WO2020228590A1 - 一种led照明设备 - Google Patents

一种led照明设备 Download PDF

Info

Publication number
WO2020228590A1
WO2020228590A1 PCT/CN2020/089097 CN2020089097W WO2020228590A1 WO 2020228590 A1 WO2020228590 A1 WO 2020228590A1 CN 2020089097 W CN2020089097 W CN 2020089097W WO 2020228590 A1 WO2020228590 A1 WO 2020228590A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led lighting
lighting device
area
heat
Prior art date
Application number
PCT/CN2020/089097
Other languages
English (en)
French (fr)
Inventor
王名斌
江涛
Original Assignee
嘉兴山蒲照明电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴山蒲照明电器有限公司 filed Critical 嘉兴山蒲照明电器有限公司
Priority to EP20805412.2A priority Critical patent/EP3967922A4/en
Priority to JP2021600169U priority patent/JP3237179U/ja
Priority to CN202090000548.5U priority patent/CN217816654U/zh
Publication of WO2020228590A1 publication Critical patent/WO2020228590A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/235Details of bases or caps, i.e. the parts that connect the light source to a fitting; Arrangement of components within bases or caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/763Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/007Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array enclosed in a casing
    • F21V23/009Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array enclosed in a casing the casing being inside the housing of the lighting device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • F21V29/717Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements using split or remote units thermally interconnected, e.g. by thermally conductive bars or heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/77Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
    • F21V29/773Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to an LED lighting device, which belongs to the field of lighting.
  • LED lamps are widely used in many lighting fields because of their energy saving, high efficiency, environmental protection, and long life. LED lamps are energy-saving green light sources.
  • the heat dissipation of high-power LEDs is becoming more and more important. Excessive temperature will cause the luminous efficiency to decrease. If the waste heat generated by the operation of high-power LEDs cannot be effectively dissipated, it will directly affect the life of the LED. The fatal impact, therefore, in recent years, the solution to the heat dissipation problem of high-power LEDs has become an important research and development topic for many stakeholders.
  • LED lights are installed horizontally.
  • the weight of the LED lamp is limited, and the weight distribution is also limited (unreasonable weight distribution will increase the force of the lamp holder ), that is, the weight and weight distribution of the power supply of the LED lamp and the radiator tube components are restricted.
  • the luminous flux can reach more than 10,000 lumens. That is to say, the radiator needs to dissipate the LED lamp that produces at least 10,000 lumens within its weight limit and weight distribution limit. hot.
  • LED lamps need to be used in conjunction with lamps.
  • the excessive volume of LED lamps mainly the volume of radiators
  • the lamp It is easy to hit the lamp, which may damage the lamp and affect the normal use of the lamp.
  • the large size of the LED light will affect the packaging of the product.
  • the heat dissipation of the power supply is also important. If the heat generated by the power supply cannot be dissipated in time when the LED lamp is working, it will affect some electronic components (especially high thermal sensitivity). The life of the components, such as capacitors), which affects the life of the entire lamp.
  • the heat dissipation of the power supply is the heat dissipation of the power supply.
  • the power supply of the LED lamp in the prior art does not have an effective heat dissipation design.
  • there is no effective thermal management between the heat sink and the power supply in the prior art which will cause the heat of the heat sink and the heat of the power supply to affect each other.
  • the main technical problem solved by the embodiments of the present invention is to provide an LED lighting device to solve the above problems.
  • An embodiment of the present invention provides an LED lighting device, which is characterized in that it includes:
  • the first part includes a lamp cap
  • the second part includes a casing and a power supply, the power supply is arranged in the casing;
  • the third part in which a heat exchange unit and a light-emitting unit are arranged, the light-emitting unit is connected to the heat exchange unit and forms a heat conduction path, and the light-emitting unit is electrically connected to the power supply;
  • the first part, the second part and the third part are arranged in sequence;
  • the lamp cap extends along a first direction
  • the light-emitting unit includes a light-emitting body and a substrate, the substrate provides a mounting surface, the light-emitting body is mounted on the mounting surface, the mounting surface and the first The direction is set in parallel;
  • the distance b from the start of the second part to the plane where the center of gravity of the LED lighting device is located satisfies the following relationship:
  • the embodiment of the present invention provides the LED lighting device with electric energy of no more than 110 watts, the light-emitting unit is lit, and the LED lighting device emits at least 15,000 lumens of light flux.
  • the embodiment of the present invention provides the LED lighting device with no more than 80 watts of electrical energy, the light-emitting unit is lit, and the LED lighting device emits a luminous flux of at least 12,000 lumens.
  • the embodiment of the present invention provides the LED lighting device with no more than 60 watts of electrical energy, the light-emitting unit is lit, and the LED lighting device emits a luminous flux of at least 9000 lumens.
  • the embodiment of the present invention provides the LED lighting device with no more than 40 watts of electrical energy, the light-emitting unit is lit, and the LED lighting device emits at least 6000 lumens of luminous flux.
  • the weight of the second part in the embodiment of the present invention accounts for more than 30% of the weight of the entire lamp.
  • the weight of the third part of the embodiment of the present invention accounts for no more than 60% of the weight of the entire lamp.
  • the length of the second part in the embodiment of the present invention does not exceed 25% of the length of the entire lamp.
  • the length of the third part in the embodiment of the present invention does not exceed 70% of the length of the entire lamp.
  • the length of the LED lighting device in the embodiment of the present invention is L
  • the linear distance from the end of the lamp cap to the plane where the center of gravity of the LED lighting device is located is a
  • An embodiment of the present invention also provides an LED lighting device, which is characterized in that it includes:
  • the first part includes a lamp cap
  • the second part includes a casing and a power supply, the power supply is arranged in the casing;
  • the third part in which a heat exchange unit and a light-emitting unit are arranged, the light-emitting unit is connected to the heat exchange unit and forms a heat conduction path, and the light-emitting unit is electrically connected to the power supply;
  • the first part, the second part and the third part are arranged in sequence;
  • the lamp cap extends along a first direction
  • the light-emitting unit includes a light-emitting body and a substrate, the substrate provides a mounting surface, the light-emitting body is mounted on the mounting surface, the mounting surface and the first The direction is set in parallel;
  • the second part has a first area, a second area, and a second area, wherein the third area is an area outside the housing, and the power source is formed by the second area and the first area
  • the thermal conductivity of the first region and the second region are both greater than the thermal conductivity of the third region.
  • the thermal conductivity of the first region in the embodiment of the present invention is more than 8 times the thermal conductivity of the third region.
  • the thermal conductivity of the second area in the embodiment of the present invention is more than 5 times that of the third area.
  • the second area is provided with a thermally conductive material.
  • the power supply according to the embodiment of the present invention includes a heating element, and at least 80% of the surface area of the heating element exposed to the outside is attached with the thermally conductive material.
  • the power supply in the embodiment of the present invention includes a power supply board, the power supply board has a first surface, the first surface is provided with electronic components, and the first surface is provided with a first plane and a second plane, wherein the The electronic components on the first surface are all arranged on the second surface.
  • the second plane is an annular area, and the electronic components are arranged around the first plane.
  • the area of the first plane occupies at least 1/20 of the total area of the first plane.
  • a part of the heat-conducting material is filled in the corresponding area of the first plane to form a first heat-conducting part, and a part of the heat-conducting material is filled in the area between the power supply and the inner wall of the housing, Thereby, a second heat conducting part is formed, and the first heat conducting part and the second heat conducting part are separated by the electronic element.
  • the electronic components located outside the second area and the electronic components located inside the second area generate heat during operation through different paths.
  • An embodiment of the present invention also provides an LED lighting device, which is characterized in that it includes:
  • the first part includes a lamp cap
  • the second part includes a casing and a power supply, the power supply is arranged in the casing;
  • the third part in which a heat exchange unit, a light emitting unit and a light output unit are arranged, the light emitting unit is connected to the heat exchange unit and forms a heat conduction path, and the light emitting unit is electrically connected to the power supply;
  • the light-emitting unit includes a light-emitting body and a substrate; the light output unit includes a first light-emitting area and a second light-emitting area, and the first light-emitting area is configured to receive light directly emitted by the light-emitting body when it is working.
  • the second light-emitting area only receives the emitted light, and at least a part of the reflected light is emitted from the second light-emitting area.
  • the total luminous flux emitted from the second light-emitting region accounts for 0.01%-40% of the total luminous flux emitted by the luminous body.
  • the beneficial effects of the present invention are: compared with the prior art, the present invention includes any of the following effects or any combination thereof:
  • the weight of the second part includes the weight of the power supply element (power supply) and the parts that dissipate the power supply element
  • the weight of the third part includes the weight of the light-emitting unit and the weight of the parts that dissipate the light-emitting unit.
  • the length setting of the second part II is used to provide a longitudinal space for accommodating the power supply element (power supply)
  • the length setting of the third part is used to provide a longitudinal space for arranging the luminous body and a longitudinal space for heat dissipation components.
  • the heat generated by the power supply can be quickly dissipated to the outside of the LED lighting device through heat conduction when the LED lighting device is working.
  • Figure 1 is a schematic diagram of a front view of an LED lighting device in an embodiment
  • Figure 2 is a schematic diagram of a lamp cap module in an embodiment
  • Figure 3 is a bottom view of Figure 1;
  • Figure 4 is a schematic diagram of Figure 3 with the light output unit removed;
  • Fig. 5 is a schematic sectional view of the LED lighting device in Fig. 1;
  • Fig. 6 is a schematic structural diagram of an LED lighting device in an embodiment
  • FIG. 7 is a schematic diagram of the structure of the LED lighting device in FIG. 6, showing that it forms an angle with the horizontal plane;
  • Fig. 8 is a schematic structural diagram of an LED lighting device in an embodiment
  • Fig. 9 is a bottom view of Fig. 8 with the light output unit removed;
  • FIG. 11 is a schematic diagram of a three-dimensional structure of a second component in an embodiment
  • Fig. 12 is a schematic diagram of a three-dimensional structure of a first component in an embodiment
  • FIG. 13 shows various shapes of heat dissipation fins in some embodiments
  • FIG. 14 is a schematic diagram of the three-dimensional structure of the LED lighting device in FIG. 1 with the light output unit removed;
  • FIG. 15 is an enlarged schematic diagram of A in FIG. 14;
  • 16A is a schematic diagram of the three-dimensional structure of the light output unit in FIG. 1;
  • 16B is a schematic diagram of the three-dimensional structure of the heat exchange unit in FIG. 1;
  • FIG. 17 is a schematic diagram of cooperation between the heat mitigation unit and the light-emitting unit in an embodiment
  • Figure 18 is an enlarged view of B in Figure 17;
  • Figure 19 is an enlarged view of C in Figure 17;
  • FIG. 23 are schematic diagrams of mounting the substrate to the heat exchange unit in an embodiment
  • 24 is a schematic diagram of the cooperation between the substrate and the heat exchange unit in another embodiment, showing a state where the first wall and the second wall are not bent;
  • 25 is a schematic diagram of the cooperation between the substrate and the heat exchange unit in FIG. 24, showing that the first wall and the second wall are bent and pressed against the substrate;
  • Figure 26 is a schematic top view of the structure of Figure 1;
  • Figure 27 is a front view of the substrate in Figure 1;
  • Figure 28 is a rear view of Figure 27, showing the state of applying thermally conductive glue
  • Figure 29 is a schematic diagram of a heat exchange unit in other embodiments, showing that an overflow groove is provided on the base;
  • FIG. 30 is a schematic diagram of a substrate in other embodiments, showing that an overflow groove is provided on the substrate;
  • FIG. 31 is a schematic front view of the structure of the LED lighting device in other embodiments, showing that the heat exchange unit is in a closed state;
  • Fig. 32 is a schematic rear view of the structure of Fig. 31;
  • Fig. 33 is a schematic diagram of the structure of Fig. 32 with the light output unit removed;
  • FIG. 34 is a schematic sectional view of the structure of FIG. 31;
  • Figure 35 is a schematic front view of the structure of the LED lighting device in Figure 31, showing that the heat exchange unit is in an expanded state;
  • Figure 36 is a perspective view of the LED lighting device in Figure 31;
  • Fig. 37 is a second perspective view of the LED lighting device in Fig. 31;
  • Fig. 38 is a schematic diagram of the LED lighting device in Fig. 31 with the third part removed;
  • FIG. 39 is an enlarged view at D of FIG. 38;
  • Reference 40 is a schematic diagram of the LED lighting device in FIG. 31 when the components on the first part and the second part are removed;
  • 41 is a schematic diagram of the three-dimensional structure of the first heat sink of the LED lighting device in FIG. 31;
  • Figure 42 is a schematic diagram of a substrate in some embodiments.
  • Figure 43 is a schematic diagram of a substrate in some embodiments.
  • FIG. 44A is an arrangement diagram of electronic components of the power supply in the lamp housing in an embodiment
  • FIG. 44B is an arrangement diagram of electronic components of the power supply in the lamp housing in some embodiments.
  • FIG. 44C is an arrangement diagram of electronic components of the power supply in the lamp housing in some embodiments.
  • FIG. 45 is a schematic diagram of a three-dimensional structure of an LED lighting device in an embodiment
  • Fig. 46 is a first schematic sectional view of an LED lighting device in an embodiment
  • Fig. 47 is a second schematic cross-sectional view of the LED lighting device in an embodiment
  • Fig. 48 is a third schematic cross-sectional view of the LED lighting device in an embodiment.
  • vertical generally refers to the angle of 90 degrees relative to the reference line, but in the present invention, vertical refers to the situation including 80 degrees to 100 degrees.
  • use situation and use state of the LED lighting in the present invention refer to the use situation where the LED lamp is installed in the horizontal direction of the lamp cap, and other exceptions will be explained separately.
  • an embodiment of the present invention relates to an LED lighting device, which includes a first part I, a second part II, and a third part III.
