WO2020237513A1 - 一种消除环境温湿度变化影响的气体检测系统及其方法 - Google Patents

一种消除环境温湿度变化影响的气体检测系统及其方法 Download PDF

Info

Publication number
WO2020237513A1
WO2020237513A1 PCT/CN2019/088916 CN2019088916W WO2020237513A1 WO 2020237513 A1 WO2020237513 A1 WO 2020237513A1 CN 2019088916 W CN2019088916 W CN 2019088916W WO 2020237513 A1 WO2020237513 A1 WO 2020237513A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sensor
feedback signal
detection system
sampling
Prior art date
Application number
PCT/CN2019/088916
Other languages
English (en)
French (fr)
Inventor
王颖
孙力
张擎
宁治
Original Assignee
深圳智人环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳智人环保科技有限公司 filed Critical 深圳智人环保科技有限公司
Priority to CN201980014797.1A priority Critical patent/CN112352153B/zh
Priority to EP19920637.6A priority patent/EP3978910A4/en
Priority to PCT/CN2019/088916 priority patent/WO2020237513A1/zh
Priority to US16/968,278 priority patent/US11460434B2/en
Publication of WO2020237513A1 publication Critical patent/WO2020237513A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/4175Calibrating or checking the analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0047Specially adapted to detect a particular component for organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/10Analysing materials by measuring the pressure or volume of a gas or vapour by allowing diffusion of components through a porous wall and measuring a pressure or volume difference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4005Concentrating samples by transferring a selected component through a membrane
    • G01N2001/4016Concentrating samples by transferring a selected component through a membrane being a selective membrane, e.g. dialysis or osmosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N2021/3545Disposition for compensating effect of interfering gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/64Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0014Sample conditioning by eliminating a gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to the field of gas detection technology, and in particular to a gas detection system and method for eliminating the influence of environmental temperature and humidity changes.
  • Gas sensors are becoming a new type of air pollutant monitoring technology that is different from traditional monitoring methods due to its low price, small size, easy integration, and easy deployment.
  • Environmental monitoring methods based on gas sensors have also been gradually applied to different scenarios, such as environmental atmospheric monitoring, grid monitoring, industrial monitoring, etc.
  • commonly used gas sensors are mainly divided into electrochemical sensors, metal oxide sensors, photoionization sensors, non-dispersive infrared sensors, etc. Studies have shown that in the process of testing and monitoring of most gas sensors, the output signal of the gas sensor is not only affected by changes in the concentration of target pollutants, but also inevitably affected by changes in environmental temperature and humidity.
  • the present invention provides a gas detection system and method that eliminates the influence of environmental temperature and humidity changes. It can eliminate the influence of environmental temperature and humidity changes on the gas sensor's reference output signal, so that the gas sensor that is susceptible to environmental temperature and humidity will avoid the influence of temperature and humidity changes on the sensor's reference signal in environmental detection, and then improve the gas sensor's performance under all-weather conditions. Measurement accuracy, precision and stability.
  • the technical solution of the present invention for solving the above technical problems is: on the one hand, it provides a gas detection system that eliminates the influence of environmental temperature and humidity changes, including:
  • the bare sensor is used to detect the target gas in the ambient gas to obtain the first feedback signal
  • a reference sensor for selectively isolating the target gas in the ambient gas to produce zero gas, and detecting the zero gas to obtain a second feedback signal
  • a calculation module connected to the bare sensor and the reference sensor, used to calculate the difference between the first feedback signal and the second feedback signal to obtain a third feedback signal, and calculate and obtain a third feedback signal according to the calibration formula according to the third feedback signal The concentration of the target gas.
  • the reference sensor includes:
  • a sensor body, the sensor body and the bare sensor having a consistent signal response to the target gas and ambient temperature and humidity;
  • the target gas selective isolation layer has the functions of heat conduction and water vapor exchange, and is used to selectively isolate the target gas in the ambient gas to generate zero gas.
  • C is the target gas concentration, and the unit is mass concentration or mixing ratio
  • V3 is the third feedback signal, and the unit is consistent with the output signal of the bare sensor and the sensor body
  • a and b are calibration parameters.
  • the first feedback signal, the second feedback signal, and the third feedback signal include any one of a voltage value, a current value, and a concentration value.
  • the difference between the first feedback signal and the second feedback signal includes the direct signal difference between the first feedback signal and the second feedback signal and the sum of the first feedback signal The corrected signal difference between the second feedback signals after proportional correction.
  • the above-mentioned gas detection system of the present invention further includes a sensor seat in which a sampling gas chamber communicating with the ambient gas is provided, and the bare sensor and the sensor body are respectively installed in the sensor seat.
  • the sensor seat is provided with a first accommodating cavity and a second accommodating cavity located on both sides of the sampling gas chamber, and a first accommodating cavity is provided between the sampling gas chamber and the first accommodating cavity.
  • a sensor protection film, a second sensor protection film is arranged between the sampling gas chamber and the second accommodating cavity, the first accommodating cavity is used to install the bare sensor, and the second accommodating cavity is used to install the The sensor body.
  • the target gas selective isolation layer is coated on the side of the second sensor protective film facing the sampling gas chamber.
  • the number of the sensor bodies is plural, and the plural sensor bodies are installed in the second accommodating cavity.
  • the target gas selective isolation layer covers the reaction surface of the sensor body without gaps.
  • the above-mentioned gas detection system of the present invention further includes a first sensor seat and a second sensor seat.
  • the first sensor seat and the second sensor seat are respectively provided with a first sampling gas chamber and a second sampling gas chamber communicating with the ambient gas.
  • the bare sensor is installed in the first sampling gas chamber, and the sensor body is installed in the second sampling gas chamber.
  • the target gas selective isolation layer is coated on the surface of the gas chamber of the second sampling gas chamber.
  • the number of the sensor bodies is multiple, and the multiple sensor bodies are installed in the second sampling gas chamber.
  • the target gas selective isolation layer covers the reaction surface of the sensor body without gaps.
  • the above-mentioned gas detection system of the present invention further includes a sampling gas path connected to the sensor base, the sampling gas path includes a passive diffusion gas sampling gas path and an active pumping sampling gas path; the active pumping sampling
  • the air path includes an air intake pipe and an air pump, the air intake pipe is opened on the sensor seat and communicates with the sampling air chamber, and the air pump is connected to the air intake pipe.
  • the bare sensor and the sensor body include any one of an electrochemical sensor, a metal oxide sensor, a photoionization sensor, and a non-dispersive infrared sensor.
  • the target gas selective isolation layer includes any one of a filter paper, a filter membrane, a molecular sieve, a filter device, and a covering structure formed by a selective filter material.
  • the sensor body is an electrochemical sensor
  • the target gas selective isolation layer is disposed on the surface of the inner electrolyte layer of the electrochemical sensor.
  • a gas detection method that eliminates the influence of environmental temperature and humidity changes is also provided, which is applied to the above-mentioned gas detection system, and the gas detection method includes:
  • the difference between the first feedback signal and the second feedback signal is calculated to obtain the third feedback signal, and the concentration of the target gas is calculated according to the calibration formula according to the third feedback signal.
