WO2020238753A1 - 一种水杨胺醋酸盐的制备方法 - Google Patents

一种水杨胺醋酸盐的制备方法 Download PDF

Info

Publication number
WO2020238753A1
WO2020238753A1 PCT/CN2020/091546 CN2020091546W WO2020238753A1 WO 2020238753 A1 WO2020238753 A1 WO 2020238753A1 CN 2020091546 W CN2020091546 W CN 2020091546W WO 2020238753 A1 WO2020238753 A1 WO 2020238753A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
preparation
acetic acid
compound
reaction
Prior art date
Application number
PCT/CN2020/091546
Other languages
English (en)
French (fr)
Inventor
龙玲
马建义
刘伟国
刘洲亚
Original Assignee
江阴技源药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴技源药业有限公司 filed Critical 江阴技源药业有限公司
Priority to BR112021023520A priority Critical patent/BR112021023520A2/pt
Priority to KR1020217042322A priority patent/KR20220044684A/ko
Priority to US17/613,834 priority patent/US20220315524A1/en
Priority to AU2020281551A priority patent/AU2020281551A1/en
Priority to JP2022516256A priority patent/JP2022533485A/ja
Priority to CA3141508A priority patent/CA3141508A1/en
Priority to EP20814337.0A priority patent/EP3978470A4/en
Priority to MX2021014321A priority patent/MX2021014321A/es
Publication of WO2020238753A1 publication Critical patent/WO2020238753A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/46Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C215/48Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by hydroxy groups
    • C07C215/50Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by hydroxy groups with amino groups and the six-membered aromatic ring, or the condensed ring system containing that ring, bound to the same carbon atom of the carbon chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the field of chemical synthesis; more specifically, it relates to a preparation method of salicylamine acetate.
  • the invention aims to provide a new preparation method of salicylamine acetate.
  • the present invention provides a method for preparing salicylamine acetate.
  • the method includes the steps:
  • reaction temperature of amino group protection in step (1) is 0-50°C.
  • reaction time for amino group protection in step (1) is 3-18 hours.
  • the equivalent ratio of tert-butyl carbamate to salicylaldehyde in step (1) is 1.0-3.0:1.
  • reaction solvent in step (1) is selected from tetrahydrofuran, 2-methyltetrahydrofuran, acetonitrile or 1,4-dioxane.
  • reaction temperature with acetic acid in step (2) is 50° C. to acetic acid reflux temperature; more preferably 70° C. to acetic acid reflux temperature.
  • reaction time with acetic acid in step (2) is 5-70 hours; more preferably 5-60 hours.
  • the dosage ratio of the compound with the structure shown in formula 2 to acetic acid in step (2) is 1:0.1-20 (g/mL); preferably, 1:1-15 (g/mL) ); More preferably, 1:3-10 (g/mL).
  • the method includes the steps:
  • the amount of the organic solvent is 1-50 times; preferably 1-20 times; more preferably 1-10 times.
  • the present invention provides a method for preparing salicylamine acetate with low cost and excellent commercialization effect.
  • Figure 1 shows the nuclear magnetic spectrum of the salicylamine acetate obtained in the present invention.
  • Figure 2 shows the HPLC chart of the salicylamine acetate obtained in the present invention.
  • Amino protective agents are generally removed by strong acid hydrolysis, and weak acids such as acetic acid generally cannot be achieved.
  • weak acids such as acetic acid generally cannot be achieved.
  • the target product of the present invention is salicylamine acetate. If acetic acid is used, the deprotection agent and salt formation can be completed in one step, although the teaching provided by the prior art is that this reaction is either low in yield or complicated in post-processing. It is not conducive to industrial production, but the inventor has carried out extensive and in-depth research, and unexpectedly found that if salicylaldehyde is obtained by using amino-protecting reagents, if some key factors are controlled in a complex reaction environment, not only can it directly react with acetic acid to obtain water Yangamine acetate, the subsequent crystallization only needs to use organic solvents to obtain high-purity products.
  • the compound of formula 1 and “the compound of formula 1” can be used interchangeably, and both refer to salicylaldehyde. Other analogy.
  • room temperature refers to 15-35°C, such as but not limited to, 15-20°C, 15-25°C, 18-20°C, 15-30°C, 22-28°C, 24-30°C, 32-35°C and so on.
  • the preparation method of salicylamine acetate with the structure shown in formula 3 provided by the present invention includes the steps:
  • the salicylaldehyde having the structure shown in Formula 1 is mixed with the amino protecting agent to obtain the compound having the structure shown in Formula 2;
  • the compound with the structure shown in Formula 2 is mixed with acetic acid, and the salicylamine acetate with the structure shown in Formula 3 is obtained by reaction.
  • the solvent contained in the mixed system of salicylaldehyde and amino protecting agent with the structure shown in formula 1 in the first step is selected from tetrahydrofuran, 2-methyltetrahydrofuran, acetonitrile or 1 , 4-Dioxane.