  • the first part I, the second part II, and the third part III are divided by dotted lines, and the first part I, the second part II and the third part III are arranged in sequence.
  • the first part I is mainly used to connect external power supply equipment (such as lamp holders), where the first part I includes a lamp holder module 7, which at least includes a lamp holder 71, and the lamp holder 71 is connected to an external lamp holder
  • the lamp holder module 7 may also have a lamp holder adapter 711, which may have an external screw thread 712 and an internal screw thread 713 for connecting the lamp holder.
  • the second part II is mainly used to set the electronic components of the LED lighting equipment, where the second part II includes a housing 3, a power source 4, the housing 3 defines the outer dimensions of the first part I, and the housing The body 3 defines a cavity 301 so that the power source 4 can be arranged in the cavity 301.
  • the power source 4 may include a power board 41 and an electronic component 42, and the electronic component 42 is provided on the power board 41.
  • the power board 41 is perpendicular or substantially perpendicular to the first direction X.
  • the third part III is mainly used to provide heat dissipation (for the heat dissipation of the light output unit 5) and light output functions of the LED lighting equipment.
  • the third part III is provided with a heat exchange unit 1, Light emitting unit 2 and light output unit 5.
  • the light-emitting unit 2 is connected with the heat exchange unit 1 and forms the heat conduction path of the third part III.
  • the power source 4 is electrically connected to the light-emitting unit 2 to provide power to the light-emitting unit 2.
  • the light output unit 5 is covered outside the light emitting unit 2.
  • the light generated by the light emitting unit 2 at least partially enters the light output unit 5, and then emits the light output unit 5 to be projected to the outside of the LED lighting device .
  • the light output unit 5 may be configured with an optical device, and the optical device may be configured with a degree of reflection, refraction and/or scattering to provide any suitable combination of reflection, refraction and/or scattering.
  • the optical device can also be configured to increase the light flux passing through the light output unit 5.
  • the first part I and the second part II are bounded by the connecting surface of the lamp cap module 7 and the housing 3 (the connecting surface in the length direction of the lighting device).
  • the axial end surface 7101 of the lamp cap 71 can be used as The connecting surface
  • the second part II and the third part III are bounded by the connecting surface of the housing 3 and the heat exchange unit 1 (the connecting surface in the length direction of the lighting device), and the housing 3 may be in the length direction of the LED lamp.
  • the upper end surface 301 serves as a connecting surface.
  • first part I, the second part II and the third part III are arranged in sequence along the length of the LED lighting device, in other embodiments, the LED lighting device According to different design requirements, the first to third parts can be overlapped in different directions, and the present invention is not limited to this.
  • the lamp cap 71 extends along a first direction X (the length direction of the LED lamp).
  • the light-emitting unit 2 includes a luminous body 21 and a substrate 22, the substrate 22 provides a mounting surface 221, and the luminous body 21 is mounted on the mounting surface 221.
  • the mounting surface 221 is arranged parallel to the first direction X. From the perspective of use, when the LED lighting device is installed horizontally (the first direction X and the mounting surface 221 are both parallel to the horizontal plane), the light emitting unit 2 of the LED lighting device provides downward light emission to make the area below the LED lighting device Be illuminated. In other words, the LED lighting device in this embodiment is installed horizontally.
  • the first direction X or the mounting surface 221 may also form an acute angle with the horizontal plane, and the acute angle is less than 45 degrees, thereby mainly providing downward light emission.
  • LED lighting equipment can be used for outdoor lighting, such as pavement lighting (street lights), can also be used indoors, using wall installation (installation on the wall), such as used in warehouses, parking lots, sports fields, etc.
  • the "luminous body” referred to in all the embodiments of the present invention may be a light-emitting source with LED (light emitting diode) as the main body, including but not limited to LED lamp beads, LED light bar, or LED filament.
  • the LED lighting device may be weight restrictions for the entire LED lighting device. For example, when the LED lighting equipment uses E39 lamp holders, the maximum weight of the LED lighting equipment is limited to 1.7 kg. In one embodiment, when the LED lighting device is installed horizontally and the weight distribution of each part is limited, the LED lighting device is provided with no more than 150 watts of electrical energy, and the light-emitting unit 2 (specifically, the light-emitting unit 2 is provided in the light-emitting unit 2). The body 21) lights up, and makes the LED lighting device emit at least 15000 lumens of luminous flux.
  • the LED lighting device when 140 watts of electric energy are provided, the LED lighting device emits at least 15,000 lumens, 16,000 lumens, 17,000 lumens, 18,000 lumens, 19,000 lumens, 20,000 lumens or higher lumens (less than 40,000 lumens). In one embodiment, the weight of the heat exchange unit 1 is limited to no more than 0.9kg. When the LED lighting device is lit, it can emit at least 15,000 lumens, 16,000 lumens, 17,000 lumens, 18,000 lumens, 19,000 lumens, 20,000 lumens or more. Lumens of light (less than 40,000 lumens).
  • the heat exchange unit 1 can dissipate heat generated from the LED lighting device that generates at least 15,000 lumens under the weight limit of not exceeding 0.9 kg.
  • the weight of the heat exchange unit 1 is limited to 0.8 kg or less, and when the LED lighting device is lit, it can emit at least 20,000 lumens of light.
  • the total luminous flux emitted by the LED lighting device is less than 40,000 lumens.
  • the LED lighting device when the LED lighting device is installed horizontally and the weight distribution of each part is limited, the LED lighting device is provided with no more than 110 watts of electrical energy, and the light-emitting unit 2 (specifically, the light-emitting unit 2 is provided in the light-emitting unit 2).
  • the body 21) lights up, and makes the LED lighting device emit at least 15,000 lumens of luminous flux (not more than 24,000 lumens).
  • the LED lighting device is provided with no more than 80 watts of electrical energy, and the light-emitting unit 2 (specifically, the light-emitting unit 2 is provided in the light-emitting unit 2).
  • the body 21 lights up, and makes the LED lighting device emit a luminous flux of at least 12,000 lumens (no more than 20,000 lumens).
  • the LED lighting device is provided with no more than 60 watts of electric energy, and the light-emitting unit 2 (specifically, the light-emitting unit 2 is provided in the light-emitting unit 2).
  • the body 21) lights up, and makes the LED lighting device emit a luminous flux of at least 9000 lumens (no more than 18000 lumens).
  • the LED lighting device when the LED lighting device is installed horizontally and the weight distribution of each part is limited, the LED lighting device is provided with no more than 40 watts of electrical energy, and the light-emitting unit 2 (specifically, the light-emitting unit 2 provided in the light-emitting unit 2 The body 21) lights up, and makes the LED lighting device emit a luminous flux of at least 6000 lumens (no more than 15000 lumens).
  • the LED lighting device when the LED lighting device is installed horizontally and the weight distribution of each part is limited, the LED lighting device is provided with no more than 20 watts of electrical energy, and the light-emitting unit 2 (specifically, the light-emitting unit 2 is arranged in the light-emitting unit 2).
  • the body 21 lights up, and makes the LED lighting device emit a luminous flux of at least 3000 lumens (not more than 10000 lumens).
  • the LED lighting devices in the above embodiments all meet the life span of 50,000 hours when the working environment temperature is between -20 degrees and 70 degrees.
  • the center of gravity of the LED lighting device will affect the torque that the lamp cap 71 bears.
  • the length of the LED lighting device is L
  • the linear distance from the end of the lamp cap 71 to the plane of the center of gravity of the LED lighting device (the plane is perpendicular to the axis of the lamp cap of the LED lighting device) is a.
  • the torque of the lamp holder 71 can be reduced, while ensuring the second part II and third part Part III has enough weight to install components and conduct heat dissipation design.
  • the distance b from the start of Part II to the plane of the center of gravity of the LED lighting device (the plane is perpendicular to the axis of the lamp cap of the LED lighting device) satisfies the following relationship:
  • L 2 is the length of the second part II
  • L 3 is the length of the third part III.
  • d 1 is the distance between the center of gravity of the first part I to the second part (the plane is perpendicular to the axis of the lamp cap);
  • g 9.8N/kg
  • W 1 is the weight of Part II
  • d 2 is the length of the second part II
  • d 3 is the distance between the center of gravity of the second part II to the third part III (the plane is perpendicular to the axis of the lamp cap);
  • W 2 is the weight of the third part III.
  • the torque of the lamp cap 71 meets the following conditions:
  • the weight of the second part II includes the weight of the power supply element (power supply 4) and the parts that dissipate the power supply element
  • the weight of the third part III includes the weight of the light-emitting unit 2 and the weight of the parts that dissipate the light-emitting unit 2. weight.
  • the length of the second part II is used to provide a longitudinal space for accommodating the power supply element (power supply 4)
  • the length of the third part III is used to provide a longitudinal space for the luminous body 21 and a longitudinal space for the heat dissipation component.
  • the torque of the lamp cap 71 satisfies the following conditions:
  • the LED lighting device after the LED lighting device is installed, it has an included angle with the horizontal mask (the axial direction of the lamp head 71 and the horizontal mask have an acute angle less than 45 degrees).
  • A is the angle between the axial direction of the lamp cap 71 and the horizontal plane.
  • the torque of the lamp holder 71 also needs to meet the following conditions:
  • the overall length of the LED lighting device is less than 350 mm and greater than 200 mm.
  • the lamp cap 71 adopts a fixed type, such as the E39 lamp cap (the length is about 40mm)
  • the sum of the length of the second part II and the third part III is less than 310mm and greater than 160mm. Further, the sum of the lengths of the second part II and the third part III is less than 260mm and greater than 180mm.
  • the power supply 4 and the end surface of the lamp housing 32 keep a distance to prevent the heat generated during the operation of the third part III (light emitting unit 2) from being conducted to the power supply 4 , Or prevent the heat generated by the power source 4 from interacting with the heat generated by the third part III.
  • the power supply board 41 of the power supply 4 and the end surface of the lamp housing 32 maintain a distance. There is air in this distance to form better thermal insulation.
  • a bump 3201 may be provided in the lamp housing 32 so that the power board 41 can be supported on the bump 3201, so that the power board 41 and the end surface of the lamp housing 32 are kept at a distance.
  • the center of gravity of the second part II can be further adjusted to ultimately reduce the torque of the lamp cap 71.
  • the second part II is the part closer to the lamp cap 71, and the weight of the second part II of the LED lamp is configured to account for the weight of the entire lamp
  • the weight of the second part II of the LED lamp is configured to account for more than 35% of the weight of the entire lamp.
  • the weight of the second part II of the LED lighting device is configured to account for 35 percent of the weight of the entire lamp. % ⁇ 50%, so that the second part II has more weight that can be used for heat dissipation, and the weight of this part is relatively close to the first part I, so compared to the first part I, its arm of force is shorter.
  • the weight of the third part III accounts for no more than 60% of the weight of the whole lamp.
  • the weight of the third part III accounts for no more than 55% of the weight of the whole lamp. More preferably, the weight of the third part III accounts for the weight of the whole lamp. In this way, on the one hand, the heat dissipation of the light-emitting unit 2 can be satisfied, and on the other hand, the weight of the third part III can be controlled, so as to facilitate the control of torque.
  • the length of the second part II accounts for no more than 25% of the total length of the LED lamp to control the force arm of the second part II (Controlling the length of the arm is beneficial to controlling the torque of the second part II relative to the lamp cap 71).
  • the length of the second part II accounts for no more than 20% of the entire length of the LED lamp. More preferably, the length of the second part II accounts for 15%-25% of the entire length of the LED lamp, so as to provide sufficient space to accommodate the power source 4 while controlling the torque.
  • the length of the third part III accounts for no more than 70% of the total length of the LED lamp.
  • the length of the third part III accounts for 60% to 70% of the total length of the LED lamp, so that the torque of the third part III is equal to The heat dissipation capacity is balanced (the longer the length of the third part III, the more reasonable the setting of the heat exchange unit 1 can be, and more space for heat dissipation, the shorter the length of the third part III, the relative torque of the third part III Smaller).
  • the lamp cap module 7 of the first part I provides an electrical connection port for connecting the external power supply terminal and the LED lighting device.
  • the lamp cap module 7 may include a lamp cap 71 configured to be connected to a matching lamp holder, and the lamp cap 71 has an external thread for connecting an external lamp holder.
  • the lamp cap 71 can be arranged along the direction of the first direction X, for example, the length direction of the LED lighting device is extended.
  • the lamp cap 71 can be set according to the specific application scenario of the LED lighting fixture, and the lamp cap 71 can be an E-shaped lamp cap.
  • the lamp holder of E39 or E40 where E represents an Edison screw bulb, that is, with a thread that can be screwed into the lamp holder, and 39/40 refers to the nominal diameter of the bulb thread.
  • E39 is the American standard specification
  • E40 is the European standard specification.
  • the material can contain nickel-plated copper, aluminum alloy, etc.
  • the lamp holder 71 can also be other types of lamp holders, such as plug-in lamp holder GU10, etc., where G indicates that the lamp holder type is plug-in type, and U indicates the lamp holder part U-shaped, the number behind indicates that the center distance of the lamp pin hole is 10mm.
  • the lamp cap 71 may also be a snap-in type.
  • the lamp holder module 7 may further include a lamp holder adapter 711 as shown in FIG. 2, the lamp holder adapter 711 has an external thread 712 connected to an external lamp holder, and an internal thread 713.
  • the lamp holder adapter 711 can provide a connection between the second part II and the first part I, and the lamp holder adapter 711 can also be designed to facilitate the adaptation between different lamp holders and lamp holders.
  • the lamp holder of E27 can be installed on the lamp holder of E40 through the lamp holder adapter 711.
  • the housing 3 of the second part II is used to accommodate the power source 4 and defines the external dimensions of the second part II.
  • the housing 3 is also connected to the lamp cap module 7 and the heat exchange unit 1 respectively. connection.
  • the shell 3 is usually made of plastic material.
