the wavelength region of, for example, 450 nm to 550 nm, that is, blue-green light. As the second phosphor 62, for example, (Sr, Ba, Ca) 5 (PO 4 ) 3 Cl: Eu, Sr 4 Al 14 O 25 : Eu and the like can be used.
 第3蛍光体63は、紫色光を、例えば500nm~600nmの波長領域内にピーク波長を有するスペクトルで特定される光、つまり緑色の光に変換してよい。第3蛍光体63は、例えば、SrSi2(O,Cl)22:Eu、(Sr,Ba,Mg)2SiO4:Eu2+、又はZnS:Cu,Al、Zn2SiO4:Mn等を用いることができる。 The third phosphor 63 may convert violet light into light specified in the spectrum having a peak wavelength in, for example, a wavelength region of 500 nm to 600 nm, that is, green light. The third phosphor 63 is, for example, SrSi 2 (O, Cl) 2 N 2 : Eu, (Sr, Ba, Mg) 2 SiO 4 : Eu 2+ , or ZnS: Cu, Al, Zn 2 SiO 4 : Mn. Etc. can be used.
 第4蛍光体64は、紫色光を、例えば600nm~700nmの波長領域内にピーク波長を有するスペクトルで特定される光、つまり赤色の光に変換してよい。第4蛍光体64は、例えば、Y22S:Eu、Y23:Eu、SrCaClAlSiN3:Eu2+、CaAlSiN3:Eu、又はCaAlSi(ON)3:Eu等を用いることができる。 The fourth phosphor 64 may convert violet light into light specified in the spectrum having a peak wavelength in the wavelength region of, for example, 600 nm to 700 nm, that is, red light. As the fourth phosphor 64, for example, Y 2 O 2 S: Eu, Y 2 O 3 : Eu, SrCaClAlSiN 3 : Eu 2+ , CaAlSiN 3 : Eu, CaAlSi (ON) 3 : Eu, or the like can be used. ..
 第5蛍光体65は、紫色光を、例えば680nm~800nmの波長領域内にピーク波長を有するスペクトルで特定される光、つまり近赤外光に変換してよい。近赤外光は、680~2500nmの波長領域の光を含んでよい。第5蛍光体65は、例えば、3Ga512:Cr等を用いることができる。 The fifth phosphor 65 may convert violet light into light specified in the spectrum having a peak wavelength in the wavelength region of, for example, 680 nm to 800 nm, that is, near infrared light. Near-infrared light may include light in the wavelength region of 680 to 2500 nm. As the fifth phosphor 65, for example, 3Ga 5 O 12 : Cr or the like can be used.
 波長変換部材6が含有する蛍光体の種類の組み合わせは、特に限定されない。図5及び図6の領域Xに示されるように、波長変換部材6は、第1蛍光体61、第2蛍光体62、第3蛍光体63、第4蛍光体64及び第5蛍光体65を有してよい。波長変換部材6は、他の種類の蛍光体を有してもよい。 The combination of types of phosphors contained in the wavelength conversion member 6 is not particularly limited. As shown in the region X of FIGS. 5 and 6, the wavelength conversion member 6 includes the first phosphor 61, the second phosphor 62, the third phosphor 63, the fourth phosphor 64, and the fifth phosphor 65. May have. The wavelength conversion member 6 may have another type of phosphor.
 発光部10は、複数の波長変換部材6を備えてよい。各波長変換部材6は、蛍光体の組み合わせが異なっていてもよい。発光部10は、各波長変換部材6に対して紫色光を射出する発光素子3を備えてよい。発光部10は、各波長変換部材6に入射する紫色光の強度を制御することによって、種々のスペクトルを有する光を射出できる。1つの波長変換部材6は、例えば青色の蛍光を放射する蛍光体、青緑色の蛍光を放射する蛍光体、及び緑色の蛍光を放射する蛍光体を含んでもよい。1つの波長変換部材6は、1種類の蛍光体のみを含んでもよい。1つの波長変換部材6は、これらの例に限られず、種々の組み合わせで蛍光体を含んでもよい。波長変換部材6から放射される光の色彩は、波長変換部材6に含まれる蛍光体の種類に基づいて決定される。 The light emitting unit 10 may include a plurality of wavelength conversion members 6. Each wavelength conversion member 6 may have a different combination of phosphors. The light emitting unit 10 may include a light emitting element 3 that emits purple light to each wavelength conversion member 6. The light emitting unit 10 can emit light having various spectra by controlling the intensity of purple light incident on each wavelength conversion member 6. One wavelength conversion member 6 may include, for example, a phosphor that emits blue fluorescence, a phosphor that emits blue-green fluorescence, and a phosphor that emits green fluorescence. One wavelength conversion member 6 may include only one type of phosphor. One wavelength conversion member 6 is not limited to these examples, and may contain a phosphor in various combinations. The color of the light emitted from the wavelength conversion member 6 is determined based on the type of phosphor contained in the wavelength conversion member 6.
 本実施形態に係る発光部10は、波長変換部材6の組み合わせによって、種々のスペクトルを有する光を射出できる。発光部10は、例えば、太陽からの直射日光のスペクトル、海中の所定の深さまで到達した日光のスペクトル、ろうそくの炎が発する光のスペクトル、又は、蛍の光のスペクトル等を有する光等を射出できる。言い換えれば、発光部10は、種々の色を有する光を射出できる。また、発光部10は、種々の色温度を有する光を射出できる。 The light emitting unit 10 according to the present embodiment can emit light having various spectra depending on the combination of the wavelength conversion members 6. The light emitting unit 10 emits, for example, a spectrum of direct sunlight from the sun, a spectrum of sunlight reaching a predetermined depth in the sea, a spectrum of light emitted by a candle flame, a spectrum of light of a firefly, or the like. it can. In other words, the light emitting unit 10 can emit light having various colors. Further, the light emitting unit 10 can emit light having various color temperatures.
 照明装置20は、複数の発光部10を有してよい。複数の発光部10は、第1発光部と第2発光部とを含んでよい。照明制御部22は、第1発光部が射出する光の強度、及び、第2発光部が射出する光の強度をそれぞれ独立に制御してもよいし、関連づけて制御してもよい。第1発光部が備える発光素子3は、第1励起光発光素子とも称される。第2発光部が備える発光素子3は、第2励起光発光素子とも称される。照明制御部22は、第1励起光発光素子が射出する第1励起光の強度と、第2励起光発光素子が射出する第2励起光の強度とをそれぞれ制御することによって、第1発光部が射出する光の強度、及び、第2発光部が射出する光の強度を制御してよい。第1発光部が射出する光のスペクトルは、第2発光部が射出する光のスペクトルと異なっていてもよい。照明制御部22は、第1発光部が射出する光の強度と、第2発光部が射出する光の強度とを関連づけて制御することによって、第1発光部が射出する光と第2発光部が射出する光とを合成した光のスペクトルを制御してもよい。第1発光部が射出する光と第2発光部が射出する光とを合成した光は、合成光ともいう。照明装置20は、合成光を照明光として射出してもよい。照明装置20は、第1発光部及び第2発光部の少なくとも一方を選択して照明光を射出させてもよい。 The lighting device 20 may have a plurality of light emitting units 10. The plurality of light emitting units 10 may include a first light emitting unit and a second light emitting unit. The illumination control unit 22 may independently control the intensity of the light emitted by the first light emitting unit and the intensity of the light emitted by the second light emitting unit, or may control them in association with each other. The light emitting element 3 included in the first light emitting unit is also referred to as a first excited light emitting element. The light emitting element 3 included in the second light emitting unit is also referred to as a second excited light emitting element. The illumination control unit 22 controls the intensity of the first excitation light emitted by the first excitation light emitting element and the intensity of the second excitation light emitted by the second excitation light emitting element, respectively, to form the first light emitting unit. The intensity of the light emitted by the second light emitting unit and the intensity of the light emitted by the second light emitting unit may be controlled. The spectrum of the light emitted by the first light emitting unit may be different from the spectrum of the light emitted by the second light emitting unit. The illumination control unit 22 controls the intensity of the light emitted by the first light emitting unit and the intensity of the light emitted by the second light emitting unit in association with each other to control the light emitted by the first light emitting unit and the second light emitting unit. You may control the spectrum of the combined light with the light emitted by. The light obtained by combining the light emitted by the first light emitting unit and the light emitted by the second light emitting unit is also referred to as synthetic light. The lighting device 20 may emit synthetic light as illumination light. The lighting device 20 may select at least one of the first light emitting unit and the second light emitting unit to emit the illumination light.