  • the mixed system of salicylaldehyde with the structure shown in Formula 1 and the amino protecting agent further contains triethylsilane.
  • the mixed system of salicylaldehyde with the structure shown in Formula 1 and the amino protecting agent further contains trifluoroacetic acid.
  • the mixing temperature in the first step is 0-50°C, preferably 10-50°C.
  • the mixing time in the first step is 3-18 hours, preferably 8-18 hours.
  • the above-mentioned first step is to mix salicylaldehyde, amino protecting agent, triethylsilane and trifluoroacetic acid with the structure shown in formula 1, and then mix it at 0-50°C (preferably 10- 50°C) the system is incubated for 3-18 hours (preferably 8-18 hours) to obtain the compound shown in formula 2; wherein the amino protecting agent is selected from benzyl carbamate or tert-butyl carbamate;
  • the dosage ratio of the protective agent and the salicylaldehyde is 1.0-3.0 equivalents:1; the dosage ratio of the triethylsilane and the salicylaldehyde is 1.0-3.0 equivalents:1.
  • the system is stirred while keeping the temperature warm.
  • tert-butyl carbamate When tert-butyl carbamate is used in the above-mentioned first step, mixing is carried out in an organic solvent selected from tetrahydrofuran, 2-methyltetrahydrofuran, acetonitrile or 1,4-dioxane.
  • organic solvent selected from tetrahydrofuran, 2-methyltetrahydrofuran, acetonitrile or 1,4-dioxane.
  • a saturated inorganic base solution is used to quench the reaction to obtain the compound of formula 2.
  • the inorganic base includes sodium bicarbonate, potassium bicarbonate, potassium carbonate, sodium carbonate, hydrogen Sodium oxide, lithium hydroxide, etc.; the amount of inorganic alkali solution can be used as long as it can quench the reaction, and it is preferable to make the system weakly alkaline, such as pH 7-9, 7-8.5, 7-8, 7.5-8.5, 7.5 -9 etc.
  • the dosage ratio of the compound of formula 2 to acetic acid is 1:0.1-20 (g/mL); preferably 1:1-15 (g/mL); Preferably it is 1:3-10 (g/mL).
  • the reaction temperature with acetic acid in the second step is 50° C. to acetic acid reflux temperature; preferably 70° C. to acetic acid reflux temperature.
  • the reaction time with acetic acid is 5-70 hours; preferably 5-60 hours.
  • reaction temperature and reaction time in the second step are linked.
  • the reaction time required for high reaction temperature is short, and vice versa.
  • reaction temperature below 70°C It can react for more than 35 hours, and the reaction time is less than 15 hours if the reaction temperature is higher than 100°C.
  • an organic solvent can be added to crystallize in a system mixed with acetic acid, and a higher purity salicylamine acetate can be obtained after filtration; based on the amount of the compound of formula 2, the The amount of organic solvent used is 1-50 times; preferably 1-20 times; more preferably 1-10 times; the organic solvent is selected from ethyl acetate, isopropyl ether, absolute ethanol, or methyl tert-butyl Ether (MTBE).
  • MTBE methyl tert-butyl Ether
  • the preparation method of salicylamine acetate with the structure shown in formula 3 provided by the present invention includes the steps:
  • the salicylaldehyde having the structure shown in Formula 1 is mixed with the amino protecting agent to obtain the compound having the structure shown in Formula 2;
  • the compound with the structure shown in formula 2 is mixed and reacted with acetic acid, and after the reaction is stopped, the temperature is cooled to room temperature to obtain the crude salicylamine acetate;
  • the crude salicylamine acetate is mixed with an organic solvent and crystallized to obtain a salicylamine acetate with a higher purity structure as shown in Formula 3.
  • the amount of organic solvent used in the third step is 2-5 times (v/v) of the amount of acetic acid used in the second step, preferably 2-4 times.
  • the preparation process of salicylamine acetate provided by the present invention uses few raw materials, short route and low cost.
  • the preparation method of salicylamine acetate provided by the present invention is suitable for commercial application.
  • the salicylamine acetate obtained by the method of the present invention has a good appearance.
  • the purity of the compound of formula 3 is determined by high performance liquid chromatography.
  • the stationary phase of high performance liquid chromatography is C18, the mobile phase is trifluoroacetic acid acetonitrile aqueous solution, and the detection wavelength is 220nm; the purity is the peak of formula 3 compound The percentage of the sum of the area and the area of each peak.
  • the organic phase was combined with 280g water and 336g saturated brine (252g water + 84g sodium chloride) wash, add 100g anhydrous sodium sulfate to the organic phase after salt washing, stir and dry for 2-4 hours, centrifuge or filter with suction, rinse the filter cake with 63g ethyl acetate, store the filter cake temporarily, and combine the filtrate To be cast in the next step (in Example 2).
  • the preparation process is:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种水杨胺醋酸盐的制备方法,包括由水杨醛制备氨基经保护的中间体以及该中间体与醋酸反应制备醋酸盐。

