WO2020237583A1 - 可调焦距oct探头及oct探测设备 - Google Patents

可调焦距oct探头及oct探测设备 Download PDF

Info

Publication number
WO2020237583A1
WO2020237583A1 PCT/CN2019/089339 CN2019089339W WO2020237583A1 WO 2020237583 A1 WO2020237583 A1 WO 2020237583A1 CN 2019089339 W CN2019089339 W CN 2019089339W WO 2020237583 A1 WO2020237583 A1 WO 2020237583A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
voltage
crystal lens
electrode
focal length
Prior art date
Application number
PCT/CN2019/089339
Other languages
English (en)
French (fr)
Inventor
王艳梅
宋李烟
梁为亮
李百灵
高峻
黄志超
Original Assignee
广州永士达医疗科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州永士达医疗科技有限责任公司 filed Critical 广州永士达医疗科技有限责任公司
Publication of WO2020237583A1 publication Critical patent/WO2020237583A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes

Definitions

  • the invention relates to the field of optical imaging, in particular to an adjustable focal length OCT probe and OCT detection equipment.
  • optical coherence tomography is a technology based on the principle of low coherence of light to obtain longitudinal section information of probe samples (such as biological tissues).
  • the basic working structure is that a broadband laser emits laser light, which splits the laser into two, one of which is used as the sample light, and the light is guided to the area to be measured through a certain length of mechanism and a signal channel that transmits the light. Collect its reflection signal and interfere with another beam of reference light. By deconstructing this interference signal, the longitudinal section information of the sample to be tested can be inverted, that is, tomographic imaging can be obtained.
  • an optical fiber catheter also known as a probe. Its basic function is to pass the light from the optical fiber through a lens, so that the light can be focused and collimated to a certain degree, and then forward or pass through a lens.
  • the reflecting prism reflects the light to the vertical direction and exits.
  • the function of the lens is to gather the light to the required position, so that the display of the area is clear and high resolution is obtained.
  • the current general lens technology is to use solid media with uneven refractive index distribution along the radial direction, generally differently doped glasses, but the disadvantage of this design is that once formed, its focal length cannot be changed, that is to say, only Can have a single focal length.
  • the same catheter or probe is used for detection, there is often a problem that a single focal length is not enough to see the information of different parts, which reduces work efficiency.
  • one of the objectives of the present invention is to provide an adjustable focal length OCT probe, which controls the deflection of liquid crystal molecules by voltage and changes the refractive index of the liquid crystal molecules to achieve different focal lengths of the probe and improve the detection depth of the same probe to different Adaptability to demand.
  • the second object of the present invention is to provide an OCT detection device that controls the deflection of liquid crystal molecules through voltage and changes the refractive index of the liquid crystal molecules to achieve different focal lengths of the probe and improve the adaptability of the same probe to different detection depth requirements.
  • the adjustable focal length OCT probe includes an optical fiber fixing device, a liquid crystal lens and a voltage adjustment system, the liquid crystal lens is filled with liquid crystal molecules, the optical fiber fixing device is used to fix the optical fiber, and the detection light source generating device is connected externally through the optical fiber;
  • the adjustment system includes a voltage adjustment circuit and a number of electrodes arranged on the liquid crystal lens.
  • the liquid crystal lens has a multi-layer coaxial cylindrical structure. Electrodes with different preset voltages and predetermined lengths are connected to the corresponding voltage areas at both ends of the liquid crystal lens. The electrode forms a number of coaxial and spaced cylindrical voltage regions inside the liquid crystal lens according to a preset voltage and a preset length, and the voltage adjustment circuit controls the different voltage regions of the liquid crystal lens through different preset voltages.
  • the liquid crystal lens includes a first voltage area and a second voltage area
  • the electrode includes a first electrode and a second electrode
  • the first electrode is disposed in the first voltage area
  • the second electrode is disposed in the first voltage area.
  • the voltage adjustment circuit transmits the first voltage to the liquid crystal lens through the first electrode, and controls the deflection of the liquid crystal molecules to a first angle, then the liquid crystal lens has a first focal length
  • the voltage adjustment The circuit transmits a second voltage to the liquid crystal lens through the second electrode to control the deflection of the liquid crystal molecules to a second angle, and the liquid crystal lens has a second focal length.
  • the preset length is 0.3mm-0.5mm.