  • the casing 3 can also be made of metal, but the casing 3 and the power source 4 must be electrically isolated.
  • the housing 3 defines a cavity 301, and the power source 4 is disposed in the cavity 101.
  • the second part II is provided with a heat dissipation device to dissipate the heat of the power supply 4 to dissipate the heat generated during the operation of the power supply 4 and prevent the power supply 4 from overheating.
  • Figure 10 is a partial sectional view showing the sectional structure of the second part II.
  • the second part II has a first area 302, a second area 303, and a third area 304, where the third area 304 is an area outside the housing 3, and the power supply 4
  • the second area 303 and the first area 302 form a heat conduction path for the power source 4, and the thermal conductivity of the first area 302 and the second area 303 are both greater than the thermal conductivity of the third area 304. Therefore, when the LED lighting device is working, the heat generated by the power supply 4 can be quickly dissipated to the outside of the LED lighting device through thermal conduction.
  • the thermal conductivity of the first region 302 is more than 8 times that of the third region 304.
  • the thermal conductivity of the first region 302 is 9-15 times that of the third region 304.
  • the thermal conductivity of the second region 303 is more than 5 times that of the third region 304.
  • the thermal conductivity of the second region 303 is 6 to 9 times that of the third region 304.
  • the specific thermal conductivity of the first region 302 is between 0.2 and 0.5, and the specific thermal conductivity of the second region 303 is between 0.1 and 0.3.
  • the specific thermal conductivity of the first region 302 is between 0.25 and 0.35, and the specific thermal conductivity of the second region 303 is between 0.15 and 0.25.
  • the thermal conductivity of the third region 304 is between 0.02 and 0.05.
  • the thermal conductivity of the above-mentioned regions should be understood as the average thermal conductivity of the materials included in each region.
  • the second region 303 in the disclosure of this embodiment is provided with a thermally conductive material 305, and the power source 4 forms a thermally conductive path with the first region 302 through the thermally conductive material 305 of the second region 303.
  • the thermal conductive material 305 may be thermal conductive glue.
  • the aforementioned second part II is provided with a heat dissipation device, and the heat dissipation device may be the thermally conductive material 305 of the second area 302. In other embodiments, the heat dissipating device may also appear in other forms.
  • the heat dissipating device when the heat generated by the power supply 4 is dissipated by convection in the housing 3, the heat dissipating device may be a hole opened in the housing 3, or for example, the heat dissipating device may be A fan is used to accelerate the convective heat dissipation of the power supply 4.
  • the heat dissipation device can be a radiation layer, which can be provided on the surface of the power supply 4 or the surface of the casing 3 to accelerate the heat generated by the power supply to dissipate in the form of radiation.
  • the power supply 4 includes a heating element, which is an electronic element that generates relatively high heat when the LED lighting device is working, such as a resistor, a transformer, an inductor, an IC, a transistor, and the like.
  • the heating element in this embodiment is a transformer, an inductor, an IC (control circuit), a transistor, or a resistor.
  • the area (value of A) where the heat-conducting material 305 is attached to the surface of the heating element should be as large as possible.
  • at least 80% of the surface area of the heating element exposed to the outside (excluding the contact surface when the power board is installed) is attached The thermally conductive material.
  • at least 90% of the surface area of the heating element exposed to the outside (excluding the contact surface when the power board is installed) is attached to the thermally conductive material.
  • At least 95% of the surface area of the heating element exposed to the outside is attached to the thermally conductive material 305. In an embodiment, at least 80%, 90%, or 95% of the surface area of any heating element exposed to the outside (excluding the contact surface when installing the power board) is attached to the thermally conductive material 305. In this way, the heat flow bottleneck on the heat conduction path can be avoided as much as possible.
  • the shortest distance from the heating element to the first area 302 can be correspondingly designed to improve the heat transfer efficiency.
  • the width dimension of the second part II in this embodiment is W (the cross-sectional shape of the second part II here may be a circle, a polygon or other irregular shapes, and the width dimension refers to the second part II.
  • the shortest distance between any two points on the cross-sectional contour line, and the line between the two points passes through the axis line of the lamp cap 71), and the heating element is in the width direction of the second part II to the second part II
  • the shortest distance of the boundary (the first area 302) is d (the shortest distance from the center of the heating element to the boundary of the second part II), in order to conduct the heat of the heating element to the first area 302 as soon as possible, and the heating element to the boundary of the second part II (
  • the shortest distance d of the first area 302) and the width dimension L of the second part II satisfy the following relationship:
  • the shortest distance d from the heating element in the width direction of the second part II to the boundary of the second part II (the first region 302) and the width dimension W of the second part II satisfy the following relationship:
  • the shortest distance d from the heating element in the width direction of the second part II to the boundary of the second part II (the first region 302) and the width dimension W of the second part II satisfy the following relationship:
  • the range of W is between 50 and 150 mm. In one embodiment, the range of W is 55-130 mm.
  • the heating element mentioned above can be a transformer, an inductor, an IC (control circuit), a transistor, or a resistor.
  • Thermal resistance is the resistance in the process of heat transfer, which represents the temperature difference caused by the unit heat flow.
  • the thermal resistance of the second region 303 R 2 d 2 / ⁇ 2 A 2 ; where d2 is the interface between the heating element in the width direction of the second part II and the second region 303 (the first region 302 and the The shortest distance between the connecting surface of the two regions 303; ⁇ 2 is the thermal conductivity of the second region 303, and A 2 is the contact area between the heating element and the second region 303 (the thermally conductive material 305).
  • the thermal resistance R 1 of the first region 302 d 1 / ⁇ 1 A 1 ; where d1 is the shortest distance from the second region 303 to the outer surface of the first region 302 (the thickness of the first region 302); ⁇ 1 is the thermal conductivity of the first region 302, and A 1 is the surface area of the first region.
  • the heat of the second area 303 is mainly conducted to the first area 302, and the heat of the first area 302 is mainly heat radiated to the third area 304.
  • the heat of the heating element needs to be conducted to the second area 303 more urgently. Therefore, this embodiment
  • the thermal resistance R 2 of the second region 303 is set to be smaller than the thermal resistance R 1 of the first region 302, that is, d 2 / ⁇ 2 A 2 ⁇ d 1 / ⁇ 1 A 1 .
  • the heating element in the width direction of the second part II to the interface of the second region 303 (the connecting surface of the first region 302 and the second region 303)
  • the shortest distance and the area where the surface of the heating element is attached by the thermally conductive material 305 can all adopt the aforementioned thermal design, that is, d 2 satisfies the following relationship: 1/20W ⁇ d 2 ⁇ 4/11W; the surface area of the heating element exposed to the outside (excluding the At least 80%, 90%, or 95% of the contact surface when the power board is installed are attached to the thermally conductive material 305.
  • the electronic component 42 of the power supply 4 includes an electrolytic capacitor 421, and the lifetime of the electrolytic capacitor 421 depends on the set ambient temperature. Therefore, the location or manner of the electrolytic capacitor 421 will affect its life.
  • the electrolytic capacitor 421 is disposed on the opposite outer side of the power board 41, and the electrolytic capacitor 421 is directly thermally connected to the first area 302 through the thermally conductive material 305, that is, the electrolytic capacitor 421 to the first area There are no other electronic components, especially heating components, on the shortest path of the area 302, so as to ensure that the electrolytic capacitor has better heat conduction.
  • the shortest distance d3 from the electrolytic capacitor 421 to the first region 302 satisfies the following relationship: d 3 ⁇ 5/11W. In another embodiment, the shortest distance d3 from the electrolytic capacitor 421 to the first region 302 satisfies the following relationship: d 3 ⁇ 4/11W.
  • W is the width dimension of the second part II (the cross-sectional shape of the second part II here may be a circle, a polygon or other irregular shapes, and the width dimension refers to any two points on the contour line of the second part II
  • d 3 is the shortest distance from the electrolytic capacitor 421 to the first area 302 in the width direction of the second part II ( The shortest distance from the center of the electrolytic capacitor 421 to the first area 302).
  • the position of the electronic components on the power board 41 can be designed accordingly.
  • the power board 41 has a first surface 4101 on which electronic components are disposed.
  • a first plane 4102 and a second plane 4103 are arranged on the first surface 4101, wherein the electronic components on the first surface 4101 are all arranged on the second plane 4103, and the second plane 4103 is an annular area, that is to say
  • the electronic components are distributed in an annular area and arranged around the first plane 4102, thereby relatively increasing the distance between the electronic components (between non-adjacent electronic components), thereby reducing the distributed capacitance.
  • a thermally conductive material 305 is provided on the first plane 4102. Therefore, a part of the heat generated by the electronic component can be dissipated through the thermally conductive material 305 on the first plane 4102 to further improve the heat dissipation effect.
  • the electronic components include heating elements (such as transformers, inductors, transistors, resistors, etc.). In order to improve heat dissipation efficiency, at least a part of the heating elements can correspond to the first plane 4102 (at least one side of the heating element directly corresponds to The thermally conductive material 305 of the first plane 4102).
  • the transistor 422 is a component that generates more heat during operation.
  • the transistor 422 can be arranged on the second plane 4103 in an area corresponding to the first plane 4102, so that the heat generated during the operation of the transistor 422 passes through the first plane 4102.
  • the thermally conductive material 305 on the plane 4102 quickly dissipates.
  • the transistor 422 can also be arranged on the opposite periphery of the second plane 4103, so that the transistor 422 has a relatively short heat dissipation path (to the outside of the housing).
  • the multiple transistors 422 are arranged reasonably to ensure the heat dissipation effect.
  • the transistor 422 is still considered to correspond to the first plane 4102.
  • the first plane 4102 is a circle of electronic components closest to the middle position of the power board 41.
  • the area of the first plane 4102 is set to occupy at least 1/20 of the total area of the first plane 4101 to reduce the distributed capacitance and improve the heat dissipation effect.
  • the area of the first plane 4102 occupies no more than 1/10 of the total area of the first plane 4101.
  • a hole 41021 may be opened at the first plane 4102, so that when the thermally conductive material is poured, it can fully contact the power board 41 and penetrate the power board 41 through the hole 41021, thereby further improving heat dissipation. Effect, on the other hand, the thermal conductive material penetrates through the power board 41 and can also strengthen the power board 41.
  • a part of the thermally conductive material 305 is filled in the corresponding part of the first plane 4102 (above the first plane 4102), thereby forming a A heat-conducting part
  • a part of the heat-conducting material 305 is filled in the area between the power source 4 and the inner wall of the casing 3 (the gap between the electronic component and the inner wall of the casing 3), thereby forming a second heat-conducting part.
  • the first heat-conducting part and the second heat-conducting part are separated by electronic components, so that the first heat-conducting part and the second heat-conducting part have different heat conduction paths, so that the electronic components located on the outside of the second plane 4103 and those located on the second plane 4103
  • the heat generated by the internal electronic components during operation is conducted through different paths to improve the heat dissipation effect.
  • the housing 3 includes a first part 32 and a second part 33, wherein the lamp cap 71 is fixedly connected to the first part 32.
  • the outer surface of the first component 32 has a structure that matches the internal thread 713 of the lamp cap 71 (for example, an external thread provided on the outer surface of the first component 32).
  • the first part 32 and the second part 33 are rotatably connected. Therefore, when the lamp cap 71 is installed on the lamp holder, the light emitting direction of the LED lamp can be adjusted by rotating the second part 33.
  • the first component 32 has an annular concave portion 321
  • the second component 33 has a convex portion 331.
  • the convex portion 331 cooperates with the annular concave portion 321 and can be rotated between the two, finally realizing the first component 32 and Rotatable connection of the second part 33.
  • the first member 32 and the second member 33 can also be rotated by other structures in the prior art, for example, the first member 32 is configured as a convex portion, and the second member 33 is configured as an annular concave portion.
  • the first part 32 may further include a first stop part 322, and the second part 33 may further include a second stop part 332, and the first stop part 322 matches the second stop part 332.
  • first member 32 and the second member 33 rotate relatively until the first stop portion 322 and the second stop portion 332 abut, the further rotation of the first member 32 and the second member 33 can be restricted to prevent excessive Rotation affects or even pulls off the internal connecting wires.
  • the relative rotation angle between the first member 32 and the second member 33 ranges from 0 to 355 degrees.
  • the relative rotation angle between the first member 32 and the second member 33 ranges from 0 to 350 degrees.
  • the relative rotation angle between the first member 32 and the second member 33 ranges from 0 to 340 degrees.
  • the limitation of the above-mentioned rotation angle can be achieved by setting the thickness (that is, the angle occupied) of the first stop portion 322 and the second stop portion 332 in the circumferential direction.
  • the first stop portion 322 is triangular
  • the second stop portion 332 is L-shaped, but it is understandable that the shape of the first and second stop protrusions may not be limited. It suffices to block movement by mutual interaction during rotation.
  • the first component 32 and the second component 33 can also be rotated by other structures in the prior art, which will not be repeated here.
  • the second component 33 includes a plurality of rod portions 333, the plurality of rod portions 333 are evenly distributed along a circle, the adjacent rod portions 333 are spaced apart, and the convex portion 331 is formed on the rod portion 333. There is a distance between the adjacent rod portions 333, so that the rod portion 333 is elastically deformed, and it is beneficial to insert it into the first member 32.
  • a number of teeth 323 are provided on the first component 32 along a circumference, and the teeth 323 may be continuous or spaced.
  • the second component 33 is provided with a damping part 334 corresponding to the tooth part 323.
  • the damping part 334 may be formed on the second stop part 332, that is, a part of the second stop part 332 is used to cooperate with the tooth part 323, and the other part is used to cooperate with the first stop part 322.
  • the heat exchange unit 1 provided in the third part III is connected to the light emitting unit 2 and forms a heat conduction path.
  • the heat generated by the light emitting unit 2 It can be conducted to the heat exchange unit 1 through heat conduction, and the heat exchange unit 1 can dissipate heat.