Description

一种水杨胺醋酸盐的制备方法 技术领域
本发明属于化学合成领域;更具体地涉及一种水杨胺醋酸盐的制备方法。
背景技术
水杨醛经氨基保护而得到的化合物需经强酸水解脱保护后再与醋酸反应得到水杨胺醋酸盐,然而这种方法的商业价值有限。因此,本领域迫切需要提供一种成本低廉、商业化效果优良的水杨胺醋酸盐制备方法。
发明内容
本发明旨在提供一种新的水杨胺醋酸盐的制备方法。
本发明提供了一种水杨胺醋酸盐的制备方法,所述方法包括步骤:
(1)将结构如式1所示的水杨醛进行氨基保护,得到结构如式2所示的化合物;和
(2)结构如式2所示的化合物与醋酸反应,得到水杨胺醋酸盐;
Figure PCTCN2020091546-appb-000001
其中,X=Cbz或Boc
在另一优选例中,步骤(1)中氨基保护的反应温度为0-50℃。
在另一优选例中,步骤(1)中氨基保护的反应时间为3-18小时。
在另一优选例中,步骤(1)中氨基甲酸叔丁酯与水杨醛的当量比为1.0-3.0∶1。
在另一优选例中,步骤(1)的反应溶剂选自四氢呋喃、2-甲基四氢呋喃、乙腈或1,4-二氧六环。
在另一优选例中,步骤(2)中与醋酸的反应温度为50℃至醋酸回流温度;更优选70℃至醋酸回流温度。
在另一优选例中,步骤(2)中与醋酸的反应时间为5-70小时;更优选5-60 小时。
在另一优选例中,步骤(2)中结构如式2所示的化合物与醋酸的用量比为1∶0.1-20(g/mL);较佳地,1∶1-15(g/mL);更佳地,1∶3-10(g/mL)。
在另一优选例中,所述方法包括步骤:
(1)将结构如式1所示的水杨醛进行氨基保护,得到结构如式2所示的化合物;
(2)结构如式2所示的化合物与醋酸反应,反应停止后降温至室温,得到水杨胺醋酸盐粗品;和
(3)将得到的水杨胺醋酸盐粗品与有机溶剂混合、析晶,得到水杨胺醋酸盐纯品;所述有机溶剂选自乙酸乙酯、异丙醚、无水乙醇、或甲基叔丁基醚。
在另一优选例中,以式2化合物的用量计,所述有机溶剂的用量是其1-50倍;较佳地为1-20倍;更佳地为1-10倍。
据此,本发明提供了一种成本低廉、商业化效果优良的水杨胺醋酸盐制备方法。
附图说明
图1显示了本发明获得的水杨胺醋酸盐的核磁图谱。
图2显示了本发明获得的水杨胺醋酸盐的HPLC图谱。
具体实施方式
氨基保护剂一般使用强酸水解的方式脱去,弱酸如醋酸一般无法实现,例如针对下述反应的一系列实验为:
Figure PCTCN2020091546-appb-000002
反应条件及其结果如表1:
Figure PCTCN2020091546-appb-000003
上述反应显示,无论苯环还是其它刚性结构上的氨基保护剂,使用醋酸进行氨基脱保护的效果都不佳,虽然不同底物的原料可以通过LCMS检有目标产物生成,但是产生的杂质量较多,尤其是反应a和b;三个反应的后处理中,加入甲基叔丁基醚也都无固体析出,若需得到目标产品,提纯过程会非常繁琐。
然而本发明的目标产物是水杨胺醋酸盐,如果使用醋酸,可以使脱保护剂与成盐一步完成,虽然现有技术提供的教导是这种反应要么产率低,要么后处理复杂,不利于工业化生产,但是发明人还是进行了广泛而深入的研究,意外地发现水杨醛经使用氨基保护试剂得到的化合物如果在复杂的反应环 境中控制好一些关键因素,不但能够直接与醋酸反应得到水杨胺醋酸盐,后续只需要使用有机溶剂析晶便能得到高纯度的产品。
上述所谓的关键因素包括反应底物与醋酸的用量关系、反应温度与时间、以及后续析晶过程的有机溶剂选择。在此基础上,完成了本发明。
如本发明所用,“结构如式1所示的化合物”与“式1化合物”可以互换使用,都是指水杨醛。其他类推。
