WO2020230501A1 - 水蒸気観測システム及び水蒸気観測方法 - Google Patents

水蒸気観測システム及び水蒸気観測方法 Download PDF

Info

Publication number
WO2020230501A1
WO2020230501A1 PCT/JP2020/016415 JP2020016415W WO2020230501A1 WO 2020230501 A1 WO2020230501 A1 WO 2020230501A1 JP 2020016415 W JP2020016415 W JP 2020016415W WO 2020230501 A1 WO2020230501 A1 WO 2020230501A1
Authority
WO
WIPO (PCT)
Prior art keywords
water vapor
gnss
precipitable
water
index
Prior art date
Application number
PCT/JP2020/016415
Other languages
English (en)
French (fr)
Inventor
成皓 奥村
祐弥 ▲高▼島
昌裕 箕輪
修平 井上
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to CN202080035452.7A priority Critical patent/CN113811795A/zh
Priority to JP2021519310A priority patent/JP7280947B2/ja
Priority to EP20806625.8A priority patent/EP3971618B1/en
Publication of WO2020230501A1 publication Critical patent/WO2020230501A1/ja
Priority to US17/452,716 priority patent/US11662471B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/04Investigating moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • This disclosure relates to a water vapor observation system and a water vapor observation method.
  • Water vapor observation by the GNSS receiver uses multi-frequency radio waves radiated from satellites. If radio waves of two or more different frequencies and radio waves radiated from four or more satellites can be received, the delay amount of the radio waves can be captured. The delay amount of radio waves corresponds to the amount of water vapor, and the amount of water vapor can be observed.
  • Water vapor observation using GNSS Global Navigation Satellite System
  • GNSS Global Navigation Satellite System
  • Patent Document 1 describes water vapor observation by GNSS.
  • Water vapor observation with a microwave radiometer utilizes the fact that radio waves are emitted from water vapor in the atmosphere, and measures radio waves from water vapor and clouds. Due to the directivity of the antenna and horn of the receiver, it is possible to measure water vapor in a local range in the sky compared to water vapor observation by GNSS. However, periodic calibration with liquid nitrogen is required to prevent equipment drift and to measure the correct luminance temperature. Liquid nitrogen is difficult to transport and handle.
  • Patent Document 2 has a description about a microwave radiometer.
  • An object of the present disclosure is to provide a water vapor observation system and method capable of observing water vapor in a local range without the need for calibration using liquid nitrogen.
  • the water vapor observer of the present disclosure is A water vapor index acquisition unit that acquires a water vapor index calculated based on the radio wave intensity of at least two frequencies among the radio waves received by the microwave radiometer.
  • a GNSS precipitable water acquisition unit that acquires a GNSS precipitable water amount calculated based on the atmospheric delay of the GNSS signal received by the GNSS receiver.
  • a mapping data generation unit that generates association data between the water vapor index and the GNSS precipitable water amount based on the water vapor index and the GNSS precipitable water amount at a plurality of time points in a predetermined period.
  • a precipitable water calculation unit that calculates precipitable water based on the associated data from the water vapor index obtained based on the microwave radiometer, and To be equipped.
  • the association data is generated based on the water vapor index at a plurality of time points in a predetermined period and the GNSS precipitable water amount
  • the precipitable water amount can be calculated from the water vapor index using the association data. Since the water vapor index based on the microwave radiometer is associated with the GNSS precipitable water that does not require calibration, the absolute value matches the local water vapor data that does not have an absolute value based on the microwave radiometer. Can be converted into reliable local water vapor data. Nevertheless, it is possible to obtain reliable data without calibrating the microwave radiometer with liquid nitrogen.
  • Block diagram showing the configuration of the water vapor observation system according to one embodiment
  • Flowchart showing the processing executed by the water vapor observation system Diagram showing the frequency spectrum of the radio field intensity received by the microwave radiometer
  • a diagram showing time-series data of GNSS precipitable water, time-series data of water vapor index, and associative data of GNSS precipitable water and water vapor index.
  • FIG. 1 is a diagram showing the configuration of the water vapor observation system of the present embodiment.
  • the water vapor observation system includes a water vapor index acquisition unit 41, a GNSS precipitable water acquisition unit 42, a correspondence data generation unit 43, and a precipitable water calculation unit 44.
  • the water vapor index acquisition unit 41 shown in FIG. 1 acquires a water vapor index calculated based on the radio wave intensities of at least two frequencies among the radio waves received by the microwave radiometer 3. It is considered that there are various methods for calculating the water vapor index, but in the present embodiment, as shown in FIG. 3, the peak intensity of the radio waves radiated from the water vapor and cloud water in the sky is 22 GHz. .. In order to remove the amount of cloud water contained in the 22 GHz radio wave, a cloud water amount calculation unit 40 for calculating the amount of cloud water at 22 GHz based on the radio wave intensity of 26.5 GHz is provided. The water vapor index is calculated by subtracting the amount of cloud water at 22 GHz from the radio field intensity of 22 GHz.
  • the reception intensity p (f) of the microwave radiometer 3 it is indicated as the reception intensity p (f) of the microwave radiometer 3, and f indicates the frequency.
  • the water vapor index acquired by the water vapor index acquisition unit 41 is stored in the storage unit 45 as time-series data of the water vapor index.
  • the water vapor index is calculated by p (f) -af 2 , but the calculation formula is not limited to this because it can be considered in various ways.
  • the radio field intensity of 22 GHz is the peak of the water vapor component, and the radio wave intensity changes according to the amount of cloud water at a frequency higher than 22 GHz. Since the radio wave intensity of 22 GHz contains the cloud water component, it should be used to remove it. Just do it. That is, the water vapor index is a second frequency (26.5 GHz) higher than the first frequency (about 22 GHz) from the first value [p (22 GHz)] specified based on the radio field intensity of the first frequency (about 22 GHz). It is a value obtained by subtracting the second value [a (22 GHz) 2 ] specified based on the radio field intensity [p (26.5 GHz)] of.
  • the straight line connecting the radio wave intensities of 17 GHz and 26.5 GHz may be regarded as the cloud water component, and the radio wave intensity of 22 GHz of the straight line may be regarded as the cloud water component and subtracted.
  • FIG. 3 it is adjusted to 26.5 GHz, but it is not always necessary to adjust to 26.5 GHz. This is because it is only necessary to subtract the change in the amount of cloud water and extract only the components of the water vapor spectrum.
  • the inverse problem (radiation transfer equation) may be solved and fitted by using atmospheric simulation software.
  • the blackbody is periodically passed through the reception range of the antenna of the microwave radiometer 3 by an actuator, and the radio wave from the blackbody whose intensity is known and the radio wave from the sky are received. ..
  • the reception intensity p (f) of the microwave radiometer 3 is the radio wave intensity ps (f) from the sky-the radio wave intensity pb (f) from the blackbody.
  • the microwave radiometer 3 is not limited to this, and the mirror may be moved periodically to receive radio waves from the blackbody.
  • the GNSS precipitable water acquisition unit 42 shown in FIG. 1 acquires the GNSS precipitable water amount calculated based on the atmospheric delay (strictly speaking, the tropospheric delay) of the GNSS signal received by the GNSS receiver 2. It is known that the precipitable water vapor (PWV) by GNSS can be calculated based on the GNSS signal, coordinate values such as altitude, temperature, and atmospheric pressure.
  • the GNSS precipitable water acquisition unit 42 acquires the GNSS precipitable water amount using the GNSS signal and altitude information obtained from the GNSS receiver 2 and the temperature and atmospheric pressure obtained from the meteorological sensor 1.
  • the GNSS precipitable water acquired by the GNSS precipitable water acquisition unit 42 is stored in the storage unit 45 as time-series data of the GNSS precipitable water amount.