  • it further includes a reflecting mirror, which is arranged at the front end of the liquid crystal lens and can block the light path propagating through the liquid crystal lens, and the reflecting mirror is arranged at an angle to the propagation path of the light path.
  • the reflecting mirror is arranged at an angle of 45 degrees with the optical path propagation path.
  • the voltage regulation circuit includes an MCU, a selection button and a number of resistors.
  • the selection button controls the resistance of the resistor through the MCU, and outputs a corresponding voltage to the electrode.
  • the first electrode includes a first front electrode and a first back electrode
  • the first voltage area includes a first front voltage area provided at the front end of the liquid crystal lens and a first front voltage area provided at the rear end of the liquid crystal lens.
  • the first front electrode is arranged in the first front voltage zone
  • the first back electrode is arranged in the first back voltage zone.
  • the OCT detection equipment includes the above-mentioned adjustable focal length OCT probe and a detection light source generating device, and the detection light source generating device is connected to the optical fiber fixing device through an optical fiber.
  • the detection light source generating device is a laser generator.
  • the present invention has the following beneficial effects:
  • the invention is based on the characteristic that the liquid crystal molecules will be deflected at a certain angle after voltage is applied.
  • the voltage adjustment system outputs different voltages to the corresponding areas of the liquid crystal lens, and changes the arrangement of the liquid crystal molecules between different layers in the liquid crystal lens, that is, the liquid crystal in different areas
  • the deflection angles of the molecules are different, so that different refractive indexes of the liquid crystal molecules are obtained, corresponding to the different focal lengths of the liquid crystal lens, and the focal length of the OCT probe and the detection equipment can be adjusted.
  • the invention has simple structure and low cost, can realize the adjustment of different focal lengths of the same OCT probe and detection equipment, and meet the requirements of detecting different depths.
  • Figure 1 is a basic structure diagram of an OCT probe according to an embodiment of the present invention.
  • FIG. 2 is a front view of a liquid crystal lens according to an embodiment of the present invention.
  • the present invention provides an OCT probe with adjustable focal length, which includes an optical fiber fixing device 2, a liquid crystal lens 1 and a voltage adjustment system.
  • the liquid crystal lens 1 is filled with liquid crystal molecules.
  • the optical fiber fixing device 2 It is used to fix the optical fiber and connect the detection light source generating device through the optical fiber.
  • the voltage adjustment system includes a voltage adjustment circuit and a plurality of electrodes arranged on the liquid crystal lens 1.
  • the liquid crystal lens 1 is a multilayer coaxial cylindrical structure, and electrodes with different preset voltages and preset lengths are connected to the two liquid crystal lenses 1.
  • the electrode forms a number of coaxial and spaced cylindrical voltage regions inside the liquid crystal lens 1, and the voltage regulating circuit controls the voltage region by different predetermined voltages.
  • the deflection angles of the liquid crystal molecules in different electrode regions of the liquid crystal lens 1 produce different focal lengths.
  • the liquid crystal molecules Based on the characteristic that the liquid crystal molecules will be deflected at a certain angle after voltage is applied, different voltages are output to the corresponding area of the liquid crystal lens 1 through the voltage adjustment system to change the arrangement of liquid crystal molecules between different layers in the liquid crystal lens 1, as shown in Figure 1. That is, the deflection angles of the liquid crystal molecules in different areas are different, so that different refractive indexes of the liquid crystal molecules are obtained, corresponding to the different focal lengths of the liquid crystal lens 1, and the focal length of the OCT probe can be adjusted.
  • the invention has simple structure and low cost, can realize the adjustment of different focal lengths of the same OCT probe, and meet the requirements of detecting different depths.
  • the liquid crystal lens 1 includes a first voltage area 4 and a second voltage area 5.
  • the electrodes include a first electrode and a second electrode.
  • the first electrode is provided in the first voltage area 4, and the second electrode Set in the second voltage zone 5, the voltage regulating circuit transmits the first voltage to the liquid crystal lens 1 through the first electrode, and controls the deflection of the liquid crystal molecules to a first angle, and the liquid crystal lens 1 is the first Focal length, the voltage adjusting circuit transmits a second voltage to the liquid crystal lens 1 through the second electrode to control the deflection of the liquid crystal molecules to a second angle, and the liquid crystal lens 1 has a second focal length.
  • FIG. 2 it is a front view of the liquid crystal lens 1.