如本发明所用,“室温”是指15-35℃,例如但不限于,15-20℃,15-25℃,18-20℃,15-30℃,22-28℃,24-30℃,32-35℃等。
本文涉及的化合物列于表2:
Figure PCTCN2020091546-appb-000004
具体地,本发明提供的结构如式3所示的水杨胺醋酸盐的制备方法包括步骤:
第一步,将结构如式1所示的水杨醛和氨基保护剂混合,得到结构如式2所示的化合物;
第二步,将结构如式2所示的化合物与醋酸混合,反应得到结构如式3所示的水杨胺醋酸盐。
在本发明的一种实施方式中,上述第一步中结构如式1所示的水杨醛和氨基保护剂混合的体系中所含有的溶剂选自四氢呋喃、2-甲基四氢呋喃、乙腈或1,4-二氧六环。
在本发明的一种实施方式中,上述第一步中结构如式1所示的水杨醛和氨基保护剂混合的体系中还含有三乙基硅烷。
在本发明的一种实施方式中,上述第一步中结构如式1所示的水杨醛和氨基保护剂混合的体系中还含有三氟乙酸。
在本发明的一种实施方式中,上述第一步中的混合温度为0-50℃,优选为10-50℃。
在本发明的一种实施方式中,上述第一步中的混合时间为3-18小时,优选为8-18小时。
在本发明的一个实施例中,上述第一步是将结构如式1所示的水杨醛、氨基保护剂、三乙基硅烷和三氟乙酸混合后,在0-50℃(优选10-50℃)将体系保温3-18小时(优选8-18小时),得到结构如式2所示的化合物;其中所述氨基保护剂选自氨基甲酸苄酯或氨基甲酸叔丁酯;所述氨基保护剂与水杨醛的用量比为1.0-3.0当量∶1;所述三乙基硅烷与水杨醛的用量比为1.0-3.0当量∶1。
在本发明的一个较佳实施例中,体系在保温时进行搅拌。
上述第一步中使用氨基甲酸叔丁酯时,混合在有机溶剂中进行,所述有机溶剂选自四氢呋喃、2-甲基四氢呋喃、乙腈或1,4-二氧六环。
在本发明的一个较佳实施例中,上述第一步中使用饱和无机碱溶液淬灭获得式2化合物的反应,所述无机碱包括碳酸氢钠、碳酸氢钾、碳酸钾、碳酸钠、氢氧化钠、氢氧化锂等;无机碱溶液的用量只要能够让反应淬灭即可,优选使体系呈弱碱性,例如pH为7-9、7-8.5、7-8、7.5-8.5、7.5-9等。
在本发明的一种实施方式中,上述第二步中,式2化合物与醋酸的用量比为1∶0.1-20(g/mL);优选为1∶1-15(g/mL);更优选为1∶3-10(g/mL)。
在本发明的一种实施方式中,上述第二步中,与醋酸的反应温度为50℃至醋酸回流温度;优选70℃至醋酸回流温度。
在本发明的一种实施方式中,上述第二步中,与醋酸的反应时间为5-70小时;优选5-60小时。
就反应效果而言,上述第二步中的反应温度与反应时间之间具联动性,反应温度高所需的反应时间短,反之亦然,例如但不限于,低于70℃的反应温度下,可反应35小时以上,高于100℃的反应温度,反应时间可不到15小时。
在本发明的一种优选实施方式中,可以在与醋酸混合的体系内通过加入有机溶剂析晶,过滤后得到纯度较高的水杨胺醋酸盐;以式2化合物的用量计,所述有机溶剂的用量是其1-50倍;优选为1-20倍;更优选为1-10倍; 所述有机溶剂选自乙酸乙酯、异丙醚、无水乙醇、或甲基叔丁基醚(MTBE)。
在本发明的一种优选实施方式中,本发明提供的结构如式3所示的水杨胺醋酸盐的制备方法包括步骤:
第一步,将结构如式1所示的水杨醛和氨基保护剂混合,得到结构如式2所示的化合物;
第二步,将结构如式2所示的化合物与醋酸混合、反应,反应停止后降温至室温,得到水杨胺醋酸盐粗品;
第三步,将水杨胺醋酸盐粗品与有机溶剂混合、析晶,得到纯度较高的结构如式3所示的水杨胺醋酸盐。
在本发明的一种实施方式中,第三步中有机溶剂的用量是第二步中醋酸用量的2-5倍(v/v),优选2-4倍。