  • the association data generation unit 43 shown in FIG. 1 associates data between the water vapor index and the GNSS precipitable water amount based on the water vapor index and the GNSS precipitable water amount at a plurality of time points in the predetermined period PT1.
  • Generate D1 (see FIG. 1).
  • the association data D1 may be any format data as long as the water vapor index can be converted into GNSS precipitable water.
  • the association data D1 may be, for example, data representing the GNSS precipitable water amount corresponding to the water vapor index in a table format indicated by a single-row record.
  • the association data D1 is a conversion formula capable of obtaining the GNSS precipitable water amount from the water vapor index.
  • the association data generation unit 43 has a linear function or a quadratic function with respect to the water vapor index and the GNSS precipitable water amount at a plurality of time points (t1, t2, t3, t4, t5, ...) In the predetermined period PT1.
  • an approximate expression such as, the coefficient of the approximate expression is specified and a conversion expression is generated.
  • Coefficients b and c are calculated, and the conversion formula is calculated.
  • the approximate expression (conversion expression) is not limited to the quadratic function, and various expressions can be adopted.
  • the conversion formula as the association data D1 is stored in the storage unit 45.
  • the precipitable water amount calculation unit 44 shown in FIG. 1 calculates the precipitable water amount from the water vapor index obtained based on the microwave radiometer 3 based on the association data D1 generated by the association data generation unit 43.
  • the association data D1 is a conversion formula
  • the precipitable water amount is calculated by substituting the water vapor index acquired by the water vapor index acquisition unit 41 based on the microwave radiometer 3 into the conversion formula D1.
  • the predetermined period PT1 is set to a period before the measurement time point (for example, t6) of the microwave radiometer used for calculating the precipitable water. ing.
  • the association data D1 is generated using the measurement data of the past predetermined period, so that the precipitable water amount can be calculated in real time by the measurement of the microwave radiometer 3.
  • a predetermined period may be set in a period after the measurement time point (for example, t6) of the microwave radiometer 3 used for calculating the precipitable water content.
  • the precipitable water amount cannot be calculated in real time, but it can be used for offline processing.
  • the predetermined period PT1 may be the entire period of the measurement data, but since it is possible to think that the latest data best matches the current situation, the predetermined period PT1 is the measurement of the microwave radiometer 3 used for calculating the precipitable water amount.
  • a sliding window that starts from a certain period (W1) past time based on a time point (for example, t6) and slides as the measurement time point of the microwave radiometer 3 used for calculating precipitable water changes. Is preferable.
  • W1 time width
  • the time width W1 of the predetermined period PT1 is not limited to 3 months, but may be 1 to several tens of months.
  • the meaning of generating the association data D1 based on the measurement data of the predetermined period and converting the water vapor index based on the measurement by the microwave radiometer 3 into the precipitable water amount using the association data D1 will be described.
  • the time-series data of the GNSS precipitable water amount acquired by the GNSS precipitable water amount acquisition unit 42 is the data showing the average value of the water vapor amount in a wide range in the sky, and the accuracy of the value should be trusted. Can be done.
  • the time-series data of the water vapor index acquired by the water vapor index acquisition unit 41 is data showing the amount of water vapor in a local range in the sky, but since it is not calibrated with liquid nitrogen, it tends or fluctuates. Is reliable, but the absolute value is unreliable.
  • the spatial distribution of water vapor is generally gentle, and it can be considered that even a local amount of water vapor is almost the same as the average value of a wide range of water vapor if observed for a long period of time.
  • association data D1 of the water vapor index at a plurality of time points and the GNSS precipitable water amount in a long period (precipitable period PT1) is generated, the association data D1 enlarges or reduces the time series graph of the water vapor index shown in FIG. It is transformed into data for conversion to match the time series graph of GNSS precipitable water with reliability in absolute value. Then, by converting the water vapor index data based on the association data D1, it is possible to obtain data that is fluctuation data in the amount of water vapor in a local range and has reliability in absolute value.
  • an approximate expression as a conversion formula is calculated by fitting the water vapor index at a plurality of time points and the GNSS precipitable water amount, and the precipitable water amount is calculated from the water vapor index based on the conversion formula. It is also possible to use. That is, a learning model for outputting the corresponding precipitable water amount when the water vapor index is input is generated as the associative data D1 by using the water vapor index and the GNSS precipitable water amount at a plurality of time points as training data. It is possible to output the precipitable water amount from the water vapor index using D1.
  • step ST100 the water vapor index acquisition unit 41 acquires the water vapor index calculated based on the radio wave intensities of at least two frequencies among the radio waves received by the microwave radiometer 3.
  • the GNSS precipitable water acquisition unit 42 acquires the GNSS precipitable water amount calculated based on the atmospheric delay of the GNSS signal received by the GNSS receiver 2. Steps ST100 and ST101 are in no particular order.
  • the association data generation unit 43 generates the association data D1 between the water vapor index and the GNSS precipitable water amount based on the water vapor index and the GNSS precipitable water amount at a plurality of time points in the predetermined period PT1.
  • the precipitable water calculation unit 44 calculates the precipitable water amount based on the association data D1 from the water vapor index obtained based on the microwave radiometer 3.
  • the water vapor observation system of this embodiment is A water vapor index acquisition unit 41 that acquires a water vapor index calculated based on the radio wave intensities of at least two frequencies among the radio waves received by the microwave radiometer 3.
  • a GNSS precipitable water acquisition unit 42 that acquires a GNSS precipitable water amount calculated based on the atmospheric delay of the GNSS signal received by the GNSS receiver 2.
  • the association data generation unit 43 that generates the association data D1 between the water vapor index and the GNSS precipitable water based on the water vapor index and the GNSS precipitable water at a plurality of time points in the predetermined period PT1.
  • Precipitable water calculation unit 44 that calculates precipitable water based on the association data D1 from the water vapor index obtained based on the microwave radiometer 3. To be equipped.
  • the water vapor observation method of this embodiment is A method executed by one or more processors. Acquiring a water vapor index calculated based on the radio wave intensity of at least two frequencies among the radio waves received by the microwave radiometer 3 (ST100). Acquiring the GNSS precipitable water amount calculated based on the atmospheric delay of the GNSS signal received by the GNSS receiver 2 (ST101), To generate the correspondence data D1 between the water vapor index and the GNSS precipitable water amount based on the water vapor index and the GNSS precipitable water amount at a plurality of time points in the predetermined period PT1 (ST102). From the water vapor index obtained based on the microwave radiometer 3, the precipitable water amount is calculated based on the association data D1 (ST103). including.
  • the spatial distribution of water vapor is generally gentle, if the water vapor index of the microwave radiometer, which is the measurement result of a local range, is observed for a long time, the difference from the GNSS precipitable water, which is the measurement result of a wide range, The effect can be ignored. Therefore, as described above, if the association data D1 is generated based on the water vapor index at a plurality of time points in the predetermined period PT1 and the GNSS precipitable water amount, the precipitable water amount can be calculated from the water vapor index using the association data D1. Become.
