WO2020236615A1 - Mps modified peptides and use thereof - Google Patents
Mps modified peptides and use thereof Download PDFInfo
- Publication number
- WO2020236615A1 WO2020236615A1 PCT/US2020/033188 US2020033188W WO2020236615A1 WO 2020236615 A1 WO2020236615 A1 WO 2020236615A1 US 2020033188 W US2020033188 W US 2020033188W WO 2020236615 A1 WO2020236615 A1 WO 2020236615A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cancer
- polypeptide
- cell
- alternatively
- isolated
- Prior art date
Links
- 108091005601 modified peptides Proteins 0.000 title description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 328
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 265
- 229920001184 polypeptide Polymers 0.000 claims abstract description 244
- 239000002157 polynucleotide Substances 0.000 claims abstract description 178
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 178
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 178
- 239000003814 drug Substances 0.000 claims abstract description 52
- 210000004027 cell Anatomy 0.000 claims description 206
- 238000000034 method Methods 0.000 claims description 184
- 150000001413 amino acids Chemical group 0.000 claims description 147
- 206010028980 Neoplasm Diseases 0.000 claims description 122
- 239000000203 mixture Substances 0.000 claims description 121
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 99
- 201000010099 disease Diseases 0.000 claims description 94
- 239000013598 vector Substances 0.000 claims description 90
- 241000282414 Homo sapiens Species 0.000 claims description 78
- 201000011510 cancer Diseases 0.000 claims description 76
- 239000003795 chemical substances by application Substances 0.000 claims description 74
- 238000011282 treatment Methods 0.000 claims description 59
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 claims description 57
- 210000002950 fibroblast Anatomy 0.000 claims description 55
- 208000036971 interstitial lung disease 2 Diseases 0.000 claims description 55
- 230000014509 gene expression Effects 0.000 claims description 54
- 229940079593 drug Drugs 0.000 claims description 41
- 239000002246 antineoplastic agent Substances 0.000 claims description 40
- 208000024891 symptom Diseases 0.000 claims description 38
- 210000001519 tissue Anatomy 0.000 claims description 35
- 208000005069 pulmonary fibrosis Diseases 0.000 claims description 32
- -1 EGFR and VEGFR TKIs Chemical class 0.000 claims description 31
- 230000002401 inhibitory effect Effects 0.000 claims description 28
- XZXHXSATPCNXJR-ZIADKAODSA-N nintedanib Chemical compound O=C1NC2=CC(C(=O)OC)=CC=C2\C1=C(C=1C=CC=CC=1)\NC(C=C1)=CC=C1N(C)C(=O)CN1CCN(C)CC1 XZXHXSATPCNXJR-ZIADKAODSA-N 0.000 claims description 26
- 206010016654 Fibrosis Diseases 0.000 claims description 25
- 230000004761 fibrosis Effects 0.000 claims description 25
- 229960004378 nintedanib Drugs 0.000 claims description 25
- 210000000651 myofibroblast Anatomy 0.000 claims description 24
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 24
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 claims description 23
- 241000124008 Mammalia Species 0.000 claims description 22
- 230000000295 complement effect Effects 0.000 claims description 21
- 230000035755 proliferation Effects 0.000 claims description 20
- 239000005483 tyrosine kinase inhibitor Substances 0.000 claims description 20
- 206010061218 Inflammation Diseases 0.000 claims description 18
- 230000003510 anti-fibrotic effect Effects 0.000 claims description 18
- 230000004054 inflammatory process Effects 0.000 claims description 18
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 claims description 18
- 210000000130 stem cell Anatomy 0.000 claims description 17
- 206010027476 Metastases Diseases 0.000 claims description 15
- 230000010261 cell growth Effects 0.000 claims description 15
- 239000003937 drug carrier Substances 0.000 claims description 15
- 230000009401 metastasis Effects 0.000 claims description 15
- 206010009944 Colon cancer Diseases 0.000 claims description 14
- 230000003328 fibroblastic effect Effects 0.000 claims description 14
- 210000003527 eukaryotic cell Anatomy 0.000 claims description 13
- 230000003902 lesion Effects 0.000 claims description 13
- 230000035945 sensitivity Effects 0.000 claims description 13
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 12
- ISWRGOKTTBVCFA-UHFFFAOYSA-N pirfenidone Chemical compound C1=C(C)C=CC(=O)N1C1=CC=CC=C1 ISWRGOKTTBVCFA-UHFFFAOYSA-N 0.000 claims description 12
- 229910052697 platinum Inorganic materials 0.000 claims description 12
- 210000004881 tumor cell Anatomy 0.000 claims description 12
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 11
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 11
- 201000002528 pancreatic cancer Diseases 0.000 claims description 11
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 11
- 230000001105 regulatory effect Effects 0.000 claims description 11
- 206010005949 Bone cancer Diseases 0.000 claims description 10
- 208000018084 Bone neoplasm Diseases 0.000 claims description 10
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 10
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 10
- 206010025323 Lymphomas Diseases 0.000 claims description 10
- 206010038389 Renal cancer Diseases 0.000 claims description 10
- 206010043515 Throat cancer Diseases 0.000 claims description 10
- 229940044683 chemotherapy drug Drugs 0.000 claims description 10
- 229940127089 cytotoxic agent Drugs 0.000 claims description 10
- 201000010982 kidney cancer Diseases 0.000 claims description 10
- 208000032839 leukemia Diseases 0.000 claims description 10
- 208000020816 lung neoplasm Diseases 0.000 claims description 10
- 229960003073 pirfenidone Drugs 0.000 claims description 10
- 208000016691 refractory malignant neoplasm Diseases 0.000 claims description 10
- 230000010076 replication Effects 0.000 claims description 10
- 230000008685 targeting Effects 0.000 claims description 10
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 9
- 229940041181 antineoplastic drug Drugs 0.000 claims description 9
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims description 9
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims description 9
- 201000005202 lung cancer Diseases 0.000 claims description 9
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims description 9
- 206010023421 Kidney fibrosis Diseases 0.000 claims description 8
- 206010050207 Skin fibrosis Diseases 0.000 claims description 8
- 208000019425 cirrhosis of liver Diseases 0.000 claims description 8
- 241001529936 Murinae Species 0.000 claims description 7
- 210000001236 prokaryotic cell Anatomy 0.000 claims description 7
- 230000000699 topical effect Effects 0.000 claims description 7
- 150000008574 D-amino acids Chemical group 0.000 claims description 6
- 238000002664 inhalation therapy Methods 0.000 claims description 6
- 108091008605 VEGF receptors Proteins 0.000 claims description 5
- 238000001990 intravenous administration Methods 0.000 claims description 5
- 201000007270 liver cancer Diseases 0.000 claims description 5
- 208000014018 liver neoplasm Diseases 0.000 claims description 5
- 241000283073 Equus caballus Species 0.000 claims description 4
- 230000008499 blood brain barrier function Effects 0.000 claims description 4
- 210000001218 blood-brain barrier Anatomy 0.000 claims description 4
- 239000013607 AAV vector Substances 0.000 claims description 3
- 241000282465 Canis Species 0.000 claims description 3
- 241000282324 Felis Species 0.000 claims description 3
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 claims description 3
- 230000001024 immunotherapeutic effect Effects 0.000 claims description 3
- 238000007917 intracranial administration Methods 0.000 claims description 3
- 238000007910 systemic administration Methods 0.000 claims description 3
- 230000009885 systemic effect Effects 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims description 2
- 238000007913 intrathecal administration Methods 0.000 claims description 2
- 230000001225 therapeutic effect Effects 0.000 abstract description 19
- 235000001014 amino acid Nutrition 0.000 description 150
- 229940024606 amino acid Drugs 0.000 description 143
- 108090000623 proteins and genes Proteins 0.000 description 128
- 108010063737 Myristoylated Alanine-Rich C Kinase Substrate Proteins 0.000 description 81
- 102000015695 Myristoylated Alanine-Rich C Kinase Substrate Human genes 0.000 description 81
- 102000004169 proteins and genes Human genes 0.000 description 76
- 235000018102 proteins Nutrition 0.000 description 73
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 37
- 108020004459 Small interfering RNA Proteins 0.000 description 35
- 239000012634 fragment Substances 0.000 description 35
- 150000007523 nucleic acids Chemical class 0.000 description 33
- 125000003275 alpha amino acid group Chemical group 0.000 description 32
- 238000000338 in vitro Methods 0.000 description 32
- 230000027455 binding Effects 0.000 description 31
- 238000001727 in vivo Methods 0.000 description 30
- 125000003729 nucleotide group Chemical group 0.000 description 30
- 230000000694 effects Effects 0.000 description 28
- 102000039446 nucleic acids Human genes 0.000 description 28
- 108020004707 nucleic acids Proteins 0.000 description 28
- 108020004414 DNA Proteins 0.000 description 27
- 235000014113 dietary fatty acids Nutrition 0.000 description 27
- 229930195729 fatty acid Natural products 0.000 description 27
- 239000000194 fatty acid Substances 0.000 description 27
- 238000009472 formulation Methods 0.000 description 26
- 239000002773 nucleotide Substances 0.000 description 26
- 108010006654 Bleomycin Proteins 0.000 description 25
- 229960001561 bleomycin Drugs 0.000 description 25
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 25
- 210000004072 lung Anatomy 0.000 description 25
- 108091007433 antigens Proteins 0.000 description 24
- 102000036639 antigens Human genes 0.000 description 24
- 239000000427 antigen Substances 0.000 description 23
- 230000026731 phosphorylation Effects 0.000 description 22
- 238000006366 phosphorylation reaction Methods 0.000 description 22
- 241001465754 Metazoa Species 0.000 description 21
- 150000001875 compounds Chemical class 0.000 description 21
- 238000002560 therapeutic procedure Methods 0.000 description 21
- 241000699670 Mus sp. Species 0.000 description 20
- 235000004279 alanine Nutrition 0.000 description 20
- 238000009396 hybridization Methods 0.000 description 20
- 230000009467 reduction Effects 0.000 description 20
- 101100297694 Arabidopsis thaliana PIP2-7 gene Proteins 0.000 description 19
- 108060003951 Immunoglobulin Proteins 0.000 description 19
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 19
- 101100456541 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) MEC3 gene Proteins 0.000 description 19
- 101100483663 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) UFD1 gene Proteins 0.000 description 19
- 102000018358 immunoglobulin Human genes 0.000 description 19
- 235000004400 serine Nutrition 0.000 description 19
- 239000013603 viral vector Substances 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 18
- 108020004999 messenger RNA Proteins 0.000 description 18
- 210000004602 germ cell Anatomy 0.000 description 17
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 16
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 16
- 239000004480 active ingredient Substances 0.000 description 16
- 238000003786 synthesis reaction Methods 0.000 description 16
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 15
- 230000000670 limiting effect Effects 0.000 description 15
- 238000012546 transfer Methods 0.000 description 15
- 241000196324 Embryophyta Species 0.000 description 14
- 239000003550 marker Substances 0.000 description 14
- 230000001177 retroviral effect Effects 0.000 description 14
- 241000894007 species Species 0.000 description 14
- CNWINRVXAYPOMW-FCNJXWMTSA-N 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 4,5-biphosphate Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)O[C@H](COC(=O)CCCCCCCCCCCCCCCCC)COP(O)(=O)O[C@@H]1[C@H](O)[C@H](O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H]1O CNWINRVXAYPOMW-FCNJXWMTSA-N 0.000 description 13
- 102000004190 Enzymes Human genes 0.000 description 13
- 108090000790 Enzymes Proteins 0.000 description 13
- 230000004913 activation Effects 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 13
- 229940088598 enzyme Drugs 0.000 description 13
- 150000004665 fatty acids Chemical class 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- 210000004408 hybridoma Anatomy 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 239000000523 sample Substances 0.000 description 13
- 150000003355 serines Chemical class 0.000 description 13
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 12
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 12
- 241000700605 Viruses Species 0.000 description 12
- 239000000969 carrier Substances 0.000 description 12
- 230000001404 mediated effect Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000003612 virological effect Effects 0.000 description 12
- 108091034117 Oligonucleotide Proteins 0.000 description 11
- 102000007079 Peptide Fragments Human genes 0.000 description 11
- 108010033276 Peptide Fragments Proteins 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 150000001295 alanines Chemical class 0.000 description 11
- 230000004071 biological effect Effects 0.000 description 11
- 210000004962 mammalian cell Anatomy 0.000 description 11
- 239000002777 nucleoside Substances 0.000 description 11
- 239000008194 pharmaceutical composition Substances 0.000 description 11
- 239000013612 plasmid Substances 0.000 description 11
- 238000012216 screening Methods 0.000 description 11
- 239000011780 sodium chloride Substances 0.000 description 11
- 238000006467 substitution reaction Methods 0.000 description 11
- 238000013519 translation Methods 0.000 description 11
- 230000014616 translation Effects 0.000 description 11
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 10
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 10
- 108091008611 Protein Kinase B Proteins 0.000 description 10
- 241000700159 Rattus Species 0.000 description 10
- 108091027967 Small hairpin RNA Proteins 0.000 description 10
- 125000000539 amino acid group Chemical group 0.000 description 10
- 210000000170 cell membrane Anatomy 0.000 description 10
- 230000000973 chemotherapeutic effect Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 230000004069 differentiation Effects 0.000 description 10
- 239000012528 membrane Substances 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- 239000002953 phosphate buffered saline Substances 0.000 description 10
- 235000013930 proline Nutrition 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 241000701161 unidentified adenovirus Species 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 9
- 230000006907 apoptotic process Effects 0.000 description 9
- 230000001413 cellular effect Effects 0.000 description 9
- 238000010494 dissociation reaction Methods 0.000 description 9
- 230000005593 dissociations Effects 0.000 description 9
- 238000001476 gene delivery Methods 0.000 description 9
- 239000002502 liposome Substances 0.000 description 9
- 230000037230 mobility Effects 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 230000009261 transgenic effect Effects 0.000 description 9
- 239000003981 vehicle Substances 0.000 description 9
- 241000702421 Dependoparvovirus Species 0.000 description 8
- 241000238631 Hexapoda Species 0.000 description 8
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 8
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 8
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 8
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 8
- 239000004472 Lysine Substances 0.000 description 8
- 102100032514 MARCKS-related protein Human genes 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 230000019491 signal transduction Effects 0.000 description 8
- 230000000391 smoking effect Effects 0.000 description 8
- 238000010361 transduction Methods 0.000 description 8
- 230000026683 transduction Effects 0.000 description 8
- 230000004565 tumor cell growth Effects 0.000 description 8
- LLDWLPRYLVPDTG-UHFFFAOYSA-N vatalanib succinate Chemical compound OC(=O)CCC(O)=O.C1=CC(Cl)=CC=C1NC(C1=CC=CC=C11)=NN=C1CC1=CC=NC=C1 LLDWLPRYLVPDTG-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 241000710929 Alphavirus Species 0.000 description 7
- 241000283973 Oryctolagus cuniculus Species 0.000 description 7
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 239000002671 adjuvant Substances 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 229960004316 cisplatin Drugs 0.000 description 7
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 7
- 239000000839 emulsion Substances 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 238000001415 gene therapy Methods 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 150000003833 nucleoside derivatives Chemical class 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 230000001737 promoting effect Effects 0.000 description 7
- 102000005962 receptors Human genes 0.000 description 7
- 108020003175 receptors Proteins 0.000 description 7
- 238000010186 staining Methods 0.000 description 7
- 239000003826 tablet Substances 0.000 description 7
- 229940124597 therapeutic agent Drugs 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 6
- 101710117290 Aldo-keto reductase family 1 member C4 Proteins 0.000 description 6
- 241000283690 Bos taurus Species 0.000 description 6
- 241000283707 Capra Species 0.000 description 6
- 241000282412 Homo Species 0.000 description 6
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 6
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 6
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 6
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 6
- 241001494479 Pecora Species 0.000 description 6
- 102100024952 Protein CBFA2T1 Human genes 0.000 description 6
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 230000000692 anti-sense effect Effects 0.000 description 6
- 239000000306 component Substances 0.000 description 6
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 6
- 229960001433 erlotinib Drugs 0.000 description 6
- 230000009368 gene silencing by RNA Effects 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 6
- 150000002333 glycines Chemical class 0.000 description 6
- 229920001477 hydrophilic polymer Polymers 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 229960000310 isoleucine Drugs 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 230000007935 neutral effect Effects 0.000 description 6
- 150000003148 prolines Chemical class 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 239000004055 small Interfering RNA Substances 0.000 description 6
- 230000004083 survival effect Effects 0.000 description 6
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 6
- 235000002374 tyrosine Nutrition 0.000 description 6
- 239000004474 valine Substances 0.000 description 6
- 229950000578 vatalanib Drugs 0.000 description 6
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 5
- 239000004475 Arginine Substances 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 5
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 5
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 5
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 5
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 5
- 241000208125 Nicotiana Species 0.000 description 5
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical group CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 5
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 5
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 5
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 5
- 229960004308 acetylcysteine Drugs 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 229960002685 biotin Drugs 0.000 description 5
- 235000020958 biotin Nutrition 0.000 description 5
- 239000011616 biotin Substances 0.000 description 5
- 230000003833 cell viability Effects 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 239000006071 cream Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 239000003995 emulsifying agent Substances 0.000 description 5
- 239000003925 fat Substances 0.000 description 5
- 235000019197 fats Nutrition 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 5
- 235000014705 isoleucine Nutrition 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 238000002493 microarray Methods 0.000 description 5
- 210000004940 nucleus Anatomy 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000037361 pathway Effects 0.000 description 5
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 238000011321 prophylaxis Methods 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 241001430294 unidentified retrovirus Species 0.000 description 5
- 235000014393 valine Nutrition 0.000 description 5
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 4
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 4
- 241000282693 Cercopithecidae Species 0.000 description 4
- 241000699800 Cricetinae Species 0.000 description 4
- 229920002307 Dextran Polymers 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 241000283086 Equidae Species 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 4
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 4
- 101710136868 MARCKS-related protein Proteins 0.000 description 4
- 235000021360 Myristic acid Nutrition 0.000 description 4
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 4
- 108091007960 PI3Ks Proteins 0.000 description 4
- 108010016731 PPAR gamma Proteins 0.000 description 4
- 102000012132 Peroxisome proliferator-activated receptor gamma Human genes 0.000 description 4
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 4
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 4
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 4
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 4
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 4
- 108090000315 Protein Kinase C Proteins 0.000 description 4
- 102000003923 Protein Kinase C Human genes 0.000 description 4
- 108091030071 RNAI Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 241000723873 Tobacco mosaic virus Species 0.000 description 4
- 108700019146 Transgenes Proteins 0.000 description 4
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 4
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 4
- DVQHYTBCTGYNNN-UHFFFAOYSA-N azane;cyclobutane-1,1-dicarboxylic acid;platinum Chemical compound N.N.[Pt].OC(=O)C1(C(O)=O)CCC1 DVQHYTBCTGYNNN-UHFFFAOYSA-N 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229960004562 carboplatin Drugs 0.000 description 4
- 150000007942 carboxylates Chemical class 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 238000002405 diagnostic procedure Methods 0.000 description 4
- DGXRZJSPDXZJFG-UHFFFAOYSA-N docosanedioic acid Chemical compound OC(=O)CCCCCCCCCCCCCCCCCCCCC(O)=O DGXRZJSPDXZJFG-UHFFFAOYSA-N 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 230000003176 fibrotic effect Effects 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 238000003197 gene knockdown Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 230000003862 health status Effects 0.000 description 4
- 230000003053 immunization Effects 0.000 description 4
- 230000005847 immunogenicity Effects 0.000 description 4
- 229940072221 immunoglobulins Drugs 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 235000005772 leucine Nutrition 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000003278 mimic effect Effects 0.000 description 4
- BNJOQKFENDDGSC-UHFFFAOYSA-N octadecanedioic acid Chemical compound OC(=O)CCCCCCCCCCCCCCCCC(O)=O BNJOQKFENDDGSC-UHFFFAOYSA-N 0.000 description 4
- 238000002515 oligonucleotide synthesis Methods 0.000 description 4
- 229920001451 polypropylene glycol Polymers 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 125000006239 protecting group Chemical group 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- HQHCYKULIHKCEB-UHFFFAOYSA-N tetradecanedioic acid Chemical compound OC(=O)CCCCCCCCCCCCC(O)=O HQHCYKULIHKCEB-UHFFFAOYSA-N 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 238000011830 transgenic mouse model Methods 0.000 description 4
- 108020005544 Antisense RNA Proteins 0.000 description 3
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 3
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- 241000700199 Cavia porcellus Species 0.000 description 3
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 241000701022 Cytomegalovirus Species 0.000 description 3
- 101710112752 Cytotoxin Proteins 0.000 description 3
- ZBNZXTGUTAYRHI-UHFFFAOYSA-N Dasatinib Chemical compound C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1Cl ZBNZXTGUTAYRHI-UHFFFAOYSA-N 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 3
- 241001272567 Hominoidea Species 0.000 description 3
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 3
- 239000002147 L01XE04 - Sunitinib Substances 0.000 description 3
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 3
- 239000002067 L01XE06 - Dasatinib Substances 0.000 description 3
- 208000004852 Lung Injury Diseases 0.000 description 3
- 231100000002 MTT assay Toxicity 0.000 description 3
- 238000000134 MTT assay Methods 0.000 description 3
- 240000008881 Oenanthe javanica Species 0.000 description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 241000282579 Pan Species 0.000 description 3
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 3
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- 238000011529 RT qPCR Methods 0.000 description 3
- 108090000829 Ribosome Inactivating Proteins Proteins 0.000 description 3
- 108010039491 Ricin Proteins 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 241000710961 Semliki Forest virus Species 0.000 description 3
- 241000710960 Sindbis virus Species 0.000 description 3
- 206010069363 Traumatic lung injury Diseases 0.000 description 3
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 3
- 230000001594 aberrant effect Effects 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 210000004102 animal cell Anatomy 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 229960003005 axitinib Drugs 0.000 description 3
- RITAVMQDGBJQJZ-FMIVXFBMSA-N axitinib Chemical compound CNC(=O)C1=CC=CC=C1SC1=CC=C(C(\C=C\C=2N=CC=CC=2)=NN2)C2=C1 RITAVMQDGBJQJZ-FMIVXFBMSA-N 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 208000035269 cancer or benign tumor Diseases 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 230000009087 cell motility Effects 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 231100000599 cytotoxic agent Toxicity 0.000 description 3
- 239000002619 cytotoxin Substances 0.000 description 3
- 229960002448 dasatinib Drugs 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 239000005090 green fluorescent protein Substances 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 229960002411 imatinib Drugs 0.000 description 3
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 238000002649 immunization Methods 0.000 description 3
- 238000009169 immunotherapy Methods 0.000 description 3
- 108700016226 indium-bleomycin Proteins 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 210000001165 lymph node Anatomy 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 239000000693 micelle Substances 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 229960001756 oxaliplatin Drugs 0.000 description 3
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 3
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000002685 pulmonary effect Effects 0.000 description 3
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 3
- 238000010188 recombinant method Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 229960003787 sorafenib Drugs 0.000 description 3
- 230000009870 specific binding Effects 0.000 description 3
- 229960001796 sunitinib Drugs 0.000 description 3
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 description 3
- 238000011200 topical administration Methods 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- 230000002463 transducing effect Effects 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 241000701447 unidentified baculovirus Species 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- YXTKHLHCVFUPPT-YYFJYKOTSA-N (2s)-2-[[4-[(2-amino-5-formyl-4-oxo-1,6,7,8-tetrahydropteridin-6-yl)methylamino]benzoyl]amino]pentanedioic acid;(1r,2r)-1,2-dimethanidylcyclohexane;5-fluoro-1h-pyrimidine-2,4-dione;oxalic acid;platinum(2+) Chemical compound [Pt+2].OC(=O)C(O)=O.[CH2-][C@@H]1CCCC[C@H]1[CH2-].FC1=CNC(=O)NC1=O.C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 YXTKHLHCVFUPPT-YYFJYKOTSA-N 0.000 description 2
- KXMZDGSRSGHMMK-VWLOTQADSA-N 1-(6,7-dihydro-5h-benzo[2,3]cyclohepta[2,4-d]pyridazin-3-yl)-3-n-[(7s)-7-pyrrolidin-1-yl-6,7,8,9-tetrahydro-5h-benzo[7]annulen-3-yl]-1,2,4-triazole-3,5-diamine Chemical compound N1([C@H]2CCC3=CC=C(C=C3CC2)NC=2N=C(N(N=2)C=2N=NC=3C4=CC=CC=C4CCCC=3C=2)N)CCCC1 KXMZDGSRSGHMMK-VWLOTQADSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- 101710112984 20 kDa protein Proteins 0.000 description 2
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 2
- GONFBOIJNUKKST-UHFFFAOYSA-N 5-ethylsulfanyl-2h-tetrazole Chemical compound CCSC=1N=NNN=1 GONFBOIJNUKKST-UHFFFAOYSA-N 0.000 description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- 108010005465 AC133 Antigen Proteins 0.000 description 2
- 102000005908 AC133 Antigen Human genes 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 208000002267 Anti-neutrophil cytoplasmic antibody-associated vasculitis Diseases 0.000 description 2
- 244000105975 Antidesma platyphyllum Species 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- 102100037182 Cation-independent mannose-6-phosphate receptor Human genes 0.000 description 2
- 101710145225 Cation-independent mannose-6-phosphate receptor Proteins 0.000 description 2
- 241000700198 Cavia Species 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- KDXKERNSBIXSRK-RXMQYKEDSA-N D-lysine Chemical compound NCCCC[C@@H](N)C(O)=O KDXKERNSBIXSRK-RXMQYKEDSA-N 0.000 description 2
- VVNCNSJFMMFHPL-VKHMYHEASA-N D-penicillamine Chemical compound CC(C)(S)[C@@H](N)C(O)=O VVNCNSJFMMFHPL-VKHMYHEASA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 2
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 2
- 102000003972 Fibroblast growth factor 7 Human genes 0.000 description 2
- 108090000385 Fibroblast growth factor 7 Proteins 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 101000834253 Gallus gallus Actin, cytoplasmic 1 Proteins 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 101710143544 Griffithsin Proteins 0.000 description 2
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 2
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 108010070875 Human Immunodeficiency Virus tat Gene Products Proteins 0.000 description 2
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 2
- 241000282596 Hylobatidae Species 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- 239000002136 L01XE07 - Lapatinib Substances 0.000 description 2
- 239000002118 L01XE12 - Vandetanib Substances 0.000 description 2
- UIARLYUEJFELEN-LROUJFHJSA-N LSM-1231 Chemical compound C12=C3N4C5=CC=CC=C5C3=C3C(=O)NCC3=C2C2=CC=CC=C2N1[C@]1(C)[C@](CO)(O)C[C@H]4O1 UIARLYUEJFELEN-LROUJFHJSA-N 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- 102000042258 MARCKS family Human genes 0.000 description 2
- 108091077615 MARCKS family Proteins 0.000 description 2
- 241000282553 Macaca Species 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 2
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 2
- 101710159910 Movement protein Proteins 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 2
- 241000272144 Naja atra Species 0.000 description 2
- 206010061309 Neoplasm progression Diseases 0.000 description 2
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 2
- 108091005461 Nucleic proteins Proteins 0.000 description 2
- 108010038807 Oligopeptides Proteins 0.000 description 2
- 102000015636 Oligopeptides Human genes 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 108010039918 Polylysine Proteins 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 241000282405 Pongo abelii Species 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 2
- 101100247004 Rattus norvegicus Qsox1 gene Proteins 0.000 description 2
- 102000003743 Relaxin Human genes 0.000 description 2
- 108090000103 Relaxin Proteins 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 102100022978 Sex-determining region Y protein Human genes 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 101710137500 T7 RNA polymerase Proteins 0.000 description 2
- 108020005038 Terminator Codon Proteins 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 108020004566 Transfer RNA Proteins 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 102000016663 Vascular Endothelial Growth Factor Receptor-3 Human genes 0.000 description 2
- 108010053100 Vascular Endothelial Growth Factor Receptor-3 Proteins 0.000 description 2
- 101710090398 Viral interleukin-10 homolog Proteins 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- XSMVECZRZBFTIZ-UHFFFAOYSA-M [2-(aminomethyl)cyclobutyl]methanamine;2-oxidopropanoate;platinum(4+) Chemical compound [Pt+4].CC([O-])C([O-])=O.NCC1CCC1CN XSMVECZRZBFTIZ-UHFFFAOYSA-M 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 210000000628 antibody-producing cell Anatomy 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- KLNFSAOEKUDMFA-UHFFFAOYSA-N azanide;2-hydroxyacetic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OCC(O)=O KLNFSAOEKUDMFA-UHFFFAOYSA-N 0.000 description 2
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 2
- 229960002170 azathioprine Drugs 0.000 description 2
- 229950009568 bemcentinib Drugs 0.000 description 2
- 229940066363 beractant Drugs 0.000 description 2
- 108010006025 bovine growth hormone Proteins 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 description 2
- 229960000830 captopril Drugs 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 2
- 230000012292 cell migration Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000012412 chemical coupling Methods 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 235000019693 cherries Nutrition 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- 229960001338 colchicine Drugs 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000003246 corticosteroid Substances 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000011461 current therapy Methods 0.000 description 2
- PZAQDVNYNJBUTM-UHFFFAOYSA-L cyclohexane-1,2-diamine;7,7-dimethyloctanoate;platinum(2+) Chemical compound [Pt+2].NC1CCCCC1N.CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O PZAQDVNYNJBUTM-UHFFFAOYSA-L 0.000 description 2
- 229960004397 cyclophosphamide Drugs 0.000 description 2
- 210000005220 cytoplasmic tail Anatomy 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- 210000005258 dental pulp stem cell Anatomy 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 210000001671 embryonic stem cell Anatomy 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 125000005313 fatty acid group Chemical group 0.000 description 2
- 229940126864 fibroblast growth factor Drugs 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- 230000005021 gait Effects 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 235000009424 haa Nutrition 0.000 description 2
- 229960002591 hydroxyproline Drugs 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000000984 immunochemical effect Effects 0.000 description 2
- 229940127121 immunoconjugate Drugs 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 230000002055 immunohistochemical effect Effects 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000028709 inflammatory response Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229920000592 inorganic polymer Polymers 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 229960004891 lapatinib Drugs 0.000 description 2
- BCFGMOOMADDAQU-UHFFFAOYSA-N lapatinib Chemical compound O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 BCFGMOOMADDAQU-UHFFFAOYSA-N 0.000 description 2
- 229950001845 lestaurtinib Drugs 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229950008991 lobaplatin Drugs 0.000 description 2
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 2
- 229960004844 lovastatin Drugs 0.000 description 2
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 2
- 239000007937 lozenge Substances 0.000 description 2
- 238000013123 lung function test Methods 0.000 description 2
- 231100000515 lung injury Toxicity 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 235000009973 maize Nutrition 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 230000007498 myristoylation Effects 0.000 description 2
- 239000006199 nebulizer Substances 0.000 description 2
- 229950007221 nedaplatin Drugs 0.000 description 2
- 230000001613 neoplastic effect Effects 0.000 description 2
- 229950008835 neratinib Drugs 0.000 description 2
- JWNPDZNEKVCWMY-VQHVLOKHSA-N neratinib Chemical compound C=12C=C(NC(=O)\C=C\CN(C)C)C(OCC)=CC2=NC=C(C#N)C=1NC(C=C1Cl)=CC=C1OCC1=CC=CC=N1 JWNPDZNEKVCWMY-VQHVLOKHSA-N 0.000 description 2
- 239000002853 nucleic acid probe Substances 0.000 description 2
- 125000003835 nucleoside group Chemical group 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 229960001639 penicillamine Drugs 0.000 description 2
- 239000000816 peptidomimetic Substances 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 229920000724 poly(L-arginine) polymer Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 108010011110 polyarginine Proteins 0.000 description 2
- 108010064470 polyaspartate Proteins 0.000 description 2
- 229920000656 polylysine Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 229940069328 povidone Drugs 0.000 description 2
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 2
- 229960004618 prednisone Drugs 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 230000009822 protein phosphorylation Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000001850 reproductive effect Effects 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 239000003590 rho kinase inhibitor Substances 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 230000000392 somatic effect Effects 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- CWXZMNMLGZGDSW-UHFFFAOYSA-N tetracontanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O CWXZMNMLGZGDSW-UHFFFAOYSA-N 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 235000008521 threonine Nutrition 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- VHOCUJPBKOZGJD-UHFFFAOYSA-N triacontanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O VHOCUJPBKOZGJD-UHFFFAOYSA-N 0.000 description 2
- 102000003390 tumor necrosis factor Human genes 0.000 description 2
- 230000005751 tumor progression Effects 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- 229960000241 vandetanib Drugs 0.000 description 2
- UHTHHESEBZOYNR-UHFFFAOYSA-N vandetanib Chemical compound COC1=CC(C(/N=CN2)=N/C=3C(=CC(Br)=CC=3)F)=C2C=C1OCC1CCN(C)CC1 UHTHHESEBZOYNR-UHFFFAOYSA-N 0.000 description 2
- YCOYDOIWSSHVCK-UHFFFAOYSA-N vatalanib Chemical compound C1=CC(Cl)=CC=C1NC(C1=CC=CC=C11)=NN=C1CC1=CC=NC=C1 YCOYDOIWSSHVCK-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- BEJKOYIMCGMNRB-GRHHLOCNSA-N (2s)-2-amino-3-(4-hydroxyphenyl)propanoic acid;(2s)-2-amino-3-phenylpropanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1.OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 BEJKOYIMCGMNRB-GRHHLOCNSA-N 0.000 description 1
- YUXKOWPNKJSTPQ-AXWWPMSFSA-N (2s,3r)-2-amino-3-hydroxybutanoic acid;(2s)-2-amino-3-hydroxypropanoic acid Chemical compound OC[C@H](N)C(O)=O.C[C@@H](O)[C@H](N)C(O)=O YUXKOWPNKJSTPQ-AXWWPMSFSA-N 0.000 description 1
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- ZSZXYWFCIKKZBT-IVYVYLGESA-N 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1D-myo-inositol-3,4,5-trisphosphate) Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCC)COP(O)(=O)O[C@@H]1[C@H](O)[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H]1O ZSZXYWFCIKKZBT-IVYVYLGESA-N 0.000 description 1
- MMWCIQZXVOZEGG-UHFFFAOYSA-N 1,4,5-IP3 Natural products OC1C(O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(O)C1OP(O)(O)=O MMWCIQZXVOZEGG-UHFFFAOYSA-N 0.000 description 1
- BJHCYTJNPVGSBZ-YXSASFKJSA-N 1-[4-[6-amino-5-[(Z)-methoxyiminomethyl]pyrimidin-4-yl]oxy-2-chlorophenyl]-3-ethylurea Chemical compound CCNC(=O)Nc1ccc(Oc2ncnc(N)c2\C=N/OC)cc1Cl BJHCYTJNPVGSBZ-YXSASFKJSA-N 0.000 description 1
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 1
- LGEZTMRIZWCDLW-UHFFFAOYSA-N 14-methylpentadecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCC(C)C LGEZTMRIZWCDLW-UHFFFAOYSA-N 0.000 description 1
- WUAPFZMCVAUBPE-NJFSPNSNSA-N 188Re Chemical compound [188Re] WUAPFZMCVAUBPE-NJFSPNSNSA-N 0.000 description 1
- 125000001917 2,4-dinitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C(=C1*)[N+]([O-])=O)[N+]([O-])=O 0.000 description 1
- SFAAOBGYWOUHLU-UHFFFAOYSA-N 2-ethylhexyl hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(CC)CCCC SFAAOBGYWOUHLU-UHFFFAOYSA-N 0.000 description 1
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 1
- KQPKMEYBZUPZGK-UHFFFAOYSA-N 4-[(4-azido-2-nitroanilino)methyl]-5-(hydroxymethyl)-2-methylpyridin-3-ol Chemical compound CC1=NC=C(CO)C(CNC=2C(=CC(=CC=2)N=[N+]=[N-])[N+]([O-])=O)=C1O KQPKMEYBZUPZGK-UHFFFAOYSA-N 0.000 description 1
- XXJWYDDUDKYVKI-UHFFFAOYSA-N 4-[(4-fluoro-2-methyl-1H-indol-5-yl)oxy]-6-methoxy-7-[3-(1-pyrrolidinyl)propoxy]quinazoline Chemical compound COC1=CC2=C(OC=3C(=C4C=C(C)NC4=CC=3)F)N=CN=C2C=C1OCCCN1CCCC1 XXJWYDDUDKYVKI-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 101800000263 Acidic protein Proteins 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- OIRDTQYFTABQOQ-KQYNXXCUSA-N Adenosine Natural products C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 108010032595 Antibody Binding Sites Proteins 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 101100067974 Arabidopsis thaliana POP2 gene Proteins 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000228254 Aspergillus restrictus Species 0.000 description 1
- 101000669426 Aspergillus restrictus Ribonuclease mitogillin Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- NTTIDCCSYIDANP-UHFFFAOYSA-N BCCP Chemical compound BCCP NTTIDCCSYIDANP-UHFFFAOYSA-N 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 102100026031 Beta-glucuronidase Human genes 0.000 description 1
- 101710201279 Biotin carboxyl carrier protein Proteins 0.000 description 1
- 101710180532 Biotin carboxyl carrier protein of acetyl-CoA carboxylase Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 239000004358 Butane-1, 3-diol Substances 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- UJKPHYRXOLRVJJ-MLSVHJFASA-N CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C Chemical compound CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C UJKPHYRXOLRVJJ-MLSVHJFASA-N 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 101100381481 Caenorhabditis elegans baz-2 gene Proteins 0.000 description 1
- 108010026870 Calcium-Calmodulin-Dependent Protein Kinases Proteins 0.000 description 1
- 102000019025 Calcium-Calmodulin-Dependent Protein Kinases Human genes 0.000 description 1
- 102000000584 Calmodulin Human genes 0.000 description 1
- 108010041952 Calmodulin Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 108020004998 Chloroplast DNA Proteins 0.000 description 1
- 108020005133 Chloroplast RNA Proteins 0.000 description 1
- 241000581444 Clinidae Species 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 102100031673 Corneodesmosin Human genes 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- MMWCIQZXVOZEGG-XJTPDSDZSA-N D-myo-Inositol 1,4,5-trisphosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H](O)[C@@H]1OP(O)(O)=O MMWCIQZXVOZEGG-XJTPDSDZSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 239000012624 DNA alkylating agent Substances 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 241000710188 Encephalomyocarditis virus Species 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 102100023688 Eotaxin Human genes 0.000 description 1
- 101710139422 Eotaxin Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010008177 Fd immunoglobulins Proteins 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 206010056740 Genital discharge Diseases 0.000 description 1
- 102100039289 Glial fibrillary acidic protein Human genes 0.000 description 1
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 101000690301 Homo sapiens Aldo-keto reductase family 1 member C4 Proteins 0.000 description 1
- 101000933465 Homo sapiens Beta-glucuronidase Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101100118549 Homo sapiens EGFR gene Proteins 0.000 description 1
- 101001111984 Homo sapiens N-acylneuraminate-9-phosphatase Proteins 0.000 description 1
- 101100353429 Homo sapiens PROM1 gene Proteins 0.000 description 1
- 101000692455 Homo sapiens Platelet-derived growth factor receptor beta Proteins 0.000 description 1
- 101001116548 Homo sapiens Protein CBFA2T1 Proteins 0.000 description 1
- 101000932478 Homo sapiens Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 101000617823 Homo sapiens Solute carrier organic anion transporter family member 6A1 Proteins 0.000 description 1
- 101000633054 Homo sapiens Zinc finger protein SNAI2 Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- 102000003816 Interleukin-13 Human genes 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 102000000743 Interleukin-5 Human genes 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 108010019437 Janus Kinase 2 Proteins 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 239000005536 L01XE08 - Nilotinib Substances 0.000 description 1
- 239000002145 L01XE14 - Bosutinib Substances 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 244000207740 Lemna minor Species 0.000 description 1
- 235000006439 Lemna minor Nutrition 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 101150036121 MARCKS gene Proteins 0.000 description 1
- 108010058398 Macrophage Colony-Stimulating Factor Receptor Proteins 0.000 description 1
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 1
- 102100027754 Mast/stem cell growth factor receptor Kit Human genes 0.000 description 1
- 206010054949 Metaplasia Diseases 0.000 description 1
- 108700011259 MicroRNAs Proteins 0.000 description 1
- 108020005196 Mitochondrial DNA Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100023906 N-acylneuraminate-9-phosphatase Human genes 0.000 description 1
- 101710204212 Neocarzinostatin Proteins 0.000 description 1
- 230000005913 Notch signaling pathway Effects 0.000 description 1
- 241001195348 Nusa Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 206010061534 Oesophageal squamous cell carcinoma Diseases 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 108700005081 Overlapping Genes Proteins 0.000 description 1
- 108091008606 PDGF receptors Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 101150048434 PROM1 gene Proteins 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 241001504519 Papio ursinus Species 0.000 description 1
- 229920002123 Pentastarch Polymers 0.000 description 1
- 231100000742 Plant toxin Toxicity 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 235000001855 Portulaca oleracea Nutrition 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 229940096437 Protein S Drugs 0.000 description 1
- 108700033844 Pseudomonas aeruginosa toxA Proteins 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 102000014450 RNA Polymerase III Human genes 0.000 description 1
- 108010078067 RNA Polymerase III Proteins 0.000 description 1
- 238000003559 RNA-seq method Methods 0.000 description 1
- 101100372762 Rattus norvegicus Flt1 gene Proteins 0.000 description 1
- 101100409194 Rattus norvegicus Ppargc1b gene Proteins 0.000 description 1
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 108010073443 Ribi adjuvant Proteins 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 238000011579 SCID mouse model Methods 0.000 description 1
- 101150047834 SNAI2 gene Proteins 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 101100123851 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HER1 gene Proteins 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241001138501 Salmonella enterica Species 0.000 description 1
- 240000003946 Saponaria officinalis Species 0.000 description 1
- 108010084592 Saporins Proteins 0.000 description 1
- 190014017285 Satraplatin Chemical compound 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 108700032475 Sex-Determining Region Y Proteins 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 102000039471 Small Nuclear RNA Human genes 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 102100035088 Sodium/calcium exchanger 1 Human genes 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 1
- 241000256251 Spodoptera frugiperda Species 0.000 description 1
- 208000036765 Squamous cell carcinoma of the esophagus Diseases 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 241000194026 Streptococcus gordonii Species 0.000 description 1
- 101150052863 THY1 gene Proteins 0.000 description 1
- GKLVYJBZJHMRIY-OUBTZVSYSA-N Technetium-99 Chemical compound [99Tc] GKLVYJBZJHMRIY-OUBTZVSYSA-N 0.000 description 1
- 101710192266 Tegument protein VP22 Proteins 0.000 description 1
- 102000002933 Thioredoxin Human genes 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- GYDJEQRTZSCIOI-UHFFFAOYSA-N Tranexamic acid Chemical compound NCC1CCC(C(O)=O)CC1 GYDJEQRTZSCIOI-UHFFFAOYSA-N 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 1
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 1
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 206010064390 Tumour invasion Diseases 0.000 description 1
- 102100033444 Tyrosine-protein kinase JAK2 Human genes 0.000 description 1
- 102100039079 Tyrosine-protein kinase TXK Human genes 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 102000016548 Vascular Endothelial Growth Factor Receptor-1 Human genes 0.000 description 1
- 108010053096 Vascular Endothelial Growth Factor Receptor-1 Proteins 0.000 description 1
- 102000016549 Vascular Endothelial Growth Factor Receptor-2 Human genes 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 108010031318 Vitronectin Proteins 0.000 description 1
- 241001492404 Woodchuck hepatitis virus Species 0.000 description 1
- 241000235013 Yarrowia Species 0.000 description 1
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 description 1
- 102100029570 Zinc finger protein SNAI2 Human genes 0.000 description 1
- DGYIJVNZSDYBOE-UHFFFAOYSA-N [CH2]C1=CC=NC=C1 Chemical group [CH2]C1=CC=NC=C1 DGYIJVNZSDYBOE-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 230000009285 allergic inflammation Effects 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- 239000002776 alpha toxin Substances 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 1
- 238000010640 amide synthesis reaction Methods 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000004082 amperometric method Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940124650 anti-cancer therapies Drugs 0.000 description 1
- 230000003302 anti-idiotype Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical group N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000000594 atomic force spectroscopy Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000004993 binary fission Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000012575 bio-layer interferometry Methods 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- JCXGWMGPZLAOME-AKLPVKDBSA-N bismuth-212 Chemical compound [212Bi] JCXGWMGPZLAOME-AKLPVKDBSA-N 0.000 description 1
- JCXGWMGPZLAOME-RNFDNDRNSA-N bismuth-213 Chemical compound [213Bi] JCXGWMGPZLAOME-RNFDNDRNSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 229960003736 bosutinib Drugs 0.000 description 1
- UBPYILGKFZZVDX-UHFFFAOYSA-N bosutinib Chemical compound C1=C(Cl)C(OC)=CC(NC=2C3=CC(OC)=C(OCCCN4CCN(C)CC4)C=C3N=CC=2C#N)=C1Cl UBPYILGKFZZVDX-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- OIMVCDGRHUIUQF-UHFFFAOYSA-N butanedioic acid phthalazine Chemical compound OC(=O)CCC(O)=O.c1ccc2cnncc2c1 OIMVCDGRHUIUQF-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000004611 cancer cell death Effects 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 230000009400 cancer invasion Effects 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 229960002412 cediranib Drugs 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000004709 cell invasion Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 229940082500 cetostearyl alcohol Drugs 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 102000021178 chitin binding proteins Human genes 0.000 description 1
- 108091011157 chitin binding proteins Proteins 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 239000012887 cigarette smoke extract Substances 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 230000007748 combinatorial effect Effects 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000010205 computational analysis Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- SASYSVUEVMOWPL-NXVVXOECSA-N decyl oleate Chemical compound CCCCCCCCCCOC(=O)CCCCCCC\C=C/CCCCCCCC SASYSVUEVMOWPL-NXVVXOECSA-N 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 231100000223 dermal penetration Toxicity 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000009274 differential gene expression Effects 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005014 ectopic expression Effects 0.000 description 1
- 238000000835 electrochemical detection Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 229940120655 eloxatin Drugs 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000008387 emulsifying waxe Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 229940082789 erbitux Drugs 0.000 description 1
- 208000007276 esophageal squamous cell carcinoma Diseases 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 238000013230 female C57BL/6J mice Methods 0.000 description 1
- 230000003352 fibrogenic effect Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 description 1
- 235000008191 folinic acid Nutrition 0.000 description 1
- 239000011672 folinic acid Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229960002584 gefitinib Drugs 0.000 description 1
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000004554 glutamine Nutrition 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 229960003569 hematoporphyrin Drugs 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 238000012188 high-throughput screening assay Methods 0.000 description 1
- 102000054751 human RUNX1T1 Human genes 0.000 description 1
- 229940096329 human immunoglobulin a Drugs 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 230000035874 hyperreactivity Effects 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000003365 immunocytochemistry Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 230000009851 immunogenic response Effects 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 231100000405 induce cancer Toxicity 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 229940078545 isocetyl stearate Drugs 0.000 description 1
- XUGNVMKQXJXZCD-UHFFFAOYSA-N isopropyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(C)C XUGNVMKQXJXZCD-UHFFFAOYSA-N 0.000 description 1
- 238000003367 kinetic assay Methods 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 229960001691 leucovorin Drugs 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 230000035168 lymphangiogenesis Effects 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 210000005060 membrane bound organelle Anatomy 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 230000015689 metaplastic ossification Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 108091064355 mitochondrial RNA Proteins 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940124303 multikinase inhibitor Drugs 0.000 description 1
- 238000002887 multiple sequence alignment Methods 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- 210000004898 n-terminal fragment Anatomy 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- QZGIWPZCWHMVQL-UIYAJPBUSA-N neocarzinostatin chromophore Chemical compound O1[C@H](C)[C@H](O)[C@H](O)[C@@H](NC)[C@H]1O[C@@H]1C/2=C/C#C[C@H]3O[C@@]3([C@@H]3OC(=O)OC3)C#CC\2=C[C@H]1OC(=O)C1=C(O)C=CC2=C(C)C=C(OC)C=C12 QZGIWPZCWHMVQL-UIYAJPBUSA-N 0.000 description 1
- 210000001640 nerve ending Anatomy 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229960001346 nilotinib Drugs 0.000 description 1
- HHZIURLSWUIHRB-UHFFFAOYSA-N nilotinib Chemical compound C1=NC(C)=CN1C1=CC(NC(=O)C=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)=CC(C(F)(F)F)=C1 HHZIURLSWUIHRB-UHFFFAOYSA-N 0.000 description 1
- 231100000065 noncytotoxic Toxicity 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 239000003883 ointment base Substances 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 210000004738 parenchymal cell Anatomy 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- MCYTYTUNNNZWOK-LCLOTLQISA-N penetratin Chemical compound C([C@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CCCNC(N)=N)[C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(N)=O)C1=CC=CC=C1 MCYTYTUNNNZWOK-LCLOTLQISA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000001151 peptidyl group Chemical group 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000008251 pharmaceutical emulsion Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000003123 plant toxin Substances 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000011518 platinum-based chemotherapy Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 150000003834 purine nucleoside derivatives Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 1
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- WUAPFZMCVAUBPE-IGMARMGPSA-N rhenium-186 Chemical compound [186Re] WUAPFZMCVAUBPE-IGMARMGPSA-N 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 238000002702 ribosome display Methods 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 229960005399 satraplatin Drugs 0.000 description 1
- 229950003647 semaxanib Drugs 0.000 description 1
- WUWDLXZGHZSWQZ-WQLSENKSSA-N semaxanib Chemical compound N1C(C)=CC(C)=C1\C=C/1C2=CC=CC=C2NC\1=O WUWDLXZGHZSWQZ-WQLSENKSSA-N 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000002924 silencing RNA Substances 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 108091029842 small nuclear ribonucleic acid Proteins 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 230000008410 smoothened signaling pathway Effects 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 108010067207 sodium-calcium exchanger 1 Proteins 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 210000001988 somatic stem cell Anatomy 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229940056501 technetium 99m Drugs 0.000 description 1
- JGVWCANSWKRBCS-UHFFFAOYSA-N tetramethylrhodamine thiocyanate Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=C(SC#N)C=C1C(O)=O JGVWCANSWKRBCS-UHFFFAOYSA-N 0.000 description 1
- OULAJFUGPPVRBK-UHFFFAOYSA-N tetratriacontyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO OULAJFUGPPVRBK-UHFFFAOYSA-N 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 108091007466 transmembrane glycoproteins Proteins 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 190014017283 triplatin tetranitrate Chemical compound 0.000 description 1
- 229950002860 triplatin tetranitrate Drugs 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000004832 voltammetry Methods 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000012130 whole-cell lysate Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 229950009268 zinostatin Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
- C07K14/4703—Inhibitors; Suppressors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4418—Non condensed pyridines; Hydrogenated derivatives thereof having a carbocyclic group directly attached to the heterocyclic ring, e.g. cyproheptadine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/496—Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14171—Demonstrated in vivo effect
Definitions
- MARCKS protein dates back to 1982 when it was found that an 87kDa acidic protein in rat brain nerve endings could be regulated by calcium and calmodulin through the activation of PKC (Wu, W.C. et al. (1982) Proc. Natl. Acad. Sci. USA
- MARCKS myristoylated alanine- rich C kinase substrate
- MARCKS-related protein MARCKS-related protein
- MRP MARCKS-related protein
- a 20 kDa protein is highly expressed in brain, reproductive tissues and macrophage (Aderem, A. (1992) Trend. Biochem. Sci. 17(10):438-443; Blacksher, P.J. (1993) J. Biol. Chem. 268: 1501-1504).
- MRP similar to MARCKS also contains the same three
- N-terminus myristoylation domain multiple homology 2 (MH2) domain
- ED effector domain
- the MH2 domain of unknown function resembles the cytoplasmic tail of the cation-independent mannose-6-phosphate receptor. Protein phosphorylation occurs at Ser 159/163 of ED domain.
- the corporation between the N- terminus (myristoylated) and the ED (phosphorylated or not phosphorylated) is essential for controlling the association of these molecules with membranes.
- This disclosure provides an isolated polypeptide or an MPS polypeptide comprising, or alternatively consisting essentially of, or yet consisting of an amino acid sequence selected from the group of SEQ ID NOs: 45 or 40-59, or an equivalent of each thereof.
- an equivalent of the isolated polypeptide comprises or alternatively consists essentially of, or yet consists of a polypeptide having at least 80% sequence identity to the isolated polypeptide or a polypeptide encoded by a polynucleotide that hybridizes to an isolated polynucleotide that encodes the isolated polypeptide or its complement or a polypeptide encoded by a polynucleotide that having at least 80% sequence identity to the polynucleotide that encodes an amino acid sequence selected from the group of SEQ ID Nos. 45 or 40-59.
- the equivalent polypeptide has at least 80% sequence identity to the isolated polypeptide or a polypeptide encoded by a polynucleotide that hybridizes to an isolated polynucleotide that encodes the isolated polypeptide or its complement or a polypeptide encoded by a
- polynucleotide that having at least 80% sequence identity to the polynucleotide that encodes an amino acid sequence and not substituted at the residues that are D-amino acids, and they retain D-amino acids.
- the isolated polypeptide or its equivalent comprises, or alternatively consists essentially of, or yet consists of no more than 51 amino acids. In another aspect, the isolated polypeptide or its equivalent comprises, or alternatively consists essentially of, or yet consists of no more than 35 amino acids. In a further aspect, the isolated polypeptide or its equivalent further comprises, or alternatively consists essentially of, or yet consists of one or more of: an operatively linked amino acid sequence to facilitate entry of the isolated polypeptide into the cell; a targeting polypeptide or a polypeptide that confers stability to the polypeptide.
- a vector comprising, or alternatively consisting essentially of, or yet further consisting of one or more of the isolated polynucleotide of this disclosure and optionally regulatory sequences operatively linked to the isolated polynucleotide for replication and/or expression.