<検査装置>
 図7に示されるように、一実施形態に係る検査装置200は、照明装置20と、サンプルホルダ210とを備える。サンプルホルダ210は、サンプル50を搭載可能に構成されている。照明装置20は、サンプルホルダ210に搭載されているサンプル50を照明光で照らすことができるように構成されている。検査装置200は、光学顕微鏡をさらに備えてもよい。サンプルホルダ210は、光学顕微鏡のステージとして構成されてもよい。
<Inspection equipment>
As shown in FIG. 7, the inspection device 200 according to the embodiment includes a lighting device 20 and a sample holder 210. The sample holder 210 is configured so that the sample 50 can be mounted. The lighting device 20 is configured so that the sample 50 mounted on the sample holder 210 can be illuminated with the illumination light. The inspection device 200 may further include an optical microscope. The sample holder 210 may be configured as a stage of an optical microscope.
 検査装置200は、スペクトル決定装置30をさらに備えてよい。検査装置200は、スペクトル決定装置30を備えずに、外部に設けられているスペクトル決定装置30と通信可能に接続されてもよい。照明装置20は、スペクトル決定装置30から、検査光のスペクトルを取得する。 The inspection device 200 may further include a spectrum determination device 30. The inspection device 200 may be communicably connected to the spectrum determination device 30 provided outside without the spectrum determination device 30. The illuminating device 20 acquires the spectrum of the inspection light from the spectrum determining device 30.
 検査装置200は、サンプルホルダ210に搭載されているサンプル50を検査員8が観察可能になるように結像する光学系220をさらに備えてもよい。検査装置200は、光学系220で結像した光を検査員8の眼に入射させる接眼レンズ230をさらに備えてもよい。検査員8は、光学系220と接眼レンズ230とを介してサンプル50を観察し、サンプル50の外観異常を検出してもよい。光学系220は、サンプル50を結像する倍率を変更できるように構成されてもよい。サンプルホルダ210と、光学系220と、接眼レンズ230とは、光学顕微鏡として構成されてもよい。検査員8は、光学系220及び接眼レンズ230を介さずに、サンプルホルダ210の上でサンプル50を直接観察し、サンプル50の外観異常を検出してもよい。 The inspection device 200 may further include an optical system 220 that forms an image of the sample 50 mounted on the sample holder 210 so that the inspector 8 can observe it. The inspection device 200 may further include an eyepiece 230 that allows the light imaged by the optical system 220 to enter the eyes of the examiner 8. The inspector 8 may observe the sample 50 through the optical system 220 and the eyepiece lens 230 and detect an abnormality in the appearance of the sample 50. The optical system 220 may be configured so that the magnification at which the sample 50 is imaged can be changed. The sample holder 210, the optical system 220, and the eyepiece 230 may be configured as an optical microscope. The inspector 8 may directly observe the sample 50 on the sample holder 210 without going through the optical system 220 and the eyepiece 230, and detect an abnormality in the appearance of the sample 50.
 検査装置200は、撮像装置40をさらに備えてもよい。撮像装置40は、検査光で照明されたサンプル50を撮像してよい。検査光で照明されたサンプル50の撮像画像は、検査画像とも称される。撮像装置40は、光学系220で結像されたサンプル50を撮像してもよいし、光学系220を介さずにサンプル50を撮像してもよい。 The inspection device 200 may further include an image pickup device 40. The image pickup apparatus 40 may take an image of the sample 50 illuminated by the inspection light. The captured image of the sample 50 illuminated with the inspection light is also referred to as an inspection image. The image pickup apparatus 40 may image the sample 50 imaged by the optical system 220, or may image the sample 50 without going through the optical system 220.
 検査装置200は、表示部240をさらに備えてよい。表示部240は、撮像装置40から検査画像を取得して表示してよい。検査員8は、表示部240に表示された検査画像に基づいてサンプル50に含まれる外観異常を検出してもよい。 The inspection device 200 may further include a display unit 240. The display unit 240 may acquire an inspection image from the image pickup apparatus 40 and display it. The inspector 8 may detect an appearance abnormality contained in the sample 50 based on the inspection image displayed on the display unit 240.
 検査装置200は、画像処理部250をさらに備えてよい。画像処理部250は、撮像装置40から検査画像を取得してよい。画像処理部250は、検査画像を解析し、サンプル50に含まれる外観異常を検出してよい。画像処理部250は、検査画像の中で明度差又は色度差が所定値以上となっている箇所を、外観異常として検出してもよい。画像処理部250は、種々の条件に基づいて外観異常を検出してよい。 The inspection device 200 may further include an image processing unit 250. The image processing unit 250 may acquire an inspection image from the image pickup apparatus 40. The image processing unit 250 may analyze the inspection image and detect an appearance abnormality contained in the sample 50. The image processing unit 250 may detect a portion of the inspection image in which the difference in brightness or the difference in chromaticity is equal to or greater than a predetermined value as an appearance abnormality. The image processing unit 250 may detect an appearance abnormality based on various conditions.
 検査装置200は、照明装置20にサンプリング光を射出させ、撮像装置40にサンプル50を撮像させることによって、サンプリング光で照明されたサンプル50の撮像画像をスペクトル決定装置30に出力してもよい。検査装置200がスペクトル決定装置30を備える場合、検査装置200は、内部で検査光のスペクトルを決定できる。 The inspection device 200 may output the captured image of the sample 50 illuminated by the sampled light to the spectrum determination device 30 by emitting the sampled light to the lighting device 20 and causing the imaging device 40 to image the sample 50. When the inspection device 200 includes the spectrum determination device 30, the inspection device 200 can internally determine the spectrum of the inspection light.
 照明装置20は、図8に示されるように、サンプル50を囲むように配置されるリング状の筐体24を備えてよい。リング状の筐体24は、リングの内側に向けて照明光を射出する発光部10を搭載することによって、リング照明を構成するともいえる。光学系220は、リング状の筐体24の内側に位置する。この場合、照明光がサンプル50に入射する方向は、光学系220の光軸に対して所定の角度を有する。これによって、光学系220で結像される像は、照明による影を含みにくくなる。 As shown in FIG. 8, the lighting device 20 may include a ring-shaped housing 24 arranged so as to surround the sample 50. It can be said that the ring-shaped housing 24 constitutes ring illumination by mounting a light emitting unit 10 that emits illumination light toward the inside of the ring. The optical system 220 is located inside the ring-shaped housing 24. In this case, the direction in which the illumination light is incident on the sample 50 has a predetermined angle with respect to the optical axis of the optical system 220. As a result, the image formed by the optical system 220 is less likely to include shadows due to illumination.