  • the absolute value is the local water vapor data that does not have an absolute value based on the microwave radiometer 3. Can be converted to matching and reliable local water vapor data. Nevertheless, it is possible to obtain reliable data without calibrating the microwave radiometer 3 with liquid nitrogen.
  • the predetermined period PT1 is preferably a period before the measurement time point (for example, t6) of the microwave radiometer 3 used for calculating the precipitable water content.
  • the precipitable water amount can be calculated in real time from the measurement result of the microwave radiometer 3.
  • the predetermined period PT1 starts from a certain time (W1) past time with respect to the measurement time point (for example, t6) of the microwave radiometer 3 used for calculating the precipitable water amount, and the predetermined period PT1 is It is preferable that the microwave radiometer 3 used for calculating the precipitable water has a sliding window that slides as the measurement time point (for example, t6) changes.
  • the predetermined period PT1 is a sliding window
  • the predetermined period PT1 is the latest period, and the correspondence relationship between the water vapor index and the GNSS precipitable water amount is newer than the old data. Even if it changes, it is possible to follow the change and ensure accuracy.
  • the association data D1 is preferably a conversion formula D1 for specifying the GNSS precipitable water amount from the water vapor index.
  • the conversion formula D1 is preferably an approximate formula D1 generated by fitting the water vapor index at a plurality of time points and the GNSS precipitable water amount in the predetermined period PT1.
  • association data D1 can be generated by statistical processing, and implementation becomes easy.
  • the water vapor index has a second frequency (26.5 GHz) higher than the first frequency from the first value [p (22 GHz)] specified based on the radio field intensity of the first frequency (22 GHz). It is preferable that the value is obtained by subtracting the second value [a (22 GHz) 2 ] specified based on the radio field intensity [p (26.5 GHz)].
  • the water vapor index can be calculated in consideration of the amount of cloud water.
  • the program of this embodiment is a program that causes a computer (one or a plurality of processors) to execute the above method. Further, the computer-readable temporary recording medium according to the present embodiment stores the above program.
  • All processes described herein can be embodied and fully automated by software code modules executed by a computing system that includes one or more computers or processors.
  • the code module can be stored on any type of non-transitory computer-readable medium or other computer storage device. Some or all methods may be embodied in dedicated computer hardware.
  • any particular action, event, or function of the algorithms described herein may be performed in different sequences and may be added, merged, or excluded altogether. (For example, not all described actions or events are required to execute the algorithm).
  • operations or events are performed in parallel rather than sequentially, for example through multithreading, interrupt handling, or through multiple processors or processor cores, or on other parallel architectures. Can be done.
  • different tasks or processes can be performed by different machines and / or computing systems that can work together.
  • the various exemplary logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or executed by a machine such as a processor.
  • the processor may be a microprocessor, but instead, the processor may be a controller, a microcontroller, or a state machine, or a combination thereof.
  • the processor can include electrical circuits that are configured to handle computer executable instructions.
  • the processor includes an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable device that performs logical operations without processing computer executable instructions.
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Processors can also be a combination of computing devices, such as a combination of a digital signal processor (digital signal processor) and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a DSP core, or any other of that. It can be implemented as such a configuration. Although described primarily with respect to digital technology herein, the processor may also include primarily analog elements. For example, some or all of the signal processing algorithms described herein can be implemented by analog circuits or mixed analog and digital circuits. Computing environments include, but are not limited to, any type of computer system that is based on a microprocessor, mainframe computer, digital signal processor, portable computing device, device controller, or computing engine within the device. be able to.
  • conditional languages such as “can,” “can,” “will,” or “may” include other features, elements, and / or steps in a particular embodiment. Embodiments are understood in the context commonly used to convey that they do not include. Thus, such conditional languages are generally any method in which features, elements and / or steps are required for one or more embodiments, or one or more embodiments are these features. It does not mean that the elements and / or steps are included in any particular embodiment or necessarily include logic to determine whether they are performed.
  • Disjunctive languages such as the phrase "at least one of X, Y, Z" have items, terms, etc. of X, Y, Z, or any combination thereof, unless otherwise stated. It is understood in the context commonly used to indicate that it can be (eg X, Y, Z). Thus, such a disjunctive language generally requires at least one of X, at least one of Y, or at least one of Z, each of which has a particular embodiment. Does not mean.
  • a numeral such as “one” should generally be construed as containing one or more described items.
  • terms such as “one device configured to” are intended to include one or more listed devices.
  • One or more of such enumerated devices can also be collectively configured to perform the described citations.
  • processors configured to run A, B, and C below are a first processor configured to run A and a second processor configured to run B and C.
  • processors with are typically at least the enumerated number (eg, other modifiers).
  • a mere enumeration of "two enumerations” without the use should be interpreted to mean at least two enumerations, or two or more enumerations).
  • the terms used herein should generally be construed as “non-limiting” terms (eg, the term “including” should be construed as “not only that, but at least including” and “...
  • the term “has” should be interpreted as “having at least”, and the term “including” should be interpreted as “including, but not limited to,”). Those skilled in the art will judge that this is the case.
  • the term “horizontal” as used herein refers to a plane or plane parallel to the floor or surface of the area in which the system being described is used, regardless of its orientation. The method to be done is defined as the plane on which it is carried out.
  • the term “floor” can be replaced with the term “ground” or “water surface”.
  • the term “vertical / vertical” refers to the direction perpendicular / vertical to the defined horizon. Terms such as “upper”, “lower”, “lower”, “upper”, “side”, “higher”, “lower”, “upper”, “beyond”, and “lower” are defined for the horizontal plane. ing.
  • connection means removable, movable, fixed, adjustable, unless otherwise noted. And / or should be construed as including removable connections or connections. Connections / connections include direct connections and / or connections with intermediate structures between the two components described.
  • the numbers preceded by terms such as “approximately,” “about,” and “substantially” as used herein include the enumerated numbers, and further. Represents an amount close to the stated amount that performs the desired function or achieves the desired result. For example, “approximately,” “about,” and “substantially” mean values less than 10% of the stated values, unless otherwise stated.
  • the features of the embodiments in which terms such as “approximately,” “about,” and “substantially” are previously disclosed perform further desired functions. Or represent a feature that has some variability to achieve the desired result for that feature.