  • the electrodes are connected to the corresponding voltage regions at both ends of the liquid crystal lens 1.
  • the electrodes divide the The inside of the liquid crystal lens 1 forms a number of coaxial and spaced cylindrical voltage zones. The number of voltage zones can be determined according to actual needs.
  • the preset length is 0.3mm ⁇ 0.5mm for a grid, and each grid corresponds to an electrode. , Load a voltage. Under the condition of ensuring the voltage isolation of different voltage regions, different electrodes are applied with different voltages.
  • the liquid crystal lens 1 is divided into a first voltage area 4 and a second voltage area 5.
  • the electrode is set in the corresponding voltage area, and the voltage regulating circuit outputs voltages of different values, which are transmitted to the liquid crystal lens 1 from the electrodes, and control the deflection angles of liquid crystal molecules in different areas to obtain different refractive indexes, corresponding to the different focal lengths of the liquid crystal lens 1 to realize OCT
  • the focal length of the probe is adjustable.
  • the first electrode includes a first front electrode and a first back electrode
  • the first voltage area 4 includes a first front voltage area provided at the front end of the liquid crystal lens 1 and a first front voltage area provided at the rear of the liquid crystal lens 1.
  • the first back voltage area of the terminal, the first front electrode is located in the first front voltage area
  • the first back electrode is located in the first back voltage area.
  • the second electrode also includes a second front electrode arranged in the second front voltage zone and a second back electrode arranged in the second back voltage zone.
  • the electrode is a transparent electrode and will not affect the observation of the probe.
  • the voltage of the electrode is controlled by a voltage regulator circuit.
  • the voltage adjustment circuit can have multiple adjustment methods, and the voltage adjustment can be realized, which is not limited here.
  • a voltage adjustment circuit formed by connecting multiple resistors in parallel is selected, which is convenient for setting the resistance of multiple resistors to obtain the corresponding voltage value.
  • different voltages can be applied in different voltage areas.
  • the focal length corresponding to different voltages is obtained, and the corresponding relationship is entered into the MCU, and the resistance value of the resistor is controlled by the selection button during the working process. Within a certain range, the focal length increases as the voltage increases. In this embodiment, if the applied voltage is selected to be 3V, the corresponding focal length is 2.5mm at this time, and if the applied voltage is 5V, the corresponding focal length is 3.7V.
  • the present invention is also provided with a reflector 3, which is a cylindrical reflector, which is set according to the inner and outer diameter of the probe, and is packaged inside the probe with the reflecting surface facing the area to be observed outside the probe.
  • the reflecting mirror 3 is arranged at the front end of the liquid crystal lens 1 and can block the light path propagating through the liquid crystal lens 1, and the reflecting mirror 3 is arranged at an angle to the propagation path of the light path.
  • the reflecting mirror 3 is arranged at an angle of 45 degrees with the propagation path of the optical path, so that the optical path can be folded by 90 degrees by the reflecting mirror 3 to realize radial scanning.
  • the angle of the reflector 3 can be set according to the detection requirements of different parts, so that the focal length of the probe can be adjusted and the multi-angle observation can be realized at the same time, and the influence of the astigmatism of the light source through the liquid crystal lens 1 on the imaging can be reduced.
  • the present invention also provides an OCT detection device, including the above-mentioned adjustable focal length OCT probe and a detection light source generating device, the detection light source generating device and the optical fiber fixing device are connected by an optical fiber.
  • the detection light source generating device is a laser generator.
  • the OCT detection device provided by the present invention is based on the characteristic that the liquid crystal molecules will be deflected at a certain angle after voltage is applied.
  • the voltage adjustment system outputs different voltages to the corresponding area of the liquid crystal lens 1 to change the liquid crystal molecules between different layers in the liquid crystal lens 1.
  • the arrangement that is, the deflection angles of the liquid crystal molecules in different regions are different, so that different refractive indexes of the liquid crystal molecules are obtained, corresponding to the different focal lengths of the liquid crystal lens 1, and the focal length of the OCT detection device is adjustable.
  • the invention has simple structure and low cost, can realize the adjustment of different focal lengths of the same OCT detection device, and meet the requirements of detecting different depths and angles.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Endoscopes (AREA)
  • Liquid Crystal (AREA)