 照明装置20は、図9に示されるように、光学系220に含まれるハーフミラー224を介して発光部10が射出する照明光をサンプル50に対して略垂直に入射させるように構成されてもよい。照明装置20は、テレセントリック照明を構成するともいえる。この場合、照明光がサンプル50に入射する方向は、光学系220の光軸に対して略同一である。これによって、光学系220で結像される像は、照明による影を含みやすくなる。 As shown in FIG. 9, the illuminating device 20 may be configured so that the illuminating light emitted by the light emitting unit 10 via the half mirror 224 included in the optical system 220 is incident substantially perpendicular to the sample 50. Good. It can be said that the lighting device 20 constitutes telecentric lighting. In this case, the direction in which the illumination light is incident on the sample 50 is substantially the same with respect to the optical axis of the optical system 220. As a result, the image formed by the optical system 220 tends to include shadows due to illumination.
 検査装置200において、サンプル50に対して照明光を入射させる構成は、上述の例に限られない。照明装置20は、種々の形態で構成されてよい。照明装置20は、照明光がサンプル50に入射する方向を制御してよい。照明光がサンプル50に異なる方向から入射することによって、撮像装置40によるサンプル50の撮像画像が異なりうるとともに、検査員8からのサンプル50の見え方が異なりうる。検査装置200は、所定の分類に含まれる外観異常が検出されやすくなるように、照明光がサンプル50に入射する方向を制御してよい。検査装置200は、サンプル50の態様、又は、サンプル50に含まれる可能性がある外観異常の分類に基づいて照明形態を変更してよい。スペクトル決定装置30は、照明形態に基づいて検査光のスペクトルを決定してもよい。検査光のスペクトルを照明形態に基づいて決定することによって、所定の分類に含まれる外観異常がより一層検出されやすくなる。 In the inspection device 200, the configuration in which the illumination light is incident on the sample 50 is not limited to the above example. The lighting device 20 may be configured in various forms. The illuminating device 20 may control the direction in which the illuminating light is incident on the sample 50. When the illumination light is incident on the sample 50 from different directions, the image captured by the image pickup apparatus 40 of the sample 50 may be different, and the appearance of the sample 50 by the inspector 8 may be different. The inspection device 200 may control the direction in which the illumination light is incident on the sample 50 so that the appearance abnormality included in the predetermined classification can be easily detected. The inspection device 200 may change the illumination form based on the aspect of the sample 50 or the classification of appearance abnormalities that may be contained in the sample 50. The spectrum determination device 30 may determine the spectrum of the inspection light based on the illumination form. By determining the spectrum of the inspection light based on the illumination form, the appearance abnormality included in the predetermined classification becomes more easily detected.
 検査装置200は、画像処理部250によって外観異常を検出する場合、図10に例示されるフローチャートの手順を実行することによってサンプル50から外観異常を検出してよい。 When the image processing unit 250 detects the appearance abnormality, the inspection device 200 may detect the appearance abnormality from the sample 50 by executing the procedure of the flowchart illustrated in FIG.
 照明装置20は、スペクトル決定装置30から、所定の分類に対応する検査光のスペクトルを取得する(ステップS11)。照明装置20は、スペクトル決定装置30に対して分類を指定する情報を出力し、スペクトル決定装置30からその分類に対応する検査光のスペクトルを取得してもよい。 The lighting device 20 acquires the spectrum of the inspection light corresponding to the predetermined classification from the spectrum determining device 30 (step S11). The lighting device 20 may output information for designating the classification to the spectrum determining device 30 and acquire the spectrum of the inspection light corresponding to the classification from the spectrum determining device 30.
 照明装置20は、検査光を射出する(ステップS12)。照明装置20は、スペクトル決定装置30から取得したスペクトルで特定される検査光を発光部10に射出させる。 The lighting device 20 emits inspection light (step S12). The lighting device 20 emits the inspection light specified by the spectrum acquired from the spectrum determining device 30 to the light emitting unit 10.
 画像処理部250は、撮像装置40から検査画像を取得する(ステップS13)。撮像装置40は、発光部10からサンプル50に向けて所定の分類に対応する検査光を射出している状態でサンプル50を撮像し、検査画像を出力する。 The image processing unit 250 acquires an inspection image from the image pickup device 40 (step S13). The image pickup apparatus 40 takes an image of the sample 50 in a state where the light emitting unit 10 emits the inspection light corresponding to the predetermined classification toward the sample 50, and outputs the inspection image.
 画像処理部250は、検査対象部52が外観異常を含むか判定するための評価値を算出する(ステップS14)。画像処理部250は、評価値として比較対象部と検査対象部52との明度差及び色度差の少なくとも一方を算出してもよい。画像処理部250は、明度差及び色度差の少なくとも一方に基づいて評価値を算出してもよい。画像処理部250は、明度差及び色度差の少なくとも一方を重みづけして加算した値を評価値として算出してもよい。画像処理部250は、検査画像の一部を検査対象部52(図2参照)として設定し、その検査対象部52について評価値を算出してもよい。画像処理部250は、検査画像を複数の部分に分けて、各部分を検査対象部52として設定し、各検査対象部52について評価値を算出してもよい。 The image processing unit 250 calculates an evaluation value for determining whether the inspection target unit 52 includes an appearance abnormality (step S14). The image processing unit 250 may calculate at least one of the difference in brightness and the difference in chromaticity between the comparison target unit and the inspection target unit 52 as an evaluation value. The image processing unit 250 may calculate the evaluation value based on at least one of the difference in brightness and the difference in chromaticity. The image processing unit 250 may calculate as an evaluation value a value obtained by weighting and adding at least one of a lightness difference and a chromaticity difference. The image processing unit 250 may set a part of the inspection image as the inspection target unit 52 (see FIG. 2) and calculate the evaluation value for the inspection target unit 52. The image processing unit 250 may divide the inspection image into a plurality of parts, set each part as an inspection target part 52, and calculate an evaluation value for each inspection target part 52.
 画像処理部250は、評価値を算出する対象とした検査対象部52が外観異常の検出条件を満たしているか判定する(ステップS15)。画像処理部250は、評価値が所定値以上である場合に、検査対象部52が外観異常の検出条件を満たしている、つまり外観異常を含んでいると判定してよい。画像処理部250は、明度差又は色度差が所定値以上である場合に、検査対象部52が外観異常の検出条件を満たしていると判定してもよい。画像処理部250は、ステップS14で複数の検査対象部52について評価値、又は、明度差若しくは色度差を算出した場合、各検査対象部52について外観異常の検出条件を満たしているか判定してよい。 The image processing unit 250 determines whether the inspection target unit 52 for which the evaluation value is calculated satisfies the appearance abnormality detection condition (step S15). When the evaluation value is equal to or higher than a predetermined value, the image processing unit 250 may determine that the inspection target unit 52 satisfies the condition for detecting the appearance abnormality, that is, includes the appearance abnormality. The image processing unit 250 may determine that the inspection target unit 52 satisfies the condition for detecting an appearance abnormality when the difference in brightness or the difference in chromaticity is equal to or greater than a predetermined value. When the image processing unit 250 calculates the evaluation value, the brightness difference, or the chromaticity difference for the plurality of inspection target units 52 in step S14, the image processing unit 250 determines whether each inspection target unit 52 satisfies the detection condition of the appearance abnormality. Good.