  • the heat exchange unit 1 is formed as an integral component, and includes a heat dissipation fin 101 and a base 102, and the heat dissipation fin 101 is connected to the base 102.
  • the heat dissipation fins 101 provide a heat dissipation area to dissipate the heat generated by the luminous body 21 (for example, the lamp beads of LED lighting equipment) during operation, and prevent the luminous body 21 from overheating (the temperature exceeds the normal working range of the luminous body 21, such as the temperature exceeds 120 degrees) ), and affect the life of the luminous body 21.
  • the heat dissipation fin 101 extends along a second direction Y, where the second direction Y is the width direction of the LED lighting device, which is perpendicular to the aforementioned first direction X.
  • the heat dissipation fins 101 are arranged along the second direction Y, they have a relatively short length (compared to the heat dissipation fins 101 arranged along the first direction X). Therefore, a pair of adjacent heat dissipation fins 101 is formed In the flow channel, assuming that the air is convective along the width direction of the LED lighting device, it has a relatively short convection path, which is beneficial to quickly dissipate the heat at the heat dissipation fin 101.
  • the heat dissipation fins 101 are arranged in parallel, and the heat dissipation fins 101 are evenly distributed in the first direction X.
  • the weight of the heat exchange unit 1 is uniformly or substantially uniformly distributed in the first direction X direction.
  • a section of heat exchange unit 1 is arbitrarily cut, and the weight ratio of another section of heat exchange unit 1 of the same length arbitrarily cut is 1:0.8 ⁇ 1.2 (the two heat exchange units Including the same or substantially the same number of heat dissipation fins 101).
  • the spacing value between the heat dissipation fins 101 is 8-30 mm. In one embodiment, the distance between the heat dissipation fins 101 is 8-15 mm. The spacing value can be determined according to the radiation and convection during heat dissipation.
  • an asymmetric design can be made for the form of the heat exchange unit. Any two radiating fins 101 in the first direction X, wherein the radiating fin 101 closer to the lamp holder 71 has more heat dissipation area (the height of the radiating fin 101 near the lamp holder 71 is relatively higher, so it can have more More heat dissipation area).
  • the heat dissipation fin 101 has a first part and a second part in the height direction.
  • the first part is arranged close to the base 102, the second part is arranged far away from the base 102, and the The thickness of the cross section at any position is greater than the thickness of the cross section at any position of the second part.
  • the heat dissipation fin 101 is divided into two parts with the same height, namely the first part and the second part.
  • the lower part of the heat dissipation fin 101 is mainly used to conduct heat generated by the light-emitting unit 2 while the upper part is mainly used to radiate heat to the surrounding air, based on this, the part of the heat dissipation fin 101 close to the heat dissipation substrate (ie the first part)
  • the cross-sectional thickness is relatively large, and the cross-sectional thickness of the heat dissipation fin part (that is, the second part) far from the heat dissipation substrate is relatively small.
  • the first part can ensure that the heat generated by the light-emitting unit 2 is conducted to the heat dissipation fin while the second part Under the premise of ensuring heat radiation, the weight of the entire heat dissipation fin 101 can be reduced.
  • the above arrangement can not only achieve a good heat dissipation effect, but also reduce the weight of the entire LED lighting device.
  • the heat generated by the light-emitting unit 2 during operation is conducted to the heat dissipation fin 101, and the heat is conducted on the heat dissipation fin 101 from bottom to top (assuming that the LED lighting device is installed horizontally). During this period, part of the heat is on the heat dissipation fin 101 In the conduction process, it is conducted to the surrounding air through radiation. In other words, the higher the upward direction, the smaller the heat conducted by the heat dissipation fin 101.
  • the heat flow Q mainly depends on the area of the heat conduction section and the temperature gradient in the heat flow direction. In one embodiment, when the temperature gradient is ignored, the heat flow Q mainly depends on the area of the heat conduction cross-section.
  • the thickness of the heat dissipation fin 101 can also be adjusted accordingly (assuming The width of the heat dissipation fin 101 is a certain value, and the deviation of the width dimension of the heat dissipation fin 101 in the height direction of the heat dissipation fin 101 is less than 30%) to further reduce the torque of the lamp cap 71 while ensuring heat dissipation.
  • the heat dissipation fins 101 are provided in several groups. Here, only the thickness of one set of heat dissipation fins 101 is used for illustration.
  • a coordinate system is established, and the thickness direction of the bottom of the heat dissipation fins 101 is taken as On the X axis, the height direction of the heat dissipation fin 101 is taken as the Y axis, and the thickness and height of the heat dissipation fin 101 satisfy the following formula:
  • the thickness value x of the heat dissipation fin 101 decreases.
  • the relationship between the radiation heat of the heat dissipation fin 101 is that the heat dissipation fin 101 The thickness is reduced when going up, which can still meet the needs of heat conduction.
  • the thickness of the heat sink 101 when going up is reduced, which can reduce its weight, thereby reducing the torque of the lamp cap 71 to provide a more relaxed weight design .
  • the value of a is between -40 and -100, and the value of K is between 80 and 150.
  • the units of the values of x and y are millimeters.
  • the value of a is between -50 and -90, and the value of K is between 100 and 140.
  • the same design is adopted between the heat dissipation fins 101, and the number of the heat dissipation fins 101 is n, so as a whole, the total thickness of the heat dissipation fins 101 (the sum of the thicknesses of all the heat dissipation fins 101) and the height satisfy The following formula:
  • y is the height value of the heat dissipation fin 101; a is a constant, and a is a negative number; x is the thickness of the heat dissipation fin 101; K is a constant; x*n is the total thickness of the heat dissipation fin 101.
  • the cross-sectional area of the heat dissipation fin 101 is equal to the thickness value multiplied by the width value. It is assumed that the width value of the heat dissipation fin 101 is a certain value (here the width value of the heat dissipation fin 101 is a fixed value, which means Is that in the height direction of the heat dissipation fin 101, the deviation of its width dimension is less than 30%), the thickness and height of the heat dissipation fin 101 satisfy the following formula:
  • the total cross-sectional area of the heat dissipation fin 101 (the sum of the cross-sectional areas of all the heat dissipation fins 101) is equal to the total thickness value of the heat dissipation fin 101 multiplied by the width value, and all the heat dissipation fins 101, assuming the heat dissipation fin
  • the width value of the fin 101 is a constant value of L (here the width value of the heat dissipation fin 101 is a constant value, which means that the deviation of the width dimension in the height direction of the heat dissipation fin 101 is less than 30%), then the heat dissipation fin
  • the total cross-sectional area of 101 satisfies the following formula:
  • nLx (y-K)nL/a
  • n is the number of heat dissipation fins 101.
  • the chamfered or rounded portion of the end of the heat dissipation fin 101 needs to be excluded.
  • the ratio of the heat dissipation area (unit: CM 2 ) of the heat dissipation fin 101 of the LED lighting device to the power (unit: W) of the LED lighting device is less than 28.
  • the weight of the heat exchange unit 1 is 0.6, 0.7, 0.8, or 0.9 kg. Under the weight limitation, the above-mentioned heat dissipation area, the thickness of the heat dissipation fin 101, etc. are designed.
  • the heat dissipation area of the single-piece heat dissipation fin 101 is approximately equal to the side area of the heat dissipation fin 101 plus the area of the thickness surface of the heat dissipation fin 101 (the area of the top surface of the heat dissipation fin 101 is relatively small, so basically The area of the top surface can be omitted), expressed as the following formula:
  • h is the height of the heat dissipation fin 101
  • L is the length of the heat dissipation fin 101 (if the sides of the heat dissipation fin 101 are irregularly shaped, the length here can refer to the average length of the heat dissipation fin 101)
  • S is the total heat dissipation area of the single-piece heat dissipation area 101
  • S1 is the side area of the heat dissipation fin 101
  • S2 is the area of the thickness surface of the heat dissipation fin 101
  • n is the number of heat dissipation fins.
  • the heat dissipation area S of the heat dissipation fin 101 of the LED lighting device (unit: CM 2
  • the ratio of) to the power P of the LED lighting equipment (in W) is less than 28 and greater than 18, that is, 18 ⁇ S/P ⁇ 28, that is, 18 ⁇ 2hLn/P+[(h-2K)/a]hn /p ⁇ 28. Under this ratio, the luminous efficiency of LED lighting equipment can reach at least 125 lumens per watt.
  • the weight of the heat dissipation fin 101 needs to be controlled to control the torque of the lamp cap 71. In one embodiment, the weight of the heat dissipation fin 101 is less than 0.4, 0.5, 0.6, 0.7, 0.8, or 0.9 kg, that is to say, under the above weight limitation, it is necessary to ensure that the thickness and heat dissipation area of the heat dissipation fin 101 meet the above formula .
  • the shape of the heat dissipation fin 101 can be selected from one or a combination of square, sector, arc, curve, etc.; the shape of the heat dissipation fin 101 can also be selected from A convex shape with a high middle and low sides, or a concave shape with a low middle and high sides; at least one heat dissipation fin 101 can be a continuous one-piece structure or discontinuous multiple small heat dissipation fins Combined structure; at least one heat dissipation fin 101 surface can be provided with diversion grooves and/or through holes to enhance the turbulence of the fluid and enhance the heat transfer effect.
  • FIG. 19 (a)-(d) show schematic diagrams of several optional shapes of the heat dissipation fins according to the content of this embodiment, and (e)-(h) show that there are through holes thereon And a schematic diagram of the diversion tank.
  • the surface of the heat sink fins can also be treated accordingly, for example, the surface of the heat sink fins
  • the heat dissipation unit can be paint or radiation heat dissipation paint (mainly using silicon carbide or nanocarbon series, etc.) to improve the efficiency of radiation heat dissipation, thereby reducing the heat of the heat dissipation fins Disperse quickly.
  • the heat dissipation unit can also be formed by forming a nano-structured porous alumina layer on the surface of the heat dissipation fin by anodizing in the electrolyte, so that a layer of alumina nanopores can be formed on the surface of the heat dissipation fin. Increase the number of heat sink fins while enhancing the heat dissipation capacity of the heat sink.
  • the heat dissipation unit can also be coated with a layer of graphene on the surface of the heat dissipation fins.
  • Graphene is a two-dimensional carbon nanomaterial with a hexagonal honeycomb lattice composed of carbon atoms. It has excellent optical, electrical and mechanical properties.
  • the thermal conductivity is as high as 5300W/mk, so it is very suitable for helping LED lighting equipment to dissipate heat.
  • the emissivity of the surface is greater than 0.7, thereby improving the heat radiation efficiency of the heat dissipation fin surface.
  • the substrate 22 is fixed to the base 102 of the heat exchange unit 1, and forms a heat conduction path.
  • a hole 2201 is provided on the substrate 22.
  • the two sides of the substrate 22 are connected through the hole 2201, which facilitates the convective heat dissipation of the heat exchange unit 1.
  • the base 102 of the heat exchange unit 1 is provided with a convection opening 1021 corresponding to the hole 2201.
  • the above-mentioned hole 2201 may not be provided on the substrate 22.
  • the luminous body 21 is disposed on the substrate 22 and is electrically connected to the power source 4.
  • the light-emitting bodies 21 may be connected in parallel, series, or series-parallel.
  • the substrate 22 is an aluminum substrate, and its main material component is aluminum.
  • the base 102 of the heat exchange unit 1 is made of aluminum.
  • the substrate 22 and the heat exchange unit 1 are made of the same material, they have the same or approximately the same expansion ratio. That is to say, the substrate 22 and the heat exchange unit 1 will not suffer from repeated heating and cooling when the LED lighting device is used for a long time. Alternately, and different expansion and contraction rates appear to prevent loosening.
  • the luminous body 21 has a plurality and is disposed on the substrate 22.
  • the third part III is divided into a first area and a second area by a plane A (the plane is perpendicular to the axis of the lamp cap 71) (the length of the first area or the second area in the length direction of the LED lighting device is in the third More than 30% of the total length of the part III to exclude the influence of some extreme situations, for example, the first area is the area where the luminous body 21 is not provided at the end of the third part III).
  • the number of luminous bodies 21 included in the first region is X 1
  • the number of luminous bodies 21 included in the second region is X 2 .
  • the heat dissipation area of the heat dissipation fins 11 included in the first region is Y 1
  • the heat dissipation area of the heat dissipation fins 101 included in the second region is Y 2
  • the relationship between the heat dissipation area and the number of luminous bodies 21 meets the following conditions:
  • the above ratio is between 0.8 and 1.2, which can ensure that the luminous body 21 has a corresponding and sufficient heat dissipation area for heat dissipation. Especially when there is a difference in the distribution of the luminous body 21 or the distribution of the heat dissipation area, the above difference can be prevented from being too large and affecting the heat dissipation of part of the luminous body 21.
  • the luminous body 21 has a plurality and is disposed on the substrate 22.
  • the third part III is divided into a first area and a second area by a plane A (the plane is perpendicular to the axis of the lamp cap 71) (the length of the first area or the second area in the length direction of the LED lighting device is in the third More than 30% of the total length of the part III to exclude the influence of some extreme situations, for example, the first area is the area where the luminous body 21 is not provided at the end of the third part III).
  • the total luminous flux of the first area is N 1
  • the number of luminous bodies 21 included in the second area is N 2 .
  • the heat dissipation area of the heat dissipation fins 11 included in the first region is Y 1
  • the heat dissipation area of the heat dissipation fins 101 included in the second region is Y 2
  • the relationship between the heat dissipation area and the number of luminous bodies 21 meets the following conditions:
  • the above ratio is between 0.8 and 1.2, which can ensure that when a certain luminous flux is emitted, there is a corresponding and sufficient heat dissipation area for heat dissipation. Especially when there is a difference in the distribution of the luminous flux in the first region and the second region or the distribution of the heat dissipation area is different, the above difference can be prevented from being too large and affecting the heat dissipation.