  • the present invention provides a gas detection system and method that eliminates the influence of environmental temperature and humidity changes, through the signal difference between the bare sensor and the reference sensor, and according to The signal difference is calculated to obtain the concentration of the target gas, which effectively separates the target gas concentration signal and the ambient temperature and humidity signal in the sensor output signal, eliminates the influence of environmental temperature and humidity changes on the sensor signal, and improves the measurement accuracy of the target gas concentration Degree, accuracy and stability.
  • FIG. 1 is a schematic diagram of a gas detection system provided by Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the assembly structure of the gas detection system provided by Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of another assembly structure of the gas detection system provided by the first embodiment of the present invention.
  • Figures 5 (a), (b), (c) and (d) are respectively the change curve of the voltage signal V2 of the coated nitrogen dioxide sensor and the change curve of the exposed nitrogen dioxide sensor during the use process provided by the first embodiment of the present invention.
  • the change curve of the voltage signal V1 the temperature and humidity change curve of the standard gas, and the change curve of the target gas concentration finally obtained through the difference calculation;
  • Figures 6 (a), (b), (c) and (d) are respectively the change curve of the voltage signal V2 of the coated nitrogen dioxide sensor and the change curve of the exposed nitrogen dioxide sensor during the sampling process provided by the second embodiment of the present invention.
  • the change curve of the voltage signal V1 the temperature and humidity change curve of the standard gas, and the change curve of the target gas concentration finally obtained through the difference calculation;
  • Figure 7 (a), (b), (c) and (d) are the comparison curves between the concentrations of nitrogen dioxide, nitrogen monoxide, and ozone pollutants obtained by the gas detection system provided by the present invention and their standard concentrations, respectively , And the corresponding change curve of environmental temperature and humidity.
  • the present invention provides A gas detection system and method for eliminating the influence of environmental temperature and humidity changes. Its core idea is to provide a packaging method for a bare sensor and a reference sensor.
  • the bare sensor is used to detect the target gas in the ambient gas to obtain the first feedback signal
  • the reference sensor Used to isolate the target gas in the ambient gas and detect the zero gas to obtain the second feedback signal, obtain the third feedback signal by calculating the difference between the first feedback signal and the second feedback signal, and obtain the third feedback signal according to the third feedback signal
  • the concentration of the target gas is calculated according to the calibration formula. The concentration value effectively separates the influence of environmental temperature and humidity changes, and improves the monitoring accuracy, accuracy and stability of the target gas.
  • the gas detection system provided by the first embodiment of the present invention includes a bare sensor 20, a reference sensor 30, and a calculation module 40.
  • the bare sensor 20 is used to detect a target gas in the ambient gas to obtain a first feedback signal
  • the reference sensor 30 It is used to selectively isolate the target gas in the ambient gas to generate zero gas, and detect the zero gas to obtain the second feedback signal.
  • the calculation module 40 is connected to the bare sensor 20 and the reference sensor 30 for calculating the first feedback signal and the second feedback signal.
  • the third feedback signal is obtained by the difference between the two feedback signals, and the concentration of the target gas is calculated and obtained according to the calibration formula according to the third feedback signal.
  • the reference sensor 30 includes a sensor body 31 and a target gas selective isolation layer 32.
  • the sensor body 31 and the exposed sensor 20 have consistent signal responses to the target gas and ambient temperature and humidity, that is, the sensor body 31 and the exposed sensor 20 are sensitive to the ambient temperature.
  • Sensors of the same type with consistent response characteristics; the target gas selective isolation layer 32 has the functions of heat conduction and water vapor exchange, and is used to selectively isolate the target gas in the ambient gas to generate zero gas to ensure that the bare sensor 20 and the reference sensor 30 are against the environment
  • the temperature and humidity change signals have a consistent response.
  • the output signals are the same; a and b are calibration parameters.
  • the first feedback signal, the second feedback signal, and the third feedback signal include any one of a voltage value, a current value, and a concentration value; the difference between the first feedback signal and the second feedback signal includes the first feedback signal and the second feedback signal. 2.
  • the effective reaction surface of the sensor body 31 is completely covered by the target gas selective isolation layer 32, so that the sensor body 31 is only affected by the temperature and humidity in the ambient gas, and is not affected by changes in the target gas concentration.
  • the reactive surface of the bare sensor 20 is in complete contact with the ambient gas. During the sensor operation, the bare sensor 20 is simultaneously affected by the target gas concentration and the temperature and humidity changes in the ambient gas.
  • the first feedback signal is a signal feedback that is comprehensively affected by the target gas concentration and the temperature and humidity of the environment in which it is located
  • the second feedback signal is comprehensively affected by the zero gas generated by the isolation target gas and the temperature and humidity of the environment in which it is located.
  • Signal feedback, and the third feedback signal is the signal feedback of the target gas concentration, which is calculated by the difference between the first feedback signal and the second feedback signal to remove the influence of the temperature and humidity of the environment where the target gas is located, and only contains the sensor on the target gas concentration Signal feedback.
  • FIG. 2 is a schematic diagram of the assembly structure of the gas detection system provided by the first embodiment of the present invention.
  • the gas detection system further includes a sensor base 10 in which a sampling gas chamber 11 communicating with ambient gas is provided.
  • the bare sensor 20 and the sensor body 31 are respectively installed in the sensor base 10.
  • the sensor base 10 is provided with a first accommodating cavity and a second accommodating cavity on both sides of the sampling gas chamber 11, a first sensor protective film 12 is provided between the sampling gas chamber 11 and the first accommodating cavity, the sampling gas chamber 11 and the second A second sensor protective film 13 is arranged between the two accommodating cavities, the first accommodating cavity is used for installing the bare sensor 20, and the second accommodating cavity is used for installing the sensor body 31.
  • the target gas selective isolation layer 32 is coated on the side of the second sensor protective film 13 facing the sampling gas chamber 11, and a zero gas chamber is formed between the target gas selective isolation layer 32 and the sensor body 31. 14.
  • a test gas chamber 15 is formed between the first sensor protective film 12 and the exposed sensor 20 at intervals.
  • the number of sensor bodies 31 can also be set to multiple, and multiple sensor bodies 31 are all installed in the second accommodating cavity for collectively detecting the zero gas to obtain the second feedback signal of the array.
  • FIG. 3 is another assembly diagram of the gas detection system provided by the first embodiment of the present invention.
  • the target gas selective isolation layer 32 covers the reaction surface of the sensor body 31 without gaps, which can also achieve the target gas
  • the selective isolation layer 32 isolates the target gas in the ambient gas to generate zero gas, and its structure is simpler and more practical.
  • connection between the exposed sensor 20 and the sensor body 31 and the sampling gas chamber 11 is respectively sleeved with a sealing ring 50 for sealingly connecting the exposed sensor 20, the sensor body 31 and the sampling gas chamber 11 to ensure no air leakage in the seal.