Abstract

【課題】液体窒素を用いたキャリブレーションを不要とし、且つ局所的な範囲の水蒸気を観測可能な水蒸気観測システムを提供する。 【解決手段】マイクロ波放射計3が受信した電波のうち、少なくとも2つの周波数の電波強度に基づいて算出される水蒸気指標を取得する水蒸気指標取得部41と、GNSS受信機2が受信したGNSS信号の大気遅延に基づいて算出されるGNSS可降水量を取得するGNSS可降水量取得部42と、所定期間PT1における複数時点の水蒸気指標とGNSS可降水量とに基づいて、水蒸気指標とGNSS可降水量との対応付けデータD1を生成する対応付けデータ生成部43と、マイクロ波放射計3に基づき得られる水蒸気指標から、対応付けデータD1に基づいて可降水量を算出する可降水量算出部44と、を有する。

Description

水蒸気観測システム及び水蒸気観測方法
 本開示は、水蒸気観測システム及び水蒸気観測方法に関する。
 水蒸気観測には、GNSS受信機、マイクロ波放射計などを用いることが知られている。
 GNSS受信機による水蒸気観察は、衛星から放射される多周波数の電波を利用する。2つ以上の異なる周波数の電波であって4つ以上の衛星から放射された電波を受信できれば、電波の遅延量を捉えることができる。電波の遅延量は、水蒸気量に対応しており、水蒸気量を観測可能となる。GNSS(Global Navigation Satellite System;全球測位衛星システム)を用いた水蒸気観測は、キャリブレーションレスで安定して計測することができる。しかし、GNSSにより全天の様々に配置されている衛星を使用するため、上空の広範囲の水蒸気の平均値を得ることができるが、局所的な範囲の水蒸気を観測することができない。なお、特許文献1には、GNSSによる水蒸気観測について記載されている。
 マイクロ波放射計による水蒸気観測は、大気中の水蒸気から電波が放射されることを利用しており、水蒸気や雲からの電波を計測する。受信機のアンテナやホーンの指向性によりGNSSによる水蒸気観測に比べて上空の局所的な範囲の水蒸気を計測することができる。しかし、機器のドリフトの防止および正しい輝度温度を計測するために定期的に液体窒素を用いたキャリブレーションが必要となる。液体窒素は運搬や取り扱いが困難である。なお、特許文献2には、マイクロ波放射計についての記載がある。
特開2010-60444号公報 米国特許出願公開第2014/0035779号明細書
 本開示の目的は、液体窒素を用いたキャリブレーションを不要とし、且つ局所的な範囲の水蒸気を観測可能な水蒸気観測システム及び方法を提供することである。
 本開示の水蒸気観測計は、
 マイクロ波放射計が受信した電波のうち、少なくとも2つの周波数の電波強度に基づいて算出される水蒸気指標を取得する水蒸気指標取得部と、
 GNSS受信機が受信したGNSS信号の大気遅延に基づいて算出されるGNSS可降水量を取得するGNSS可降水量取得部と、
 所定期間における複数時点の前記水蒸気指標と前記GNSS可降水量とに基づいて、前記水蒸気指標と前記GNSS可降水量との対応付けデータを生成する対応付けデータ生成部と、
 前記マイクロ波放射計に基づき得られる前記水蒸気指標から、前記対応付けデータに基づいて可降水量を算出する可降水量算出部と、
 を備える。
 水蒸気の空間分布は一般的になだらかであるので、局所的な範囲の計測結果であるマイクロ波放射計の水蒸気指標でも長時間観測すれば、広範囲の計測結果であるGNSS可降水量との差の影響を無視できる。よって、上記のように、所定期間における複数時点の水蒸気指標とGNSS可降水量とに基づき対応付けデータを生成すれば、対応付けデータを用いて水蒸気指標から可降水量を算出可能となる。キャリブレーションが不要なGNSS可降水量にマイクロ波放射計に基づく水蒸気指標を対応付けているので、マイクロ波放射計に基づく絶対値があっていない局所的な水蒸気のデータを、絶対値が合致している信頼性のある局所的な水蒸気データに変換できる。それでいて、マイクロ波放射計の液体窒素によるキャリブレーションをしなくても、信頼性のあるデータを得ることが可能となる。
一実施形態に係る水蒸気観測システムの構成を示すブロック図 水蒸気観測システムが実行する処理を示すフローチャート マイクロ波放射計が受信する電波強度の周波数スペクトラムを示す図 GNSS可降水量の時系列データ、水蒸気指標の時系列データ、及び、GNSS可降水量と水蒸気指標を対応付けた対応付けデータを示す図
 以下、本開示の一実施形態を、図面を参照して説明する。
 図1は、本実施形態の水蒸気観測システムの構成を示す図である。
 図1に示すように、水蒸気観測システムは、水蒸気指標取得部41と、GNSS可降水量取得部42と、対応付けデータ生成部43と、可降水量算出部44と、を有する。
 図1に示す水蒸気指標取得部41は、マイクロ波放射計3が受信した電波のうち、少なくとも2つの周波数の電波強度に基づいて算出される水蒸気指標を取得する。水蒸気指標の算出方法は種々の方法があると考えられるが、本実施形態では、図3に示すように、上空の水蒸気及び雲水から放射される電波の強度のピークが22GHzであることを利用する。22GHzの電波に含まれる雲水量を除去するために、26.5GHzの電波強度に基づき22GHzにおける雲水量を算出する雲水量算出部40を設けている。22GHzの電波強度から、22GHzにおける雲水量を差し引くことにより水蒸気指標を算出する。本実施形態では、マイクロ波放射計3の受信強度p(f)と示し、fは周波数を示す。図3に示すように、26.5GHzの受信強度p(26.5GHz)に基づき、雲水量のモデルafを生成する。すなわち、p(26.5GHz)=afとなるように、定数aを決定する。水蒸気指標は、p(f)-af=p(22GHz)-a(22GHz)で算出する。水蒸気指標取得部41が取得した水蒸気指標は、記憶部45に水蒸気指標の時系列データとして記憶される。
 本実施形態において水蒸気指標は、p(f)-afで算出しているが、算出式は、種々考えられるため、これに限定されない。22GHzの電波強度が水蒸気成分のピークであり、22GHzよりも大きな周波数において雲水量に応じて電波強度が変化し、22GHzの電波強度には、雲水成分が含まれるのでこれを除去することを利用すればよい。すなわち、水蒸気指標は、第1周波数(約22GHz)の電波強度に基づき特定される第1値[p(22GHz)]から、第1周波数(約22GHz)よりも高い第2周波数(26.5GHz)の電波強度[p(26.5GHz)]に基づき特定される第2値[a(22GHz)]を引いた値である。
 上記以外の算出方法には、例えば、17GHzと26.5GHzの電波強度を結ぶ直線を雲水成分とみなし、当該直線の22GHzの電波強度を雲水成分とみなして引き算をしてもよい。図3では、26.5GHzに合わせているが、必ずしも26.5GHzに合わせる必要はない。雲水量の変化を引き算し、水蒸気スペクトルの成分のみを取り出せればよいからである。また、他の算出方法として、大気シミュレーションソフトを用いて逆問題(放射伝達方程式)を解いてフィッティングしてもよい。なお、本実施形態では、マイクロ波放射計3のアンテナの受信範囲に黒体をアクチュエータで定期的に通過させ、強度が既知である黒体からの電波と、上空からの電波を受信している。マイクロ波放射計3の受信強度p(f)は、上空からの電波強度ps(f)-黒体からの電波強度pb(f)である。勿論、マイクロ波放射計3はこれに限定されず、ミラーを定期的に動かして、黒体からの電波を受信するようにしてもよい。
 図1に示すGNSS可降水量取得部42は、GNSS受信機2が受信したGNSS信号の大気遅延(厳密には対流圏遅延である)に基づいて算出されるGNSS可降水量を取得する。GNSSによる可降水量(PWV;Precipitable Water Vapor)は、GNSS信号、高度などの座標値、気温、気圧に基づき算出可能であることが知られている。GNSS可降水量取得部42は、GNSS受信機2から得られるGNSS信号及び高度情報、気象センサ1から得られる気温及び気圧を用いてGNSS可降水量を取得する。GNSS可降水量取得部42が取得したGNSS可降水量は、記憶部45にGNSS可降水量の時系列データとして記憶される。
 図1に示す対応付けデータ生成部43は、図4に示すように、所定期間PT1における複数時点の水蒸気指標とGNSS可降水量とに基づいて、水蒸気指標とGNSS可降水量との対応付けデータD1(図1参照)を生成する。対応付けデータD1は、水蒸気指標をGNSS可降水量に変換することができれば、どのような形式のデータでもよい。対応付けデータD1として、例えば、水蒸気指標と対応するGNSS可降水量を1行のレコードで示すテーブル形式で表すデータでもよい。本実施形態では、対応付けデータD1は、水蒸気指標からGNSS可降水量を得ることができる変換式である。本実施形態では、対応付けデータ生成部43は、所定期間PT1における複数時点(t1、t2、t3、t4、t5、…)の水蒸気指標及びGNSS可降水量に対して、一次関数や二次関数などの近似式をフィッティングすることで、近似式の係数を特定し、変換式を生成する。本実施形態では、図4に示すように、二次関数の近似式D1[GNSS可降水量=b(水蒸気指標)+c]を所定期間PT1における複数時点のデータに最小二乗法でフィッティングして、係数b、cを算出し、変換式を算出している。近似式(変換式)は、二次関数に限定されず、種々の式が採用可能である。対応付けデータD1としての変換式は記憶部45に記憶される。