 画像処理部250は、外観異常の検出条件を満たしていないと判定した場合(ステップS15:NO)、ステップS17の手順に進む。画像処理部250は、外観異常の検出条件を満たしていると判定した場合(ステップS15:YES)、検査対象部52を外観異常として検出する(ステップS16)。 When the image processing unit 250 determines that the appearance abnormality detection condition is not satisfied (step S15: NO), the image processing unit 250 proceeds to the procedure of step S17. When the image processing unit 250 determines that the condition for detecting the appearance abnormality is satisfied (step S15: YES), the image processing unit 250 detects the inspection target unit 52 as the appearance abnormality (step S16).
 照明装置20は、他の分類に対応する検査光に変更するか判定する(ステップS17)。ステップS11からS16までで、検査装置200は、所定の分類に含まれる外観異常を高精度で検出できる。一方で、検査装置200は、他の分類に含まれる外観異常を検出できていない可能性もある。検査装置200は、照明装置20に他の分類に対応する検査光を射出させることによって、まだ検出できていない、他の分類に含まれる外観異常を検出できる可能性がある。照明装置20は、検査装置200の管理者の操作に基づいて、他の分類に対応する検査光に変更すると判定してもよいし、自動で他の分類に対応する検査光に変更すると判定してもよい。照明装置20は、スペクトル決定装置30がどの分類に対応する検査光のスペクトルを出力可能かに関する情報を取得してもよい。照明装置20は、その情報に基づいて、他の分類に対応する検査光に変更するか判定してもよいし、どの分類に対応する検査光に変更するか決定してもよい。 The lighting device 20 determines whether to change to the inspection light corresponding to another classification (step S17). From steps S11 to S16, the inspection device 200 can detect the appearance abnormality included in the predetermined classification with high accuracy. On the other hand, the inspection device 200 may not be able to detect the appearance abnormality included in other classifications. By emitting the inspection light corresponding to the other classification to the lighting device 20, the inspection device 200 may be able to detect the appearance abnormality included in the other classification, which has not been detected yet. The lighting device 20 may determine to change to the inspection light corresponding to another classification based on the operation of the administrator of the inspection device 200, or may automatically determine to change to the inspection light corresponding to the other classification. You may. The illuminating device 20 may acquire information regarding which classification the spectrum of the inspection light corresponding to the spectrum determining device 30 can output. Based on the information, the illuminating device 20 may determine whether to change to the inspection light corresponding to another classification, or may determine which classification to change to the inspection light.
 照明装置20は、他の分類に対応する検査光に変更しないと判定した場合(ステップS17:NO)、図10のフローチャートの処理を終了する。照明装置20は、他の分類に対応する検査光に変更すると判定した場合(ステップS17:YES)、スペクトル決定装置30から他の分類に対応する検査光のスペクトルを取得する(ステップS18)。照明装置20は、スペクトル決定装置30に対して分類を指定する情報を出力し、スペクトル決定装置30からその分類に対応する検査光のスペクトルを取得してもよい。照明装置20は、ステップS18の手順を実行した後、ステップS12の手順に戻る。照明装置20は、ステップS12において、スペクトル決定装置30から取得したスペクトルで特定される検査光を発光部10に射出させる。検査装置200は、ステップS13以降の手順を続けて実行する。 When it is determined that the lighting device 20 does not change to the inspection light corresponding to another classification (step S17: NO), the processing of the flowchart of FIG. 10 ends. When the lighting device 20 determines that the inspection light is changed to the inspection light corresponding to another classification (step S17: YES), the illumination device 20 acquires the spectrum of the inspection light corresponding to the other classification from the spectrum determining device 30 (step S18). The lighting device 20 may output information for designating the classification to the spectrum determining device 30 and acquire the spectrum of the inspection light corresponding to the classification from the spectrum determining device 30. The lighting device 20 returns to the procedure of step S12 after executing the procedure of step S18. In step S12, the lighting device 20 emits the inspection light specified by the spectrum acquired from the spectrum determining device 30 to the light emitting unit 10. The inspection device 200 continues the procedure after step S13.
 以上説明してきたように検査装置200は、照明装置20に所定の分類に対応する検査光を射出させることによって、サンプル50における外観異常の検出精度を向上できる。 As described above, the inspection device 200 can improve the detection accuracy of the appearance abnormality in the sample 50 by emitting the inspection light corresponding to the predetermined classification to the lighting device 20.
 検査員8が検査装置200を用いてサンプル50の外観異常を検出する場合、ステップS15及びS16における外観異常を検出する手順は、検査員8が検査する工程で置き換えられてよい。ステップS17における検査光を変更する手順は、検査員8が検査光を変更するように操作する工程で置き換えられてもよい。 When the inspector 8 detects the appearance abnormality of the sample 50 using the inspection device 200, the procedure for detecting the appearance abnormality in steps S15 and S16 may be replaced by the step of the inspector 8 inspecting. The procedure for changing the inspection light in step S17 may be replaced by a step in which the inspector 8 operates to change the inspection light.
<データベースによるスペクトルの管理>
 スペクトル決定装置30は、検査対象としてのサンプル50に関連づけられている情報を取得してよい。検査対象としてのサンプル50に関連づけられている情報は、検査対象情報とも称される。検査対象情報は、サンプル50に含まれうる外観異常の分類を特定する情報を含んでよい。検査対象情報は、サンプル50の色又は外形等に関する情報を含んでよい。検査対象情報は、サンプル50を特定する情報を含んでよい。サンプル50は、電子機器の品番等の情報によって特定されてよい。検査対象情報は、サンプル50に取り付けられているICタグ等に格納されていてよい。スペクトル決定装置30は、ICタグ等から検査対象情報を取得してよい。
<Spectrum management by database>
The spectrum determination device 30 may acquire information associated with the sample 50 to be inspected. The information associated with the sample 50 as an inspection target is also referred to as inspection target information. The inspection target information may include information that identifies the classification of appearance abnormalities that may be contained in the sample 50. The inspection target information may include information regarding the color or outer shape of the sample 50. The inspection target information may include information that identifies the sample 50. The sample 50 may be specified by information such as a part number of an electronic device. The inspection target information may be stored in an IC tag or the like attached to the sample 50. The spectrum determination device 30 may acquire inspection target information from an IC tag or the like.
 スペクトル決定装置30は、所定の外観異常を検出しやすくするための検査光のスペクトルを決定した場合に、スペクトルを決定するために参照したサンプル50の検査対象情報を、決定したスペクトルと関連づけてよい。スペクトル決定装置30は、検査対象情報と決定したスペクトルとを関連づけたデータベースを生成してもよい。スペクトル決定装置30は、データベースからサンプル50の検査対象情報に関連づけられているスペクトルを抽出し、抽出したスペクトルを検査光のスペクトルとして照明装置20に出力してよい。データベースにおいてスペクトルと関連づけられる検査対象情報は、スペクトルを決定するために参照した外観異常の分類を含んでよい。検査対象情報が外観異常の分類を含むことによって、所定の分類に含まれる外観異常を検出しやすくなるように、検査光が制御されやすくなる。 When the spectrum determining device 30 determines the spectrum of the inspection light for facilitating the detection of a predetermined appearance abnormality, the inspection target information of the sample 50 referred to for determining the spectrum may be associated with the determined spectrum. .. The spectrum determination device 30 may generate a database in which the inspection target information and the determined spectrum are associated with each other. The spectrum determination device 30 may extract a spectrum associated with the inspection target information of the sample 50 from the database and output the extracted spectrum to the illumination device 20 as a spectrum of the inspection light. The inspection target information associated with the spectrum in the database may include the classification of appearance anomalies referenced to determine the spectrum. By including the classification of the appearance abnormality in the inspection target information, the inspection light is easily controlled so that the appearance abnormality included in the predetermined classification can be easily detected.