Abstract

一种可调焦距OCT探头,包括光纤固定装置(2)、液晶透镜(1)与电压调节系统,液晶透镜(1)内部填充有液晶分子,光纤固定装置(2)用于固定光纤,并通过光纤外接探测光源产生装置;电压调节系统包括电压调节电路与若干设于液晶透镜(1)的电极,液晶透镜(1)为多层同轴圆柱体结构,不同预设电压、预设长度的电极连接液晶透镜(1)两端的对应电压区,电极根据预设电压、预设长度将液晶透镜(1)内部形成若干圈同轴且间隔布置的圆筒状电压区,电压调节电路通过不同预设电压控制液晶透镜(1)不同电压区的液晶分子偏转角,从而产生不同的焦距。该可调焦距OCT探头,通过电压控制系统输出不同电压改变液晶透镜(1)中液晶分子的折射率,从而实现OCT探头焦距的可调,满足探测的需要。

Description

可调焦距OCT探头及OCT探测设备 技术领域
本发明涉及光学成像领域,尤其涉及可调焦距OCT探头及OCT探测设备。
背景技术
目前,光学相干断层扫描成像(Optical Coherence Tomography,OCT)是一种基于光的低相干原理获得探测样品(如生物组织)的纵切断面信息的技术。其基本的工作架构是由一个宽带的激光器发出激光,将激光一分为二,其中一束作为样品光,通过一定长度的机构和传输光的信号通道即导管将光导入到待测量区域,并搜集其反射信号,与另一束参考光发生干涉,通过解构此干涉信号,可以反演得到待测样品的纵切面信息,即获得断层成像。
将光导入到待测生物组织中,则需要借助光纤导管,又称探头,其基本功能是把从光纤出来的光通过一个透镜,使光发生一定的聚焦和准直,再向前或者通过一个反射棱镜将光反射到垂直方向出射,该透镜的作用是将光聚集到所需要的位置,从而使该区域的显示清晰即获得高分辨率。目前通用的透镜技术是用折射率沿径向分布不均匀的固体介质,一般是不同掺杂的玻璃,但这种设计的不足之处在于,一旦成型,其焦距就不能更改,也就是说只能具有单一焦距。但在实际运用中,用同一个导管或探头进行探测时,往往有单一焦距不足以看清楚不同部位信息的难题,降低工作效率。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供可调焦距OCT探头,通过电压控制液晶分子的偏转,改变液晶分子的折射率从而实现探头的不同焦距,提高同一探头对不同探测深度需求的适应能力。
本发明的目的之二在于提供一种OCT探测设备,通过电压控制液晶分子的偏转,改变液晶分子的折射率从而实现探头的不同焦距,提高同一探头对不同探测深度需求的适应能力。
本发明的目的采用如下技术方案实现:
可调焦距OCT探头,包括光纤固定装置、液晶透镜与电压调节系统,所述液晶透镜内部填充有液晶分子,所述光纤固定装置用于固定光纤,并通过光纤外接探测光源产生装置;所述电压调节系统包括电压调节电路与若干设于液晶透镜的电极,所述液晶透镜为多层同轴圆柱体结构,不同预设电压、预设长度的电极连接所述液晶透镜两端的对应电压区,所述电极根据预设电压、预设长度将所述液晶透镜内部形成若干圈同轴且间隔布置的圆筒状电压区,所述电压调节电路通过不同预设电压控制所述液晶透镜不同电压区的液晶分子偏转角,从而产生不同的焦距。进一步地,所述液晶透镜包括第一电压区、第二电压区,所述电极包括第一电极、第二电极,所述第一电极设于第一电压区,所述第二电极设于第二电压区,所述电压调节电路通过所述第一电极传输第一电压至所述液晶透镜,控制所述液晶分子偏转至第一角度,则所述液晶透镜为第一焦距,所述电压调节电路通过所述第二电极传输第二电压至所述液晶透镜,控制所述液晶分子偏转至第二角度,所述液晶透镜为第二焦距。