 図1に示す可降水量算出部44は、対応付けデータ生成部43が生成した対応付けデータD1に基づき、マイクロ波放射計3に基づき得られる水蒸気指標から可降水量を算出する。本実施形態では、対応付けデータD1は変換式であるので、マイクロ波放射計3に基づき水蒸気指標取得部41が取得した水蒸気指標を変換式D1に代入することで、可降水量を算出する。本実施形態では、リアルタイムで可降水量の算出を可能にするために、所定期間PT1を、可降水量の算出に用いるマイクロ波放射計の計測時点(例えばt6)よりも前の期間に設定している。これにより、過去の所定期間の計測データを用いて対応付けデータD1を生成するので、マイクロ波放射計3の計測によりリアルタイムで可降水量を算出可能となる。勿論、可降水量の算出に用いるマイクロ波放射計3の計測時点(例えばt6)よりも後の期間に所定期間を設定してもよい。この場合には、リアルタイムでの可降水量の算出ができないが、オフライン処理に用いることが可能である。
 所定期間PT1について計測データの全期間としてもよいが、直近のデータが現状に最も合致しているという考え方もできることから、所定期間PT1は、可降水量の算出に用いるマイクロ波放射計3の計測時点(例えばt6)を基準として一定期間(W1)過去の時点から開始し、所定期間PT1は、可降水量の算出に用いるマイクロ波放射計3の計測時点が変化するにつれてスライドするスライディングウインドウであることが好ましい。このように、所定期間PT1がスライディングウインドウであれば、所定期間PT1が直近の期間となり、水蒸気指標とGNSS可降水量の対応関係について、古いデータよりも新しいデータが利用されるので、対応関係が変化したとしても、変化に追従して精度を確保することが可能となる。本実施形態として、所定期間PT1の時間幅W1は、3カ月であるが、これに限定されず、1~数十カ月でもよい。
 上記のように、所定期間の計測データに基づき対応付けデータD1を生成し、対応付けデータD1を用いて、マイクロ波放射計3での計測に基づく水蒸気指標から可降水量に変換する意味について説明する。図4に示すように、GNSS可降水量取得部42が取得するGNSS可降水量の時系列データは、上空の広範囲の水蒸気量の平均値を示すデータであり、その値の精度を信頼することができる。これに対して、水蒸気指標取得部41が取得する水蒸気指標の時系列データは、上空の局所的な範囲の水蒸気量を示すデータであるが、液体窒素によるキャリブレーションをしていないので傾向や変動については信頼できるが、絶対値に信頼性がない。水蒸気の空間分布が一般的になだらかであり、局所的な範囲の水蒸気量でも長期間観測すれば、広範囲の水蒸気量の平均値とほぼ一致すると考えることができる。そこで、長期間(所定期間PT1)における複数時点の水蒸気指標とGNSS可降水量の対応付けデータD1を生成すれば、対応付けデータD1は、図4に示す水蒸気指標の時系列グラフを拡大又は縮小して変形し、絶対値に信頼性を有するGNSS可降水量の時系列グラフに合致させるための変換用のデータとなる。そして、対応付けデータD1に基づき水蒸気指標のデータを変換すれば、局所的な範囲の水蒸気量の変動データであって且つ絶対値に信頼性を有するデータを得ることができる。
 なお、本実施形態では、複数時点の水蒸気指標とGNSS可降水量とに対するフィッティングにより変換式としての近似式を算出し、変換式に基づき水蒸気指標から可降水量を算出しているが、機械学習を用いることも可能である。すなわち、複数時点の水蒸気指標とGNSS可降水量とを学習データとして、水蒸気指標が入力されれば対応する可降水量を出力するための学習モデルを、対応付けデータD1として生成し、対応付けデータD1を用いて水蒸気指標から可降水量を出力することが挙げられる。
 上記システムの動作について図2を用いて説明する。ステップST100において、水蒸気指標取得部41は、マイクロ波放射計3が受信した電波のうち、少なくとも2つの周波数の電波強度に基づいて算出される水蒸気指標を取得する。次のステップST101において、GNSS可降水量取得部42は、GNSS受信機2が受信したGNSS信号の大気遅延に基づいて算出されるGNSS可降水量を取得する。ステップST100とST101は順不同である。次のステップST102において、対応付けデータ生成部43は、所定期間PT1における複数時点の水蒸気指標とGNSS可降水量とに基づいて、水蒸気指標とGNSS可降水量との対応付けデータD1を生成する。次にステップST103において、可降水量算出部44は、マイクロ波放射計3に基づき得られる水蒸気指標から、対応付けデータD1に基づいて可降水量を算出する。
 以上のように、本実施形態の水蒸気観測システムは、
 マイクロ波放射計3が受信した電波のうち、少なくとも2つの周波数の電波強度に基づいて算出される水蒸気指標を取得する水蒸気指標取得部41と、
 GNSS受信機2が受信したGNSS信号の大気遅延に基づいて算出されるGNSS可降水量を取得するGNSS可降水量取得部42と、
 所定期間PT1における複数時点の水蒸気指標とGNSS可降水量とに基づいて、水蒸気指標とGNSS可降水量との対応付けデータD1を生成する対応付けデータ生成部43と、
 マイクロ波放射計3に基づき得られる水蒸気指標から、対応付けデータD1に基づいて可降水量を算出する可降水量算出部44と、
 を備える。
 本実施形態の水蒸気観測方法は、
 1又は複数のプロセッサが実行する方法であって、
 マイクロ波放射計3が受信した電波のうち、少なくとも2つの周波数の電波強度に基づいて算出される水蒸気指標を取得することと(ST100)、
 GNSS受信機2が受信したGNSS信号の大気遅延に基づいて算出されるGNSS可降水量を取得することと(ST101)、
 所定期間PT1における複数時点の水蒸気指標とGNSS可降水量とに基づいて、水蒸気指標とGNSS可降水量との対応付けデータD1を生成することと(ST102)、
 マイクロ波放射計3に基づき得られる水蒸気指標から、対応付けデータD1に基づいて可降水量を算出することと(ST103)、
 を含む。
 水蒸気の空間分布は一般的になだらかであるので、局所的な範囲の計測結果であるマイクロ波放射計の水蒸気指標でも長時間観測すれば、広範囲の計測結果であるGNSS可降水量との差の影響を無視できる。よって、上記のように、所定期間PT1における複数時点の水蒸気指標とGNSS可降水量とに基づき対応付けデータD1を生成すれば、対応付けデータD1を用いて水蒸気指標から可降水量を算出可能となる。キャリブレーションが不要なGNSS可降水量にマイクロ波放射計3に基づく水蒸気指標を対応付けているので、マイクロ波放射計3に基づく絶対値があっていない局所的な水蒸気のデータを、絶対値が合致している信頼性のある局所的な水蒸気データに変換できる。それでいて、マイクロ波放射計3の液体窒素によるキャリブレーションをしなくても、信頼性のあるデータを得ることが可能となる。
 本実施形態のように、所定期間PT1は、可降水量の算出に用いるマイクロ波放射計3の計測時点(例えばt6)よりも前の期間であることが好ましい。
 このようにすれば、過去の所定期間PT1の計測データを用いて対応付けデータD1を生成するので、マイクロ波放射計3の計測結果からリアルタイムで可降水量を算出可能となる。
 本実施形態のように、所定期間PT1は、可降水量の算出に用いるマイクロ波放射計3の計測時点(例えばt6)を基準として一定時間(W1)過去の時点から開始し、所定期間PT1は、可降水量の算出に用いるマイクロ波放射計3の計測時点(例えばt6)が変化するにつれてスライドするスライディングウインドウであることが好ましい。
 このように、所定期間PT1がスライディングウインドウであれば、所定期間PT1が直近の期間となり、水蒸気指標とGNSS可降水量の対応関係について、古いデータよりも新しいデータが利用されるので、対応関係が変化したとしても、変化に追従して精度を確保することが可能となる。
 本実施形態のように、対応付けデータD1は、水蒸気指標からGNSS可降水量を特定するための変換式D1であることが好ましい。
 この構成であれば、水蒸気指標からGNSS可降水量を算出することが容易となる。
 本実施形態のように、変換式D1は、所定期間PT1における複数時点の水蒸気指標及びGNSS可降水量のフィッティングにより生成された近似式D1であることが好ましい。
 このようにすれば、対応付けデータD1は、統計的処理により生成することができ、実装が容易となる。
 本実施形態のように、水蒸気指標は、第1周波数(22GHz)の電波強度に基づき特定される第1値[p(22GHz)]から、第1周波数よりも高い第2周波数(26.5GHz)の電波強度[p(26.5GHz)]に基づき特定される第2値[a(22GHz)]を引いた値であることが好ましい。
 このようにすれば、雲水量を考慮して水蒸気指標を算出可能となる。