  • the gas detection system further includes a sampling gas path connected to the sensor base 10, the sampling gas path includes a passive diffusion gas sampling gas path and an active pumping sampling gas path; the active pumping sampling gas path includes The air inlet pipe 61 and the air pump 62 are opened on the sensor base 10 and connected to the sampling air chamber 11, and the air pump 62 is connected to the air inlet pipe 61 for sucking ambient gas into the sampling air chamber 11 to improve Gas detection efficiency.
  • the passive diffusion gas sampling gas path can refer to the existing sensor gas path structure, which will not be repeated in this embodiment.
  • the bare sensor 20 and the sensor body 31 include any one of an electrochemical sensor, a metal oxidation sensor, a photoionization sensor, and a non-dispersive infrared sensor, and may also be other sensor types affected by environmental temperature and humidity signals;
  • the target gas selective isolation layer 32 includes any one of a filter paper, a filter membrane, a molecular sieve, a filter device, and a covering structure formed by a selective filter material, which can be selected according to actual needs.
  • the sensor body 31 is an electrochemical sensor
  • the target gas selective isolation layer 32 is disposed on the surface of the internal electrolyte layer of the electrochemical sensor, that is, the target gas selective isolation layer 32 is directly placed on the internal electrolyte layer of the electrochemical sensor and the environment. Between the gases, it is used to selectively isolate the target gas in the ambient gas to produce zero gas.
  • the bare sensor and the reference sensor are respectively installed inside two gas chambers with the same structure.
  • the gas detection system includes a first sensor seat and a second sensor seat.
  • the sensor base and the second sensor base are respectively provided with a first sampling gas chamber and a second sampling gas chamber communicating with the ambient gas, and the bare sensor is installed in the first sampling gas chamber for detecting
  • the target gas obtains a first feedback signal;
  • the sensor body is installed in the second sampling gas chamber to selectively isolate the target gas in the ambient gas to generate zero gas, and detect the zero gas to obtain a second feedback signal; similarly Ground, the third feedback signal can be obtained by calculating the difference between the first feedback signal and the second feedback signal, and the concentration of the target gas can be calculated and obtained according to the third feedback signal according to the calibration formula.
  • the first method is to coat the target gas selective isolation layer on the surface of the second sampling gas chamber so that The second sampling gas chamber becomes the zero gas chamber.
  • the number of sensor bodies can be set to multiple, and multiple sensor bodies are all installed in the second sampling gas chamber for jointly detecting zero gas to obtain the second feedback signal of the array.
  • the second method is to cover the reaction surface of the sensor body with the target gas selective isolation layer without gaps, and then place the sensor body in the second sampling gas chamber, which can also achieve the target gas selective isolation layer to isolate the ambient gas
  • the target gas produces zero gas effect.
  • Fig. 4 is a schematic flow chart of a gas detection method that eliminates the influence of environmental temperature and humidity changes according to the third embodiment of the present invention, which is applied to the gas detection system in the first and second embodiments, and the method includes the steps:
  • the above gas detection method can refer to the corresponding detection process in the gas detection system provided above, and the rest of the implementation steps will not be repeated.
  • the bare sensor 20 and the sensor body 31 are selected as electrochemical nitrogen dioxide sensors that have a consistent response to the reference shift of the ambient temperature and humidity changes, and the target gas selective isolation layer 32 is selected to be capable of filtering nitrogen dioxide gas and It has the functions of heat conduction and water vapor exchange.
  • the membrane is coated on the reaction surface of the nitrogen dioxide sensor without gaps to form the reference sensor 30 (see Figure 3 for details).
  • the sampling gas path adopts an active pumping sampling gas path.
  • the bare nitrogen dioxide sensor and the reference nitrogen dioxide sensor are strictly sealed and installed on the sensor base, and the nitrogen dioxide standard gas and the temperature and humidity control device are used to generate a nitrogen dioxide concentration of 50ppb-100ppb-150ppb.
  • record the voltage signal V1 of the bare nitrogen dioxide sensor and the voltage signal V2 of the reference nitrogen dioxide sensor and then obtain the voltage signal V3 through direct difference calculation, and calculate according to the known standard gas concentration and voltage signal V3 Output the target gas concentration.
  • Figure 5 (a), (b), (c) and (d) respectively show the change curve of the voltage signal V2 of the reference nitrogen dioxide sensor during the sampling process, the change curve of the voltage signal V1 of the bare nitrogen dioxide sensor, The temperature and humidity change curve of the standard gas, and the change curve of the target gas concentration finally obtained by the difference calculation.
  • the voltage signal V1 of the bare nitrogen dioxide sensor reflects the change of gas concentration and is also affected by the change of gas temperature and humidity.
  • the reference nitrogen dioxide sensor removes the influence of gas concentration.
  • the voltage signal V2 periodically fluctuates with the temperature and humidity, with large changes but smooth changes.
  • the target gas concentration calculated by the voltage signal V3 accurately reflects the change of the standard gas concentration between obvious preset gradients.
  • the setting of the gas detection system is basically the same as that of the first embodiment, and only the packaging method of the target gas selective isolation layer in the reference nitrogen dioxide sensor and the setting of the standard gas are changed.
  • the reference nitrogen dioxide sensor adopts a non-close-fitting package, and a zero gas chamber is formed between the effective reaction surface of the sensor and the target gas selective isolation layer (see Figure 2 for details).
  • the concentration of nitrogen dioxide fluctuates between Oppb-100ppb, the gas temperature rises from -10 degrees Celsius to 20 degrees Celsius in a short time, and the humidity rises rapidly from 20% to 80%.
  • Figure 6 (a), (b), (c) and (d) respectively show the change curve of the voltage signal V2 of the reference nitrogen dioxide sensor, the change curve of the voltage signal V1 of the bare nitrogen dioxide sensor, and The temperature and humidity change curve of the standard gas, and the change curve of the target gas concentration finally obtained by the difference calculation. It can be seen from the figure that due to the rapid change of gas temperature and humidity, the voltage signals of the reference nitrogen dioxide sensor and the bare nitrogen dioxide sensor have fluctuating curves, but the change curve of the target gas concentration calculated by the signal difference is truly and accurately reflected The standard gas concentration fluctuates between 0-100ppb. The above test results can be concluded that using the dynamic sensor benchmark capture technology provided by the present invention, the gas detection system finally effectively removes the effect of rapid environmental temperature and humidity changes on the sensor output signal.
  • Figure 7 (a), (b), (c) and (d) respectively show the difference between the concentration of nitrogen dioxide, carbon monoxide, and ozone pollutants obtained by the gas detection system and method provided by the present invention and their standard concentrations. Comparison curve, and the corresponding change curve of environmental temperature and humidity. It can be seen from the figure that when the relative humidity of the environment is 45%-100% and the temperature of the environment is within the range of 15-35°C, the accuracy of the sensor monitoring performance obtained by this method is close to the standard equipment method and the hourly average value is equal to the standard. The data correlation coefficients of the methods are all above 0.95.
  • the present invention provides a gas detection system and method for eliminating the influence of environmental temperature and humidity changes, by calculating the signal difference between the paired bare sensor and the reference sensor, and calculating the target according to the signal difference
  • the gas concentration effectively separates the target gas concentration signal and the ambient temperature and humidity signal in the sensor output signal, eliminates the influence of environmental temperature and humidity changes on the sensor signal, and improves the measurement accuracy, accuracy and environmental stability of the target gas concentration Sex.