进一步地,所述预设长度为0.3mm~0.5mm。
进一步地,还包括反射镜,所述反射镜设于所述液晶透镜前端并可阻挡经所述液晶透镜传播的光路,所述反射镜与所述光路的传播路径成角度设置。
进一步地,所述反射镜与所述光路传播路径成45度角设置。
进一步地,所述电压调节电路包括MCU、选择按钮与若干电阻,所述选择 按钮通过MCU控制电阻阻值,输出相应电压至所述电极。
进一步地,所述第一电极包括第一前电极与第一后电极,所述第一电压区包括设于所述液晶透镜前端的第一前电压区与设于所述液晶透镜后端的第一后电压区,所述第一前电极设于所述第一前电压区,第一后电极设于所述第一后电压区。
本发明的目的之二采用如下技术方案实现:
OCT探测设备,包括如上所述的可调焦距OCT探头和探测光源产生装置,所述探测光源产生装置与所述光纤固定装置通过光纤连接。
进一步地,所述探测光源产生装置为激光发生器。
相比现有技术,本发明的有益效果在于:
本发明基于液晶分子在施加电压后会发生一定角度偏转的特点,通过电压调节系统输出不同电压至液晶透镜的对应区域,改变液晶透镜中不同层之间的液晶分子排布,即不同区域中液晶分子的偏转角度不同,从而得到液晶分子不同的折射率,对应液晶透镜的不同焦距,实现OCT探头及探测设备的焦距可调。本发明结构简单,成本较低,可实现同一OCT探头及探测设备不同焦距的调节,满足探测不同深度的需求。
附图说明
图1为本发明所提供实施例OCT探头基本构造图;
图2为本发明所提供实施例液晶透镜前视图;
图中:1、液晶透镜;2、光纤固定装置;3、反射镜;4、第一电压区;5、第二电压区。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
如图1、2所示,本发明提供了一种可调焦距的OCT探头,包括光纤固定装置2、液晶透镜1与电压调节系统,液晶透镜1内部填充有液晶分子,所述光纤固定装置2用于固定光纤,并通过光纤外接探测光源产生装置。所述电压调节系统包括电压调节电路与若干设于液晶透镜1的电极,所述液晶透镜1为多层同轴圆柱体结构,不同预设电压、预设长度的电极连接所述液晶透镜1两端的对应电压区,所述电极根据预设电压、预设长度将所述液晶透镜1内部形成若干圈同轴且间隔布置的圆筒状电压区,所述电压调节电路通过不同预设电压控制所述液晶透镜1不同电极区的液晶分子偏转角,从而产生不同的焦距。
基于液晶分子在施加电压后会发生一定角度偏转的特点,通过电压调节系统输出不同电压至液晶透镜1的对应区域,改变液晶透镜1中不同层之间的液晶分子排布,如图1所示,即不同区域中液晶分子的偏转角度不同,从而得到液晶分子不同的折射率,对应液晶透镜1的不同焦距,实现OCT探头焦距的可调。本发明结构简单,成本较低,可实现同一OCT探头不同焦距的调节,满足探测不同深度的需求。