 本実施形態のプログラムは、上記方法をコンピュータ(1又は複数のプロセッサ)に実行させるプログラムである。また、本実施形態に係るコンピュータに読み取り可能な一時記録媒体は、上記プログラムを記憶している。
 以上、本開示の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本開示の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。
 各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本開示の趣旨を逸脱しない範囲で種々変形が可能である。
 41 水蒸気指標取得部
 42 GNSS可降水量取得部
 43 対応付けデータ生成部
 44 可降水量算出部
 D1 対応付けデータ
用語
 必ずしも全ての目的または効果・利点が、本明細書中に記載される任意の特定の実施形態に則って達成され得るわけではない。従って、例えば当業者であれば、特定の実施形態は、本明細書中で教示または示唆されるような他の目的または効果・利点を必ずしも達成することなく、本明細書中で教示されるような1つまたは複数の効果・利点を達成または最適化するように動作するように構成され得ることを想到するであろう。
 本明細書中に記載される全ての処理は、1つまたは複数のコンピュータまたはプロセッサを含むコンピューティングシステムによって実行されるソフトウェアコードモジュールにより具現化され、完全に自動化され得る。コードモジュールは、任意のタイプの非一時的なコンピュータ可読媒体または他のコンピュータ記憶装置に記憶することができる。一部または全ての方法は、専用のコンピュータハードウェアで具現化され得る。
 本明細書中に記載されるもの以外でも、多くの他の変形例があることは、本開示から明らかである。例えば、実施形態に応じて、本明細書中に記載されるアルゴリズムのいずれかの特定の動作、イベント、または機能は、異なるシーケンスで実行することができ、追加、併合、または完全に除外することができる (例えば、記述された全ての行為または事象がアルゴリズムの実行に必要というわけではない)。さらに、特定の実施形態では、動作またはイベントは、例えば、マルチスレッド処理、割り込み処理、または複数のプロセッサまたはプロセッサコアを介して、または他の並列アーキテクチャ上で、逐次ではなく、並列に実行することができる。さらに、異なるタスクまたはプロセスは、一緒に機能し得る異なるマシンおよび/またはコンピューティングシステムによっても実行され得る。
 本明細書中に開示された実施形態に関連して説明された様々な例示的論理ブロックおよびモジュールは、プロセッサなどのマシンによって実施または実行することができる。プロセッサは、マイクロプロセッサであってもよいが、代替的に、プロセッサは、コントローラ、マイクロコントローラ、またはステートマシン、またはそれらの組み合わせなどであってもよい。プロセッサは、コンピュータ実行可能命令を処理するように構成された電気回路を含むことができる。別の実施形態では、プロセッサは、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはコンピュータ実行可能命令を処理することなく論理演算を実行する他のプログラマブルデバイスを含む。プロセッサはまた、コンピューティングデバイスの組み合わせ、例えば、デジタル信号プロセッサ(デジタル信号処理装置)とマイクロプロセッサの組み合わせ、複数のマイクロプロセッサ、DSPコアと組み合わせた1つ以上のマイクロプロセッサ、または任意の他のそのような構成として実装することができる。本明細書中では、主にデジタル技術に関して説明するが、プロセッサは、主にアナログ素子を含むこともできる。例えば、本明細書中に記載される信号処理アルゴリズムの一部または全部は、アナログ回路またはアナログとデジタルの混合回路により実装することができる。コンピューティング環境は、マイクロプロセッサ、メインフレームコンピュータ、デジタル信号プロセッサ、ポータブルコンピューティングデバイス、デバイスコントローラ、または装置内の計算エンジンに基づくコンピュータシステムを含むが、これらに限定されない任意のタイプのコンピュータシステムを含むことができる。
 特に明記しない限り、「できる」「できた」「だろう」または「可能性がある」などの条件付き言語は、特定の実施形態が特定の特徴、要素および/またはステップを含むが、他の実施形態は含まないことを伝達するために一般に使用される文脈内での意味で理解される。従って、このような条件付き言語は、一般に、特徴、要素および/またはステップが1つ以上の実施形態に必要とされる任意の方法であること、または1つ以上の実施形態が、これらの特徴、要素および/またはステップが任意の特定の実施形態に含まれるか、または実行されるかどうかを決定するための論理を必然的に含むことを意味するという訳ではない。
 語句「X、Y、Zの少なくとも1つ」のような選言的言語は、特に別段の記載がない限り、項目、用語等が X, Y, Z、のいずれか、又はそれらの任意の組み合わせであり得ることを示すために一般的に使用されている文脈で理解される(例: X、Y、Z)。従って、このような選言的言語は、一般的には、特定の実施形態がそれぞれ存在するXの少なくとも1つ、Yの少なくとも1つ、またはZの少なくとも1つ、の各々を必要とすることを意味するものではない。
 本明細書中に記載されかつ/または添付の図面に示されたフロー図における任意のプロセス記述、要素またはブロックは、プロセスにおける特定の論理機能または要素を実装するための1つ以上の実行可能命令を含む、潜在的にモジュール、セグメント、またはコードの一部を表すものとして理解されるべきである。代替の実施形態は、本明細書中に記載された実施形態の範囲内に含まれ、ここでは、要素または機能は、当業者に理解されるように、関連する機能性に応じて、実質的に同時にまたは逆の順序で、図示または説明されたものから削除、順不同で実行され得る。
 特に明示されていない限り、「一つ」のような数詞は、一般的に、1つ以上の記述された項目を含むと解釈されるべきである。従って、「~するように設定された一つのデバイス」などの語句は、1つ以上の列挙されたデバイスを含むことを意図している。このような1つまたは複数の列挙されたデバイスは、記載された引用を実行するように集合的に構成することもできる。例えば、「以下のA、BおよびCを実行するように構成されたプロセッサ」は、Aを実行するように構成された第1のプロセッサと、BおよびCを実行するように構成された第2のプロセッサとを含むことができる。加えて、導入された実施例の具体的な数の列挙が明示的に列挙されたとしても、当業者は、このような列挙が典型的には少なくとも列挙された数(例えば、他の修飾語を用いない「2つの列挙と」の単なる列挙は、通常、少なくとも2つの列挙、または2つ以上の列挙を意味する)を意味すると解釈されるべきである。
 一般に、本明細書中で使用される用語は、一般に、「非限定」用語(例えば、「~を含む」という用語は「それだけでなく、少なくとも~を含む」と解釈すべきであり、「~を持つ」という用語は「少なくとも~を持っている」と解釈すべきであり、「含む」という用語は「以下を含むが、これらに限定されない。」などと解釈すべきである。) を意図していると、当業者には判断される。
 説明の目的のために、本明細書中で使用される「水平」という用語は、その方向に関係なく、説明されるシステムが使用される領域の床の平面または表面に平行な平面、または説明される方法が実施される平面として定義される。「床」という用語は、「地面」または「水面」という用語と置き換えることができる。「垂直/鉛直」という用語は、定義された水平線に垂直/鉛直な方向を指します。「上側」「下側」「下」「上」「側面」「より高く」「より低く」「上の方に」「~を越えて」「下の」などの用語は水平面に対して定義されている。
 本明細書中で使用される用語の「付着する」、「接続する」、「対になる」及び他の関連用語は、別段の注記がない限り、取り外し可能、移動可能、固定、調節可能、及び/または、取り外し可能な接続または連結を含むと解釈されるべきである。接続/連結は、直接接続及び/または説明した2つの構成要素間の中間構造を有する接続を含む。
 特に明示されていない限り、本明細書中で使用される、「およそ」、「約」、および「実質的に」のような用語が先行する数は、列挙された数を含み、また、さらに所望の機能を実行するか、または所望の結果を達成する、記載された量に近い量を表す。例えば、「およそ」、「約」及び「実質的に」とは、特に明示されていない限り、記載された数値の10%未満の値をいう。本明細書中で使用されているように、「およそ」、「約」、および「実質的に」などの用語が先行して開示されている実施形態の特徴は、さらに所望の機能を実行するか、またはその特徴について所望の結果を達成するいくつかの可変性を有する特徴を表す。
 上述した実施形態には、多くの変形例および修正例を加えることができ、それらの要素は、他の許容可能な例の中にあるものとして理解されるべきである。そのような全ての修正および変形は、本開示の範囲内に含まれることを意図し、以下の請求の範囲によって保護される。