本发明提到的上述特征,或实施例提到的特征可以任意组合。本案说明书所揭示的所有特征可与任何组合物形式并用,说明书中所揭示的各个特征,可以任何可提供相同、均等或相似目的的替代性特征取代。因此除有特别说明,所揭示的特征仅为均等或相似特征的一般性例子。
本发明的主要优点在于:
1、本发明提供的水杨胺醋酸盐的制备工艺所用原料少、路线短,成本低。
2、本发明提供的水杨胺醋酸盐的制备方法适于商业化应用。
3、本发明的方法获得的水杨胺醋酸盐外观良好。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则所有的百分数、比率、比例、或份数按重量计。本发明中的重量体积百分比中的单位是本领域技术人员所熟知的,例如是指在100毫升的溶液中溶质的重量。除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
下述实施例中关于式3化合物的纯度采用高效液相色谱法测定,高效液相色谱的固定相是C18,流动相是三氟乙酸乙腈水溶液,检测波长220nm;纯度即为式3化合物的峰面积与各峰面积之和的百分比。
实施例1
Figure PCTCN2020091546-appb-000005
将乙腈(168.0g)和主原料水杨醛(70.4g,1.00eq)加入1L反应瓶中;将氨基甲酸叔丁酯(74.0g,1.10eq)和三乙基硅烷(79.0g,1.20eq)加入1L反应瓶中,控温15℃-40℃将三氟乙酸(65.4g,1.00eq)滴加到反应体系中;滴加完毕,体系15-40℃保温搅拌12-16小时后开始取样,每2-4小时取样一次,HPLC跟踪至起始原料含量<5%或连续两个样变化<1%,控温15-30℃向体系中加入525g饱和碳酸氢钠溶液(490g水+35g碳酸氢钠)淬灭反应(具体加入量以pH为准,pH=7-8),然后用乙酸乙酯萃取两次,每次252g,有机相合并分别用280g水和336g饱和盐水(252g水+84g氯化钠)洗涤,向盐洗后有机相中加入100g无水硫酸钠,搅拌干燥2-4小时,离心或抽滤,滤饼用63g乙酸乙酯淋洗,滤饼暂存,滤液合并待投下一步(实施例2中)。
实施例2-9
Figure PCTCN2020091546-appb-000006
所获产物的广谱数据为:
1H NMR:DPC0126-31-P1A 400MHz DMSO-d 6
1H NMR(400MHz,DMSO-d 6)δ=7.14-7.04(m,2H),6.78-6.68(m,2H),3.85(s,2H),1.82(s,3H)
MS 124.1:M+1,107.1:M-16
制备过程为:
实施例2
将式2化合物(2.0g),冰乙酸(2.0mL)分别加入反应瓶中搅拌,于70~80℃反应50~55h后停止反应,降温至室温,缓慢加入MTBE(6mL)析晶,10~20℃搅拌0.5h,过滤,于40℃真空干燥至恒重;重量:0.75g;收率:45.73%;纯度:98.43%
实施例3
将式2化合物(2.0g),冰乙酸(8.0mL)分别加入反应瓶中搅拌,于70~80℃反应50~55h后停止反应,,反应完毕后,降温至室温,缓慢加入MTBE(24mL)析晶,10~20℃搅拌0.5h,过滤,于40℃真空干燥至恒重;重量:0.81g;收率:49.39%;纯度:100.00%。
实施例4
将式2化合物(2.0g),冰乙酸(12.0mL)分别加入反应瓶中搅拌,于70~80℃反应50~55h后停止反应,降温至室温,缓慢加入MTBE(36mL)析晶,10~20℃搅拌0.5h,过滤,于40℃真空干燥至恒重;重量:0.79g;收率:48.17%;纯度:99.93%。
实施例5