- the vector is an AAV vector (adeno- associated viral vector).
- a host cell further comprising the one or more of the isolated polypeptide, the isolated polynucleotide, or the vector of this disclosure.
- the host cell is a eukaryotic cell or a prokaryotic cell.
- compositions comprising, or alternatively consisting essentially of, or yet further consisting of a carrier and one or more of the isolated polypeptide, the isolated
- compositions of this disclosure can further comprise, or alternatively consist essentially of, or yet further consist of an additional therapeutic drug depending on the intended use, e g., a chemotherapeutic agent or drug, or an anti-fibrotic agent or drug.
- an anti-fibrotic agent or drug include pirfenidone and nintedanib.
- Non-limiting examples of a chemotherapeutic agent or drug include for example such as a tyrosine kinase inhibitor (TKI) such as VEGFR, a platinum-based drug such as cisplatin, or a drug or agent that targets EGFR.
- TKI tyrosine kinase inhibitor
- compositions as disclosed herein are useful diagnostically, therapeutically and for screening methods as disclosed herein. They also can be used in the preparation of a medicament. Additionally, an additional agent or drug can be combined with the
- the medicaments can be in the therapeutic methods as described herein.
- Methods of treating disease or disease symptoms associated with fibrosis in a subject in need thereof, comprising, or alternatively consisting essentially of, or yet further consisting of administering to the subject an effective amount of one or more of the isolated polypeptide or the isolated polynucleotide of this disclosure are also provided.
- the disease or symptoms associated with fibrosis is selected from the group of: lung fibrosis, idiopathic pulmonary fibrosis, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis.
- the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of an anti-fibrotic agent or drug.
- anti-fibrotic agent or drug include pirfenidone and nintedanib.
- the cancer cell or cancer is lymphoma, leukemia or a solid tumor.
- the solid tumor is a cancer of the type lung cancer, liver cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer.
- the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of an anti-cancer drug or agent that may or may not be an MPS peptide or polynucleotide encoding the MPS peptide.
- the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of a chemotherapeutic such as tyrosine kinase inhibitor, a platinum drug or an immunotherapeutic.
- a method for delivering a polypeptide of this disclosure across the blood brain barrier in a subject in need thereof comprising, or alternatively consisting essentially of, or yet further consisting of administering an effective amount of vector as disclosed above to the subject.
- Administration can be local or systemic, e.g., topical or by inhalation therapy.
- Systemic administration can comprise of by a nebulizer, oral, intrathecal, topical, direct installation, sublingual, intravenous, intracranial, inhalation therapy, intranasal, vaginal or rectal administration.
- Mammals such as an equine, murine, feline, canine, or human can be treated by the methods of this disclosure.
- Kits are also provided.
- the kits comprise, or alternatively consist essentially of, or yet further consist of one or more of: an isolated polypeptide, an isolated polynucleotide, a vector, the cell or a composition of this disclosure and instructions for use.
- the instructions recite the methods of using the isolated polypeptide, the isolated polynucleotide, the cell, the vector, or the composition disclosed herein.
- FIGS. 1A and IB Upregulation of MARCKS in IPF fibroblasts.
- FIG. IB Normalized expression of MARCKS in IPF versus normal fibroblasts in GSE2052.
- FIG. 1C and ID Upregulated MARCKS and PIP3 levels in idiopathic pulmonary fibrosis (IPF).
- FIG. 1C Expression levels of MARCKS and PIP3 in three normal fibroblasts and three-IPF fibroblast cells as stained with anti-MARCKS and anti-PIP3 antibodies.
- Tritc-conjugated MARCKS, FITC-conjugated PIP3 and nucleus counterstained DAPI were visualized under a confocal laser-scanning microscope. Scale bar: 10 pm.
- FIG. ID Quantified cellular fluorescence levels for MARCKS and PIP3. Corrected total cell fluorescence for signal intensity of PIP3 and MARCKS were quantified and calculated with ImageJ.
- FIG. 6 Left, representative immunofluorescence images of phospho-MARCKS (light gray) and a-SMA (dark gray) in saline- or bleomycin-treated lunch tissues.
- FIGS. 7A - 7B (FIG. 7A) Western blots analysis of phospho-MARCKS, phospho- AKT and a-SMA expression in lung fibroblast cells isolated from saline- or bleomycin- treated mice after 48 hours of treatment with control or MPS peptides (100 mM).
- FIG. 8 Body weight of mice in bleomycin-induced pulmonary fibrosis and MPS treatment.
- FIGS. 10A - IOC The PIP2-binding motif (SEQ ID NO: 12) on the phosphorylation site domain (PSD) of MARCKS.
- FIG. 10A discloses the MH domain as SEQ ID NO: 86).
- FIG. 10B Biolayer interferometry analysis of the binding of the MPS peptide to biotin-labeled PIP2.
- FIGS. 11A - 11B (FIG. 11 A) Western blot analysis of a-SMA and phospho-AKT in primary IPF fibroblasts with nintedanib (1000 nM) and/or MPS (100 mM) for 48 hours. (FIG. 11B) A proposed model of activating the PI3K/AKT pathway after nintedanib treatment. An arrow: a direct interaction.
- FIGS. 12A - 12E Combinatorial effect of MPS peptide with nintedanib on fibroblasts isolated from two IPF patients.
- Cells were treated with various closes of nintedanib (62.5-2000nM) and/or MPS peptide (6.25-200 pM) for 72 hours, respectively. After single (lined) or combined (lined) treatment, cell viability was determined by MTT assays.
- FIG. 12C The Chou and Talalay Cl (combination index) method was utilized to evaluate the therapeutic interactions between nintedanib and MPS peptide using the Calcusyn software.
- FIG. 12D Cells were individually treated with 1 pM nintedanib, 100 pM MPS peptide or combinations of 1 pM nintedanib and 100 pM MPS peptide. After 48 hours, cell viability was determined by the trypan blue exclusion assay (n+3; *, p ⁇ 0.05).
- FIG. 12E shows selected polypeptides and their corresponding sequence ID number. [0029]
- FIG. 13 The table shows the sequences of the MPS derivatives (SEQ ID NOS: 48- 54, 40-42, 45 and 47, respectively, in order of appearance).
- FIG. 13 also shows a CLUSTAL O (1.2.4) multiple sequence alignment for various MPS-related peptides.
- the residues marked in red/bold are D-isoforms of amino acids (SEQ ID NOS: 57, 48-54, 40-42 45 and 47 in order of appearance).
- FIG. 14 Comparison of MPS-12042 (SEQ ID NO: 45) versus know tyrosine kinase inhibitor (TKLs) on the treatment of IPF fibroblast cells. Both normal and IPF lung fibroblast cells were treated with various drugs. After 72 hours, cells were subjected to MTT assays and IC50 for each drug was determined.
- TKLs know tyrosine kinase inhibitor
- FIG. 15 Left, RNA-seq of oncosphere derived from LG704 showed 325 genes significantly altered by MPS treatment. These genes were then analyzed with GSEA to determine which functional pathways were most affected by MARCKS. Right, Heat map of cancer-sternness markers associated with MARCKS activity.
- FIG. 16 Top, phase contrast photomicrographs of oncospheres in non-adherence 3-D culture without (left) and with 10% CSE (right). Bottom, RT-qPCR analyses of mRNA expression in the above cells.
- FIG. 17A-17B (FIG. 17A) Sphere-forming assays for evaluating the effect of MARCKS phosphorylation on smoke-mediated sternness in cells with ectopic expression of wild type or PSD-mutated (S159/163A) MARCKS. (FIG. 17B) WB analyses of sternness markers in the above cells.
- FIG. 18A-18C (FIG. 18A) Sphere-forming assays for evaluating the inhibitory effect of the MPS peptide on smoke-mediated sternness. (FIG. 18B) Quantification of the number and size of oncospheres. (FIG. 18C) RT-qPCR analyses of mRNA expression in the above oncospheres.
- FIG. 19 shows MARCKS mimetic peptide (MPS) targeting phospho-MARCKS, binds to PIP2, and inhibits production of PIP3.
- MPS MARCKS mimetic peptide
- FIGS. 20A and 20B show suppressive effects of MPS peptide on pulmonary fibrosis in vivo.
- FIG. 20B Representative Masson trichrome and immunohistochemical sta
- Hydroxyproline level in the left lung of mice as described above was determined by a hydroxyproline ELISA assay (mean ⁇ SD, *p ⁇ 0.05).
- the singular form“a”,“an” and“the” include plural references unless the context clearly dictates otherwise.
- the term“a cell” includes a plurality of cells, including mixtures thereof.
- compositions and methods are intended to mean that the compositions and methods include the recited elements, but not excluding others.
- compositions and methods when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination for the stated purpose. Thus, a composition consisting essentially of the elements as defined herein would not exclude trace contaminants from the isolation and purification method and
- compositions of this disclosure refers to molecules separated from other DNAs or RNAs, respectively that are present in the natural source of the macromolecule.
- isolated peptide fragment is meant to include peptide fragments which are not naturally occurring as fragments and would not be found in the natural state.
- isolated is also used herein to refer to polypeptides and proteins that are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides.
- the term“isolated” means separated from constituents, cellular and otherwise, in which the cell, tissue, polynucleotide, peptide, polypeptide, protein, antibody or fragment(s) thereof, which are normally associated in nature.
- an isolated cell is a cell that is separated form tissue or cells of dissimilar phenotype or genotype.
- a non-naturally occurring polynucleotide, peptide, polypeptide, protein, antibody or fragment(s) thereof does not require“isolation” to distinguish it from its naturally occurring counterpart.
- binding or“binds” as used herein are meant to include interactions between molecules that may be detected using, for example, a hybridization assay.
- the terms are also meant to include“binding” interactions between molecules. Interactions may be, for example, protein-protein, antibody-protein, protein-nucleic acid, protein-small molecule or small molecule-nucleic acid in nature. This binding can result in the formation of a “complex” comprising the interacting molecules.
- A“complex” refers to the binding of two or more molecules held together by covalent or non-covalent bonds, interactions or forces.
- MARCKS intends the protein that was officially named myristoylated alanine-rich C kinase substrate (MARCKS or MARKS) (Albert, K.A. et al. (1986) Proc. Natl. Acad. Sci. USA 83(9):2822-2826). MARCKS is ubiquitously expressed in various species and tissues (Albert, K.A. et al. (1987) Proc. Natl. Acad. Sci. USA 84(20):7046-7050;
- MARCKS -related protein MARCKS -related protein
- MRP also known as MacMARCKS, F52 or MLP
- a 20 kDa protein is highly expressed in brain, reproductive tissues and macrophages (Aderem, A. (1992) Trend. Biochem. Sci. 17(10):438-443; Blackshear, P.J. (1993) J. Biol. Chem. 268: 1501-1504).
- MRP similar to MARCKS also contains the same three evolutionarily conserved domains; N-terminus myristoylation domain, multiple homology 2 (MH2) domain, and the effector domain (ED).
- the MH2 domain of unknown function resembles the cytoplasmic tail of the cation-independent mannose-6-phosphate receptor. Protein phosphorylation occurs at Serl59/163 of ED domain.
- the corporation between the N-terminus (myristoylated) and the ED (phosphorylated or not phosphorylated) is essential for controlling the association of these molecules with membranes.
- the MPS polypeptide of this disclosure comprises, or alternatively consists essentially of, or yet consists of at least 6 amino acids and no more than 51 amino acids.
- the polypeptide is at least 6 amino acids and no more than 51 amino acids, or alternatively at least 45 amino acids, or alternatively 40 amino acids, or alternatively 35 amino acids, or alternatively 30 amino acids, or alternatively no more than 25 amino acids, or alternatively no more than 20 amino acids, or alternatively no more than 15 amino acids or alternatively or equivalents of each thereof.
- an equivalent is a polypeptide wherein one or more amino acids have been substituted with a conservative amino acid substitution.
- the MPS polypeptides and equivalents thereof have the“biological activity” or the biological ability to: inhibit the expression of MARCKS for preventing, reducing, delaying, inhibiting or suppressing disease or disease symptoms associated with MARCKS
- TGF-b transforming growth factor-beta
- the MPS polypeptides and equivalents have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lung fibrosis, idiopathic pulmonary fibrosis, or smoking, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis.
- the MPS polypeptides and equivalents have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lymphoma, leukemia or a solid tumor or cancer (carcinoma or sacrcoma).
- Non-limiting examples of solid tumor include cancer, lung cancer, kidney cancer, ovarian cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer.
- to“treat” excludes prevention or prophylaxis.
- the term“polypeptide” is used interchangeably with the term“protein” and“peptide” and in its broadest sense refers to a compound of two or more subunit amino acids, amino acid analogs or peptidomimetics.
- the subunits may be linked by peptide bonds.
- the subunit may be linked by other bonds, e.g., ester, ether, etc.
- the polypeptides contain unnatural or synthetic amino acids, including glycine and both the D and L optical isomers of naturally occurring amino acids, amino acid analogs and
- a peptide of three or more amino acids is commonly called an
- oligopeptide if the peptide chain is short. If the peptide chain is long, the peptide is commonly called a polypeptide or a protein.
- the term“peptide fragment,” as used herein, also refers to a peptide chain.
- the phrase“equivalent polypeptide” or“equivalent peptide fragment” refers to protein, polynucleotide, or peptide fragment encoded by a polynucleotide that hybridizes to a polynucleotide encoding the exemplified polypeptide or its complement of the polynucleotide encoding the exemplified polypeptide, under high stringency and/or which exhibit similar biological activity in vivo, e.g., approximately 100%, or alternatively, over 90% or alternatively over 85% or alternatively over 70%, as compared to the standard or control biological activity.
- Additional embodiments within the scope of this disclosure are identified by having more than 60%, or alternatively, more than 65%, or alternatively, more than 70%, or alternatively, more than 75%, or alternatively, more than 80%, or alternatively, more than 85%, or alternatively, more than 90%, or alternatively, more than 95%, or alternatively more than 97%, or alternatively, more than 98% or 99% sequence homology. Percentage homology can be determined by sequence comparison using programs such as BLAST run under appropriate conditions. In one aspect, the program is run under default parameters.
- A“conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
- Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g, aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g, alanine, valine, leucine, isoleucine, proline,
- basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g, aspartic acid, glutamic acid
- uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyros
- a nonessential amino acid residue in an immunoglobulin polypeptide is preferably replaced with another amino acid residue from the same side chain family.
- a string of amino acids can be replaced with a structurally similar string that differs in order and/or composition of side chain family members.
- Non-limiting examples of conservative amino acid substitutions are provided in the table below, where a similarity score of 0 or higher indicates conservative substitution between the two amino acids.
- polynucleotide refers to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides or analogs thereof. Polynucleotides can have any three-dimensional structure and may perform any function, known or unknown.
- polynucleotides a gene or gene fragment (for example, a probe, primer, or EST), exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, ribozymes, cDNA, RNAi, siRNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes and primers.
- a polynucleotide can comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure can be imparted before or after assembly of the polynucleotide.
- sequence of nucleotides can be interrupted by non-nucleotide components.
- polynucleotide can be further modified after polymerization, such as by conjugation with a labeling component, that in one aspect, is a non-naturally occurring combination of polynucleotide and label.
- a labeling component that in one aspect, is a non-naturally occurring combination of polynucleotide and label.
- the term also refers to both double and single stranded molecules. Unless otherwise specified or required, any embodiment of this disclosure that is a polynucleotide encompasses both the double stranded form and each of two complementary single stranded forms known or predicted to make up the double stranded form.
- a polynucleotide is composed of a specific sequence of four nucleotide bases:
- polynucleotide sequence is the alphabetical representation of a polynucleotide molecule. This alphabetical representation can be input into databases in a computer having a central processing unit and used for bioinformatics applications such as functional genomics and homology searching.
- “Homology” or“identity” or“similarity” are synonymously and refers to sequence similarity between two peptides or between two nucleic acid molecules. Homology can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are homologous at that position. A degree of homology between sequences is a function of the number of matching or homologous positions shared by the sequences. An“unrelated” or“non-homologous” sequence shares less than 40% identity, or alternatively less than 25% identity, with one of the sequences of the present disclosure.
- a polynucleotide or polynucleotide region has a certain percentage (for example, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99%) of“sequence identity” to another sequence means that, when aligned, that percentage of bases (or amino acids) are the same in comparing the two sequences.
- This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in Ausubel et al. eds. (2007) Current Protocols in Molecular Biology.
- default parameters are used for alignment.
- One alignment program is BLAST, using default parameters.
- Equivalent polynucleotides are those having the specified percent homology and/or encoding a polypeptide having the same or similar biological activity.
- A“gene” refers to a polynucleotide containing at least one open reading frame (ORF) that is capable of encoding a particular polypeptide or protein after being transcribed and translated. Any of the polynucleotide or polypeptide sequences described herein may be used to identify larger fragments or full-length coding sequences of the gene with which they are associated. Methods of isolating larger fragment sequences are known to those of skill in the art.
- express refers to the production of a gene product such as RNA or a polypeptide or protein.
- expression refers to the process by which polynucleotides are transcribed into mRNA and/or the process by which the transcribed mRNA is subsequently being translated into peptides, polypeptides, or proteins. If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell.
- A“gene product” or alternatively a“gene expression product” refers to the RNA when a gene is transcribed or amino acid (e.g., peptide or polypeptide) generated when a gene is transcribed and translated.
- the term“encode” as it is applied to polynucleotides refers to a polynucleotide which is said to“encode” a polypeptide if, in its native state or when manipulated by methods well known to those skilled in the art, it can be transcribed and/or translated to produce the mRNA for the polypeptide and/or a fragment thereof.
- the antisense strand is the complement of such a nucleic acid, and the encoding sequence can be deduced therefrom.
- polypeptides may possess at least 60%, or alternatively, at least 65%, or alternatively, at least 70%, or alternatively, at least 75%, or alternatively, at least 80%, or alternatively at least 85%, or alternatively at least 90%, or alternatively at least 95% or alternatively at least 98%, identical primary amino acid sequence to the reference polypeptide when compared using sequence identity methods run under default conditions.
- Specific polypeptide sequences are provided as examples of particular embodiments.
- A“gene delivery vehicle” is defined as any molecule that can carry inserted polynucleotides into a host cell.
- Examples of gene delivery vehicles are liposomes, micelles, biocompatible polymers, including natural polymers and synthetic polymers; lipoproteins; polypeptides; polysaccharides; lipopolysaccharides; artificial viral envelopes; metal particles; and bacteria, or viruses, such as baculovirus, adenovirus and retrovirus, bacteriophage, cosmid, plasmid, fungal vectors and other recombination vehicles typically used in the art which have been described for expression in a variety of eukaryotic and prokaryotic hosts, and may be used for gene therapy as well as for simple protein expression.
- a polynucleotide of this disclosure can be delivered to a cell or tissue using a gene delivery vehicle.“Gene delivery,”“gene transfer,”“transducing,” and the like as used herein, are terms referring to the introduction of an exogenous polynucleotide (sometimes referred to as a“transgene”) into a host cell, irrespective of the method used for the introduction.
- Such methods include a variety of well-known techniques such as vector- mediated gene transfer (by, e.g., viral infection/transfection, or various other protein-based or lipid-based gene delivery complexes) as well as techniques facilitating the delivery of “naked” polynucleotides (such as electroporation,“gene gun” delivery and various other techniques used for the introduction of polynucleotides).
- the introduced polynucleotide may be stably or transiently maintained in the host cell.
- Stable maintenance typically requires that the introduced polynucleotide either contains an origin of replication compatible with the host cell or integrates into a replicon of the host cell such as an extrachromosomal replicon (e.g., a plasmid) or a nuclear or mitochondrial chromosome.
- a replicon of the host cell such as an extrachromosomal replicon (e.g., a plasmid) or a nuclear or mitochondrial chromosome.
- a number of vectors are known to be capable of mediating transfer of genes to mammalian cells, as is known in the art and described herein.
- the term“vector” refers to a nucleic acid construct deigned for transfer between different hosts, including but not limited to a plasmid, a virus, a cosmid, a phage, a BAC, a YAC, etc.
- A“viral vector” is defined as a recombinantly produced virus or viral particle that comprises a polynucleotide to be delivered into a host cell, either in vivo, ex vivo or in vitro.
- plasmid vectors may be prepared from commercially available vectors.
- viral vectors may be produced from baculoviruses, retroviruses, adenoviruses, AAVs, etc.
- the viral vector is a lentiviral vector.
- viral vectors include retroviral vectors, adenovirus vectors, adeno-associated virus vectors, alphavirus vectors and the like.
- Infectious tobacco mosaic virus (TMV)-based vectors can be used to manufacturer proteins and have been reported to express Griffithsin in tobacco leaves (O'Keefe et al.
- Alphavirus vectors such as Semliki Forest virus-based vectors and Sindbis virus-based vectors, have also been developed for use in gene therapy and immunotherapy. See, Schlesinger & Dubensky (1999) Curr. Opin.
- a vector construct refers to the polynucleotide comprising the retroviral genome or part thereof, and a gene of interest. Further details as to modern methods of vectors for use in gene transfer may be found in, for example, Kotterman et al. (2015) Viral Vectors for Gene Therapy: Translational and Clinical Outlook Annual Review of Biomedical Engineering 17.
- Vectors that contain both a promoter and a cloning site into which a polynucleotide can be operatively linked are well known in the art. Such vectors are capable of transcribing RNA in vitro or in vivo and are commercially available from sources such as Agilent Technologies (Santa Clara, Calif.) and Promega Biotech (Madison, Wis.).
- A“viral vector” is defined as a recombinantly produced virus or viral particle that comprises a polynucleotide to be delivered into a host cell, either in vivo, ex vivo or in vitro.
- viral vectors include retroviral vectors, adenovirus vectors, adeno-associated virus vectors, alphavirus vectors and the like.
- Alphavirus vectors such as Semliki Forest virus-based vectors and Sindbis virus-based vectors, have also been developed for use in gene therapy and immunotherapy. See, Schlesinger and Dubensky (1999) Curr. Opin. Biotechnol. 5:434-439 and Ying et al. (1999) Nat. Med. 5(7):823-827.
- a vector construct refers to the polynucleotide comprising the retroviral genome or part thereof, and a therapeutic gene.
- “retroviral mediated gene transfer” or“retroviral transduction” carries the same meaning and refers to the process by which a gene or nucleic acid sequences are stably transferred into the host cell by virtue of the virus entering the cell and integrating its genome into the host cell genome.
- the virus can enter the host cell via its normal mechanism of infection or be modified such that it binds to a different host cell surface receptor or ligand to enter the cell.
- retroviral vector refers to a viral particle capable of introducing exogenous nucleic acid into a cell through a viral or viral-like entry mechanism.
- Retroviruses carry their genetic information in the form of RNA; however, once the virus infects a cell, the RNA is reverse-transcribed into the DNA form which integrates into the genomic DNA of the infected cell.
- the integrated DNA form is called a provirus.
- a vector construct refers to the adenovirus (Ad) or adeno-associated virus (AAV).
- Ads Adenoviruses
- Ads are a relatively well characterized, homogenous group of viruses, including over 50 serotypes. See, e.g., International PCT Publication No. WO 95/27071. Ads do not require integration into the host cell genome. Recombinant Ad derived vectors, particularly those that reduce the potential for recombination and generation of wild-type virus, have also been constructed. See, International PCT Publication Nos. WO 95/00655 and WO 95/11984. Wild-type AAV has high infectivity and specificity integrating into the host cell’s genome. See, Hermonat and Muzyczka (1984) Proc. Natl. Acad. Sci. USA 81 :6466-6470 and
- Vectors that contain both a promoter and a cloning site into which a polynucleotide can be operatively linked are well known in the art. Such vectors are capable of transcribing RNA in vitro or in vivo, and are commercially available from sources such as Stratagene (La Jolla, CA) and Promega Biotech (Madison, WI). In order to optimize expression and/or in vitro transcription, it may be necessary to remove, add or alter 5’ and/or 3’ untranslated portions of the clones to eliminate extra, potential inappropriate alternative translation initiation codons or other sequences that may interfere with or reduce expression, either at the level of transcription or translation. Alternatively, consensus ribosome binding sites can be inserted immediately 5’ of the start codon to enhance expression.
- Gene delivery vehicles also include DNA/liposome complexes, micelles and targeted viral protein-DNA complexes. Liposomes that also comprise a targeting antibody or fragment thereof can be used in the methods of this disclosure.
- the nucleic acid or proteins of this disclosure can be conjugated to antibodies or binding fragments thereof which bind cell surface antigens. In addition to the delivery of
- polynucleotides to a cell or cell population direct introduction of the proteins described herein to the cell or cell population can be done by the non-limiting technique of protein transfection, alternatively culturing conditions that can enhance the expression and/or promote the activity of the proteins of this disclosure are other non-limiting techniques.
- culture refers to the in vitro propagation of cells, tissues, or organisms on or in media of various kinds. It is understood that the descendants of a cell grown in culture may not be completely identical (i.e., morphologically, genetically, or phenotypically) to the parent cell.
- antibody herein is used in the broadest sense and specifically includes full- length monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments, so long as they exhibit the desired biological activity.
- antibodies and “immunoglobulin” include antibodies or immunoglobulins of any isotype, fragments of antibodies which retain specific binding to antigen, including, but not limited to, Fab, Fab', F(ab)2, Fv, scFv, dsFv, Fd fragments, dAb, VH, VL, VhH, and V-NAR domains; minibodies, diabodies, triabodies, tetrabodies and kappa bodies; multispecific antibody fragments formed from antibody fragments and one or more isolated CDRs or a functional paratope; chimeric antibodies, humanized antibodies, single-chain antibodies, and fusion proteins comprising an antigen-binding portion of an antibody and a non-antibody protein.
- variable regions of the heavy and light chains of the immunoglobulin molecule contain a binding domain that interacts with an antigen.
- the constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues.
- “monoclonal antibody” refers to an antibody obtained from a substantially homogeneous antibody population. Monoclonal antibodies are highly specific, as each monoclonal antibody is directed against a single determinant on the antigen.
- the antibodies may be detectably labeled, e.g., with a radioisotope, an enzyme which generates a detectable product, a fluorescent protein, and the like.
- the antibodies may be further conjugated to other moieties, such as members of specific binding pairs, e.g., biotin (member of biotin-avidin specific binding pair), and the like.
- the antibodies may also be bound to a solid support, including, but not limited to, polystyrene plates or beads, and the like.
- Monoclonal antibodies may be generated using hybridoma techniques or recombinant DNA methods known in the art.
- Alternative techniques for generating or selecting antibodies include in vitro exposure of lymphocytes to antigens of interest, and screening of antibody display libraries in cells, phage, or similar systems.
- human antibody as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences.
- the human antibodies of the disclosure may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo).
- the term“human antibody” as used herein is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.
- the term“human antibody” refers to an antibody in which substantially every part of the protein (e.g., CDR, framework, CL, CH domains (e.g., CHI, CH2, Cm), hinge, (VL, VH)) is substantially non-immunogenic in humans, with only minor sequence changes or variations.
- antibodies designated primate monkey, baboon, chimpanzee, etc.
- rodent mouse, rat, rabbit, guinea pig, hamster, and the like
- other mammals designate such species, sub-genus, genus, sub-family, family specific antibodies.
- chimeric antibodies include any combination of the above.
- a human antibody is distinct from a chimeric or humanized antibody. It is pointed out that a human antibody can be produced by a non-human animal or prokaryotic or eukaryotic cell that is capable of expressing functionally rearranged human immunoglobulin (e.g., heavy chain and/or light chain) genes. Further, when a human antibody is a single chain antibody, it can comprise a linker peptide that is not found in native human antibodies. For example, an Fv can comprise a linker peptide, such as two to about eight glycine or other amino acid residues, which connects the variable region of the heavy chain and the variable region of the light chain.
- linker peptides are considered to be of human origin.
- a human antibody is“derived from” a particular germline sequence if the antibody is obtained from a system using human immunoglobulin sequences, e.g., by immunizing a transgenic mouse carrying human immunoglobulin genes or by screening a human immunoglobulin gene library.
- a human antibody that is“derived from” a human germline immunoglobulin sequence can be identified as such by comparing the amino acid sequence of the human antibody to the amino acid sequence of human germline
- a selected human antibody typically is at least 90% identical in amino acids sequence to an amino acid sequence encoded by a human germline immunoglobulin gene and contains amino acid residues that identify the human antibody as being human when compared to the germline immunoglobulin amino acid sequences of other species (e.g., murine germline sequences).
- a human antibody may be at least 95%, or even at least 96%, 97%, 98%, or 99% identical in amino acid sequence to the amino acid sequence encoded by the germline immunoglobulin gene.
- a human antibody derived from a particular human germline sequence will display no more than 10 amino acid differences from the amino acid sequence encoded by the human germline immunoglobulin gene.
- the human antibody may display no more than 5, or even no more than 4, 3, 2, or 1 amino acid difference from the amino acid sequence encoded by the germline immunoglobulin gene.
- A“human monoclonal antibody” refers to antibodies displaying a single binding specificity which have variable and constant regions derived from human germline immunoglobulin sequences. The term also intends recombinant human antibodies. Methods to making these antibodies are described herein.
- recombinant human antibody includes all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from an animal (e.g., a mouse) that is transgenic or transchromosomal for human immunoglobulin genes or a hybridoma prepared therefrom, antibodies isolated from a host cell transformed to express the antibody, e.g., from a transfectoma, antibodies isolated from a recombinant, combinatorial human antibody library, and antibodies prepared, expressed, created or isolated by any other means that involve splicing of human immunoglobulin gene sequences to other DNA sequences.
- Such recombinant human antibodies have variable and constant regions derived from human germline immunoglobulin sequences.
- such recombinant human antibodies can be subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo. Methods to making these antibodies are described herein.
- chimeric antibodies are antibodies whose light and heavy chain genes have been constructed, typically by genetic engineering, from antibody variable and constant region genes belonging to different species.
- humanized antibody or “humanized immunoglobulin” refers to a human/non-human chimeric antibody that contains a minimal sequence derived from non-human immunoglobulin.
- humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a variable region of the recipient are replaced by residues from a variable region of a non-human species (donor antibody) such as mouse, rat, rabbit, or non-human primate having the desired specificity, affinity and capacity.
- donor antibody such as mouse, rat, rabbit, or non-human primate having the desired specificity, affinity and capacity.
- Humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody.
- the humanized antibody can optionally also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin a non-human antibody containing one or more amino acids in a framework region, a constant region or a CDR, that have been substituted with a
- Fc immunoglobulin constant region
- humanized antibodies are expected to produce a reduced immune response in a human host, as compared to a non-humanized version of the same antibody.
- the humanized antibodies may have conservative amino acid substitutions which have substantially no effect on antigen binding or other antibody functions.
- Conservative substitutions groupings include: glycine-alanine, valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, serine- threonine and asparagine-glutamine.
- antibody derivative comprises a full-length antibody or a fragment of an antibody, wherein one or more of the amino acids are chemically modified by alkylation, pegylation, acylation, ester formation or amide formation or the like, e.g., for linking the antibody to a second molecule.
- A“composition” is intended to mean a combination of active polypeptide, polynucleotide or antibody and another compound or composition, inert (e.g. a detectable label) or active (e.g. a gene delivery vehicle) alone or in combination with a carrier which can in one embodiment be a simple carrier like saline or pharmaceutically acceptable or a solid support as defined below.
- A“pharmaceutical composition” is intended to include the combination of an active polypeptide, polynucleotide or antibody with a carrier, inert or active such as a solid support, making the composition suitable for diagnostic or therapeutic use in vitro, in vivo or ex vivo.
- the term“pharmaceutically acceptable carrier” encompasses any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents.
- the compositions also can include stabilizers and preservatives.
- stabilizers and adjuvants see Martin (1975) Remington’s Pharm. Sci., 15th Ed. (Mack Publ. Co., Easton).
- solid support refers to non-aqueous surfaces such as“culture plates” “gene chips” or“microarrays.”
- gene chips or microarrays can be used for diagnostic and therapeutic purposes by a number of techniques known to one of skill in the art.
- oligonucleotides are arrayed on a gene chip for determining the DNA sequence by the hybridization approach, such as that outlined in U.S. Patent Nos. 6,025,136 and
- the polynucleotides of this disclosure can be modified to probes, which in turn can be used for detection of a genetic sequence. Such techniques have been described, for example, in U.S. Patent Nos. 5,968,740 and 5,858,659.
- a probe also can be affixed to an electrode surface for the electrochemical detection of nucleic acid sequences such as described by Kayem et al. U.S. Patent No. 5,952,172 and by Kelley et al. (1999) Nucleic Acids Res. 27:4830-4837.
- the term“subject,”“host,”“individual,” and“patient” are as used interchangeably herein to refer to animals, typically mammalian animals. Any suitable mammal can be treated by a method, cell or composition described herein.
- mammals include humans, non-human primates (e.g., apes, gibbons, chimpanzees, orangutans, monkeys, macaques, and the like), domestic animals (e.g., dogs and cats), farm animals (e.g., horses, cows, goats, sheep, pigs) and experimental animals (e.g., mouse, rat, rabbit, guinea pig).
- a mammal is a human.
- a mammal can be any age or at any stage of development (e.g., an adult, teen, child, infant, or a mammal in utero).
- a mammal can be male or female.
- a mammal can be a pregnant female.
- a subject is a human.
- a subject has or is suspected of having a cancer or neoplastic disorder.
- Cell “host cell” or“recombinant host cell” are terms used interchangeably herein.
- the cells can be of any one or more of the type murine, rat, rabbit, simian, bovine, ovine, porcine, canine, feline, equine, and primate, particularly human. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
- “Eukaryotic cells” comprise all of the life kingdoms except monera. They can be easily distinguished through a membrane-bound nucleus. Animals, plants, fungi, and protists are eukaryotes or organisms whose cells are organized into complex structures by internal membranes and a cytoskeleton. The most characteristic membrane-bound structure is the nucleus.
- the term“host” includes a eukaryotic host, including, for example, yeast, higher plant, insect and mammalian cells. Non-limiting examples of eukaryotic cells or hosts include simian, bovine, porcine, murine, rat, avian, reptilian and human.
- “Prokaryotic cells” usually lack a nucleus or any other membrane-bound organelles and are divided into two domains, bacteria and archaea. In addition to chromosomal DNA, these cells can also contain genetic information in a circular loop called on episome.
- Bacterial cells are very small, roughly the size of an animal mitochondrion (about 1-2 pm in diameter and 10 pm long). Prokaryotic cells feature three major shapes: rod shaped, spherical, and spiral. Instead of going through elaborate replication processes like eukaryotes, bacterial cells divide by binary fission. Examples include but are not limited to Bacillus bacteria, E. coli bacterium, and Salmonella bacterium. [0091] As used herein,“treating” or“treatment” of a disease in a subject refers to (1) preventing the symptoms or disease from occurring in a subject that is predisposed or does not yet display symptoms of the disease; (2) inhibiting the disease or arresting its
- beneficial or desired results can include one or more, but are not limited to, alleviation or amelioration of one or more symptoms, diminishment of extent of a condition (including a disease), stabilized (i.e., not worsening) state of a condition (including disease), delay or slowing of condition (including disease), progression, amelioration or palliation of the condition (including disease), states and remission (whether partial or total), whether detectable or undetectable.
- prevention or prophylaxis is excluded from the term“treatment.”
- treatment excludes prophylaxis.
- the following clinical end points are non-limiting examples of treatment: reduction in fibrotic tissue, reduction in inflammation, reduction in fibroblastic lesions, reduction in activated fibroblast proliferation, reduction in myofibroblast genesis, reduction in rate of decline of Forced Vital Capacity (FVC), wherein FVC is the total amount of air exhaled during the lung function test, absolute and relative increases from baseline in FVC, absolute increase from baseline in FVC (% Predicted), increase in progression-free survival time, decrease from baseline in St George's Respiratory
- SGRQ Quality of Life questionnaire
- HRCT computerized tomography
- QLF quantitative lung fibrosis
- Non-limiting examples clinical end points for fibrosis treatment and tests that can be performed to measure said clinical end points are described in the following clinical trials: NCT03733444 (clinicaltrials.gov/ct2/show/NCT03733444) (last accessed on January 9, 2019), NCT00287729 (clinicaltrials.gov/ct2/show/NCT00287729) (last accessed on January 9, 2019), NCT00287716 (clinicaltrials.gov/ct2/show/NCT00287716) (last accessed on January 9, 2019), NCT02503657(clinicaltrials.gov/ct2/show/NCT02503657) (last accessed on January 9, 2019), NCT00047645 (clinicaltrials.gov/ct2/show/NCT00047645) (last accessed on January 9, 2019), NCT02802345 (clinicaltrials.gov/ct2/show/NCT02802345) (last accessed on January 9, 2019), NCTO 1979952
- NCT00650091 (clinicaltrials.gov/ct2/show/NCT00650091) (last accessed on January 9, 2019)
- NCT01335464 (clinicaltrials.gov/ct2/show/NCT01335464) (last accessed on January 9, 2019)
- NCT01335477 (clinicaltrials.gov/ct2/show/NCT01335477) (last accessed on January 9, 2019)
- NCT01366209 clinicaltrials.gov/ct2/show/NCT01366209 (last accessed on January 9, 2019).
- A“cancer stem cell” (“CSC”) intends a cell or a subpopulation of cells within tumors with capabilities of self-renewal, differentiation, and tumorigenicity when transplanted into an animal host.
- CSCs appear to possess long-term clonal maintenance of cancer malignancy and survival even after many harsh therapy treatments.
- the gold standard for defining CSCs has been serial in vivo transplantation, but a number of cell surface markers such as Sox2, Slug, CD44, CD24, and CD133 have proved useful to study CSCs in patient specimens and experimental systems.
- a regulatory network consisting of microRNAs and Wnt/p-catenin, Notch, and Hedgehog signaling pathways controls the CSC properties. As used herein, one or more of these are intended as cancer stem cell markers. Additional markers are provided in FIGS. 15 and 17. Expression of these markers can be detected and monitored by methods known and described herein and in the art.
- Sox2 (sex determining region Y (SRY)-box 2) intends the transcription factor that participates in maintaining self-renewal and pluripotency of embryonic stem cells.
- SCC esophageal squamous cell carcinoma
- DPSCs dental pulp stem cells
- Ewing's sarcoma cell proliferation and its inactivation results in apoptosis and Gl/S arrest, in a PI3K (phosphoinositide 3-kinase)/ Akt pathway-mediated manner.
- Monoclonal antibodies to detect and monitor expression are commercially available, e.g., Sigma-Aldrich and Novus Biologicals (last accessed on May 6, 2020).
- CD 133 or CD 133 antigen also known as prominin-1, is a glycoprotein that in humans is encoded by the PROM1 gene. It is a member of pentaspan transmembrane glycoproteins, which specifically localize to cellular protrusions. Monoclonal antibodies to detect and monitor expression are commercially available, e.g., Abeam and ThermoFisher (last accessed on May 6, 2020).
- Slug or (SNAI2) is a transcription factor and an inducer of the epithelial to
- the term“suffering” as it related to the term“treatment” refers to a patient or individual who has been diagnosed with or is predisposed to a disease.
- a patient may also be referred to being“at risk of suffering” from a disease.
- This patient has not yet developed characteristic disease pathology, however are known to be predisposed to the disease due to family history, being genetically predispose to developing the disease, or diagnosed with a disease or disorder that predisposes them to developing the disease to be treated.
- an effective amount intends to indicate the amount of a compound or agent administered or delivered to the patient which is most likely to result in the desired response to treatment.
- the amount is empirically determined by the patient’s clinical parameters including, but not limited to the stage of disease, age, gender, histology, sensitivity, toxicity and likelihood for tumor recurrence.
- an“effective amount” is a therapeutically effective amount.
- a“cancer” is a disease state characterized by the presence in a subject of cells demonstrating abnormal uncontrolled replication and may be used interchangeably with the term“tumor.”
- the cancer is a solid tumor, lung cancer, liver cancer, kidney cancer, brain cancer, ovarian cancer, colorectal cancer, pancreatic cancer, bone cancer, throat cancer, lymphoma, or leukemia.
- A“tumor” is an abnormal growth of tissue resulting from uncontrolled, progressive multiplication of cells and serving no physiological function. A“tumor” is also known as a neoplasm.
- Stage I cancer typically identifies that the primary tumor is limited to the organ of origin.
- Stage II intends that the primary tumor has spread into surrounding tissue and lymph nodes immediately draining the area of the tumor.
- Stage III intends that the primary tumor is large, with fixation to deeper structures.
- Stage IV intends that the primary tumor is large, with fixation to deeper structures. See pages 20 and 21, CANCER BIOLOGY, 2 nd Ed., Oxford University Press (1987).
- Having the same cancer is used when comparing one patient to another or alternatively, one patient population to another patient population.
- the two patients or patient populations will each have or be suffering from colon cancer.
- administering can be effected in one dose, continuously or intermittently throughout the course of treatment. Methods of determining the most effective means and dosage of administration are known to those of skill in the art and will vary with the composition used for therapy, the purpose of the therapy, the target cell being treated, the disease being treated and the subject being treated. Single or multiple administrations can be carried out with the dose level and pattern being selected by the treating physician. Suitable dosage formulations and methods of administering the agents are known in the art. Route of administration can also be determined and method of determining the most effective route of administration are known to those of skill in the art and will vary with the composition used for treatment, the purpose of the treatment, the health condition or disease stage of the subject being treated, and target cell or tissue.
- route of administration include oral administration, nasal administration, inhalation, injection, and topical application.
- An agent of the present disclosure can be administered for therapy by any suitable route of administration. It will also be appreciated that the preferred route will vary with the condition and age of the recipient, and the disease being treated.
- TKI tyrosine kinase inhibitor
- a tyrosine kinase inhibitor is an agent (small molecule or biologic) that inhibits the action of tyrosine kinase in a cell.
- Tyrosine kinases are enzymes that are responsible for the activation of many proteins by signal transduction cascades. TKIs are typically used as anti-cancer drugs.
- tyrosine kinase inhibitors include, but are not limited to ErbB: HER1/EGFR (Erlotinib, Gefitinib, Lapatinib, Vandetanib, Sunitinib, Neratinib); HER2/neu (Lapatinib, Neratinib); RTK class III: C-kit (Axitinib, Sunitinib, Sorafenib); FLT3 (Lestaurtinib); PDGFR (Axitinib, Sunitinib, Sorafenib); and VEGFR (Vandetanib, Semaxanib, Cediranib, Axitinib, Sorafenib); bcr-abl (Imatinib, Nilotinib, Dasatinib); Src (Bosutinib) and Janus kinase 2 (Lestaurtinib). Small molecule TKIs are known in the art
- PTK/ZK is a "small" molecule tyrosine kinase inhibitor with broad specificity that targets all VEGF receptors (VEGFR), the platelet-derived growth factor (PDGF) receptor, c- KIT and c-Fms. Drevs (2003) Idrugs 6(8):787-794. PTK/ZK is a targeted drug that blocks angiogenesis and lymphangiogenesis by inhibiting the activity of all known receptors that bind VEGF including VEGFR- 1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR- 3 (Flt-4).
- VEGFR- 1 Flt-1
- VEGFR-2 KDR/Flk-1
- VEGFR- 3 Flt-4
- PTK/ZK The chemical names of PTK/ZK are l-[4-Chloroanilino]-4-[4-pyridylmethyl] phthalazine Succinate or 1-Phthalazinamine, N-(4-chlorophenyl)-4-(4-pyridinylmethyl)-, butanedioate (1 : 1). Synonyms and analogs of PTK/ZK are known as Vatalanib, CGP79787D, PTK787/ZK 222584, CGP-79787, DE-00268, PTK-787, PTK-787A, VEGFR-TK inhibitor, ZK 222584 and ZK.
- platinum-based drug intends an anticancer drug that is a platinum based compound which is a subclass of DNA alkylating agents.
- agents are well known in the art and are used to treat a variety of cancers, such as, lung cancers, head and neck cancers, ovarian cancers, colorectal cancer and prostate cancer.
- Non-limiting examples of such agents include carboplatin, cisplatin, nedaplatin, oxaliplatin, triplatin tetranitrate, Satraplatin, Aroplatin, Lobaplatin, and JM-216. (see McKeage et al. (1997) J. Clin. Oncol.
- Oxaliplatin (Eloxatin®) is a platinum- based chemotherapy drug in the same family as cisplatin and carboplatin. It is typically administered in combination with fluorouracil and leucovorin in a combination known as FOLFOX for the treatment of colorectal cancer. Compared to cisplatin the two amine groups are replaced by cyclohexyldiamine for improved antitumor activity.
- the chlorine ligands are replaced by the oxalato bidentate derived from oxalic acid in order to improve water solubility.
- Equivalents to Oxaliplatin are known in the art and include without limitation cisplatin, carboplatin, aroplatin, lobaplatin, nedaplatin, and JM-216 (see McKeage et al. (1997) J. Clin. Oncol. 201 : 1232-1237 and in general, CHEMOTHERAPY FOR
- This disclosure provides an isolated polypeptide or an MPS polypeptide comprising, or alternatively consisting essentially of, or yet consisting of an amino acid sequence selected from the group of: SEQ ID NOs 40-56, 58 and 59, or an equivalent of each thereof.
- the isolated polypeptides include substantially homologous and equivalent polypeptides.
- the isolated polypeptide of this disclosure comprises, or alternatively consists essentially of, or yet consists of no more than 51 amino acids.
- the isolated polypeptide of this disclosure comprises, or alternatively consists essentially of, or yet consists of no more than 35 amino acids.
- the polypeptide is at least 6 amino acids and no more than 51 amino acids, or alternatively at least 45 amino acids, or alternatively 40 amino acids, or alternatively 35 amino acids, or alternatively 30 amino acids, or alternatively no more than 25 amino acids, or alternatively no more than 20 amino acids, or alternatively no more than 15 amino acids or alternatively or equivalents of each thereof.
- an equivalent of the isolated polypeptide comprises or alternatively consists essentially of, or yet consists of a polypeptide having at least 80% sequence identity to the isolated polypeptide or a polypeptide encoded by a polynucleotide that hybridizes to an isolated polynucleotide that encodes the isolated polypeptide or its complement or a polypeptide encoded by a polynucleotide that having at least 80 sequence identity to the polynucleotide that encodes an amino acid sequence selected from the group of SEQ ID Nos. 40-56, 58 and 59.
- High stringency hybridization conditions is generally performed at about 60°C in about 1 x SSC.
- Substantially homologous and equivalent polypeptides and substantially homologous and equivalent polynucleotides intend those having at least 80% homology, or alternatively at least 85% homology, or alternatively at least 90% homology, or alternatively, at least 95% homology or alternatively, at least 98% homology to those described above, each as determined using methods known to those skilled in the art and identified herein, when run under default parameters.
- They may possess at least 60%, or alternatively, at least 65%, or alternatively, at least 70%, or alternatively, at least 75%, or alternatively, at least 80%, or alternatively at least 85%, or alternatively at least 90%, or alternatively at least 95% or alternatively at least 98%, identical primary amino acid sequence to the reference polypeptide, or alternatively identical nucleic acid sequence to the reference polynucleotide, when compared using sequence identity methods run under default conditions.
- they may possess at least 60%, or alternatively, at least 65%, or alternatively, at least 70%, or alternatively, at least 75%, or alternatively, at least 80%, or alternatively at least 85%, or alternatively at least 90%, or alternatively at least 95% or alternatively at least 98%, identical primary amino acid sequence to the reference polypeptide, or alternatively identical nucleic acid sequence to the reference polynucleotide, when compared using sequence identity methods run under default conditions.
- an equivalent is a polypeptide wherein one or more amino acids have been substituted with a conservative amino acid substitution.
- the isolated polypeptide has at least one amino acid that is a modified, non-naturally occurring amino acid such as D-lysine.
- the MPS polypeptide of this disclosure comprises, or alternatively consists essentially of, or yet consists of at least 6 amino acids and no more than 51 amino acids.
- the polypeptide is at least 6 amino acids and no more than 51 amino acids, or alternatively at least 45 amino acids, or alternatively 40 amino acids, or alternatively 35 amino acids, or alternatively 30 amino acids, or alternatively no more than 25 amino acids, or alternatively no more than 20 amino acids, or alternatively no more than 15 amino acids or alternatively or equivalents of each thereof.
- an equivalent is a polypeptide wherein one or more amino acids have been substituted with a conservative amino acid substitution.
- myristic acid is conjugated or joined to the N- terminal amino acid, including equivalents thereof, e.g., wherein all serines are replaced by alanine.
- the isolated polypeptide has at least one amino acid that is a modified, non-naturally occurring amino acid such as D-lysine.
- the isolated polypeptide as described above have additional amino acids added onto the carboxyl-terminal end or amino-terminal end of the MPS and equivalents of each thereof, such that the length of the polypeptide comprises an additional at least 10 amino acids, or alternatively at least 15 amino acids, or alternatively at least 20 amino acids, or alternatively at least 25 amino acids, or alternatively at least 30 amino acids, or alternatively at least 35 amino acids or the addition of amino acids up to a total of 51 amino acids.
- the peptides can be modified to include unnatural amino acids.
- the peptides may comprise D-amino acids, a combination of D- and L-amino acids, and various“designer” amino acids (e.g ., b-methyl amino acids, C-a-methyl amino acids, and N-a-methyl amino acids, etc.) to convey special properties to peptides.
- various“designer” amino acids e.g ., b-methyl amino acids, C-a-methyl amino acids, and N-a-methyl amino acids, etc.
- peptides with a-helices, b turns, b sheets, a-turns, and cyclic peptides can be generated.
- a-helical secondary structure or random secondary structure is preferred.
- the disclosed polypeptides in one aspect, contain unnatural amino acids.
- any peptide by substituting one or more amino acids with one or more functionally equivalent amino acids that does not alter the biological function of the peptide.
- the amino acid that is substituted by an amino acid that possesses similar intrinsic properties including, but not limited to, hydrophobic, size, or charge.
- Methods used to determine the appropriate amino acid to be substituted and for which amino acid are known to one of skill in the art. Non limiting examples include empirical substitution models as described by Layoff et al. (1978) In Atlas of Protein Sequence and Structure Vol. 5 suppl. 2 (ed. MR. Day off), pp. 345-352.
- the isolated polypeptide or peptide fragment may comprise, or alternatively consisting essentially of, or yet further consisting of, a“an equivalent” or“biologically active” polypeptide encoded by equivalent polynucleotides as described herein. They may possess at least 60%, or alternatively, at least 65%, or alternatively, at least 70%, or alternatively, at least 75%, or alternatively, at least 80%, or alternatively at least 85%, or alternatively at least 90%, or alternatively at least 95% or alternatively at least 98%, identical primary amino acid sequence to the reference polypeptide when compared using sequence identity methods run under default conditions.
- the isolated polypeptides or MPS polypeptides and equivalents have the ability to: inhibit the expression of MARCKS for preventing, reducing, delaying, inhibiting or suppressing disease or disease symptoms associated with MARCKS phosphorylation and/or dissociation from the cell membrane and/or PIP2-sequestering effect, or PIP3 production, or activation of AKT, or inflammation, fibrosis, or activated fibroblast proliferation, or myofibroblast genesis and differentiation, or transforming growth factor-beta (TGF-b) signaling pathway, or cancer, or solid tumor cell growth or metastasis, or cancer stem cell growth, or tumor cell mobility; and optionally for promoting apoptosis, or restoring sensitivity of a resistant cancer cell to a chemotherapeutic.
- MARCKS phosphorylation and/or dissociation from the cell membrane and/or PIP2-sequestering effect, or PIP3 production, or activation of AKT, or inflammation, fibrosis, or activated fibroblast
- the isolated polypeptides and equivalents have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lung fibrosis, idiopathic pulmonary fibrosis, or smoking, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis.
- the isolated polypeptides and equivalents have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lymphoma, leukemia or a solid tumor.
- solid tumor include cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer.
- polypeptides are useful therapeutically to inhibit or suppress solid tumor growth such as cancer cell invasion, metastasis, migration and viability of cancer cells in vitro or in vivo. They also promote apoptosis and inhibit the growth of cancer stem cells (such as those expressing CD133+), malignant tumors and cancer cells, increase or induce cancer cell death.
- an isolated polypeptide further comprising, or alternatively consisting essentially of, or yet consisting of one or more of: an operatively linked amino acid sequence to facilitate entry of the isolated polypeptide into the cell; a targeting polypeptide or a polypeptide that confers stability to the polypeptide.
- amino acid sequence comprises, or alternatively consists essentially of, or alternatively consisting of an operatively linked polypeptide that targets the polypeptide to a specific cell type or stabilizes the polypeptide or yet further comprises a transduction domain for facilitated cell entry or tumor targeting domain and an MPS polypeptide as described herein.
- Polypeptides comprising, or alternatively consisting essentially of, or yet further consisting of, the amino acid sequences of the disclosure can be prepared by expressing polynucleotides encoding the polypeptide sequences of this disclosure in an appropriate host cell. This can be accomplished by methods of recombinant DNA technology known to those skilled in the art. Accordingly, this disclosure also provides methods for recombinantly producing the polypeptides of this disclosure in a eukaryotic or prokaryotic host cell, which in one aspect is further isolated from the host cell.
- the proteins and peptide fragments of this disclosure also can be obtained by chemical synthesis using a commercially available automated peptide synthesizer such as those manufactured by Perkin Elmer/ Applied
- this disclosure also provides a process for chemically synthesizing the proteins of this disclosure by providing the sequence of the protein and reagents, such as amino acids and enzymes and linking together the amino acids in the proper orientation and linear sequence.
- the protein and peptide fragments may be operatively linked to a transduction domain for facilitated cell entry.
- Protein transduction offers an alternative to gene therapy for the delivery of therapeutic proteins into target cells, and methods involving protein transduction are within the scope of the disclosure.
- Protein transduction is the internalization of proteins into a host cell from the external environment. The internalization process relies on a protein or peptide which is able to penetrate the cell membrane. To confer this ability on a normally non-transducing protein, the non-transducing protein can be fused to a transduction- mediating protein such as the antennapedia peptide, the HIV TAT protein transduction domain, or the herpes simplex virus VP22 protein. See Ford et al. (2001) Gene Ther. 8: 1-4.