 データベースは、検査装置200に格納されてもよい。検査装置200は、検査対象情報に基づいてデータベースから検査光のスペクトルを抽出し、照明装置20に検査光を射出させてよい。検査装置200がデータベースから検査光のスペクトルを抽出することによって、検査対象情報に基づく検査光のスペクトルの制御が容易になる。その結果、外観異常の検出精度が高められやすくなる。 The database may be stored in the inspection device 200. The inspection device 200 may extract the spectrum of the inspection light from the database based on the inspection target information and emit the inspection light to the lighting device 20. When the inspection device 200 extracts the spectrum of the inspection light from the database, it becomes easy to control the spectrum of the inspection light based on the inspection target information. As a result, the detection accuracy of the appearance abnormality is likely to be improved.
<他の実施形態>
 スペクトル決定装置30は、検査装置200と独立に構成されてよい。例えば、スペクトル決定装置30は、検査装置200に含まれない撮像装置40から撮像画像を取得し、その撮像画像に基づいて検査光のスペクトルを決定してよい。スペクトル決定装置30が検査装置200を用いずに撮像画像を取得できる場合、検査装置200を用いて撮像画像を取得する場合と比較して、検査装置200の稼働時間のうち検査に用いられる時間が長くなりうる。その結果、検査装置200の稼働率が高められうる。
<Other embodiments>
The spectrum determination device 30 may be configured independently of the inspection device 200. For example, the spectrum determination device 30 may acquire an image captured from an image pickup device 40 not included in the inspection device 200 and determine the spectrum of the inspection light based on the captured image. When the spectrum determining device 30 can acquire an captured image without using the inspection device 200, the time used for the inspection in the operating time of the inspection device 200 is compared with the case where the captured image is acquired by using the inspection device 200. It can be long. As a result, the operating rate of the inspection device 200 can be increased.
 スペクトル決定装置30は、複数の異なる分類に対応する検査光のスペクトルを決定しておいてよい。この場合、スペクトル決定装置30は、検査対象情報に基づいて適切なスペクトルを選択し、照明装置20に出力してもよい。スペクトル決定装置30は、照明装置20から指定された分類に基づいてスペクトルを選択し、照明装置20に出力してもよい。スペクトルは、検査装置200内において自動で選択されてもよいし、検査装置200のオペレータからの操作に基づいて選択されてもよい。 The spectrum determination device 30 may determine the spectrum of the inspection light corresponding to a plurality of different classifications. In this case, the spectrum determining device 30 may select an appropriate spectrum based on the inspection target information and output it to the lighting device 20. The spectrum determination device 30 may select a spectrum based on the classification specified by the lighting device 20 and output the spectrum to the lighting device 20. The spectrum may be automatically selected in the inspection device 200, or may be selected based on an operation from the operator of the inspection device 200.
 検査装置200がスペクトル決定装置30を備える場合、スペクトル決定装置30は、検査対象となるサンプル50が検査装置200に搬入された後で、そのサンプル50に含まれる外観異常を高精度で検出できるような検査光のスペクトルを決定してもよい。 When the inspection device 200 includes the spectrum determination device 30, the spectrum determination device 30 can detect the appearance abnormality contained in the sample 50 with high accuracy after the sample 50 to be inspected is carried into the inspection device 200. The spectrum of the inspection light may be determined.
 照明装置20の発光部10が第1発光部と第2発光部とを含む場合、第1発光部及び第2発光部はそれぞれ、第1分類及び第2分類に対応する検査光を射出可能に構成されてよい。この場合、検査装置200は、検査対象情報に基づいて、第1発光部及び第2発光部のいずれかを選択し、検査光を射出させてよい。 When the light emitting unit 10 of the lighting device 20 includes a first light emitting unit and a second light emitting unit, the first light emitting unit and the second light emitting unit can emit inspection light corresponding to the first classification and the second classification, respectively. It may be configured. In this case, the inspection device 200 may select either the first light emitting unit or the second light emitting unit and emit the inspection light based on the inspection target information.
 本開示に係る実施形態について説明する図は模式的なものである。図面上の寸法比率等は、現実のものとは必ずしも一致していない。 The diagram illustrating the embodiment according to the present disclosure is schematic. The dimensional ratios on the drawings do not always match the actual ones.
 本開示に係る実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部等を1つに組み合わせたり、或いは分割したりすることが可能である。 Although the embodiments relating to the present disclosure have been described based on various drawings and examples, it should be noted that those skilled in the art can easily make various modifications or modifications based on the present disclosure. It should be noted, therefore, that these modifications or modifications are within the scope of this disclosure. For example, the functions and the like included in each component and the like can be rearranged so as not to be logically inconsistent, and a plurality of components and the like can be combined or divided into one.
 本開示において「第1」及び「第2」等の記載は、当該構成を区別するための識別子である。本開示における「第1」及び「第2」等の記載で区別された構成は、当該構成における番号を交換することができる。例えば、第1分類は、第2分類と識別子である「第1」と「第2」とを交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。本開示における「第1」及び「第2」等の識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠に利用してはならない。 In this disclosure, the descriptions such as "first" and "second" are identifiers for distinguishing the configuration. The configurations distinguished by the descriptions such as "first" and "second" in the present disclosure can exchange numbers in the configurations. For example, in the first classification, the identifiers "first" and "second" can be exchanged with the second classification. The exchange of identifiers takes place at the same time. Even after exchanging identifiers, the configuration is distinguished. The identifier may be deleted. The configuration with the identifier removed is distinguished by a code. Based solely on the description of identifiers such as "first" and "second" in the present disclosure, it shall not be used as a basis for interpreting the order of the configurations and for the existence of identifiers with smaller numbers.