  • the substrate 22 may be a PCB rigid board, an FPC soft board, or an aluminum substrate.
  • An exemplary control circuit may be provided on the substrate 22 to further control the luminous body 21 to achieve various desired functions.
  • the housing 3 and the heat exchange unit 1 are connected by a fixing unit 6.
  • the fixing unit 6 includes a first member 61, a second member 62 and a positioning unit 63.
  • the first member 61 and the second member 62 are slidably connected.
  • the first member 61 may be disposed on the lamp housing 3 and the second member 62 may be disposed on the heat exchange unit 1.
  • the first member 61 may be disposed on the heat exchanger, and the second member 62 may be disposed on the lamp housing 3.
  • the first member 61 may be configured as a sliding groove, and the second member 62 may be configured as a guide rail.
  • the positioning unit 63 is used to make the first member 61 and the second member 62 relatively fixed when the first member 61 and the second member 62 cooperate with each other. At this time, the heat exchange unit 1 and the housing 3 are relatively fixed. Specifically, the first member 61 and the second member 62 are provided with positioning grooves 611 and 621 correspondingly, and the positioning unit 63 is fitted in the positioning grooves 611 and 612 to restrict the sliding of the first member 61 and the second member 62 with each other. In an embodiment, the positioning unit 63 is disposed on the light output unit 5.
  • the light output unit 5 is provided with a fastening device.
  • the fastening device is a buckle 51, and the light output unit 5 is fixed to the heat exchange unit 1 through the buckle, and the fixing of the light output unit 5 has been completed.
  • the light output unit 5 can also be fixed to the heat exchange unit 1 by adopting a structure in the prior art such as a snap connection and a screw connection.
  • the light output unit 5 may be additionally configured with an optical device, and the optical device may be configured with a degree of reflection, refraction and/or scattering to provide any suitable combination of reflection, refraction and/or scattering, for example, a reflection device, Diffusion device, etc.
  • the optical device may also be configured to increase the light flux passing through the light output unit 5, for example, using an anti-reflection film.
  • the optical device can also be configured to adjust the light profile, for example, a lens, a reflective device, etc. are used.
  • FIG. 17 a schematic diagram of the cooperation between the heat dissipation fin 101 and the luminous body 21 is shown.
  • the distance from any one light-emitting body 21 to the adjacent heat dissipation fin 101 is greater than that of the light-emitting body 21 To any other luminous body 21.
  • the heat generated by the luminous body 21 can be transferred to the adjacent heat dissipation fins 101 faster, thereby reducing the influence of the heat generated by the luminous body 21 on other luminous bodies 21.
  • the light output unit 5 includes a first light output area 52 and a second light output area 53, and the first light output area 52 is configured to receive the light directly emitted by the luminous body 21 during operation ( Non-reflected light), and the light directly emitted by the luminous body 21 is at least partially emitted from the first light-emitting area 52, while the second light-emitting area 53 only receives the reflected light, and at least a part of the reflected light is emitted from the second light Area 53 shoots out.
  • the LED lighting equipment is provided with a reflecting device, and at least a part of the light generated by the luminous body 21 during operation is reflected by the reflecting device one or more times, and then emitted from the second light emitting area 53.
  • the total luminous flux emitted by the second light-emitting area 53 accounts for 0.01%-40% of the total luminous flux emitted by the luminous body 21.
  • the total luminous flux emitted by the second light-emitting region 53 accounts for 1%-10% of the total luminous flux emitted by the luminous body 21. In this way, the glare problem caused by the local strong light of the light output unit 5 can be solved, and the light output can be more uniform.
  • the average illuminance on the second light-emitting area 53 is at least 0.01% or more of the average illuminance on the first light-emitting area 52 and not more than 35%. In some embodiments, the average illuminance on the second light-emitting area 53 is at least 1%-20% of the average illuminance on the first light-emitting area 52.
  • the reflecting device includes a first reflecting surface 521 configured to reflect at least part of the light directly emitted by the luminous body 21.
  • the reflecting device includes a second reflecting surface 223 configured to reflect the light reflected by the first reflecting surface 521 and at least part of the light reflected by the first reflecting surface 521 Reflected to the second light emitting area 53.
  • the first reflective surface 521 is provided on the inner surface of the first light-emitting area 52.
  • the first reflective surface 521 may be coated on the inner surface of the first light-emitting area 52 so as to transmit a part of the light and reflect a part of the light.
  • the first reflective surface 521 can also be directly the inner surface of the first light-emitting region 52, and the first reflective surface 521 has the functions of transmission and reflection based on the material properties of the first light-emitting region 52.
  • the ratio of the light flux reflected from the first reflective surface 521 to the light flux transmitted through the first reflective surface 521 is between 0.003 and 0.1.
  • the refractive index of the first light-emitting area 52 is configured to be between 1.4 and 1.7, so that the first reflective surface 521 can transmit light The performance and reflection performance reach a better value.
  • the second reflective surface 223 is provided on the surface of the substrate 22 of the light-emitting unit 2. Specifically, the surface of the substrate 22 is coated with a reflective layer to form the second reflective surface 223.
  • the second reflective surface 223 may be a material with a reflective function in the prior art, which will not be listed here.
  • the total light transmittance (the ratio of the light transmitted by the light output unit 5 to the light emitted by the luminous body 21) of the LED lighting device is greater than 90%. In an embodiment, the total light transmittance (the ratio of the light transmitted by the light output unit 5 to the light emitted by the luminous body 21) of the LED lighting device is greater than 93%. In one embodiment, the light efficiency of the LED lighting device is greater than 130 lumens per watt.
  • an anti-reflection coating may be provided on the light output unit 5, so as to reduce the reflection of light when it hits the light output unit 5, thereby increasing the light transmittance, so that The luminous efficiency of LED lighting equipment can reach at least 135 lumens per watt.
  • the first light-emitting area 52 and the second light-emitting area 53 are specifically divided as follows.
  • the light-emitting angle of the light-emitting body 21 is a
  • the area where the light directly emitted by the light-emitting body 21 is projected to the light output unit 5 is the first light-emitting Area 52
  • other areas on the light output unit 5 where light is emitted are the second light-emitting areas 52.
  • an anti-reflection film 54 is provided on the inner surface of the light output unit 5, so that the light transmittance of the LED lighting device can reach 95% or more.
  • the light generated by the luminous body 21 during operation passes through the first medium (which may be the air between the luminous body 21 and the light output unit 5), the antireflection film 54 and the light output unit 5 in order.
  • the refractive index of the first medium is n1
  • the refractive index of the light output unit 5 is n2
  • the refractive index of the antireflection film 54 is n, where the refractive index of the antireflection film 54 conforms to the following formula:
  • the light output unit 5 adopts a light-transmitting material, such as glass, plastic, etc.
  • the light output unit 5 is an integral structure or a structure formed by splicing multiple pieces.
  • the light output unit 5 has a hole to correspond to the hole 2201 on the substrate 22.
  • the cross-sectional shape of the light output unit 5 is a wave shape, a circular arc shape or a linear shape.
  • the light output unit 5 can have better strength.
  • the heat generated during the operation of the light-emitting unit needs to be transferred to the heat exchange unit as soon as possible, and the heat exchange unit is used for heat dissipation.
  • the heat of the light-emitting unit is conducted to the heat exchange unit, one of the factors that affect the conduction speed is the thermal resistance between the light-emitting unit and the heat exchange unit.
  • the contact area between the light-emitting unit 2 (the substrate 22 of the light-emitting unit 2) and the heat exchange unit 1 needs to be increased.
  • a thermally conductive glue is arranged between the light emitting unit 2 and the heat exchange unit 1.
  • the thermally conductive adhesive can be specifically thermally conductive silicone grease or other similar materials.
  • the gap between the light-emitting unit 2 and the heat exchange unit 1 can be filled, so as to increase the contact area of the light-emitting unit 2 and the heat exchange unit 1, so that the heat between the light-emitting unit 2 and the heat exchange unit 1 Resistance is reduced.
  • the thermal conductive glue is first coated on the light-emitting unit 2 and then the light-emitting unit 2 is connected to the heat exchange unit 1. In other embodiments, the thermally conductive glue can also be coated on the heat exchange unit 1 first.
  • a fixing structure for fixing the light-emitting unit 2 is provided on the heat exchange unit 1.
  • the heat exchange unit 1 includes a fixing unit 12, and the fixing unit 12 is matched and fixed with the outer edge of the substrate 22 of the light-emitting unit 2.
  • the heat exchange unit 1 includes a base 102, and the fixing unit 12 includes a first fixing unit 121 and a second fixing unit 122.
  • the first fixing unit 121 and the second fixing unit 122 are arranged and arranged in the length direction of the heat exchange unit 1. All are fixed on the base 13.
  • the first fixing unit 121 and the second fixing unit 122 are disposed on the other side of the base 102 opposite to the heat dissipation fin 101.
  • the first fixing unit 121 and the second fixing unit 122 are respectively matched with both ends in the longitudinal direction of the substrate 22.
  • the first fixing unit 121 includes a first groove portion 1211
  • the second fixing unit 122 includes a second groove portion 1221.
  • the first groove portion 1211 and the second groove portion 1221 are arranged opposite to each other in the opening direction, and one end in the longitudinal direction of the substrate 22 is locked in In the first groove portion 1211, the other end in the longitudinal direction of the substrate 22 is locked in the second groove portion 1221.
  • a first wall 1212 is provided on the first fixing unit 121, and the first groove 1211 is formed between the first wall 1212 and the base 13.
  • a second wall 1222 is provided on the second fixing unit 122, and the second groove portion 1221 is formed between the second wall 1222 and the base 13.
  • the end of one side of the substrate 22 abuts against the bottom 12211 of the second groove 1221 to control the installation position of the substrate 22 to ensure the consistency of the installation positions of the substrate 22 of different LED lighting devices.
  • the other side of the substrate 22 maintains a gap with the bottom 12111 of the first groove portion 1211.
  • the setting of the gap can prevent the substrate 22 from being squeezed and deformed by the base 13.
  • the substrate 22 and the base 13 may have different shrinkage rates due to different materials. After a long period of heat and cold alternately, the substrate 22 may be squeezed by the base 13 in the length direction, causing the substrate 22 to bulge.
  • the setting of the gap can effectively prevent this from happening.
  • the thickness dimension of the first wall 1212 gradually decreases in the direction approaching the second wall 1222.
  • the first wall 1212 is more susceptible to force deformation on its opposite outer side.
  • the second wall 1222 can also be arranged in the same manner, that is, the thickness of the second wall 1222 gradually decreases in the direction close to the first wall 1212.
  • both ends of the substrate 22 are simultaneously inserted into the first groove portion 1211 and the second groove portion 1221 (not shown) in the lateral direction.
  • the first groove portion 1211 and the second groove portion 1221 provide a similar
  • the structure of the chute and the guide rail is installed and arranged with the base plate 22. In this way, the mounting method of the substrate 22 is relatively simple.
  • the substrate 22 in order to prevent the thermally conductive glue pre-coated on the back of the substrate 22 from overflowing during the installation process, the substrate 22 can be installed in different ways. Specifically, the base plate 22 is directly attached to the base 13 from above the base 13, and both ends of the base 22 are inserted into the first groove portion 1211 and the second groove portion 1221, respectively.
  • the first wall 1212 has a first state (before the first wall 1212 is deformed by force).
  • the inner surface of the first wall 1212 is set as an inclined surface 12121.
  • the distance between the inclined surface 12121 and the base 13 gradually decreases in the direction of the second wall 1222, so that the opening of the first groove 1211 is flared, so that the substrate 22 is directly obliquely above the base 13 (substrate 22 Maintaining an included angle with the base 13) is inserted into the first groove 1211.
  • the distance from the bottom 12111 of the first groove 1211 to the end of the second wall 1222 is greater than the length of the substrate 22.
  • the substrate 22 when one end of the substrate 22 is inserted into the first groove 1211 and the end is pressed against the bottom 12111 of the first groove 1211, the substrate 22 can be directly attached to the base 13 downward. Then, the base 13 is translated so that one end of the base 13 abuts the bottom 12211 of the second groove 1221. At this time, the end of the first wall 1212 and the end of the second wall 1222 correspond to each other in the thickness direction of the base 22 For the substrate 22, the substrate 22 is finally pressed by the first wall 1212 and the second wall 1222.
  • the mounting method of the substrate 22 in this embodiment includes the following steps:
  • a force is applied to the first wall 1212 and the second wall 1222, so that the first wall 1212 and the second wall 1222 are respectively pressed against the surface of the substrate 22 (refer to FIG. 23).
  • the first wall 1212 and the second wall 1222 may adopt different forms. Specifically, the first wall 1212 and the second wall 1222 are arranged in a form perpendicular to the surface of the base 13 before being deformed, and the distance between the first wall 1212 and the second wall 1222 is larger or slightly larger than that of the substrate 22.
  • the length (specifically, the difference between the distance between the first wall 1212 and the second wall 1222 and the length of the substrate 22 is 0-3mm), so that the substrate 22 can be placed directly above the base 13 into the first Between the wall 1212 and the second wall 1222.
  • the mounting method of the substrate 22 in this embodiment includes the following steps:
  • a force is applied to the first wall 1212 and the second wall 1222 so that the first wall 1212 and the second wall 1222 are pressed against the surface of the substrate 22 respectively.
  • the heat exchange unit 1 can further fix the substrate 22 and the heat exchange unit 1. Such as further connection by bolts or rivets.
  • connecting holes 116 are provided on the base 102 between the heat dissipation fins 101 for connection. At this time, the substrate 22 needs to be opened corresponding to the connection hole 116, which will not be repeated here.
  • the position of the thermal conductive adhesive can be designed accordingly.