将式2化合物(2.0g),冰乙酸(20.0mL)分别加入反应瓶中搅拌,于70~80℃反应50~55h后停止反应,降温至室温,缓慢加入MTBE(60mL)析晶,10~20℃搅拌0.5h,过滤,于40℃真空干燥至恒重;重量:0.95g;收率:57.93%;纯度:100.00。
实施例6
将式2化合物(10.0g),冰乙酸(50.0mL)分别加入反应瓶中搅拌,于60℃反应48h后停止反应,降温至室温,缓慢加入MTBE(60mL)析晶,10~20℃搅拌0.5h,过滤,于40℃真空干燥至恒重;重量:1.00g;收率:12.20%。
实施例7
将式2化合物(10.0g),冰乙酸(50.0mL)分别加入反应瓶中搅拌,于80~90℃反应17h~18h后停止反应,降温至室温,缓慢加入MTBE(150mL)析晶,10~20℃搅拌0.5h,过滤,于40℃真空干燥至恒重;重量:4.20g;收率:51.22%;纯度:97.19%。
实施例8
将式2化合物(10.0g),冰乙酸(50.0mL)分别加入反应瓶中搅拌,于90~100℃反应13h~14h后停止反应,降温至室温,缓慢加入MTBE(150mL)析晶,10~20℃搅拌0.5h,过滤,于40℃真空干燥至恒重;重量:5.11g;收率:62.32%;纯度:100.00%。
实施例9
将式2化合物(10.0g),冰乙酸(50.0mL)分别加入反应瓶中搅拌,于回流反应6h~7h后停止反应,降温至20℃以下,缓慢加入MTBE(150mL)析晶,10~20℃搅拌0.5h,过滤,于40℃真空干燥至恒重;重量:5.50g;收率:67.07%;纯度:98.64%。
实施例10
将式2化合物,冰乙酸分别加入反应瓶中搅拌,于90~100℃反应,反应完毕后,降温至室温,将反应液称重(120.6g),平均分成10份(每一份理论含有产品量1.64g),加入溶剂析晶:
1)取其中一份(12.06g),加入石油醚(36mL),无固体析出(体系分层),然后加入MTBE(36mL),有大量固体析出,过滤,于40℃干燥至恒重;重量:1.03g;收率:62.80%;
2)取其中一份(12.04g),加入正己烷(36mL),无固体析出(体系分层),然后加入MTBE(36mL),有大量固体析出,过滤,于40℃干燥至恒重;重量:1.07g;收率:65.24%;
3)取其中一份(12.05g),加入环己烷(36mL),无固体析出(体系分层),然后加入MTBE(36mL),有大量固体析出,过滤,于40℃干燥至 恒重;重量:1.02g;收率:62.20%;
4)取其中一份(12.06g),加入正庚烷(36mL),无固体析出(体系分层),然后加入MTBE(36mL),有大量固体析出,过滤,于40℃干燥至恒重;重量:1.03g;收率:62.80%;
5)取其中一份(12.06g),加入乙酸乙酯(36mL),有大量固体析出,过滤,于40℃干燥至恒重;重量:0.95g;收率:57.93%;
6)取其中一份(12.04g),加入异丙醚(36mL),有大量固体析出,过滤,于40℃干燥至恒重;重量:1.05g;收率:64.02%;
7)取其中一份(12.05g),加入无水乙醇(36mL),有大量固体析出,过滤,于40℃干燥至恒重;重量:0.50g;收率:30.49%;
8)取其中一份(12.05g),加入MTBE(36mL),有大量固体析出,过滤,于40℃干燥至恒重;重量:1.00g;收率:60.98%。
本发明提供的附图1和2也显示本发明获得了水扬胺醋酸盐,结构正确并且纯度高。
以上所述仅为本发明的较佳实施例而已,并非用以限定本发明的实质技术内容范围,本发明的实质技术内容是广义地定义于申请的权利要求范围中,任何他人完成的技术实体或方法,若是与申请的权利要求范围所定义的完全相同,也或是一种等效的变更,均将被视为涵盖于该权利要求范围之中。