 1 照明システム
 8 検査員
 10 発光部(2:素子基板、2A:主面、3:発光素子、4:枠体、5:封止部材、6:波長変換部材、60:透光部材、61~65:第1~第5蛍光体)
 20 照明装置(22:照明制御部、24:筐体)
 30 スペクトル決定装置(32:決定部)
 40 撮像装置
 50 サンプル
 51 サンプリング対象部(51a:第1領域、51b:第2領域)
 52 検査対象部
 55 異常部
 200 検査装置(210:サンプルホルダ、220:光学系、224:ハーフミラー、230:接眼レンズ、240:表示部、250:画像処理部)
1 Lighting system 8 Inspector 10 Light emitting part (2: Element substrate, 2A: Main surface, 3: Light emitting element, 4: Frame, 5: Sealing member, 6: Wavelength conversion member, 60: Translucent member, 61 ~ 65: 1st to 5th phosphors)
20 Lighting device (22: Lighting control unit, 24: Housing)
30 Spectrum determination device (32: determination unit)
40 Imaging device 50 Samples 51 Sampling target area (51a: 1st region, 51b: 2nd region)
52 Inspection target part 55 Abnormal part 200 Inspection device (210: sample holder, 220: optical system, 224: half mirror, 230: eyepiece, 240: display part, 250: image processing part)

Claims (21)

  1.  プロセッサを備え、
     前記プロセッサは、
     所定の分類に含まれる第1外観異常が位置する第1領域と、前記第1領域から所定範囲内の少なくとも一部に広がるとともに、前記第1外観異常が位置しない領域を有する第2領域とを含むサンプリング対象部の撮像画像と、前記撮像画像を撮像するために前記サンプリング対象部を照らしているサンプリング光のスペクトル情報とを取得し、
     前記撮像画像における、前記第1領域を撮像した部分と前記第2領域を撮像した部分との間の、明度差及び色度差のうち少なくとも一方に基づく評価指標を算出し、
     検査対象部が前記所定の分類に含まれる第2外観異常を含んでいるか検出するために前記検査対象部を照らす検査光のスペクトルを、前記評価指標と前記サンプリング光のスペクトル情報とに基づいて決定する、
    スペクトル決定装置。
    Equipped with a processor
    The processor
    A first region in which the first appearance abnormality included in a predetermined classification is located and a second region having a region extending from the first region to at least a part within a predetermined range and in which the first appearance abnormality is not located. The captured image of the sampling target portion including the sampled image and the spectral information of the sampling light illuminating the sampling target portion in order to capture the captured image are acquired.
    An evaluation index based on at least one of the difference in brightness and the difference in chromaticity between the portion in which the first region is imaged and the portion in which the second region is imaged in the captured image is calculated.
    The spectrum of the inspection light that illuminates the inspection target portion in order to detect whether the inspection target portion includes the second appearance abnormality included in the predetermined classification is determined based on the evaluation index and the spectrum information of the sampling light. To do,
    Spectrum determinant.
  2.  前記プロセッサは、
     第1スペクトルで特定される第1サンプリング光で照らされている前記サンプリング対象部の撮像画像に基づく評価指標を第1評価指標として算出し、
     第2スペクトルで特定される第2サンプリング光で照らされている前記サンプリング対象部の撮像画像に基づく評価指標を第2評価指標として算出し、
     前記第1評価指標及び前記第2評価指標に基づいて、前記第1スペクトル及び前記第2スペクトルの一方を前記検査光のスペクトルとして決定する、請求項1に記載のスペクトル決定装置。
    The processor
    An evaluation index based on the captured image of the sampling target portion illuminated by the first sampling light specified in the first spectrum is calculated as the first evaluation index.
    An evaluation index based on the captured image of the sampling target portion illuminated by the second sampling light specified in the second spectrum is calculated as the second evaluation index.
    The spectrum determining apparatus according to claim 1, wherein one of the first spectrum and the second spectrum is determined as the spectrum of the inspection light based on the first evaluation index and the second evaluation index.
  3.  前記プロセッサは、
     前記明度差及び前記色度差の少なくとも一方の算出結果を重みづけして加算した値を前記評価指標として算出する、請求項1又は2に記載のスペクトル決定装置。
    The processor
    The spectrum determining apparatus according to claim 1 or 2, wherein a value obtained by weighting and adding at least one of the calculation results of the brightness difference and the chromaticity difference is calculated as the evaluation index.
  4.  前記所定の分類は、前記第1外観異常及び前記第2外観異常の凹凸の大きさに基づく分類を含む、請求項1から3までのいずれか一項に記載のスペクトル決定装置。 The spectrum determining device according to any one of claims 1 to 3, wherein the predetermined classification includes a classification based on the size of the unevenness of the first appearance abnormality and the second appearance abnormality.
  5.  前記プロセッサは、前記検査光を射出する照明装置と通信可能に接続され、前記照明装置に前記検査光のスペクトルを出力する、請求項1から4までのいずれか一項に記載のスペクトル決定装置。 The spectrum determining device according to any one of claims 1 to 4, wherein the processor is communicably connected to a lighting device that emits the test light and outputs a spectrum of the test light to the lighting device.
  6.  前記照明装置は、物品の検査用である、請求項5に記載のスペクトル決定装置。 The spectrum determining device according to claim 5, wherein the lighting device is for inspecting an article.
  7.  所定の分類に含まれる第1外観異常が位置する第1領域と、前記第1領域から所定範囲内の少なくとも一部に広がる第2領域とを含むサンプリング対象部の撮像画像と、前記撮像画像を撮像するために前記サンプリング対象部を照らしているサンプリング光のスペクトル情報とを取得するステップと、
     前記撮像画像における、前記第1領域を撮像した部分と前記第2領域を撮像した部分との間の、明度差及び色度差のうち少なくとも一方に基づく評価指標を算出するステップと、
     検査対象部が前記所定の分類に含まれる第2外観異常を含んでいるか検出するために前記検査対象部を照らす検査光のスペクトルを、前記評価指標と前記サンプリング光のスペクトル情報とに基づいて決定するステップと
    を含む、スペクトル決定方法。
    The captured image of the sampling target portion including the first region where the first appearance abnormality included in the predetermined classification is located and the second region extending from the first region to at least a part within the predetermined range, and the captured image. The step of acquiring the spectral information of the sampling light illuminating the sampling target portion for imaging, and
    A step of calculating an evaluation index based on at least one of a brightness difference and a chromaticity difference between a portion in which the first region is imaged and a portion in which the second region is imaged in the captured image.
    The spectrum of the inspection light that illuminates the inspection target portion in order to detect whether the inspection target portion includes the second appearance abnormality included in the predetermined classification is determined based on the evaluation index and the spectrum information of the sampling light. A method for determining the spectrum, including steps to be performed.
  8.  プロセッサに、
     所定の分類に含まれる第1外観異常が位置する第1領域と、前記第1領域から所定範囲内の少なくとも一部に広がる第2領域とを含むサンプリング対象部の撮像画像と、前記撮像画像を撮像するために前記サンプリング対象部を照らしているサンプリング光のスペクトル情報とを取得するステップと、
     前記撮像画像における、前記第1領域を撮像した部分と前記第2領域を撮像した部分との間の、明度差及び色度差のうち少なくとも一方に基づく評価指標を算出するステップと、
     検査対象部が前記所定の分類に含まれる第2外観異常を含んでいるか検出するために前記検査対象部を照らす検査光のスペクトルを、前記評価指標と前記サンプリング光のスペクトル情報とに基づいて決定するステップと
    を実行させる、スペクトル決定プログラム。
    To the processor
    The captured image of the sampling target portion including the first region where the first appearance abnormality included in the predetermined classification is located and the second region extending from the first region to at least a part within the predetermined range, and the captured image. The step of acquiring the spectral information of the sampling light illuminating the sampling target portion for imaging, and
    A step of calculating an evaluation index based on at least one of a brightness difference and a chromaticity difference between a portion in which the first region is imaged and a portion in which the second region is imaged in the captured image.
    The spectrum of the inspection light that illuminates the inspection target portion in order to detect whether the inspection target portion includes the second appearance abnormality included in the predetermined classification is determined based on the evaluation index and the spectrum information of the sampling light. A spectrum determination program that executes the steps to be performed.