Abstract

一种消除环境温湿度变化影响的气体检测系统及其方法,气体检测系统包括裸露传感器(20)、基准传感器(30)和计算模块(40),裸露传感器(20)用于检测环境气体中的目标气体获取第一反馈信号;基准传感器(30)用于选择性隔离环境气体中的目标气体产生零气,并对零气进行检测获取第二反馈信号;计算模块(40)用于计算第一反馈信号和第二反馈信号之间的差值获取第三反馈信号,并根据第三反馈信号按照标定公式计算获取目标气体的浓度。气体检测系统及其方法消除了环境温湿度变化对传感器信号的影响,实现对目标气体浓度的准确监测,高效可靠,具有良好的技术效果。

Description

一种消除环境温湿度变化影响的气体检测系统及其方法 技术领域
本发明涉及气体检测技术领域,尤其涉及一种消除环境温湿度变化影响的气体检测系统及其方法。
背景技术
气体传感器由于价格低、体积小、易集成、易布点等特性,正成为一种区别于传统监测方式的新型空气污染物监测技术。基于气体传感器的环境监测方法也被逐渐应用到不同的场景中,如环境大气监测,网格化监测,工业监测等。由根据工作原理的不同,常用的气体传感器主要分为电化学传感器、金属氧化物传感器、光离子电离传感器、非分散红外传感器等。研究表明,多数气体传感器在测试、监测等运用过程中,气体传感器的输出信号除了受到目标污染物浓度变化的影响外,还不可避免的受到由环境的温湿度变化而带来的影响。这类由温湿度带来的影响会使目标污染物的监测基准线和灵敏度产生变化,从而造成传感器在环境应用中的测量误差。同时,传感器自身的物理化学结构随着应用时间增加也会发生改变,从而产生信号偏移的问题。
目前,在气体传感器的环境监测运用中,为提高监测的准确度和精确度,通常采用数学算法对环境温湿度进行补偿,或对采样气体进行包括一系列控温或控湿的前处理,以此来提高传感器输出信号与目标污染物之间关系的稳定性和可预测性。在对交叉环境污染物的干扰去除上,一些传感器的集成商采用对干扰污染物进行过滤的方式来分离目标信号与干扰污染物信号,去除干扰污染物的影响。
然而,从目前的技术发展看,这些方法均无法有效分离传感器输出信号中的目标气体污染物浓度信号与环境温湿度的影响信号。数学算法包括线性拟合、非线性拟合、分段函数、机器学习、神经元网络等亦无法准确捕捉环境温湿度对传感器影响的延迟性、非线性和交叉影响。而且,湿度变化对传感器的短期急剧影响与长期慢性影响到目前依然无法有效用数学模型进行描述。同时,用物 理手段对气体进行前处理也极大的增加了传感器系统的复杂性、体积以及功耗。且无论控温或控湿,均无法对两个环境变量进行同时控制,即使通过比例-积分-微分算法对温度或湿度进行快速控制,此过程中产生的小的波动信号对传感器信号也会产生放大效应,从而人为产生较大噪音,对检测精度产生负面影响。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明针对上述现有技术中提到的如何有效分离传感器输出信号中的污染物浓度信号与环境温湿度的影响信号的问题,提供了一种消除环境温湿度变化影响的气体检测系统以及方法,能够消除环境温湿度变化对气体传感器基准输出信号的影响,使得易受环境温湿度影响的气体传感器在环境检测中免于温湿度变化对传感器基准信号的影响,继而提高气体传感器在全天候条件下的测量准确度、精确度及稳定性。
本发明用于解决以上技术问题的技术方案为:一方面,提供一种消除环境温湿度变化影响的气体检测系统,包括:
裸露传感器,用于检测环境气体中的目标气体获取第一反馈信号;
基准传感器,用于选择性隔离所述环境气体中的目标气体产生零气,并对所述零气进行检测获取第二反馈信号;
计算模块,连接所述裸露传感器和基准传感器,用于计算所述第一反馈信号和第二反馈信号之间的差值获取第三反馈信号,并根据所述第三反馈信号按照标定公式计算获取所述目标气体的浓度。
本发明上述的气体检测系统中,所述基准传感器包括:
传感器本体,所述传感器本体和裸露传感器对所述目标气体和环境温湿度具有一致的信号反应;
目标气体选择性隔离层,所述目标气体选择性隔离层具有热量传导与水汽交换功能,用于选择性隔离所述环境气体中的目标气体产生零气。
本发明上述的气体检测系统中,所述标定公式为:C=a*V3+b;
式中,C为目标气体浓度,单位为质量浓度或混合比;V3为第三反馈信号,单位与所述裸露传感器和传感器本体的输出信号一致;a和b为标定参数。
本发明上述的气体检测系统中,所述第一反馈信号、第二反馈信号和第三反馈信号包括电压值、电流值和浓度值中的任意一种。
本发明上述的气体检测系统中,所述第一反馈信号和第二反馈信号的差值包括所述第一反馈信号和第二反馈信号之间的直接信号差值和所述第一反馈信号和第二反馈信号之间按比例修正后的修正信号差值。
本发明上述的气体检测系统中,还包括传感器座,所述传感器座内设置有连通所述环境气体的采样气室,所述裸露传感器和传感器本体分别安装在所述传感器座内。
本发明上述的气体检测系统中,所述传感器座内开设有位于所述采样气室两侧的第一容纳腔和第二容纳腔,所述采样气室与第一容纳腔之间设置有第一传感器防护膜,所述采样气室与第二容纳腔之间设置有第二传感器防护膜,所述第一容纳腔用于安装所述裸露传感器,所述第二容纳腔用于安装所述传感器本体。
本发明上述的气体检测系统中,所述目标气体选择性隔离层包覆在所述第二传感器防护膜朝向采样气室的一侧。
本发明上述的气体检测系统中,所述传感器本体的数量为多个,所述多个传感器本体安装在所述第二容纳腔内。
本发明上述的气体检测系统中,所述目标气体选择性隔离层无间隙包覆在所述传感器本体的反应表面。
本发明上述的气体检测系统中,还包括第一传感器座和第二传感器座,所述第一传感器座和第二传感器座内分别设置有连通所述环境气体的第一采样气室和第二采样气室,所述裸露传感器安装在所述第一采样气室内,所述传感器本体安装在所述第二采样气室内。
本发明上述的气体检测系统中,所述目标气体选择性隔离层包覆在所述第二采样气室的气室表面。
本发明上述的气体检测系统中,所述传感器本体的数量为多个,所述多个传感器本体安装在所述第二采样气室内。
本发明上述的气体检测系统中,所述目标气体选择性隔离层无间隙包覆在所述传感器本体的反应表面。
本发明上述的气体检测系统中,还包括连接所述传感器座的采样气路,所述采样气路包括被动扩散式气体采样气路和主动泵吸式采样气路;所述主动泵吸式采样气路包括进气管道和抽气泵,所述进气管道开设在所述传感器座上且连通所述采样气室,所述抽气泵连接所述进气管道。
本发明上述的气体检测系统中,所述裸露传感器和传感器本体包括电化学传感器、金属氧化物传感器、光离子电离传感器和非分散红外传感器中的任意一种。