- polypeptides of the disclosure can, for example, include modifications that can increase such attributes as stability, half-life, ability to enter cells and aid in administration, e.g., in vivo administration of the polypeptides of the disclosure.
- polypeptides of the disclosure can comprise, or alternatively consisting essentially of, or yet further consisting of, a protein transduction domain of the HIV TAT protein as described in
- the polypeptides include amino acid sequences that target the polypeptide to the cell or tissue to be treated and/or stabilizes the polypeptide.
- any of the proteins, peptides or polynucleotides of this disclosure can be combined with a detectable label such as a dye for ease of detection.
- a detectable label such as a dye for ease of detection.
- Non-limiting examples of such include radioisotopes, fluorochromes, chemiluminescent compounds, dyes, and proteins, including enzymes.
- the polypeptides can be combined with another drug or agent (such as a protein, polypeptide, antibody, antibody fragment that may or may not be an anticancer drug or agent), such as an anticancer drug or agent such as a TKI, a platinum-based drug or a drug or agent that targets EGFR.
- another drug or agent such as a protein, polypeptide, antibody, antibody fragment that may or may not be an anticancer drug or agent
- an anticancer drug or agent such as a TKI, a platinum-based drug or a drug or agent that targets EGFR.
- the compositions are combined with a MARCKS protein, polypeptide or fragment thereof, wherein the MARCKS fragment comprises a polypeptide fragment that does not overlap in amino acid sequence with a polypeptide of the present disclosure or the MPS polypeptides disclosed in International PCT Publication Nos. WO 2015/013669 and WO 2015/095789.
- These compositions can be combined with a carrier, such as a pharmaceutically acceptable carrier for use
- compositions for in vitro and in vivo use comprising, or alternatively consisting essentially of, or yet further consisting of a therapeutically effective amount of the MPS polypeptide or polynucleotide encoding the MPS polypeptide, that causes at least about 75%, or alternatively at least about 80%, or alternatively at least about 85%, or alternatively at least about 90%, or alternatively at least about 95%, or alternatively at least about 99% effectiveness in the methods provided herein when applied in a molar concentration of less than about 10 micromolar, or alternatively less than about 9 micromolar, or alternatively less than about 8 micromolar, or alternatively less than about 7 micromolar, or alternatively less than about 6 micromolar, or alternatively less than about 5 micromolar, or alternatively less than about 4 micromolar, or alternatively less than about 3 micromolar, or alternatively less than about 2 micromolar, or alternatively less than about 1 micromolar, or alternatively less than about 0.5 micromolar
- compositions for in vitro and in vivo use comprising, or alternatively consisting essentially of, or yet further consisting of one or more of the isolated polypeptides or polynucleotides described herein and a pharmaceutically acceptable carrier.
- compositions are pharmaceutical formulations for use in the therapeutic methods of this disclosure.
- the disclosure provides a pharmaceutical composition comprising, or alternatively consisting essentially of, or yet further consisting of, the isolated polypeptide or polynucleotide in a concentration such that a therapeutically effective amount of the polypeptide or a pharmacological dose of the composition causes at least a 75%, or alternatively at least a 80%, or alternatively at least a 85%, or alternatively at least a 90%, or alternatively at least a 95% or alternatively at least a 97% reduction in cell growth for example, when applied in a molar concentration of less than 1 micromolar, to a culture of responsive cancer cells as compared to a control that does not receive the composition.
- This disclosure also provides isolated polynucleotides encoding the polypeptides described above. In one aspect, this disclosure also provides isolated polynucleotides encoding the polypeptides described above and an isolated anti-MPS shRNA. Non-limiting examples of the polypeptides of this disclosure include SEQ ID Nos. 40-56, 58 and 59 and equivalents thereof. This disclosure also provides the complementary polynucleotides to the sequences identified above, and their equivalents. Complementarity can be determined using traditional hybridization under conditions of moderate or high stringency. In one aspect the polynucleotides encode the equivalents of the isolated polypeptides of this disclosure. In another aspect, provided herein are equivalents of the isolated polynucleotides or their complements, wherein the equivalents have at least 80% sequence identity to the
- An equivalent of the isolated polynucleotide or its complement comprises or alternatively consists essentially of, or yet consists of a polynucleotide having at least 80% sequence identity to a polynucleotide encoding the isolated polypeptides of this disclosure or their equivalents that hybridizes to an isolated polynucleotide that encodes the isolated polypeptide or its complement. Also provided are polynucleotides encoding substantially homologous and equivalent polypeptides or peptide fragments.
- Substantially homologous and equivalent intends those having varying degrees of homology, such as at least 65%, or alternatively, at least 70%, or alternatively, at least 75%, or alternatively at least 80%, or alternatively, at least 85%, or alternatively at least 90%, or alternatively, at least 95%, or alternatively at least 97% homologous as defined above and which encode polypeptides having the biological activity as described herein. It should be understood although not always explicitly stated that embodiments to substantially homologous peptides and polynucleotides are intended for each aspect of this disclosure, e.g., peptides, polynucleotides and antibodies.
- an equivalent is a polypeptide encoded by a nucleic acid that hybridizes under stringent conditions to a nucleic acid or complement that encodes the polypeptide or when a polynucleotide, a polynucleotide that hybridizes to the reference polynucleotide or its complement under conditions of high stringency.
- Equivalent polynucleotides hybridize under conditions of high stringency to a polynucleotide encoding the polypeptide of this disclosure or its equivalent, or the complement of each. Hybridization reactions can be performed under conditions of different“stringency”.
- a low stringency hybridization reaction is carried out at about 40°C in about 10 x SSC or a solution of equivalent ionic strength/temperature.
- a moderate stringency hybridization is typically performed at about 50°C in about 6 x SSC, and a high stringency hybridization reaction is generally performed at about 60°C in about 1 x SSC.
- Hybridization reactions can also be performed under“physiological conditions” which is well known to one of skill in the art.
- a non-limiting example of a physiological condition is the temperature, ionic strength, pH and concentration of Mg 2+ normally found in a cell.
- An equivalent polynucleotide is one that hybridizes under stringent conditions to the reference polynucleotide or the complement of the reference polynucleotide, an in one aspect, having similar biological activity as the reference polynucleotide.
- the polynucleotides and their complements and the equivalents of each thereof are labeled with a detectable marker or label, such as a dye or radioisotope, for ease of detection.
- the polynucleotides can be inserted into expression vectors and delivered into target cells, e.g., cancer cells, for the diagnostic and therapeutic methods as disclosed herein.
- polynucleotide intends DNA and RNA as well as modified nucleotides.
- this disclosure also provides the anti-sense polynucleotide strand, e.g. antisense RNA or siRNA (shRNA) to these sequences or their complements.
- antisense RNA or siRNA siRNA
- the polynucleotides of this disclosure can be replicated using conventional recombinant techniques.
- the polynucleotides can be replicated using PCR technology.
- PCR is the subject matter of U.S. Patent Nos. 4,683,195; 4,800,159; 4,754,065; and 4,683,202 and described in PCR: The Polymerase Chain Reaction (Mullis et al. eds, Birkhauser Press, Boston (1994)) and references cited therein.
- one of skill in the art can use the sequences provided herein and a commercial DNA synthesizer to replicate the DNA.
- this disclosure also provides a process for obtaining the peptide fragments of this disclosure by providing the linear sequence of the polynucleotide, appropriate primer molecules, chemicals such as enzymes and instructions for their replication and chemically replicating or linking the nucleotides in the proper orientation to obtain the polynucleotides.
- these polynucleotides are further isolated.
- one of skill in the art can operatively link the polynucleotides to regulatory sequences for their expression in a host cell.
- the polynucleotides and regulatory sequences are inserted into the host cell (prokaryotic or eukaryotic) for replication and amplification.
- the DNA so amplified can be isolated from the cell by methods well known to those of skill in the art.
- a process for obtaining polynucleotides by this method is further provided herein as well as the polynucleotides so obtained.
- the polynucleotide is an RNA molecule that is short interfering RNA, also known as siRNA.
- RNA molecules that is short interfering RNA, also known as siRNA.
- Methods to prepare and screen interfering RNA and select for the ability to block polynucleotide expression are known in the art and non-limiting examples of which are shown below. These interfering RNA are provided by this disclosure alone or in combination with a suitable vector or within a host cell. Compositions containing the RNAi are further provided. RNAi is useful to knock-out or knock-down select functions in a cell or tissue as known in the art and described herein.
- siRNA sequences can be designed by obtaining the target mRNA sequence and determining an appropriate siRNA complementary sequence.
- siRNAs of the disclosure are designed to interact with a target sequence, meaning they complement a target sequence sufficiently to hybridize to that sequence.
- An siRNA can be 100% identical to the target sequence.
- homology of the siRNA sequence to the target sequence can be less than 100% as long as the siRNA can hybridize to the target sequence.
- the siRNA molecule can be at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to the target sequence or the complement of the target sequence. Therefore, siRNA molecules with insertions, deletions or single point mutations relative to a target may also be used.
- the generation of several different siRNA sequences per target mRNA is recommended to allow screening for the optimal target sequence.
- a homology search such as a BLAST search, should be performed to ensure that the siRNA sequence does not contain homology to any known mammalian gene.
- the target sequence be located at least 100-200 nucleotides from the AUG initiation codon and at least 50-100 nucleotides away from the termination codon of the target mRNA (Duxbury (2004) J. Surgical Res. 117:339-344).
- siRNAs that include one or more of the following conditions are particularly useful in gene silencing in mammalian cells: GC ratio of between 45-55%, no runs of more than 9 G/C residues, G/C at the 5' end of the sense strand; A/U at the 5' end of the antisense strand; and at least 5 A/U residues in the first 7 bases of the 5' terminal of the antisense strand.
- siRNA are, in general, from about 10 to about 30 nucleotides in length.
- the siRNA can be 10-30 nucleotides long, 12-28 nucleotides long, 15-25 nucleotides long, 19-23 nucleotides long, or 21-23 nucleotides long.
- the longer of the strands designates the length of the siRNA. In this situation, the unpaired nucleotides of the longer strand would form an overhang.
- the term siRNA includes short hairpin RNAs (shRNAs). shRNAs comprise a single strand of RNA that forms a stem-loop structure, where the stem consists of the
- the stem structure of shRNAs generally is from about 10 to about 30 nucleotides long.
- the stem can be 10-30 nucleotides long, 12-28 nucleotides long, 15-25 nucleotides long, 19-23 nucleotides long, or 21-23 nucleotides long.
- siRNA design tool is available on the internet at www.dharmacon.com, last accessed on November 26, 2007.
- compositions for in vitro and in vivo use comprising, or alternatively consisting essentially of, or yet further consisting of one or more of the isolated polynucleotide as described herein and a pharmaceutically acceptable carrier.
- the compositions are pharmaceutical formulations for use in the therapeutic methods of this disclosure.
- the disclosure provides a pharmaceutical composition
- a pharmaceutical composition comprising, or alternatively consisting essentially of, or yet further consisting of, the isolated polynucleotide in a concentration such that a therapeutically effective amount of the or pharmacological dose of the composition causes at least a 75%, or alternatively at least a 80%, or alternatively at least a 85%, or alternatively at least a 90%, or alternatively at least a 95% or alternatively at least a 97% reduction in cancer cell growth, viability or migration, as compared to a control that does not receive the composition.
- Comparative effectiveness can be determined by suitable in vitro or in vivo methods as known in the art and described herein.
- dsRNA and siRNA can be synthesized chemically or enzymatically in vitro as described in Micura (2002) Agnes Chem. Int. Ed. Emgl. 41 :2265-2269; Betz (2003) Promega Notes 85: 15-18; and Paddison and Hannon (2002) Cancer Cell. 2: 17-23. Chemical synthesis can be performed via manual or automated methods, both of which are well known in the art as described in Micura (2002), supra. siRNA can also be endogenously expressed inside the cells in the form of shRNAs as described in Yu et al. (2002) Proc. Natl. Acad. Sci. USA 99:6047-6052; and McManus et al. (2002) RNA 8:842-850.
- RNA polymerase III U6 or HI RNA polymerase III U6 or HI
- RNA polymerase II U1 RNA polymerase II U1 as described in Brummelkamp et al. (2002) Science 296:550-553 (2002); and Novarino et al. (2004) J. Neurosci. 24:5322-5330.
- RNA polymerase mediated process to produce individual sense and antisense strands that are annealed in vitro prior to delivery into the cells of choice as described in Fire et al. (1998) Nature 391 :806-811; Donze and Picard (2002) Nucl. Acids Res. 30(10): e46; Yu et al. (2002); and Shim et al. (2002) J. Biol. Chem. 277:30413-30416.
- Several manufacturers (Promega, Ambion, New England Biolabs, and Stragene) produce transcription kits useful in performing the in vitro synthesis.
- siRNA In vitro synthesis of siRNA can be achieved, for example, by using a pair of short, duplex oligonucleotides that contain T7 RNA polymerase promoters upstream of the sense and antisense RNA sequences as the DNA template. Each oligonucleotide of the duplex is a separate template for the synthesis of one strand of the siRNA. The separate short RNA strands that are synthesized are then annealed to form siRNA as described in Protocols and Applications, Chapter 2: RNA interference, Promega Corporation, (2005).
- dsRNA In vitro synthesis of dsRNA can be achieved, for example, by using a T7 RNA polymerase promoter at the 5 '-ends of both DNA target sequence strands. This is accomplished by using separate DNA templates, each containing the target sequence in a different orientation relative to the T7 promoter, transcribed in two separate reactions. The resulting transcripts are mixed and annealed post-transcriptionally. DNA templates used in this reaction can be created by PCR or by using two linearized plasmid templates, each containing the T7 polymerase promoter at a different end of the target sequence. Protocols and Applications, Chapter 2: RNA interference, Promega Corporation (2005).
- RNA can be obtained by first inserting a DNA polynucleotide into a suitable prokaryotic or eukaryotic host cell.
- the DNA can be inserted by any appropriate method, e.g., by the use of an appropriate gene delivery vehicle (e.g., liposome, plasmid or vector) or by electroporation.
- an appropriate gene delivery vehicle e.g., liposome, plasmid or vector
- electroporation e.g., electroporation.
- the RNA can then be isolated using methods well known to those of skill in the art, for example, as set forth in Sambrook and Russell (2001) supra.
- mRNA can be isolated using various lytic enzymes or chemical solutions according to the procedures set forth in
- nucleic acid sequences encoding the gene of interest can be delivered by several techniques. Examples of which include viral technologies (e.g. retroviral vectors, adenovirus vectors, adeno-associated virus vectors, alphavirus vectors and the like) and non-viral technologies (e.g. DNA/liposome complexes, micelles and targeted viral protein-DNA complexes) as described herein.
- viral technologies e.g. retroviral vectors, adenovirus vectors, adeno-associated virus vectors, alphavirus vectors and the like
- non-viral technologies e.g. DNA/liposome complexes, micelles and targeted viral protein-DNA complexes
- expression of the transgene can be under the control of ubiquitous promoters (e.g. EF-1) or tissue specific promoters (e.g.
- CaMKI Calcium Calmodulin kinase 2
- NSE calcium Calmodulin kinase 2
- human Thy-1 promoter Alternatively, expression levels may be controlled by use of an inducible promoter system (e.g. Tet on/off promoter) as described in Wiznerowicz et al. (2005) Stem Cells 77:8957-8961.
- an inducible promoter system e.g. Tet on/off promoter
- promoters include, but are not limited to, the
- CMV cytomegalovirus
- GUSB b -glucuronidase
- WPRE Woodchuck Hepatitis Virus Post-Regulatory Element
- BGH bovine growth hormone
- the disclosure further provides the isolated polynucleotides of this disclosure operatively linked to a promoter of RNA transcription, as well as other regulatory sequences for replication and/or transient or stable expression of the DNA or RNA.
- a promoter of RNA transcription as well as other regulatory sequences for replication and/or transient or stable expression of the DNA or RNA.
- the term“operatively linked” means positioned in such a manner that the promoter will direct transcription of RNA off the DNA molecule. Examples of such promoters are SP6, T4 and T7.
- cell-specific promoters are used for cell-specific expression of the inserted polynucleotide.
- Vectors which contain a promoter or a promoter/enhancer, with termination codons and selectable marker sequences, as well as a cloning site into which an inserted piece of DNA can be operatively linked to that promoter are well known in the art and commercially available.
- Gene Expression Technology Goeddel ed., Academic Press, Inc. (1991)
- Vectors: Essential Data Series (Gacesa and Ramji, eds., John Wiley & Sons, N.Y. (1994)), which contains maps, functional properties, commercial suppliers and a reference to GenEMBL accession numbers for various suitable vectors.
- these vectors are capable of transcribing RNA in vitro or in vivo.
- Expression vectors containing these nucleic acids are useful to obtain host vector systems to produce proteins and polypeptides. It is implied that these expression vectors must be replicable in the host organisms either as episomes or as an integral part of the chromosomal DNA. Suitable expression vectors include plasmids, viral vectors, including adenoviruses, adeno-associated viruses, retroviruses, cosmids, etc. Adenoviral vectors are particularly useful for introducing genes into tissues in vivo because of their high levels of expression and efficient transformation of cells both in vitro and in vivo.
- a suitable host cell e.g., a prokaryotic or a eukaryotic cell and the host cell replicates
- the protein can be recombinantly produced.
- suitable host cells will depend on the vector and can include mammalian cells, animal cells, human cells, simian cells, insect cells, yeast cells, and bacterial cells as described above and constructed using well known methods. See Sambrook and Russell (2001), supra.
- the nucleic acid can be inserted into the host cell by methods well known in the art such as transformation for bacterial cells; transfection using calcium phosphate precipitation for mammalian cells; DEAE-dextran; electroporation; or microinjection. See Sambrook and Russell (2001), supra for this methodology.
- the present disclosure also provides delivery vehicles suitable for delivery of a polynucleotide of the disclosure into cells (whether in vivo, ex vivo, or in vitro).
- a polynucleotide of the disclosure can be contained within a gene delivery vehicle, a cloning vector or an expression vector. These vectors (especially expression vectors) can in turn be manipulated to assume any of a number of forms which may, for example, facilitate delivery to and/or entry into a cell.
- polynucleotides encoding two or more peptides at least one of which is an MPS, SEQ ID NO: 40-56, 58 and 59, or an equivalent of each thereof, are intended to be translated and optionally expressed
- the polynucleotides encoding the polypeptides may be organized within a recombinant mRNA or cDNA molecule that results in the transcript that expresses on a single mRNA molecule the at least two peptides. This is accomplished by use of a polynucleotide that has the biological activity of an internal ribosome entry site (IRES) located between the polynucleotide encoding the two peptides.
- IRS internal ribosome entry site
- IRES elements initiate translation of polynucleotides without the use of a“cap” structure traditionally thought to be necessary for translation of proteins in eukaryotic cells. Initially described in connection with the untranslated regions of individual picomaviruses, e.g. polio virus and encephalomyocarditis virus, IRES elements were later shown to efficiently initiate translation of reading frames in eukaryotic cells and when positioned downstream from a eukaryotic promoter, it will not influence the "cap "-dependent translation of the first cistron.
- the IRES element typically is at least 450 nucleotides long when in occurs in viruses and possesses, at its 3’ end, a conserved“UUUC” sequence followed by a polypyrimidine trace, a G-poor spacer and an AUG triple.
- IRES is intended to include any molecule such as a mRNA polynucleotide or its reverse transcript (cDNA) which is able to initiate translation of the gene downstream from the polynucleotide without the benefit of a cap site in a eukaryotic cell.
- IRES mRNA polynucleotide or its reverse transcript (cDNA) which is able to initiate translation of the gene downstream from the polynucleotide without the benefit of a cap site in a eukaryotic cell.
- IRES can be identical to sequences found in nature, such as the picomavirus IRES, or they can be non-naturally or non-native sequences that perform the same function when transfected into a suitable host cell.
- Bi- and poly-cistronic expression vectors containing naturally occurring IRES elements are known in the art and described for example, in Pestova et al. (1998) Genes Dev.
- IRES Intracellular sequences similar to that disclosed in U.S. Patent No. 6,653,132.
- the patent discloses a sequence element (designated SP163) composed of sequences derived from the 5'-UTR of VEGF (Vascular Endothelial Growth Factor gene), which, was presumably generated through a previously unknown mode of alternative splicing.
- SP163 a sequence element composed of sequences derived from the 5'-UTR of VEGF (Vascular Endothelial Growth Factor gene), which, was presumably generated through a previously unknown mode of alternative splicing.
- SP163 is a natural cellular IRES element with a superior performance as a translation stimulator and as a mediator of cap-independent translation relative to known cellular IRES elements and that these functions are maintained under stress conditions.
- Operatively linked to the IRES element and separately, are sequences necessary for the translation and proper processing of the peptides. Examples of such include, but are not limited to a eukaryotic promoter, an enhancer, a termination sequence and a polyadenylation sequence. Construction and use of such sequences are known in the art and are combined with IRES elements and protein sequences using recombinant methods. “Operatively linked” shall mean the juxtaposition of two or more components in a manner that allows them to junction for their intended purpose. Promoters are sequences which drive transcription of the marker or target protein. It must be selected for use in the particular host cell, i.e., mammalian, insect or plant. Viral or mammalian promoters will function in mammalian cells. The promoters can be constitutive or inducible, examples of which are known and described in the art.
- the peptides are transcribed and translated from a separate recombinant polynucleotide and combined into a functional protein in the host cell.
- This recombinant polynucleotide does not require the IRES element or marker protein although in one aspect, it may be present.
- polynucleotides and for the recombinant production of peptides and for high throughput screening.
- the term“vector” refers to a nucleic acid construct deigned for transfer between different hosts, including but not limited to a plasmid, a virus, a cosmid, a phage, a BAC, a YAC, etc.
- A“viral vector” is defined as a recombinantly produced virus or viral particle that comprises a polynucleotide to be delivered into a host cell, either in vivo, ex vivo or in vitro.
- plasmid vectors may be prepared from commercially available vectors.
- viral vectors may be produced from baculoviruses, retroviruses, adenoviruses, AAVs, etc.
- the viral vector is a lentiviral vector.
- viral vectors include retroviral vectors, adenovirus vectors, adeno-associated virus vectors, alphavirus vectors and the like.
- Infectious tobacco mosaic virus (TMV)-based vectors can be used to manufacturer proteins and have been reported to express Griffithsin in tobacco leaves (O'Keefe et al.
- a vector construct refers to the polynucleotide comprising the retroviral genome or part thereof, and a gene of interest.
- Vectors that contain both a promoter and a cloning site into which a polynucleotide can be operatively linked are well known in the art. Such vectors are capable of transcribing RNA in vitro or in vivo and are commercially available from sources such as Agilent Technologies (Santa Clara, Calif.) and Promega Biotech (Madison, Wis.).
- a vector comprising, or alternatively consisting essentially of, or yet further consisting of one or more of the isolated polynucleotide of this disclosure and optionally regulatory sequences operatively linked to the isolated polynucleotide for replication and/or expression.
- a vector include a plasmid or a viral vector such as a retroviral vector, a lentiviral vector, an adenoviral vector, or an adeno- associated viral vector.
- the vector is an AAV vector (adeno- associated viral vector).
- the regulatory sequences comprise, or alternatively consist essentially of, or yet further consist of a promoter, an enhancer element and/or a reporter.
- the vector further comprises, or alternatively consists essentially of, or yet further consists of a detectable marker or a purification marker.
- detectable marker refers to at least one marker capable of directly or indirectly, producing a detectable signal.
- a non-exhaustive list of this marker includes enzymes which produce a detectable signal, for example by colorimetry, fluorescence, luminescence, such as horseradish peroxidase, alkaline phosphatase, b- galactosidase, glucose-6-phosphate dehydrogenase, chromophores such as fluorescent, luminescent dyes, groups with electron density detected by electron microscopy or by their electrical property such as conductivity, amperometry, voltammetry, impedance, detectable groups, for example whose molecules are of sufficient size to induce detectable modifications in their physical and/or chemical properties, such detection may be accomplished by optical methods such as diffraction, surface plasmon resonance, surface variation , the contact angle change or physical methods such as atomic force spectroscopy, tunnel effect, or radioactive molecules such as 32 P, 35 S or 125 1.
- enzymes which produce a detectable signal for example by colorimetry, fluorescence, luminescence, such as horseradish peroxidase, alka
- the term“purification marker” refers to at least one marker useful for purification or identification.
- a non-exhaustive list of this marker includes His, lacZ, GST, maltose-binding protein, NusA, BCCP, c-myc, CaM, FLAG, GFP, YFP, cherry, thioredoxin, poly (NANP), V5, Snap, HA, chitin-binding protein, Softag 1, Softag 3, Strep, or S-protein.
- Suitable direct or indirect fluorescence marker comprise FLAG, GFP, YFP, RFP, dTomato, cherry, Cy3, Cy 5, Cy 5.5, Cy 7, DNP, AMCA, Biotin, Digoxigenin, Tamra, Texas Red, rhodamine, Alexa fluors, FITC, TRITC or any other fluorescent dye or hapten.
- a host cell further comprising or alternatively consisting essentially of, or yet further consisting one or more of the isolated polypeptide, the isolated polynucleotide, or the vector of this disclosure.
- Suitable cells containing the polypeptides and/or polynucleotides include prokaryotic and eukaryotic cells, which include, but are not limited to bacterial cells, yeast cells, insect cells, animal cells, mammalian cells, murine cells, rat cells, sheep cells, simian cells and human cells.
- prokaryotic and eukaryotic cells include, but are not limited to bacterial cells, yeast cells, insect cells, animal cells, mammalian cells, murine cells, rat cells, sheep cells, simian cells and human cells.
- bacterial cells include Escherichia coli , Salmonella enterica and Streptococcus gordonii.
- the cells can be purchased from a commercial vendor such as the American Type Culture Collection (ATCC, Rockville Maryland, USA) or cultured from an isolate using methods known in the art.
- suitable eukaryotic cells include, but are not limited to 293T HEK cells, as well as the hamster cell line BHK-21; the murine cell lines designated NIH3T3, NS0, Cl 27, the simian cell lines COS, Vero; and the human cell lines HeLa, PER.C6 (commercially available from Crucell) U-937 and Hep G2.
- a non-limiting example of insect cells include Spodoptera frugiperda.
- yeast useful for expression include, but are not limited to Saccharomyces, Schizosaccharomyces, Hansenula, Candida, Torulopsis, Yarrowia, or Pichia. See e.g., U.S. Patent Nos. 4,812,405; 4,818,700; 4,929,555; 5,736,383; 5,955,349; 5,888,768 and 6,258,559.
- the cells can be of any particular tissue type such as a somatic or embryonic stem cell such as a stem cell that can or cannot differentiate into a terminally differentiated cell.
- the stem cell can be of human or animal origin, such as mammalian.
- This disclosure also provides an antibody capable of specifically forming a complex with a polypeptide of this disclosure, e.g. a polypeptide of SEQ ID Nos: 40-56 which can be used for screening for said polypeptides.
- the antibody or fragment thereof specifically binds to a phosphorylation site domain (PSD) of MARCKS protein, which can prevent MARCKS from phosphorylation and/or sequester the proteins that naturally interact with MARCKS.
- the antibody or fragment thereof is conjugated to a peptide or other molecule to facilitate entry into the cell.
- the term“antibody” is described above and includes polyclonal antibodies and monoclonal antibodies, antibody fragments, as well as derivatives thereof.
- the antibodies include, but are not limited to cows, rabbits, goats, mice, rats, hamsters, guinea pigs, sheep, dogs, cats, monkeys, chimpanzees, apes, etc.
- the antibodies are also useful to identify and purify therapeutic and/or diagnostic polypeptides.
- hybridoma cell lines producing monoclonal antibodies of this disclosure are also provided.
- polyclonal antibodies of the disclosure can be generated using conventional techniques known in the art and are well-described in the literature. Several methodologies exist for production of polyclonal antibodies. For example, polyclonal antibodies are typically produced by immunization of a suitable mammal such as, but not limited to, chickens, goats, guinea pigs, hamsters, horses, mice, rats, and rabbits. An antigen is injected into the mammal, which induces the B-lymphocytes to produce IgG immunoglobulins specific for the antigen. This IgG is purified from the mammal’s serum.
- a suitable mammal such as, but not limited to, chickens, goats, guinea pigs, hamsters, horses, mice, rats, and rabbits.
- An antigen is injected into the mammal, which induces the B-lymphocytes to produce IgG immunoglobulins specific for the antigen. This IgG is purified from the mammal’s
- Variations of this methodology include modification of adjuvants, routes and site of administration, injection volumes per site and the number of sites per animal for optimal production and humane treatment of the animal.
- adjuvants typically are used to improve or enhance an immune response to antigens. Most adjuvants provide for an injection site antigen depot, which allows for a slow release of antigen into draining lymph nodes.
- Other adjuvants include surfactants which promote concentration of protein antigen molecules over a large surface area and immunostimulatory molecules.
- Non-limiting examples of adjuvants for polyclonal antibody generation include Freund’s adjuvants, Ribi adjuvant system, and Titermax.
- Polyclonal antibodies can be generated using methods described in U.S. Patent Nos. 7,279,559; 7,119,179; 7,060,800; 6,709,659; 6,656,746; 6,322,788; 5,686,073; and 5,670,153.
- the monoclonal antibodies of the disclosure can be generated using conventional hybridoma techniques known in the art and well-described in the literature.
- a hybridoma is produced by fusing a suitable immortal cell line (e.g., a myeloma cell line such as, but not limited to, Sp2/0, Sp2/0-AG14, NSO, NS1, NS2, AE-1, L.5, >243,
- a suitable immortal cell line e.g., a myeloma cell line such as, but not limited to, Sp2/0, Sp2/0-AG14, NSO, NS1, NS2, AE-1, L.5, >243,
- MOLT4 DA-1, JURKAT, WEHI, K-562, COS, RAJI, NIH 3T3, HL-60, MLA 144,
- Antibody producing cells can also be obtained from the peripheral blood or, preferably the spleen or lymph nodes, of humans or other suitable animals that have been immunized with the antigen of interest. Any other suitable host cell can also be used for expressing heterologous or endogenous nucleic acid encoding an antibody, specified fragment or variant thereof, of the present disclosure.
- the fused cells (hybridomas) or recombinant cells can be isolated using selective culture conditions or other suitable known methods, and cloned by limiting dilution or cell sorting, or other known methods.
- the antibodies described herein can be generated using a Multiple Antigenic Peptide (MAP) system.
- MAP Multiple Antigenic Peptide
- the MAP system utilizes a peptidyl core of three or seven radially branched lysine residues, on to which the antigen peptides of interest can be built using standard solid-phase chemistry.
- the lysine core yields the MAP bearing about 4 to 8 copies of the peptide epitope depending on the inner core that generally accounts for less than 10% of total molecular weight.
- the MAP system does not require a carrier protein for conjugation.
- the high molar ratio and dense packing of multiple copies of the antigenic epitope in a MAP has been shown to produce strong immunogenic response. This method is described in U.S. Patent No. 5,229,490.
- Suitable methods of producing or isolating antibodies of the requisite specificity can be used, including, but not limited to, methods that select recombinant antibody from a peptide or protein library (e.g., but not limited to, a bacteriophage, ribosome, oligonucleotide, RNA, cDNA, or the like, display library; e.g., as available from various commercial vendors such as Cambridge Antibody Technologies (Cambridgeshire, UK), MorphoSys
- 93: 154-161 that are capable of producing a repertoire of human antibodies, as known in the art and/or as described herein.
- Such techniques include, but are not limited to, ribosome display (Hanes et al. (1997) Proc. Natl. Acad. Sci. USA 94:4937-4942; Hanes et al.(1998) Proc. Natl. Acad. Sci. USA 95: 14130-14135); single cell antibody producing technologies (e.g., selected lymphocyte antibody method ("SLAM”) (U.S. Patent No. 5,627,052, Wen et al. (1987) J. Immunol. 17:887-892; Babcook et al. (1996) Proc. Natl. Acad. Sci. USA
- SAM selected lymphocyte antibody method
- Antibody derivatives of the present disclosure can also be prepared by delivering a polynucleotide encoding an antibody of this disclosure to a suitable host such as to provide transgenic animals or mammals, such as goats, cows, horses, sheep, and the like, that produce such antibodies in their milk. These methods are known in the art and are described for example in U.S. Patent Nos. 5,827,690; 5,849,992; 4,873,316; 5,849,992; 5,994,616;
- antibody derivative includes post-translational modification to linear polypeptide sequence of the antibody or fragment.
- U.S. Patent Application includes post-translational modification to linear polypeptide sequence of the antibody or fragment.
- No. 6,602,684 B1 describes a method for the generation of modified glycol-forms of antibodies, including whole antibody molecules, antibody fragments, or fusion proteins that include a region equivalent to the Fc region of an immunoglobulin, having enhanced Fc- mediated cellular toxicity, and glycoproteins so generated.
- Antibody derivatives also can be prepared by delivering a polynucleotide of this disclosure to provide transgenic plants and cultured plant cells (e.g., but not limited to tobacco, maize, and duckweed) that produce such antibodies, specified portions or variants in the plant parts or in cells cultured there from.
- transgenic plants and cultured plant cells e.g., but not limited to tobacco, maize, and duckweed
- transgenic plants and cultured plant cells e.g., but not limited to tobacco, maize, and duckweed
- Antibody derivatives have also been produced in large amounts from transgenic plant seeds including antibody fragments, such as single chain antibodies (scFvs), including tobacco seeds and potato tubers. See, e.g., Conrad et al. (1998) Plant Mol. Biol. 38: 101-109 and reference cited therein.
- scFvs single chain antibodies
- Antibody derivatives also can be produced, for example, by adding exogenous sequences to modify immunogenicity or reduce, enhance or modify binding, affinity, on-rate, off-rate, avidity, specificity, half-life, or any other suitable characteristic. Generally, part or all of the non-human or human CDR sequences are maintained while the non-human sequences of the variable and constant regions are replaced with human or other amino acids.
- the CDR residues are directly and most substantially involved in influencing antigen binding.
- Humanization or engineering of antibodies of the present disclosure can be performed using any known method such as, but not limited to, those described in U.S. Patent Nos. 5,723,323; 5,976,862; 5,824,514; 5,817,483; 5,814,476; 5,763,192; 5,723,323; 5,766,886; 5,714,352; 6,204,023; 6,180,370; 5,693,762; 5,530,101;
- Fully human antibody sequences are made in a transgenic mouse which has been engineered to express human heavy and light chain antibody genes. Multiple strains of such transgenic mice have been made which can produce different classes of antibodies. B cells from transgenic mice which are producing a desirable antibody can be fused to make hybridoma cell lines for continuous production of the desired antibody.
- the antibodies of this disclosure also can be modified to create chimeric antibodies.
- Chimeric antibodies are those in which the various domains of the antibodies’ heavy and light chains are coded for by DNA from more than one species. See, e.g., U.S. Patent No.
- the antibodies of this disclosure can also be modified to create veneered antibodies.
- Veneered antibodies are those in which the exterior amino acid residues of the antibody of one species are judiciously replaced or“veneered” with those of a second species so that the antibodies of the first species will not be immunogenic in the second species thereby reducing the immunogenicity of the antibody. Since the antigenicity of a protein is primarily dependent on the nature of its surface, the immunogenicity of an antibody could be reduced by replacing the exposed residues which differ from those usually found in other mammalian species antibodies. This judicious replacement of exterior residues should have little, or no, effect on the interior domains, or on the interdomain contacts. Thus, ligand binding properties should be unaffected as a consequence of alterations which are limited to the variable region framework residues. The process is referred to as“veneering” since only the outer surface or skin of the antibody is altered, the supporting residues remain
- Non-limiting examples of the methods used to generate veneered antibodies include EP 519596; U.S. Patent No. 6,797,492; and described in Padlan et al. (1991) Mol. Immunol. 28(4-5):489-498.
- the term“antibody derivative” also includes“diabodies” which are small antibody fragments with two antigen-binding sites, wherein fragments comprise a heavy chain variable domain (VH) connected to a light chain variable domain (VL) in the same polypeptide chain.
- VH heavy chain variable domain
- VL light chain variable domain
- antibody derivative further includes“linear antibodies”.
- linear antibodies The procedure for making linear antibodies is known in the art and described in Zapata et al. (1995) Protein Eng. 8(10): 1057-1062. Briefly, these antibodies comprise a pair of tandem Fd segments (V H
- Linear antibodies can be bispecific or monospecific.
- the antibodies of this disclosure can be recovered and purified from recombinant cell cultures by known methods including, but not limited to, protein A purification, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography.
- High performance liquid chromatography HPLC can also be used for purification.
- Antibodies of the present disclosure include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a eukaryotic host, including, for example, yeast, higher plant, insect and mammalian cells, or alternatively from prokaryotic cells as described above.
- the antibody being tested determines whether the antibody being tested prevents a monoclonal antibody of this disclosure from binding the protein or polypeptide with which the monoclonal antibody is normally reactive. If the antibody being tested competes with the monoclonal antibody of the disclosure as shown by a decrease in binding by the monoclonal antibody of this disclosure, then it is likely that the two antibodies bind to the same or a closely related epitope.
- antibody also is intended to include antibodies of all isotypes. Particular isotypes of a monoclonal antibody can be prepared either directly by selecting from the initial fusion, or prepared secondarily, from a parental hybridoma secreting a monoclonal antibody of different isotype by using the sib selection technique to isolate class switch variants using the procedure described in Steplewski et al. (1985) Proc. Natl. Acad. Sci. USA 82:8653 or Spira et al. (1984) J. Immunol. Methods 74:307.
- the isolation of other hybridomas secreting monoclonal antibodies with the specificity of the monoclonal antibodies of the disclosure can also be accomplished by one of ordinary skill in the art by producing anti -idiotypic antibodies.
- An anti -idiotypic antibody is an antibody which recognizes unique determinants present on the monoclonal antibody produced by the hybridoma of interest.
- an anti -idiotypic monoclonal antibody made to a first monoclonal antibody will have a binding domain in the hypervariable region which is the mirror image of the epitope bound by the first monoclonal antibody.
- the anti-idiotypic monoclonal antibody could be used for immunization for production of these antibodies.
- Antibodies can be conjugated, for example, to a pharmaceutical agent, such as chemotherapeutic drug or a toxin. They can be linked to a cytokine, to a ligand, to another antibody. Suitable agents for coupling to antibodies to achieve an anti-tumor effect include cytokines, such as interleukin 2 (IL-2) and Tumor Necrosis Factor (TNF); photosensitizers, for use in photodynamic therapy, including aluminum (III) phthalocyanine tetrasulfonate,
- radionuclides such as iodine-131 ( I), yttrium-90
- antibiotics such as doxorubicin, adriamycin, daunorubicin, methotrexate, daunomycin, neocarzinostatin, and carboplatin
- bacterial, plant, and other toxins such as diphtheria toxin, pseudomonas exotoxin A, staphylococcal enterotoxin A, abrin-A toxin, ricin A (deglycosylated ricin A and native ricin A), TGF-alpha toxin, cytotoxin from Chinese cobra (naja naja atra), and gelonin (a plant toxin)
- ribosome inactivating proteins from plants, bacteria and fungi such as restrictocin (a ribosome inactivating protein produced by Aspergillus restrictus ), saporin (a ribosome inactivating protein from Saponaria officinalis ), and RNase; ty
- the antibodies of the disclosure also can be bound to many different carriers.
- this disclosure also provides compositions containing the antibodies and another substance, active or inert.
- examples of well-known carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, agaroses and magnetite.
- the nature of the carrier can be either soluble or insoluble for purposes of the disclosure. Those skilled in the art will know of other suitable carriers for binding monoclonal antibodies, or will be able to ascertain such, using routine
- compositions for Therapy are Compositions for Therapy
- compositions comprising, or alternatively consisting essentially of, or yet further consisting of a carrier and one or more of the isolated polypeptide, the isolated polynucleotide, the vector or the host cell of this disclosure, e.g., in one aspect, the composition comprises as isolated polypeptide of SEQ ID Nos: 1-59, or alternatively SEQ ID Nos: 40-56, 59, or 40-56, 58 and 59, or a polynucleotide that encodes the polypeptide, or an equivalent of each thereof. Further diagnostic compositions include and antibody that binds the polypeptide or its equivalent or a fragment thereof.
- the carrier is a pharmaceutically acceptable carrier.
- one or more of the above antibody, antibody fragment, antibody derivative, polypeptide or polynucleotides encoding these compositions and siRNA, vector, or host cell can be further comprise, or alternatively consist essentially of, or yet further consist of a chemotherapeutic agent or drug, or an anti-fibrotic agent or drug.
- chemotherapeutic agent or drug include pirfenidone and nintedanib.
- Non-limiting examples of chemotherapeutic agent or drug include a Tyrosine Kinase Inhibitor (TKI), a platinum-based drug, a drug or agent that targets EGFR, or a MANS polypeptide or fragment thereof, wherein the fragment comprises, or alternatively consists essentially of, or yet further consists of a polypeptide and a carrier, a
- TKI Tyrosine Kinase Inhibitor
- platinum-based drug a platinum-based drug
- drug or agent that targets EGFR or a MANS polypeptide or fragment thereof, wherein the fragment comprises, or alternatively consists essentially of, or yet further consists of a polypeptide and a carrier, a
- compositions comprise, or alternatively consist essentially of, or yet further consist of, one or more of the above compositions described above in combination with a carrier, a pharmaceutically acceptable carrier or medical device.
- the carrier can be a liquid phase carrier or a solid phase carrier, e.g., bead, gel, microarray, or carrier molecule such as a liposome.
- the composition can optionally further comprise at least one further compound, protein or composition.
- “carriers” includes therapeutically active agents such as another peptide or protein (e.g., a Fab' fragment).
- an antibody of this disclosure, derivative or fragment thereof can be functionally linked (e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., to produce a bispecific or a multispecific antibody), a cytotoxin, a cellular ligand or an antigen.
- this disclosure encompasses a large variety of antibody conjugates, bi- and multispecific molecules, and fusion proteins, whether or not they target the same epitope as the antibodies of this disclosure.
- Additional examples of“carriers” also include therapeutically active agents such as another peptide or protein (e.g., an Fab' fragment) or agent for the treatment of one or more of: suppressing MARCKS phosphorylation and/or dissociation from the cell membrane; suppressing or reducing Th2 cytokine (IL-4, IL-5, IL-13 and eotaxin) production and/or IgE level; suppressing mucous metaplasia; inhibiting or suppressing infiltration of inflammatory cells (monocytes, neutrophils, lymphocytes); a disease or disease symptoms associated with allergic inflammation or hyper-reactivity.
- therapeutically active agents such as another peptide or protein (e.g., an Fab' fragment) or agent for the treatment of one or more of: suppressing MARCKS phosphorylation and/or dissociation from the cell membrane; suppressing or reducing Th2 cytokine (IL-4, IL-5, IL-13 and eotaxin) production and/or IgE level; suppressing mucous meta
- organic molecules also termed modifying agents or activating agents, that can be covalently attached, directly or indirectly, to a polypeptide, antibody, antibody fragment, antibody derivative, polynucleotide encoding these, or RNAi, vector or host cell of this disclosure. Attachment of the molecule can improve pharmacokinetic properties (e.g., increased in vivo serum half-life).
- organic molecules include, but are not limited to a hydrophilic polymeric group, a fatty acid group or a fatty acid ester group.
- fatty acid encompasses mono- carboxylic acids and di-carboxylic acids.
- Hydrophilic polymers suitable for modifying antibodies of the disclosure can be linear or branched and include, for example, polyalkane glycols (e.g., PEG, monomethoxy- poly ethylene glycol (mPEG), PPG and the like), carbohydrates (e.g., dextran, cellulose, oligosaccharides, polysaccharides and the like), polymers of hydrophilic amino acids (e.g., polylysine, polyarginine, polyaspartate and the like), polyalkane oxides (e.g., polyethylene oxide, polypropylene oxide and the like) and polyvinyl pyrolidone.
- polyalkane glycols e.g., PEG, monomethoxy- poly ethylene glycol (mPEG), PPG and the like
- carbohydrates e.g., dextran, cellulose, oligosaccharides, polysaccharides and the like
- polymers of hydrophilic amino acids e.g., polylysine,
- a suitable hydrophilic polymer that modifies the antibody of the disclosure has a molecular weight of about 800 to about 150,000 Daltons as a separate molecular entity.
- the hydrophilic polymeric group can be substituted with one to about six alkyl, fatty acid or fatty acid ester groups.
- Hydrophilic polymers that are substituted with a fatty acid or fatty acid ester group can be prepared by employing suitable methods.
- a polymer comprising an amine group can be coupled to a carboxylate of the fatty acid or fatty acid ester, and an activated carboxylate (e.g., activated with N, N-carbonyl diimidazole) on a fatty acid or fatty acid ester can be coupled to a hydroxyl group on a polymer.
- an activated carboxylate e.g., activated with N, N-carbonyl diimidazole
- Fatty acids and fatty acid esters suitable for modifying antibodies of the disclosure can be saturated or can contain one or more units of unsaturation.
- examples of such include, but are not limited to n-dodecanoate, n-tetradecanoate, n-octadecanoate, n-eicosanoate, n- docosanoate, n-triacontanoate, n-tetracontanoate, cis-A9-octadecanoate, all cis-A5,8, 11,14- eicosatetraenoate, octanedioic acid, tetradecanedioic acid, octadecanedioic acid,
- Suitable fatty acid esters include mono-esters of dicarboxylic acids that comprise a linear or branched lower alkyl group.
- the lower alkyl group can comprise from one to about twelve, preferably one to about six, carbon atoms.
- the present disclosure provides a composition comprising, or alternatively consisting essentially of, or yet further consisting of, at least one antibody of this disclosure, derivative or fragment thereof, suitable for administration in an effective amount to inhibit the expression of MARCKS for preventing, reducing, delaying, inhibiting or suppressing disease or disease symptoms associated with MARCKS phosphorylation and/or dissociation from the cell membrane and/or PIP2-sequestering effect, or PIP3 production, or activation of AKT, or inflammation, fibrosis, or activated fibroblast proliferation, or myofibroblast genesis and differentiation, or transforming growth factor-beta (TGF-b) signaling pathway, or cancer, or solid tumor cell growth or metastasis, or cancer stem cell growth, or tumor cell mobility; and optionally for promoting apoptosis, or restoring sensitivity of a resistant cancer cell to a chemotherapeutic.
- TGF-b transforming growth factor-beta
- the compositions have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lung fibrosis, idiopathic pulmonary fibrosis, or smoking, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis.
- the compositions have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lymphoma, leukemia or a solid tumor.
- solid tumor include cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer.
- compositions include, for example, pharmaceutical and diagnostic
- compositions/kits comprising a pharmaceutically acceptable carrier and at least one antibody of this disclosure, variant, derivative or fragment thereof.
- the composition can further comprise additional antibodies or therapeutic agents which in combination, provide multiple therapies tailored to provide the maximum therapeutic benefit.
- composition of this disclosure can be co-administered with other therapeutic agents, such as a small molecule or peptide, whether or not linked to them or administered in the same dosing. They can be co-administered simultaneously with such agents (e.g., in a single composition or separately) or can be administered before or after administration of such agents.
- other therapeutic agents such as a small molecule or peptide, whether or not linked to them or administered in the same dosing. They can be co-administered simultaneously with such agents (e.g., in a single composition or separately) or can be administered before or after administration of such agents.
- compositions for Diagnosis are provided.
- compositions can be further combined with a carrier, a pharmaceutically acceptable carrier or medical device which is suitable for use of the compositions in diagnostic or therapeutic methods.
- the composition comprises as isolated polypeptide of SEQ ID Nos: 1-59, or alternatively SEQ ID Nos: 40-59, or alternatively SEQ ID Nos: 40-56, 58 and 59, or a polynucleotide that encodes the
- compositions include and antibody that binds the polypeptide or its equivalent or a fragment thereof.
- the carrier can be a liquid phase carrier or a solid phase carrier, e.g., bead, gel, gene chip, microarray, or carrier molecule such as a liposome.
- the composition can optionally further comprise, or alternatively consist essentially of, or yet further consist of at least one further compound, protein or composition, anticancer agent or other small molecule, protein, polypeptide, antibody or antibody fragment, e.g., a TKI inhibitor, a drug or agent that targets EGFR, a platinum-based drug or a MARCKS polypeptide or fragment thereof.
- “carriers” includes therapeutically active agents such as another peptide or protein (e.g., a Fab' fragment).
- an antibody, derivative or fragment thereof can be functionally linked (e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., to produce a bispecific or a multispecific antibody), a cytotoxin, a cellular ligand or an antigen.
- the antibodies or fragments thereof can be linked to the polypeptides of this disclosure to facilitate targeting to a cell or tissue of choice and/or to stabilize the polypeptide. Accordingly, this disclosure encompasses a large variety of antibody conjugates, bi- and multispecific molecules, and fusion proteins, whether or not they target the same epitope as the antibodies of this disclosure.
- organic molecules also termed modifying agents or activating agents, that can be covalently attached, directly or indirectly, to an antibody of this disclosure. Attachment of the molecule can improve pharmacokinetic properties (e.g., increased in vivo serum half-life).
- organic molecules include, but are not limited to a hydrophilic polymeric group, a fatty acid group or a fatty acid ester group.
- fatty acid encompasses mono-carboxylic acids and di- carboxylic acids.
- Hydrophilic polymers suitable for modifying antibodies of the disclosure can be linear or branched and include, for example, polyalkane glycols (e.g., PEG, monomethoxy- poly ethylene glycol (mPEG), PPG and the like), carbohydrates (e.g., dextran, cellulose, oligosaccharides, polysaccharides and the like), polymers of hydrophilic amino acids (e.g., polylysine, polyarginine, polyaspartate and the like), polyalkane oxides (e.g., polyethylene oxide, polypropylene oxide and the like) and polyvinyl pyrolidone.
- polyalkane glycols e.g., PEG, monomethoxy- poly ethylene glycol (mPEG), PPG and the like
- carbohydrates e.g., dextran, cellulose, oligosaccharides, polysaccharides and the like
- polymers of hydrophilic amino acids e.g., polylysine,
- a suitable hydrophilic polymer that modifies the antibody of the disclosure has a molecular weight of about 800 to about 150,000 Daltons as a separate molecular entity.
- the hydrophilic polymeric group can be substituted with one to about six alkyl, fatty acid or fatty acid ester groups.
- Hydrophilic polymers that are substituted with a fatty acid or fatty acid ester group can be prepared by employing suitable methods.
- a polymer comprising an amine group can be coupled to a carboxylate of the fatty acid or fatty acid ester, and an activated carboxylate (e.g., activated with N, N-carbonyl diimidazole) on a fatty acid or fatty acid ester can be coupled to a hydroxyl group on a polymer.
- an activated carboxylate e.g., activated with N, N-carbonyl diimidazole
- Fatty acids and fatty acid esters suitable for modifying antibodies of the disclosure can be saturated or can contain one or more units of unsaturation.
- examples of such include, but are not limited to n-dodecanoate, n-tetradecanoate, n-octadecanoate, n-eicosanoate, n- docosanoate, n-triacontanoate, n-tetracontanoate, ci s-A9-octadecanoate, all cis-A5,8, 11,14- eicosatetraenoate, octanedioic acid, tetradecanedioic acid, octadecanedioic acid,
- Suitable fatty acid esters include mono-esters of dicarboxylic acids that comprise a linear or branched lower alkyl group.
- the lower alkyl group can comprise from one to about twelve, preferably one to about six, carbon atoms.
- compositions containing at least one antibody of this disclosure.
- the compositions include, for example, pharmaceutical and diagnostic compositions/kits, comprising a pharmaceutically acceptable carrier and at least one antibody of this disclosure, variant, derivative or fragment thereof.
- the composition can further comprise additional antibodies or therapeutic agents which in combination, provide multiple therapies tailored to provide the maximum therapeutic benefit.
- composition of this disclosure can be co-administered with other therapeutic agents, whether or not linked to them or administered in the same dosing. They can be co-administered simultaneously with such agents (e.g., in a single composition or separately) or can be administered before or after administration of such agents.
- agents can include anticancer therapies such as erlotinib, irinotecan, 5-Fluorouracil, Erbitux, Cetuximab, FOLFOX, or radiation therapy or other agents known to those skilled in the art.
- the polynucleotides of this disclosure can be attached to a solid support such as an array or high density chip for use in high throughput screening assays using methods known in the art.
- a polynucleotide encoding MPS e.g. SEQ ID NOs: 1-59, or alternatively 40-56, or alternatively SEQ ID Nos: 40-56, 58 and 59, or an equivalent of each thereof can be used as a probe to identify expression in a subject sample.
- the chips can be synthesized on a derivatized glass surface using the methods disclosed in U.S. Patent Nos. 5,405,783; 5,412,087 and 5,445,934. Photoprotected nucleoside phosphoramidites can be coupled to the glass surface, selectively deprotected by photolysis through a
- Chemical synthesis of polynucleotides can be accomplished using a number of protocols, including the use of solid support chemistry, where an oligonucleotide is synthesized one nucleoside at a time while anchored to an inorganic polymer.
- the first nucleotide is attached to an inorganic polymer using a reactive group on the polymer which reacts with a reactive group on the nucleoside to form a covalent linkage.
- Each subsequent nucleoside is then added to the first nucleoside molecule by: 1) formation of a phosphite linkage between the original nucleoside and a new nucleoside with a protecting group; 2) conversion of the phosphite linkage to a phosphate linkage by oxidation; and 3) removal of one of the protecting groups to form a new reactive site for the next nucleoside as described in U.S. Patent Nos. 4,458,066; 5,153,319; 5,132,418; and 4,973,679, all of which are incorporated by reference herein.
- Solid phase synthesis of oligonucleotides eliminates the need to isolate and purify the intermediate products after the addition of every nucleotide base. Following the synthesis of RNA, the oligonucleotides is deprotected (U.S. Patent No. 5,831,071) and purified to remove by-products, incomplete synthesis products, and the like.