  • the thermally conductive adhesive 23 when the thermally conductive adhesive 23 is coated on the other side of the substrate 22 opposite to the luminous body 21, the thermally conductive adhesive 23 is kept at a distance from the outer edge of the substrate 22 . Therefore, when the substrate 22 is attached to the base 13, the thermal conductive glue 23 has a certain flow space outward to prevent the thermal conductive glue from overflowing.
  • the main effect of the glue overflow is that the thermally conductive glue overflows from both sides in the width direction of the substrate 22, which affects the aesthetics, and the two sides in the length direction of the base 22 are locked into the first groove 1211 and the first groove.
  • the second groove portion 1221 is blocked by the first groove portion 1211 and the second groove portion 1221 even if the thermally conductive glue overflows.
  • the thermal conductive glue when the thermal conductive glue is set, after the substrate 22 and the base 13 are installed, the thermal conductive glue is set to maintain a distance between the two sides in the width direction of the substrate 22, and the spacing value ranges from 0 to 10 mm. Preferably, the spacing value ranges from 0 to 5 mm.
  • a first accommodating groove 131 is provided on the base 13, and when the substrate 22 is mounted on the base 13, the first accommodating groove 131 corresponds to the outer edge of the substrate 22 , And does not exceed the outer boundary of the substrate 22.
  • the cross-sectional shape of the first accommodating groove 131 can be set to be square, arc, triangle, or the like. Therefore, when the substrate 22 and the base 13 are installed, the thermally conductive glue can flow to the first accommodating groove 131 to prevent the excess thermally conductive glue from overflowing.
  • the substrate 22 may be provided with a similar structure.
  • a second receiving groove 222 may be provided on the surface of the substrate 22 opposite to the base.
  • the second accommodating groove 222 can be opened on both sides of the substrate 22 in the width direction.
  • the cross-sectional shape of the second accommodating groove 222 can be set to be square, arc or triangle. In other embodiments, the design of the first accommodating groove 131 and the second accommodating groove 222 may be used at the same time.
  • the light-emitting unit 2 when the light-emitting unit 2 is working, its heat source is mainly generated from the light-emitting body 21, and the light-emitting body 21 is provided in a setting area 221 of the substrate 22 (the setting area 221 includes a The connecting wire connecting the luminous body 21), in order to ensure that the substrate 22 is in the contact area of the base 13 on the luminous body 21, a thermally conductive glue can be applied to the other side of the substrate 22 opposite to the luminous body 21, and the position of the thermally conductive glue 23 corresponds The position of the installation area 221 (the installation position of the thermally conductive adhesive 23 corresponds to the position of the installation area at least 70%, that is, the position of the thermally conductive adhesive 23 corresponds to the position of the installation area 221).
  • the heat exchange unit 1 may also adopt a split structure. As shown in FIGS. 31, 32, 33, 34 and 25, in an embodiment, the heat exchange unit 1 includes a first heat dissipation member 11 and a second heat dissipation member 12.
  • the basic structures of the first heat sink 11 and the second heat sink 12 are substantially the same as the one-piece heat exchange unit 1 of the previous embodiment.
  • the first heat sink 11 and the second heat sink 12 are arranged in the second direction Y. In the second direction Y, the first heat dissipation element 11 and the second heat dissipation element 12 are different from each other, so that the heat exchange unit 1 has a folded state and an expanded state.
  • the heat exchange unit 1 can be switched between a folded state and an expanded state.
  • the heat exchange unit 1 has a width dimension A in the folded state, the heat exchange unit 1 has a width dimension B in the unfolded state, and the width dimension A of the heat exchange unit 1 in the folded state is smaller than that of the heat exchange unit 1
  • the width dimension B of the exchange unit 1 in the expanded state When the heat exchange unit 1 is in the folded state, the heat exchange unit 1 has a smaller volume (or a smaller width dimension), which is beneficial to the packaging, transportation and installation of the LED lighting equipment. From the perspective of installation, when the LED lighting device needs to be used in the lamp, when the heat exchange unit 1 is in the folded state, it is more convenient for the LED lighting device to be installed in the lamp in a rotating manner, so that the heat exchange unit 1 is not easy to collide with the lamp.
  • the heat exchange unit 1 When the heat exchange unit 1 is in the expanded state, it has a larger area or space that can be used for heat dissipation, which is more conducive to the heat dissipation of the LED lighting device. From the perspective of use, when installing, the heat exchange unit 1 can be folded first to facilitate the installation. After the installation is completed, the heat exchange unit 1 can be unfolded to facilitate the heat dissipation of the LED lighting equipment.
  • the second direction Y in this embodiment is the width direction when the LED lamp is in use. In other embodiments, the second direction Y may be a different direction, for example, the second direction Y is at a certain angle with the substrate 22, and for example, the second direction Y is a direction along a circle.
  • the ratio of the width dimension B of the heat exchange unit 1 in the expanded state to the width dimension A of the heat exchange unit 1 in the collapsed state is not less than 1.1, and Not more than 2.
  • the ratio of the width dimension B of the heat exchange unit 1 in the unfolded state to the width dimension A of the heat exchange unit 1 in the folded state is not less than 1.2 and not more than 1.8. In this way, sufficient adjustment space is obtained for the heat exchange unit 1. So that the heat exchange unit 1 has enough space for adjustment.
  • the first heat dissipation member 11 includes a first heat dissipation fin 111
  • the second heat dissipation member 12 includes a second heat dissipation fin 121.
  • the first heat dissipation fin 111 and The second heat dissipation fins 121 at least partially overlap in the first direction X.
  • the first heat dissipation fin 111 and the second heat dissipation fin 121 do not overlap in the first direction X, or the first heat dissipation fin 111 and the second heat dissipation
  • the size of the overlapping portion of the fin 121 in the first direction X is smaller than that in the folded state.
  • first heat dissipation fin 111 and the second heat dissipation fin 121 are spaced apart in the first direction X. Therefore, the first heat dissipation fin 111 and the second heat dissipation fin 111 are separated from each other in the first direction X.
  • the sheets 121 are not in contact to avoid thermal mutual influence.
  • the first heat dissipation fin 111 and the second heat dissipation fin 121 are arranged parallel or substantially parallel.
  • the spacing value between the first heat dissipation fins 111 is 8-25 mm, preferably 8-15 mm, and the spacing value can be determined according to radiation and convection during heat dissipation.
  • the spacing value between the second heat dissipation fins 121 can be the same as the spacing value between the first heat dissipation fins 111, which not only makes it possible to meet the heat dissipation requirements under the condition of controlling the weight, but also facilitates the heat exchange unit 1 in the folded state When switching between the expanded state and the expanded state, the first heat dissipation fin 111 and the second heat dissipation fin 121 do not abut against each other and friction.
  • the spacing value between the second heat dissipation fins 121 is also possible to set the spacing value between the second heat dissipation fins 121 to be different from that of the first heat dissipation fins within the design range where there is no mutual friction between the first heat dissipation fins 111 and the second heat dissipation fins 121. 111.
  • the adjustment unit 8 in order to realize the folded state and the expanded state of the heat exchange unit 1, it specifically includes an adjustment unit 8.
  • the adjustment unit 8 can be directly arranged on the surface of the housing 3 facing the heat exchange unit 1. And it is integrally formed with the housing 3, or formed in other ways, and then fixed on the housing 3.
  • the adjusting unit 8 includes a sliding rail 81, a first positioning unit 82, a second positioning unit 83, and an elastic member 84.
  • the sliding rail 81 extends along the second direction Y, and the first heat sink 11 and the The second heat sink 12 is provided with corresponding components to match the slide rail 81 so that the first heat sink 11 and the second heat sink 12 can move directionally along the slide rail 81 (the second direction Y).
  • the first heat sink 11 is provided with a first element 112 to match the slide rail 81
  • the second heat sink 12 is provided with a second element 122 to match the slide rail 81.
  • the number of slide rails 81 can be set in multiple groups, which has provided connection stability.
  • the end of the housing 3 is provided with a long sliding rail on one side in the thickness direction of the LED lighting device, and the first element 112 of the first heat sink 11 and the second heat sink are provided.
  • the second element 122 of the member 12 is shared, and the other side of the end of the housing 3 in the thickness direction of the LED lighting device is respectively provided with two short slide rails with a shorter length, respectively matching the first heat sink 11
  • the number of slide rails can also be any other number.
  • two short sliding rails are respectively provided at the upper and lower ends of the housing 3 to match the first element 112 of the first heat sink 11 and the second element 122 of the second heat sink 12 respectively.
  • the first positioning unit 82 and the second positioning unit 83 limit the sliding strokes of the first heat sink 11 and the second heat sink 12, that is, the closed state and the expanded state are maintained by the first positioning unit.
  • the unit 82 and the second positioning unit 83 are implemented.
  • the first positioning unit 82 positions and fixes the first heat sink 11 and the second heat sink 12, and when the heat exchange unit 1 is in the unfolded state, the second positioning unit 83 positions the first heat sink 11 and the second heat dissipation member 12 to limit the unfolded size of the first heat dissipation member 11 and the second heat dissipation member 12.
  • the elastic member 84 is arranged on the heat exchange unit 1 and exerts force on the first heat sink 11 and the second heat sink 12 with its elastic potential energy.
  • the first positioning unit 82 When the positioning and fixing of the first heat sink 11 and the second heat sink 12 by the first positioning unit 82 is released, the first heat sink 11 and the second heat sink 12 will automatically unfold, and the second positioning unit 83 restricts the first heat sink 11 And the expanded size of the second heat sink 12.
  • the first positioning unit 82 includes a first buckling portion 821, a second buckling portion 822, an elastic arm portion 823, and a pressing portion 824.
  • the first buckling portion 821, the second buckling portion 822, and the pressing portion 824 are all fixed On the elastic arm 823, the elastic arm 823 is fixed to the housing 3.
  • the first heat sink 11 has a first concave portion 113, and the first concave portion 113 matches the first buckling portion 821.
  • the second heat sink 12 has a second concave portion 123, and the second concave portion 123 matches the second buckling portion 822.
  • the first buckling portion 821 is locked into the first concave portion 113, and the second buckling portion 822 is locked into the second concave portion 123.
  • the elastic arm portion 823 changes the first concave portion with its elastic deformation.
  • the positions of a buckling portion 821 and a second buckling portion 822 enable the first buckling portion 821 and the second buckling portion 822 to escape from the first concave portion 113 and the second concave portion 123.
  • the first heat sink 11 And the second heat sink 12 is automatically expanded by the action of the elastic member 84.
  • the second positioning unit 83 includes a first positioning portion 831 and a second positioning portion 832.
  • the first positioning portion 831 and the second positioning portion 832 are both provided on the housing 3, and the first heat sink 11 is provided with a first positioning hole 114 ,
  • the second heat sink 12 is provided with a second positioning hole 124, the first positioning portion 831 is matched with the first positioning hole 114, and the second positioning portion 832 is matched with the second positioning hole 124, thereby restricting the first heat sink 11 and the second positioning hole.
  • the first positioning portion 831 and the second positioning portion 832 protrude from the end surface of the housing 3 when there is no external force.
  • the first positioning portion 831 and the second positioning portion 832 may be provided on the heat exchange unit 1, and the first positioning hole 114 and the second positioning hole 124 may be provided on the housing 3.
  • the first positioning portion 831 and the second positioning portion 832 of the second positioning unit 83 each include an elastic arm 8311, 8321.
  • the first element 112 and the second element 122 of a heat sink 11 and a second heat sink 12 move along the slide rail 81 from both sides of the housing 3 to the central axis.
  • the first positioning portion 831 and the second positioning portion 832 are respectively The elastic arms 8311 and 8312 are first pressed down, and then respectively pop up in the first positioning hole 114 of the first heat sink 11 and the second positioning hole 124 of the second heat sink 12 to realize the first heat sink 11 and the second positioning hole 124.
  • the position of the second heat sink 12 is fixed.
  • inelastic potential energy can also be applied to the first heat sink 11 and the second heat sink 12 to switch the heat exchange unit 1 between the collapsed state and the expanded state, for example, an external force is directly used. Way to achieve.
  • a third positioning unit 85 can also be provided on the housing 3, and a first positioning groove 1121 and a second positioning groove 1121 and a second positioning groove 1121 are provided on the first element 112 and the second element 122 to match it
  • the positioning groove 1221 when the heat exchange unit is in the collapsed state, the third positioning unit 85 abuts the first positioning groove 1121 and the second positioning groove 1221 respectively, thereby restricting the first heat sink 11 and the second heat sink 12 Continue to move towards each other when collapsed.
  • the third positioning unit 85 is provided on the elastic arm portion 823.
  • the third positioning unit 85 is a convex structure.
  • the third positioning unit 85 is formed in a cylindrical shape.
  • the first element 112 of the first heat sink 11 is provided with a first positioning groove 1121 at a position corresponding to the third positioning unit 85, and the first positioning groove 1121 is arranged in a shape matching the third positioning unit 85, when When the third positioning unit 85 is cylindrical, the first positioning groove 1121 is configured as a semicircular groove.
  • the second element 122 of the second heat sink 12 is provided with a second positioning groove 1221 at a position corresponding to the third positioning unit 85, and the second positioning groove 1221 is also set to match the third positioning unit 85
  • the third positioning unit 85 is configured as a cylindrical shape
  • the second positioning groove 1221 is configured as a semicircular groove. Based on this design, when the heat exchange unit 1 is in the collapsed state, the cylindrical protrusions of the third positioning unit 85 abut against the first positioning groove 1121 and the second positioning groove 1221 respectively, thereby further restricting the first positioning groove 1121 and the second positioning groove 1221. The heat dissipation element 11 and the second heat dissipation element 12 continue to move towards each other when in the folded state.
  • the third positioning unit 85 can also be formed in any other convex shape, such as an ellipse, a square, a diamond, a sphere, an arbitrary polygon, etc., as long as it can meet the function of limiting the position. It can be one, two or more.