具体的,液晶透镜1包括了第一电压区4、第二电压区5,所述电极包括第一电极、第二电极,所述第一电极设于第一电压区4,所述第二电极设于第二电压区5,所述电压调节电路通过所述第一电极传输第一电压至所述液晶透镜1,控制所述液晶分子偏转至第一角度,则所述液晶透镜1为第一焦距,所述电压调节电路通过所述第二电极传输第二电压至所述液晶透镜1,控制所述液晶分子 偏转至第二角度,所述液晶透镜1为第二焦距。
如图2所示,为液晶透镜1的前视图,根据电压调节电路输出的电压不同,电极连接所述液晶透镜1两端的对应电压区,所述电极根据预设电压、预设长度将所述液晶透镜1内部形成若干圈同轴且间隔布置的圆筒状电压区,具体可根据实际情况需求确定电压区的数量,预设长度为0.3mm~0.5mm一格,每一格对应着一个电极,加载一个电压。在保证不同电压区的电压隔离的条件下,不同电极施加不同电压。在本发明中,将液晶透镜1划分为第一电压区4、第二电压区5。电极设置于对应电压区,电压调节电路输出不同数值的电压,由电极传输至液晶透镜1,控制不同区域液晶分子的偏转角度,得到不同的折射率,则对应液晶透镜1的不同焦距,实现OCT探头的焦距可调。
具体的,所述第一电极包括第一前电极与第一后电极,所述第一电压区4包括设于所述液晶透镜1前端的第一前电压区与设于所述液晶透镜1后端的第一后电压区,所述第一前电极设于所述第一前电压区,第一后电极设于所述第一后电压区。基于相同的思想,第二电极也包括设于第二前电压区的第二前电极与设于第二后电压区的第二后电极。所述电极为透明电极,不会影响探头的观测。
而电极的电压由电压调节电路进行控制。电压调节电路可有多种调节方式,可实现电压调节即可,在此不做限定。在本实施例中,选择了由多个电阻并联而成的电压调节电路,方便设置多个电阻阻值得到对应的电压值。通过电阻实现电压的变化,在不同的电压区可施加不同的电压。通过测试,得到不同电压对应的焦距,并将对应关系录入MCU中,在工作过程中通过选择按钮控制电阻的阻值。在一定范围内,焦距随电压的增强而增大。在本实施例中,若选择施加的电压为3V,此时对应的焦距为2.5mm,若施加的电压为5V,则对应焦距 3.7V。
本发明还设有一反射镜3,反射镜3为柱面反射镜,根据探头内部外直径大小设置,封装于探头内部且反射面朝探头外被观测区域。所述反射镜3设于所述液晶透镜1前端并可阻挡经所述液晶透镜1传播的光路,所述反射镜3与所述光路的传播路径成角度设置。优选的,反射镜3与所述光路传播路径成45度角设置,使得光路可由反射镜3发生90度的翻折,实现径向扫描。而反射镜3的角度可根据不同部位的探测需求进行设置,从而可同时实现探头的焦距可调与多角度观察,降低光源通过液晶透镜1的散光对成像的影响。
基于相同的思想,本发明还提供一种OCT探测设备,包括如上所述的可调焦距OCT探头和探测光源产生装置,所述探测光源产生装置与所述光纤固定装置通过光纤连接。所述探测光源产生装置为激光发生器。
本发明所提供的OCT探测设备基于液晶分子在施加电压后会发生一定角度偏转的特点,通过电压调节系统输出不同电压至液晶透镜1的对应区域,改变液晶透镜1中不同层之间的液晶分子排布,即不同区域中液晶分子的偏转角度不同,从而得到液晶分子不同的折射率,对应液晶透镜1的不同焦距,实现OCT探测设备的焦距可调。本发明结构简单,成本较低,可实现同一OCT探测设备不同焦距的调节,满足探测不同深度、角度的需求。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (9)