- U.S. Patent No. 5,686,599 describes a method for one pot deprotection of RNA under conditions suitable for the removal of the protecting group from the 2' hydroxyl position.
- U.S. Patent No. 5,804,683 describes a method for the removal of exocyclic protecting groups using alkylamines.
- U.S. Patent No. 5,831,071 describes a method for the deprotection of RNA using ethylamine, propylamine, or butylamine.
- 5,281,701 describes methods and reagents for the synthesis of RNA using 5'-0-protected-2'-0-alkylsilyl- adenosine phosphoramidite and 5'-0-protected-2'-0-alkylsilylguanosine phosphoramidite monomers which are deprotected using ethylthiotetrazole.
- Usman and Cedergren (1992) Trends in Biochem. Sci. 17:334-339 describe the synthesis of RNA-DNA chimeras for use in studies of the role of 2' hydroxyl groups. Sproat et al.
- the probes and high density oligonucleotide probe arrays also provide an effective means of monitoring expression of a multiplicity of genes, one of which includes the gene.
- the expression monitoring methods can be used in a wide variety of circumstances including detection of disease, identification of differential gene expression between samples isolated from the same patient over a time course, or screening for compositions that upregulate or downregulate the expression of the gene at one time, or alternatively, over a period of time.
- Detectable labels suitable for use in the present disclosure include those identified above as well as any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means.
- Useful labels in the present disclosure include biotin for staining with labeled streptavidin conjugate, magnetic beads (e.g., DynabeadsTM), fluorescent dyes (e.g., fluorescein, Texas red, rhodamine, green fluorescent protein, and the like), radiolabels (e.g., 3 H, 125 1, 35 S, 14 C, or 32 P) enzymes (e.g., horseradish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic (e.g., polystyrene, polypropylene, latex, etc.) beads.
- Patents teaching the use of such labels include U.S. Patents Nos. 3,817,837; 3,850,752;
- Radiolabels may be detected using photographic film or scintillation counters
- fluorescent markers can be detected using a photodetector to detect emitted light
- Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting the reaction product produced by the action of the enzyme on the substrate, and colorimetric labels are detected by simply visualizing the colored label.
- the nucleic acid sample also may be modified prior to hybridization to the high density probe array in order to reduce sample complexity thereby decreasing background signal and improving sensitivity of the measurement using the methods disclosed in
- Results from the chip assay are typically analyzed using a computer software program. See, for example, EP 0717 113 A2 and WO 95/20681. This information is compared against existing data sets of gene expression levels for diseased and healthy individuals. A correlation between the obtained data and that of a set of diseased individuals indicates the onset of a disease in the subject patient.
- the present disclosure also provides methods to identify leads and methods for treating the disease or disease symptoms associated with one or more of: preventing, reducing, delaying, inhibiting or suppressing disease or disease symptoms associated with MARCKS phosphorylation and/or dissociation from the cell membrane and/or PIP2- sequestering effect, or PIP3 production, or activation of ART, or inflammation, fibrosis, or activated fibroblast proliferation, or myofibroblast genesis and differentiation, or
- compositions have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lung fibrosis, idiopathic pulmonary fibrosis, or smoking, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis.
- compositions have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lymphoma, leukemia or a solid tumor.
- solid tumor include cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer.
- the present disclosure also provides methods to identify leads and methods for treating fibrosis and/or cancer.
- the screen identifies lead compounds or biologies agents that mimic the polypeptides identified above and which are useful to treat these disorders or to treat or ameliorate the symptoms associated with the disorders.
- Test substances for screening can come from any source. They can be libraries of natural products, combinatorial chemical libraries, biological products made by recombinant libraries, etc. The source of the test substances is not critical to the disclosure.
- the present disclosure provides means for screening compounds and compositions which may previously have been overlooked in other screening schemes.
- suitable cell cultures or tissue cultures are first provided.
- the cell can be a cultured cell or a genetically modified cell which differentially expresses the receptor and/or receptor complex.
- the cells can be from a tissue culture as described below.
- the cells are cultured under conditions (temperature, growth or culture medium and gas (CO2)) and for an appropriate amount of time to attain exponential proliferation without density dependent constraints. It also is desirable to maintain an additional separate cell culture; one which does not receive the agent being tested as a control.
- CO2 culture medium and gas
- suitable cells may be cultured in microtiter plates and several agents may be assayed at the same time by noting genotypic changes, phenotypic changes and/or cell death.
- the agent is a composition other than a DNA or RNA nucleic acid molecule
- the suitable conditions may be by directly added to the cell culture or added to culture medium for addition.
- an“effective” amount must be added which can be empirically determined.
- the screen involves contacting the agent with a test cell expressing the complex and then assaying the cell its ability to provide a biological response similar to the polypeptides of this disclosure.
- the test cell or tissue sample is isolated from the subject to be treated and one or more potential agents are screened to determine the optimal therapeutic and/or course of treatment for that individual patient.
- an“agent” is intended to include, but not be limited to a biological or chemical compound such as a simple or complex organic or inorganic molecule, a peptide, a protein or an oligonucleotide.
- oligomers such as oligopeptides and oligonucleotides
- synthetic organic compounds based on various core structures, and these are also included in the term“agent”.
- various natural sources can provide compounds for screening, such as plant or animal extracts, and the like. It should be understood, although not always explicitly stated that the agent is used alone or in combination with another agent, having the same or different biological activity as the agents identified by the screen.
- the agents and methods also are intended to be combined with other therapies. They can be administered concurrently or sequentially.
- kits for treating disease or disease symptoms associated with fibrosis comprising, or alternatively consisting essentially of, or yet further consisting of administering to the subject an effective amount of one or more of the isolated polypeptide or the isolated polynucleotide of as identified above (e.g., SEQ.
- the peptide that comprises, or alternatively consists essentially of, or yet further consists of a peptide identified in the below table (SEQ ID NOS 48-54, 40-42, 45 and 47, respectively, in order of appearance (Red residues are D-isoforms of amino acids):
- the polypeptide is at least 6 amino acids and no more than 51 amino acids, or alternatively at least 45 amino acids, or alternatively 40 amino acids, or alternatively 35 amino acids, or alternatively 30 amino acids, or alternatively no more than 25 amino acids, or alternatively no more than 20 amino acids, or alternatively no more than 15 amino acids biological equivalents of each thereof.
- a biological equivalent is a polypeptide wherein one or more amino acids have been substituted with a conservative amino acid substitution(s).
- all serines are replaced by alanines (A-MPSs).
- myristic acid is conjugated or joined to the N-terminal amino acid of the peptides, including biological equivalents thereof, e.g., wherein all serines are replaced by alanines.
- the polypeptide is selected from an isolated polypeptide of SEQ ID NO: 18, wherein an amino acid corresponding to position 6 has been replaced with an alanine, proline, or glycine; or SEQ ID NO: 19, wherein an amino acid corresponding to position 7 has been replaced with an alanine, proline, or glycine; or SEQ ID NO: 20, wherein an amino acid corresponding to position 8 has been replaced with an alanine, proline, or glycine.
- D-MPS (wherein all serines are substituted with aspartate) and myristoylated-wild-type MPS are specifically excluded from the group of polypeptides and methods as disclosed herein.
- the“MPS” intends a polypeptide of at least 6 amino acids and no more than 51 amino acids, comprising, or alternatively consisting essentially of, or yet consisting of, SEQ ID Nos: 1-59, or alternatively 40-56, 58 and 59, where in some embodiments, and biological equivalents, wherein X is absent or is a basic amino acid, and/or Y is absent or a hydrophobic amino acid.
- the basic amino acid comprises one or more lysine (K), histidine (H) or arginine (R).
- all X are lysine (K).
- Y is one or more hydrophobic amino acids, selected from Alanine (A), Isoleucine (I), Leucine (L), Valine (V), Phenylalanine (F), Tryptophan (W) or Tyrosine (Y).
- all serines are alanines.
- all X are lysine and all S are substituted with alanine.
- all S are Aspartate (D).
- all of the above noted polypeptides as disclosed herein further comprise, or alternatively consist essentially of, or yet further consist of, myristic acid conjugated or joined to the N- terminal amino acid.
- MPS peptide comprises, or consists essentially of, or yet further aspect, the amino acid sequence.
- all serines are replaced by alanines (A- MPSs).
- myristic acid is conjugated or joined to the N-terminal amino acid of SEQ ID NOS. : 1-59, or 40-59, or alternatively 40-56, 58 and 59, including biological equivalents thereof, e.g., wherein all serines are replaced by alanines.
- the polypeptide can be no more than 51 amino acids, comprising, or alternatively consisting essentially of, or yet consisting of, an isolated polypeptide comprising, or alternatively consisting essentially of, or yet further consisting of, no more than 51 amino acids, wherein the amino acid sequence comprises SEQ ID Nos: 1-59, or 40-59, or alternatively 40-56, 58 and 59, and biological equivalents of each thereof; and wherein in one aspect, one or more of the serines (S) are substituted with one or more neutral or positively charged amino acids, that may be the same or different, e.g., alanines (A), glycines (G), or prolines (P), or a biological equivalent of each thereof, wherein a biological equivalent of comprises a polypeptide that has at least 80% sequence identity to the above polypeptides or amino acid sequences, or wherein a biological equivalent comprises an isolated polypeptide encoded by an isolated polynucleotide that hybridizes under high stringency conditions to the compliment poly
- term also includes the polypeptides having the amino acid sequence XXXRYAYXXAYX (SEQ ID NO: 58), wherein X is any amino acid, or XXXXXR Y A YXX A YXL AGY A YXXNXX (SEQ ID NO: 59), , wherein X is any amino acid and Y is a hydrophobic amino acid residue, including for example tyrosine, and optionally a polynucleotide comprising any contiguous 12 amino acid fragment of these sequences, and biological equivalents thereof; and further optionally wherein one or more serine (S) is substituted with one or more neutral or positively charged amino acids, that may be the same or different, e.g., one or more serines are substituted with one or more alanines (A), glycines (G), or prolines (P), and wherein each X is the same or different and is a basic amino acid and wherein each Y is the same or different and is
- MPS polypeptides include an isolated polypeptide comprising a biological equivalent of SEQ ID NOs: 1-59, or alternatively 40-59, or alternatively 40-56, 58 and 59, which comprises a polypeptide that has at least 80% sequence identity to SEQ ID NOs: 1-59, or alternatively 40-59, or alternatively 40-56, 58 and 59, and optionally wherein one or more serine (S) is substituted with one or more neutral or positively charged amino acids, that may be the same or different, e.g., one or more serines are substituted with one or more alanines (A), glycines (G), or prolines (P), and/or wherein a biological equivalent comprises an isolated polypeptide encoded by an isolated polynucleotide that hybridizes under high stringency conditions to the compliment polynucleotide encoding SEQ ID NOs: 1-59, or alternatively 40-59, or alternatively 40-56, 58 and 59, and optionally wherein
- the basic amino acid comprises one or more lysine (K), histidine (H) or arginine (R). In one aspect, all X are lysine (K).
- Y is one or more hydrophobic amino acids, selected from alanine (A), isoleucine (I), leucine (L), valine (V), phenylalanine (F), tryptophan (W) or tyrosine (Y).
- the polypeptides as described above are no more than 45 amino acids, or alternatively 40 amino acids, or alternatively 35 amino acids, or alternatively 30 amino acids, or alternatively no more than 25 amino acids, or alternatively no more than 20 amino acids, or alternatively no more than 15 amino acids or alternatively, the polypeptides of SEQ ID NO: 21, 25, 31 or 32, 40-56, 58 or 59, and optionally wherein one or more serine (S) is substituted with one or more neutral or positively charged amino acids, that may be the same or different, e.g., one or more serines are substituted with one or more alanines (A), glycines (G), or prolines (P), and wherein biological equivalents of each thereof.
- S serine
- P prolines
- the basic amino acid comprises one or more lysine (K), histidine (H) or arginine (R).
- all X are lysine (K).
- Y is one or more hydrophobic amino acids, selected from alanine (A), isoleucine (I), leucine (L), valine (V), phenylalanine (F), tryptophan (W) or tyrosine (Y).
- the polypeptide is no more than 45 amino acids, or alternatively 40 amino acids, or alternatively 35 amino acids, or alternatively 30 amino acids, or alternatively no more than 25 amino acids, or alternatively no more than 20 amino acids, or alternatively no more than 15 amino acids or alternatively.
- the polypeptides of SEQ ID NOs: 45 and 47 are MPS polypeptides wherein the 4 serine residues of wild-type MPS peptide are replaced by alanine residues, e g., (KKKKKRFAFKKAFKLAGFAFKKNKK (SEQ ID NO: 45), that increases membrane affinity.
- the polypeptides of SEQ ID NO: 45-48 are highly positive charged and interact electrostatically with PIP2 on the phospholipid membrane.
- the disease or symptoms associated with fibrosis is selected from the group of: lung fibrosis, idiopathic pulmonary fibrosis, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis.
- the cancer cell or cancer is lymphoma, leukemia or a solid tumor.
- the cancer cell or cancer is lung cancer, liver cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer.
- the present disclosure also provides methods to identify leads and methods for treating the disease or disease symptoms associated with one or more of: preventing, reducing, delaying, inhibiting or suppressing disease or disease symptoms associated with MARCKS phosphorylation and/or dissociation from the cell membrane and/or PIP2- sequestering effect, or PIP3 production, or activation of ART, or inflammation, fibrosis, or activated fibroblast proliferation, or myofibroblast genesis and differentiation, or transforming growth factor-beta (TGF-b) signaling pathway, or cancer, or solid tumor cell growth or metastasis, or cancer stem cell growth, or tumor cell mobility; and optionally for promoting apoptosis, or restoring sensitivity of a resistant cancer cell to a chemotherapeutic.
- TGF-b transforming growth factor-beta
- the compositions have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lung fibrosis, idiopathic pulmonary fibrosis, or smoking, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis.
- the compositions have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lymphoma, leukemia or a solid tumor.
- solid tumor include cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer.
- methods to achieve such in vitro or in vivo are provided by contacting or administering an effective amount of the polypeptide and/or other therapeutic composition of this disclosure (e.g., antibody or siRNA) to a subject in need of such treatment.
- an effective amount of the polypeptide and/or other therapeutic composition of this disclosure e.g., antibody or siRNA
- Administration can be by any suitable method and effective amounts can be empirically determined by a treating physician or one of skill in the art when the contacting is in vitro.
- the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of an anti-fibrotic agent or drug.
- anti-fibrotic agent or drug include pirfenidone and nintedanib.
- Additional agents include but are not limited to nintedanib, oral prednisone (or some other form of corticosteroid), Fluimucil (N-acetylcysteine), Cytoxan
- cyclophosphamide a, combination of prednisone, azathioprine, and N-acetylcysteine (NAC), colchicine, D-penicillamine, pirfenidone (5-methyl- l-phenyl-2-[lH]-pyridone), interferon-b 1 a, relaxin, lovastatin, beractant, N-acetylcysteine, keratinocyte growth factor, captopril, hepatocyte growth factor, Rhokinase inhibitor, thrombomodulin-like protein, bilirubin, PPARy (peroxisome proliferator-activated receptor gamma) activator, imatinib, and interferon-g.
- NAC N-acetylcysteine
- the fibrosis is pulmonary fibrosis and the additional agents include one or more of colchicine, D-penicillamine, pirfenidone (5-methyl-l-phenyl-2-[lH]- pyridone), interferon ⁇ la, relaxin, lovastatin, beractant, N-acetylcysteine, keratinocyte growth factor, captopril, hepatocyte growth factor, Rhokinase inhibitor, thrombomodulin-like protein, bilirubin, PPARy (peroxisome proliferator-activated receptor gamma) activator, imatinib, and interferon-g.
- colchicine D-penicillamine
- pirfenidone (5-methyl-l-phenyl-2-[lH]- pyridone)
- interferon ⁇ la relaxin
- lovastatin beractant
- N-acetylcysteine N-acetylcysteine
- Additional agents are known in the literature, e.g., JP A No. 8- 268906, WO 00/57913, JP A No. 2002-371006, JP A No. 2003-119138, JP A No. 2005- 513031, JP A No. 2005-531628, JP A No. 2006-502153, WO 2006/068232, and Ann Intern Med. 2001; 134(2): 136-51.
- the subjects with IPF are“unresponsive to conventional treatment,” i.e., unresponsive to conventional prior art treatments of IPF including corticosteroids, cyclophosphamide, and azathioprine.
- the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of an anti-cancer drug or agent.
- the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of an anti-cancer drug or agent.
- the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of a tyrosine kinase inhibitor, a platinum drug or an immunotherapeutic.
- an effective amount of an agent or drug can be combined and contacted or administered as appropriate.
- the chemotherapeutic is a TKI, or a platinum-based drug, or an agent that targets EGFR or yet further a MARCKS polypeptide or fragment thereof, wherein the fragment is not an N-terminal fragment of MARCKS or a polypeptide that does not have an amino acid sequence having sequence identity to a polypeptide as described above.
- Also provided is a method for restoring sensitivity of a chemoresistant cancer cell to a chemotherapeutic drug comprising or alternatively consisting essentially of, or yet further consists of, contacting the cell or administering to a subject in need thereof, an effective amount of an isolated MPS polypeptide or an equivalent thereof or an anti- MARCKS siRNA, and optionally, wherein the chemotherapeutic drug or agent is selected from a TKI, a platinum-based drug, a drug or agent that targets EGFR, cisplatin, paclitaxel, erlotinib or dasatinib; and optionally wherein the chemoresistant cancer cell is a TKI resistant cell.
- siRNA- and shRNA-MARCKS inhibiting RNA are known in the art (see, e.g., WO 2015/013669) and sequences provided herein.
- the contacting is in vitro or in vivo and in one aspect, the cell is a mammalian solid tumor cell.
- the tumor cell comprises or expresses higher levels of phosphorylated MARCKS polypeptide as compared to a normal counterpart cell.
- Non-limiting examples of such cells include a lung cancer cell, a colon cancer cell, a breast cancer cell or a pancreatic cancer and alternatively or in addition, the patient suffering from advanced cancer (Stage II to IV).
- the method further comprises contacting the cell or administering to the patient or subject an effective amount of a chemotherapeutic drug or agent, e.g., a TKI, or a platinum-based drug or agent that targets EGFR, e.g., cisplatin, paclitaxel, erlotinib or dasatinib.
- a chemotherapeutic drug or agent e.g., a TKI
- a platinum-based drug or agent that targets EGFR e.g., cisplatin, paclitaxel, erlotinib or dasatinib.
- TGF-b transforming growth factor-beta
- a pharmaceutical composition containing one or more polypeptide or other therapeutic composition (e.g., antibody or siRNA) described herein is administered to a patient suspected of, or already suffering from cancer, wherein said composition is administered in an amount sufficient to cure, or at least partially arrest, the symptoms of the disease (biochemical, histological and/or behavioral), including its complication and intermediate pathological phenotypes in development of the disease.
- administration is by intraperitoneal injection or orally.
- a method for delivering a polypeptide of this disclosure across the blood brain barrier in a subject in need thereof comprising, or alternatively consisting essentially of, or yet further consisting of administering an effective amount of vector as disclosed above to the subject.
- the peptide is delivered in the absence of an agent that promotes transport across the blood brain barrier, e.g., mannitol.
- the administration is local to a tissue being treated or systemic.
- the local administration comprises, or alternatively consists essentially of, or yet further consists of topical or by inhalation therapy.
- the systemic administration is from the group of intravenous, intracranial, inhalation therapy, intranasal, vaginal or rectal administration.
- Administration in vivo can be effected in one dose, continuously or intermittently throughout the course of treatment. Methods of determining the most effective means and dosage of administration are well known to those of skill in the art and will vary with the composition used for therapy, the purpose of the therapy, the target cell, solid tumor or cancer being treated, and the subject being treated. Single or multiple administrations can be carried out with the dose level and pattern being selected by the treating physician. Suitable dosage formulations and methods of administering the agents can be found below. Additional dosing strategies are disclosed in US Patent No. 10,039,515.
- compositions can be administered orally, intranasally, parenterally, injection, orally and may take the form of tablets, lozenges, granules, capsules, pills, ampoules, suppositories or aerosol form. They may also take the form of suspensions, solutions and emulsions of the active ingredient in aqueous or nonaqueous diluents, syrups, granulates or powders.
- the pharmaceutical compositions can also contain other pharmaceutically active compounds or a plurality of compounds of the disclosure.
- an agent of the present disclosure also referred to herein as the active ingredient, may be administered for therapy by any suitable route including oral, rectal, nasal, topical (including transdermal, aerosol, buccal and sublingual), vaginal, parenteral (including subcutaneous, intramuscular, intravenous and intradermal) and pulmonary. It will also be appreciated that the preferred route will vary with the condition and age of the recipient, and the disease being treated.
- the agent should be administered to achieve peak concentrations of the active compound at sites of disease. This may be achieved, for example, by the intravenous injection of the agent, optionally in saline, or orally administered, for example, as a tablet, capsule or syrup containing the active ingredient. Desirable blood levels of the agent may be maintained by a continuous infusion to provide a therapeutic amount of the active ingredient within disease tissue.
- operative combinations is contemplated to provide therapeutic combinations requiring a lower total dosage of each component agent than may be required when each individual therapeutic compound or drug is used alone, thereby reducing adverse effects.
- the agent While it is possible for the agent to be administered alone, it is preferable to present it as a pharmaceutical formulation comprising at least one active ingredient, as defined above, together with one or more pharmaceutically acceptable carriers therefor and optionally other therapeutic agents.
- Each carrier must be“acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
- Formulations include those suitable for oral, rectal, nasal, topical (including transdermal, buccal and sublingual), vaginal, parenteral (including subcutaneous,
- the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient with the carrier that constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then if necessary shaping the product.
- Formulations of the present disclosure suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets, each containing a
- the active ingredient may also be presented as a bolus, electuary or paste.
- a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder (e.g., povidone, gelatin, hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (e.g., sodium starch glycolate, cross-linked povidone, cross-linked sodium carboxymethyl cellulose) surface-active or dispersing agent.
- Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- the tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile. Tablets may optionally be provided with an enteric coating, to provide release in parts of the gut other than the stomach.
- Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
- compositions for topical administration may be formulated as an ointment, cream, suspension, lotion, powder, solution, past, gel, spray, aerosol or oil.
- a formulation may comprise a patch or a dressing such as a bandage or adhesive plaster impregnated with active ingredients and optionally one or more excipients or diluents.
- the aqueous phase of the cream base may include, for example, at least about 30% w/w of a polyhydric alcohol, i.e., an alcohol having two or more hydroxyl groups such as propylene glycol, butane- 1, 3 -diol, mannitol, sorbitol, glycerol and polyethylene glycol and mixtures thereof.
- the topical formulations may desirably include a compound that enhances absorption or penetration of the agent through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethylsulfoxide and related analogues.
- the oily phase of the emulsions of this disclosure may be constituted from known ingredients in a known manner. While this phase may comprise merely an emulsifier (otherwise known as an emulgent), it desirably comprises a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier that acts as a stabilizer. It is also preferred to include both an oil and a fat.
- the emulsifier(s) with or without stabilize ⁇ s) make up the so-called emulsifying wax
- the wax together with the oil and/or fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations.
- Emulgents and emulsion stabilizers suitable for use in the formulation of the present disclosure include Tween 60, Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate and sodium lauryl sulfate.
- the choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties, since the solubility of the active compound in most oils likely to be used in pharmaceutical emulsion formulations is very low.
- the cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers.
- Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the agent.
- Formulations for rectal administration may be presented as a suppository with a suitable base comprising, for example, cocoa butter or a salicylate.
- Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the agent, such carriers as are known in the art to be appropriate.
- Formulations suitable for nasal administration include a coarse powder having a particle size, for example, in the range of about 20 to about 500 microns which is administered as a dry powder or in an inhaler device by rapid inhalation through the nasal passage from a container of the powder held close up to the nose.
- Suitable formulations wherein the carrier is a liquid for administration as, for example, nasal spray, nasal drops, or by aerosol administration by nebulizer include aqueous or oily solutions of the agent.
- Formulations suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents, and liposomes or other microparticulate systems which are designed to target the compound to blood components or one or more organs.
- the formulations may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
- sterile liquid carrier for example water for injections
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
- the formulations of this disclosure may include other agents conventional in the art having regard to the type of formulation in question, for example, those suitable for oral administration may include such further agents as sweeteners, thickeners and flavoring agents. It also is intended that the agents, compositions and methods of this disclosure be combined with other suitable compositions and therapies.
- the methods of this disclosure are used to treat“a subject,”“a host,”“an individual,” and“a patient” such as for example animals, typically mammalian animals. Any suitable mammal can be treated by a method, cell or composition described herein.
- Non-limiting examples of mammals include humans, non-human primates (e.g., apes, gibbons,
- a mammal is a human.
- a mammal can be any age or at any stage of development (e.g., an adult, teen, child, infant, or a mammal in utero).
- a mammal can be male or female.
- a mammal can be a pregnant female.
- a subject is a human.
- a subject has or is suspected of having a cancer or neoplastic disorder.
- “treating” or“treatment” of a disease in a subject refers to (1) preventing the symptoms or disease from occurring in a subject that is predisposed or does not yet display symptoms of the disease; (2) inhibiting the disease or arresting its
- beneficial or desired results can include one or more, but are not limited to, alleviation or amelioration of one or more symptoms, diminishment of extent of a condition (including a disease), stabilized (i.e., not worsening) state of a condition (including disease), delay or slowing of condition (including disease), progression, amelioration or palliation of the condition (including disease), states and remission (whether partial or total), whether detectable or undetectable.
- treatment excludes prophylaxis.
- treatment when the disease is cancer, the following clinical end points are non-limiting examples of treatment: reduction in tumor burden, slowing of tumor growth, longer overall survival, longer time to tumor progression, inhibition of metastasis or a reduction in metastasis of the tumor.
- treatment excludes prophylaxis.
- the following clinical end points are non-limiting examples of treatment: reduction in fibrotic tissue, reduction in inflammation, reduction in fibroblastic lesions, reduction in activated fibroblast proliferation, reduction in myofibroblast genesis, reduction in rate of decline of Forced Vital Capacity (FVC), wherein FVC is the total amount of air exhaled during the lung function test, absolute and relative increases from baseline in FVC, absolute increase from baseline in FVC (% Predicted), increase in progression-free survival time, decrease from baseline in St George's Respiratory
- SGRQ Quality of Life questionnaire
- HRCT computerized tomography
- QLF quantitative lung fibrosis
- Non-limiting examples clinical end points for fibrosis treatment and tests that can be performed to measure said clinical end points are described in the following clinical trials: NCT03733444 (https://clinicaltrials.gov/ct2/show/NCT03733444), NCT00287729
- NCT02503657 https://clinical trials. gov/ct2/show/NCT02503657), NCT00047645
- clinical end points for fibrosis treatment and tests that can be performed to measure said clinical end points are described in King et al, N Engl J Med. (2014) May 29;370(22):2083-92 and Richeldi et al, N Engl J Med. 2014 May 29;370(22):2071-82.
- kits comprising, or alternatively consisting essentially of, or yet further consisting of one or more of: the isolated polypeptide, the isolated polynucleotide, the vector, or the composition of this disclosure and instructions for use.
- the instructions recite the methods of using the isolated polypeptide, the isolated polynucleotide, the vector, or the composition disclosed herein.
- Lung fibrosis is an important step of normal lung injury-repair process since the lung is a primary target organ that is constantly bombarded with environmental air pollutants.
- Smoking is one of the etiologies in inducing lung injury and repair and with continuous smoking, causing uncontrolled lung injury and repair; this may lead to a life-threatening disease, such as idiopathic pulmonary fibrosis (IPF) with a median survival time only 3 to 5 years 1_3 .
- IPPF idiopathic pulmonary fibrosis
- Targeting both increased fibroblast proliferation and myofibroblast differentiation has been considered as a therapeutic strategy in IPF management; therefore, development of agents capable of eradicating myofibroblasts or limiting their genesis is urgently needed.
- IPF idiopathic pulmonary fibrosis
- Nintedanib a potent multikinase inhibitor, shows anti-fibrotic and anti-inflammatory effects via blocking several key receptor tyrosine kinases including platelet-derived growth factor (PDGF) receptor, fibroblast growth factor (FGF) receptor, and vascular endothelial growth factor (VEGF) receptor 5 ⁇ 5 .
- PDGF platelet-derived growth factor
- FGF fibroblast growth factor
- VEGF vascular endothelial growth factor
- TGF-b transforming growth factor-beta pathway
- adverse effects are common with nintedanib therapy and worse with the higher dose, resulting in drug discontinuation 9 10 . For these reasons, there is an urgent need to seek new and better therapeutics for those diagnosed with IPF.
- the central idea of this disclosure is to develop effective approaches for selectively targeting fibrogenic pathways without the disturbance of the immune and inflammatory responses and also improving the efficacy of nintedanib treatment. Additionally, Applicant evaluated the antifibrotic properties of the compounds in the phase of established fibrosis rather than in the early period of
- MARCKS myristoylated alanine-rich C kinase substrate
- MARCKS is also a phosphatidylinositol 4,5-bisphosphate (PIP2)-associated protein through its phosphorylation site domain (PSD; also known as the basic effector domain) binding to the cell membrane.
- Phosphorylation by PKC within the MARCKS PSD (Seri 59 and Seri 63) enhances phosphorylated MARCKS (phospho-MARCKS) detachment from membrane and suppresses the PIP2-sequestering effect u ’ 12 .
- MPS peptide which targets the MARCKS PSD Sequence and inhibits AKT activation in cancers 14 ’ 16 .
- MPS peptides ranging from 12 to 25 amino acids designed to mimic both the membrane curvature and PIP2 retention activities of MARCKS’ PSD/ED motif sequence.
- Their inhibitory efficacy which is based on PIP2 and PIP3 retention activity, has been tested in the suppression of bleomycin- induced mouse lung fibrosis model in vivo, and in the inhibition of myofibroblast
- a comparison approach was used in which two different microarray datasets (GSE21369 and GSE2052) were integrated to find genes that are specifically upregulated in lung fibroblasts isolated from IPF patients, as compared to normal fibroblasts from non-IPF patients.
- a-SMA alpha smooth muscle actin
- Applicant identified a cluster of 487 genes that were positively correlated with a-SMA expression in dataset GSE27335, which includes profiling data of lung myofibroblast-like cells.
- FIG. IB shows higher expression of a-SMA, MARCKS and MARCKS
- MPS peptide potentially serves as an antifibrotic agent in bleomycin-induced pulmonary fibrosis.
- Bleomycin remains the standard agent for induction of experimental pulmonary fibrosis in animals 23 .
- 8-week-old female C57BL/6J mice received saline or bleomycin intratracheally (33 pg in 50 ml of saline) as previously described 23 .
- Lung specimens from bleomycin- or saline-treated mice were collected and subjected to immunofluorescence staining. Elevated co-expression of phospho-MARCKS and a-SMA was seen in bleomycin-treated lung tissues (FIG. 6).
- lung fibroblast cells isolated from saline- or bleomycin-treated mice were incubated with either 100 mM control or MPS peptide for 48 hours.
- Fibroblasts from bleomycin-treated mice exhibited a decrease in phospho-MARCKS, phospho-AKT and a-SMA expression in the presence of MPS (FIG. 7A).
- MTT assays confirmed that MPS treatment is very effective in decreasing cell viability of these fibroblast cells, as compared to the treatment of fibroblast cells from saline-treated mice (FIG. 7B).
- mice intraperitoneally during the“fibrotic” phase of the model.
- there were four groups (five mice per group): 1) saline plus PBS; 2) saline plus MPS; 3) bleomycin plus PBS; 4) bleomycin plus MPS.
- Applicant observed a continued loss of body weight in the mice exposed to bleomycin plus PBS, but not in the bleomycin-exposed mice with MPS treatment (FIG. 8). After 22 days of bleomycin exposure, mice lungs were collected and processed for histology and Masson's trichrome staining.
- FIG. 11A shows an increase of a-SMA expression upon nintedanib treatment, in agreement with the recent report that nintedanib induces a-SMA, albeit TGF-b signaling was partially affected by high doses of nintedanib treatment 24 .
- MPS-12042 treatment has a better efficacy in inhibiting IPF fibroblast proliferation (IC50: 1.0 ⁇ 1.5 mM) as compared to MPS peptide (IC50: 125-178 mM).
- concentration at 1 pM remarkably decreased cell proliferation by 50% in IPF fibroblast but not in normal fibroblasts (FIG. 14).
- the IC50 for MPS-12042 is lower than the current FDA-approved IPF drug nintedanib (IC50: 13.8-15.9pM).
- phospho-MARCKS acts as a specific marker for activated fibroblasts, inhibiting MARCKS activity by the use of the MPS peptides could lead to future clinical testing and a potential new therapeutic for IPF patients.
- the therapeutic potential of the MPS peptide in bleomycin-induced pulmonary fibrosis has demonstrated for the first time and will help to develop treatments that destroy activated fibroblasts and/or myofibroblast without adversely affecting quiescent fibroblasts.
- Applicant’s studies potentially define and validate therapeutic targets and/or biomarkers for IPF, which may lead to the development of much needed novel therapeutic approaches for IPF.
- Targeting the MARCKS PSD is associated with inhibition of stem-like cell properties.
- ALDH1L1 and FGFR2 (FIG. 15, right).
- sphere formation is an indicator of tumor aggressiveness and correlates with poor survival in cancer patients
- the sphere-forming ability was assessed by counting the number and size of tumor spheres (oncospheres) under a microscope. Serum-free medium and non-adherent culture conditions were used to culture and enrich the cancer stem-like population from low-invasive lung cancer cell line, CL 1-0 cells, which were originally cultured under an adhering culture condition.
- V5-tagged wild-type and PSD-mutated (S159/163A) MARCKS constructs were introduced into low MARCKS-expressing cells.
- An approximate 3.7-fold increase in sphere forming ability in smoke-treated cells with ectopic expression of V5-tagged wild type MARCKS was observed, whereas smoke-enhanced sphere-forming ability and sternness gene expression were not obviously seen in cells with overexpression of phosphorylation-defective S159/163A MARCKS (FIG. 17).
- Applicant treated smoke-enriched oncospheres derived from H292 cells with MPS peptide to target the MARCKS PSD.
- Human primary fibroblast cells were obtained from airway tissues provided from the UC Davis Medical Hospital (Sacramento, CA) with consent. The protocol for human tissue procurement and usage were periodically reviewed and approved by the University Human Subject Research Review Committee. Primary fibroblast cell lines, IPF-1 and IPF-2 cells, were established from IPF patients. Cells were obtained from lung biopsies and the diagnosis of IPF was supported by patient history, physical examination, pulmonary function tests, and typical high-resolution chest computed tomography findings of IPF. In all cases, the diagnosis of IPF was confirmed by microscopic analysis of lung tissue and demonstrated the characteristic morphological findings of usual interstitial pneumonia. All patients fulfilled the criteria for the diagnosis of IPF as established by the American Thoracic Society and
- Non-fibrotic primary control adult human lung fibroblast lines Normal- 1 and Normal-2 cells were used. These lines were established from normal lung tissue or histologically normal lung tissue adjacent to carcinoid tumor.
- the IPF cell line, LL97A was purchased from the American Type Culture Collection (ATCC) (Manassas,
- Lung fibroblast lines were cultured in high-glucose DMEM or RPMI-1640 medium with 10% fetal bovine serum and 1% penicillin-streptomycin at 37°C in a humidified atmosphere of 5% C02. Fibroblasts were used between passages 4 and 8. Cells were characterized as fibroblasts as described 26 . Quantitative real-time PCR
- the mRNA expression level of target genes was detected by real-time reverse transcription polymerase chain reaction (RT-qPCR) using primers as described in the Primers section below.
- RT-qPCR real-time reverse transcription polymerase chain reaction
- TBP house keeping gene TATA-box binding protein
- the target/TBP mRNA ratio was calculated as 2 _ACT x K, where K is a constant.
- IPF lung tissue and non-IPF normal lung specimens were obtained from patients with histologically confirmed IPF who underwent surgical resection at the UC Davis Medical Center. This investigation was approved by the Institutional Review Board of the UC Davis Health System. Written informed consent was obtained from all patients. Formalin-fixed and paraffin-embedded specimens were used, and level of phospho-MARCKS was analyzed by immunohistochemical staining as described previously 14, 16, 27 . These results were also reviewed and scored independently by two pathologists.
- mice Female C57BL/6J mice (8-week-old) were purchased from Jackson Laboratory (Sacramento, CA) and receive saline or bleomycin intratracheally as previously described 23 . Briefly, mice were anesthetized with 5% isoflurane and administered bleomycin (APP Pharmaceuticals, Schaumburg, IL) at a dose of 0.005 U/g mouse via intratracheal aspiration on day 0. Control animals received an equal volume of sterile saline only. In early fibrogenic phase, these mice were intraperitoneally (i.p) injected with either PBS, or MPS peptide (28mg/kg) every two days. At 21 days of bleomycin insult, these mice were sacrificed and the lungs were collected for histological analysis. Mouse experiments were approved by the Institutional Animal Care and Use Committee of UC Davis.
- bleomycin APP Pharmaceuticals, Schaumburg, IL
- Cells were seeded onto 96-well plates at a density of 5-10x 103 cells per well and cultured for the indicated treatment. Cell proliferation was evaluated using a MTS assay kit (Promega, Madison, WI). Twenty microliters of the combined MTS/PMS solution was added into each well, incubated for 3 hours at 37°C, and the absorbance was measured at 490 nm by using an ELISA reader. For Trypan blue test, cells were plated on 12-well plates and treated with the indicated chemotherapeutic agents.
- Dulbecco's Modified Eagle's medium, RPMI-1640 medium, fetal bovine serum and penicillin-streptomycin were purchased from Life Technologies Inc. (Carlsbad, CA).
- Lipofect-AMINETM was purchased from Invitrogen (Carlsbad, CA).
- VECTASTAIN® Elite ABC Kit Rabbit IgG
- VECTOR® Hematoxylin QS nuclear counterstain and DAB solution were purchased from VECTOR Laboratories Inc. (Burlingame, CA).
- MARCKS (clone EP2113Y) and anti-MARCKS (clone EP1446Y) were purchased from Abeam (Cambridge, MA).
- Anti-pSerl59/163 MARCKS (clone D13D2)
- anti-pSer473 AKT anti-pSer308 AKT
- anti-AKT anti-a-SMA
- anti-GAPDH anti-GPDH and anti-P-actin antibodies
- the all primers for quantitative real-time PCR used were as follows: the a-SMA forward primer 5'-TCCTCATCCTCCCTTGAGAA-3' (SEQ ID NO: 60) and the reverse primer 5 ' - AT G A AGG AT GGC T GG A AC AG- 3 ' (SEQ ID NO: 61); the COL1 A1 forward primer 5'-ACGAAGACATCCCACCAATCACCT-3' (SEQ ID NO: 62) and the reverse primer 5'-AGATCACGTCATCGCACAACACCT-3' (SEQ ID NO: 63); the THY1 forward primer 5'-AGAGACTTGGATGAGGAG-3' (SEQ ID NO: 64) and the reverse primer 5'- CTGAGAAT GCTGGAGAT G-3 ' (SEQ ID NO: 65); the FN1 forward primer 5’- TCCAC AAGCGTCATGAAGAG-3’ (SEQ ID NO: 66) and the reverse primer 5’- CTCTGAATCCTGGCATTGGT-3
- IPF lung tissue and non-IPF normal lung specimens were obtained from patients with histologically confirmed IPF who underwent surgical resection at the UC Davis Medical Center. This investigation was approved by the Institutional Review Board of the UC Davis Health System. Written informed consent was obtained from all patients. Formalin-fixed and paraffin-embedded specimens were used, and level of phospho-MARCKS was analyzed by immunohistochemical staining as described previously 1. Detailed experimental procedures were modified from the paraffin immunohistochemistry protocol supplied by the
- a four-point staining intensity scoring system was devised to confirm the relative expression of phospho-MARCKS in lung specimens; scores ranged from zero (no expression) to 3 (highest-intensity staining) as described previously 14, 27 29 .
- MARCKS expression as well as MARCKS phosphorylation are elevated in IPF tissues and cells. This demonstrated that this phenomena was observed in both in-vitro as well as in-vivo in the bleomycin mouse model of pulmonary fibrosis. MARCKS levels and activity (phospho- MARCKS) were correlated with higher pro-fibrotic activity including cell proliferation, extracellular matrix production, invasiveness, and fibroblast differentiation. Upon treatment with MPS peptides, which target MARCKS acitivity, Applicant observes attentuation of these activities. The second significant finding was that MARCKS mediates these profibrotic effects through through the PI3K/AKT pathway.
- Applicant obtained multiple IPF lung ifbroblast cells and treated them with either PBS or 100 mIU ⁇ MPS peptide for 12 hours and subjected to immunocytochemistry utilizing anti-PIP3 antibody. Applicant demonstrates that higher PIP3 levels are observed in IPF lung fibroblast cells and levels are reduced after MPS peptide treatment.
- MPS-12042 demonstrated marked improvement in potency. Applicant tested this peptide against currently approved IPF therapeutic, nintedanib, as well as MPS peptide in the belomycin mouse model of pulmonary fibrosis. As shown in FIG. 20, MPS-12042 has superior efficacy at attenuating phospho-MARCKS and phospho-AKT as well as reducing overall fibrosis and extracellular matrix depostion in mouse lungs exposed to bleomycin.
- XXXRYAYXXAYX where X is any amino acid, and Y is a hydrophobic amino acid residue.
- Aderem A Signal transduction and the actin cytoskeleton: the roles of MARCKS and profilin. Trends in biochemical sciences 1992; 17:438-443.
- Cigarette smoke promotes drug resistance and expansion of cancer stem cell like side population.
- Nicotinic acetylcholine receptors induce c-Kit ligand/Stem Cell Factor and promote sternness in an ARRBl/ beta-arrestin-1 dependent manner in NSCLC.
- Nicotine promotes apoptosis resistance of breast cancer cells and enrichment of side population cells with cancer stem cell-like properties via a signaling cascade involving galectin-3, alpha9 nicotinic acetylcholine receptor and STAT3.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plant Pathology (AREA)
- Pulmonology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Virology (AREA)
- Marine Sciences & Fisheries (AREA)
- Immunology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
This disclosure provides an isolated polypeptide therapeutics, polynucleotides encoding the polypeptides and antibodies that bind to the polypeptides are also provided. Therapeutic and diagnostic uses are further provided.
Description
MPS MODIFIED PEPTIDES AND USE THEREOF
STATEMENT OF GOVERNMENT SUPPORT
[0001] This disclosure was made with government support under the Grant No.
R01HL077902, awarded by the MH/NHLBI. Accordingly, the U.S. Government has certain rights to the disclosure.
CROSS-REFERENCE TO RELATED APPLICATIONS
[0002] This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional
Application No.: 62/849,637, filed May 17, 2019, the contents of which are hereby incorporated by reference into the present application in their entireties.
SEQUENCE LISTING
[0003] The instant application contains a Sequence Listing and is hereby incorporated by reference in its entirety. An ASCII copy, created on May 14, 2020, is named 060933- 0740_SL.txt and is 41,917 bytes in size.
BACKGROUND
[0004] The identification of MARCKS protein dates back to 1982 when it was found that an 87kDa acidic protein in rat brain nerve endings could be regulated by calcium and calmodulin through the activation of PKC (Wu, W.C. et al. (1982) Proc. Natl. Acad. Sci. USA
79(17):5249-5253). Subsequently, the protein was officially named myristoylated alanine- rich C kinase substrate (MARCKS or MARKS) (Albert, K.A. et al. (1986) Proc. Natl. Acad. Sci. USA 83(9):2822-2826). MARCKS is ubiquitously expressed in various species and tissues (Albert, K.A. et al. (1987) Proc. Natl. Acad. Sci. USA 84(20):7046-7050; Stumpo,
D.J. et al. (1989) Proc. Natl. Acad. Sci. USA 86(11):4012-4016), while the other MARCKS family member, MARCKS-related protein (MRP, also known as MacMARCKS, F52 or MLP), a 20 kDa protein is highly expressed in brain, reproductive tissues and macrophage (Aderem, A. (1992) Trend. Biochem. Sci. 17(10):438-443; Blacksher, P.J. (1993) J. Biol. Chem. 268: 1501-1504). MRP, similar to MARCKS also contains the same three
evolutionarily conserved domains; N-terminus myristoylation domain, multiple homology 2 (MH2) domain, and the effector domain (ED). The MH2 domain of unknown function resembles the cytoplasmic tail of the cation-independent mannose-6-phosphate receptor. Protein phosphorylation occurs at Ser159/163 of ED domain. The corporation between the N-
terminus (myristoylated) and the ED (phosphorylated or not phosphorylated) is essential for controlling the association of these molecules with membranes.
[0005] This disclosure provides an isolated polypeptide or an MPS polypeptide comprising, or alternatively consisting essentially of, or yet consisting of an amino acid sequence selected from the group of SEQ ID NOs: 45 or 40-59, or an equivalent of each thereof. In one aspect, an equivalent of the isolated polypeptide comprises or alternatively consists essentially of, or yet consists of a polypeptide having at least 80% sequence identity to the isolated polypeptide or a polypeptide encoded by a polynucleotide that hybridizes to an isolated polynucleotide that encodes the isolated polypeptide or its complement or a polypeptide encoded by a polynucleotide that having at least 80% sequence identity to the polynucleotide that encodes an amino acid sequence selected from the group of SEQ ID Nos. 45 or 40-59. In one aspect, the equivalent polypeptide has at least 80% sequence identity to the isolated polypeptide or a polypeptide encoded by a polynucleotide that hybridizes to an isolated polynucleotide that encodes the isolated polypeptide or its complement or a polypeptide encoded by a
polynucleotide that having at least 80% sequence identity to the polynucleotide that encodes an amino acid sequence and not substituted at the residues that are D-amino acids, and they retain D-amino acids.
[0006] In another aspect, the isolated polypeptide or its equivalent comprises, or alternatively consists essentially of, or yet consists of no more than 51 amino acids. In another aspect, the isolated polypeptide or its equivalent comprises, or alternatively consists essentially of, or yet consists of no more than 35 amino acids. In a further aspect, the isolated polypeptide or its equivalent further comprises, or alternatively consists essentially of, or yet consists of one or more of: an operatively linked amino acid sequence to facilitate entry of the isolated polypeptide into the cell; a targeting polypeptide or a polypeptide that confers stability to the polypeptide.
[0007] Further provided are isolated polynucleotides encoding the polypeptides described above, complements of the polynucleotides and equivalents of each thereof.
[0008] Also disclosed is a vector comprising, or alternatively consisting essentially of, or yet further consisting of one or more of the isolated polynucleotide of this disclosure and optionally regulatory sequences operatively linked to the isolated polynucleotide for replication and/or expression. In one particular aspect, the vector is an AAV vector (adeno- associated viral vector). Further disclosed herein is a host cell further comprising the one or
more of the isolated polypeptide, the isolated polynucleotide, or the vector of this disclosure. The host cell is a eukaryotic cell or a prokaryotic cell.
[0009] Compositions comprising, or alternatively consisting essentially of, or yet further consisting of a carrier and one or more of the isolated polypeptide, the isolated
polynucleotide, the vector or the host cell of this disclosure are provided herein. In one aspect, the carrier is a pharmaceutically acceptable carrier. In a further aspect, the compositions of this disclosure can further comprise, or alternatively consist essentially of, or yet further consist of an additional therapeutic drug depending on the intended use, e g., a chemotherapeutic agent or drug, or an anti-fibrotic agent or drug. Non-limiting examples of an anti-fibrotic agent or drug include pirfenidone and nintedanib. Non-limiting examples of a chemotherapeutic agent or drug include for example such as a tyrosine kinase inhibitor (TKI) such as VEGFR, a platinum-based drug such as cisplatin, or a drug or agent that targets EGFR.
[0010] The compositions as disclosed herein are useful diagnostically, therapeutically and for screening methods as disclosed herein. They also can be used in the preparation of a medicament. Additionally, an additional agent or drug can be combined with the
compositions within the same formulation or contained within a separate formulation but administered in combination to a subject in need thereof under appropriate conditions and in therapeutically effective amounts. The medicaments can be in the therapeutic methods as described herein.
[0011] Methods of treating disease or disease symptoms associated with fibrosis in a subject in need thereof, comprising, or alternatively consisting essentially of, or yet further consisting of administering to the subject an effective amount of one or more of the isolated polypeptide or the isolated polynucleotide of this disclosure are also provided. In one aspect, the disease or symptoms associated with fibrosis is selected from the group of: lung fibrosis, idiopathic pulmonary fibrosis, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis. In a further aspect, the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of an anti-fibrotic agent or drug. Non-limiting examples of anti-fibrotic agent or drug include pirfenidone and nintedanib.
[0012] Also provided herein are methods for one or more of inhibiting cancer cell growth, treating cancer, inhibiting metastasis, inhibiting cancer stem cell growth, inhibiting tumor cell mobility, or restoring sensitivity of a resistant cancer cell to a chemotherapeutic agent, all in a subject in need thereof, by administering to the subject an effective amount of one or more of the isolated polypeptide or the isolated polynucleotide of this disclosure. In one aspect, the cancer cell or cancer is lymphoma, leukemia or a solid tumor. In another aspect, the solid tumor is a cancer of the type lung cancer, liver cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer. In another aspect, the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of an anti-cancer drug or agent that may or may not be an MPS peptide or polynucleotide encoding the MPS peptide. In a further aspect, the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of a chemotherapeutic such as tyrosine kinase inhibitor, a platinum drug or an immunotherapeutic.
[0013] In one particular aspect, disclosed herein is a method for delivering a polypeptide of this disclosure across the blood brain barrier in a subject in need thereof comprising, or alternatively consisting essentially of, or yet further consisting of administering an effective amount of vector as disclosed above to the subject.
[0014] Administration can be local or systemic, e.g., topical or by inhalation therapy.
Systemic administration can comprise of by a nebulizer, oral, intrathecal, topical, direct installation, sublingual, intravenous, intracranial, inhalation therapy, intranasal, vaginal or rectal administration.
[0015] Mammals such as an equine, murine, feline, canine, or human can be treated by the methods of this disclosure.
[0016] Kits are also provided. The kits comprise, or alternatively consist essentially of, or yet further consist of one or more of: an isolated polypeptide, an isolated polynucleotide, a vector, the cell or a composition of this disclosure and instructions for use. In one aspect, the instructions recite the methods of using the isolated polypeptide, the isolated polynucleotide, the cell, the vector, or the composition disclosed herein.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] FIGS. 1A and IB: Upregulation of MARCKS in IPF fibroblasts. (FIG. 1A)
Graphical representation of computational analysis using IPF fibroblast profiling datasets (GSE21369 and GSE2052). (FIG. IB) Normalized expression of MARCKS in IPF versus normal fibroblasts in GSE2052. FIG. 1C and ID: Upregulated MARCKS and PIP3 levels in idiopathic pulmonary fibrosis (IPF). (FIG. 1C). Expression levels of MARCKS and PIP3 in three normal fibroblasts and three-IPF fibroblast cells as stained with anti-MARCKS and anti-PIP3 antibodies. Tritc-conjugated MARCKS, FITC-conjugated PIP3 and nucleus counterstained DAPI were visualized under a confocal laser-scanning microscope. Scale bar: 10 pm. (FIG. ID) Quantified cellular fluorescence levels for MARCKS and PIP3. Corrected total cell fluorescence for signal intensity of PIP3 and MARCKS were quantified and calculated with ImageJ.
[0018] FIG. 2: Unregulated MARCKS in IPF fibroblasts. Left, Expression of MARCKS mRNA as measured by real-time RT-qPCR (n=5; *p < 0.05 vs. Normal-1). Right, MARCKS protein and its phosphorylation were confirmed by Western blotting.
[0019] FIG. 3: Effects of MARCKS knockdown on primary IPF fibroblasts cell motility as determined by a wound healing assay (n=3).
[0020] FIGS. 4A - 4B: MARCKS inhibition using MPS peptide reduced primary IPF fibroblast cell motility (FIG. 4A) and colony-forming ability (FIG. 4B) n=4; *, p < 0.05.
[0021] FIG. 5: Representative images by using anti-pSerl59/163 MARCKS antibody in normal lung tissue (left, n=10) and IPF specimens from patients without (middle, n=15) or with nintedanib treatment (right, n=3).
[0022] FIG. 6: Left, representative immunofluorescence images of phospho-MARCKS (light gray) and a-SMA (dark gray) in saline- or bleomycin-treated lunch tissues. DAPI (blue color): nucleus stains, Right, quantification of positive staining cells (n=3).
[0023] FIGS. 7A - 7B: (FIG. 7A) Western blots analysis of phospho-MARCKS, phospho- AKT and a-SMA expression in lung fibroblast cells isolated from saline- or bleomycin- treated mice after 48 hours of treatment with control or MPS peptides (100 mM). (FIG. 7B)
Effect of MPS peptide on cell viability of lung fibroblasts isolated from saline- (mFb-Saline) or bleomycin-treated (mFb-Bleomycin) mice (n=4; *, p < 0.05).
[0024] FIG. 8: Body weight of mice in bleomycin-induced pulmonary fibrosis and MPS treatment.
[0025] FIG. 9: Left, representative Masson trichrome-stained sections of mouse lung with various treatments. Magnification: 4X (top) and 20x (bottom). Right, semiquantitative fibrosis score from Masson trichrome-stained sections of mouse lung. Fibrosis score is expressed as the percentage of positive staining area per high-powered field. Analysis of 6 to 12 high-powered fields per lung was performed with ImageJ software. *, p < 0.05 (n=5).
[0026] FIGS. 10A - IOC: (FIG. 10A) The PIP2-binding motif (SEQ ID NO: 12) on the phosphorylation site domain (PSD) of MARCKS. FIG. 10A discloses the MH domain as SEQ ID NO: 86). (FIG. 10B) Biolayer interferometry analysis of the binding of the MPS peptide to biotin-labeled PIP2. (FIG. IOC) PIP3 levels in IPF fibroblast cells with PBS or MPS treatment. * p < 0.05 versus PBS (n=3).