本发明上述的气体检测系统中,所述目标气体选择性隔离层包括过滤纸、过滤膜、分子筛、过滤装置和选择性过滤物质填压形成的覆盖结构中的任意一种。
本发明上述的气体检测系统中,所述传感器本体为电化学传感器,所述目标气体选择性隔离层设置于所述电化学传感器的内部电解质层表面。
另一方面,还提供一种消除环境温湿度变化影响的气体检测方法,应用于上述的气体检测系统中,所述气体检测方法包括:
通过裸露传感器检测环境气体中的目标气体获取第一反馈信号;
通过基准传感器选择性隔离环境气体中的目标气体产生零气,并对所述零气进行检测获取第二反馈信号;
计算所述第一反馈信号和第二反馈信号之间的差值获取第三反馈信号,并根据所述第三反馈信号按照标定公式计算获取目标气体的浓度。
发明的有益效果
有益效果
实施本发明实施例提供的技术方案可以包括以下有益效果:本发明提供的一种消除环境温湿度变化影响的气体检测系统及其方法,通过裸露传感器和基准传感器之间的信号差值,并根据该信号差值计算获取目标气体的浓度,有效地分离了传感器输出信号中的目标气体浓度信号与环境温湿度信号,消除了环境温 湿度变化对传感器信号的影响,提高了目标气体浓度的测量准确度、精确度及稳定性。
对附图的简要说明
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例一提供的气体检测系统的示意图;
图2是本发明实施例一提供的气体检测系统的装配结构示意图;
图3是本发明实施例一提供的气体检测系统的另一装配结构示意图;
图4是本发明实施例三提供的气体检测方法的步骤流程图;
图5(a)、(b)、(c)和(d)分别为本发明第一实施方式提供的采用过程中覆膜二氧化氮传感器的电压信号V2的变化曲线、裸露二氧化氮传感器的电压信号V1的变化曲线、标准气体的温湿度变化曲线和最终通过差值计算获取的目标气体浓度的变化曲线;
图6(a)、(b)、(c)和(d)分别为本发明第二实施方式提供的采样过程中覆膜二氧化氮传感器的电压信号V2的变化曲线、裸露二氧化氮传感器的电压信号V1的变化曲线、标准气体的温湿度变化曲线和最终通过差值计算获取的目标气体浓度的变化曲线;
图7(a)、(b)、(c)和(d)分别为利用本发明提供的气体检测系统获取的二氧化氮、一氧化氮、臭氧污染物的浓度与其标准浓度之间的对比曲线,以及对应的环境温湿度的变化曲线。
发明实施例
本发明的实施方式
为了使本领域技术人员能够更加清楚地理解本发明,下面将结合附图及具体实施例对本发明做进一步详细的描述。
为了有效地分离传感器输出信号中的大气污染物浓度信号和环境温湿度信号,消除环境温湿度变化对大气污染物浓度检测的影响,继而提高气体传感器的测量准确度和精确度,本发明提供了一种消除环境温湿度变化影响的气体检测系统及其方法,其核心思想是:提供裸露传感器和基准传感器的封装方式,裸露 传感器用于检测环境气体中的目标气体获取第一反馈信号,基准传感器用于隔离环境气体中的目标气体,并对零气进行检测获取第二反馈信号,通过计算第一反馈信号和第二反馈信号之间的差值获取第三反馈信号,并根据第三反馈信号按照标定公式计算获取目标气体的浓度,该浓度值有效的分离了环境温湿度变化的影响,提高了目标气体的监测精度、准确度与稳定性。
实施例一
如图1所示,本发明实施例一提供的气体检测系统包括裸露传感器20、基准传感器30和计算模块40,裸露传感器20用于检测环境气体中的目标气体获取第一反馈信号,基准传感器30用于选择性隔离环境气体中的目标气体产生零气,并对所述零气进行检测获取第二反馈信号,计算模块40连接裸露传感器20和基准传感器30,用于计算第一反馈信号和第二反馈信号之间的差值获取第三反馈信号,并根据所述第三反馈信号按照标定公式计算获取目标气体的浓度。
其中,基准传感器30包括传感器本体31和目标气体选择性隔离层32,传感器本体31和裸露传感器20对目标气体和环境温湿度具有一致的信号反应,即传感器本体31和裸露传感器20为对环境温度有一致反应特征的相同类型传感器;目标气体选择性隔离层32具有热量传导与水汽交换功能,用于选择性隔离环境气体中的目标气体产生零气,以确保裸露传感器20和基准传感器30对环境温湿度变化信号有一致反应。
进一步地,所述标定公式为:C=a*V3+b;式中,C为目标气体浓度,单位为质量浓度或混合比;V3为第三反馈信号,单位与裸露传感器20和传感器本体31的输出信号一致;a和b为标定参数。
其中,第一反馈信号、第二反馈信号和第三反馈信号包括电压值、电流值和浓度值中的任意一种;第一反馈信号和第二反馈信号的差值包括第一反馈信号和第二反馈信号之间的直接信号差值和按比例修正后的修正信号差值。
需要说明的是,传感器本体31的有效反应表面被目标气体选择性隔离层32完全覆盖,使得传感器本体31只受到环境气体中温度和湿度的影响,而不受到目标气体浓度变化的影响。而裸露传感器20的反应表面与环境气体完全接触,在传感器工作过程中,裸露传感器20同时受到目标气体浓度,以及环境气体中温度 和湿度变化的影响。
因此,第一反馈信号是受目标气体浓度及其所处环境的温度和湿度综合影响的信号反馈,第二反馈信号是受隔离目标气体产生的零气及其所处环境温度和湿度综合影响的信号反馈,而第三反馈信号是目标气体浓度的信号反馈,其通过第一反馈信号和第二反馈信号的差值计算去除了目标气体所处环境温湿度的影响,仅含有传感器对目标气体浓度的信号反馈。
图2为本发明第一实施例提供的气体检测系统的装配结构示意图,结合图2所示,该气体检测系统还包括传感器座10,传感器座10内设置有连通环境气体的采样气室11,裸露传感器20和传感器本体31分别安装在传感器座10内。
传感器座10内开设有位于采样气室11两侧的第一容纳腔和第二容纳腔,采样气室11和第一容纳腔之间设置有第一传感器防护膜12,采样气室11和第二容纳腔之间设置有第二传感器防护膜13,第一容纳腔用于安装裸露传感器20,第二容纳腔用于安装传感器本体31。
本实施例中,目标气体选择性隔离层32包覆在第二传感器防护膜13朝向采样气室11的一侧,目标气体选择性隔离层32与传感器本体31之间间隔设置形成有零气室14,第一传感器防护膜12与裸露传感器20之间间隔设置形成有测试气室15。
传感器本体31的数量也可设置为多个,多个传感器本体31均安装在第二容纳腔内,用于共同对零气进行检测获取阵列的第二反馈信号。
图3为本发明第一实施例提供的气体检测系统的另一装配示意图,结合图3所示,目标气体选择性隔离层32无间隙包覆在传感器本体31的反应表面,同样能够实现目标气体选择性隔离层32隔离环境气体中的目标气体产生零气的作用,其结构更为简单实用。
进一步地,裸露传感器20和传感器本体31与采样气室11的连接处还分别套设有密封圈50,用于密封连接裸露传感器20、传感器本体31和采样气室11,确保密封无漏气。