Claims (15)

  1.  マイクロ波放射計が受信した電波のうち、少なくとも2つの周波数の電波強度に基づいて算出される水蒸気指標を取得する水蒸気指標取得部と、
     GNSS受信機が受信したGNSS信号の大気遅延に基づいて算出されるGNSS可降水量を取得するGNSS可降水量取得部と、
     所定期間における複数時点の前記水蒸気指標と前記GNSS可降水量とに基づいて、前記水蒸気指標と前記GNSS可降水量との対応付けデータを生成する対応付けデータ生成部と、
     前記マイクロ波放射計に基づき得られる前記水蒸気指標から、前記対応付けデータに基づいて可降水量を算出する可降水量算出部と、
     を備える、水蒸気観測システム。
  2.  請求項1に記載のシステムであって、
     前記所定期間は、前記可降水量の算出に用いるマイクロ波放射計の計測時点よりも前の期間である、水蒸気観測システム。
  3.  請求項1又は請求項2に記載のシステムであって、
     前記所定期間は、前記可降水量の算出に用いるマイクロ波放射計の計測時点を基準として一定時間過去の時点から開始し、
     前記所定期間は、前記可降水量の算出に用いるマイクロ波放射計の計測時点が変化するにつれてスライドするスライディングウインドウである、水蒸気観測システム。
  4.  請求項1乃至請求項3のいずれか一項に記載のシステムであって、
     前記対応付けデータは、水蒸気指標からGNSS可降水量を特定するための変換式である、水蒸気観測システム。
  5.  請求項4に記載のシステムであって、
     前記変換式は、前記所定期間における複数時点の前記水蒸気指標及びGNSS可降水量のフィッティングにより生成された近似式である、水蒸気観測システム。
  6.  請求項1乃至請求項5のいずれか一項に記載のシステムであって、
     前記水蒸気指標は、第1周波数の電波強度に基づき特定される第1値から、第1周波数よりも高い第2周波数の電波強度に基づき特定される第2値を引いた値である、水蒸気観測システム。
  7.  請求項6に記載のシステムであって、
     前記第1値は、前記電波のうち、前記第1周波数の電波強度で、
     前記第2値は、少なくとも前記第2周波数の電波強度を通る関数における前記第1周波数の電波強度である、水蒸気観測システム。
  8.  マイクロ波放射計が受信した電波のうち、少なくとも2つの周波数の電波強度に基づいて算出される水蒸気指標を取得することと、
     GNSS受信機が受信したGNSS信号の大気遅延に基づいて算出されるGNSS可降水量を取得することと、
     所定期間における複数時点の前記水蒸気指標と前記GNSS可降水量とに基づいて、前記水蒸気指標と前記GNSS可降水量との対応付けデータを生成することと、
     前記マイクロ波放射計に基づき得られる前記水蒸気指標から、前記対応付けデータに基づいて可降水量を算出することと、
     を含む、水蒸気観測方法。
  9.  請求項8に記載の方法であって、
     前記所定期間は、前記可降水量の算出に用いるマイクロ波放射計の計測時点よりも前の期間である、水蒸気観測方法。
  10.  請求項8又は請求項9に記載の方法であって、
     前記所定期間は、前記可降水量の算出に用いるマイクロ波放射計の計測時点を基準として一定時間過去の時点から開始し、
     前記所定期間は、前記可降水量の算出に用いるマイクロ波放射計の計測時点が変化するにつれてスライドするスライディングウインドウである、水蒸気観測方法。
  11.  請求項8乃至請求項10のいずれか一項に記載の方法であって、
     前記対応付けデータは、水蒸気指標からGNSS可降水量を特定するための変換式である、水蒸気観測方法。
  12.  請求項11に記載の方法であって、
     前記変換式は、前記所定期間における複数時点の前記水蒸気指標及びGNSS可降水量のフィッティングにより生成された近似式である、水蒸気観測方法。
  13.  請求項8乃至請求項12のいずれか一項に記載の方法であって、
     前記水蒸気指標は、第1周波数の電波強度に基づき特定される第1値から、第1周波数よりも高い第2周波数の電波強度に基づき特定される第2値を引いた値である、水蒸気観測方法。
  14.  請求項13に記載の方法であって、
     前記第1値は、前記電波のうち、前記第1周波数の電波強度で、
     前記第2値は、少なくとも前記第2周波数の電波強度を通る関数における前記第1周波数の電波強度である、水蒸気観測方法。
  15.  請求項8乃至請求項14のいずれか一項に記載の方法を1又は複数のプロセッサに実行させるプログラム。
PCT/JP2020/016415 2019-05-13 2020-04-14 水蒸気観測システム及び水蒸気観測方法 WO2020230501A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080035452.7A CN113811795A (zh) 2019-05-13 2020-04-14 水蒸气观测系统及水蒸气观测方法
JP2021519310A JP7280947B2 (ja) 2019-05-13 2020-04-14 水蒸気観測システム及び水蒸気観測方法
EP20806625.8A EP3971618B1 (en) 2019-05-13 2020-04-14 Water vapor observation system and water vapor observation method
US17/452,716 US11662471B2 (en) 2019-05-13 2021-10-28 Water vapor observation device and water vapor observation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019090397 2019-05-13
JP2019-090397 2019-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/452,716 Continuation US11662471B2 (en) 2019-05-13 2021-10-28 Water vapor observation device and water vapor observation method

Publications (1)

Publication Number Publication Date
WO2020230501A1 true WO2020230501A1 (ja) 2020-11-19

Family

ID=73289003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016415 WO2020230501A1 (ja) 2019-05-13 2020-04-14 水蒸気観測システム及び水蒸気観測方法

Country Status (5)