[0027] FIGS. 11A - 11B: (FIG. 11 A) Western blot analysis of a-SMA and phospho-AKT in primary IPF fibroblasts with nintedanib (1000 nM) and/or MPS (100 mM) for 48 hours. (FIG. 11B) A proposed model of activating the PI3K/AKT pathway after nintedanib treatment. An arrow: a direct interaction.
[0028] FIGS. 12A - 12E: (FIGS. 12A-12B) Combinatorial effect of MPS peptide with nintedanib on fibroblasts isolated from two IPF patients. Cells were treated with various closes of nintedanib (62.5-2000nM) and/or MPS peptide (6.25-200 pM) for 72 hours, respectively. After single (lined) or combined (lined) treatment, cell viability was determined by MTT assays. (FIG. 12C) The Chou and Talalay Cl (combination index) method was utilized to evaluate the therapeutic interactions between nintedanib and MPS peptide using the Calcusyn software. Gray line, additive effect of the combination of MPS peptide and the drug is represented at Cl = 1. (FIG. 12D) Cells were individually treated with 1 pM nintedanib, 100 pM MPS peptide or combinations of 1 pM nintedanib and 100 pM MPS peptide. After 48 hours, cell viability was determined by the trypan blue exclusion assay (n+3; *, p<0.05). (FIG. 12E) shows selected polypeptides and their corresponding sequence ID number.
[0029] FIG. 13: The table shows the sequences of the MPS derivatives (SEQ ID NOS: 48- 54, 40-42, 45 and 47, respectively, in order of appearance). ICso (half maximal inhibitory concentration; mM) values in lung cancer cells. FIG. 13 also shows a CLUSTAL O (1.2.4) multiple sequence alignment for various MPS-related peptides. The residues marked in red/bold are D-isoforms of amino acids (SEQ ID NOS: 57, 48-54, 40-42 45 and 47 in order of appearance).
[0030] FIG. 14: Comparison of MPS-12042 (SEQ ID NO: 45) versus know tyrosine kinase inhibitor (TKLs) on the treatment of IPF fibroblast cells. Both normal and IPF lung fibroblast cells were treated with various drugs. After 72 hours, cells were subjected to MTT assays and IC50 for each drug was determined.
[0031] FIG. 15: Left, RNA-seq of oncosphere derived from LG704 showed 325 genes significantly altered by MPS treatment. These genes were then analyzed with GSEA to determine which functional pathways were most affected by MARCKS. Right, Heat map of cancer-sternness markers associated with MARCKS activity.
[0032] FIG. 16: Top, phase contrast photomicrographs of oncospheres in non-adherence 3-D culture without (left) and with 10% CSE (right). Bottom, RT-qPCR analyses of mRNA expression in the above cells.
[0033] FIG. 17A-17B: (FIG. 17A) Sphere-forming assays for evaluating the effect of MARCKS phosphorylation on smoke-mediated sternness in cells with ectopic expression of wild type or PSD-mutated (S159/163A) MARCKS. (FIG. 17B) WB analyses of sternness markers in the above cells.
[0034] FIG. 18A-18C: (FIG. 18A) Sphere-forming assays for evaluating the inhibitory effect of the MPS peptide on smoke-mediated sternness. (FIG. 18B) Quantification of the number and size of oncospheres. (FIG. 18C) RT-qPCR analyses of mRNA expression in the above oncospheres.
[0035] FIG. 19 shows MARCKS mimetic peptide (MPS) targeting phospho-MARCKS, binds to PIP2, and inhibits production of PIP3. Multiple IPF lung fibroblast cells were treated with either PBS or 100 mM of MPS peptide for 12 hours and then subjected to
immunocytochemistry using anti-PIP3 antibodies. Representative images are shown (n=3). Scale bar: 20 pm.
[0036] FIGS. 20A and 20B show suppressive effects of MPS peptide on pulmonary fibrosis in vivo. C57BL/6 mice were intraperitoneally given either PBS, nintedanib (28 mg/kg), MPS peptide (28 mg/kg) or MPS-12042 (7 mg/kg) at the dosage of every two days after 9 days of intratracheal exposure with one shot of saline or bleomycin (33 pg in 50 ml of saline, n=5). (FIG. 20A) Representative Masson trichrome and immunohistochemical staining of phospho-MARCKS (Seri 59/163) and phospho-AKT (Ser473) (n = 6). (FIG. 20B)
Hydroxyproline level in the left lung of mice as described above was determined by a hydroxyproline ELISA assay (mean ± SD, *p < 0.05).
DETAILED DESCRIPTION
[0037] Before the compositions and methods are described, it is to be understood that the disclosure is not limited to the particular methodologies, protocols, cell lines, assays, and reagents described, as these may vary. It is also to be understood that the terminology used herein is intended to describe particular embodiments of the present disclosure, and is in no way intended to limit the scope of the present disclosure as set forth in the appended claims.
[0038] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, the preferred methods, devices, and materials are now described. Throughout this disclosure, various technical publication are identified by an Arabic number, with the full bibliographic citation provide immediately preceding the claims.
[0039] All technical and patent publications cited herein are incorporated herein by reference in their entirety. Nothing herein is to be construed as an admission that the disclosure is not entitled to antedate such disclosure by virtue of prior disclosure.
[0040] The practice of the present disclosure will employ, unless otherwise indicated, conventional techniques of tissue culture, immunology, molecular biology, microbiology, cell biology and recombinant DNA, which are within the skill of the art. See, e.g., Sambrook and
Russell eds. (2001) Molecular Cloning: A Laboratory Manual, 3rd edition; the series Ausubel et al. eds. (2007) Current Protocols in Molecular Biology; the series Methods in Enzymology (Academic Press, Inc., N.Y.); MacPherson et al. (1991) PCR 1 : A Practical Approach (IRL Press at Oxford University Press); MacPherson et al. (1995) PCR 2: A Practical Approach;
Harlow and Lane eds. (1999) Antibodies, A Laboratory Manual; Freshney (2005) Culture of Animal Cells: A Manual of Basic Technique, 5th edition; Gait ed. (1984) Oligonucleotide Synthesis; U.S. Patent No. 4,683,195; Hames and Higgins eds. (1984) Nucleic Acid
Hybridization; Anderson (1999) Nucleic Acid Hybridization; Hames and Higgins eds. (1984) Transcription and Translation; Immobilized Cells and Enzymes (IRL Press (1986)); Perbal (1984) A Practical Guide to Molecular Cloning; Miller and Calos eds. (1987) Gene Transfer Vectors for Mammalian Cells (Cold Spring Harbor Laboratory); Makrides ed. (2003) Gene Transfer and Expression in Mammalian Cells; and Mayer and Walker eds. (1987)
Immunochemical Methods in Cell and Molecular Biology (Academic Press, London).
[0041] All numerical designations, e.g., pH, temperature, time, concentration, and molecular weight, including ranges, are approximations which are varied (+) or (-) by increments of 0.1. It is to be understood, although not always explicitly stated that all numerical designations are preceded by the term“about.” It also is to be understood, although not always explicitly stated, that the reagents described herein are merely exemplary and that equivalents of such are known in the art.
Definitions
[0042] As used in the specification and claims, the singular form“a”,“an” and“the” include plural references unless the context clearly dictates otherwise. For example, the term“a cell” includes a plurality of cells, including mixtures thereof.
[0043] As used herein, the term“comprising” or“comprises” is intended to mean that the compositions and methods include the recited elements, but not excluding others.
“Consisting essentially of’ when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination for the stated purpose. Thus, a composition consisting essentially of the elements as defined herein would not exclude trace contaminants from the isolation and purification method and
pharmaceutically acceptable carriers, such as phosphate buffered saline, preservatives and the like. “Consisting of’ shall mean excluding more than trace elements of other ingredients and substantial method steps for administering the compositions of this disclosure or process steps to produce a composition or achieve an intended result. Embodiments defined by each of these transition terms are within the scope of this disclosure.
[0044] The term“isolated” as used herein with respect to nucleic acids, such as DNA or RNA, refers to molecules separated from other DNAs or RNAs, respectively that are present in the natural source of the macromolecule. The term“isolated peptide fragment” is meant to include peptide fragments which are not naturally occurring as fragments and would not be found in the natural state. The term“isolated” is also used herein to refer to polypeptides and proteins that are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides. In other embodiments, the term“isolated” means separated from constituents, cellular and otherwise, in which the cell, tissue, polynucleotide, peptide, polypeptide, protein, antibody or fragment(s) thereof, which are normally associated in nature. For example, an isolated cell is a cell that is separated form tissue or cells of dissimilar phenotype or genotype. As is apparent to those of skill in the art, a non-naturally occurring polynucleotide, peptide, polypeptide, protein, antibody or fragment(s) thereof, does not require“isolation” to distinguish it from its naturally occurring counterpart.
[0045] The term“binding” or“binds” as used herein are meant to include interactions between molecules that may be detected using, for example, a hybridization assay. The terms are also meant to include“binding” interactions between molecules. Interactions may be, for example, protein-protein, antibody-protein, protein-nucleic acid, protein-small molecule or small molecule-nucleic acid in nature. This binding can result in the formation of a “complex” comprising the interacting molecules. A“complex” refers to the binding of two or more molecules held together by covalent or non-covalent bonds, interactions or forces.
[0046] The term“MARCKS” intends the protein that was officially named myristoylated alanine-rich C kinase substrate (MARCKS or MARKS) (Albert, K.A. et al. (1986) Proc. Natl. Acad. Sci. USA 83(9):2822-2826). MARCKS is ubiquitously expressed in various species and tissues (Albert, K.A. et al. (1987) Proc. Natl. Acad. Sci. USA 84(20):7046-7050;
Stumpo, D.J. et al. (1989) Proc. Natl. Acad. Sci. USA 86(11):4012-4016), while the other MARCKS family member, MARCKS -related protein (MRP, also known as MacMARCKS, F52 or MLP), a 20 kDa protein is highly expressed in brain, reproductive tissues and macrophages (Aderem, A. (1992) Trend. Biochem. Sci. 17(10):438-443; Blackshear, P.J. (1993) J. Biol. Chem. 268: 1501-1504). MRP, similar to MARCKS also contains the same three evolutionarily conserved domains; N-terminus myristoylation domain, multiple homology 2 (MH2) domain, and the effector domain (ED). The MH2 domain of unknown function resembles the cytoplasmic tail of the cation-independent mannose-6-phosphate
receptor. Protein phosphorylation occurs at Serl59/163 of ED domain. The corporation between the N-terminus (myristoylated) and the ED (phosphorylated or not phosphorylated) is essential for controlling the association of these molecules with membranes.
[0047] In one aspect, the MPS polypeptide of this disclosure comprises, or alternatively consists essentially of, or yet consists of at least 6 amino acids and no more than 51 amino acids. In a further aspect, the polypeptide is at least 6 amino acids and no more than 51 amino acids, or alternatively at least 45 amino acids, or alternatively 40 amino acids, or alternatively 35 amino acids, or alternatively 30 amino acids, or alternatively no more than 25 amino acids, or alternatively no more than 20 amino acids, or alternatively no more than 15 amino acids or alternatively or equivalents of each thereof. In one aspect, an equivalent is a polypeptide wherein one or more amino acids have been substituted with a conservative amino acid substitution.
[0048] The MPS polypeptides and equivalents thereof have the“biological activity” or the biological ability to: inhibit the expression of MARCKS for preventing, reducing, delaying, inhibiting or suppressing disease or disease symptoms associated with MARCKS
phosphorylation and/or dissociation from the cell membrane and/or PIP2-sequestering effect, or PIP3 production, or activation of AKT, or inflammation, fibrosis, or activated fibroblast proliferation, or myofibroblast genesis and differentiation, or transforming growth factor-beta (TGF-b) signaling pathway, or cancer, tumor cell growth, solid tumor cell growth or metastasis, or cancer stem cell growth, cancer sternness, or tumor cell mobility; and optionally for promoting apoptosis, or restoring sensitivity of a resistant cancer cell to a chemotherapeutic. In one aspect, the MPS polypeptides and equivalents have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lung fibrosis, idiopathic pulmonary fibrosis, or smoking, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis. In another aspect, the MPS polypeptides and equivalents have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lymphoma, leukemia or a solid tumor or cancer (carcinoma or sacrcoma). Non-limiting examples of solid tumor include cancer, lung cancer, kidney cancer, ovarian cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer. In one aspect, to“treat” excludes prevention or prophylaxis.
[0049] The term“polypeptide” is used interchangeably with the term“protein” and“peptide” and in its broadest sense refers to a compound of two or more subunit amino acids, amino acid analogs or peptidomimetics. The subunits may be linked by peptide bonds. In another embodiment, the subunit may be linked by other bonds, e.g., ester, ether, etc. In one aspect, the polypeptides contain unnatural or synthetic amino acids, including glycine and both the D and L optical isomers of naturally occurring amino acids, amino acid analogs and
peptidomimetics. A peptide of three or more amino acids is commonly called an
oligopeptide if the peptide chain is short. If the peptide chain is long, the peptide is commonly called a polypeptide or a protein. The term“peptide fragment,” as used herein, also refers to a peptide chain.
[0050] The phrase“equivalent polypeptide” or“equivalent peptide fragment” refers to protein, polynucleotide, or peptide fragment encoded by a polynucleotide that hybridizes to a polynucleotide encoding the exemplified polypeptide or its complement of the polynucleotide encoding the exemplified polypeptide, under high stringency and/or which exhibit similar biological activity in vivo, e.g., approximately 100%, or alternatively, over 90% or alternatively over 85% or alternatively over 70%, as compared to the standard or control biological activity. Additional embodiments within the scope of this disclosure are identified by having more than 60%, or alternatively, more than 65%, or alternatively, more than 70%, or alternatively, more than 75%, or alternatively, more than 80%, or alternatively, more than 85%, or alternatively, more than 90%, or alternatively, more than 95%, or alternatively more than 97%, or alternatively, more than 98% or 99% sequence homology. Percentage homology can be determined by sequence comparison using programs such as BLAST run under appropriate conditions. In one aspect, the program is run under default parameters.
[0051] A“conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g, aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g, alanine, valine, leucine, isoleucine, proline,
phenylalanine, methionine, tryptophan), beta-branched side chains (e.g, threonine, valine, isoleucine) and aromatic side chains (e.g, tyrosine, phenylalanine, tryptophan, histidine). Thus, a nonessential amino acid residue in an immunoglobulin polypeptide is preferably
replaced with another amino acid residue from the same side chain family. In another embodiment, a string of amino acids can be replaced with a structurally similar string that differs in order and/or composition of side chain family members.
[0052] Non-limiting examples of conservative amino acid substitutions are provided in the table below, where a similarity score of 0 or higher indicates conservative substitution between the two amino acids.
[0053] The term“polynucleotide” refers to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides or analogs thereof. Polynucleotides can have any three-dimensional structure and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: a gene or gene fragment (for
example, a probe, primer, or EST), exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, ribozymes, cDNA, RNAi, siRNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes and primers. A polynucleotide can comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure can be imparted before or after assembly of the polynucleotide.
The sequence of nucleotides can be interrupted by non-nucleotide components. A
polynucleotide can be further modified after polymerization, such as by conjugation with a labeling component, that in one aspect, is a non-naturally occurring combination of polynucleotide and label. The term also refers to both double and single stranded molecules. Unless otherwise specified or required, any embodiment of this disclosure that is a polynucleotide encompasses both the double stranded form and each of two complementary single stranded forms known or predicted to make up the double stranded form.
[0054] A polynucleotide is composed of a specific sequence of four nucleotide bases:
adenine (A); cytosine (C); guanine (G); thymine (T); and uracil (U) for thymine when the polynucleotide is RNA. Thus, the term“polynucleotide sequence” is the alphabetical representation of a polynucleotide molecule. This alphabetical representation can be input into databases in a computer having a central processing unit and used for bioinformatics applications such as functional genomics and homology searching.
[0055]“Homology” or“identity” or“similarity” are synonymously and refers to sequence similarity between two peptides or between two nucleic acid molecules. Homology can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are homologous at that position. A degree of homology between sequences is a function of the number of matching or homologous positions shared by the sequences. An“unrelated” or“non-homologous” sequence shares less than 40% identity, or alternatively less than 25% identity, with one of the sequences of the present disclosure.
[0056] A polynucleotide or polynucleotide region (or a polypeptide or polypeptide region) has a certain percentage (for example, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99%) of“sequence identity” to another sequence means that, when aligned, that percentage of bases (or amino acids) are the same in comparing the two sequences. This alignment and
the percent homology or sequence identity can be determined using software programs known in the art, for example those described in Ausubel et al. eds. (2007) Current Protocols in Molecular Biology. Preferably, default parameters are used for alignment. One alignment program is BLAST, using default parameters. In particular, programs are BLASTN and BLASTP, using the following default parameters: Genetic code = standard; filter = none; strand = both; cutoff = 60; expect = 10; Matrix = BLOSUM62; Descriptions = 50 sequences; sort by = HIGH SCORE; Databases = non-redundant, GenBank + EMBL + DDBJ + PDB + GenBank CDS translations + SwissProtein + SPupdate + PIR. Details of these programs can be found at the following Internet address: http://www.ncbi.nlm.nih.gov/blast/Blast.cgi, last accessed on November 26, 2007. Equivalent polynucleotides are those having the specified percent homology and/or encoding a polypeptide having the same or similar biological activity.
[0057] A“gene” refers to a polynucleotide containing at least one open reading frame (ORF) that is capable of encoding a particular polypeptide or protein after being transcribed and translated. Any of the polynucleotide or polypeptide sequences described herein may be used to identify larger fragments or full-length coding sequences of the gene with which they are associated. Methods of isolating larger fragment sequences are known to those of skill in the art.
[0058] The term“express” refers to the production of a gene product such as RNA or a polypeptide or protein.
[0059] As used herein,“expression” refers to the process by which polynucleotides are transcribed into mRNA and/or the process by which the transcribed mRNA is subsequently being translated into peptides, polypeptides, or proteins. If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell.
[0060] A“gene product” or alternatively a“gene expression product” refers to the RNA when a gene is transcribed or amino acid (e.g., peptide or polypeptide) generated when a gene is transcribed and translated.
[0061] The term“encode” as it is applied to polynucleotides refers to a polynucleotide which is said to“encode” a polypeptide if, in its native state or when manipulated by methods well known to those skilled in the art, it can be transcribed and/or translated to produce the mRNA
for the polypeptide and/or a fragment thereof. The antisense strand is the complement of such a nucleic acid, and the encoding sequence can be deduced therefrom.
[0062] Applicant have provided herein the polypeptide and/or polynucleotide sequences for use in gene and protein transfer and expression techniques described below. It should be understood, although not always explicitly stated that the sequences provided herein can be used to provide the expression product as well as substantially identical sequences that produce a protein that has the same biological properties. These“equivalent” or“biologically active” polypeptides are encoded by equivalent polynucleotides as described herein. They may possess at least 60%, or alternatively, at least 65%, or alternatively, at least 70%, or alternatively, at least 75%, or alternatively, at least 80%, or alternatively at least 85%, or alternatively at least 90%, or alternatively at least 95% or alternatively at least 98%, identical primary amino acid sequence to the reference polypeptide when compared using sequence identity methods run under default conditions. Specific polypeptide sequences are provided as examples of particular embodiments.
[0063] A“gene delivery vehicle” is defined as any molecule that can carry inserted polynucleotides into a host cell. Examples of gene delivery vehicles are liposomes, micelles, biocompatible polymers, including natural polymers and synthetic polymers; lipoproteins; polypeptides; polysaccharides; lipopolysaccharides; artificial viral envelopes; metal particles; and bacteria, or viruses, such as baculovirus, adenovirus and retrovirus, bacteriophage, cosmid, plasmid, fungal vectors and other recombination vehicles typically used in the art which have been described for expression in a variety of eukaryotic and prokaryotic hosts, and may be used for gene therapy as well as for simple protein expression.
[0064] A polynucleotide of this disclosure can be delivered to a cell or tissue using a gene delivery vehicle.“Gene delivery,”“gene transfer,”“transducing,” and the like as used herein, are terms referring to the introduction of an exogenous polynucleotide (sometimes referred to as a“transgene”) into a host cell, irrespective of the method used for the introduction. Such methods include a variety of well-known techniques such as vector- mediated gene transfer (by, e.g., viral infection/transfection, or various other protein-based or lipid-based gene delivery complexes) as well as techniques facilitating the delivery of “naked” polynucleotides (such as electroporation,“gene gun” delivery and various other techniques used for the introduction of polynucleotides). The introduced polynucleotide may be stably or transiently maintained in the host cell. Stable maintenance typically requires that
the introduced polynucleotide either contains an origin of replication compatible with the host cell or integrates into a replicon of the host cell such as an extrachromosomal replicon (e.g., a plasmid) or a nuclear or mitochondrial chromosome. A number of vectors are known to be capable of mediating transfer of genes to mammalian cells, as is known in the art and described herein.
[0065] As used herein, the term“vector” refers to a nucleic acid construct deigned for transfer between different hosts, including but not limited to a plasmid, a virus, a cosmid, a phage, a BAC, a YAC, etc. A“viral vector” is defined as a recombinantly produced virus or viral particle that comprises a polynucleotide to be delivered into a host cell, either in vivo, ex vivo or in vitro. In some embodiments, plasmid vectors may be prepared from commercially available vectors. In other embodiments, viral vectors may be produced from baculoviruses, retroviruses, adenoviruses, AAVs, etc. according to techniques known in the art. In one embodiment, the viral vector is a lentiviral vector. Examples of viral vectors include retroviral vectors, adenovirus vectors, adeno-associated virus vectors, alphavirus vectors and the like. Infectious tobacco mosaic virus (TMV)-based vectors can be used to manufacturer proteins and have been reported to express Griffithsin in tobacco leaves (O'Keefe et al.
(2009) Proc. Nat. Acad. Sci. USA 106(15):6099-6104). Alphavirus vectors, such as Semliki Forest virus-based vectors and Sindbis virus-based vectors, have also been developed for use in gene therapy and immunotherapy. See, Schlesinger & Dubensky (1999) Curr. Opin.
Biotechnol. 5:434-439 and Ying et al. (1999) Nat. Med. 5(7):823-827. In aspects where gene transfer is mediated by a retroviral vector, a vector construct refers to the polynucleotide comprising the retroviral genome or part thereof, and a gene of interest. Further details as to modern methods of vectors for use in gene transfer may be found in, for example, Kotterman et al. (2015) Viral Vectors for Gene Therapy: Translational and Clinical Outlook Annual Review of Biomedical Engineering 17. Vectors that contain both a promoter and a cloning site into which a polynucleotide can be operatively linked are well known in the art. Such vectors are capable of transcribing RNA in vitro or in vivo and are commercially available from sources such as Agilent Technologies (Santa Clara, Calif.) and Promega Biotech (Madison, Wis.).
[0066] A“viral vector” is defined as a recombinantly produced virus or viral particle that comprises a polynucleotide to be delivered into a host cell, either in vivo, ex vivo or in vitro. Examples of viral vectors include retroviral vectors, adenovirus vectors, adeno-associated
virus vectors, alphavirus vectors and the like. Alphavirus vectors, such as Semliki Forest virus-based vectors and Sindbis virus-based vectors, have also been developed for use in gene therapy and immunotherapy. See, Schlesinger and Dubensky (1999) Curr. Opin. Biotechnol. 5:434-439 and Ying et al. (1999) Nat. Med. 5(7):823-827. In aspects where gene transfer is mediated by a retroviral vector, a vector construct refers to the polynucleotide comprising the retroviral genome or part thereof, and a therapeutic gene.
[0067] As used herein,“retroviral mediated gene transfer” or“retroviral transduction” carries the same meaning and refers to the process by which a gene or nucleic acid sequences are stably transferred into the host cell by virtue of the virus entering the cell and integrating its genome into the host cell genome. The virus can enter the host cell via its normal mechanism of infection or be modified such that it binds to a different host cell surface receptor or ligand to enter the cell. As used herein, retroviral vector refers to a viral particle capable of introducing exogenous nucleic acid into a cell through a viral or viral-like entry mechanism.
[0068] Retroviruses carry their genetic information in the form of RNA; however, once the virus infects a cell, the RNA is reverse-transcribed into the DNA form which integrates into the genomic DNA of the infected cell. The integrated DNA form is called a provirus.
[0069] In aspects where gene transfer is mediated by a DNA viral vector, such as an adenovirus (Ad) or adeno-associated virus (AAV), a vector construct refers to the
polynucleotide comprising the viral genome or part thereof, and a transgene. Adenoviruses (Ads) are a relatively well characterized, homogenous group of viruses, including over 50 serotypes. See, e.g., International PCT Publication No. WO 95/27071. Ads do not require integration into the host cell genome. Recombinant Ad derived vectors, particularly those that reduce the potential for recombination and generation of wild-type virus, have also been constructed. See, International PCT Publication Nos. WO 95/00655 and WO 95/11984. Wild-type AAV has high infectivity and specificity integrating into the host cell’s genome. See, Hermonat and Muzyczka (1984) Proc. Natl. Acad. Sci. USA 81 :6466-6470 and
Lebkowski et al. (1988) Mol. Cell. Biol. 8:3988-3996.
[0070] Vectors that contain both a promoter and a cloning site into which a polynucleotide can be operatively linked are well known in the art. Such vectors are capable of transcribing RNA in vitro or in vivo, and are commercially available from sources such as Stratagene (La Jolla, CA) and Promega Biotech (Madison, WI). In order to optimize expression and/or in vitro transcription, it may be necessary to remove, add or alter 5’ and/or 3’ untranslated
portions of the clones to eliminate extra, potential inappropriate alternative translation initiation codons or other sequences that may interfere with or reduce expression, either at the level of transcription or translation. Alternatively, consensus ribosome binding sites can be inserted immediately 5’ of the start codon to enhance expression.
[0071] Gene delivery vehicles also include DNA/liposome complexes, micelles and targeted viral protein-DNA complexes. Liposomes that also comprise a targeting antibody or fragment thereof can be used in the methods of this disclosure. To enhance delivery to a cell, the nucleic acid or proteins of this disclosure can be conjugated to antibodies or binding fragments thereof which bind cell surface antigens. In addition to the delivery of
polynucleotides to a cell or cell population, direct introduction of the proteins described herein to the cell or cell population can be done by the non-limiting technique of protein transfection, alternatively culturing conditions that can enhance the expression and/or promote the activity of the proteins of this disclosure are other non-limiting techniques.
[0072] The terms“culture” or“culturing” refer to the in vitro propagation of cells, tissues, or organisms on or in media of various kinds. It is understood that the descendants of a cell grown in culture may not be completely identical (i.e., morphologically, genetically, or phenotypically) to the parent cell.
[0073] The term "antibody" herein is used in the broadest sense and specifically includes full- length monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments, so long as they exhibit the desired biological activity.
As used herein the terms "antibodies" and "immunoglobulin" include antibodies or immunoglobulins of any isotype, fragments of antibodies which retain specific binding to antigen, including, but not limited to, Fab, Fab', F(ab)2, Fv, scFv, dsFv, Fd fragments, dAb, VH, VL, VhH, and V-NAR domains; minibodies, diabodies, triabodies, tetrabodies and kappa bodies; multispecific antibody fragments formed from antibody fragments and one or more isolated CDRs or a functional paratope; chimeric antibodies, humanized antibodies, single-chain antibodies, and fusion proteins comprising an antigen-binding portion of an antibody and a non-antibody protein. The variable regions of the heavy and light chains of the immunoglobulin molecule contain a binding domain that interacts with an antigen. The constant regions of the antibodies (Abs) may mediate the binding of the immunoglobulin to host tissues.
[0074] As used herein, "monoclonal antibody" refers to an antibody obtained from a substantially homogeneous antibody population. Monoclonal antibodies are highly specific, as each monoclonal antibody is directed against a single determinant on the antigen. The antibodies may be detectably labeled, e.g., with a radioisotope, an enzyme which generates a detectable product, a fluorescent protein, and the like. The antibodies may be further conjugated to other moieties, such as members of specific binding pairs, e.g., biotin (member of biotin-avidin specific binding pair), and the like. The antibodies may also be bound to a solid support, including, but not limited to, polystyrene plates or beads, and the like.
[0075] Monoclonal antibodies may be generated using hybridoma techniques or recombinant DNA methods known in the art. Alternative techniques for generating or selecting antibodies include in vitro exposure of lymphocytes to antigens of interest, and screening of antibody display libraries in cells, phage, or similar systems.
[0076] The term“human antibody” as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences. The human antibodies of the disclosure may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo). However, the term“human antibody” as used herein, is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences. Thus, as used herein, the term“human antibody” refers to an antibody in which substantially every part of the protein (e.g., CDR, framework, CL, CH domains (e.g., CHI, CH2, Cm), hinge, (VL, VH)) is substantially non-immunogenic in humans, with only minor sequence changes or variations. Similarly, antibodies designated primate (monkey, baboon, chimpanzee, etc.), rodent (mouse, rat, rabbit, guinea pig, hamster, and the like) and other mammals designate such species, sub-genus, genus, sub-family, family specific antibodies. Further, chimeric antibodies include any combination of the above. Such changes or variations optionally and preferably retain or reduce the immunogenicity in humans or other species relative to non-modified antibodies. Thus, a human antibody is distinct from a chimeric or humanized antibody. It is pointed out that a human antibody can be produced by a non-human animal or prokaryotic or eukaryotic cell that is capable of expressing functionally rearranged human immunoglobulin (e.g., heavy chain and/or light chain) genes. Further, when a human antibody is a single chain antibody, it can comprise a
linker peptide that is not found in native human antibodies. For example, an Fv can comprise a linker peptide, such as two to about eight glycine or other amino acid residues, which connects the variable region of the heavy chain and the variable region of the light chain.
Such linker peptides are considered to be of human origin.
[0077] As used herein, a human antibody is“derived from” a particular germline sequence if the antibody is obtained from a system using human immunoglobulin sequences, e.g., by immunizing a transgenic mouse carrying human immunoglobulin genes or by screening a human immunoglobulin gene library. A human antibody that is“derived from” a human germline immunoglobulin sequence can be identified as such by comparing the amino acid sequence of the human antibody to the amino acid sequence of human germline
immunoglobulins. A selected human antibody typically is at least 90% identical in amino acids sequence to an amino acid sequence encoded by a human germline immunoglobulin gene and contains amino acid residues that identify the human antibody as being human when compared to the germline immunoglobulin amino acid sequences of other species (e.g., murine germline sequences). In certain cases, a human antibody may be at least 95%, or even at least 96%, 97%, 98%, or 99% identical in amino acid sequence to the amino acid sequence encoded by the germline immunoglobulin gene. Typically, a human antibody derived from a particular human germline sequence will display no more than 10 amino acid differences from the amino acid sequence encoded by the human germline immunoglobulin gene. In certain cases, the human antibody may display no more than 5, or even no more than 4, 3, 2, or 1 amino acid difference from the amino acid sequence encoded by the germline immunoglobulin gene.
[0078] A“human monoclonal antibody” refers to antibodies displaying a single binding specificity which have variable and constant regions derived from human germline immunoglobulin sequences. The term also intends recombinant human antibodies. Methods to making these antibodies are described herein.
[0079] The term“recombinant human antibody”, as used herein, includes all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from an animal (e.g., a mouse) that is transgenic or transchromosomal for human immunoglobulin genes or a hybridoma prepared therefrom, antibodies isolated from a host cell transformed to express the antibody, e.g., from a transfectoma, antibodies isolated from a recombinant, combinatorial human antibody library, and antibodies prepared,
expressed, created or isolated by any other means that involve splicing of human immunoglobulin gene sequences to other DNA sequences. Such recombinant human antibodies have variable and constant regions derived from human germline immunoglobulin sequences. In certain embodiments, however, such recombinant human antibodies can be subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo. Methods to making these antibodies are described herein.
[0080] As used herein, chimeric antibodies are antibodies whose light and heavy chain genes have been constructed, typically by genetic engineering, from antibody variable and constant region genes belonging to different species.
[0081] As used herein, the term "humanized antibody" or "humanized immunoglobulin" refers to a human/non-human chimeric antibody that contains a minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a variable region of the recipient are replaced by residues from a variable region of a non-human species (donor antibody) such as mouse, rat, rabbit, or non-human primate having the desired specificity, affinity and capacity. Humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. The humanized antibody can optionally also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin a non-human antibody containing one or more amino acids in a framework region, a constant region or a CDR, that have been substituted with a
correspondingly positioned amino acid from a human antibody. In general, humanized antibodies are expected to produce a reduced immune response in a human host, as compared to a non-humanized version of the same antibody. The humanized antibodies may have conservative amino acid substitutions which have substantially no effect on antigen binding or other antibody functions. Conservative substitutions groupings include: glycine-alanine, valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, serine- threonine and asparagine-glutamine.
[0082] As used herein, the term "antibody derivative", comprises a full-length antibody or a fragment of an antibody, wherein one or more of the amino acids are chemically modified by
alkylation, pegylation, acylation, ester formation or amide formation or the like, e.g., for linking the antibody to a second molecule. This includes, but is not limited to, pegylated antibodies, cysteine-pegylated antibodies, and variants thereof.
[0083] A“composition” is intended to mean a combination of active polypeptide, polynucleotide or antibody and another compound or composition, inert (e.g. a detectable label) or active (e.g. a gene delivery vehicle) alone or in combination with a carrier which can in one embodiment be a simple carrier like saline or pharmaceutically acceptable or a solid support as defined below.
[0084] A“pharmaceutical composition” is intended to include the combination of an active polypeptide, polynucleotide or antibody with a carrier, inert or active such as a solid support, making the composition suitable for diagnostic or therapeutic use in vitro, in vivo or ex vivo.
[0085] As used herein, the term“pharmaceutically acceptable carrier” encompasses any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents. The compositions also can include stabilizers and preservatives. For examples of carriers, stabilizers and adjuvants, see Martin (1975) Remington’s Pharm. Sci., 15th Ed. (Mack Publ. Co., Easton).
[0086] The phrase“solid support” refers to non-aqueous surfaces such as“culture plates” “gene chips” or“microarrays.” Such gene chips or microarrays can be used for diagnostic and therapeutic purposes by a number of techniques known to one of skill in the art. In one technique, oligonucleotides are arrayed on a gene chip for determining the DNA sequence by the hybridization approach, such as that outlined in U.S. Patent Nos. 6,025,136 and
6,018,041. The polynucleotides of this disclosure can be modified to probes, which in turn can be used for detection of a genetic sequence. Such techniques have been described, for example, in U.S. Patent Nos. 5,968,740 and 5,858,659. A probe also can be affixed to an electrode surface for the electrochemical detection of nucleic acid sequences such as described by Kayem et al. U.S. Patent No. 5,952,172 and by Kelley et al. (1999) Nucleic Acids Res. 27:4830-4837.
[0087] The term“subject,”“host,”“individual,” and“patient” are as used interchangeably herein to refer to animals, typically mammalian animals. Any suitable mammal can be treated by a method, cell or composition described herein. Non-limiting examples of mammals
include humans, non-human primates (e.g., apes, gibbons, chimpanzees, orangutans, monkeys, macaques, and the like), domestic animals (e.g., dogs and cats), farm animals (e.g., horses, cows, goats, sheep, pigs) and experimental animals (e.g., mouse, rat, rabbit, guinea pig). In some embodiments a mammal is a human. A mammal can be any age or at any stage of development (e.g., an adult, teen, child, infant, or a mammal in utero). A mammal can be male or female. A mammal can be a pregnant female. In some embodiments a subject is a human. In some embodiments, a subject has or is suspected of having a cancer or neoplastic disorder.
[0088] “Cell,”“host cell” or“recombinant host cell” are terms used interchangeably herein.
It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. The cells can be of any one or more of the type murine, rat, rabbit, simian, bovine, ovine, porcine, canine, feline, equine, and primate, particularly human. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
[0089]“Eukaryotic cells” comprise all of the life kingdoms except monera. They can be easily distinguished through a membrane-bound nucleus. Animals, plants, fungi, and protists are eukaryotes or organisms whose cells are organized into complex structures by internal membranes and a cytoskeleton. The most characteristic membrane-bound structure is the nucleus. Unless specifically recited, the term“host” includes a eukaryotic host, including, for example, yeast, higher plant, insect and mammalian cells. Non-limiting examples of eukaryotic cells or hosts include simian, bovine, porcine, murine, rat, avian, reptilian and human.
[0090]“Prokaryotic cells” usually lack a nucleus or any other membrane-bound organelles and are divided into two domains, bacteria and archaea. In addition to chromosomal DNA, these cells can also contain genetic information in a circular loop called on episome.
Bacterial cells are very small, roughly the size of an animal mitochondrion (about 1-2 pm in diameter and 10 pm long). Prokaryotic cells feature three major shapes: rod shaped, spherical, and spiral. Instead of going through elaborate replication processes like eukaryotes, bacterial cells divide by binary fission. Examples include but are not limited to Bacillus bacteria, E. coli bacterium, and Salmonella bacterium.
[0091] As used herein,“treating” or“treatment” of a disease in a subject refers to (1) preventing the symptoms or disease from occurring in a subject that is predisposed or does not yet display symptoms of the disease; (2) inhibiting the disease or arresting its
development or relapse; or (3) ameliorating or causing regression of the disease or the symptoms of the disease. As understood in the art,“treatment” is an approach for obtaining beneficial or desired results, including clinical results. For the purposes of the present technology, beneficial or desired results can include one or more, but are not limited to, alleviation or amelioration of one or more symptoms, diminishment of extent of a condition (including a disease), stabilized (i.e., not worsening) state of a condition (including disease), delay or slowing of condition (including disease), progression, amelioration or palliation of the condition (including disease), states and remission (whether partial or total), whether detectable or undetectable. In one aspect, prevention or prophylaxis is excluded from the term“treatment.”
[0092] When the disease is cancer, the following clinical endpoints are non-limiting examples of treatment: reduction in tumor burden, slowing of tumor growth, longer overall survival, longer time to tumor progression, inhibition of metastasis, reduction in cancer sternness, or a reduction in metastasis of the tumor. In one aspect, treatment excludes prophylaxis. When the disease is fibrosis, the following clinical end points are non-limiting examples of treatment: reduction in fibrotic tissue, reduction in inflammation, reduction in fibroblastic lesions, reduction in activated fibroblast proliferation, reduction in myofibroblast genesis, reduction in rate of decline of Forced Vital Capacity (FVC), wherein FVC is the total amount of air exhaled during the lung function test, absolute and relative increases from baseline in FVC, absolute increase from baseline in FVC (% Predicted), increase in progression-free survival time, decrease from baseline in St George's Respiratory
Questionnaire (SGRQ) total score, wherein SGRQ is a health-related quality of life questionnaire divided into 3 components : symptoms, activity and impact and the total score (summed weights) can range from 0 to 100 with a lower score denoting a better health status, and relative decrease from baseline in high resolution computerized tomography (HRCT) quantitative lung fibrosis (QLF) score, wherein the QLF score ranges from 0 to 100% and greater values represent a greater amount of lung fibrosis and are considered a worse health status. Non-limiting examples clinical end points for fibrosis treatment and tests that can be performed to measure said clinical end points are described in the following clinical trials:
NCT03733444 (clinicaltrials.gov/ct2/show/NCT03733444) (last accessed on January 9, 2019), NCT00287729 (clinicaltrials.gov/ct2/show/NCT00287729) (last accessed on January 9, 2019), NCT00287716 (clinicaltrials.gov/ct2/show/NCT00287716) (last accessed on January 9, 2019), NCT02503657(clinicaltrials.gov/ct2/show/NCT02503657) (last accessed on January 9, 2019), NCT00047645 (clinicaltrials.gov/ct2/show/NCT00047645) (last accessed on January 9, 2019), NCT02802345 (clinicaltrials.gov/ct2/show/NCT02802345) (last accessed on January 9, 2019), NCTO 1979952
(clinicaltrials.gov/ct2/show/NCT01979952) (last accessed on January 9, 2019),
NCT00650091 (clinicaltrials.gov/ct2/show/NCT00650091) (last accessed on January 9, 2019), NCT01335464 (clinicaltrials.gov/ct2/show/NCT01335464) (last accessed on January 9, 2019), NCT01335477 (clinicaltrials.gov/ct2/show/NCT01335477) (last accessed on January 9, 2019), NCT01366209 (clinicaltrials.gov/ct2/show/NCT01366209) (last accessed on January 9, 2019). Further non-limiting examples clinical endpoints for fibrosis treatment and tests that can be performed to measure said clinical end points are described in King et al, (2014) N Engl J Med. May 29;370(22):2083-92 and Richeldi et al, (2014) N Engl J
Med. May 29;370(22):2071-82.
[0093] A“cancer stem cell” (“CSC”) intends a cell or a subpopulation of cells within tumors with capabilities of self-renewal, differentiation, and tumorigenicity when transplanted into an animal host. On the basis of the clinical evidence and experimental observations, CSCs appear to possess long-term clonal maintenance of cancer malignancy and survival even after many harsh therapy treatments. The gold standard for defining CSCs has been serial in vivo transplantation, but a number of cell surface markers such as Sox2, Slug, CD44, CD24, and CD133 have proved useful to study CSCs in patient specimens and experimental systems. A regulatory network consisting of microRNAs and Wnt/p-catenin, Notch, and Hedgehog signaling pathways controls the CSC properties. As used herein, one or more of these are intended as cancer stem cell markers. Additional markers are provided in FIGS. 15 and 17. Expression of these markers can be detected and monitored by methods known and described herein and in the art.
[0094] Sox2 (sex determining region Y (SRY)-box 2) intends the transcription factor that participates in maintaining self-renewal and pluripotency of embryonic stem cells. The expression of this protein is aberrant in various human malignancies, and has been reported to act as an oncogene in esophageal squamous cell carcinoma (SCC). It also has been reported
to promote proliferation, migration and adhesion abilities of dental pulp stem cells (DPSCs). It is known to participate in Ewing's sarcoma cell proliferation, and its inactivation results in apoptosis and Gl/S arrest, in a PI3K (phosphoinositide 3-kinase)/ Akt pathway-mediated manner. Monoclonal antibodies to detect and monitor expression are commercially available, e.g., Sigma-Aldrich and Novus Biologicals (last accessed on May 6, 2020).
[0095] CD 133 or CD 133 antigen, also known as prominin-1, is a glycoprotein that in humans is encoded by the PROM1 gene. It is a member of pentaspan transmembrane glycoproteins, which specifically localize to cellular protrusions. Monoclonal antibodies to detect and monitor expression are commercially available, e.g., Abeam and ThermoFisher (last accessed on May 6, 2020).
[0096] Slug or (SNAI2) is a transcription factor and an inducer of the epithelial to
mesenchymal transition which mediates cell migration during development and tumor invasion. Devendra et al. (2014) Stem Cells, Dec. 32(12):3209-3218, 10.1002/stem.1809. Methods to detect and monitor expression are known in the art, e.g., Devendra et al. (2014), supra.
[0097] The term“suffering” as it related to the term“treatment” refers to a patient or individual who has been diagnosed with or is predisposed to a disease. A patient may also be referred to being“at risk of suffering” from a disease. This patient has not yet developed characteristic disease pathology, however are known to be predisposed to the disease due to family history, being genetically predispose to developing the disease, or diagnosed with a disease or disorder that predisposes them to developing the disease to be treated.
[0098] “An effective amount” intends to indicate the amount of a compound or agent administered or delivered to the patient which is most likely to result in the desired response to treatment. The amount is empirically determined by the patient’s clinical parameters including, but not limited to the stage of disease, age, gender, histology, sensitivity, toxicity and likelihood for tumor recurrence. In one aspect, an“effective amount” is a therapeutically effective amount.
[0099] As used herein, a“cancer” is a disease state characterized by the presence in a subject of cells demonstrating abnormal uncontrolled replication and may be used interchangeably with the term“tumor.” In some embodiments, the cancer is a solid tumor, lung cancer, liver
cancer, kidney cancer, brain cancer, ovarian cancer, colorectal cancer, pancreatic cancer, bone cancer, throat cancer, lymphoma, or leukemia.
[0100] A“tumor” is an abnormal growth of tissue resulting from uncontrolled, progressive multiplication of cells and serving no physiological function. A“tumor” is also known as a neoplasm.
[0101] As used herein, the terms“Stage I cancer,”“Stage II cancer,”“Stage III cancer,” and “Stage IV” refer to the TNM staging classification for cancer. Stage I cancer typically identifies that the primary tumor is limited to the organ of origin. Stage II intends that the primary tumor has spread into surrounding tissue and lymph nodes immediately draining the area of the tumor. Stage III intends that the primary tumor is large, with fixation to deeper structures. Stage IV intends that the primary tumor is large, with fixation to deeper structures. See pages 20 and 21, CANCER BIOLOGY, 2nd Ed., Oxford University Press (1987).
[0102] "Having the same cancer" is used when comparing one patient to another or alternatively, one patient population to another patient population. For example, the two patients or patient populations will each have or be suffering from colon cancer.
[0103] “Administration” can be effected in one dose, continuously or intermittently throughout the course of treatment. Methods of determining the most effective means and dosage of administration are known to those of skill in the art and will vary with the composition used for therapy, the purpose of the therapy, the target cell being treated, the disease being treated and the subject being treated. Single or multiple administrations can be carried out with the dose level and pattern being selected by the treating physician. Suitable dosage formulations and methods of administering the agents are known in the art. Route of administration can also be determined and method of determining the most effective route of administration are known to those of skill in the art and will vary with the composition used for treatment, the purpose of the treatment, the health condition or disease stage of the subject being treated, and target cell or tissue. Non-limiting examples of route of administration include oral administration, nasal administration, inhalation, injection, and topical application.
[0104] An agent of the present disclosure can be administered for therapy by any suitable route of administration. It will also be appreciated that the preferred route will vary with the condition and age of the recipient, and the disease being treated.
[0105] A tyrosine kinase inhibitor (“TKI”) is an agent (small molecule or biologic) that inhibits the action of tyrosine kinase in a cell. Tyrosine kinases are enzymes that are responsible for the activation of many proteins by signal transduction cascades. TKIs are typically used as anti-cancer drugs. Examples of tyrosine kinase inhibitors include, but are not limited to ErbB: HER1/EGFR (Erlotinib, Gefitinib, Lapatinib, Vandetanib, Sunitinib, Neratinib); HER2/neu (Lapatinib, Neratinib); RTK class III: C-kit (Axitinib, Sunitinib, Sorafenib); FLT3 (Lestaurtinib); PDGFR (Axitinib, Sunitinib, Sorafenib); and VEGFR (Vandetanib, Semaxanib, Cediranib, Axitinib, Sorafenib); bcr-abl (Imatinib, Nilotinib, Dasatinib); Src (Bosutinib) and Janus kinase 2 (Lestaurtinib). Small molecule TKIs are known in the art and listed at the web address comprising
oncolink.org/treatment/article. cfm?id=452 (last accessed on July 17, 2014).
[0106] PTK/ZK is a "small" molecule tyrosine kinase inhibitor with broad specificity that targets all VEGF receptors (VEGFR), the platelet-derived growth factor (PDGF) receptor, c- KIT and c-Fms. Drevs (2003) Idrugs 6(8):787-794. PTK/ZK is a targeted drug that blocks angiogenesis and lymphangiogenesis by inhibiting the activity of all known receptors that bind VEGF including VEGFR- 1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR- 3 (Flt-4). The chemical names of PTK/ZK are l-[4-Chloroanilino]-4-[4-pyridylmethyl] phthalazine Succinate or 1-Phthalazinamine, N-(4-chlorophenyl)-4-(4-pyridinylmethyl)-, butanedioate (1 : 1). Synonyms and analogs of PTK/ZK are known as Vatalanib, CGP79787D, PTK787/ZK 222584, CGP-79787, DE-00268, PTK-787, PTK-787A, VEGFR-TK inhibitor, ZK 222584 and ZK.
[0107] As used herein, the term“platinum-based drug” intends an anticancer drug that is a platinum based compound which is a subclass of DNA alkylating agents. Such agents are well known in the art and are used to treat a variety of cancers, such as, lung cancers, head and neck cancers, ovarian cancers, colorectal cancer and prostate cancer. Non-limiting examples of such agents include carboplatin, cisplatin, nedaplatin, oxaliplatin, triplatin tetranitrate, Satraplatin, Aroplatin, Lobaplatin, and JM-216. (see McKeage et al. (1997) J. Clin. Oncol. 201 : 1232-1237 and in general, CHEMOTHERAPY FOR GYNECOLOGICAL NEOPLASM, CURRENT THERAPY AND NOVEL APPROACHES, in the Series Basic
and Clinical Oncology, Angioli et al. Eds., 2004).‘Oxaliplatin” (Eloxatin®) is a platinum- based chemotherapy drug in the same family as cisplatin and carboplatin. It is typically administered in combination with fluorouracil and leucovorin in a combination known as FOLFOX for the treatment of colorectal cancer. Compared to cisplatin the two amine groups are replaced by cyclohexyldiamine for improved antitumor activity. The chlorine ligands are replaced by the oxalato bidentate derived from oxalic acid in order to improve water solubility. Equivalents to Oxaliplatin are known in the art and include without limitation cisplatin, carboplatin, aroplatin, lobaplatin, nedaplatin, and JM-216 (see McKeage et al. (1997) J. Clin. Oncol. 201 : 1232-1237 and in general, CHEMOTHERAPY FOR
GYNECOLOGICAL NEOPLASM, CURRENT THERAPY AND NOVEL APPROACHES, in the Series Basic and Clinical Oncology, Angioli et al. Eds., 2004).
MODES OF CARRYING OUT THE DISCLOSURE
Isolated Polypeptides and Compositions
[0108] This disclosure provides an isolated polypeptide or an MPS polypeptide comprising, or alternatively consisting essentially of, or yet consisting of an amino acid sequence selected from the group of: SEQ ID NOs 40-56, 58 and 59, or an equivalent of each thereof. In one aspect, the isolated polypeptides include substantially homologous and equivalent polypeptides. In one aspect, the isolated polypeptide of this disclosure comprises, or alternatively consists essentially of, or yet consists of no more than 51 amino acids. In another aspect, the isolated polypeptide of this disclosure comprises, or alternatively consists essentially of, or yet consists of no more than 35 amino acids. In a yet further aspect, the polypeptide is at least 6 amino acids and no more than 51 amino acids, or alternatively at least 45 amino acids, or alternatively 40 amino acids, or alternatively 35 amino acids, or alternatively 30 amino acids, or alternatively no more than 25 amino acids, or alternatively no more than 20 amino acids, or alternatively no more than 15 amino acids or alternatively or equivalents of each thereof. In one aspect, an equivalent of the isolated polypeptide comprises or alternatively consists essentially of, or yet consists of a polypeptide having at least 80% sequence identity to the isolated polypeptide or a polypeptide encoded by a polynucleotide that hybridizes to an isolated polynucleotide that encodes the isolated polypeptide or its complement or a polypeptide encoded by a polynucleotide that having at least 80 sequence identity to the polynucleotide that encodes an amino acid sequence selected from the group of SEQ ID Nos. 40-56, 58 and 59.
[0109] High stringency hybridization conditions is generally performed at about 60°C in about 1 x SSC. Substantially homologous and equivalent polypeptides and substantially homologous and equivalent polynucleotides intend those having at least 80% homology, or alternatively at least 85% homology, or alternatively at least 90% homology, or alternatively, at least 95% homology or alternatively, at least 98% homology to those described above, each as determined using methods known to those skilled in the art and identified herein, when run under default parameters. They may possess at least 60%, or alternatively, at least 65%, or alternatively, at least 70%, or alternatively, at least 75%, or alternatively, at least 80%, or alternatively at least 85%, or alternatively at least 90%, or alternatively at least 95% or alternatively at least 98%, identical primary amino acid sequence to the reference polypeptide, or alternatively identical nucleic acid sequence to the reference polynucleotide, when compared using sequence identity methods run under default conditions. In one specific aspect, they may possess at least 60%, or alternatively, at least 65%, or alternatively, at least 70%, or alternatively, at least 75%, or alternatively, at least 80%, or alternatively at least 85%, or alternatively at least 90%, or alternatively at least 95% or alternatively at least 98%, identical primary amino acid sequence to the reference polypeptide, or alternatively identical nucleic acid sequence to the reference polynucleotide, when compared using sequence identity methods run under default conditions. In one aspect, an equivalent is a polypeptide wherein one or more amino acids have been substituted with a conservative amino acid substitution. In one aspect, the isolated polypeptide has at least one amino acid that is a modified, non-naturally occurring amino acid such as D-lysine.
[0110] In one aspect, the MPS polypeptide of this disclosure comprises, or alternatively consists essentially of, or yet consists of at least 6 amino acids and no more than 51 amino acids. In a further aspect, the polypeptide is at least 6 amino acids and no more than 51 amino acids, or alternatively at least 45 amino acids, or alternatively 40 amino acids, or alternatively 35 amino acids, or alternatively 30 amino acids, or alternatively no more than 25 amino acids, or alternatively no more than 20 amino acids, or alternatively no more than 15 amino acids or alternatively or equivalents of each thereof. In one aspect, an equivalent is a polypeptide wherein one or more amino acids have been substituted with a conservative amino acid substitution. In a further aspect, myristic acid is conjugated or joined to the N- terminal amino acid, including equivalents thereof, e.g., wherein all serines are replaced by
alanine. In one aspect, the isolated polypeptide has at least one amino acid that is a modified, non-naturally occurring amino acid such as D-lysine.
[0111] In one aspect, the isolated polypeptide as described above, have additional amino acids added onto the carboxyl-terminal end or amino-terminal end of the MPS and equivalents of each thereof, such that the length of the polypeptide comprises an additional at least 10 amino acids, or alternatively at least 15 amino acids, or alternatively at least 20 amino acids, or alternatively at least 25 amino acids, or alternatively at least 30 amino acids, or alternatively at least 35 amino acids or the addition of amino acids up to a total of 51 amino acids.