进一步地,该气体检测系统还包括连接传感器座10的采样气路,所述采样气路包括被动扩散式气体采样气路和主动泵吸式采样气路;所述主动泵吸式采样气 路包括进气管道61和抽气泵62,进气管道61开设在传感器座10上且连通采样气室11,抽气泵62连接进气管道61,用于将环境气体吸入到采样气室11内,以提高气体检测效率。所述被动扩散式气体采样气路可参考现有的传感器气路结构,本实施例不再赘述。
本实施例中,裸露传感器20和传感器本体31包括电化学传感器、金属氧化传感器、光离子电离传感器和非分散红外传感器中的任意一种,也可以是其他受环境温湿度信号影响的传感器类型;
目标气体选择性隔离层32包括过滤纸、过滤膜、分子筛、过滤装置和选择性过滤物质填压形成的覆盖结构中的任意一种,其可根据实际需要进行选择。
优选地,传感器本体31为电化学传感器,目标气体选择性隔离层32设置于该电化学传感器的内部电解质层表面,即目标气体选择性隔离层32直接置于电化学传感器的内部电解质层与环境气体之间,用于选择性隔离环境气体中的目标气体产生零气。
实施例二
本发明实施例二提供的气体检测系统将裸露传感器和基准传感器分别安装于两个结构相同的气室内部,具体的,该气体检测系统包括第一传感器座和第二传感器座,所述第一传感器座和第二传感器座内分别设置有连通所述环境气体的第一采样气室和第二采样气室,所述裸露传感器安装在所述第一采样气室内,用于检测环境气体中的目标气体获取第一反馈信号;所述传感器本体安装在所述第二采样气室内,用于选择性隔离环境气体中的目标气体产生零气,并对零气进行检测获取第二反馈信号;同样地,可通过计算第一反馈信号和第二反馈信号之间的差值获取第三反馈信号,并根据第三反馈信号按照标定公式可计算获取所述目标气体的浓度。
在本发明的第二实施例中,目标气体选择性隔离层的设置方式同样有两种,第一种方式是将目标气体选择性隔离层包覆在第二采样气室的气室表面,使得第二采样气室成为零气室。此时,传感器本体的数量可设置为多个,多个传感器本体均安装在第二采样气室内,用于共同对零气进行检测获取阵列的第二反馈信号。
第二种方式是将目标气体选择性隔离层无间隙包覆在传感器本体的反应表面,然后再将该传感器本体置于第二采样气室内,同样能够实现目标气体选择性隔离层隔离环境气体中的目标气体产生零气的作用。
实施例三
图4是本发明实施例三提供的一种消除环境温湿度变化影响的气体检测方法的流程示意图,应用于上述实施例一和实施例二中的气体检测系统,该方法包括步骤:
S1、通过裸露传感器20检测环境气体中的目标气体获取第一反馈信号;
S2、通过基准传感器30选择性隔离环境气体中的目标气体产生零气,并对所述零气进行检测获取第二反馈信号;
S3、计算所述第一反馈信号和第二反馈信号之间的差值获取第三反馈信号,并根据所述第三反馈信号按照标定公式计算获取目标气体的浓度。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述气体检测方法可以参考上述提供的气体检测系统中对应的检测过程,其余实施步骤不再赘述。
以下通过两个具体实施方式说明上述气体检测系统及其方法的实施效果:
在第一实施方式中,裸露传感器20和传感器本体31选用对环境温湿度变化的基准偏移有一致反应的电化学二氧化氮传感器,目标气体选择性隔离层32选用能够过滤二氧化氮气体且具有热量传导与水汽交换功能,该膜无间隙包覆在二氧化氮传感器的反应表面组成基准传感器30(详见图3),采样气路采用主动泵吸式采样气路。
其次,将裸露二氧化氮传感器和基准二氧化氮传感器严格密封安装在传感器座上,并利用二氧化氮标准气体和控温控湿装置,产生一个二氧化氮浓度在50ppb-100ppb-150ppb三个梯度间循环变化、环境温度在15-40摄氏度之间连续变化,以及环境湿度在15%-80%之间连续变化的气体环境。在实验过程中记录裸露二氧化氮传感器的电压信号V1和基准二氧化氮传感器的电压信号V2,然后通过直接差值计算获取电压信号V3,并根据已知的标准气体变化浓度和电压信号V3计算出目标气体浓度。
图5(a)、(b)、(c)和(d)分别给出了采样过程中基准二氧化氮传感器的电压信号V2的变化曲线、裸露二氧化氮传感器的电压信号V1的变化曲线、标准气体的温湿度变化曲线,以及最终通过差值计算获取的目标气体浓度的变化曲线。由图可见,由于气体温湿度的变化,裸露二氧化氮传感器的电压信号V1在体现气体浓度变化的同时也受到了气体温湿度变化的影响,基准二氧化氮传感器由于除去了气体浓度的影响,电压信号V2随着温湿度产生周期性波动,变化幅度大但是变化平滑。通过信号处理后,通过电压信号V3计算得出的目标气体浓度准确地体现了标准气体浓度在明显的预设梯度间变化。
在第二实施方式中,气体检测系统的设置与第一实施例基本相同,仅改变了基准二氧化氮传感器中目标气体选择性隔离层的封装方式和标准气体的设定。该基准二氧化氮传感器采用非紧密贴合的封装,传感器的有效反应表面与目标气体选择性隔离层之间间隔设置形成有零气室(详见图2)。另外,二氧化氮浓度在Oppb-100ppb间波动、气体温度从-10摄氏度短期内升到20摄氏度,湿度从20%快速上升到80%。
图6(a)、(b)、(c)和(d)分别示出了采样过程中基准二氧化氮传感器的电压信号V2的变化曲线、裸露二氧化氮传感器的电压信号V1的变化曲线、标准气体的温湿度变化曲线,以及最终通过差值计算获取的目标气体浓度的变化曲线。由图可见,由于气体温湿度的急剧变化,基准二氧化氮传感器和裸露二氧化氮传感器的电压信号均出现波动曲线,但其信号差计算得出的目标气体浓度的变化曲线真实且准确地反映了标准气体浓度在0-100ppb间的波动。以上试验结果可以得出,利用本发明提供的动态传感器基准捕捉技术,该气体检测系统最终有效地去除了快速环境温湿度变化对传感器输出信号的影响。
图7(a)、(b)、(c)和(d)分别示出利用本发明提供的气体检测系统及其方法获取的二氧化氮、一氧化碳、臭氧污染物的浓度与其标准浓度之间的对比曲线,以及对应的环境温湿度的变化曲线。由图可见,通过本方法获取的传感器监测性能在环境相对湿度在45%-100%以及环境温度在15-35℃的变化范围之内时,其准确度接近标准设备方法且小时平均值与标准方法的数据相关系数均在0.95之上。
综上所述,本发明提供的一种消除环境温湿度变化影响的气体检测系统及其方法,通过计算配对的裸露传感器和基准传感器之间的信号差值,并根据该信号差值计算获取目标气体的浓度,有效地分离了传感器输出信号中的目标气体浓度信号与环境温湿度信号,消除了环境温湿度变化对传感器信号的影响,提高了目标气体浓度的测量准确度、精确度及环境稳定性。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (19)