Country Link
US (1) US11662471B2 (ja)
EP (1) EP3971618B1 (ja)
JP (1) JP7280947B2 (ja)
CN (1) CN113811795A (ja)
WO (1) WO2020230501A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014229A1 (ja) * 2020-07-14 2022-01-20 古野電気株式会社 可降水量推定モデルの学習システム、可降水量推定システム、方法及びプログラム
US20220050212A1 (en) * 2019-05-13 2022-02-17 Furuno Electric Co., Ltd. Water vapor observation device and water vapor observation method
JP7127927B1 (ja) * 2022-03-15 2022-08-30 日本電気株式会社 水蒸気観測方法
WO2022196168A1 (ja) * 2021-03-15 2022-09-22 日本電気株式会社 水蒸気観測方法
WO2022239417A1 (ja) * 2021-05-11 2022-11-17 古野電気株式会社 学習モデルの生成方法、コンピュータプログラム、マイクロ波放射計及び推定方法
WO2022239416A1 (ja) * 2021-05-11 2022-11-17 古野電気株式会社 学習モデルの生成方法、コンピュータプログラム、推定方法及び推定装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114357770B (zh) * 2022-01-04 2022-10-11 中南大学 一种对流层层析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014939A (ja) * 2006-06-07 2008-01-24 Eko Instruments Trading Co Ltd 日射計測システム、日射計測用のプログラム
JP2010060444A (ja) 2008-09-04 2010-03-18 Japan Weather Association 降水予測システム、方法及びプログラム
US20140035779A1 (en) 2012-07-31 2014-02-06 Radiometrics Corporation Highly accurate calibration of microwave radiometry devices
JP2017207459A (ja) * 2016-05-22 2017-11-24 淳一 古本 大気関連量導出装置、大気関連量導出プログラム、および大気関連量導出方法
CN108416031A (zh) * 2018-03-12 2018-08-17 南京恩瑞特实业有限公司 Nriet气象多源探测资料融合分析系统
JP2019015517A (ja) * 2017-07-03 2019-01-31 株式会社東芝 日射強度推定装置、日射強度推定システム及び日射強度推定方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6067852A (en) * 1997-08-26 2000-05-30 University Corporation For Atmospheric Research Method and apparatus using slant-path water delay estimates to correct global positioning satellite survey error
US9091757B2 (en) * 2008-08-19 2015-07-28 Trimble Navigation Limited GNSS atmospheric estimation with federated ionospheric filter
WO2012157140A1 (ja) * 2011-05-16 2012-11-22 古野電気株式会社 妨害波信号除去装置、gnss受信装置、移動端末、妨害波信号除去プログラム、および妨害波信号除去方法
JP6351054B2 (ja) * 2011-08-01 2018-07-04 高橋 正人 方位情報取得方法
JP6253360B2 (ja) * 2013-02-13 2017-12-27 キヤノン株式会社 被検体情報取得装置、被検体情報取得方法、及びプログラム
CN103323888B (zh) * 2013-04-24 2015-06-17 东南大学 Gnss大气探测数据中对流层延迟误差的消除方法
CN104793216A (zh) * 2014-01-22 2015-07-22 中国科学院空间科学与应用研究中心 一种基于气象探测的地基多通道微波辐射计
KR20180044537A (ko) * 2016-10-24 2018-05-03 대한민국(기상청장) 에어로졸, 구름 및 강우 통합 관측 시스템 및 방법
CN106772300B (zh) * 2016-12-02 2019-04-19 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种微波超视距雷达回波图计算方法
CN107180128B (zh) * 2017-05-04 2021-02-09 东南大学 一种适用于中国低纬度地区的加权平均温度计算方法
CN107356554B (zh) * 2017-06-20 2019-08-20 东南大学 一种基于神经网络的反演大气可降水量的modis模型改进方法
CN108983258A (zh) * 2018-05-30 2018-12-11 南京信息工程大学 一种gnss电离层闪烁与tec监测设备
CN109001382B (zh) * 2018-09-20 2020-05-29 武汉大学 一种基于cors的区域大气水汽实时监测方法及系统
CN109061682A (zh) * 2018-09-30 2018-12-21 中国气象局气象探测中心 适用于浮空器的掩星探测系统及方法
KR20180118092A (ko) * 2018-10-19 2018-10-30 대한민국(기상청장) 에어로졸, 구름 및 강우 원격관측시스템 및 방법
CN109543353B (zh) * 2018-12-29 2021-03-12 广东电网有限责任公司 三维水汽反演方法、装置、设备和计算机可读存储介质
EP3971618B1 (en) * 2019-05-13 2024-03-20 Furuno Electric Co., Ltd. Water vapor observation system and water vapor observation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014939A (ja) * 2006-06-07 2008-01-24 Eko Instruments Trading Co Ltd 日射計測システム、日射計測用のプログラム
JP2010060444A (ja) 2008-09-04 2010-03-18 Japan Weather Association 降水予測システム、方法及びプログラム
US20140035779A1 (en) 2012-07-31 2014-02-06 Radiometrics Corporation Highly accurate calibration of microwave radiometry devices
JP2017207459A (ja) * 2016-05-22 2017-11-24 淳一 古本 大気関連量導出装置、大気関連量導出プログラム、および大気関連量導出方法
JP2019015517A (ja) * 2017-07-03 2019-01-31 株式会社東芝 日射強度推定装置、日射強度推定システム及び日射強度推定方法
CN108416031A (zh) * 2018-03-12 2018-08-17 南京恩瑞特实业有限公司 Nriet气象多源探测资料融合分析系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3971618A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220050212A1 (en) * 2019-05-13 2022-02-17 Furuno Electric Co., Ltd. Water vapor observation device and water vapor observation method
US11662471B2 (en) * 2019-05-13 2023-05-30 Furuno Electric Co., Ltd. Water vapor observation device and water vapor observation method
WO2022014229A1 (ja) * 2020-07-14 2022-01-20 古野電気株式会社 可降水量推定モデルの学習システム、可降水量推定システム、方法及びプログラム
WO2022196168A1 (ja) * 2021-03-15 2022-09-22 日本電気株式会社 水蒸気観測方法
WO2022239417A1 (ja) * 2021-05-11 2022-11-17 古野電気株式会社 学習モデルの生成方法、コンピュータプログラム、マイクロ波放射計及び推定方法
WO2022239416A1 (ja) * 2021-05-11 2022-11-17 古野電気株式会社 学習モデルの生成方法、コンピュータプログラム、推定方法及び推定装置
JP7127927B1 (ja) * 2022-03-15 2022-08-30 日本電気株式会社 水蒸気観測方法
WO2023175734A1 (ja) * 2022-03-15 2023-09-21 日本電気株式会社 水蒸気観測方法

Also Published As

Publication number Publication date
JPWO2020230501A1 (ja) 2020-11-19
US20220050212A1 (en) 2022-02-17
EP3971618A1 (en) 2022-03-23
EP3971618B1 (en) 2024-03-20
JP7280947B2 (ja) 2023-05-24
US11662471B2 (en) 2023-05-30
CN113811795A (zh) 2021-12-17
EP3971618A4 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
WO2020230501A1 (ja) 水蒸気観測システム及び水蒸気観測方法
US20230117091A1 (en) Learning system of precipitable water vapor estimation model, precipitable water vapor estimation system, method, and computer-readable recording medium
US20180059238A1 (en) Multilook coherent change detection
CN112965146A (zh) 一种结合气象雷达与雨量桶观测数据的定量降水估算方法
US10262225B2 (en) Image information processing device, image information processing system, image information processing method, and recording medium storing image information processing program
US10733470B2 (en) Systems and methods for rapid alignment of digital imagery datasets to models of structures
EP3229207A2 (en) Warp models for registering multi-spectral imagery
US11263765B2 (en) Method for corrected depth measurement with a time-of-flight camera using amplitude-modulated continuous light
US20230128046A1 (en) Detection method and computer-readable recording medium storing detection program
US9964640B2 (en) Method for phase unwrapping using confidence-based rework
US9256787B2 (en) Calculation of numeric output error values for velocity aberration correction of an image
Bulychev et al. Estimation of parameters of object motion based on stationary quasi-autonomous direction finder
Sosnovsky et al. Phase noise suppression efficiency for InSAR interferograms
EP3125275A1 (en) Information processing device, information processing method, and recording medium
US10489675B2 (en) Robust region segmentation method and system using the same
Jia et al. Mitigating multipath errors using semi-parametric models for high precision static positioning
Druzhinin Flight-test-based construction of structurally stable models for the dynamics of large space structures
Fotiou et al. Computationally efficient methods and solutions with least squares similarity transformation models
US20240027649A1 (en) Non-transitory computer readable medium, estimation method, and estimation device
Berezhnoi A new reduction of digitized photographic plates with selected asteroids obtained with the normal astrograph of the Pulkovo Observatory from 1948 to 1990
US20210215488A1 (en) Method and Device Used for Filtering Positioning Data
Lacy VLASS Project Memo 14: Correction of position errors in mosaic images without w-term corrections
Wang et al. Spacecraft atomic clock flight simulation and test station: slaving a crystal oscillator clock to a master atomic clock
US20230194310A1 (en) Measurement device and measurement method and measurement program therefor
Munoz et al. External Radiometric Calibration and Characterization of PAZ. First results of Commissioning Phase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021519310

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020806625

Country of ref document: EP

Effective date: 20211213