[0112] It is known to those skilled in the art that modifications can be made to any peptide to provide it with altered properties. Peptide fragments of the disclosure can be modified to include unnatural amino acids. Thus, the peptides may comprise D-amino acids, a combination of D- and L-amino acids, and various“designer” amino acids ( e.g ., b-methyl amino acids, C-a-methyl amino acids, and N-a-methyl amino acids, etc.) to convey special properties to peptides. Additionally, by assigning specific amino acids at specific coupling steps, peptides with a-helices, b turns, b sheets, a-turns, and cyclic peptides can be generated. Generally, it is believed that a-helical secondary structure or random secondary structure is preferred. The disclosed polypeptides, in one aspect, contain unnatural amino acids.
[0113] It is known to those skilled in the art that modifications can be made to any peptide by substituting one or more amino acids with one or more functionally equivalent amino acids that does not alter the biological function of the peptide. In one aspect, the amino acid that is substituted by an amino acid that possesses similar intrinsic properties including, but not limited to, hydrophobic, size, or charge. Methods used to determine the appropriate amino acid to be substituted and for which amino acid are known to one of skill in the art. Non limiting examples include empirical substitution models as described by Layoff et al. (1978) In Atlas of Protein Sequence and Structure Vol. 5 suppl. 2 (ed. MR. Day off), pp. 345-352. National Biomedical Research Foundation, Washington DC; PAM matrices including Day off matrices (Layoff et al. (1978), supra, or JET matrices as described by Jones et al. (1992) Compute. Appl. Basic. 8:275-282 and Gannet et al. (1992) Science 256: 1443-1145; the empirical model described by Adak and Hasegawa (1996) J. Mol. Evil. 42:459-468; the block substitution matrices (BLOSSOM) as described by Henrico and Henrico (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919; Poisson models as described by Neil (1987) Molecular
Evolutionary Genetics. Columbia University Press, New York.; and the Maximum Likelihood (ML) Method as described by Muller et al. (2002) Mol. Biol. Evil. 19:8-13.
[0114] Accordingly, in yet another aspect the isolated polypeptide or peptide fragment may comprise, or alternatively consisting essentially of, or yet further consisting of, a“an equivalent” or“biologically active” polypeptide encoded by equivalent polynucleotides as described herein. They may possess at least 60%, or alternatively, at least 65%, or alternatively, at least 70%, or alternatively, at least 75%, or alternatively, at least 80%, or alternatively at least 85%, or alternatively at least 90%, or alternatively at least 95% or alternatively at least 98%, identical primary amino acid sequence to the reference polypeptide when compared using sequence identity methods run under default conditions.
[0115] The isolated polypeptides or MPS polypeptides and equivalents have the ability to: inhibit the expression of MARCKS for preventing, reducing, delaying, inhibiting or suppressing disease or disease symptoms associated with MARCKS phosphorylation and/or dissociation from the cell membrane and/or PIP2-sequestering effect, or PIP3 production, or activation of AKT, or inflammation, fibrosis, or activated fibroblast proliferation, or myofibroblast genesis and differentiation, or transforming growth factor-beta (TGF-b) signaling pathway, or cancer, or solid tumor cell growth or metastasis, or cancer stem cell growth, or tumor cell mobility; and optionally for promoting apoptosis, or restoring sensitivity of a resistant cancer cell to a chemotherapeutic. In one aspect, the isolated polypeptides and equivalents have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lung fibrosis, idiopathic pulmonary fibrosis, or smoking, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis. In another aspect, the isolated polypeptides and equivalents have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lymphoma, leukemia or a solid tumor. Non-limiting examples of solid tumor include cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer.
[0116] The polypeptides are useful therapeutically to inhibit or suppress solid tumor growth such as cancer cell invasion, metastasis, migration and viability of cancer cells in vitro or in vivo. They also promote apoptosis and inhibit the growth of cancer stem cells (such as those expressing CD133+), malignant tumors and cancer cells, increase or induce cancer cell death.
[0117] In a further aspect, further provided is an isolated polypeptide further comprising, or alternatively consisting essentially of, or yet consisting of one or more of: an operatively linked amino acid sequence to facilitate entry of the isolated polypeptide into the cell; a targeting polypeptide or a polypeptide that confers stability to the polypeptide. Also provided is an isolated polypeptide wherein the amino acid sequence comprises, or alternatively consists essentially of, or alternatively consisting of an operatively linked polypeptide that targets the polypeptide to a specific cell type or stabilizes the polypeptide or yet further comprises a transduction domain for facilitated cell entry or tumor targeting domain and an MPS polypeptide as described herein.
[0118] Polypeptides comprising, or alternatively consisting essentially of, or yet further consisting of, the amino acid sequences of the disclosure can be prepared by expressing polynucleotides encoding the polypeptide sequences of this disclosure in an appropriate host cell. This can be accomplished by methods of recombinant DNA technology known to those skilled in the art. Accordingly, this disclosure also provides methods for recombinantly producing the polypeptides of this disclosure in a eukaryotic or prokaryotic host cell, which in one aspect is further isolated from the host cell. The proteins and peptide fragments of this disclosure also can be obtained by chemical synthesis using a commercially available automated peptide synthesizer such as those manufactured by Perkin Elmer/ Applied
Biosystems, Inc., Model 430A or 431 A, Foster City, CA, USA. The synthesized protein or polypeptide can be precipitated and further purified, for example by high performance liquid chromatography (HPLC). Accordingly, this disclosure also provides a process for chemically synthesizing the proteins of this disclosure by providing the sequence of the protein and reagents, such as amino acids and enzymes and linking together the amino acids in the proper orientation and linear sequence.
[0119] The protein and peptide fragments may be operatively linked to a transduction domain for facilitated cell entry. Protein transduction offers an alternative to gene therapy for the delivery of therapeutic proteins into target cells, and methods involving protein transduction are within the scope of the disclosure. Protein transduction is the internalization of proteins into a host cell from the external environment. The internalization process relies on a protein or peptide which is able to penetrate the cell membrane. To confer this ability on a normally non-transducing protein, the non-transducing protein can be fused to a transduction- mediating protein such as the antennapedia peptide, the HIV TAT protein transduction
domain, or the herpes simplex virus VP22 protein. See Ford et al. (2001) Gene Ther. 8: 1-4. As such the polypeptides of the disclosure can, for example, include modifications that can increase such attributes as stability, half-life, ability to enter cells and aid in administration, e.g., in vivo administration of the polypeptides of the disclosure. For example, polypeptides of the disclosure can comprise, or alternatively consisting essentially of, or yet further consisting of, a protein transduction domain of the HIV TAT protein as described in
Schwarze et al. (1999) Science 285: 1569-1572. In addition, or alternatively, the polypeptides include amino acid sequences that target the polypeptide to the cell or tissue to be treated and/or stabilizes the polypeptide.
[0120] In a further aspect, any of the proteins, peptides or polynucleotides of this disclosure can be combined with a detectable label such as a dye for ease of detection. Non-limiting examples of such include radioisotopes, fluorochromes, chemiluminescent compounds, dyes, and proteins, including enzymes.
[0121] The polypeptides can be combined with another drug or agent (such as a protein, polypeptide, antibody, antibody fragment that may or may not be an anticancer drug or agent), such as an anticancer drug or agent such as a TKI, a platinum-based drug or a drug or agent that targets EGFR. In another aspect, the compositions are combined with a MARCKS protein, polypeptide or fragment thereof, wherein the MARCKS fragment comprises a polypeptide fragment that does not overlap in amino acid sequence with a polypeptide of the present disclosure or the MPS polypeptides disclosed in International PCT Publication Nos. WO 2015/013669 and WO 2015/095789. These compositions can be combined with a carrier, such as a pharmaceutically acceptable carrier for use in the diagnostic, screening and therapeutic methods as disclosed herein.
[0122] This disclosure also provides pharmaceutical composition for in vitro and in vivo use comprising, or alternatively consisting essentially of, or yet further consisting of a therapeutically effective amount of the MPS polypeptide or polynucleotide encoding the MPS polypeptide, that causes at least about 75%, or alternatively at least about 80%, or alternatively at least about 85%, or alternatively at least about 90%, or alternatively at least about 95%, or alternatively at least about 99% effectiveness in the methods provided herein when applied in a molar concentration of less than about 10 micromolar, or alternatively less than about 9 micromolar, or alternatively less than about 8 micromolar, or alternatively less than about 7 micromolar, or alternatively less than about 6 micromolar, or alternatively less
than about 5 micromolar, or alternatively less than about 4 micromolar, or alternatively less than about 3 micromolar, or alternatively less than about 2 micromolar, or alternatively less than about 1 micromolar, or alternatively less than about 0.5 micromolar, or alternatively less than about 0.25 micromolar concentration, as compared to a control that does not receive the composition. Comparative effectiveness can be determined by suitable in vitro or in vivo methods as known in the art.
[0123] This disclosure also provides compositions for in vitro and in vivo use comprising, or alternatively consisting essentially of, or yet further consisting of one or more of the isolated polypeptides or polynucleotides described herein and a pharmaceutically acceptable carrier.
In one aspect, the compositions are pharmaceutical formulations for use in the therapeutic methods of this disclosure. In a further aspect, the disclosure provides a pharmaceutical composition comprising, or alternatively consisting essentially of, or yet further consisting of, the isolated polypeptide or polynucleotide in a concentration such that a therapeutically effective amount of the polypeptide or a pharmacological dose of the composition causes at least a 75%, or alternatively at least a 80%, or alternatively at least a 85%, or alternatively at least a 90%, or alternatively at least a 95% or alternatively at least a 97% reduction in cell growth for example, when applied in a molar concentration of less than 1 micromolar, to a culture of responsive cancer cells as compared to a control that does not receive the composition.
Isolated Polynucleotides and Compositions
[0124] This disclosure also provides isolated polynucleotides encoding the polypeptides described above. In one aspect, this disclosure also provides isolated polynucleotides encoding the polypeptides described above and an isolated anti-MPS shRNA. Non-limiting examples of the polypeptides of this disclosure include SEQ ID Nos. 40-56, 58 and 59 and equivalents thereof. This disclosure also provides the complementary polynucleotides to the sequences identified above, and their equivalents. Complementarity can be determined using traditional hybridization under conditions of moderate or high stringency. In one aspect the polynucleotides encode the equivalents of the isolated polypeptides of this disclosure. In another aspect, provided herein are equivalents of the isolated polynucleotides or their complements, wherein the equivalents have at least 80% sequence identity to the
polynucleotides of this disclosure.
[0125] An equivalent of the isolated polynucleotide or its complement comprises or alternatively consists essentially of, or yet consists of a polynucleotide having at least 80% sequence identity to a polynucleotide encoding the isolated polypeptides of this disclosure or their equivalents that hybridizes to an isolated polynucleotide that encodes the isolated polypeptide or its complement. Also provided are polynucleotides encoding substantially homologous and equivalent polypeptides or peptide fragments. Substantially homologous and equivalent intends those having varying degrees of homology, such as at least 65%, or alternatively, at least 70%, or alternatively, at least 75%, or alternatively at least 80%, or alternatively, at least 85%, or alternatively at least 90%, or alternatively, at least 95%, or alternatively at least 97% homologous as defined above and which encode polypeptides having the biological activity as described herein. It should be understood although not always explicitly stated that embodiments to substantially homologous peptides and polynucleotides are intended for each aspect of this disclosure, e.g., peptides, polynucleotides and antibodies.
[0126] Alternatively, an equivalent is a polypeptide encoded by a nucleic acid that hybridizes under stringent conditions to a nucleic acid or complement that encodes the polypeptide or when a polynucleotide, a polynucleotide that hybridizes to the reference polynucleotide or its complement under conditions of high stringency. Equivalent polynucleotides hybridize under conditions of high stringency to a polynucleotide encoding the polypeptide of this disclosure or its equivalent, or the complement of each. Hybridization reactions can be performed under conditions of different“stringency”. In general, a low stringency hybridization reaction is carried out at about 40°C in about 10 x SSC or a solution of equivalent ionic strength/temperature. A moderate stringency hybridization is typically performed at about 50°C in about 6 x SSC, and a high stringency hybridization reaction is generally performed at about 60°C in about 1 x SSC. Hybridization reactions can also be performed under“physiological conditions” which is well known to one of skill in the art. A non-limiting example of a physiological condition is the temperature, ionic strength, pH and concentration of Mg2+ normally found in a cell. An equivalent polynucleotide is one that hybridizes under stringent conditions to the reference polynucleotide or the complement of the reference polynucleotide, an in one aspect, having similar biological activity as the reference polynucleotide.
[0127] In a further aspect, the polynucleotides and their complements and the equivalents of each thereof are labeled with a detectable marker or label, such as a dye or radioisotope, for ease of detection. The polynucleotides can be inserted into expression vectors and delivered into target cells, e.g., cancer cells, for the diagnostic and therapeutic methods as disclosed herein.
[0128] As used herein, the term polynucleotide intends DNA and RNA as well as modified nucleotides. For example, this disclosure also provides the anti-sense polynucleotide strand, e.g. antisense RNA or siRNA (shRNA) to these sequences or their complements. One can obtain an antisense RNA using the sequences that encode MPS polypeptide a methodology known to one of ordinary skill in the art wherein the degeneracy of the genetic code provides several polynucleotide sequences that encode the same polypeptide or the methodology described in Van der Krol et al. (1988) BioTechniques 6:958.
[0129] The polynucleotides of this disclosure can be replicated using conventional recombinant techniques. Alternatively, the polynucleotides can be replicated using PCR technology. PCR is the subject matter of U.S. Patent Nos. 4,683,195; 4,800,159; 4,754,065; and 4,683,202 and described in PCR: The Polymerase Chain Reaction (Mullis et al. eds, Birkhauser Press, Boston (1994)) and references cited therein. Yet further, one of skill in the art can use the sequences provided herein and a commercial DNA synthesizer to replicate the DNA. Accordingly, this disclosure also provides a process for obtaining the peptide fragments of this disclosure by providing the linear sequence of the polynucleotide, appropriate primer molecules, chemicals such as enzymes and instructions for their replication and chemically replicating or linking the nucleotides in the proper orientation to obtain the polynucleotides. In a separate embodiment, these polynucleotides are further isolated. Still further, one of skill in the art can operatively link the polynucleotides to regulatory sequences for their expression in a host cell. The polynucleotides and regulatory sequences are inserted into the host cell (prokaryotic or eukaryotic) for replication and amplification. The DNA so amplified can be isolated from the cell by methods well known to those of skill in the art. A process for obtaining polynucleotides by this method is further provided herein as well as the polynucleotides so obtained.
[0130] In one aspect, the polynucleotide is an RNA molecule that is short interfering RNA, also known as siRNA. Methods to prepare and screen interfering RNA and select for the ability to block polynucleotide expression are known in the art and non-limiting examples of
which are shown below. These interfering RNA are provided by this disclosure alone or in combination with a suitable vector or within a host cell. Compositions containing the RNAi are further provided. RNAi is useful to knock-out or knock-down select functions in a cell or tissue as known in the art and described herein.
[0131] siRNA sequences can be designed by obtaining the target mRNA sequence and determining an appropriate siRNA complementary sequence. siRNAs of the disclosure are designed to interact with a target sequence, meaning they complement a target sequence sufficiently to hybridize to that sequence. An siRNA can be 100% identical to the target sequence. However, homology of the siRNA sequence to the target sequence can be less than 100% as long as the siRNA can hybridize to the target sequence. Thus, for example, the siRNA molecule can be at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to the target sequence or the complement of the target sequence. Therefore, siRNA molecules with insertions, deletions or single point mutations relative to a target may also be used. The generation of several different siRNA sequences per target mRNA is recommended to allow screening for the optimal target sequence. A homology search, such as a BLAST search, should be performed to ensure that the siRNA sequence does not contain homology to any known mammalian gene.
[0132] In general, it is preferable that the target sequence be located at least 100-200 nucleotides from the AUG initiation codon and at least 50-100 nucleotides away from the termination codon of the target mRNA (Duxbury (2004) J. Surgical Res. 117:339-344).
[0133] Researchers have determined that certain characteristics are common in siRNA molecules that effectively silence their target gene (Duxbury (2004) J. Surgical Res. 117:339- 344; Ui-Tei et al. (2004) Nucl. Acids Res. 32:936-48). As a general guide, siRNAs that include one or more of the following conditions are particularly useful in gene silencing in mammalian cells: GC ratio of between 45-55%, no runs of more than 9 G/C residues, G/C at the 5' end of the sense strand; A/U at the 5' end of the antisense strand; and at least 5 A/U residues in the first 7 bases of the 5' terminal of the antisense strand.
[0134] siRNA are, in general, from about 10 to about 30 nucleotides in length. For example, the siRNA can be 10-30 nucleotides long, 12-28 nucleotides long, 15-25 nucleotides long, 19-23 nucleotides long, or 21-23 nucleotides long. When a siRNA contains two strands of different lengths, the longer of the strands designates the length of the siRNA. In this situation, the unpaired nucleotides of the longer strand would form an overhang.
[0135] The term siRNA includes short hairpin RNAs (shRNAs). shRNAs comprise a single strand of RNA that forms a stem-loop structure, where the stem consists of the
complementary sense and antisense strands that comprise a double-stranded siRNA, and the loop is a linker of varying size. The stem structure of shRNAs generally is from about 10 to about 30 nucleotides long. For example, the stem can be 10-30 nucleotides long, 12-28 nucleotides long, 15-25 nucleotides long, 19-23 nucleotides long, or 21-23 nucleotides long.
[0136] Tools to assist siRNA design are readily available to the public. For example, a computer-based siRNA design tool is available on the internet at www.dharmacon.com, last accessed on November 26, 2007.
[0137] This disclosure also provides compositions for in vitro and in vivo use comprising, or alternatively consisting essentially of, or yet further consisting of one or more of the isolated polynucleotide as described herein and a pharmaceutically acceptable carrier. In one aspect, the compositions are pharmaceutical formulations for use in the therapeutic methods of this disclosure. In a further aspect, the disclosure provides a pharmaceutical composition comprising, or alternatively consisting essentially of, or yet further consisting of, the isolated polynucleotide in a concentration such that a therapeutically effective amount of the or pharmacological dose of the composition causes at least a 75%, or alternatively at least a 80%, or alternatively at least a 85%, or alternatively at least a 90%, or alternatively at least a 95% or alternatively at least a 97% reduction in cancer cell growth, viability or migration, as compared to a control that does not receive the composition. Comparative effectiveness can be determined by suitable in vitro or in vivo methods as known in the art and described herein.
Synthesis of dsRNA and siRNA
[0138] dsRNA and siRNA can be synthesized chemically or enzymatically in vitro as described in Micura (2002) Agnes Chem. Int. Ed. Emgl. 41 :2265-2269; Betz (2003) Promega Notes 85: 15-18; and Paddison and Hannon (2002) Cancer Cell. 2: 17-23. Chemical synthesis can be performed via manual or automated methods, both of which are well known in the art as described in Micura (2002), supra. siRNA can also be endogenously expressed inside the cells in the form of shRNAs as described in Yu et al. (2002) Proc. Natl. Acad. Sci. USA 99:6047-6052; and McManus et al. (2002) RNA 8:842-850. Endogenous expression has been achieved using plasmid-based expression systems using small nuclear RNA promoters, such as RNA polymerase III U6 or HI, or RNA polymerase II U1 as described in
Brummelkamp et al. (2002) Science 296:550-553 (2002); and Novarino et al. (2004) J. Neurosci. 24:5322-5330.
[0139] In vitro enzymatic dsRNA and siRNA synthesis can be performed using an RNA polymerase mediated process to produce individual sense and antisense strands that are annealed in vitro prior to delivery into the cells of choice as described in Fire et al. (1998) Nature 391 :806-811; Donze and Picard (2002) Nucl. Acids Res. 30(10): e46; Yu et al. (2002); and Shim et al. (2002) J. Biol. Chem. 277:30413-30416. Several manufacturers (Promega, Ambion, New England Biolabs, and Stragene) produce transcription kits useful in performing the in vitro synthesis.
[0140] In vitro synthesis of siRNA can be achieved, for example, by using a pair of short, duplex oligonucleotides that contain T7 RNA polymerase promoters upstream of the sense and antisense RNA sequences as the DNA template. Each oligonucleotide of the duplex is a separate template for the synthesis of one strand of the siRNA. The separate short RNA strands that are synthesized are then annealed to form siRNA as described in Protocols and Applications, Chapter 2: RNA interference, Promega Corporation, (2005).
[0141] In vitro synthesis of dsRNA can be achieved, for example, by using a T7 RNA polymerase promoter at the 5 '-ends of both DNA target sequence strands. This is accomplished by using separate DNA templates, each containing the target sequence in a different orientation relative to the T7 promoter, transcribed in two separate reactions. The resulting transcripts are mixed and annealed post-transcriptionally. DNA templates used in this reaction can be created by PCR or by using two linearized plasmid templates, each containing the T7 polymerase promoter at a different end of the target sequence. Protocols and Applications, Chapter 2: RNA interference, Promega Corporation (2005).
[0142] RNA can be obtained by first inserting a DNA polynucleotide into a suitable prokaryotic or eukaryotic host cell. The DNA can be inserted by any appropriate method, e.g., by the use of an appropriate gene delivery vehicle (e.g., liposome, plasmid or vector) or by electroporation. When the cell replicates and the DNA is transcribed into RNA; the RNA can then be isolated using methods well known to those of skill in the art, for example, as set forth in Sambrook and Russell (2001) supra. For instance, mRNA can be isolated using various lytic enzymes or chemical solutions according to the procedures set forth in
Sambrook and Russell (2001) supra or extracted by nucleic-acid-binding resins following the accompanying instructions provided by manufactures.
[0143] In order to express the proteins described herein, delivery of nucleic acid sequences encoding the gene of interest can be delivered by several techniques. Examples of which include viral technologies (e.g. retroviral vectors, adenovirus vectors, adeno-associated virus vectors, alphavirus vectors and the like) and non-viral technologies (e.g. DNA/liposome complexes, micelles and targeted viral protein-DNA complexes) as described herein. Once inside the cell of interest, expression of the transgene can be under the control of ubiquitous promoters (e.g. EF-1) or tissue specific promoters (e.g. Calcium Calmodulin kinase 2 (CaMKI) promoter, NSE promoter and human Thy-1 promoter). Alternatively, expression levels may be controlled by use of an inducible promoter system (e.g. Tet on/off promoter) as described in Wiznerowicz et al. (2005) Stem Cells 77:8957-8961.
[0144] Non-limiting examples of promoters include, but are not limited to, the
cytomegalovirus (CMV) promoter (Kaplitt et al. (1994) Nat. Genet. 8: 148-154), CMV/human y- globin promoter (Mandel et al. (1998) J. Neurosci. 18:4271-4284), NCX1 promoter, yMHC promoter, MLC2v promoter, GFAP promoter (Xu et al. (2001) Gene Ther.
8: 1323-1332), the 1.8-kb neuron-specific enolase (NSE) promoter (Klein et al. (1998) Exp. Neurol. 150: 183-194), chicken beta actin (CBA) promoter (Miyazaki (1989) Gene
79:269-277) and the b -glucuronidase (GUSB) promoter (Shipley et al. (1991) Genetics 10: 1009-1018), the human serum albumin promoter, the alpha- 1 -antitrypsin promoter. To improve expression, other regulatory elements may additionally be operably linked to the transgene, such as, e.g., the Woodchuck Hepatitis Virus Post-Regulatory Element (WPRE) (Donello et al. (1998) J. Virol. 72: 5085-5092) or the bovine growth hormone (BGH) polyadenylation site.
[0145] The disclosure further provides the isolated polynucleotides of this disclosure operatively linked to a promoter of RNA transcription, as well as other regulatory sequences for replication and/or transient or stable expression of the DNA or RNA. As used herein, the term“operatively linked” means positioned in such a manner that the promoter will direct transcription of RNA off the DNA molecule. Examples of such promoters are SP6, T4 and T7. In certain embodiments, cell-specific promoters are used for cell-specific expression of the inserted polynucleotide. Vectors which contain a promoter or a promoter/enhancer, with termination codons and selectable marker sequences, as well as a cloning site into which an inserted piece of DNA can be operatively linked to that promoter are well known in the art and commercially available. For general methodology and cloning strategies, see Gene
Expression Technology (Goeddel ed., Academic Press, Inc. (1991)) and references cited therein and Vectors: Essential Data Series (Gacesa and Ramji, eds., John Wiley & Sons, N.Y. (1994)), which contains maps, functional properties, commercial suppliers and a reference to GenEMBL accession numbers for various suitable vectors. Preferable, these vectors are capable of transcribing RNA in vitro or in vivo.
[0146] Expression vectors containing these nucleic acids are useful to obtain host vector systems to produce proteins and polypeptides. It is implied that these expression vectors must be replicable in the host organisms either as episomes or as an integral part of the chromosomal DNA. Suitable expression vectors include plasmids, viral vectors, including adenoviruses, adeno-associated viruses, retroviruses, cosmids, etc. Adenoviral vectors are particularly useful for introducing genes into tissues in vivo because of their high levels of expression and efficient transformation of cells both in vitro and in vivo. When a nucleic acid is inserted into a suitable host cell, e.g., a prokaryotic or a eukaryotic cell and the host cell replicates, the protein can be recombinantly produced. Suitable host cells will depend on the vector and can include mammalian cells, animal cells, human cells, simian cells, insect cells, yeast cells, and bacterial cells as described above and constructed using well known methods. See Sambrook and Russell (2001), supra. In addition to the use of viral vector for insertion of exogenous nucleic acid into cells, the nucleic acid can be inserted into the host cell by methods well known in the art such as transformation for bacterial cells; transfection using calcium phosphate precipitation for mammalian cells; DEAE-dextran; electroporation; or microinjection. See Sambrook and Russell (2001), supra for this methodology.
[0147] The present disclosure also provides delivery vehicles suitable for delivery of a polynucleotide of the disclosure into cells (whether in vivo, ex vivo, or in vitro). A polynucleotide of the disclosure can be contained within a gene delivery vehicle, a cloning vector or an expression vector. These vectors (especially expression vectors) can in turn be manipulated to assume any of a number of forms which may, for example, facilitate delivery to and/or entry into a cell.
[0148] In one aspect when polynucleotides encoding two or more peptides, at least one of which is an MPS, SEQ ID NO: 40-56, 58 and 59, or an equivalent of each thereof, are intended to be translated and optionally expressed, the polynucleotides encoding the polypeptides may be organized within a recombinant mRNA or cDNA molecule that results in the transcript that expresses on a single mRNA molecule the at least two peptides. This is
accomplished by use of a polynucleotide that has the biological activity of an internal ribosome entry site (IRES) located between the polynucleotide encoding the two peptides. IRES elements initiate translation of polynucleotides without the use of a“cap” structure traditionally thought to be necessary for translation of proteins in eukaryotic cells. Initially described in connection with the untranslated regions of individual picomaviruses, e.g. polio virus and encephalomyocarditis virus, IRES elements were later shown to efficiently initiate translation of reading frames in eukaryotic cells and when positioned downstream from a eukaryotic promoter, it will not influence the "cap "-dependent translation of the first cistron. The IRES element typically is at least 450 nucleotides long when in occurs in viruses and possesses, at its 3’ end, a conserved“UUUC” sequence followed by a polypyrimidine trace, a G-poor spacer and an AUG triple.
[0149] As used herein, the term“IRES” is intended to include any molecule such as a mRNA polynucleotide or its reverse transcript (cDNA) which is able to initiate translation of the gene downstream from the polynucleotide without the benefit of a cap site in a eukaryotic cell. “IRES” elements can be identical to sequences found in nature, such as the picomavirus IRES, or they can be non-naturally or non-native sequences that perform the same function when transfected into a suitable host cell. Bi- and poly-cistronic expression vectors containing naturally occurring IRES elements are known in the art and described for example, in Pestova et al. (1998) Genes Dev. 12:67-83 and International PCT Publication No. WO 01/04306, which in turn on page 17, lines 35 to 38 references several literature references which include, but are not limited to Ramesh et al. (1996) Nucl. Acids Res. 24: 2697-2700; Pelletier et al. (1988) Nature 334:320-325; Jan et al. (1989) J. Virol. 63: 1651- 1660; and Davies et al. (1992) J. Virol. 66: 1924-1932. Paragraph [0009] of U.S. Patent Application Publication No. 2005/0014150 Al discloses several issued U.S. patents wherein a virally-derived IRES element was used to express foreign gene(s) in linear multi -cistronic mRNAs in mammalian cells, plant cells and generally in eukaryotic cells. U.S. Patent Application Publication No. 2004/0082034 Al discloses an IRES element active in insect cells. Methods to identify new elements also are described in U.S. Patent No. 6,833,254.
[0150] Also within the term“IRES” element are cellular sequences similar to that disclosed in U.S. Patent No. 6,653,132. The patent discloses a sequence element (designated SP163) composed of sequences derived from the 5'-UTR of VEGF (Vascular Endothelial Growth Factor gene), which, was presumably generated through a previously unknown mode of
alternative splicing. The patentees report that an advantages of SP163 is that it is a natural cellular IRES element with a superior performance as a translation stimulator and as a mediator of cap-independent translation relative to known cellular IRES elements and that these functions are maintained under stress conditions.
[0151] Further within the term“IRES” element are artificial sequences that function as IRES elements that are described, for example, in U.S. Patent Application Publication No.
2005/0059004 Al.
[0152] Operatively linked to the IRES element and separately, are sequences necessary for the translation and proper processing of the peptides. Examples of such include, but are not limited to a eukaryotic promoter, an enhancer, a termination sequence and a polyadenylation sequence. Construction and use of such sequences are known in the art and are combined with IRES elements and protein sequences using recombinant methods. “Operatively linked” shall mean the juxtaposition of two or more components in a manner that allows them to junction for their intended purpose. Promoters are sequences which drive transcription of the marker or target protein. It must be selected for use in the particular host cell, i.e., mammalian, insect or plant. Viral or mammalian promoters will function in mammalian cells. The promoters can be constitutive or inducible, examples of which are known and described in the art.
[0153] In one aspect, the peptides are transcribed and translated from a separate recombinant polynucleotide and combined into a functional protein in the host cell. This recombinant polynucleotide does not require the IRES element or marker protein although in one aspect, it may be present.
[0154] These isolated host cells containing the polynucleotides of this disclosure are useful in the methods described herein as well as for the recombinant replication of the
polynucleotides and for the recombinant production of peptides and for high throughput screening.
Vectors and Host Cells
[0155] As used herein, the term“vector” refers to a nucleic acid construct deigned for transfer between different hosts, including but not limited to a plasmid, a virus, a cosmid, a phage, a BAC, a YAC, etc. A“viral vector” is defined as a recombinantly produced virus or viral particle that comprises a polynucleotide to be delivered into a host cell, either in vivo, ex
vivo or in vitro. In some embodiments, plasmid vectors may be prepared from commercially available vectors. In other embodiments, viral vectors may be produced from baculoviruses, retroviruses, adenoviruses, AAVs, etc. according to techniques known in the art. In one embodiment, the viral vector is a lentiviral vector. Examples of viral vectors include retroviral vectors, adenovirus vectors, adeno-associated virus vectors, alphavirus vectors and the like. Infectious tobacco mosaic virus (TMV)-based vectors can be used to manufacturer proteins and have been reported to express Griffithsin in tobacco leaves (O'Keefe et al.
(2009) Proc. Nat. Acad. Sci. USA 106(15):6099-6104). Alphavirus vectors, such as Semliki Forest virus-based vectors and Sindbis virus-based vectors, have also been developed for use in gene therapy and immunotherapy. See, Schlesinger & Dubensky (1999) Curr. Opin. Biotechnol. 5:434-439 and Ying et al. (1999) Nat. Med. 5(7):823-827. In aspects where gene transfer is mediated by a retroviral vector, a vector construct refers to the polynucleotide comprising the retroviral genome or part thereof, and a gene of interest. Further details as to modern methods of vectors for use in gene transfer may be found in, for example, Kotterman et al. (2015) Viral Vectors for Gene Therapy: Translational and Clinical Outlook Annual Review of Biomedical Engineering 17. Vectors that contain both a promoter and a cloning site into which a polynucleotide can be operatively linked are well known in the art. Such vectors are capable of transcribing RNA in vitro or in vivo and are commercially available from sources such as Agilent Technologies (Santa Clara, Calif.) and Promega Biotech (Madison, Wis.).
[0156] Provided herein is a vector comprising, or alternatively consisting essentially of, or yet further consisting of one or more of the isolated polynucleotide of this disclosure and optionally regulatory sequences operatively linked to the isolated polynucleotide for replication and/or expression. Non-limiting examples of a vector include a plasmid or a viral vector such as a retroviral vector, a lentiviral vector, an adenoviral vector, or an adeno- associated viral vector. In one particular aspect, the vector is an AAV vector (adeno- associated viral vector).
[0157] In one aspect, the regulatory sequences comprise, or alternatively consist essentially of, or yet further consist of a promoter, an enhancer element and/or a reporter. In one aspect, the vector further comprises, or alternatively consists essentially of, or yet further consists of a detectable marker or a purification marker.
[0158] As used herein, the term“detectable marker” refers to at least one marker capable of directly or indirectly, producing a detectable signal. A non-exhaustive list of this marker includes enzymes which produce a detectable signal, for example by colorimetry, fluorescence, luminescence, such as horseradish peroxidase, alkaline phosphatase, b- galactosidase, glucose-6-phosphate dehydrogenase, chromophores such as fluorescent, luminescent dyes, groups with electron density detected by electron microscopy or by their electrical property such as conductivity, amperometry, voltammetry, impedance, detectable groups, for example whose molecules are of sufficient size to induce detectable modifications in their physical and/or chemical properties, such detection may be accomplished by optical methods such as diffraction, surface plasmon resonance, surface variation , the contact angle change or physical methods such as atomic force spectroscopy, tunnel effect, or radioactive molecules such as 32 P, 35 S or 125 1.
[0159] As used herein, the term“purification marker” refers to at least one marker useful for purification or identification. A non-exhaustive list of this marker includes His, lacZ, GST, maltose-binding protein, NusA, BCCP, c-myc, CaM, FLAG, GFP, YFP, cherry, thioredoxin, poly (NANP), V5, Snap, HA, chitin-binding protein, Softag 1, Softag 3, Strep, or S-protein. Suitable direct or indirect fluorescence marker comprise FLAG, GFP, YFP, RFP, dTomato, cherry, Cy3, Cy 5, Cy 5.5, Cy 7, DNP, AMCA, Biotin, Digoxigenin, Tamra, Texas Red, rhodamine, Alexa fluors, FITC, TRITC or any other fluorescent dye or hapten.
[0160] Further disclosed herein is a host cell further comprising or alternatively consisting essentially of, or yet further consisting one or more of the isolated polypeptide, the isolated polynucleotide, or the vector of this disclosure.
[0161] Suitable cells containing the polypeptides and/or polynucleotides include prokaryotic and eukaryotic cells, which include, but are not limited to bacterial cells, yeast cells, insect cells, animal cells, mammalian cells, murine cells, rat cells, sheep cells, simian cells and human cells. Examples of bacterial cells include Escherichia coli , Salmonella enterica and Streptococcus gordonii. The cells can be purchased from a commercial vendor such as the American Type Culture Collection (ATCC, Rockville Maryland, USA) or cultured from an isolate using methods known in the art. Examples of suitable eukaryotic cells include, but are not limited to 293T HEK cells, as well as the hamster cell line BHK-21; the murine cell lines designated NIH3T3, NS0, Cl 27, the simian cell lines COS, Vero; and the human cell lines HeLa, PER.C6 (commercially available from Crucell) U-937 and Hep G2. A non-limiting
example of insect cells include Spodoptera frugiperda. Examples of yeast useful for expression include, but are not limited to Saccharomyces, Schizosaccharomyces, Hansenula, Candida, Torulopsis, Yarrowia, or Pichia. See e.g., U.S. Patent Nos. 4,812,405; 4,818,700; 4,929,555; 5,736,383; 5,955,349; 5,888,768 and 6,258,559.
[0162] In addition to species specificity, the cells can be of any particular tissue type such as a somatic or embryonic stem cell such as a stem cell that can or cannot differentiate into a terminally differentiated cell. The stem cell can be of human or animal origin, such as mammalian.
Antibody Compositions
[0163] This disclosure also provides an antibody capable of specifically forming a complex with a polypeptide of this disclosure, e.g. a polypeptide of SEQ ID Nos: 40-56 which can be used for screening for said polypeptides. In one aspect, the antibody or fragment thereof specifically binds to a phosphorylation site domain (PSD) of MARCKS protein, which can prevent MARCKS from phosphorylation and/or sequester the proteins that naturally interact with MARCKS. In another aspect, the antibody or fragment thereof is conjugated to a peptide or other molecule to facilitate entry into the cell. The term“antibody” is described above and includes polyclonal antibodies and monoclonal antibodies, antibody fragments, as well as derivatives thereof. The antibodies include, but are not limited to cows, rabbits, goats, mice, rats, hamsters, guinea pigs, sheep, dogs, cats, monkeys, chimpanzees, apes, etc. The antibodies are also useful to identify and purify therapeutic and/or diagnostic polypeptides. Also provided are hybridoma cell lines producing monoclonal antibodies of this disclosure.
[0164] Polyclonal antibodies of the disclosure can be generated using conventional techniques known in the art and are well-described in the literature. Several methodologies exist for production of polyclonal antibodies. For example, polyclonal antibodies are typically produced by immunization of a suitable mammal such as, but not limited to, chickens, goats, guinea pigs, hamsters, horses, mice, rats, and rabbits. An antigen is injected into the mammal, which induces the B-lymphocytes to produce IgG immunoglobulins specific for the antigen. This IgG is purified from the mammal’s serum. Variations of this methodology include modification of adjuvants, routes and site of administration, injection volumes per site and the number of sites per animal for optimal production and humane treatment of the animal. For example, adjuvants typically are used to improve or enhance an
immune response to antigens. Most adjuvants provide for an injection site antigen depot, which allows for a slow release of antigen into draining lymph nodes. Other adjuvants include surfactants which promote concentration of protein antigen molecules over a large surface area and immunostimulatory molecules. Non-limiting examples of adjuvants for polyclonal antibody generation include Freund’s adjuvants, Ribi adjuvant system, and Titermax. Polyclonal antibodies can be generated using methods described in U.S. Patent Nos. 7,279,559; 7,119,179; 7,060,800; 6,709,659; 6,656,746; 6,322,788; 5,686,073; and 5,670,153.
[0165] The monoclonal antibodies of the disclosure can be generated using conventional hybridoma techniques known in the art and well-described in the literature. For example, a hybridoma is produced by fusing a suitable immortal cell line (e.g., a myeloma cell line such as, but not limited to, Sp2/0, Sp2/0-AG14, NSO, NS1, NS2, AE-1, L.5, >243,
P3X63Ag8.653, Sp2 SA3, Sp2 MAI, Sp2 SSI, Sp2 SA5, U397, MLA 144, ACT IV,
MOLT4, DA-1, JURKAT, WEHI, K-562, COS, RAJI, NIH 3T3, HL-60, MLA 144,
NAMAIWA, NEURO 2A, CHO, PerC.6, YB2/0) or the like, or heteromyelomas, fusion products thereof, or any cell or fusion cell derived there from, or any other suitable cell line as known in the art (see, e.g., www.atcc.org, www.lifetech.com., last accessed on November 26, 2007, and the like), with antibody producing cells, such as, but not limited to, isolated or cloned spleen, peripheral blood, lymph, tonsil, or other immune or B cell containing cells, or any other cells expressing heavy or light chain constant or variable or framework or CDR sequences, either as endogenous or heterologous nucleic acid, as recombinant or endogenous, viral, bacterial, algal, prokaryotic, amphibian, insect, reptilian, fish, mammalian, rodent, equine, ovine, goat, sheep, primate, eukaryotic, genomic DNA, cDNA, rDNA, mitochondrial DNA or RNA, chloroplast DNA or RNA, hnRNA, mRNA, tRNA, single, double or triple stranded, hybridized, and the like or any combination thereof. Antibody producing cells can also be obtained from the peripheral blood or, preferably the spleen or lymph nodes, of humans or other suitable animals that have been immunized with the antigen of interest. Any other suitable host cell can also be used for expressing heterologous or endogenous nucleic acid encoding an antibody, specified fragment or variant thereof, of the present disclosure. The fused cells (hybridomas) or recombinant cells can be isolated using selective culture conditions or other suitable known methods, and cloned by limiting dilution or cell sorting, or other known methods.
[0166] In one embodiment, the antibodies described herein can be generated using a Multiple Antigenic Peptide (MAP) system. The MAP system utilizes a peptidyl core of three or seven radially branched lysine residues, on to which the antigen peptides of interest can be built using standard solid-phase chemistry. The lysine core yields the MAP bearing about 4 to 8 copies of the peptide epitope depending on the inner core that generally accounts for less than 10% of total molecular weight. The MAP system does not require a carrier protein for conjugation. The high molar ratio and dense packing of multiple copies of the antigenic epitope in a MAP has been shown to produce strong immunogenic response. This method is described in U.S. Patent No. 5,229,490.
[0167] Other suitable methods of producing or isolating antibodies of the requisite specificity can be used, including, but not limited to, methods that select recombinant antibody from a peptide or protein library (e.g., but not limited to, a bacteriophage, ribosome, oligonucleotide, RNA, cDNA, or the like, display library; e.g., as available from various commercial vendors such as Cambridge Antibody Technologies (Cambridgeshire, UK), MorphoSys
(Martinsreid/Planegg, Del.), Biovation (Aberdeen, Scotland, UK) Bioinvent (Lund, Sweden), using methods known in the art. See U.S. Patent Nos. 4,704,692; 5,723,323; 5,763,192; 5,814,476; 5,817,483; 5,824,514; 5,976,862. Alternative methods rely upon immunization of transgenic animals (e.g., SCID mice, Nguyen et al. (1977) Microbiol. Immunol. 41 :901-907 (1997); Sandhu et al.(1996) Crit. Rev. Biotechnol. 16:95-118; Eren et al. (1998) Immunol. 93: 154-161 that are capable of producing a repertoire of human antibodies, as known in the art and/or as described herein. Such techniques, include, but are not limited to, ribosome display (Hanes et al. (1997) Proc. Natl. Acad. Sci. USA 94:4937-4942; Hanes et al.(1998) Proc. Natl. Acad. Sci. USA 95: 14130-14135); single cell antibody producing technologies (e.g., selected lymphocyte antibody method ("SLAM") (U.S. Patent No. 5,627,052, Wen et al. (1987) J. Immunol. 17:887-892; Babcook et al. (1996) Proc. Natl. Acad. Sci. USA
93:7843-7848); gel microdroplet and flow cytometry (Powell et al. (1990) Biotechnol. 8:333- 337; One Cell Systems, (Cambridge, Mass); Gray et al. (1995) J. Imm. Meth. 182:155-163; and Kenny et al. (1995) Bio. Technol. 13:787-790); B-cell selection (Steenbakkers et al. (1994) Molec. Biol. Reports 19: 125-134.
[0168] Antibody derivatives of the present disclosure can also be prepared by delivering a polynucleotide encoding an antibody of this disclosure to a suitable host such as to provide transgenic animals or mammals, such as goats, cows, horses, sheep, and the like, that produce
such antibodies in their milk. These methods are known in the art and are described for example in U.S. Patent Nos. 5,827,690; 5,849,992; 4,873,316; 5,849,992; 5,994,616;
5,565,362; and 5,304,489.
[0169] The term“antibody derivative” includes post-translational modification to linear polypeptide sequence of the antibody or fragment. For example, U.S. Patent
No. 6,602,684 B1 describes a method for the generation of modified glycol-forms of antibodies, including whole antibody molecules, antibody fragments, or fusion proteins that include a region equivalent to the Fc region of an immunoglobulin, having enhanced Fc- mediated cellular toxicity, and glycoproteins so generated.
[0170] Antibody derivatives also can be prepared by delivering a polynucleotide of this disclosure to provide transgenic plants and cultured plant cells (e.g., but not limited to tobacco, maize, and duckweed) that produce such antibodies, specified portions or variants in the plant parts or in cells cultured there from. For example, Cramer et al. (1999) Curr. Top. Microbol. Immunol. 240:95-118 and references cited therein, describe the production of transgenic tobacco leaves expressing large amounts of recombinant proteins, e.g., using an inducible promoter. Transgenic maize has been used to express mammalian proteins at commercial production levels, with biological activities equivalent to those produced in other recombinant systems or purified from natural sources. See, e.g., Hood et al. (1999) Adv. Exp. Med. Biol. 464: 127-147 and references cited therein. Antibody derivatives have also been produced in large amounts from transgenic plant seeds including antibody fragments, such as single chain antibodies (scFvs), including tobacco seeds and potato tubers. See, e.g., Conrad et al. (1998) Plant Mol. Biol. 38: 101-109 and reference cited therein. Thus, antibodies of the present disclosure can also be produced using transgenic plants, according to known methods.
[0171] Antibody derivatives also can be produced, for example, by adding exogenous sequences to modify immunogenicity or reduce, enhance or modify binding, affinity, on-rate, off-rate, avidity, specificity, half-life, or any other suitable characteristic. Generally, part or all of the non-human or human CDR sequences are maintained while the non-human sequences of the variable and constant regions are replaced with human or other amino acids.
[0172] In general, the CDR residues are directly and most substantially involved in influencing antigen binding. Humanization or engineering of antibodies of the present disclosure can be performed using any known method such as, but not limited to, those described in U.S. Patent Nos. 5,723,323; 5,976,862; 5,824,514; 5,817,483; 5,814,476;
5,763,192; 5,723,323; 5,766,886; 5,714,352; 6,204,023; 6,180,370; 5,693,762; 5,530,101;
5,585,089; 5,225,539; and 4,816,567.
[0173] Techniques for making partially to fully human antibodies are known in the art and any such techniques can be used. According to one embodiment, fully human antibody sequences are made in a transgenic mouse which has been engineered to express human heavy and light chain antibody genes. Multiple strains of such transgenic mice have been made which can produce different classes of antibodies. B cells from transgenic mice which are producing a desirable antibody can be fused to make hybridoma cell lines for continuous production of the desired antibody. (See, e.g., Russel et al. (2000) Infection and Immunity April 2000: 1820-1826; Gallo et al. (2000) European J. of Immun. 30:534-540; Green (1999)
J. of Immun. Methods 231 : 11-23; Yang et al. (1999) J. of Leukocyte Biology 66:401-410; Yang (1999) Cancer Research 59(6): 1236-1243; Jakobovits (1998) Advanced Drug Delivery Reviews 31 :33-42; Green and Jakobovits (1998) J. Exp. Med. 188(3):483-495; Jakobovits (1998) Exp. Opin. Invest. Drugs 7(4):607-614; Tsuda et al. (1997) Genomics 42:413-421; Sherman-Gold (1997) Genetic Engineering News 17(14); Mendez et al. (1997) Nature Genetics 15: 146-156; Jakobovits (1996) Weir’s Handbook of Experimental Immunology,
The Integrated Immune System Vol. IV, 194.1-194.7; Jakobovits (1995) Current Opinion in Biotechnology 6:561-566; Mendez et al. (1995) Genomics 26:294-307; Jakobovits (1994) Current Biology 4(8):761-763; Arbones et al. (1994) Immunity l(4):247-260; Jakobovits (1993) Nature 362(6417):255-258; Jakobovits et al. (1993) Proc. Natl. Acad. Sci. USA 90(6):2551-2555; and U.S. Patent No. 6,075,181.)
[0174] The antibodies of this disclosure also can be modified to create chimeric antibodies. Chimeric antibodies are those in which the various domains of the antibodies’ heavy and light chains are coded for by DNA from more than one species. See, e.g., U.S. Patent No.
4,816,567.
[0175] Alternatively, the antibodies of this disclosure can also be modified to create veneered antibodies. Veneered antibodies are those in which the exterior amino acid residues of the antibody of one species are judiciously replaced or“veneered” with those of a second species so that the antibodies of the first species will not be immunogenic in the second species thereby reducing the immunogenicity of the antibody. Since the antigenicity of a protein is primarily dependent on the nature of its surface, the immunogenicity of an antibody could be reduced by replacing the exposed residues which differ from those usually found in other
mammalian species antibodies. This judicious replacement of exterior residues should have little, or no, effect on the interior domains, or on the interdomain contacts. Thus, ligand binding properties should be unaffected as a consequence of alterations which are limited to the variable region framework residues. The process is referred to as“veneering” since only the outer surface or skin of the antibody is altered, the supporting residues remain
undisturbed.
[0176] The procedure for“veneering” makes use of the available sequence data for human antibody variable domains compiled by Kabat et al. (1987) Sequences of Proteins of
Immunological Interest, 4th ed., Bethesda, Md., National Institutes of Health, updates to this database, and other accessible U.S. and foreign databases (both nucleic acid and protein). Non-limiting examples of the methods used to generate veneered antibodies include EP 519596; U.S. Patent No. 6,797,492; and described in Padlan et al. (1991) Mol. Immunol. 28(4-5):489-498.
[0177] The term“antibody derivative” also includes“diabodies” which are small antibody fragments with two antigen-binding sites, wherein fragments comprise a heavy chain variable domain (VH) connected to a light chain variable domain (VL) in the same polypeptide chain. (See for example, EP 404,097; WO 93/11161; and Hollinger et al., (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448.) By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. (See also, U.S. Patent No. 6,632,926 to Chen et al. which discloses antibody variants that have one or more amino acids inserted into a hypervariable region of the parent antibody and a binding affinity for a target antigen which is at least about two fold stronger than the binding affinity of the parent antibody for the antigen.)
[0178] The term“antibody derivative” further includes“linear antibodies”. The procedure for making linear antibodies is known in the art and described in Zapata et al. (1995) Protein Eng. 8(10): 1057-1062. Briefly, these antibodies comprise a pair of tandem Fd segments (VH
-CH 1-VH -CH1) which form a pair of antigen binding regions. Linear antibodies can be bispecific or monospecific.
[0179] The antibodies of this disclosure can be recovered and purified from recombinant cell cultures by known methods including, but not limited to, protein A purification, ammonium
sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. High performance liquid chromatography ("HPLC") can also be used for purification.
[0180] Antibodies of the present disclosure include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a eukaryotic host, including, for example, yeast, higher plant, insect and mammalian cells, or alternatively from prokaryotic cells as described above.
[0181] If a monoclonal antibody being tested binds with protein or polypeptide, then the antibody being tested and the antibodies provided by the hybridomas of this disclosure are equivalents. It also is possible to determine without undue experimentation, whether an antibody has the same specificity as the monoclonal antibody of this disclosure by
determining whether the antibody being tested prevents a monoclonal antibody of this disclosure from binding the protein or polypeptide with which the monoclonal antibody is normally reactive. If the antibody being tested competes with the monoclonal antibody of the disclosure as shown by a decrease in binding by the monoclonal antibody of this disclosure, then it is likely that the two antibodies bind to the same or a closely related epitope.
Alternatively, one can pre-incubate the monoclonal antibody of this disclosure with a protein with which it is normally reactive, and determine if the monoclonal antibody being tested is inhibited in its ability to bind the antigen. If the monoclonal antibody being tested is inhibited then, in all likelihood, it has the same, or a closely related, epitopic specificity as the monoclonal antibody of this disclosure.
[0182] The term“antibody” also is intended to include antibodies of all isotypes. Particular isotypes of a monoclonal antibody can be prepared either directly by selecting from the initial fusion, or prepared secondarily, from a parental hybridoma secreting a monoclonal antibody of different isotype by using the sib selection technique to isolate class switch variants using the procedure described in Steplewski et al. (1985) Proc. Natl. Acad. Sci. USA 82:8653 or Spira et al. (1984) J. Immunol. Methods 74:307.
[0183] The isolation of other hybridomas secreting monoclonal antibodies with the specificity of the monoclonal antibodies of the disclosure can also be accomplished by one of ordinary skill in the art by producing anti -idiotypic antibodies. Herlyn et al. (1986) Science
232: 100. An anti -idiotypic antibody is an antibody which recognizes unique determinants present on the monoclonal antibody produced by the hybridoma of interest.
[0184] Idiotypic identity between monoclonal antibodies of two hybridomas demonstrates that the two monoclonal antibodies are the same with respect to their recognition of the same epitopic determinant. Thus, by using antibodies to the epitopic determinants on a monoclonal antibody it is possible to identify other hybridomas expressing monoclonal antibodies of the same epitopic specificity.
[0185] It is also possible to use the anti-idiotype technology to produce monoclonal antibodies which mimic an epitope. For example, an anti -idiotypic monoclonal antibody made to a first monoclonal antibody will have a binding domain in the hypervariable region which is the mirror image of the epitope bound by the first monoclonal antibody. Thus, in this instance, the anti-idiotypic monoclonal antibody could be used for immunization for production of these antibodies.
[0186] Antibodies can be conjugated, for example, to a pharmaceutical agent, such as chemotherapeutic drug or a toxin. They can be linked to a cytokine, to a ligand, to another antibody. Suitable agents for coupling to antibodies to achieve an anti-tumor effect include cytokines, such as interleukin 2 (IL-2) and Tumor Necrosis Factor (TNF); photosensitizers, for use in photodynamic therapy, including aluminum (III) phthalocyanine tetrasulfonate,
131
hematoporphyrin, and phthalocyanine; radionuclides, such as iodine-131 ( I), yttrium-90
90 212 213 99m
( Y), bismuth-212 ( Bi), bismuth-213 ( Bi), technetium-99m ( Tc), rhenium- 186 186 188
( Re), and rhenium- 188 ( Re); antibiotics, such as doxorubicin, adriamycin, daunorubicin, methotrexate, daunomycin, neocarzinostatin, and carboplatin; bacterial, plant, and other toxins, such as diphtheria toxin, pseudomonas exotoxin A, staphylococcal enterotoxin A, abrin-A toxin, ricin A (deglycosylated ricin A and native ricin A), TGF-alpha toxin, cytotoxin from Chinese cobra (naja naja atra), and gelonin (a plant toxin); ribosome inactivating proteins from plants, bacteria and fungi, such as restrictocin (a ribosome inactivating protein produced by Aspergillus restrictus ), saporin (a ribosome inactivating protein from Saponaria officinalis ), and RNase; tyrosine kinase inhibitors; ly207702 (a difluorinated purine nucleoside); liposomes containing anti cystic agents (e.g., antisense oligonucleotides, plasmids which encode for toxins, methotrexate, etc.); and other antibodies or antibody fragments, such as F(ab).