  • the position of the third positioning unit 85 can be set at other suitable positions on the housing 3 except for the elastic arm portion 823, preferably at the middle of the surface of the housing 3 facing the heat exchange unit 1. On the axis.
  • the third positioning unit 85 can also only provide positioning components ( Figures) only on the first element 112 of the first heat sink 11 and the second element 122 of the second heat sink 12 at positions corresponding to each other. (Not shown) to further restrict the first heat sink 11 and the second heat sink 12 to continue to move towards each other in the folded state, for example, a protrusion is provided at the corresponding position of the first element 112 and the second element 122 respectively.
  • the protrusion can be formed into any suitable protrusion shape, as long as it can meet the function of limiting the position, and the number can also be one, two or more.
  • the corresponding guiding structure in order to increase the relative sliding stability of the first heat sink 11 and the second heat sink 12, and further reduce the first heat sink 11 and the second heat sink when unfolding 12
  • the corresponding guiding structure can be designed.
  • the first heat sink 11 and the second heat sink 12 are respectively provided with guide holes 115, 125, and then a positioning shaft is used to pass through the guide holes 115, 125 to improve the relative sliding of the first heat sink 11 and the second heat sink 12
  • the stability prevents the first heat dissipation member 11 and the second heat dissipation member 12 from being inclined to each other when unfolding.
  • the guide holes 115 and 125 are provided at the ends of the first heat dissipation fin 111 and the second heat dissipation fin 121 close to the light emitting unit 2.
  • the elastic member 84 may be disposed in one of the guide holes, and the elastic potential energy of the first heat dissipation member 11 and the second heat dissipation member 12 can be applied by the positioning member (such as a protrusion) on the positioning shaft.
  • only one of the first heat sink 11 and the second heat sink 12 is provided with a guide hole, and the other heat sink is provided with a positioning shaft at a position corresponding to the guide hole, so that the The guide positioning shaft is inserted into the guide hole to improve the relative stability of the first heat dissipating element 11 and the second heat dissipating part 12, and prevent the first heat dissipating part 11 and the second heat dissipating part 12 from tilting each other when unfolding .
  • At least one guide hole 115, 125 is provided on each heat sink.
  • multiple guide holes 115 and 125 can be provided in the length direction of the heat exchange unit 1, for example, one end of the heat exchange unit 1 close to the housing 3 and one end far away from the housing 3.
  • a first heat dissipation fin 111 of the first heat sink 11 is provided with a spacer 1111. Therefore, on the one hand, a connecting hole 116 can be provided at the spacer 1111, and on the other hand, On the one hand, the convection at the interval 1111 can be increased.
  • the connection hole 116 is used to fix the substrate 22 to prevent the substrate 22 from swelling, thereby reducing the contact area between the substrate 22 and the heat exchange unit 1 and ultimately reducing the heat transfer efficiency.
  • bolts, rivets, etc. can be used to pass through the connecting hole 116 to realize the connection between the substrate 22 and the heat exchange unit 1.
  • the connecting hole 126 on the second heat dissipating fin 121 is located between the two second heat dissipating fins 121, so there is no need to provide the connecting hole 116.
  • the connecting hole 116 can also be adjusted without providing a spacer. Therefore, the connecting hole 116 of the first heat sink 11 and the connecting hole 126 of the second heat sink 12 are in the first direction X. The location is different.
  • the heat exchange unit 1 when the heat exchange unit 1 has a first heat sink 11 and a second heat sink 12, two sets of light emitting units 2 and two sets of light output units 5 are correspondingly provided.
  • the first heat sink 11 includes a first base 117
  • the second heat sink 12 includes a second base 127.
  • the two sets of light-emitting units 2 are respectively disposed on the first base 117 and the second base 127.
  • the two sets of light output units 5 are respectively covered on the two sets of light-emitting units 2.
  • a slot 128 is provided at a position corresponding to the guide hole 115 or 125 on any one of the first base 117 and the second base 127.
  • the slot 128 is provided on the second heat dissipation substrate 127.
  • the distance between the two groups of light-emitting units 2 increases, so that the LED lighting equipment has a larger light output range.
  • the two sets of substrates 22 are provided with holes 2211.
  • the two sides of the substrate 22 are connected through the holes 2211, which facilitates the convection heat dissipation of the heat exchange unit 1.
  • the number of holes 2211 on each group of substrate 22 can be set to one or more.
  • the two sets of substrates 22 can also be configured to form an angle C with each other to adjust the light-emitting angle of the LED lighting device. Specifically, the light-emitting angle of the LED lighting device increases accordingly. .
  • the angle C between the two sets of substrates may be between 120 degrees and 170 degrees, thereby obtaining a larger light emitting range.
  • the setting of the included angle C formed between the two sets of substrates 22 can ensure the brightness under the LED lighting device and the overall light output angle of the LED lighting device.
  • a lens in order to increase the light output angle of the LED lighting device, a lens may also be provided.
  • a lens 201 may be further provided on the luminous body 21 to increase the light output angle of the LED lighting device.
  • the lens 201 can be arranged on a single luminous body 21. It is clear that the lens 3211 can also be arranged on multiple luminous bodies 21, that is, a single lens 201 corresponds to multiple luminous bodies 21 (not shown) .
  • the light emitting module 3200 is connected to the heat exchange module 3100 and forms a heat conduction path.
  • the heat generated by the light emitting module 3200 can be conducted to the heat exchange module 3100 by means of heat conduction, and the heat exchange module 3100 is used for heat dissipation.

Abstract

一种LED照明设备,包括:第一部分(Ⅰ),第一部分(Ⅰ)包括灯头(71);第二部分(Ⅱ),第二部分(Ⅱ)包括壳体(3)和电源(4),电源(4)设置于壳体(3)内;第三部分(Ⅲ),第三部分(Ⅲ)中设置热交换单元(1)和发光单元(2),发光单元(2)与热交换单元(1)连接并形成导热路径,发光单元(2)与电源(4)电连接;第一部分(Ⅰ)、第二部分(Ⅱ)和第三部分(Ⅲ)依次设置;灯头(71)沿一第一方向(X)延伸设置,发光单元(2)包括发光体(21)和基板(22),基板(22)提供一安装面(221),发光体(21)安装在安装面(221)上,安装面(221)与第一方向(X)平行设置;第二部分(Ⅱ)的起始至LED照明设备的重心所在的平面的距离b满足以下关系:(L2+L3)/5<b<3(L2+L3)/7;其中,L2为第二部分的长度;L3为第三部分的长度。

Description

一种LED照明设备 技术领域
本发明涉及一种LED照明设备,属于照明领域。
背景技术
LED灯因为具有节能,高效,环保,寿命长等优点而被广泛采用诸多照明领域中。LED灯作为节能绿色光源,高功率LED的散热问题益发受到重视,由于过高的温度会导致发光效率衰减,高功率LED运作所产生的废热若无法有效散出,则会直接对LED的寿命造成致命性的影响,因此,近年来高功率LED散热问题的解决成为许多相关者的研发重要课题。
在某些应用中,LED灯采用横向安装,当LED灯采用某些特定规格的灯头时,LED灯的重量受到限制,且重量分布同样存在限制(不合理的重量分布将会增加灯头的受力),即,LED灯的电源、散热器灯管部件的重量及重量分布受到限制。而对于某些大功率的LED灯,如功率超过100W,其光通量达到10000流明以上,也就是说,散热器在其重量限制及重量分布限制内,需要消散来自产生至少10000流明的LED灯所产生的热。
LED灯在某些应用中,需要配合灯具使用,将LED灯安装至灯具过程中,LED灯过大的体积(主要是散热器的体积),将会影响到LED灯的安装,特别是散热器容易磕碰到灯具,进而可能损坏灯具,影响灯具的正常使用。另外,LED灯过大的体积,将会影响到产品的包装盒运输。
目前的LED灯的散热的部件大多采用风扇、热管、散热片、或其组合的设计,以透过热传导、对流及/或辐射的方式将LED灯所产生的热能散失。仅采用被动式散热的情况下(无风扇),整体散热效果的好坏取决于散热器本身材料的导热系数和散热面积,在相同导热系数的条件下,无论是哪种散热器都是只能依靠对流和辐射两种方法来散发热量,而这两种方式的散热能力都和散热器本身的散热面积成正比,因此,在散热器存在重量限制的前提下,如何提高散热器的散热效率,是提高LED灯质量和降低整个LED灯的成本的途径。