Claims (16)

  1. 一种水杨胺醋酸盐的制备方法,其特征在于,所述方法包括步骤:
    (1)将结构如式1所示的水杨醛进行氨基保护,得到结构如式2所示的化合物;
    (2)结构如式2所示的化合物与醋酸反应,得到水杨胺醋酸盐;
    Figure PCTCN2020091546-appb-100001
    Figure PCTCN2020091546-appb-100002
    其中,X=Cbz或Boc
  2. 如权利要求1所述的制备方法,其特征在于,步骤(1)中氨基保护的反应温度为0-50℃。
  3. 如权利要求1所述的制备方法,其特征在于,步骤(1)中氨基保护的反应时间为3-18小时。
  4. 如权利要求1所述的制备方法,其特征在于,步骤(1)中氨基甲酸叔丁酯与水杨醛的当量比为1.0-3.0∶1。
  5. 如权利要求1所述的制备方法,其特征在于,步骤(1)的反应溶剂选自四氢呋喃、2-甲基四氢呋喃、乙腈或1,4-二氧六环。
  6. 如权利要求1所述的制备方法,其特征在于,步骤(2)中与醋酸的反应温度为50℃至醋酸回流温度。
  7. 如权利要求1所述的制备方法,其特征在于,步骤(2)中与醋酸的反应温度为70℃至醋酸回流温度。
  8. 如权利要求6或7所述的制备方法,其特征在于,步骤(2)中与醋酸的反应时间为5-70小时。
  9. 如权利要求6或7所述的制备方法,其特征在于,步骤(2)中与醋酸的反应时间为5-60小时。
  10. 如权利要求1所述的制备方法,其特征在于,步骤(2)中结构如式2所示的化合物与醋酸的用量比为1∶0.1-20(g/mL)。
  11. 如权利要求1所述的制备方法,其特征在于,步骤(2)中结构如式2所示的化合物与醋酸的用量比为1∶1-15(g/mL)。
  12. 如权利要求1所述的制备方法,其特征在于,步骤(2)中结构如式2所示的化合物与醋酸的用量比为1∶3-10(g/mL)。
  13. 如权利要求1所述的制备方法,其特征在于,所述方法包括步骤:
    (1)将结构如式1所示的水杨醛进行氨基保护,得到结构如式2所示的化合物;
    (2)结构如式2所示的化合物与醋酸反应,反应停止后降温至室温,得到水杨胺醋酸盐粗品;
    (3)将得到的水杨胺醋酸盐粗品与有机溶剂混合、析晶,得到水杨胺醋酸盐纯品;所述有机溶剂选自乙酸乙酯、异丙醚、无水乙醇、或甲基叔丁基醚。
  14. 如权利要求13所述的制备方法,其特征在于,以式2化合物的用量计,所述有机溶剂的用量是其1-50倍。
  15. 如权利要求13所述的制备方法,其特征在于,以式2化合物的用量计,所述有机溶剂的用量是其1-20倍。
  16. 如权利要求13所述的制备方法,其特征在于,以式2化合物的用量计,所述有机溶剂的用量是其1-10倍。
PCT/CN2020/091546 2019-05-24 2020-05-21 一种水杨胺醋酸盐的制备方法 WO2020238753A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112021023520A BR112021023520A2 (pt) 2019-05-24 2020-05-21 Método para preparar acetato de salicilamina
KR1020217042322A KR20220044684A (ko) 2019-05-24 2020-05-21 살리실아민 아세테이트 제조방법
US17/613,834 US20220315524A1 (en) 2019-05-24 2020-05-21 Preparation method for salicylamine acetate
AU2020281551A AU2020281551A1 (en) 2019-05-24 2020-05-21 Preparation method for salicylamine acetate
JP2022516256A JP2022533485A (ja) 2019-05-24 2020-05-21 サリチルアミンアセテートの調製方法
CA3141508A CA3141508A1 (en) 2019-05-24 2020-05-21 Preparation method for salicylamine acetate
EP20814337.0A EP3978470A4 (en) 2019-05-24 2020-05-21 METHOD FOR PREPARING SALICYLAMINE ACETATE
MX2021014321A MX2021014321A (es) 2019-05-24 2020-05-21 Metodo de preparacion para acetato de salicilamina.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910440439.9A CN111978185B (zh) 2019-05-24 2019-05-24 一种水杨胺醋酸盐的制备方法
CN201910440439.9 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020238753A1 true WO2020238753A1 (zh) 2020-12-03

Family

ID=73436670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091546 WO2020238753A1 (zh) 2019-05-24 2020-05-21 一种水杨胺醋酸盐的制备方法

Country Status (10)