[0187] The antibodies of the disclosure also can be bound to many different carriers. Thus, this disclosure also provides compositions containing the antibodies and another substance, active or inert. Examples of well-known carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, agaroses and magnetite. The nature of the carrier can be either soluble or insoluble for purposes of the disclosure. Those skilled in the art will know of other suitable carriers for binding monoclonal antibodies, or will be able to ascertain such, using routine
experimentation.
Compositions for Therapy
[0188] Provided herein is a composition comprising, or alternatively consisting essentially of, or yet further consisting of a carrier and one or more of the isolated polypeptide, the isolated polynucleotide, the vector or the host cell of this disclosure, e.g., in one aspect, the composition comprises as isolated polypeptide of SEQ ID Nos: 1-59, or alternatively SEQ ID Nos: 40-56, 59, or 40-56, 58 and 59, or a polynucleotide that encodes the polypeptide, or an equivalent of each thereof. Further diagnostic compositions include and antibody that binds the polypeptide or its equivalent or a fragment thereof. In one aspect, the carrier is a pharmaceutically acceptable carrier. In a further aspect, one or more of the above antibody, antibody fragment, antibody derivative, polypeptide or polynucleotides encoding these compositions and siRNA, vector, or host cell can be further comprise, or alternatively consist essentially of, or yet further consist of a chemotherapeutic agent or drug, or an anti-fibrotic agent or drug. Non-limiting examples of anti-fibrotic agent or drug include pirfenidone and nintedanib. Non-limiting examples of chemotherapeutic agent or drug include a Tyrosine Kinase Inhibitor (TKI), a platinum-based drug, a drug or agent that targets EGFR, or a MANS polypeptide or fragment thereof, wherein the fragment comprises, or alternatively consists essentially of, or yet further consists of a polypeptide and a carrier, a
pharmaceutically acceptable carrier or medical device which is suitable for use of the compositions in diagnostic or therapeutic methods. Thus, the compositions comprise, or alternatively consist essentially of, or yet further consist of, one or more of the above compositions described above in combination with a carrier, a pharmaceutically acceptable carrier or medical device.
[0189] The carrier can be a liquid phase carrier or a solid phase carrier, e.g., bead, gel, microarray, or carrier molecule such as a liposome. The composition can optionally further comprise at least one further compound, protein or composition.
[0190] Additional examples of“carriers” includes therapeutically active agents such as another peptide or protein (e.g., a Fab' fragment). For example, an antibody of this disclosure, derivative or fragment thereof can be functionally linked (e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., to produce a bispecific or a multispecific antibody), a cytotoxin, a cellular ligand or an antigen. Accordingly, this disclosure encompasses a large variety of antibody conjugates, bi- and multispecific molecules, and fusion proteins, whether or not they target the same epitope as the antibodies of this disclosure.
[0191] Additional examples of“carriers” also include therapeutically active agents such as another peptide or protein (e.g., an Fab' fragment) or agent for the treatment of one or more of: suppressing MARCKS phosphorylation and/or dissociation from the cell membrane; suppressing or reducing Th2 cytokine (IL-4, IL-5, IL-13 and eotaxin) production and/or IgE level; suppressing mucous metaplasia; inhibiting or suppressing infiltration of inflammatory cells (monocytes, neutrophils, lymphocytes); a disease or disease symptoms associated with allergic inflammation or hyper-reactivity.
[0192] Yet additional examples of carriers are organic molecules (also termed modifying agents) or activating agents, that can be covalently attached, directly or indirectly, to a polypeptide, antibody, antibody fragment, antibody derivative, polynucleotide encoding these, or RNAi, vector or host cell of this disclosure. Attachment of the molecule can improve pharmacokinetic properties (e.g., increased in vivo serum half-life). Examples of organic molecules include, but are not limited to a hydrophilic polymeric group, a fatty acid group or a fatty acid ester group. As used herein, the term "fatty acid" encompasses mono- carboxylic acids and di-carboxylic acids. A "hydrophilic polymeric group," as the term is used herein, refers to an organic polymer that is more soluble in water than in octane.
[0193] Hydrophilic polymers suitable for modifying antibodies of the disclosure can be linear or branched and include, for example, polyalkane glycols (e.g., PEG, monomethoxy- poly ethylene glycol (mPEG), PPG and the like), carbohydrates (e.g., dextran, cellulose, oligosaccharides, polysaccharides and the like), polymers of hydrophilic amino acids (e.g.,
polylysine, polyarginine, polyaspartate and the like), polyalkane oxides (e.g., polyethylene oxide, polypropylene oxide and the like) and polyvinyl pyrolidone. A suitable hydrophilic polymer that modifies the antibody of the disclosure has a molecular weight of about 800 to about 150,000 Daltons as a separate molecular entity. The hydrophilic polymeric group can be substituted with one to about six alkyl, fatty acid or fatty acid ester groups. Hydrophilic polymers that are substituted with a fatty acid or fatty acid ester group can be prepared by employing suitable methods. For example, a polymer comprising an amine group can be coupled to a carboxylate of the fatty acid or fatty acid ester, and an activated carboxylate (e.g., activated with N, N-carbonyl diimidazole) on a fatty acid or fatty acid ester can be coupled to a hydroxyl group on a polymer.
[0194] Fatty acids and fatty acid esters suitable for modifying antibodies of the disclosure can be saturated or can contain one or more units of unsaturation. Examples of such include, but are not limited to n-dodecanoate, n-tetradecanoate, n-octadecanoate, n-eicosanoate, n- docosanoate, n-triacontanoate, n-tetracontanoate, cis-A9-octadecanoate, all cis-A5,8, 11,14- eicosatetraenoate, octanedioic acid, tetradecanedioic acid, octadecanedioic acid,
docosanedioic acid, and the like. Suitable fatty acid esters include mono-esters of dicarboxylic acids that comprise a linear or branched lower alkyl group. The lower alkyl group can comprise from one to about twelve, preferably one to about six, carbon atoms.
[0195] The present disclosure provides a composition comprising, or alternatively consisting essentially of, or yet further consisting of, at least one antibody of this disclosure, derivative or fragment thereof, suitable for administration in an effective amount to inhibit the expression of MARCKS for preventing, reducing, delaying, inhibiting or suppressing disease or disease symptoms associated with MARCKS phosphorylation and/or dissociation from the cell membrane and/or PIP2-sequestering effect, or PIP3 production, or activation of AKT, or inflammation, fibrosis, or activated fibroblast proliferation, or myofibroblast genesis and differentiation, or transforming growth factor-beta (TGF-b) signaling pathway, or cancer, or solid tumor cell growth or metastasis, or cancer stem cell growth, or tumor cell mobility; and optionally for promoting apoptosis, or restoring sensitivity of a resistant cancer cell to a chemotherapeutic. In one aspect, the compositions have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lung fibrosis, idiopathic pulmonary fibrosis, or smoking, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or
myofibroblast genesis. In another aspect, the compositions have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lymphoma, leukemia or a solid tumor. Non-limiting examples of solid tumor include cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer.
[0196] The compositions include, for example, pharmaceutical and diagnostic
compositions/kits, comprising a pharmaceutically acceptable carrier and at least one antibody of this disclosure, variant, derivative or fragment thereof. As noted above, the composition can further comprise additional antibodies or therapeutic agents which in combination, provide multiple therapies tailored to provide the maximum therapeutic benefit.
[0197] Alternatively, a composition of this disclosure can be co-administered with other therapeutic agents, such as a small molecule or peptide, whether or not linked to them or administered in the same dosing. They can be co-administered simultaneously with such agents (e.g., in a single composition or separately) or can be administered before or after administration of such agents.
Compositions for Diagnosis
[0198] One or more of the above compositions can be further combined with a carrier, a pharmaceutically acceptable carrier or medical device which is suitable for use of the compositions in diagnostic or therapeutic methods. In one aspect, the composition comprises as isolated polypeptide of SEQ ID Nos: 1-59, or alternatively SEQ ID Nos: 40-59, or alternatively SEQ ID Nos: 40-56, 58 and 59, or a polynucleotide that encodes the
polypeptide, or an equivalent of each thereof. Further diagnostic compositions include and antibody that binds the polypeptide or its equivalent or a fragment thereof.
[0199] The carrier can be a liquid phase carrier or a solid phase carrier, e.g., bead, gel, gene chip, microarray, or carrier molecule such as a liposome. The composition can optionally further comprise, or alternatively consist essentially of, or yet further consist of at least one further compound, protein or composition, anticancer agent or other small molecule, protein, polypeptide, antibody or antibody fragment, e.g., a TKI inhibitor, a drug or agent that targets EGFR, a platinum-based drug or a MARCKS polypeptide or fragment thereof.
[0200] Additional examples of“carriers” includes therapeutically active agents such as another peptide or protein (e.g., a Fab' fragment). For example, an antibody, derivative or fragment thereof can be functionally linked (e.g., by chemical coupling, genetic fusion,
noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., to produce a bispecific or a multispecific antibody), a cytotoxin, a cellular ligand or an antigen. Additionally, the antibodies or fragments thereof can be linked to the polypeptides of this disclosure to facilitate targeting to a cell or tissue of choice and/or to stabilize the polypeptide. Accordingly, this disclosure encompasses a large variety of antibody conjugates, bi- and multispecific molecules, and fusion proteins, whether or not they target the same epitope as the antibodies of this disclosure.
[0201] Yet additional examples of carriers are organic molecules (also termed modifying agents) or activating agents, that can be covalently attached, directly or indirectly, to an antibody of this disclosure. Attachment of the molecule can improve pharmacokinetic properties (e.g., increased in vivo serum half-life). Examples of organic molecules include, but are not limited to a hydrophilic polymeric group, a fatty acid group or a fatty acid ester group. As used herein, the term "fatty acid" encompasses mono-carboxylic acids and di- carboxylic acids. A "hydrophilic polymeric group," as the term is used herein, refers to an organic polymer that is more soluble in water than in octane.
[0202] Hydrophilic polymers suitable for modifying antibodies of the disclosure can be linear or branched and include, for example, polyalkane glycols (e.g., PEG, monomethoxy- poly ethylene glycol (mPEG), PPG and the like), carbohydrates (e.g., dextran, cellulose, oligosaccharides, polysaccharides and the like), polymers of hydrophilic amino acids (e.g., polylysine, polyarginine, polyaspartate and the like), polyalkane oxides (e.g., polyethylene oxide, polypropylene oxide and the like) and polyvinyl pyrolidone. A suitable hydrophilic polymer that modifies the antibody of the disclosure has a molecular weight of about 800 to about 150,000 Daltons as a separate molecular entity. The hydrophilic polymeric group can be substituted with one to about six alkyl, fatty acid or fatty acid ester groups. Hydrophilic polymers that are substituted with a fatty acid or fatty acid ester group can be prepared by employing suitable methods. For example, a polymer comprising an amine group can be coupled to a carboxylate of the fatty acid or fatty acid ester, and an activated carboxylate (e.g., activated with N, N-carbonyl diimidazole) on a fatty acid or fatty acid ester can be coupled to a hydroxyl group on a polymer.
[0203] Fatty acids and fatty acid esters suitable for modifying antibodies of the disclosure can be saturated or can contain one or more units of unsaturation. Examples of such include, but are not limited to n-dodecanoate, n-tetradecanoate, n-octadecanoate, n-eicosanoate, n-
docosanoate, n-triacontanoate, n-tetracontanoate, ci s-A9-octadecanoate, all cis-A5,8, 11,14- eicosatetraenoate, octanedioic acid, tetradecanedioic acid, octadecanedioic acid,
docosanedioic acid, and the like. Suitable fatty acid esters include mono-esters of dicarboxylic acids that comprise a linear or branched lower alkyl group. The lower alkyl group can comprise from one to about twelve, preferably one to about six, carbon atoms.
[0204] Also provided is a composition containing at least one antibody of this disclosure. The compositions include, for example, pharmaceutical and diagnostic compositions/kits, comprising a pharmaceutically acceptable carrier and at least one antibody of this disclosure, variant, derivative or fragment thereof. As noted above, the composition can further comprise additional antibodies or therapeutic agents which in combination, provide multiple therapies tailored to provide the maximum therapeutic benefit.
[0205] Alternatively, a composition of this disclosure can be co-administered with other therapeutic agents, whether or not linked to them or administered in the same dosing. They can be co-administered simultaneously with such agents (e.g., in a single composition or separately) or can be administered before or after administration of such agents. Such agents can include anticancer therapies such as erlotinib, irinotecan, 5-Fluorouracil, Erbitux, Cetuximab, FOLFOX, or radiation therapy or other agents known to those skilled in the art.
Diagnostic Methods Utilizing Recombinant DNA Technology and Bioinformatics
[0206] The polynucleotides of this disclosure can be attached to a solid support such as an array or high density chip for use in high throughput screening assays using methods known in the art. For example, a polynucleotide encoding MPS, e.g. SEQ ID NOs: 1-59, or alternatively 40-56, or alternatively SEQ ID Nos: 40-56, 58 and 59, or an equivalent of each thereof can be used as a probe to identify expression in a subject sample. The chips can be synthesized on a derivatized glass surface using the methods disclosed in U.S. Patent Nos. 5,405,783; 5,412,087 and 5,445,934. Photoprotected nucleoside phosphoramidites can be coupled to the glass surface, selectively deprotected by photolysis through a
photolithographic mask, and reacted with a second protected nucleoside phosphoramidite. The coupling/deprotection process is repeated until the desired probe is complete.
[0207] One can use chemical synthesis to provide the isolated polynucleotides of the present disclosure. Chemical synthesis of polynucleotides can be accomplished using a number of protocols, including the use of solid support chemistry, where an oligonucleotide is
synthesized one nucleoside at a time while anchored to an inorganic polymer. The first nucleotide is attached to an inorganic polymer using a reactive group on the polymer which reacts with a reactive group on the nucleoside to form a covalent linkage. Each subsequent nucleoside is then added to the first nucleoside molecule by: 1) formation of a phosphite linkage between the original nucleoside and a new nucleoside with a protecting group; 2) conversion of the phosphite linkage to a phosphate linkage by oxidation; and 3) removal of one of the protecting groups to form a new reactive site for the next nucleoside as described in U.S. Patent Nos. 4,458,066; 5,153,319; 5,132,418; and 4,973,679, all of which are incorporated by reference herein. Solid phase synthesis of oligonucleotides eliminates the need to isolate and purify the intermediate products after the addition of every nucleotide base. Following the synthesis of RNA, the oligonucleotides is deprotected (U.S. Patent No. 5,831,071) and purified to remove by-products, incomplete synthesis products, and the like.
[0208] U.S. Patent No. 5,686,599, describes a method for one pot deprotection of RNA under conditions suitable for the removal of the protecting group from the 2' hydroxyl position. U.S. Patent No. 5,804,683, describes a method for the removal of exocyclic protecting groups using alkylamines. U.S. Patent No. 5,831,071, describes a method for the deprotection of RNA using ethylamine, propylamine, or butylamine. U.S. Patent No. 5,281,701, describes methods and reagents for the synthesis of RNA using 5'-0-protected-2'-0-alkylsilyl- adenosine phosphoramidite and 5'-0-protected-2'-0-alkylsilylguanosine phosphoramidite monomers which are deprotected using ethylthiotetrazole. Usman and Cedergren (1992) Trends in Biochem. Sci. 17:334-339 describe the synthesis of RNA-DNA chimeras for use in studies of the role of 2' hydroxyl groups. Sproat et al. (1995) Nucleosides & Nucleotides 14:255-273, describe the use of 5-ethylthio-lH-tetrazole as an activator to enhance the quality of oligonucleotide synthesis and product yield. Gait et al. (1991) Oligonucleotides and Analogues, ed. F. Eckstein, Oxford University Press 25-48, describe general methods for the synthesis of RNA. U.S. Patent Nos. 4,923,901; 5,723,599; 5,674,856; 5,141,813;
5,419,966; 4,458,066; 5,252,723; Weetall et al. (1974) Methods in Enzymology 34:59-72; Van Aerschot et al. (1988) Nucleosides and Nucleotides 7:75-90; Maskos and Southern (1992) Nucleic Acids Research 20: 1679-1684; Van Ness et al. (1991) Nucleic Acids
Research 19:3345-3350; Katzhendler et al. (1989) Tetrahedron 45:2777-2792; Hovinen et al. (1994) Tetrahedron 50:7203-7218; GB 2,169,605; EP 325,970; International PCT
Publication No. WO 94/01446; German Patent No. 280,968; and BaGerman Patent No.
4,306,839, all describe specific examples of solid supports for oligonucleotide synthesis and specific methods of use for certain oligonucleotides. Additionally, methods and reagents for oligonucleotide synthesis as known to one of skill in the art as describe by U.S. Patent No. 7,205,399, incorporated herein by reference in its entirety.
[0209] The probes and high density oligonucleotide probe arrays also provide an effective means of monitoring expression of a multiplicity of genes, one of which includes the gene. Thus, the expression monitoring methods can be used in a wide variety of circumstances including detection of disease, identification of differential gene expression between samples isolated from the same patient over a time course, or screening for compositions that upregulate or downregulate the expression of the gene at one time, or alternatively, over a period of time.
[0210] Detectable labels suitable for use in the present disclosure include those identified above as well as any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Useful labels in the present disclosure include biotin for staining with labeled streptavidin conjugate, magnetic beads (e.g., Dynabeads™), fluorescent dyes (e.g., fluorescein, Texas red, rhodamine, green fluorescent protein, and the like), radiolabels (e.g., 3H, 1251, 35S, 14C, or 32P) enzymes (e.g., horseradish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic (e.g., polystyrene, polypropylene, latex, etc.) beads. Patents teaching the use of such labels include U.S. Patents Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241.
[0211] Means of detecting such labels are known to those of skill in the art. Thus, for example, radiolabels may be detected using photographic film or scintillation counters, fluorescent markers can be detected using a photodetector to detect emitted light. Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting the reaction product produced by the action of the enzyme on the substrate, and colorimetric labels are detected by simply visualizing the colored label.
[0212] International PCT Publication No. WO 97/10365 describes methods for adding the label to the target (sample) nucleic acid(s) prior to or alternatively, after the hybridization. These are detectable labels that are directly attached to or incorporated into the target (sample) nucleic acid prior to hybridization. In contrast,“indirect labels” are joined to the hybrid duplex after hybridization. Often, the indirect label is attached to a binding moiety
that has been attached to the target nucleic acid prior to the hybridization. Thus, for example, the target nucleic acid may be biotinylated before the hybridization. After hybridization, an avidin-conjugated fluorophore will bind the biotin bearing hybrid duplexes providing a label that is easily detected. For a detailed review of methods of labeling nucleic acids and detecting labeled hybridized nucleic acids, see Laboratory Techniques In Biochemistry And Molecular Biology, Vol. 24: Hybridization with Nucleic Acid Probes, P. Tijssen, ed.
Elsevier, N.Y. (1993).
[0213] The nucleic acid sample also may be modified prior to hybridization to the high density probe array in order to reduce sample complexity thereby decreasing background signal and improving sensitivity of the measurement using the methods disclosed in
International PCT Publication No. WO 97/10365.
[0214] Results from the chip assay are typically analyzed using a computer software program. See, for example, EP 0717 113 A2 and WO 95/20681. This information is compared against existing data sets of gene expression levels for diseased and healthy individuals. A correlation between the obtained data and that of a set of diseased individuals indicates the onset of a disease in the subject patient.
Methods to Identify Therapeutic Agents
[0215] The present disclosure also provides methods to identify leads and methods for treating the disease or disease symptoms associated with one or more of: preventing, reducing, delaying, inhibiting or suppressing disease or disease symptoms associated with MARCKS phosphorylation and/or dissociation from the cell membrane and/or PIP2- sequestering effect, or PIP3 production, or activation of ART, or inflammation, fibrosis, or activated fibroblast proliferation, or myofibroblast genesis and differentiation, or
transforming growth factor-beta (TGF-b) signaling pathway, or cancer, or solid tumor cell growth or metastasis, or cancer stem cell growth, or tumor cell mobility; and optionally for promoting apoptosis, or restoring sensitivity of a resistant cancer cell to a chemotherapeutic. In one aspect, the compositions have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lung fibrosis, idiopathic pulmonary fibrosis, or smoking, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis. In another aspect, the compositions have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lymphoma, leukemia or a solid tumor.
Non-limiting examples of solid tumor include cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer.
[0216] The present disclosure also provides methods to identify leads and methods for treating fibrosis and/or cancer. In one aspect, the screen identifies lead compounds or biologies agents that mimic the polypeptides identified above and which are useful to treat these disorders or to treat or ameliorate the symptoms associated with the disorders. Test substances for screening can come from any source. They can be libraries of natural products, combinatorial chemical libraries, biological products made by recombinant libraries, etc. The source of the test substances is not critical to the disclosure. The present disclosure provides means for screening compounds and compositions which may previously have been overlooked in other screening schemes.
[0217] To practice the screen or assay in vitro, suitable cell cultures or tissue cultures are first provided. The cell can be a cultured cell or a genetically modified cell which differentially expresses the receptor and/or receptor complex. Alternatively, the cells can be from a tissue culture as described below. The cells are cultured under conditions (temperature, growth or culture medium and gas (CO2)) and for an appropriate amount of time to attain exponential proliferation without density dependent constraints. It also is desirable to maintain an additional separate cell culture; one which does not receive the agent being tested as a control.
[0218] As is apparent to one of skill in the art, suitable cells may be cultured in microtiter plates and several agents may be assayed at the same time by noting genotypic changes, phenotypic changes and/or cell death.
[0219] When the agent is a composition other than a DNA or RNA nucleic acid molecule, the suitable conditions may be by directly added to the cell culture or added to culture medium for addition. As is apparent to those skilled in the art, an“effective” amount must be added which can be empirically determined.
[0220] The screen involves contacting the agent with a test cell expressing the complex and then assaying the cell its ability to provide a biological response similar to the polypeptides of this disclosure. In yet another aspect, the test cell or tissue sample is isolated from the subject to be treated and one or more potential agents are screened to determine the optimal therapeutic and/or course of treatment for that individual patient.
[0221] For the purposes of this disclosure, an“agent” is intended to include, but not be limited to a biological or chemical compound such as a simple or complex organic or inorganic molecule, a peptide, a protein or an oligonucleotide. A vast array of compounds can be synthesized, for example oligomers, such as oligopeptides and oligonucleotides, and synthetic organic compounds based on various core structures, and these are also included in the term“agent”. In addition, various natural sources can provide compounds for screening, such as plant or animal extracts, and the like. It should be understood, although not always explicitly stated that the agent is used alone or in combination with another agent, having the same or different biological activity as the agents identified by the screen. The agents and methods also are intended to be combined with other therapies. They can be administered concurrently or sequentially.
Methods of Treatment
[0222] Provided herein are methods of treating disease or disease symptoms associated with fibrosis in a subject in need thereof, comprising, or alternatively consisting essentially of, or yet further consisting of administering to the subject an effective amount of one or more of the isolated polypeptide or the isolated polynucleotide of as identified above (e.g., SEQ. ID Nos: 1-59, or alternatively 40-59, or alternatively 40-56, 58 and 59) as well as a peptide or composition of the peptides of SEQ ID Nos: 1-59 or alternatively 40-59, or alternatively 40- 56, 58 and 59, as well as a polypeptide comprising at least 6 and no more than 51 amino acids, wherein the amino acid sequence comprises, or alternatively consists essentially of, or alternatively consisting of a polypeptide of at least 6 amino acids to no more than 51 or alternatively 35 amino acids, comprising, or alternatively consisting essentially of, or yet consisting of SEQ ID Nos: 1-59 or alternatively 40-59, or alternatively 40-56, 58 and 59.
[0223] In one aspect, the peptide that comprises, or alternatively consists essentially of, or yet further consists of a peptide identified in the below table (SEQ ID NOS 48-54, 40-42, 45 and 47, respectively, in order of appearance (Red residues are D-isoforms of amino acids):
[0224] In one aspect, the polypeptide is at least 6 amino acids and no more than 51 amino acids, or alternatively at least 45 amino acids, or alternatively 40 amino acids, or alternatively 35 amino acids, or alternatively 30 amino acids, or alternatively no more than 25 amino acids, or alternatively no more than 20 amino acids, or alternatively no more than 15 amino acids biological equivalents of each thereof. In one aspect, a biological equivalent is a polypeptide wherein one or more amino acids have been substituted with a conservative amino acid substitution(s). In one aspect, all serines are replaced by alanines (A-MPSs). In a further aspect, myristic acid is conjugated or joined to the N-terminal amino acid of the peptides, including biological equivalents thereof, e.g., wherein all serines are replaced by alanines.
[0225] In a further aspect, the polypeptide is selected from an isolated polypeptide of SEQ ID NO: 18, wherein an amino acid corresponding to position 6 has been replaced with an alanine, proline, or glycine; or SEQ ID NO: 19, wherein an amino acid corresponding to position 7 has been replaced with an alanine, proline, or glycine; or SEQ ID NO: 20, wherein an amino acid corresponding to position 8 has been replaced with an alanine, proline, or glycine.
[0226] In one aspect of each of the above embodiments, D-MPS (wherein all serines are substituted with aspartate) and myristoylated-wild-type MPS are specifically excluded from the group of polypeptides and methods as disclosed herein.
[0227] In one aspect for the treatment of fibrosis, the“MPS” intends a polypeptide of at least 6 amino acids and no more than 51 amino acids, comprising, or alternatively consisting essentially of, or yet consisting of, SEQ ID Nos: 1-59, or alternatively 40-56, 58 and 59, where in some embodiments, and biological equivalents, wherein X is absent or is a basic
amino acid, and/or Y is absent or a hydrophobic amino acid. In one aspect, the basic amino acid comprises one or more lysine (K), histidine (H) or arginine (R). In one aspect, all X are lysine (K). In one aspect, Y is one or more hydrophobic amino acids, selected from Alanine (A), Isoleucine (I), Leucine (L), Valine (V), Phenylalanine (F), Tryptophan (W) or Tyrosine (Y). In one aspect, all serines are alanines. In another aspect, all X are lysine and all S are substituted with alanine. In a further aspect, all S are Aspartate (D). In a yet further aspect, all of the above noted polypeptides as disclosed herein further comprise, or alternatively consist essentially of, or yet further consist of, myristic acid conjugated or joined to the N- terminal amino acid. In one aspect, MPS peptide comprises, or consists essentially of, or yet further aspect, the amino acid sequence. In one aspect, all serines are replaced by alanines (A- MPSs). In a further aspect, myristic acid is conjugated or joined to the N-terminal amino acid of SEQ ID NOS. : 1-59, or 40-59, or alternatively 40-56, 58 and 59, including biological equivalents thereof, e.g., wherein all serines are replaced by alanines.
[0228] The polypeptide can be no more than 51 amino acids, comprising, or alternatively consisting essentially of, or yet consisting of, an isolated polypeptide comprising, or alternatively consisting essentially of, or yet further consisting of, no more than 51 amino acids, wherein the amino acid sequence comprises SEQ ID Nos: 1-59, or 40-59, or alternatively 40-56, 58 and 59, and biological equivalents of each thereof; and wherein in one aspect, one or more of the serines (S) are substituted with one or more neutral or positively charged amino acids, that may be the same or different, e.g., alanines (A), glycines (G), or prolines (P), or a biological equivalent of each thereof, wherein a biological equivalent of comprises a polypeptide that has at least 80% sequence identity to the above polypeptides or amino acid sequences, or wherein a biological equivalent comprises an isolated polypeptide encoded by an isolated polynucleotide that hybridizes under high stringency conditions to the compliment polynucleotide encoding these polypeptide(s) or the polynucleotide encoding these polypeptides, and wherein high stringency hybridization conditions is generally performed at about 60°C in about 1 x SSC. In one aspect, term also includes the polypeptides having the amino acid sequence XXXRYAYXXAYX (SEQ ID NO: 58), wherein X is any amino acid, or XXXXXR Y A YXX A YXL AGY A YXXNXX (SEQ ID NO: 59), , wherein X is any amino acid and Y is a hydrophobic amino acid residue, including for example tyrosine, and optionally a polynucleotide comprising any contiguous 12 amino acid fragment of these sequences, and biological equivalents thereof; and further optionally wherein one or more
serine (S) is substituted with one or more neutral or positively charged amino acids, that may be the same or different, e.g., one or more serines are substituted with one or more alanines (A), glycines (G), or prolines (P), and wherein each X is the same or different and is a basic amino acid and wherein each Y is the same or different and is a hydrophobic amino acid. Non-limiting examples of MPS polypeptides include an isolated polypeptide comprising a biological equivalent of SEQ ID NOs: 1-59, or alternatively 40-59, or alternatively 40-56, 58 and 59, which comprises a polypeptide that has at least 80% sequence identity to SEQ ID NOs: 1-59, or alternatively 40-59, or alternatively 40-56, 58 and 59, and optionally wherein one or more serine (S) is substituted with one or more neutral or positively charged amino acids, that may be the same or different, e.g., one or more serines are substituted with one or more alanines (A), glycines (G), or prolines (P), and/or wherein a biological equivalent comprises an isolated polypeptide encoded by an isolated polynucleotide that hybridizes under high stringency conditions to the compliment polynucleotide encoding SEQ ID NOs: 1-59, or alternatively 40-59, or alternatively 40-56, 58 and 59, and optionally wherein one or more serine (S) is substituted with one or more neutral or positively charged amino acids, that may be the same or different, e.g., one or more serines are substituted with one or more alanines (A), glycines (G), or prolines (P), and/or the polynucleotide encoding SEQ ID NOs: 1-59, or alternatively 40-59, or alternatively 40-56, 58 and 59, and optionally wherein one or more serine (S) is substituted with one or more neutral or positively charged amino acids, that may be the same or different, e.g., one or more serines are substituted with one or more alanines (A), glycines (G), or prolines (P), and wherein high stringency hybridization conditions is generally performed at about 60°C in about 1 x SSC. In one aspect, the basic amino acid comprises one or more lysine (K), histidine (H) or arginine (R). In one aspect, all X are lysine (K). In one aspect, Y is one or more hydrophobic amino acids, selected from alanine (A), isoleucine (I), leucine (L), valine (V), phenylalanine (F), tryptophan (W) or tyrosine (Y). In one aspect, the polypeptides as described above are no more than 45 amino acids, or alternatively 40 amino acids, or alternatively 35 amino acids, or alternatively 30 amino acids, or alternatively no more than 25 amino acids, or alternatively no more than 20 amino acids, or alternatively no more than 15 amino acids or alternatively, the polypeptides of SEQ ID NO: 21, 25, 31 or 32, 40-56, 58 or 59, and optionally wherein one or more serine (S) is substituted with one or more neutral or positively charged amino acids, that may be the same or different, e.g., one or more serines are substituted with one or more alanines (A), glycines (G), or prolines (P), and wherein biological equivalents of each thereof.
[0229] The MPS polypeptides and biological equivalents have the ability to achieve the same or similar results as noted above. In one aspect, the basic amino acid comprises one or more lysine (K), histidine (H) or arginine (R). In one aspect, all X are lysine (K). In one aspect, Y is one or more hydrophobic amino acids, selected from alanine (A), isoleucine (I), leucine (L), valine (V), phenylalanine (F), tryptophan (W) or tyrosine (Y). In one aspect, the polypeptide is no more than 45 amino acids, or alternatively 40 amino acids, or alternatively 35 amino acids, or alternatively 30 amino acids, or alternatively no more than 25 amino acids, or alternatively no more than 20 amino acids, or alternatively no more than 15 amino acids or alternatively.
[0230] In one aspect, the polypeptides of SEQ ID NOs: 45 and 47, as compared to SEQ ID NOs: 46 and 48, are MPS polypeptides wherein the 4 serine residues of wild-type MPS peptide are replaced by alanine residues, e g., (KKKKKRFAFKKAFKLAGFAFKKNKK (SEQ ID NO: 45), that increases membrane affinity. The polypeptides of SEQ ID NO: 45-48 are highly positive charged and interact electrostatically with PIP2 on the phospholipid membrane.
[0231] In one aspect, the disease or symptoms associated with fibrosis is selected from the group of: lung fibrosis, idiopathic pulmonary fibrosis, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis.
[0232] Also provided herein are methods for one or more of inhibiting cancer cell growth, treating cancer, inhibiting metastasis, inhibiting cancer stem cell growth, inhibiting tumor cell mobility, restoring sensitivity of a resistant cancer cell to a chemotherapeutic agent, in a subject in need thereof, comprising administering to the subject an effective amount of one or more of the isolated polypeptide or the isolated polynucleotide of this disclosure. In one aspect, the cancer cell or cancer is lymphoma, leukemia or a solid tumor. In another aspect, the cancer cell or cancer is lung cancer, liver cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer.
[0233] The present disclosure also provides methods to identify leads and methods for treating the disease or disease symptoms associated with one or more of: preventing, reducing, delaying, inhibiting or suppressing disease or disease symptoms associated with MARCKS phosphorylation and/or dissociation from the cell membrane and/or PIP2- sequestering effect, or PIP3 production, or activation of ART, or inflammation, fibrosis, or
activated fibroblast proliferation, or myofibroblast genesis and differentiation, or transforming growth factor-beta (TGF-b) signaling pathway, or cancer, or solid tumor cell growth or metastasis, or cancer stem cell growth, or tumor cell mobility; and optionally for promoting apoptosis, or restoring sensitivity of a resistant cancer cell to a chemotherapeutic.
[0234] In one aspect, the compositions have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lung fibrosis, idiopathic pulmonary fibrosis, or smoking, bleomycin-induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis. In another aspect, the compositions have the ability to prevent, reduce, delay, inhibit or suppress disease or disease symptoms associated with lymphoma, leukemia or a solid tumor. Non-limiting examples of solid tumor include cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer.
[0235] Thus, methods to achieve such in vitro or in vivo are provided by contacting or administering an effective amount of the polypeptide and/or other therapeutic composition of this disclosure (e.g., antibody or siRNA) to a subject in need of such treatment.
Administration can be by any suitable method and effective amounts can be empirically determined by a treating physician or one of skill in the art when the contacting is in vitro.
[0236] In a further aspect, the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of an anti-fibrotic agent or drug. Non-limiting examples of anti-fibrotic agent or drug include pirfenidone and nintedanib. Additional agents include but are not limited to nintedanib, oral prednisone (or some other form of corticosteroid), Fluimucil (N-acetylcysteine), Cytoxan
(cyclophosphamide), a, combination of prednisone, azathioprine, and N-acetylcysteine (NAC), colchicine, D-penicillamine, pirfenidone (5-methyl- l-phenyl-2-[lH]-pyridone), interferon-b 1 a, relaxin, lovastatin, beractant, N-acetylcysteine, keratinocyte growth factor, captopril, hepatocyte growth factor, Rhokinase inhibitor, thrombomodulin-like protein, bilirubin, PPARy (peroxisome proliferator-activated receptor gamma) activator, imatinib, and interferon-g. In one aspect, the fibrosis is pulmonary fibrosis and the additional agents include one or more of colchicine, D-penicillamine, pirfenidone (5-methyl-l-phenyl-2-[lH]- pyridone), interferon^la, relaxin, lovastatin, beractant, N-acetylcysteine, keratinocyte growth factor, captopril, hepatocyte growth factor, Rhokinase inhibitor, thrombomodulin-like protein, bilirubin, PPARy (peroxisome proliferator-activated receptor gamma) activator,
imatinib, and interferon-g. Additional agents are known in the literature, e.g., JP A No. 8- 268906, WO 00/57913, JP A No. 2002-371006, JP A No. 2003-119138, JP A No. 2005- 513031, JP A No. 2005-531628, JP A No. 2006-502153, WO 2006/068232, and Ann Intern Med. 2001; 134(2): 136-51.
[0237] In some embodiments, the subjects with IPF are“unresponsive to conventional treatment,” i.e., unresponsive to conventional prior art treatments of IPF including corticosteroids, cyclophosphamide, and azathioprine.
[0238] In another aspect, the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of an anti-cancer drug or agent.
[0239] In one aspect, the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of an anti-cancer drug or agent. In a further aspect, the methods of treatment further comprise, or alternatively consist essentially of, or yet further consist of administering an effective amount of a tyrosine kinase inhibitor, a platinum drug or an immunotherapeutic. In a yet further aspect, an effective amount of an agent or drug (chemotherapeutic or other) can be combined and contacted or administered as appropriate. In one aspect the chemotherapeutic is a TKI, or a platinum-based drug, or an agent that targets EGFR or yet further a MARCKS polypeptide or fragment thereof, wherein the fragment is not an N-terminal fragment of MARCKS or a polypeptide that does not have an amino acid sequence having sequence identity to a polypeptide as described above.
[0240] Also provided is a method for restoring sensitivity of a chemoresistant cancer cell to a chemotherapeutic drug, the method comprising or alternatively consisting essentially of, or yet further consists of, contacting the cell or administering to a subject in need thereof, an effective amount of an isolated MPS polypeptide or an equivalent thereof or an anti- MARCKS siRNA, and optionally, wherein the chemotherapeutic drug or agent is selected from a TKI, a platinum-based drug, a drug or agent that targets EGFR, cisplatin, paclitaxel, erlotinib or dasatinib; and optionally wherein the chemoresistant cancer cell is a TKI resistant cell. siRNA- and shRNA-MARCKS inhibiting RNA are known in the art (see, e.g., WO 2015/013669) and sequences provided herein. The contacting is in vitro or in vivo and in one aspect, the cell is a mammalian solid tumor cell. In one aspect, the tumor cell comprises or expresses higher levels of phosphorylated MARCKS polypeptide as compared to a normal
counterpart cell. Non-limiting examples of such cells include a lung cancer cell, a colon cancer cell, a breast cancer cell or a pancreatic cancer and alternatively or in addition, the patient suffering from advanced cancer (Stage II to IV). In a further aspect, the method further comprises contacting the cell or administering to the patient or subject an effective amount of a chemotherapeutic drug or agent, e.g., a TKI, or a platinum-based drug or agent that targets EGFR, e.g., cisplatin, paclitaxel, erlotinib or dasatinib.
[0241] Further provided herein is a method of increasing efficacy of one or more of anti- fibrotic or anti-cancer agents or drugs for one or more of preventing, reducing, delaying, inhibiting or suppressing disease or disease symptoms associated with: MARCKS
phosphorylation and/or dissociation from the cell membrane and/or PIP2-sequestering effect, or PIP3 production, or activation of ART, or inflammation, or fibrosis, or fibroblastic lesions, or activated fibroblast proliferation, or myofibroblast genesis and differentiation, or transforming growth factor-beta (TGF-b) signaling pathway, or cancer, or solid tumor cell growth or metastasis, or cancer stem cell growth, or tumor cell mobility; and optionally for promoting apoptosis, or restoring sensitivity of a resistant cancer cell to a chemotherapeutic in a subject in need thereof, comprising administering to the subject an effective amount of one or more anti-fibrotic or anti-cancer agents or drugs in combination with an effective amount of an isolated polypeptide or isolated polynucleotide or compositions of this disclosure.
[0242] In one aspect, disclosed herein is a method of increasing efficacy of one or more of pirfenidone or nintedanib, or bemcentinib, or erlotinib for one or more of preventing, reducing, delaying, inhibiting or suppressing disease or disease symptoms associated with: MARCKS phosphorylation and/or dissociation from the cell membrane and/or PIP2- sequestering effect, or PIP3 production, or activation of AKT, or inflammation, or fibrosis, or lung fibrosis, or smoking, or idiopathic pulmonary fibrosis, or bleomycin-induced pulmonary fibrosis, or fibroblastic lesions, or activated fibroblast proliferation, or myofibroblast genesis and differentiation, or transforming growth factor-beta (TGF-b) signaling pathway, or cancer, or solid tumor cell growth or metastasis, or cancer stem cell growth, or tumor cell mobility; and optionally for promoting apoptosis, or restoring sensitivity of a resistant cancer cell to a chemotherapeutic in a subject in need thereof, comprising administering to the subject an effective amount of one or more of nintedanib, or bemcentinib, or erlotinib in combination with an effective amount of an isolated polypeptide or isolated polynucleotide or
compositions of this disclosure. Non-limiting examples of cancer include lung cancer, liver cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, throat cancer, lymphoma and leukemia.
[0243] In therapeutic applications, a pharmaceutical composition containing one or more polypeptide or other therapeutic composition (e.g., antibody or siRNA) described herein is administered to a patient suspected of, or already suffering from cancer, wherein said composition is administered in an amount sufficient to cure, or at least partially arrest, the symptoms of the disease (biochemical, histological and/or behavioral), including its complication and intermediate pathological phenotypes in development of the disease. In one aspect, administration is by intraperitoneal injection or orally.
[0244] In one particular aspect, disclosed herein is a method for delivering a polypeptide of this disclosure across the blood brain barrier in a subject in need thereof comprising, or alternatively consisting essentially of, or yet further consisting of administering an effective amount of vector as disclosed above to the subject. In one aspect, the peptide is delivered in the absence of an agent that promotes transport across the blood brain barrier, e.g., mannitol.
[0245] In one aspect, for the methods of treatment disclosed herein the administration is local to a tissue being treated or systemic. In one specific aspect, the local administration comprises, or alternatively consists essentially of, or yet further consists of topical or by inhalation therapy. In another aspect, the systemic administration is from the group of intravenous, intracranial, inhalation therapy, intranasal, vaginal or rectal administration.
[0246] Administration in vivo can be effected in one dose, continuously or intermittently throughout the course of treatment. Methods of determining the most effective means and dosage of administration are well known to those of skill in the art and will vary with the composition used for therapy, the purpose of the therapy, the target cell, solid tumor or cancer being treated, and the subject being treated. Single or multiple administrations can be carried out with the dose level and pattern being selected by the treating physician. Suitable dosage formulations and methods of administering the agents can be found below. Additional dosing strategies are disclosed in US Patent No. 10,039,515.
[0247] The pharmaceutical compositions can be administered orally, intranasally, parenterally, injection, orally and may take the form of tablets, lozenges, granules, capsules, pills, ampoules, suppositories or aerosol form. They may also take the form of suspensions,
solutions and emulsions of the active ingredient in aqueous or nonaqueous diluents, syrups, granulates or powders. In addition to an agent of the present disclosure, the pharmaceutical compositions can also contain other pharmaceutically active compounds or a plurality of compounds of the disclosure.
[0248] More particularly, an agent of the present disclosure also referred to herein as the active ingredient, may be administered for therapy by any suitable route including oral, rectal, nasal, topical (including transdermal, aerosol, buccal and sublingual), vaginal, parenteral (including subcutaneous, intramuscular, intravenous and intradermal) and pulmonary. It will also be appreciated that the preferred route will vary with the condition and age of the recipient, and the disease being treated.
[0249] Ideally, the agent should be administered to achieve peak concentrations of the active compound at sites of disease. This may be achieved, for example, by the intravenous injection of the agent, optionally in saline, or orally administered, for example, as a tablet, capsule or syrup containing the active ingredient. Desirable blood levels of the agent may be maintained by a continuous infusion to provide a therapeutic amount of the active ingredient within disease tissue. The use of operative combinations is contemplated to provide therapeutic combinations requiring a lower total dosage of each component agent than may be required when each individual therapeutic compound or drug is used alone, thereby reducing adverse effects.
[0250] While it is possible for the agent to be administered alone, it is preferable to present it as a pharmaceutical formulation comprising at least one active ingredient, as defined above, together with one or more pharmaceutically acceptable carriers therefor and optionally other therapeutic agents. Each carrier must be“acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
[0251] Formulations include those suitable for oral, rectal, nasal, topical (including transdermal, buccal and sublingual), vaginal, parenteral (including subcutaneous,
intramuscular, intravenous and intradermal) and pulmonary administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient with the carrier that constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing
into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then if necessary shaping the product.
[0252] Formulations of the present disclosure suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets, each containing a
predetermined amount of the active ingredient; as a powder or granules; as a solution or suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste.
[0253] A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder (e.g., povidone, gelatin, hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (e.g., sodium starch glycolate, cross-linked povidone, cross-linked sodium carboxymethyl cellulose) surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile. Tablets may optionally be provided with an enteric coating, to provide release in parts of the gut other than the stomach.
[0254] Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
[0255] Pharmaceutical compositions for topical administration according to the present disclosure may be formulated as an ointment, cream, suspension, lotion, powder, solution, past, gel, spray, aerosol or oil. Alternatively, a formulation may comprise a patch or a dressing such as a bandage or adhesive plaster impregnated with active ingredients and optionally one or more excipients or diluents.
[0256] If desired, the aqueous phase of the cream base may include, for example, at least about 30% w/w of a polyhydric alcohol, i.e., an alcohol having two or more hydroxyl groups such as propylene glycol, butane- 1, 3 -diol, mannitol, sorbitol, glycerol and polyethylene glycol and mixtures thereof. The topical formulations may desirably include a compound that enhances absorption or penetration of the agent through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethylsulfoxide and related analogues.
[0257] The oily phase of the emulsions of this disclosure may be constituted from known ingredients in a known manner. While this phase may comprise merely an emulsifier (otherwise known as an emulgent), it desirably comprises a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier that acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilize^ s) make up the so-called emulsifying wax, and the wax together with the oil and/or fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations.
[0258] Emulgents and emulsion stabilizers suitable for use in the formulation of the present disclosure include Tween 60, Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate and sodium lauryl sulfate.
[0259] The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties, since the solubility of the active compound in most oils likely to be used in pharmaceutical emulsion formulations is very low. Thus, the cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers. Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters known as Crodamol CAP may be used, the last three being preferred esters. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils can be used.
[0260] Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the agent.
[0261] Formulations for rectal administration may be presented as a suppository with a suitable base comprising, for example, cocoa butter or a salicylate. Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the agent, such carriers as are known in the art to be appropriate.
[0262] Formulations suitable for nasal administration, wherein the carrier is a solid, include a coarse powder having a particle size, for example, in the range of about 20 to about 500 microns which is administered as a dry powder or in an inhaler device by rapid inhalation through the nasal passage from a container of the powder held close up to the nose. Suitable formulations wherein the carrier is a liquid for administration as, for example, nasal spray, nasal drops, or by aerosol administration by nebulizer, include aqueous or oily solutions of the agent.
[0263] Formulations suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents, and liposomes or other microparticulate systems which are designed to target the compound to blood components or one or more organs. The formulations may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
[0264] It should be understood that in addition to the ingredients particularly mentioned above, the formulations of this disclosure may include other agents conventional in the art having regard to the type of formulation in question, for example, those suitable for oral administration may include such further agents as sweeteners, thickeners and flavoring agents. It also is intended that the agents, compositions and methods of this disclosure be combined with other suitable compositions and therapies.
[0265] The methods of this disclosure are used to treat“a subject,”“a host,”“an individual,” and“a patient” such as for example animals, typically mammalian animals. Any suitable mammal can be treated by a method, cell or composition described herein. Non-limiting examples of mammals include humans, non-human primates (e.g., apes, gibbons,
chimpanzees, orangutans, monkeys, macaques, and the like), domestic animals (e.g., dogs and cats), farm animals (e.g., horses, cows, goats, sheep, pigs) and experimental animals (e.g., mouse, rat, rabbit, guinea pig). In some embodiments a mammal is a human. A mammal can be any age or at any stage of development (e.g., an adult, teen, child, infant, or a mammal in utero). A mammal can be male or female. A mammal can be a pregnant female. In some embodiments a subject is a human. In some embodiments, a subject has or is suspected of having a cancer or neoplastic disorder.
[0266] As used herein,“treating” or“treatment” of a disease in a subject refers to (1) preventing the symptoms or disease from occurring in a subject that is predisposed or does not yet display symptoms of the disease; (2) inhibiting the disease or arresting its
development or relapse; or (3) ameliorating or causing regression of the disease or the symptoms of the disease. As understood in the art,“treatment” is an approach for obtaining beneficial or desired results, including clinical results. For the purposes of the present technology, beneficial or desired results can include one or more, but are not limited to, alleviation or amelioration of one or more symptoms, diminishment of extent of a condition (including a disease), stabilized (i.e., not worsening) state of a condition (including disease), delay or slowing of condition (including disease), progression, amelioration or palliation of the condition (including disease), states and remission (whether partial or total), whether detectable or undetectable. In one aspect, treatment excludes prophylaxis.
[0267] When the disease is cancer, the following clinical end points are non-limiting examples of treatment: reduction in tumor burden, slowing of tumor growth, longer overall survival, longer time to tumor progression, inhibition of metastasis or a reduction in metastasis of the tumor. In one aspect, treatment excludes prophylaxis.
[0268] When the disease is fibrosis, the following clinical end points are non-limiting examples of treatment: reduction in fibrotic tissue, reduction in inflammation, reduction in fibroblastic lesions, reduction in activated fibroblast proliferation, reduction in myofibroblast genesis, reduction in rate of decline of Forced Vital Capacity (FVC), wherein FVC is the total amount of air exhaled during the lung function test, absolute and relative increases from
baseline in FVC, absolute increase from baseline in FVC (% Predicted), increase in progression-free survival time, decrease from baseline in St George's Respiratory
Questionnaire (SGRQ) total score, wherein SGRQ is a health-related quality of life questionnaire divided into 3 components : symptoms, activity and impact and the total score (summed weights) can range from 0 to 100 with a lower score denoting a better health status, and relative decrease from baseline in high resolution computerized tomography (HRCT) quantitative lung fibrosis (QLF) score, wherein the QLF score ranges from 0 to 100% and greater values represent a greater amount of lung fibrosis and are considered a worse health status. Non-limiting examples clinical end points for fibrosis treatment and tests that can be performed to measure said clinical end points are described in the following clinical trials: NCT03733444 (https://clinicaltrials.gov/ct2/show/NCT03733444), NCT00287729
(clinicaltrials.gov/ct2/show/NCT00287729), NCT00287716
(clini caltri al s . gov/ ct2/ show/NCT00287716),
NCT02503657(https://clinical trials. gov/ct2/show/NCT02503657), NCT00047645
(clinicaltrials.gov/ct2/show/NCT00047645), NCT02802345
(clinicaltrials.gov/ct2/show/NCT02802345), NCTO 1979952
(clinicaltrials.gov/ct2/show/NCT01979952), NCT00650091
(clinicaltrials.gov/ct2/show/NCT00650091 ), NCTO 1335464
(clinicaltrials.gov/ct2/show/NCT01335464), NCTO 1335477
(clinicaltrials.gov/ct2/show/NCT01335477), NCTO 1366209
(clinicaltrials.gov/ct2/show/NCT01366209). Further non-limiting examples clinical end points for fibrosis treatment and tests that can be performed to measure said clinical end points are described in King et al, N Engl J Med. (2014) May 29;370(22):2083-92 and Richeldi et al, N Engl J Med. 2014 May 29;370(22):2071-82.
Kits
[0269] Also disclosed herein is a kit comprising, or alternatively consisting essentially of, or yet further consisting of one or more of: the isolated polypeptide, the isolated polynucleotide, the vector, or the composition of this disclosure and instructions for use. In one aspect, the instructions recite the methods of using the isolated polypeptide, the isolated polynucleotide, the vector, or the composition disclosed herein.
Experimental
Experiment No. 1
[0270] Lung fibrosis is an important step of normal lung injury-repair process since the lung is a primary target organ that is constantly bombarded with environmental air pollutants. Smoking is one of the etiologies in inducing lung injury and repair and with continuous smoking, causing uncontrolled lung injury and repair; this may lead to a life-threatening disease, such as idiopathic pulmonary fibrosis (IPF) with a median survival time only 3 to 5 years 1_3. Targeting both increased fibroblast proliferation and myofibroblast differentiation has been considered as a therapeutic strategy in IPF management; therefore, development of agents capable of eradicating myofibroblasts or limiting their genesis is urgently needed. In the last two decades, the vast majority of therapeutics developed for IPF focused on anti inflammatory, rather than anti-fibrotic effects, and therefore had limited success in the clinic, with the nonspecific suppression of the inflammatory response and potent
immunosuppression being the primary obstacles. In 2014, the US Food and Drug
Administration (FDA) approved two novel therapeutic agents, pirfenidone and nintedanib, for IPF, each at a cost of almost $100,000 per patient per year. Due to intolerable adverse effects, some IPF patients have switched to nintedanib after discontinuation of pirfenidone 4.
Nintedanib, a potent multikinase inhibitor, shows anti-fibrotic and anti-inflammatory effects via blocking several key receptor tyrosine kinases including platelet-derived growth factor (PDGF) receptor, fibroblast growth factor (FGF) receptor, and vascular endothelial growth factor (VEGF) receptor 5 <5. Unfortunately, the transforming growth factor-beta (TGF-b) pathway, an important determinant in IPF progression 7’ 8, is not the major target of this drug. In addition, adverse effects are common with nintedanib therapy and worse with the higher dose, resulting in drug discontinuation 9 10. For these reasons, there is an urgent need to seek new and better therapeutics for those diagnosed with IPF. The central idea of this disclosure is to develop effective approaches for selectively targeting fibrogenic pathways without the disturbance of the immune and inflammatory responses and also improving the efficacy of nintedanib treatment. Additionally, Applicant evaluated the antifibrotic properties of the compounds in the phase of established fibrosis rather than in the early period of
inflammation. The use of candidate treatments in the“fibrotic” phase of the animal model, which better reflects human IPF, is greatly needed in order to reveal beneficial antifibrotic compounds.