  1. 可调焦距OCT探头,其特征在于,包括光纤固定装置、液晶透镜与电压调节系统,所述液晶透镜内部填充有液晶分子,所述光纤固定装置用于固定光纤,并通过光纤外接探测光源产生装置;所述电压调节系统包括电压调节电路与若干设于液晶透镜的电极,所述液晶透镜为多层同轴圆柱体结构,不同预设电压、预设长度的电极连接所述液晶透镜两端的对应电压区,所述电极根据预设电压、预设长度将所述液晶透镜内部形成若干圈同轴且间隔布置的圆筒状电压区,所述电压调节电路通过不同预设电压控制所述液晶透镜不同电压区的液晶分子偏转角,从而产生不同的焦距。
  2. 如权利要求1所述的可调焦距OCT探头,其特征在于,所述液晶透镜包括第一电压区、第二电压区,所述电极包括第一电极、第二电极,所述第一电极设于第一电压区,所述第二电极设于第二电压区,所述电压调节电路通过所述第一电极传输第一电压至所述液晶透镜,控制所述液晶分子偏转至第一角度,则所述液晶透镜为第一焦距,所述电压调节电路通过所述第二电极传输第二电压至所述液晶透镜,控制所述液晶分子偏转至第二角度,所述液晶透镜为第二焦距。
  3. 如权利要求2所述的可调焦距OCT探头,其特征在于,所述预设长度为0.3mm~0.5mm。
  4. 如权利要求3所述的可调焦距OCT探头,其特征在于,还包括反射镜,所述反射镜设于所述液晶透镜前端并可阻挡经所述液晶透镜传播的光路,所述反射镜与所述光路的传播路径成角度设置。
  5. 如权利要求4所述的可调焦距OCT探头,其特征在于,所述反射镜与所述光路传播路径成45度角设置。
  6. 如权利要求1所述的可调焦距OCT探头,其特征在于,所述电压调节电路包括MCU、选择按钮与若干电阻,所述选择按钮通过MCU控制电阻阻值,输出相应电压至所述电极。
  7. 如权利要求5所述的可调焦距OCT探头,其特征在于,所述第一电极包括第一前电极与第一后电极,所述第一电压区包括设于所述液晶透镜前端的第一前电压区与设于所述液晶透镜后端的第一后电压区,所述第一前电极设于所述第一前电压区,第一后电极设于所述第一后电压区。
  8. OCT探测设备,其特征在于,包括如权利要求1~7任一所述的可调焦距OCT探头和探测光源产生装置,所述探测光源产生装置通过光纤连接所述光纤固定装置。
  9. 如权利要求8所述的OCT探测设备,其特征在于,所述探测光源产生装置为激光发生器。
PCT/CN2019/089339 2019-05-24 2019-05-30 可调焦距oct探头及oct探测设备 WO2020237583A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910439178.9A CN110221459A (zh) 2019-05-24 2019-05-24 可调焦距oct探头及oct探测设备
CN201910439178.9 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020237583A1 true WO2020237583A1 (zh) 2020-12-03