Country Link
US (1) US20220315524A1 (zh)
EP (1) EP3978470A4 (zh)
JP (1) JP2022533485A (zh)
KR (1) KR20220044684A (zh)
CN (1) CN111978185B (zh)
AU (1) AU2020281551A1 (zh)
BR (1) BR112021023520A2 (zh)
CA (1) CA3141508A1 (zh)
MX (1) MX2021014321A (zh)
WO (1) WO2020238753A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295594A (zh) * 2011-07-12 2011-12-28 上海医药工业研究院 4-n-取代-1-(3-甲氧基丙基)-4-哌啶胺类化合物及制备和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105884652A (zh) * 2014-12-24 2016-08-24 江南大学 一种高效己脒腚二羟乙基磺酸盐的制备方法
CN109836341B (zh) * 2017-11-28 2021-08-27 江阴技源药业有限公司 一种水杨胺醋酸盐的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295594A (zh) * 2011-07-12 2011-12-28 上海医药工业研究院 4-n-取代-1-(3-甲氧基丙基)-4-哌啶胺类化合物及制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MESTICHELLI, PAOLA ET AL.: "Concise Copper-Catalyzed Synthesis of Tricyclic Biaryl Ether-Linked Aza-Heterocyclic Ring Systems", ORG. LETT., vol. 15, no. 21, 17 October 2013 (2013-10-17), XP055615949, DOI: 20200804152156Y *
PLATTNER, JACOB J. ET AL.: "[(Aminomethyl)aryloxy]acetic Acid Esters. A New Class of High-Ceiling Diuretics.2. Modifications of the Oxyacetic Side Chain", JOURNAL OF MEDICINAL CHEMISTRY, vol. 27, no. 12, 31 December 1984 (1984-12-31), XP002357524, DOI: 20200804152739Y *

Also Published As

Publication number Publication date
EP3978470A4 (en) 2023-07-19
CN111978185B (zh) 2022-03-22
AU2020281551A1 (en) 2022-02-03
EP3978470A1 (en) 2022-04-06
CN111978185A (zh) 2020-11-24
KR20220044684A (ko) 2022-04-11
JP2022533485A (ja) 2022-07-22
US20220315524A1 (en) 2022-10-06
BR112021023520A2 (pt) 2022-02-01
CA3141508A1 (en) 2020-12-03
MX2021014321A (es) 2022-05-02

Similar Documents

Publication Publication Date Title
WO2020238753A1 (zh) 一种水杨胺醋酸盐的制备方法
CN106279175A (zh) 一种厄他培南单钠盐的制备方法
CN112028896A (zh) 阿卡替尼的新晶型及其制备方法
WO2024131056A1 (zh) Paxlovid和波普瑞韦中间体的合成方法
WO2018177048A1 (zh) 头孢菌素中间体7α-甲氧基头孢噻吩的结晶及其制备方法
WO2019105324A1 (zh) 一种水杨胺醋酸盐的制备方法
CN112830956B (zh) 棕榈酰四肽-7的液相合成方法
WO2008096373A2 (en) Process for synthesizing highly pure nateglinide polymorphs
JP2526811B2 (ja) フェネチルアミン誘導体及びその製法
JP4547245B2 (ja) ペリンドプリルエルブミンのi型結晶、及びその製造方法
CN110437257B (zh) 一种头孢唑肟中间体7-anca的制备方法
WO2021248764A1 (zh) 一种一锅法制备辛酸拉尼米韦中间体的方法
KR102212260B1 (ko) 수용액을 이용한 결정성 폴라프레징크의 제조방법
WO2021134921A1 (zh) 一种啶嘧磺隆晶型及其制备方法
WO2016034150A1 (zh) 博舒替尼及其结晶的制备方法
WO2021248763A1 (zh) 一种辛酸拉尼米韦的制备方法
WO2023246807A1 (zh) 杰克替尼二盐酸盐一水合物的制备工艺
TW202033508A (zh) 貝前列素-314d晶體及其製備方法
CN111233857A (zh) 一种连续化生产pexidartinib的合成方法
WO2019034094A1 (zh) 一种醇化合物的制备方法
CN102690282A (zh) 晶体形式的1β甲基碳青霉烯类抗生素中间体及其制备方法
CN114195737A (zh) 5-(苯基)-1,3,2,4-二氧杂噻唑2-氧化物及其制备
JPS58121251A (ja) 5−〔2−(ジアルキルアミノ)エトキシ〕カルバクロ−ルアセテ−ト塩酸塩の製法
CN111606971A (zh) 一种fapgg的制备方法
CN109081812A (zh) 4-(1-羟基-1-甲基乙基)-2-丙基咪唑-5-羧酸乙酯一水合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516256

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3141508

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021023520

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020814337

Country of ref document: EP

Effective date: 20220103

ENP Entry into the national phase

Ref document number: 112021023520

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211123

ENP Entry into the national phase

Ref document number: 2020281551

Country of ref document: AU

Date of ref document: 20200521

Kind code of ref document: A