[0271] Applicant found that the major protein kinase C substrate MARCKS (myristoylated alanine-rich C kinase substrate) is a potential target molecule for IPF and developed novel peptide-based therapeutics for selective ablation of activated fibroblasts and myofibroblasts without adversely affecting normal fibroblasts. In addition to being a major substrate for protein kinase C, MARCKS is also a phosphatidylinositol 4,5-bisphosphate (PIP2)-associated protein through its phosphorylation site domain (PSD; also known as the basic effector domain) binding to the cell membrane. Phosphorylation by PKC within the MARCKS PSD (Seri 59 and Seri 63) enhances phosphorylated MARCKS (phospho-MARCKS) detachment from membrane and suppresses the PIP2-sequestering effect u’ 12. Recent studies have indicated that an important function of the MARCKS PSD, upon phosphorylation, is to provide PI3K with PIP2 pools for PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) production, thereby activating AKT 13-15. Withholding PIP2 from its enzymes by targeting phospho-MARCKS prevents aberrant production of PIP3, inositol trisphosphate, and diacylglycerol in dysregulated cells but has no effect on enzyme activity in normal cellular processes; this indicates that MARCKS itself may therefore be a more effective target. Based on the sequence of the MARCKS PSD, Applicant have identified a 25-mer peptide, the MPS peptide, which targets the MARCKS PSD Sequence and inhibits AKT activation in cancers 14’ 16. Based on the findings, a series of small MPS peptides, ranging from 12 to 25 amino acids designed to mimic both the membrane curvature and PIP2 retention activities of MARCKS’ PSD/ED motif sequence, have been developed. Their inhibitory efficacy, which is based on PIP2 and PIP3 retention activity, has been tested in the suppression of bleomycin- induced mouse lung fibrosis model in vivo, and in the inhibition of myofibroblast
differentiation in vitro, as well as the growth of IPF tissue-derived fibroblasts ex vivo. Below are the results regarding this disclosure.
Aberrant elevation of MARCKS phosphorylation and its relevance to IPF fibroblasts
[0272] To uncover the regulatory molecules that drive gene expression representative of IPF features in lung fibroblasts, a comparison approach was used in which two different microarray datasets (GSE21369 and GSE2052) were integrated to find genes that are specifically upregulated in lung fibroblasts isolated from IPF patients, as compared to normal fibroblasts from non-IPF patients. Currently, the most definitive molecular marker of the myofibroblast is alpha smooth muscle actin (a-SMA), which is indicative of fibroblast activation and plays a critical role in development and progression of IPF 17, 18. Notably,
Applicant identified a cluster of 487 genes that were positively correlated with a-SMA expression in dataset GSE27335, which includes profiling data of lung myofibroblast-like cells. By analyzing overlapping genes with the calculated 366 genes in GSE21369 and 213 genes in GSE2052 that were significantly upregulated compared to normal fibroblasts, a panel of 14 genes as candidate targets for controlling fibroblast activation in IPF were identified. In light of the fact that more than a third of all known biomarkers and more than two-thirds of potential disease targets are membrane-related proteins 19, 2°, the critical PIP2- binding partner MARCKS 21 , one of the 14 identified genes, attracted attention and was selected for further study (FIG. 1A). Through the analysis of the transcriptome dataset 22, Applicant compared MARCKS gene expression between 13 samples obtained from surgical remnants of biopsies or lungs explanted from patients with IPF that underwent pulmonary transplant and 11 normal histology lung samples resected from patients with lung cancer. A significant elevation of MARCKS expression in IPF lung tissues was observed (FIG. IB). To validate that MARCKS is dysregulated in IPF fibroblasts, MARCKS expression and its phosphorylation in primary lung fibroblast cells isolated from IPF and non-IPF patients was examined. FIG. 2 shows higher expression of a-SMA, MARCKS and MARCKS
phosphorylation at Serl59 and Serl63 (phospho-MARCKS) in two IPF fibroblast cells (IPF- 1 and -2) as compared to normal fibroblasts (normal- 1 and -2), suggesting the implications of high phospho-MARCKS and MARCKS expression in IPF fibroblasts. Next, a MARCKS- specific short hairpin RNA (MARCKS shRNA) was used to eliminate both phospho- MARCKS and MARCKS expression and showed a 2.9-fold reduction in migration of MARCKS -knockdown cells (FIG. 3). Applicant previously developed a cell-permeable peptide, the MPS peptide, which targets the MARCKS phosphorylation site domain (PSD; also known as the basic effector domain) and inhibits phospho-MARCKS levels in cancers 14, 16. As expected, treatment with this peptide in primary IPF fibroblast cells confirmed that MARCKS inhibition reduces cell motility and proliferation (FIG. 4), consistent with shRNA knockdown of MARCKS. These results suggest that MARCKS plays an important role in several phenotypes relevant to IPF. Since MARCKS' function depends on its
phosphorylation, Applicant next confirmed phospho-MARCKS levels immune-histologically in both normal lung samples and IPF lung tissues from patients (n=18) receiving or not receiving nintedanib treatment. Immunohistochemical (IHC) analysis of MARCKS phosphorylation showed an increase of phospho-MARCKS signals in the tissue sections from IPF patients (FIG. 5). Strong phospho-MARCKS staining was also observed in tissues from
IPF patients undergoing nintedanib therapy. In the fibroblastic foci, it was observed that some of the fibroblast-like cells did not have much immunostaining while some undefined cells displayed strong phospho-MARCKS signal. Presently, it is presumed that the undefined parenchymal cells to be myofibroblasts; a confirmation of this hypothesis can be obtained by performing dual staining of phospho-MARCKS with a-SMA, a myofibroblast marker.
[0273] MPS peptide potentially serves as an antifibrotic agent in bleomycin-induced pulmonary fibrosis. Bleomycin remains the standard agent for induction of experimental pulmonary fibrosis in animals 23. Thus, 8-week-old female C57BL/6J mice received saline or bleomycin intratracheally (33 pg in 50 ml of saline) as previously described 23. Lung specimens from bleomycin- or saline-treated mice were collected and subjected to immunofluorescence staining. Elevated co-expression of phospho-MARCKS and a-SMA was seen in bleomycin-treated lung tissues (FIG. 6). Next, lung fibroblast cells isolated from saline- or bleomycin-treated mice (two mice fibroblast cell lines were gifts from Dr. Sem H. Phan, University of Michigan School of Medicine, MI) were incubated with either 100 mM control or MPS peptide for 48 hours. Fibroblasts from bleomycin-treated mice exhibited a decrease in phospho-MARCKS, phospho-AKT and a-SMA expression in the presence of MPS (FIG. 7A). Moreover, MTT assays confirmed that MPS treatment is very effective in decreasing cell viability of these fibroblast cells, as compared to the treatment of fibroblast cells from saline-treated mice (FIG. 7B). The feasibility of the MPS peptide as an antifibrotic agent in a bleomycin-induced pulmonary fibrosis was tested. Upon bleomycin exposure for 9 days, the body weight of mice was obviously decreased, as compared to mice receiving saline (control group). Saline- and bleomycin-exposed mice then were treated with either PBS or MPS peptide (28mg/kg) intraperitoneally every other day. To ascertain the therapeutic effect of MPS peptide on pulmonary fibrosis, MPS was administered
intraperitoneally during the“fibrotic” phase of the model. In total, there were four groups (five mice per group): 1) saline plus PBS; 2) saline plus MPS; 3) bleomycin plus PBS; 4) bleomycin plus MPS. Surprisingly, Applicant observed a continued loss of body weight in the mice exposed to bleomycin plus PBS, but not in the bleomycin-exposed mice with MPS treatment (FIG. 8). After 22 days of bleomycin exposure, mice lungs were collected and processed for histology and Masson's trichrome staining. Bleomycin-exposed mice showed extensive structural changes in the lungs, whereas decreases of fibroblastic lesions and deposited extracellular matrix were seen in the lungs from mice with bleomycin exposure and
MPS treatment (FIG. 9). These results suggest that phospho-MARCKS may be a therapeutic target for pulmonary fibrosis.
[0274] Molecular basis of MPS peptide and its potential for increasing nintedanib efficacy. Given the importance of the PSD in the functionality of MARCKS protein, Applicant previously designed a 25-mer MPS peptide to mimic the MARCKS PSD and found that this peptide can directly inhibit phospho-MARCKS-mediated functions in cancers, while having no cytotoxic effect on normal human epithelial cells 14, 16. On the basis of the PIP2 -binding motif on the MARCKS PSD (FIG. 10A), the effect of this peptide on PIP2 binding and PIP3 synthesis which are the two major determinants for AKT activation was tested 15. A kinetic assay confirmed that this peptide binds PIP2 with a dissociation constant of 17.64 nM (FIG. 10B). As expected, a decrease of PIP3 pools in whole cell lysates of MPS-treated IPF fibroblasts was observed (FIG. IOC), supporting the notion that MPS peptide is able to inhibit AKT activation through trapping PIP2. In view of adverse effects of the current IPF therapeutic nintedanib > 10, there is an urgent clinical need to improve the efficacy of such treatment in IPF. Since the TGF-b receptor is not a direct target of nintedanib, targeting an element of TGF-b signaling in tandem with nintedanib administration circumvents the shortcomings of nintedanib monotherapy. Given that strong phospho-MARCKS staining was seen in lung tissues from IPF patients with nintedanib therapy (FIG. 5), suggesting that MARCKS is still active under treatment with this multikinase inhibitor. FIG. 11A shows an increase of a-SMA expression upon nintedanib treatment, in agreement with the recent report that nintedanib induces a-SMA, albeit TGF-b signaling was partially affected by high doses of nintedanib treatment 24. Surprisingly, there was no change in phospho-AKT after nintedanib treatment. Based on the above observations, it is assumed that TGF^-directed phospho-MARCKS is a bypass mechanism of activating PI3K/AKT signaling (FIG. 11B); therefore, it seems reasonable that MARCKS inhibition by MPS treatment may improve nintedanib efficacy, permitting lower doses of nintedanib to be used. To this end, the possibility of a synergistic interaction between MPS and nintedanib in order to circumvent the shortcomings of nintedanib monotherapy was tested. Cell viability was decreased in primary IPF fibroblasts when treated with eithernintedanib, MPS peptide, or the combination of nintedanib and MPS peptide, with the greatest inhibition of viability observed in the combination group (FIG. 12A-B). Furthermore, the Chou and Talalay Cl (combination index) method 25 was used to evaluate the therapeutic interactions between nintedanib and
MPS peptide. The addition of MPS substantially enhanced the viability suppression of nintedanib with Cl value approximately 0.5 at ED50 (Cl < 1), indicating the synergistic effects of drug combination (FIG. 12C). Particularly, the values were lower than 1 at ED50, approximately 1 at ED75, and above 1 at ED90 (data not shown). Thus, the combination effect was dose-dependently correlated with the components, and therefore low dose nintedanib in combination with low dose of MPS presents a synergistic effect on cell proliferation. Simultaneously, data from trypan blue exclusion test indicated that cell survival was significantly lower with the combination treatment as compared to control, MPS, and nintedanib (FIG. 12D). On the basis of the sequences of MPS peptide, the rearrangement of PIP2-binding sites in this peptide were designed and synthesized with the intention of enhancing the efficacy and stability of the MPS peptide. FIG. 13 lists the sequences of various MPS derivatives. In light of the cleavage sites of various proteases and PIP2 binding motifs, Applicant replaced some L-isoform amino acids with D-isoform and these peptides were named as MPS-12042 and MPS-22026. To further validate the efficacy of the above MPS derivatives, Applicant performed a dose-course analysis of HI 650 cells undergoing each MPS derivative treatment. MTT assays showed IC50 values for various MPS-related peptides (FIG. 13). Since MPS-12042 showed the most effective at killing the highly proliferative cells, HI 650, its role in treating IPF fibroblast cells was determined. Using a MTS assay, Applicant found that MPS-12042 treatment has a better efficacy in inhibiting IPF fibroblast proliferation (IC50: 1.0~1.5 mM) as compared to MPS peptide (IC50: 125-178 mM). Of note, the concentration at 1 pM remarkably decreased cell proliferation by 50% in IPF fibroblast but not in normal fibroblasts (FIG. 14). In addition to targeting selectivity of MPS-12042, the IC50 for MPS-12042 is lower than the current FDA-approved IPF drug nintedanib (IC50: 13.8-15.9pM).
[0275] As suggested by this disclosure’s data, phospho-MARCKS acts as a specific marker for activated fibroblasts, inhibiting MARCKS activity by the use of the MPS peptides could lead to future clinical testing and a potential new therapeutic for IPF patients. The therapeutic potential of the MPS peptide in bleomycin-induced pulmonary fibrosis has demonstrated for the first time and will help to develop treatments that destroy activated fibroblasts and/or myofibroblast without adversely affecting quiescent fibroblasts. In sum, Applicant’s studies potentially define and validate therapeutic targets and/or biomarkers for IPF, which may lead to the development of much needed novel therapeutic approaches for IPF.
Targeting the MARCKS PSD is associated with inhibition of stem-like cell properties. In light of the importance of the PSD in the functionality of MARCKS protein, Applicant designed a 25-mer MPS peptide to mimic the MARCKS phosphorylation site domain (PSD). A great number of studies have revealed that this 25-mer peptide electrostatically interacts with the plasma membrane. Applicant has found that MPS treatment can directly inhibit the in vitro and in vivo functions of phospho-MARCKS in lung and kidney cancer, while this peptide has no cytotoxic effect on normal human epithelial cells 14,16. Since phospho- MARCKS drives the progression of lung cancer toward more malignancy 29 and cancer stem like cells (CSCs) participate in cancer malignancy, there may be an association between higher phospho-MARCKS and cancer sternness. Applicant’s initial studies have shown that elevation of phospho-MARCKS in lung cancer spheres acted in parallel with increased sternness markers, such as CD133, Oct3/4, SOX2 and Nanog (data not included). The oncospheres were derived from high MARCKS-expressing lung cancer cell lines (H1975 and CLl-5) and primary lung cancer cells (LG704 and LC3 : pleural effusion cells isolated from patients with advanced stage) in non-adherent serum-free culture conditions as described previously 30 32. Flow cytometry confirmed that -80% of LG704 oncosphere cells are CD133- positive, a major lung CSCs marker. Culturing these cells in spheroid conditions showed not only more resistance to both DNA damaging agents and EGFR inhibitors but also high tumorigenicity in vivo, as compared to cells in adherent conditions (data not included).
Through a comparison of transcriptome profiling between PBS- and MPS-treated LG704 oncospheres by RNA-seq, Applicant identified a total of 352 coding genes altered by
MARCKS inhibition (FIG. 15, left). Several of the expected cancer sternness genes were decreased after 50 mM MPS treatment, notably ABCC8, CDH5, PROM1 (CD133),
ALDH1L1 and FGFR2 (FIG. 15, right). As sphere formation (or sphere-forming ability) is an indicator of tumor aggressiveness and correlates with poor survival in cancer patients, applicant next confirmed the fact that long-term exposure to smoke potentiates cancer sternness (sphere formation) 33 44. The sphere-forming ability was assessed by counting the number and size of tumor spheres (oncospheres) under a microscope. Serum-free medium and non-adherent culture conditions were used to culture and enrich the cancer stem-like population from low-invasive lung cancer cell line, CL 1-0 cells, which were originally cultured under an adhering culture condition. With non-adherent serum-free culture conditions for seven days of exposure to PBS or cigarette smoke extract (CSE), smoke- treated cells displayed higher oncosphere-forming ability (FIG. 16, top) and elevated
expression of various C SC-associated transcriptional factors (FIG. 16, bottom).
Furthermore, V5-tagged wild-type and PSD-mutated (S159/163A) MARCKS constructs were introduced into low MARCKS-expressing cells. An approximate 3.7-fold increase in sphere forming ability in smoke-treated cells with ectopic expression of V5-tagged wild type MARCKS was observed, whereas smoke-enhanced sphere-forming ability and sternness gene expression were not obviously seen in cells with overexpression of phosphorylation-defective S159/163A MARCKS (FIG. 17). Pharmacologically, Applicant treated smoke-enriched oncospheres derived from H292 cells with MPS peptide to target the MARCKS PSD. FIG.
18 shows inhibitory effects of the MPS peptide on the number and size of oncospheres as well as the expression of sternness genes. Such inhibition of cancer sternness by MPS peptide may be attributed to the suppression of tobacco smoke-induced MARCKS phosphorylation.
Cell Culture
[0276] Human primary fibroblast cells were obtained from airway tissues provided from the UC Davis Medical Hospital (Sacramento, CA) with consent. The protocol for human tissue procurement and usage were periodically reviewed and approved by the University Human Subject Research Review Committee. Primary fibroblast cell lines, IPF-1 and IPF-2 cells, were established from IPF patients. Cells were obtained from lung biopsies and the diagnosis of IPF was supported by patient history, physical examination, pulmonary function tests, and typical high-resolution chest computed tomography findings of IPF. In all cases, the diagnosis of IPF was confirmed by microscopic analysis of lung tissue and demonstrated the characteristic morphological findings of usual interstitial pneumonia. All patients fulfilled the criteria for the diagnosis of IPF as established by the American Thoracic Society and
European Respiratory Society. Non-fibrotic primary control adult human lung fibroblast lines, Normal- 1 and Normal-2 cells were used. These lines were established from normal lung tissue or histologically normal lung tissue adjacent to carcinoid tumor. The IPF cell line, LL97A, was purchased from the American Type Culture Collection (ATCC) (Manassas,
VA). Lung fibroblast lines were cultured in high-glucose DMEM or RPMI-1640 medium with 10% fetal bovine serum and 1% penicillin-streptomycin at 37°C in a humidified atmosphere of 5% C02. Fibroblasts were used between passages 4 and 8. Cells were characterized as fibroblasts as described 26.
Quantitative real-time PCR
[0277] The mRNA expression level of target genes was detected by real-time reverse transcription polymerase chain reaction (RT-qPCR) using primers as described in the Primers section below. The house keeping gene TATA-box binding protein (TBP) was used as the reference gene. The relative expression level of target genes compared with that of TBP was defined as -ACT = -[CTtarget-CT-rap]. The target/TBP mRNA ratio was calculated as 2_ACT x K, where K is a constant.
Patient lung specimens and immunohistochemical staining
[0278] IPF lung tissue and non-IPF normal lung specimens were obtained from patients with histologically confirmed IPF who underwent surgical resection at the UC Davis Medical Center. This investigation was approved by the Institutional Review Board of the UC Davis Health System. Written informed consent was obtained from all patients. Formalin-fixed and paraffin-embedded specimens were used, and level of phospho-MARCKS was analyzed by immunohistochemical staining as described previously 14, 16, 27. These results were also reviewed and scored independently by two pathologists.
Kinetic assay
[0279] Real-time binding of the peptide mimicking the phosphorylation site domain of MARCKS (MPS peptide, amino acids 151 to 175 from the wild-type MARCKS protein) to biotin-labeled PIP2 was evaluated using biolayer interferometry (BLI) on an Octet RED96 system (ForteBio) following the manufacturer's instructions. Briefly, the ligand, PIP2 labeled with biotin at the sn-1 position (1000 nM in ddH20), was immobilized on Super Streptavidin (SSA) biosensors for 10 minutes. A binding assay was performed with the MPS analyte at various concentrations from 0 to 1000 nM in ddH20. Association and dissociation were monitored for 5 minutes. Assays were performed at 24°C. Data were analyzed using Octet Data Analysis Software 7.0 (ForteBio).
PI(3,4,5)P3 quantitation
[0280] Cells were harvested and precipitated by trichloroacetic acid. PIP3 lipids were extracted twice from the trichloroacetic acid precipitated fraction by methanol: chloroform (2: 1). After acidification, organic-phase lipids were used for PIP3 quantitation, based on the protocol for the PIP3 Mass ELISA kit (Echelon Biosciences, Salt Lake, UT). Briefly, the lipid extract from cultured cells was mixed with the PIP3-specific detector protein, which was
then incubated in a PIP3 -coated microplate for competitive binding. After several washes, the microplate was then incubated with a HRP-linked secondary detector and
tetramethylbenzidine substrate for color development. To stop further color development, 2M H2SO4 solution was then added. Microplates were read at an absorbance wavelength of 450 nm. A series of different dilutions of PIP3 standards were used for establishing a standard curve for each reaction. Cellular PIP3 amounts could be estimated by comparing the absorbance in the wells with the values in the standard curve. Experiments were conducted in triplicate dishes and repeated in two independent cultures with cell density 5x 106 cells/100- mm dish.
Transwell migration assays
[0281] An in vitro cell migration assay was performed as previously described 1 14 using Transwell chambers (8-pm pore size; Costar, Cambridge, MA). Briefly, 2 x 104 cells were seeded on top of the polycarbonate filters, and 0.5 ml of growth medium with scrambled or MPS peptide (IOOmM) was added to both the upper and lower wells. After incubation for 20 hours, filters were swabbed with a cotton swab, fixed with methanol, and then stained with Giemsa solution (Sigma). The cells attached to the lower surface of the filter were counted under a light microscope (10X magnification).
Scratch wound-healing assay
[0282] Cells were seeded to six-well tissue culture dishes and grown to confluence. A linear wound was introduced to each confluent monolayer using a pipette tip and washed three times with PBS. Thereafter, cell morphology and migration were observed and photographed at regular intervals for 12 and 24 hours. The number of cells migrating into the cell-free zone was acquired under a light microscope and counted.
Immunoblotting and immunofluorescent staining
[0283] Western blot analyses and the preparations of whole-cell lysates have been previously described 14, 16, 27. For whole cell lysates, cells were lysed in a lysis buffer (50 mM Tris-HCl (pH 7.4), 1% Triton X-100, 10% glycerol, 150 mM NaCl, 1 mM EDTA, 20 pg/ml leupeptin,
1 mM PMSF and 20 pg/ml aprotinin) and separated by SDS-PAGE. Immunoblotting was conducted with appropriate antibodies followed by chemiluminescent detection. For immunofluorescent staining, after an antigen retrieval step, tissue slides were reacted with antibodies against FITC-labeled a-SMA and TRITC-conjugated phospho-MARCKS, and
nuclei were demarcated with DAPI staining. The cells were mounted onto slides and visualized using fluorescence microscopy (model Axi overt 100; Carl Zeiss, Oberkochen, Germany) or a Zeiss LSM510 laser-scanning confocal microscope image system.
Bleomycin-induced Lung Fibrosis
[0284] Female C57BL/6J mice (8-week-old) were purchased from Jackson Laboratory (Sacramento, CA) and receive saline or bleomycin intratracheally as previously described 23. Briefly, mice were anesthetized with 5% isoflurane and administered bleomycin (APP Pharmaceuticals, Schaumburg, IL) at a dose of 0.005 U/g mouse via intratracheal aspiration on day 0. Control animals received an equal volume of sterile saline only. In early fibrogenic phase, these mice were intraperitoneally (i.p) injected with either PBS, or MPS peptide (28mg/kg) every two days. At 21 days of bleomycin insult, these mice were sacrificed and the lungs were collected for histological analysis. Mouse experiments were approved by the Institutional Animal Care and Use Committee of UC Davis.
Cell proliferation and colony formation assays
[0285] Cells were seeded onto 96-well plates at a density of 5-10x 103 cells per well and cultured for the indicated treatment. Cell proliferation was evaluated using a MTS assay kit (Promega, Madison, WI). Twenty microliters of the combined MTS/PMS solution was added into each well, incubated for 3 hours at 37°C, and the absorbance was measured at 490 nm by using an ELISA reader. For Trypan blue test, cells were plated on 12-well plates and treated with the indicated chemotherapeutic agents. After 72 hours, both attached and detached cells were collected and then stained with 0.2% trypan blue (0.1% final concentration), and the number of trypan blue-positive and -negative cells was counted using a haemocytometer under low-power microscopy. For colony-forming assays, 200 cells were seeded in each well of six-well plates. IPF-1 or IPF-2 primary cells were treated with peptides at the indicated concentrations for 10 days. Colonies were stained using 0.001% crystal violet and the number of colonies with a diameter greater than 0.5 mm was counted under an inverted microscope.
Reagents and antibodies
[0286] Dulbecco's Modified Eagle's medium, RPMI-1640 medium, fetal bovine serum and penicillin-streptomycin were purchased from Life Technologies Inc. (Carlsbad, CA).
Lipofect-AMINE™ was purchased from Invitrogen (Carlsbad, CA). VECTASTAIN® Elite ABC Kit (Rabbit IgG), VECTOR® Hematoxylin QS nuclear counterstain and DAB solution
were purchased from VECTOR Laboratories Inc. (Burlingame, CA). Anti-pSerl58
MARCKS (clone EP2113Y) and anti-MARCKS (clone EP1446Y) were purchased from Abeam (Cambridge, MA). Anti-pSerl59/163 MARCKS (clone D13D2), anti-pSer473 AKT, anti-pSer308 AKT, anti-AKT, anti-a-SMA, anti-GAPDH and anti-P-actin antibodies were purchased from Cell Signaling Technology, Inc. (Danvers, MA).
Primers
[0287] The all primers for quantitative real-time PCR used were as follows: the a-SMA forward primer 5'-TCCTCATCCTCCCTTGAGAA-3' (SEQ ID NO: 60) and the reverse primer 5 ' - AT G A AGG AT GGC T GG A AC AG- 3 ' (SEQ ID NO: 61); the COL1 A1 forward primer 5'-ACGAAGACATCCCACCAATCACCT-3' (SEQ ID NO: 62) and the reverse primer 5'-AGATCACGTCATCGCACAACACCT-3' (SEQ ID NO: 63); the THY1 forward primer 5'-AGAGACTTGGATGAGGAG-3' (SEQ ID NO: 64) and the reverse primer 5'- CTGAGAAT GCTGGAGAT G-3 ' (SEQ ID NO: 65); the FN1 forward primer 5’- TCCAC AAGCGTCATGAAGAG-3’ (SEQ ID NO: 66) and the reverse primer 5’- CTCTGAATCCTGGCATTGGT-3' (SEQ ID NO: 67); the VIM forward primer 5’- AACTTCTCAGC ATC ACGATGAC-3’ (SEQ ID NO: 68) and the reverse primer 5’- TTGTAGGAGTGTCGGTTGTTAAG-3' (SEQ ID NO: 69); the MARCKS forward primer 5’ -TTGTTGAAGAAGCC AGC ATGGGTG-3’ (SEQ ID NO: 70) and the reverse primer 5’- TTACCTTCACGTGGCCATTCTCCT-3’ (SEQ ID NO: 71).
Patient lung specimens and immunohistochemical staining
[0288] IPF lung tissue and non-IPF normal lung specimens were obtained from patients with histologically confirmed IPF who underwent surgical resection at the UC Davis Medical Center. This investigation was approved by the Institutional Review Board of the UC Davis Health System. Written informed consent was obtained from all patients. Formalin-fixed and paraffin-embedded specimens were used, and level of phospho-MARCKS was analyzed by immunohistochemical staining as described previously 1. Detailed experimental procedures were modified from the paraffin immunohistochemistry protocol supplied by the
manufacturer (Cell Signaling, Danvers, MA). The slides were de-paraffmized in xylene and rehydrated in graded alcohol and water. An antigen retrieval step (10 nM sodium citrate (pH 6.0) at a sub-boiling temperature) was used for each primary antibody. Endogenous peroxidase activity was blocked by 3% hydrogen peroxide followed by blocking serum and incubation with appropriate antibodies overnight at 4°C. Detection of immunostaining was
carried out by using the VECTASTAIN® ABC system, according to the manufacturer’s instructions (Vector Laboratories, Burlingame, CA). A four-point staining intensity scoring system was devised to confirm the relative expression of phospho-MARCKS in lung specimens; scores ranged from zero (no expression) to 3 (highest-intensity staining) as described previously14, 27 29. The results were classified into two groups according to the intensity and extent of staining: in the low-expression group, staining was observed in 0-1% of the cells (staining intensity score = 0), in less than 10% of the cells (staining intensity score =1), or in 10%-25% of the cells (staining intensity score = 2); in the high-expression group, staining was present more than 25% of the cells (staining intensity score = 3).
Experiment No. 2
Tackling the MARCKS-PIP3 Circuit to Attenuate Chronic Pulmonary Fibrosis
[0289] As noted in Experiment No. 1, Applicant found that MARCKS expression as well as MARCKS phosphorylation (phospho-MARCKS) are elevated in IPF tissues and cells. This demonstrated that this phenomena was observed in both in-vitro as well as in-vivo in the bleomycin mouse model of pulmonary fibrosis. MARCKS levels and activity (phospho- MARCKS) were correlated with higher pro-fibrotic activity including cell proliferation, extracellular matrix production, invasiveness, and fibroblast differentiation. Upon treatment with MPS peptides, which target MARCKS acitivity, Applicant observes attentuation of these activities. The second significant finding was that MARCKS mediates these profibrotic effects through through the PI3K/AKT pathway. Applicant demonstrated that this signaling pathway was upregulated in both IPF tissue and cells as well as in the bleomycin mouse model. Targeting of these activities with MPS peptide results in decreased AKT acitivity and downstream pro-fibrotic signals. The mechanism through which this occurs is through regulation of PIP2 availability at the cell membrane. In an unphosprylated state, MARCKS is able to bind PIP2 at the cell membrane, preventing PI3K proteins from converting PIP2 into PIP3 and effecting downstream AKT activity. Upon phosphorylation, MARCKS is released from the cell membrane into the cytosol, freeing up PIP2 and allowing PI3K to convert PIP2 into PIP3. In order to show that elevated MARCKS activity and levels are correlated with elevated levels of PIP3, Applicant stained IPF lung fibroblast cells and normal lung fibroblast cells and subjected them to confocal microscopy. Applicant demonstrates in FIGS. 1C and ID that PIP3 and MARCKS levels are elevated in IPF lung fibroblast cells compared to normal lung fibroblast cells and that high levels of MARCKS is correlated with higher levels
of PIP3. Applicant also demonstrates that higher PIP3 is observed in IPF lung fibroblast cells and that PIP3 levels are reduced after MPS treatment in FIG. 19. Applicant obtained multiple IPF lung ifbroblast cells and treated them with either PBS or 100 mIUΊ MPS peptide for 12 hours and subjected to immunocytochemistry utilizing anti-PIP3 antibody. Applicant demonstrates that higher PIP3 levels are observed in IPF lung fibroblast cells and levels are reduced after MPS peptide treatment.
[0290] Additionally, Applicant also modified the MPS peptide to improve the stability and potency of the peptide. Of note, MPS-12042 demonstrated marked improvement in potency. Applicant tested this peptide against currently approved IPF therapeutic, nintedanib, as well as MPS peptide in the belomycin mouse model of pulmonary fibrosis. As shown in FIG. 20, MPS-12042 has superior efficacy at attenuating phospho-MARCKS and phospho-AKT as well as reducing overall fibrosis and extracellular matrix depostion in mouse lungs exposed to bleomycin.
[0291] In all, these additional pieces of evidence demonstrate the role of MARCKS in regulating PIP2/PI3K/PIP3/AKT activity and that MPS peptides are a potential and viable option to target these activities in IPF.
Equivalents
[0292] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this technology belongs.
[0293] The present technology illustratively described herein may suitably be practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. Thus, for example, the terms“comprising,”“including,”“containing,” etc. shall be read expansively and without limitation. Additionally, the terms and expressions employed herein have been used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the present technology claimed.
[0294] Thus, it should be understood that the materials, methods, and examples provided here are representative of preferred aspects, are exemplary, and are not intended as limitations on the scope of the present technology.
[0295] The present technology has been described broadly and generically herein. Each of the narrower species and sub-generic groupings falling within the generic disclosure also form part of the present technology. This includes the generic description of the present technology with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein.
[0296] In addition, where features or aspects of the present technology are described in terms of Markush groups, those skilled in the art will recognize that the present technology is also thereby described in terms of any individual member or subgroup of members of the Markush group.
[0297] All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety, to the same extent as if each were incorporated by reference individually. In case of conflict, the present specification, including definitions, will control.
[0298] Other aspects are set forth within the following claims.
Partial Sequence Listing
Bolded amino acids are D-isoforms.
SEQ ID NO: 40 (MPS-21010)
F SFGSF SLKKF SFRKKKNKK SEQ ID NO: 41 (MPS-21020)
KKKKF SFGSF SLKKF SFRKKKNKK SEQ ID NO: 42 (MPS-21026)
KKKKF AF GAF ALKKF AFRKKKNKK SEQ ID NO: 43 (MPS-31010)
KKKNK SFF GK SKKFKKKK SF SEQ ID NO: 44 (MPS-31020)
KRFLSKKKNKSFFGKSK KFKKKKSF SEQ ID NO: 45 (MPS-12042)
KKKKKRFAFKKAFKLAGFAFKKNKK SEQ ID NO: 46 (MPS-12041)
KKKKKRFAFKKAFKLAGFAFKKNKK SEQ ID NO: 47 (MPS-22026)
KKKKKFAFGAFALKKF AFRKKKNKK SEQ ID NO: 48 (MPS-11022)
KKKKKRF SFKKSFKLSGF SFKANKK SEQ ID NO: 49 (MPS-11011)
KKKKKRF SFKASFKLSGF SFKKNKK SEQ ID NO: 50 (MPS-11010)
KKKKKRF SF AKSFKLSGF SFKKNKK SEQ ID NO: 51 (MPS-11006)
KKKKK AF SFKK SFKL SGF SFKKNKK
SEQ ID NO: 52 (MPS-11003)
KKAKKRF SFKK SFKL SGF SFKKNKK SEQ ID NO: 53 (MPS-11001)
AKKKKRF SFKK SFKL SGF SFKKNKK SEQ ID NO: 54 (MPS-11200)
Ac-KKKKKRF SFKKSFKLSGF SFKKNKK-NH2 Bolded amino acids are D-isoforms.
SEQ ID NO: 55 (Consensus)
X(K/R/A)F(A/S)FRX, wherein X is any amino acid.
SEQ ID NO: 56 (Consensus)
X(K/R/A)F(A/S)FRX, wherein one or both X are K (lysine).
SEQ ID NO: 57 (WT MPS)
KKKKKRF SFKKSFKLSGF SFKKNKK SEQ ID NO: 58
XXXRYAYXXAYX, where X is any amino acid, and Y is a hydrophobic amino acid residue.
SEQ ID NO: 59
XXXXXR Y A YXX A YXL AGY A YXXNXX, wherein X is any amino acid, and Y is a hydrophobic amino acid residue.
REFERENCES
1 Ley B, Collard HR, King TE, Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine 2011;
183:431-440.
2 Nalysnyk L, Cid-Ruzafa J, Rotella P, Esser D. Incidence and prevalence of idiopathic pulmonary fibrosis: review of the literature. European respiratory review: an official journal of the European Respiratory Society 2012; 21 :355-361.
3 Martinez FJ, Collard HR, Pardo A et al. Idiopathic pulmonary fibrosis. Nature reviews Disease primers 2017; 3: 17074.
4 Milger K, Kneidinger N, Neurohr C, Reichenberger F, Behr J. Switching to nintedanib after discontinuation of pirfenidone due to adverse events in IPF. The European respiratory journal 2015; 46: 1217-1221.
5 Wollin L, Wex E, Pautsch A et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. The European respiratory journal 2015; 45: 1434-1445.
6 Wollin L, Maillet I, Quesniaux V, Holweg A, Ryffel B. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther 2014; 349:209-220.
7 Tatler AL, Jenkins G. TGF-beta activation and lung fibrosis. Proceedings of the American Thoracic Society 2012; 9: 130-136.
8 Nakerakanti S, Trojanowska M. The Role of TGF-beta Receptors in Fibrosis. The open rheumatology journal 2012; 6: 156-162.
9 Dimitroulis IA. Nintedanib: a novel therapeutic approach for idiopathic pulmonary fibrosis. Respiratory care 2014; 59: 1450-1455.
10 Rangarajan S, Locy ML, Luckhardt TR, Thannickal VJ. Targeted Therapy for Idiopathic Pulmonary Fibrosis: Where To Now? Drugs 2016; 76:291-300.
11 Gambhir A, Hangyas-Mihalyne G, Zaitseva I et al. Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophysical journal 2004; 86:2188-2207.
12 McLaughlin S, Murray D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 2005; 438:605-611.
13 Chen CH, Thai P, Yoneda K, Adler KB, Yang PC, Wu R. A peptide that inhibits function of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) reduces lung cancer metastasis. Oncogene 2014; 33:3696-3706.
14 Chen CH, Statt S, Chiu CL et al. Targeting myristoylated alanine-rich C kinase substrate phosphorylation site domain in lung cancer. Mechanisms and therapeutic implications.
American journal of respiratory and critical care medicine 2014; 190: 1127-1138.
15 Ziemba BP, Burke JE, Masson G, Williams RL, Falke JJ. Regulation of PI3K by PKC and MARCKS: Single-Molecule Analysis of a Reconstituted Signaling Pathway. Biophysical journal 2016; 110: 1811-1825.
16 Chen CH, Fong LWR, Yu E, Wu R, Trott JF, Weiss RH. Upregulation of MARCKS in kidney cancer and its potential as a therapeutic target. Oncogene 2017; 36:3588-3598.
17 Wynn TA. Integrating mechanisms of pulmonary fibrosis. The Journal of experimental medicine 2011; 208: 1339-1350.
18 Lepparanta O, Sens C, Salmenkivi K et al. Regulation of TGF-beta storage and activation in the human idiopathic pulmonary fibrosis lung. Cell and tissue research 2012; 348:491-503.
19 Josic D, Clifton JG, Kovac S, Hixson DC. Membrane proteins as diagnostic biomarkers and targets for new therapies. Current opinion in molecular therapeutics 2008; 10: 116-123.
20 Hopkins AL, Groom CR. Target analysis: a priori assessment of druggability. Ernst Schering Research Foundation workshop 2003 : 11-17.
21 Aderem A. Signal transduction and the actin cytoskeleton: the roles of MARCKS and profilin. Trends in biochemical sciences 1992; 17:438-443.
22 Wang XM, Zhang Y, Kim HP et al. Caveolin-1 : a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. The Journal of experimental medicine 2006; 203:2895-2906.
23 Limjunyawong N, Mitzner W, Horton MR. A mouse model of chronic idiopathic pulmonary fibrosis. Physiological reports 2014; 2:e00249.
24 Rangarajan S, Kurundkar A, Kurundkar D et al. Novel Mechanisms for the Antifibrotic Action of Nintedanib. American journal of respiratory cell and molecular biology 2016; 54:51-59.
25 Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in enzyme regulation 1984; 22:27- 55.
26 Chen B, Polunovsky V, White J et al. Mesenchymal cells isolated after acute lung injury manifest an enhanced proliferative phenotype. The Journal of clinical investigation 1992; 90: 1778-1785.
27 Chen CH, Cheng CT, Yuan Y et al. Elevated MARCKS phosphorylation contributes to unresponsiveness of breast cancer to paclitaxel treatment. Oncotarget 2015; 6: 15194-15208.
28 Kuo TC, Tan CT, Chang YW et al. Angiopoietin-like protein 1 suppresses SLUG to inhibit cancer cell motility. J Clin Invest 2013; 123: 1082-1095.
29 Chen CH, Chiu CL, Adler KB, Wu R. A novel predictor of cancer malignancy: up- regulation of myristoylated alanine-rich C kinase substrate phosphorylation in lung cancer. American journal of respiratory and critical care medicine 2014; 189: 1002-1004.
30 Eramo, A. et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15, 504-514, doi:4402283 [pii] 10.1038/sj.cdd.4402283 (2008).
31 Noto, A. et al. Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells. Cell Death Dis 4, e947, doi: 10.1038/cddis.2013.444 cddis2013444 [pii] (2013).
32 Nolte, S. M. et al. A cancer stem cell model for studying brain metastases from primary lung cancer. J Natl Cancer Inst 105, 551-562, doi: 10.1093/jnci/djt022 djt022 [pii] (2013).
33 An, Y. et al. Cigarette smoke promotes drug resistance and expansion of cancer stem cell like side population. PloS one 7, e47919, doi: 10.1371/journal. pone.0047919 (2012).
34 Perumal, D. et al. Nicotinic acetylcholine receptors induce c-Kit ligand/Stem Cell Factor and promote sternness in an ARRBl/ beta-arrestin-1 dependent manner in NSCLC.
Oncotarget 5, 10486-10502, doi: 10.18632/oncotarget.2395 (2014).
35 Guha, P. et al. Nicotine promotes apoptosis resistance of breast cancer cells and enrichment of side population cells with cancer stem cell-like properties via a signaling
cascade involving galectin-3, alpha9 nicotinic acetylcholine receptor and STAT3. Breast Cancer Res Treat 145, 5-22, doi: 10.1007/sl0549-014-2912-z (2014).
36 Jedrzejas, M., Skowron, K. & Czekaj, P. Stem cell niches exposed to tobacco smoke. Przegl Lek 69, 1063-1073 (2012).
37 Zhang, M. et al. Mithramycin represses basal and cigarette smoke-induced expression of ABCG2 and inhibits stem cell signaling in lung and esophageal cancer cells. Cancer research 72, 4178-4192, doi:10.1158/0008-5472.CAN-l l-3983 (2012).
38 Yu, C. C. & Chang, Y. C. Enhancement of cancer stem-like and epithelial-mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: reversal by targeting SNAIL Toxicol Appl Pharmacol 266, 459-469, doi: 10.1016/j.taap.2012.11.023 (2013).
39 Pluchino, L. A. & Wang, H. C. Chronic exposure to combined carcinogens enhances breast cell carcinogenesis with mesenchymal and stem-like cell properties. PloS one 9, el08698, doi: 10.1371/journal.pone.0108698 (2014).
40 Liu, Y. et al. Epithelial-mesenchymal transition and cancer stem cells, mediated by a long non-coding RNA, HOTAIR, are involved in cell malignant transformation induced by cigarette smoke extract. Toxicol Appl Pharmacol 282, 9-19, doi: 10.1016/j.taap.2014.10.022 (2015).
41 Nieh, S. et al. Regulation of tumor progression via the Snail-RKIP signaling pathway by nicotine exposure in head and neck squamous cell carcinoma. Head Neck 37, 1712-1721, doi: 10.1002/hed.23820 (2015).
42 Wang, B. et al. Epigenetic silencing of microRNA-218 via EZH2-mediated H3K27 trimethylation is involved in malignant transformation of HBE cells induced by cigarette smoke extract. Arch Toxicol 90, 449-461, doi: 10.1007/s00204-014-1435-z (2016).
43 Liu, Y. et al. Tumorigenesis of smoking carcinogen 4-(methylnitrosamino)-l-(3-pyridyl)- 1-butanone is related to its ability to stimulate thromboxane synthase and enhance sternness of non-small cell lung cancer stem cells. Cancer Lett 370, 198-206,
doi: 10.1016/j.canlet.2015.10.017 (2016).
44 Lee, T. Y. et al. Increased chemoresi stance via Snail-Raf kinase inhibitor protein signaling in colorectal cancer in response to a nicotine derivative. Oncotarget 7, 23512-23520, doi : 10.18632/ oncotarget.8049 (2016) .
Claims
1. An isolated polypeptide comprising an amino acid sequence selected from the group of SEQ ID NOs: 45, 40-56, 58 or 59, or an equivalent of each thereof.
2. The isolated polypeptide of claim 1, wherein the polypeptide comprises the
KKKKKRFAFKKAFKLAGFAFKKNKK (SEQ ID NO: 45), or an equivalent thereof
3. The isolated polypeptide of claim 1, wherein an equivalent comprises a polypeptide
having at least 80% sequence identity to the isolated polypeptide of claim 1 or a polypeptide encoded by a polynucleotide that hybridizes to an isolated polynucleotide that encodes the polypeptide of claim 1 or its complement, and the bolded amino acids are substituted with D-amino acids, that are optionally unmodified from the polypeptide of SEQ ID. Nos. 45, 40-56, 58 or 59, respectively.
4. The isolated polypeptide of claim 1, wherein the polypeptide is selected from the group of SEQ ID NOs. 45-47, 58 or 59, or an equivalent thereof.
5. The isolated polypeptide of claim 4, wherein the equivalent comprises a polypeptide having at least 80% sequence identity to the isolated polypeptide of claim 3 or a polypeptide encoded by a polynucleotide that hybridizes to an isolated polynucleotide that encodes the polypeptide of claim 4 or its complement, and wherein the bolded amino acids are substituted with D-amino acids and retains the D-amino acids.
6. The isolated polypeptide of claim 1, wherein the isolated polypeptide comprises no more than 51 amino acids.
7. The isolated polypeptide of claim 1, wherein the isolated polypeptide comprises no more than 35 amino acids.
8. The isolated polypeptide of claim 1, further comprising one or more of: an amino acid sequence to facilitate entry of the isolated polypeptide into the cell, a targeting
polypeptide, or a polypeptide that confers stability to the polypeptide.
9. An isolated polynucleotide encoding the isolated polypeptide of claim 1.
10. The complement of the polynucleotide of claim 9.
11. An isolated polynucleotide having at least 80% sequence identity to the polynucleotide of claim 9 or 10.
12. A vector comprising the isolated polynucleotide of claim 9 or 10, and optionally regulatory sequences operatively linked to the isolated polynucleotide for replication and/or expression.
13. The vector of claim 12, wherein the vector is an AAV vector.
14. A host cell comprising one or more of the isolated polypeptide of claim 1.
15. The host cell of claim 14, wherein the host cell is a eukaryotic cell or a prokaryotic cell.
16. A composition comprising a carrier and one or more of the isolated polypeptide of claim 1
17. The composition of claim 16, wherein the carrier is a pharmaceutically acceptable carrier.
18. The composition of claim 16 or 17, further comprising a chemotherapeutic agent or drug, or an anti-fibrotic agent or drug.
19. A method of treating disease or disease symptoms associated with fibrosis in a subject in need thereof, comprising administering to the subject an effective amount of one or more of the isolated polypeptide of claim 1, or an equivalent thereof.
20. The method of claim 19, wherein the disease or symptoms associated with fibrosis is selected from the group of: lung fibrosis, idiopathic pulmonary fibrosis, bleomycin- induced pulmonary fibrosis, kidney fibrosis, liver fibrosis, skin fibrosis, fibroblastic lesions, activated fibroblast proliferation, inflammation, or myofibroblast genesis, that is optionally unresponsive to conventional treatment.
21. The method of claim 19 or 20, further comprising administering an effective amount of an anti-fibrotic agent or drug, that is optionally nintedanib or pirfenidone.
22. A method for one or more of inhibiting cancer cell growth, treating cancer, inhibiting metastasis, inhibiting cancer stem cell growth, inhibiting cancer sternness, inhibiting tumor cell mobility, restoring sensitivity of a resistant cancer cell to a chemotherapeutic agent, in a subject in need thereof, comprising administering to the subject an effective amount of one or more of the isolated polypeptide of claim 1, or an equivalent thereof.
23. The method of claim 22, wherein the cancer cell or cancer is lymphoma, leukemia or a solid tumor.
24. The method of claim 22, wherein the cancer cell or cancer is lung cancer, liver cancer, kidney cancer, brain cancer, colorectal cancer, pancreatic cancer, bone cancer, or throat cancer.
25. The method of claim 22, further comprising administering to the subject an effective amount of an anti-cancer drug or agent.
26. The method of claim 25, wherein the anti-cancer drug or agent is from the group
consisting of a tyrosine kinase inhibitor (TKI) such as EGFR and VEGFR TKIs, a platinum drug or an immunotherapeutic.
27. A method for delivering a polypeptide of , or an equivalent thereof across the blood brain barrier in a subject in need thereof comprising administering an effective amount of vector of claim 12 to the subject.
28. The method of claim 19, wherein administration is local to a tissue being treated or systemic.
29. The method of claim 28, wherein local administration comprises topical or by inhalation therapy.
30. The method of claim 28, wherein systemic administration is from the group of
intravenous, intracranial, inhalation therapy, intranasal, vaginal, rectal, oral, intrathecal, intradermal, direct installation, or sublingual.
31. The method of claim 19, wherein the subject is a mammal.
32. The method of claim 31, wherein the mammal is a canine, murine, equine, feline or a human.
33. A kit comprising one or more of the isolated polypeptide of claim 1, or an equivalent thereof, and instructions for use.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3140129A CA3140129A1 (en) | 2019-05-17 | 2020-05-15 | Mps modified peptides and use thereof |
US17/611,511 US20220267390A1 (en) | 2019-05-17 | 2020-05-15 | Mps modified peptides and use thereof |
EP20809133.0A EP3969033A4 (en) | 2019-05-17 | 2020-05-15 | Mps modified peptides and use thereof |
CN202080046922.XA CN114173804A (en) | 2019-05-17 | 2020-05-15 | MPS modified peptide and application thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962849637P | 2019-05-17 | 2019-05-17 | |
US62/849,637 | 2019-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020236615A1 true WO2020236615A1 (en) | 2020-11-26 |
Family
ID=73459138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2020/033188 WO2020236615A1 (en) | 2019-05-17 | 2020-05-15 | Mps modified peptides and use thereof |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220267390A1 (en) |
EP (1) | EP3969033A4 (en) |
CN (1) | CN114173804A (en) |
CA (1) | CA3140129A1 (en) |
TW (1) | TW202110874A (en) |
WO (1) | WO2020236615A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060018882A1 (en) * | 2004-06-21 | 2006-01-26 | Kaemmerer William F | Medical devices and methods for delivering compositions to cells |
US20150164874A1 (en) * | 2011-05-25 | 2015-06-18 | Intermune, Inc. | Pirfenidone and anti-fibrotic therapy in selected patients |
US20160176936A1 (en) * | 2013-07-26 | 2016-06-23 | The Regents Of The University Of California | Mps peptides and use thereof |
US20170028019A1 (en) * | 2013-12-20 | 2017-02-02 | The Regents Of The University Of California | Suppression of allergic lung inflammation and hyperreactivity |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101283106A (en) * | 2005-07-27 | 2008-10-08 | 肿瘤疗法科学股份有限公司 | Method of diagnosing small cell lung cancer |
WO2011060349A1 (en) * | 2009-11-13 | 2011-05-19 | North Carolina State University | Methods of modulating mesenchymal stem cells |
CN107875148A (en) * | 2017-11-03 | 2018-04-06 | 吴殿青 | Applications and its pharmaceutical preparation of the Lu Baisita in prevention and treatment pulmonary fibrosis and hepatic sclerosis medicine is prepared |
-
2020
- 2020-05-15 US US17/611,511 patent/US20220267390A1/en active Pending
- 2020-05-15 CN CN202080046922.XA patent/CN114173804A/en active Pending
- 2020-05-15 CA CA3140129A patent/CA3140129A1/en active Pending
- 2020-05-15 TW TW109116254A patent/TW202110874A/en unknown
- 2020-05-15 WO PCT/US2020/033188 patent/WO2020236615A1/en active Application Filing
- 2020-05-15 EP EP20809133.0A patent/EP3969033A4/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060018882A1 (en) * | 2004-06-21 | 2006-01-26 | Kaemmerer William F | Medical devices and methods for delivering compositions to cells |
US20150164874A1 (en) * | 2011-05-25 | 2015-06-18 | Intermune, Inc. | Pirfenidone and anti-fibrotic therapy in selected patients |
US20160176936A1 (en) * | 2013-07-26 | 2016-06-23 | The Regents Of The University Of California | Mps peptides and use thereof |
US20170028019A1 (en) * | 2013-12-20 | 2017-02-02 | The Regents Of The University Of California | Suppression of allergic lung inflammation and hyperreactivity |
Non-Patent Citations (2)
Title |
---|
See also references of EP3969033A4 * |
SERGIO D. ROSÉ, TATIANA LEJEN, LI ZHANG, JOSÉ-MARÍA TRIFARÓ: "Chromaffin cell F-actin disassembly and potentiation of catecholamine release in response to protein kinase C activation by phorbol esters is mediated through myristoylated alanine-rich C kinase substrate phosphorylation", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 39, 25 July 2001 (2001-07-25), pages 36757 - 36763, XP055761634, DOI: 10.1074/jbc.M006518200 * |
Also Published As
Publication number | Publication date |
---|---|
US20220267390A1 (en) | 2022-08-25 |
CN114173804A (en) | 2022-03-11 |
TW202110874A (en) | 2021-03-16 |
EP3969033A4 (en) | 2023-06-14 |
CA3140129A1 (en) | 2020-11-26 |
EP3969033A1 (en) | 2022-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2357505T3 (en) | COMPOSITION AND NEW PROCEDURES FOR THE TREATMENT OF IMMUNORELATED DISEASES. | |
EP1981969A1 (en) | Gitr antibodies for the treatment of cancer | |
EP1856281A2 (en) | Gitr antibodies for the diagnosis of nsclc | |
US20210087247A1 (en) | Mps peptides and use thereof | |
JP7328641B2 (en) | A method for determining the presence or absence of malignant lymphoma or leukemia, and a drug for treating and/or preventing leukemia | |
EP3123173B1 (en) | Compositions for suppressing cancer by inhibition of tmcc3 | |
US20110224133A1 (en) | Highly Potent Peptides To Control Cancer And Neurodegenerative Diseases | |
US11007248B2 (en) | Suppression of allergic lung inflammation and hyperreactivity | |
JP3771218B2 (en) | Cell senescence-related nucleic acid sequences and proteins | |
US20130316958A1 (en) | Highly potent peptides to control cancer and neurodegenerative diseases | |
US20220267390A1 (en) | Mps modified peptides and use thereof | |
NZ524230A (en) | Identification of tumor antigens the expression of which is selectively enhanced by retinoid treatment | |
EP3067422B1 (en) | Ct-1 inhibitors | |
WO2006078780A2 (en) | Rdc1 antibodies for the diagnosis of nsclc | |
JP2012525121A (en) | Identification of tumor-related markers for diagnosis and treatment | |
JPWO2005061704A1 (en) | Cancer preventive / therapeutic agent | |
WO2011156637A1 (en) | Pphox and rubicon peptides and methods of use | |
JPWO2005021739A1 (en) | Antibody against Nox1 polypeptide, cancer diagnostic method using Nox1 gene, and screening method for cancer growth inhibitory substance | |
MX2007008691A (en) | Gitr antibodies for the diagnosis of nsclc | |
WO2005037854A2 (en) | Immunogenic peptides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20809133 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3140129 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020809133 Country of ref document: EP |