  9.  照明装置と、スペクトル決定装置とを備え、
     前記スペクトル決定装置は、
     所定の分類に含まれる第1外観異常が位置する第1領域と、前記第1領域から所定範囲内の少なくとも一部に広がる第2領域とを含むサンプリング対象部の撮像画像と、前記撮像画像を撮像するために前記サンプリング対象部を照らしているサンプリング光のスペクトル情報とを取得し、
     前記撮像画像における、前記第1領域を撮像した部分と前記第2領域を撮像した部分との間の、明度差及び色度差のうち少なくとも一方に基づく評価指標を算出し、
     検査対象部が前記所定の分類に含まれる第2外観異常を含んでいるか検出するために前記検査対象部を照らす検査光のスペクトルを、前記評価指標と前記サンプリング光のスペクトル情報とに基づいて決定し、
     前記照明装置は、前記検査光を前記検査対象部に射出する、
    照明システム。
    Equipped with a lighting device and a spectrum determination device,
    The spectrum determining device is
    A captured image of a sampling target portion including a first region in which a first appearance abnormality included in a predetermined classification is located and a second region extending from the first region to at least a part within a predetermined range, and the captured image. Obtaining the spectral information of the sampling light illuminating the sampling target portion for imaging,
    An evaluation index based on at least one of the difference in brightness and the difference in chromaticity between the portion in which the first region is imaged and the portion in which the second region is imaged in the captured image is calculated.
    The spectrum of the inspection light that illuminates the inspection target portion in order to detect whether the inspection target portion includes the second appearance abnormality included in the predetermined classification is determined based on the evaluation index and the spectrum information of the sampling light. And
    The lighting device emits the inspection light to the inspection target portion.
    Lighting system.
  10.  前記照明装置は、前記検査対象部を観察する光学顕微鏡に搭載可能に構成される、請求項9に記載の照明システム。 The lighting system according to claim 9, wherein the lighting device is configured to be mounted on an optical microscope for observing the inspection target portion.
  11.  前記照明装置は、リング照明として構成される、請求項9又は10に記載の照明システム。 The lighting system according to claim 9 or 10, wherein the lighting device is configured as ring lighting.
  12.  前記照明装置は、物品の検査用である、請求項9から11までのいずれか一項に記載の照明システム。 The lighting system according to any one of claims 9 to 11, wherein the lighting device is for inspecting an article.
  13.  発光部と、前記発光部を制御する照明制御部とを備え、
     前記照明制御部は、
     サンプリング光で照らされているサンプリング対象部の撮像画像に基づいて算出された評価指標と、前記サンプリング光のスペクトル情報とに基づいて決定されたスペクトルに関する情報を取得し、
     前記発光部に、前記スペクトルで特定される検査光を射出させ、
     前記サンプリング対象部は、所定の分類に含まれる第1外観異常が位置する第1領域と前記第1領域から所定範囲内の少なくとも一部に広がる第2領域とを含み、
     前記評価指標は、前記第1領域を撮像した部分と前記第2領域を撮像した部分との間の、明度差及び色度差のうち少なくとも一方に基づき、
     前記発光部は、前記所定の分類に含まれる第2外観異常の検査対象となる検査対象部に前記検査光を射出する、
    照明装置。
    A light emitting unit and a lighting control unit that controls the light emitting unit are provided.
    The lighting control unit
    The evaluation index calculated based on the captured image of the sampling target portion illuminated by the sampling light and the information on the spectrum determined based on the spectrum information of the sampling light are acquired.
    The light emitting portion is emitted with the inspection light specified in the spectrum.
    The sampling target portion includes a first region in which a first appearance abnormality included in a predetermined classification is located and a second region extending from the first region to at least a part within a predetermined range.
    The evaluation index is based on at least one of a difference in brightness and a difference in chromaticity between the portion in which the first region is imaged and the portion in which the second region is imaged.
    The light emitting unit emits the inspection light to the inspection target portion to be inspected for the second appearance abnormality included in the predetermined classification.
    Lighting device.
  14.  前記検査対象部を観察する光学顕微鏡に搭載可能に構成される、請求項13に記載の照明装置。 The lighting device according to claim 13, which is configured to be mounted on an optical microscope for observing the inspection target portion.
  15.  前記発光部は、リング照明として配置される、請求項13又は14に記載の照明装置。 The lighting device according to claim 13 or 14, wherein the light emitting unit is arranged as ring lighting.
  16.  前記発光部は、
     360nm~430nmの波長領域にピーク波長を有する光を発光する発光素子と、
     前記発光素子が発光する光を、360nm~780nmの波長領域にピーク波長を有する光に変換する波長変換部材と
    を備える、請求項13から15までのいずれか一項に記載の照明装置。
    The light emitting unit
    A light emitting element that emits light having a peak wavelength in the wavelength region of 360 nm to 430 nm, and
    The lighting device according to any one of claims 13 to 15, further comprising a wavelength conversion member that converts the light emitted by the light emitting element into light having a peak wavelength in the wavelength region of 360 nm to 780 nm.
  17.  物品の検査用である、請求項13から16までのいずれか一項に記載の照明装置。 The lighting device according to any one of claims 13 to 16, which is used for inspecting articles.
  18.  照明装置と、サンプルホルダとを備え、
     前記照明装置は、サンプリング光で照らされているサンプリング対象部の撮像画像に基づいて算出された評価指標と、前記サンプリング光のスペクトル情報とに基づいて決定されたスペクトルで特定される検査光を射出し、
     前記サンプリング対象部は、所定の分類に含まれる第1外観異常が位置する第1領域と前記第1領域から所定範囲内の少なくとも一部に広がる第2領域とを含み、
     前記評価指標は、前記第1領域を撮像した部分と前記第2領域を撮像した部分との間の、明度差及び色度差のうち少なくとも一方に基づき、
     前記サンプルホルダは、検査対象物が前記検査光で照明されるように、前記検査対象物を配置可能に構成され、
     前記検査対象物は、前記所定の分類に含まれる第2外観異常の検査対象となる検査対象部を含む、検査装置。
    Equipped with a lighting device and a sample holder
    The lighting device emits inspection light specified by a spectrum determined based on an evaluation index calculated based on an image captured by a sampling target portion illuminated by the sampling light and spectral information of the sampling light. And
    The sampling target portion includes a first region in which a first appearance abnormality included in a predetermined classification is located and a second region extending from the first region to at least a part within a predetermined range.
    The evaluation index is based on at least one of a difference in brightness and a difference in chromaticity between the portion in which the first region is imaged and the portion in which the second region is imaged.
    The sample holder is configured so that the inspection object can be arranged so that the inspection object is illuminated by the inspection light.
    The inspection target is an inspection device including an inspection target portion to be inspected for a second appearance abnormality included in the predetermined classification.
  19.  前記照明装置は、
     それぞれ異なるスペクトルで特定される光を射出する第1発光部と第2発光部とを備え、
     前記第1発光部及び前記第2発光部の少なくとも一方を選択して前記検査光を射出させる、請求項18に記載の検査装置。
    The lighting device is
    It is equipped with a first light emitting unit and a second light emitting unit that emit light specified by different spectra.
    The inspection device according to claim 18, wherein at least one of the first light emitting unit and the second light emitting unit is selected to emit the inspection light.
  20.  前記照明装置は、
     前記検査対象物に関する情報を取得し、
     前記検査対象物に関する情報に基づいて、前記検査光のスペクトルを制御する、請求項18又は19に記載の検査装置。
    The lighting device is
    Obtain information about the inspection object and
    The inspection device according to claim 18 or 19, which controls the spectrum of the inspection light based on the information about the inspection object.