  1. 一种消除环境温湿度变化影响的气体检测系统,其特征在于,包括:
    裸露传感器,用于检测环境气体中的目标气体获取第一反馈信号;
    基准传感器,用于选择性隔离所述环境气体中的目标气体产生零气,并对所述零气进行检测获取第二反馈信号;
    计算模块,连接所述裸露传感器和基准传感器,用于计算所述第一反馈信号和第二反馈信号之间的差值获取第三反馈信号,并根据所述第三反馈信号按照标定公式计算获取所述目标气体的浓度。
  2. 根据权利要求1所述的气体检测系统,其特征在于,所述基准传感器包括:
    传感器本体,所述传感器本体和裸露传感器对所述目标气体和环境温湿度具有一致的信号反应;
    目标气体选择性隔离层,所述目标气体选择性隔离层具有热量传导与水汽交换功能,用于选择性隔离所述环境气体中的目标气体产生零气。
  3. 根据权利要求1所述的气体检测系统,其特征在于,所述标定公式为:C=a*V3+b;
    式中,C为目标气体浓度,单位为质量浓度或混合比;V3为第三反馈信号,单位与所述裸露传感器和传感器本体的输出信号一致;a和b为标定参数。
  4. 根据权利要求1所述的气体检测系统,其特征在于,所述第一反馈信号、第二反馈信号和第三反馈信号包括电压值、电流值和浓度值中的任意一种。
  5. 根据权利要求1所述的气体检测系统,其特征在于,所述第一反馈信号和第二反馈信号的差值包括所述第一反馈信号和第二反馈信 号之间的直接信号差值和所述第一反馈信号和第二反馈信号之间按比例修正后的修正信号差值。
  6. 根据权利要求2所述的气体检测系统,其特征在于,还包括传感器座,所述传感器座内设置有连通所述环境气体的采样气室,所述裸露传感器和传感器本体分别安装在所述传感器座内。
  7. 根据权利要求6所述的气体检测系统,其特征在于,所述传感器座内开设有位于所述采样气室两侧的第一容纳腔和第二容纳腔,所述采样气室与第一容纳腔之间设置有第一传感器防护膜,所述采样气室与第二容纳腔之间设置有第二传感器防护膜,所述第一容纳腔用于安装所述裸露传感器,所述第二容纳腔用于安装所述传感器本体。
  8. 根据权利要求7所述的气体检测系统,其特征在于,所述目标气体选择性隔离层包覆在所述第二传感器防护膜朝向采样气室的一侧。
  9. 根据权利要求8所述的气体检测系统,其特征在于,所述传感器本体的数量为多个,所述多个传感器本体安装在所述第二容纳腔内。
  10. 根据权利要求7所述的气体检测系统,其特征在于,所述目标气体选择性隔离层无间隙包覆在所述传感器本体的反应表面。
  11. 根据权利要求2所述的气体检测系统,其特征在于,还包括第一传感器座和第二传感器座,所述第一传感器座和第二传感器座内分别设置有连通所述环境气体的第一采样气室和第二采样气室,所述裸露传感器安装在所述第一采样气室内,所述传感器本体安装在所述第二采样气室内。
  12. 根据权利要求11所述的气体检测系统,其特征在于,所述目标气体选择性隔离层包覆在所述第二采样气室的气室表面。
  13. 根据权利要求12所述的气体检测系统,其特征在于,所述传感器本体的数量为多个,所述多个传感器本体安装在所述第二采样气 室内。
  14. 根据权利要求11所述的气体检测系统,其特征在于,所述目标气体选择性隔离层无间隙包覆在所述传感器本体的反应表面。
  15. 根据权利要求1所述的气体检测系统,其特征在于,还包括连接所述传感器座的采样气路,所述采样气路包括被动扩散式气体采样气路和主动泵吸式采样气路;所述主动泵吸式采样气路包括进气管道和抽气泵,所述进气管道开设在所述传感器座上且连通所述采样气室,所述抽气泵连接所述进气管道。
  16. 根据权利要求2所述的气体检测系统,其特征在于,所述裸露传感器和传感器本体包括电化学传感器、金属氧化物传感器、光离子电离传感器和非分散红外传感器中的任意一种。
  17. 根据权利要求2所述的气体检测系统,其特征在于,所述目标气体选择性隔离层包括过滤纸、过滤膜、分子筛、过滤装置和选择性过滤物质填压形成的覆盖结构中的任意一种。
  18. 根据权利要求2所述的气体检测系统,其特征在于,所述传感器本体为电化学传感器,所述目标气体选择性隔离层设置于所述电化学传感器的内部电解质层表面。
  19. 一种消除环境温湿度变化影响的气体检测方法,应用于如权利要求1至18任一项所述的气体检测系统中,其特征在于,所述气体检测方法包括:
    通过裸露传感器检测环境气体中的目标气体获取第一反馈信号;
    通过基准传感器选择性隔离环境气体中的目标气体产生零气,并对所述零气进行检测获取第二反馈信号;
    计算所述第一反馈信号和第二反馈信号之间的差值获取第三反馈信号,并根据所述第三反馈信号按照标定公式计算获取目标气体的浓度。
PCT/CN2019/088916 2019-05-29 2019-05-29 一种消除环境温湿度变化影响的气体检测系统及其方法 WO2020237513A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980014797.1A CN112352153B (zh) 2019-05-29 2019-05-29 一种消除环境温湿度变化影响的气体检测系统及其方法
EP19920637.6A EP3978910A4 (en) 2019-05-29 2019-05-29 GAS DETECTION SYSTEM WHICH ELIMINATES THE INFLUENCE OF A CHANGE IN AMBIENT TEMPERATURE OR HUMIDITY, AND METHOD THEREOF
PCT/CN2019/088916 WO2020237513A1 (zh) 2019-05-29 2019-05-29 一种消除环境温湿度变化影响的气体检测系统及其方法
US16/968,278 US11460434B2 (en) 2019-05-29 2019-05-29 Gas detection system with eliminating influence of ambient temperature and humidity changes and the method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088916 WO2020237513A1 (zh) 2019-05-29 2019-05-29 一种消除环境温湿度变化影响的气体检测系统及其方法