Family

ID=67818120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089339 WO2020237583A1 (zh) 2019-05-24 2019-05-30 可调焦距oct探头及oct探测设备

Country Status (2)

Country Link
CN (1) CN110221459A (zh)
WO (1) WO2020237583A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390182B (zh) * 2022-02-08 2024-06-07 维沃移动通信有限公司 拍摄方法、装置和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076926A (ja) * 2006-09-25 2008-04-03 Citizen Holdings Co Ltd 液晶レンズ
US20090147373A1 (en) * 2007-10-19 2009-06-11 University Of Central Florida Research Foundation, Inc. Dynamic Focus Optical Probes
US20090168010A1 (en) * 2007-12-27 2009-07-02 Igor Vinogradov Adaptive focusing using liquid crystal lens in electro-optical readers
CN101568296A (zh) * 2006-12-22 2009-10-28 皇家飞利浦电子股份有限公司 具有两个成像模块的成像系统
CN102998790A (zh) * 2011-09-16 2013-03-27 三星电子株式会社 数值孔径控制单元、可变光学探测器以及深度扫描方法
JP2016032577A (ja) * 2014-07-31 2016-03-10 株式会社ニデック 眼科装置
CN106073697A (zh) * 2015-05-01 2016-11-09 尼德克株式会社 眼科摄像装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047082B2 (ja) * 1991-08-27 2000-05-29 株式会社日立製作所 合焦点機構
CN210155457U (zh) * 2019-05-24 2020-03-17 广州永士达医疗科技有限责任公司 可调焦距oct探头及oct探测设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076926A (ja) * 2006-09-25 2008-04-03 Citizen Holdings Co Ltd 液晶レンズ
CN101568296A (zh) * 2006-12-22 2009-10-28 皇家飞利浦电子股份有限公司 具有两个成像模块的成像系统
US20090147373A1 (en) * 2007-10-19 2009-06-11 University Of Central Florida Research Foundation, Inc. Dynamic Focus Optical Probes
US20090168010A1 (en) * 2007-12-27 2009-07-02 Igor Vinogradov Adaptive focusing using liquid crystal lens in electro-optical readers
CN102998790A (zh) * 2011-09-16 2013-03-27 三星电子株式会社 数值孔径控制单元、可变光学探测器以及深度扫描方法
JP2016032577A (ja) * 2014-07-31 2016-03-10 株式会社ニデック 眼科装置
CN106073697A (zh) * 2015-05-01 2016-11-09 尼德克株式会社 眼科摄像装置

Also Published As

Publication number Publication date
CN110221459A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
US7791794B2 (en) Surgical microscope having an OCT-system
US7839494B2 (en) Ophthalmic surgical microscope having an OCT-system
JP5756253B2 (ja) 光コヒーレンス断層法機構を有する外科用顕微鏡システム
US7978404B2 (en) Surgical microscope having an OCT-system
US8459795B2 (en) Measuring system for ophthalmic surgery
ES2829627T3 (es) Escáner óptico y sonda óptica de lente de escaneo
WO2013115383A1 (ja) 位相変調デバイス及びレーザ顕微鏡
WO2005089635A1 (fr) Aberrometre dote d'un systeme de mesure de l'acuite visuelle
JP2010537165A (ja) 広幅分光計
US20200201058A1 (en) Source Module and Optical System For Line-Field Imaging
US9615740B2 (en) Eye surgery microscope having an entity for measuring an ametropia
JPH05340865A (ja) 測定装置
WO2020237583A1 (zh) 可调焦距oct探头及oct探测设备
JP2015097569A (ja) 光干渉断層撮像用光プローブ及びその製造方法
CN108681093A (zh) 双光束激光准直系统
US11359994B2 (en) Laser beam profiling system for use in laser processing systems
KR100413885B1 (ko) 눈 수차 측정장치 및 그 측정방법
CN210155457U (zh) 可调焦距oct探头及oct探测设备
EP1864078B1 (en) Confocal fiber-optic laser device and method for intraocular lens power measurement
CN209996294U (zh) 一种精确测量人眼角膜前后表面光程差的装置
Weng et al. Measuring the thickness of transparent objects using a confocal displacement sensor
CN109798865A (zh) 一种变焦系统的光轴指向检测装置及检测方法
JPS5971736A (ja) 内視鏡用測長装置
EP1260848A2 (de) Vorrichtung zur Ermittlung einer Lichtleistung, Mikroskop und Verfahren zur Mikroskopie
US20150126857A1 (en) Optical probe and medical imaging apparatus including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930543

Country of ref document: EP

Kind code of ref document: A1