  21.  前記サンプルホルダは、光学顕微鏡に含まれており、
     前記照明装置は、前記光学顕微鏡に搭載可能に構成される、請求項18から20までのいずれか一項に記載の検査装置。
    The sample holder is included in the optical microscope.
    The inspection device according to any one of claims 18 to 20, wherein the lighting device is configured to be mounted on the optical microscope.
PCT/JP2020/020621 2019-05-28 2020-05-25 Spectrum determination device, spectrum determination method, spectrum determination program, illumination system, illumination device, and inspection device WO2020241598A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021522763A JP7317957B2 (en) 2019-05-28 2020-05-25 Spectrum determination device, spectrum determination method, spectrum determination program, lighting system, lighting device, and inspection device
CN202080035351.XA CN113826001A (en) 2019-05-28 2020-05-25 Spectrum determination device, spectrum determination method, spectrum determination program, illumination system, illumination device, and inspection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-099723 2019-05-28
JP2019099723 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020241598A1 true WO2020241598A1 (en) 2020-12-03

Family

ID=73552902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020621 WO2020241598A1 (en) 2019-05-28 2020-05-25 Spectrum determination device, spectrum determination method, spectrum determination program, illumination system, illumination device, and inspection device

Country Status (3)

Country Link
JP (1) JP7317957B2 (en)
CN (1) CN113826001A (en)
WO (1) WO2020241598A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705638A (en) * 2022-03-31 2022-07-05 重庆大学 Cultural relic protection monitoring method based on comparison label material spectrum difference monitoring

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285548A (en) * 1995-04-11 1996-11-01 Sharp Corp Bump appearance inspection device
JP2004264299A (en) * 2003-02-28 2004-09-24 Samsung Electronics Co Ltd Method of and apparatus for inspecting substrate
JP2008546144A (en) * 2005-05-27 2008-12-18 イーディー− ムンド オプティクス, インク. Light pipe integrator for uniform irradiance and light intensity
JP2010096513A (en) * 2008-10-14 2010-04-30 Toshiba Corp Visual inspection method of semiconductor chip
US20110317001A1 (en) * 2010-06-23 2011-12-29 Baumer Inspection Gmbh Multisensor array for the optical inspection and sorting of bulk materials
JP2015219521A (en) * 2014-05-16 2015-12-07 チャム エンジニアリング カンパニー リミテッド Observer and laser processing apparatus comprising the same
US20170108449A1 (en) * 2015-10-16 2017-04-20 Rolls-Royce Plc Method for classifying a defect in a component intended to have a monocrystalline structure
JP2017129480A (en) * 2016-01-21 2017-07-27 京セラ株式会社 Inspection method and inspection device
JP2019035609A (en) * 2017-08-10 2019-03-07 オムロン株式会社 Image processing system, setting assistance device, and setting assistance program
JP2019148438A (en) * 2018-02-26 2019-09-05 オムロン株式会社 Image processing system and setting method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552783B1 (en) * 2000-06-28 2003-04-22 Teradyne, Inc. Optical system
JP5228490B2 (en) * 2005-12-26 2013-07-03 株式会社ニコン Defect inspection equipment that performs defect inspection by image analysis
JP2013231662A (en) * 2012-04-27 2013-11-14 Mitsubishi Chemicals Corp Method for inspecting laminate, method for manufacturing laminate, and apparatus for inspecting laminate
CN108445007B (en) * 2018-01-09 2020-11-17 深圳市华汉伟业科技有限公司 Detection method and detection device based on image fusion

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285548A (en) * 1995-04-11 1996-11-01 Sharp Corp Bump appearance inspection device
JP2004264299A (en) * 2003-02-28 2004-09-24 Samsung Electronics Co Ltd Method of and apparatus for inspecting substrate
JP2008546144A (en) * 2005-05-27 2008-12-18 イーディー− ムンド オプティクス, インク. Light pipe integrator for uniform irradiance and light intensity
JP2010096513A (en) * 2008-10-14 2010-04-30 Toshiba Corp Visual inspection method of semiconductor chip
US20110317001A1 (en) * 2010-06-23 2011-12-29 Baumer Inspection Gmbh Multisensor array for the optical inspection and sorting of bulk materials
JP2015219521A (en) * 2014-05-16 2015-12-07 チャム エンジニアリング カンパニー リミテッド Observer and laser processing apparatus comprising the same
US20170108449A1 (en) * 2015-10-16 2017-04-20 Rolls-Royce Plc Method for classifying a defect in a component intended to have a monocrystalline structure
JP2017129480A (en) * 2016-01-21 2017-07-27 京セラ株式会社 Inspection method and inspection device
JP2019035609A (en) * 2017-08-10 2019-03-07 オムロン株式会社 Image processing system, setting assistance device, and setting assistance program
JP2019148438A (en) * 2018-02-26 2019-09-05 オムロン株式会社 Image processing system and setting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705638A (en) * 2022-03-31 2022-07-05 重庆大学 Cultural relic protection monitoring method based on comparison label material spectrum difference monitoring

Also Published As

Publication number Publication date
CN113826001A (en) 2021-12-21
JPWO2020241598A1 (en) 2020-12-03
JP7317957B2 (en) 2023-07-31

Similar Documents

Publication Publication Date Title
JP6758197B2 (en) Defect inspection method and defect inspection equipment for wide-gap semiconductor substrates
KR101894683B1 (en) Metal body shape inspection device and metal body shape inspection method
JP6131250B2 (en) Method and apparatus for inspection of light emitting semiconductor devices using photoluminescence imaging
TWI709742B (en) Apparatus and method for fluorescence grading of gemstones
KR101692115B1 (en) Inspection apparatus and inspection method
TWI783420B (en) Method of capturing and analyzing spectrometer data on multiple sample gemstones and system for recording spectrometer readings of multiple gemstone samples
KR101776355B1 (en) Apparatus and methods for setting up optical inspection parameters
US20110058031A1 (en) Image processing measuring apparatus and image processing measurement method
WO2020241598A1 (en) Spectrum determination device, spectrum determination method, spectrum determination program, illumination system, illumination device, and inspection device
JP6076133B2 (en) Fluorescent substance inspection equipment
JP2009128303A (en) Visual examination device for substrate
TW201215878A (en) Imaging method for inspection of chip appearance
EP4080199A1 (en) Inspection apparatus and inspection method
JP2018179621A (en) Surface defect detector, information processing device for surface defect inspection, computer program for surface defect inspection, and surface defect inspection method
CN117501100A (en) Method and device for inspecting painted surfaces with effect pigments
KR101998138B1 (en) Analyzing Method of Polytypes of Crystals Using Ultraviolet Photoluminescence
US20220136978A1 (en) Illuminating system, illuminating device, and illumination control method
JPWO2022113369A5 (en)
JP2009276108A (en) Image sensor surface inspection method
JP4998782B2 (en) Microscope image processing apparatus and microscope image processing method
JP2017153054A (en) Coloring inspection apparatus and coloring inspection method
KR20110045227A (en) Apparatus and method for testing light emitting device package
CN1844867A (en) In-situ non-contact method for detecting MOCVD graphite temperature distribution
Eisler et al. Combining spectral material properties in the infrared and the visible spectral range for qualification and nondestructive evaluation of components
JP2021103835A (en) Method of quantifying color of object, signal processing device, and imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813916

Country of ref document: EP

Kind code of ref document: A1