Publications (1)

Publication Number Publication Date
WO2020237513A1 true WO2020237513A1 (zh) 2020-12-03

Family

ID=73553028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088916 WO2020237513A1 (zh) 2019-05-29 2019-05-29 一种消除环境温湿度变化影响的气体检测系统及其方法

Country Status (4)

Country Link
US (1) US11460434B2 (zh)
EP (1) EP3978910A4 (zh)
CN (1) CN112352153B (zh)
WO (1) WO2020237513A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113588883A (zh) * 2021-08-02 2021-11-02 中科三清科技有限公司 一种进行自动校准的环境空气质量监测装置
CN113588882A (zh) * 2021-08-02 2021-11-02 中科三清科技有限公司 一种基于环境空气质量监测装置的自动零点校准方法
WO2023280633A1 (en) * 2021-07-05 2023-01-12 Universitaet Wien Gas-sensing apparatus
CN115856224B (zh) * 2022-12-28 2023-08-29 安徽宏元聚康医疗科技有限公司 一种用于腔室内气体浓度变化噪声抑制和趋势识别的算法
CN116754631A (zh) * 2023-08-02 2023-09-15 深圳市诺安智能股份有限公司 一种pid传感器的自参考校准结构及自参考校准方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020237513A1 (zh) * 2019-05-29 2020-12-03 深圳智人环保科技有限公司 一种消除环境温湿度变化影响的气体检测系统及其方法
CN114965867A (zh) * 2021-02-26 2022-08-30 杭州三花研究院有限公司 一种气体浓度的检测方法、气体检测装置及其控制方法
CN114199861A (zh) * 2021-11-24 2022-03-18 中国汽车技术研究中心有限公司 检测低浓度含水气体的电子鼻及方法
CN114544868B (zh) * 2022-01-20 2024-03-26 上海工程技术大学 一种消除干扰气体影响的气体检测方法与系统
CN114216938B (zh) * 2022-02-23 2022-06-24 浙江正泰仪器仪表有限责任公司 一种气体浓度检测补偿方法及装置
CN115184558B (zh) * 2022-07-15 2022-12-20 中国电力科学研究院有限公司 一种基于自校准的混合气体混合比在线监测方法及系统
CN115060686B (zh) * 2022-08-09 2022-11-01 农业农村部环境保护科研监测所 基于近红外光谱的粪液氮磷含量现场快检装置
CN117405177A (zh) * 2023-12-15 2024-01-16 国网山东省电力公司济南供电公司 电缆隧道有害气体泄漏预警方法、系统、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100058857A1 (en) * 2008-09-09 2010-03-11 Honeywell International Inc. Surface acoustic wave based humidity sensor apparatus with integrated signal conditioning
CN104359949A (zh) * 2014-11-06 2015-02-18 广州勒夫蔓德电器有限公司 一种气体浓度的测量方法
CN106770523A (zh) * 2016-12-30 2017-05-31 聚光科技(杭州)股份有限公司 空气中多组分气体浓度检测装置及方法
CN106933127A (zh) * 2017-01-17 2017-07-07 杭州老板电器股份有限公司 一种气体类传感器的控制方法
CN108717098A (zh) * 2018-05-22 2018-10-30 上海交通大学 一种提高混合气体浓度检测精度的方法
CN108982765A (zh) * 2018-07-03 2018-12-11 深圳智人环保科技有限公司 带有温湿度预处理及基准调零的微型气体检测系统及方法
CN208654116U (zh) * 2018-07-03 2019-03-26 深圳智人环保科技有限公司 一种气体检测系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063446A (en) * 1974-05-08 1977-12-20 Hans Fuhrmann Method of and apparatus for automatically detecting traces of organic solvent vapors in air
JP3482070B2 (ja) * 1996-04-06 2003-12-22 株式会社堀場製作所 赤外線ガス分析計
JP2000258389A (ja) * 1999-03-08 2000-09-22 Nippon Soken Inc 可燃性ガス検出システム
US20020168772A1 (en) * 2001-05-11 2002-11-14 Lloyd Greg A. Method of detecting poisoning of a MOS gas sensor
WO2005015175A1 (en) * 2003-08-11 2005-02-17 Senseair Ab A method of compensating for a measuring error and an electronic arrangement to this end
US7996159B2 (en) * 2008-09-10 2011-08-09 Delphian Corporation Gas detector system and method
JP6100771B2 (ja) * 2011-07-13 2017-03-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ガス検知器
EP3186628B1 (en) * 2014-08-28 2018-01-31 Koninklijke Philips N.V. Sensor system and sensing method
WO2016202706A1 (en) * 2015-06-19 2016-12-22 Koninklijke Philips N.V. Gas sensing apparatus
DE102017110056B4 (de) * 2017-05-10 2019-02-21 Beko Technologies Gmbh Öldampfmessgerät mit Referenzgasgenerator
GB201820293D0 (en) * 2018-12-13 2019-01-30 Draeger Safety Ag & Co Kgaa Gas sensor
WO2020237513A1 (zh) * 2019-05-29 2020-12-03 深圳智人环保科技有限公司 一种消除环境温湿度变化影响的气体检测系统及其方法
CA3172135A1 (en) * 2020-03-19 2021-09-23 Jacques Godin Method and apparatus for long term accurate measurement of ammonia gas concentration in a permanent ammonia gas environment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100058857A1 (en) * 2008-09-09 2010-03-11 Honeywell International Inc. Surface acoustic wave based humidity sensor apparatus with integrated signal conditioning
CN104359949A (zh) * 2014-11-06 2015-02-18 广州勒夫蔓德电器有限公司 一种气体浓度的测量方法
CN106770523A (zh) * 2016-12-30 2017-05-31 聚光科技(杭州)股份有限公司 空气中多组分气体浓度检测装置及方法
CN106933127A (zh) * 2017-01-17 2017-07-07 杭州老板电器股份有限公司 一种气体类传感器的控制方法
CN108717098A (zh) * 2018-05-22 2018-10-30 上海交通大学 一种提高混合气体浓度检测精度的方法
CN108982765A (zh) * 2018-07-03 2018-12-11 深圳智人环保科技有限公司 带有温湿度预处理及基准调零的微型气体检测系统及方法
CN208654116U (zh) * 2018-07-03 2019-03-26 深圳智人环保科技有限公司 一种气体检测系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023280633A1 (en) * 2021-07-05 2023-01-12 Universitaet Wien Gas-sensing apparatus
CN113588883A (zh) * 2021-08-02 2021-11-02 中科三清科技有限公司 一种进行自动校准的环境空气质量监测装置
CN113588882A (zh) * 2021-08-02 2021-11-02 中科三清科技有限公司 一种基于环境空气质量监测装置的自动零点校准方法
CN115856224B (zh) * 2022-12-28 2023-08-29 安徽宏元聚康医疗科技有限公司 一种用于腔室内气体浓度变化噪声抑制和趋势识别的算法
CN116754631A (zh) * 2023-08-02 2023-09-15 深圳市诺安智能股份有限公司 一种pid传感器的自参考校准结构及自参考校准方法

Also Published As

Publication number Publication date
CN112352153B (zh) 2022-11-25
EP3978910A4 (en) 2023-01-04
US20210310986A1 (en) 2021-10-07
US11460434B2 (en) 2022-10-04
CN112352153A (zh) 2021-02-09
EP3978910A1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
WO2020237513A1 (zh) 一种消除环境温湿度变化影响的气体检测系统及其方法
CN103500770B (zh) 一种多气体检测的红外气体传感器
JP5921869B2 (ja) トレーサーガスとして水素を使用するリーク検出のための装置および方法
EP3023766B1 (fr) Procédé et dispositif de mesure de perméation par spectrométrie de masse
EP3140645A1 (en) Gas component concentration measurement device and method for gas component concentration measurement
JP2017219499A (ja) 赤外線ガス分析装置
FR3000215A1 (fr) Dispositif et procede de test d'un echantillon, en particulier de discrimination d'un gaz d'un echantillon
CN106093134B (zh) 金属氧化物传感器阵列响应漂移的补偿方法
CN110161115B (zh) 一种基于声速频散强度变化率的气体成分探测方法和系统
CN109142642B (zh) 一种气体浓度快速感知装置及感知方法
US20220065735A1 (en) Method and hardware for post maintenance vacuum recovery system
CN109856327B (zh) 一种通过湿度测量确定被测物质含水量的装置和方法
CN109655870B (zh) 流气式氡源任意调节氡析出率及有效衰变常数的装置及方法
JP3983479B2 (ja) 電池の液漏れ検査装置
Ionascu et al. Towards wearable air quality monitoring systems-initial assessments on newly developed sensors
Abidin et al. Identification of initial drift in semiconductor gas sensors caused by temperature variation
RU2649654C2 (ru) Датчик угарного газа
CN115656087B (zh) 一种具有检测气体间浓度补偿方法的八通道ndir光学平台
RU2666189C1 (ru) Датчик угарного газа
CN111426620A (zh) 一种滤毒罐防护时间检测装置
US20210156843A1 (en) Breath sensing device for a portable electronic device
CN116994999B (zh) 一种超洁净环境的机械臂吸力调节方法及系统
CN212059824U (zh) 一种滤毒罐防护时间检测装置
CN113176448B (zh) 一种基于双电导率传感器的电导率检测方法及系统
US20170131250A1 (en) Device and method for detecting a gas component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019920637

Country of ref document: EP

Effective date: 20220103