对于某些大功率的LED灯,如功率超过100W时,对电源的散热同样重要,如果LED灯工作时,电源产生的热量无法及时散去,则会影响一些电子组件(特别是热敏感度高的元件,如电容)的寿命,从而影响整灯的寿命。现有技术中,限制大功率的LED灯的因素之一便是电源的散热,现有技术中的LED灯的电源无有效的散热设计。另外,现有技术中的散热器与电源之间无有效的热管理,将会导致散热器的热和电源的热之间相互影响。
有鉴于上述问题,以下提出本发明及其实施例。
发明内容
本发明实施例主要解决的技术问题是提供一种LED照明设备,以解决上述问题。
本发明实施例提供一种LED照明设备,其特征在于,包括:
第一部分,所述第一部分包括灯头;
第二部分,所述第二部分包括壳体和电源,所述电源设置于所述壳体内;
第三部分,所述第三部分中设置热交换单元和发光单元,所述发光单元与所述热交换单元连接并形成导热路径,所述发光单元与所述电源电连接;
所述第一部分、第二部分和第三部分依次设置;
所述灯头沿一第一方向延伸设置,所述发光单元包括发光体和基板,所述基板提供一安装面,所述发光体安装在所述安装面上,所述安装面与所述第一方向平行设置;
所述第二部分的起始至所述LED照明设备的重心所在的平面的距离b满足以下关系:
(L 2+L 3)/5<b<3(L 2+L 3)/7;
其中,L 2为所述第二部分的长度;L 3为所述第三部分的长度。
本发明实施例给所述LED照明设备提供不超过110瓦的电能,所述发光单元点亮,且使所述LED照明设备发出至少15000流明的光通量。
本发明实施例给所述LED照明设备提供不超过80瓦的电能,所述发光单元点亮,且使得所述LED照明设备发出至少12000流明的光通量。
本发明实施例给所述LED照明设备提供不超过60瓦的电能,所述发光单元点亮,且使得所述LED照明设备发出至少9000流明的光通量。
本发明实施例给所述LED照明设备提供不超过40瓦的电能,所述发光单元点亮,且使得所述LED照明设备发出至少6000流明的光通量。
本发明实施例所述LED照明设备沿水平安装后,所述灯头安装后的力矩F=d 1*g*W 1+(d 2+d 3)*g*W 2,该力矩满足以下条件:
1NM<d 1*g*W 1+(d 2+d 3)*g*W 2<2NM。
本发明实施例所述灯头的力矩满足以下条件:
1NM<d 1*g*W 1+(d 2+d 3)*g*W 2<1.6NM。
本发明实施例所述第二部分的重量占整灯的重量的30%以上。
本发明实施例所述第三部分的重量占整灯的重量不超过60%。
本发明实施例所述第二部分的长度占整灯的长度不超过25%。
本发明实施例所述第三部分的长度占整灯的长度不超过70%。
本发明实施例所述LED照明设备的长度为L,所述灯头端部至所述LED照明设备的重心所在的平面的直线距离为a,L和a满足以下关系:a/L=0.2~0.45。
本发明实施例还提供一种LED照明设备,其特征在于,包括:
第一部分,所述第一部分包括灯头;
第二部分,所述第二部分包括壳体和电源,所述电源设置于所述壳体内;
第三部分,所述第三部分中设置热交换单元和发光单元,所述发光单元与所述热交换单元连接并形成导热路径,所述发光单元与所述电源电连接;
所述第一部分、第二部分和第三部分依次设置;
所述灯头沿一第一方向延伸设置,所述发光单元包括发光体和基板,所述基板提供一安装面,所述发光体安装在所述安装面上,所述安装面与所述第一方向平行设置;
所述第二部分具有第一区域、第二区域和第二区域,其中,所述第三区域为所述壳体外部的区域,所述电源通过所述第二区域与所述第一区域形成导热路径,所述第一区域和所述第二区域的导热系数均大于所述第三区域的导热系数。
本发明实施例所述第一区域的导热系数为第三区域的导热系数的8倍以上。
本发明实施例所述第二区域的导热系数为所述第三区域的5倍以上。
本发明实施例所述第二区域设置导热材料。
本发明实施例所述电源包括发热元件,所述发热元件露于外部的表面积的至少80%以上附着所述导热材料。
本发明实施例所述电源包括电源板,所述电源板具有第一面,所述第一面上设置有电子元件,所述第一面上设置第一平面及第二平面,其中,所述第一面上的电子元件均设置于所述第二平面上。
本发明实施例所述第二平面为一环状区域,所述电子元件围绕所述第一平面设置。
本发明实施例所述第一平面的面积至少占所述第一面的总面积的1/20。
本发明实施例所述导热材料一部分填充在所述第一平面的对应出,从而形成第一导热部分,所述导热材料的一部分填充至所述电源与所述壳体的内壁之间的区域,从而形成第二导热部分,所述第一导热部分与所述第二导热部分通过所述电子元件隔开。
本发明实施例位于所述第二区域的外侧的所述电子元件与位于所述第二区域的内侧的所 述电子元件于工作时产生的热以不同的路径进行传导。
本发明实施例还提供一种LED照明设备,其特征在于,包括:
第一部分,所述第一部分包括灯头;
第二部分,所述第二部分包括壳体和电源,所述电源设置于所述壳体内;
第三部分,所述第三部分中设置热交换单元、发光单元和光输出单元,所述发光单元与所述热交换单元连接并形成导热路径,所述发光单元与所述电源电连接;
所述发光单元包括发光体和基板;所述光输出单元包括第一出光区域和第二出光区域,所述第一出光区域配置为用于接收所述发光体工作时直接射出的光,所述第二出光区域仅接收经过发射的光,且经过反射的光的至少一部分从所述第二出光区域射出。
本发明实施例中,从所述第二出光区域射出的总的光通量占所述发光体发出的总的光通量的0.01%~40%。
本发明的有益效果是:与现有技术相比,本发明包括以下任一效果或其任意组合:
(1)通过第二部分和第三部分的重心位置关系的设置,可在LED照明设备整灯重量确定的情况下(LED照明设备整灯重量限制在1kg~1.7kg),降低灯头承受的力矩,同时保证第二部分和第三部分具有足够的重量来设置部件及进行散热设计。
(2)第二部分的重量包括供电元件(电源)及对供电元件散热的部件的重量,第三部分的重量包括发光单元的重量及对发光单元进行散热的部件的重量。第二部分Ⅱ的长度设置,用于提供容纳供电元件(电源)的纵向空间,第三部分的长度设置,用于提供设置发光体的纵向空间及散热部件的纵向空间。通过力矩的设计,在确保灯头的力矩不超过灯头所能承受的范围的前提下,保证每部分的供电、发光或散热的功能。
(3)通过第一区域、第二区域和第三区域的导热系数的设置,使得LED照明设备工作时,电源产生的热量可快速通过热传导的方式而散至LED照明设备的外部。
(4)通过第一出光区域、第二出光区域的出光设计,可解决光输出单元因局部强光而造成的眩光问题,使得出光更加均匀。
附图说明
图1是一实施例中LED照明设备的主视结构示意图;
图2是一实施例中的灯头模块的示意图;
图3是图1的仰视图;
图4是图3去掉光输出单元的示意图;
图5是图1中的LED照明设备的剖视结构示意图;
图6是一实施例中的LED照明设备的结构示意图;
图7是图6中的LED照明设备的结构示意图,显示其与水平面成一夹角;
图8是一实施例中的LED照明设备的结构示意图;
图9是图8去掉光输出单元后的仰视图;
图10是一实施例中的第二部分的剖视结构示意图;
图11是一实施例中的第二部件的立体结构示意图;
图12是一实施例中的第一部件的立体结构示意图;
图13是一些实施例中的散热鳍片的各种形状;
图14是图1中的LED照明设备去掉光输出单元的立体结构示意图;
图15是图14中的A处的放大示意图;
图16A是图1中的光输出单元的立体结构示意图;
图16B是图1中的热交换单元的立体结构示意图;
图17是一实施例中的热减缓单元与发光单元的配合示意图;
图18是图17中的B处的放大图;
图19是图17中的C处的放大图;
图20至图23是一实施例中基板安装至热交换单元的安装示意图;
图24是一其他实施例中的基板与热交换单元的配合示意图,显示第一壁和第二壁未弯折的状态;
图25是图24中的基板与热交换单元的配合示意图,显示第一壁和第二壁弯折并压紧基板;
图26是图1的俯视结构示意图;
图27是图1中的基板的主视图;
图28是图27的后视图,显示涂覆导热胶的状态;
图29是其他实施例中的热交换单元的示意图,显示基座上设置溢胶槽;
图30是其他实施例中的基板的示意图,显示基板上设置溢胶槽;
图31是其他实施例中的LED照明设备的主视结构示意图,显示热交换单元处于收拢状态;
图32是图31的后视结构示意图;
图33是图32去掉光输出单元的结构示意图;
图34是图31的剖视结构示意图;
图35是图31中的LED照明设备的主视结构示意图,显示热交换单元处于展开状态;
图36是图31中的LED照明设备的立体图一;
图37是图31中的LED照明设备的立体图二;
图38是图31中的LED照明设备去掉第三部分上的构件时的示意图;
图39是图38的D处的放大图;
提40是图31中的LED照明设备去掉第一部分和第二部分上的构件时的示意图;
图41是图31中的LED照明设备的是第一散热件的立体结构示意图;
图42是一些实施例中的基板的示意图;
图43是一些实施例中的基板的示意图;
图44A是一实施例中的灯壳内的电源的电子元件的排布图;
图44B是一些实施例中的灯壳内的电源的电子元件的排布图;
图44C是一些实施例中的灯壳内的电源的电子元件的排布图;
图45是一实施例中的LED照明设备的立体结构示意图;
图46是一实施例中的LED照明设备的剖视示意图一;
图47是一实施例中的LED照明设备的剖视示意图二;
图48是一实施例中的LED照明设备的剖视示意图三。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以通过许多不同的形式来实现,并不限于下面所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容理解的更加透彻全面。下文中关于方向如“轴向方向”、“上方”、“下方”等均是为了更清楚的表明结构位置关系,并非对本发明的限制。在本发明中,所述“垂直”、“水平”、“平行”定义为:包括在标准定义的基础上±10%的情形。例如,垂直通常指相对基准线夹角为90度,但在本发明中,垂直指的是包括80度至100以内的情形。另外,本发明中所述LED照明灯的使用情况、使用状态,指的是LED灯以灯头水平方向安装的使用情境,如有其他例外情况将另做说明。
参见图1,本发明一实施例中,涉及一种LED照明设备,其包括第一部分Ⅰ、第二部分Ⅱ及第三部分Ⅲ。如图1所示,第一部分Ⅰ、第二部分Ⅱ及第三部分Ⅲ用虚线划分示意,其中,第一部分Ⅰ、第二部分Ⅱ及第三部分Ⅲ依次设置。
参见图1和图2,第一部分Ⅰ主要用以对应连接外部供电设备(例如灯座),其中第一部分Ⅰ包括灯头模块7,灯头模块7至少包括灯头71,所述灯头71具有连接外接灯座的外部螺纹,可以理解,灯头模块7还可以具有灯头转接器711,其可以具有外接灯座的外部螺纹712和内部螺纹713。
参见图1、图4和图5第二部分Ⅱ主要用以设置LED照明设备的电子组件,其中第二部分Ⅱ包括壳体3、电源4,壳体3限定第一部分Ⅰ的外形尺寸,且壳体3内限定一腔体301,使电源4可设置在腔体301内。参见图10,电源4可包括电源板41及电子元件42,电子元件42设于电源板41上。其中,电源板41垂直或大致垂直于第一方向X。
参见图1,图3,图4和图5,第三部分Ⅲ主要用以提供LED照明设备的散热(针对光输出单元5的散热)和光输出功能,第三部分Ⅲ中设置热交换单元1、发光单元2及光输出单元5。发光单元2与热交换单元1连接并形成第三部分Ⅲ的导热路径,当LED照明设备工作时,发光单元2产生的热量可通过热传导的方式传导至热交换单元1,并借由热交换单元1进行散热。电源4与发光单元2电连接,以对发光单元2提供电力。光输出单元5罩设于发光单元2外,当LED照明设备工作时,发光单元2产生的光至少部分射入光输出单元5,并随后射出所述光输出单元5而投射至LED照明设备外部。光输出单元5可配置光学装置,光学装置可配置反射、折射和/或散射的程度,以提供反射、折射和/或散射的任意合适的组合。另外光学装置还可配置为用于增加穿过光输出单元5的光通量。
参见图1,第一部分I和第二部分II以灯头模块7和壳体3的连接面(在照明设备长度方向上的连接面)为界限,具体的,可以以灯头71轴向的端面7101作为所述连接面,第二部分II及第三部分III以壳体3和热交换单元1的连接面(在照明设备长度方向上的连接面)为界限,可以以壳体3在LED灯长度方向上的端面301作为连接面。
在此需特别说明,在本实施例中,虽然第一部分Ⅰ、第二部分Ⅱ和第三部分Ⅲ是沿LED照明设备的长度延伸方向依序设置,然而在其他实施例中,依据LED照明设备不同的设计需求,第一至第三部分可在不同方向上重叠设置,本发明并不以此为限。
参见图1、图4和图5,灯头71沿一第一方向X(LED灯的长度方向)延伸设置。发光单元2包括发光体21和基板22,所述基板22提供一安装面221,所述发光体21安装在所述安装面221上。安装面221与所述第一方向X平行设置。从使用角度来讲,当LED照明设备横向安装后(第一方向X和安装面221均平行于水平面),LED照明设备的发光单元2提供向下的出光,以使LED照明设备的下方的区域被照亮。也就是说,本实施例中的LED照明设备为横向安装的。另外,当LED照明设备横向安装后,第一方向X或安装面221也可 与水平面之间形成锐角,该锐角角度小于45度,从而主要提供向下的出光。LED照明设备可以用于室外照明,如用于路面照明(路灯),也可用于室内,采用壁式的安装(安装于墙壁),如用于仓库、停车场、运动场等。本发明所有实施例中所称的“发光体”,可以是以LED(发光二极管)为主体的发光源,包括但不限于LED灯珠、LED灯条或LED灯丝等。
在某些应用中,对于整个LED照明设备可能存在重量限制。例如,当LED照明设备采用E39灯头时,LED照明设备的最大重量限制到1.7千克以内。在一实施例中,在LED照明设备采用横向安装,且各部分重量分布受限时,给LED照明设备提供不超过150瓦的电能,所述发光单元2(具体为设置在发光单元2的发光体21)点亮,且使得LED照明设备发出至少15000流明的光通量。进一步的,当提供140瓦电能,LED照明设备发出至少15000流明、16000流明、17000流明、18000流明、19000流明、20000流明或更高流明的光通量(小于40000流明)。在一实施例中,热交换单元1的重量限制在不超过0.9kg,当LED照明设备点亮时,可发出至少15000流明、16000流明、17000流明、18000流明、19000流明、20000流明或更高流明的光(小于40000流明)。也就是说,热交换单元1在不超过0.9kg的重量限制下,可消散来自产生至少15000流明的LED照明设备所产生的热。在一实施例中,热交换单元1的重量限制在0.8kg或以下,当LED照明设备点亮时,可发出至少20000流明的光。上述示例中,由于总体重量限制,LED照明设备发出的总的光通量小于40000流明。在一实施例中,在LED照明设备采用横向安装,且各部分重量分布受限时,给LED照明设备提供不超过110瓦的电能,所述发光单元2(具体为设置在发光单元2的发光体21)点亮,且使得LED照明设备发出至少15000流明的光通量(不超过24000流明)。在一实施例中,在LED照明设备采用横向安装,且各部分重量分布受限时,给LED照明设备提供不超过80瓦的电能,所述发光单元2(具体为设置在发光单元2的发光体21)点亮,且使得LED照明设备发出至少12000流明的光通量(不超过20000流明)。在一实施例中,在LED照明设备采用横向安装,且各部分重量分布受限时,给LED照明设备提供不超过60瓦的电能,所述发光单元2(具体为设置在发光单元2的发光体21)点亮,且使得LED照明设备发出至少9000流明的光通量(不超过18000流明)。在一实施例中,在LED照明设备采用横向安装,且各部分重量分布受限时,给LED照明设备提供不超过40瓦的电能,所述发光单元2(具体为设置在发光单元2的发光体21)点亮,且使得LED照明设备发出至少6000流明的光通量(不超过15000流明)。在一实施例中,在LED照明设备采用横向安装,且各部分重量分布受限时,给LED照明设备提供不超过20瓦的电能,所述发光单元2(具体为设置在发光单元2的发光体21)点亮,且使得LED照明设备发出至少3000流明的光通量(不超过10000流明)。 另外,上述实施例中的LED照明设备,均满足在工作环境温度-20度至70度时,50000小时的寿命。
参见图1和图5,第一部分Ⅰ、第二部分Ⅱ及第三部分Ⅲ的重量分布及长度设计时,需考虑灯头71力矩问题。
在LED照明设备重量固定时(重量为一确定值或在一确定的范围内,如重量在1kg~1.7kg之间),LED照明设备的重心将会影响灯头71所承受的力矩。参见图1和图5,一实施例中,LED照明设备的长度为L,灯头71端部至LED照明设备的重心所在的平面(该平面垂直于LED照明设备的灯头的轴线)的直线距离为a,LED照明设备的长度L与灯头71端部至LED照明设备的重心所在的平面的直线距离a满足以下关系:a/L=0.2~0.45。优选的,LED照明设备的长度L与灯头71端部至LED照明设备的重心所在的平面的直线距离a满足以下关系:a/L=0.2~0.4。在满足上述关系式时,可在LED照明设备整灯重量确定的情况下(LED照明设备整灯重量限制在1kg~1.7kg),降低灯头71承受的力矩,同时保证第二部分Ⅱ和第三部分Ⅲ具有足够的重量来设置部件及进行散热设计。
参见图1和图5,第二部分Ⅱ的起始至LED照明设备的重心所在的平面(该平面垂直于LED照明设备的灯头的轴线)的距离b满足以下关系:
(L 2+L 3)/5<b<3(L 2+L 3)/7
其中,L 2为第二部分Ⅱ的长度;
L 3为第三部分Ⅲ的长度。
为了顾及LED照明设备具有足够的散热面积,同时使LED在水平安装的状态下能减少力矩对连接部(例如灯头71)的影响,在一实施例中可以针对热交换单元1的形式进行不对称设计(热交换单元1的不同设计,均满足以下公式)。参见图1和图6,LED照明设备水平安装后,灯头71安装后的力矩F=d 1*g*W 1+(d 2+d 3)*g*W 2
其中,d 1为第一部分Ⅰ至第二部分的重心所在的平面(该平面垂直灯头的轴向)的距离;
g为9.8N/kg;
W 1为第二部分Ⅱ的重量;
d 2为第二部分Ⅱ的长度;
d 3为第二部分Ⅱ至第三部分Ⅲ的重心所在的平面(该平面垂直灯头的轴向)的距离;
W 2为第三部分Ⅲ的重量。
在LED照明设备整灯总量确定的情况下(或整灯重量受限制,如重量为1kg至1.7kg),灯头71的力矩满足以下条件:
1NM<d 1*g*W 1+(d 2+d 3)*g*W 2<2NM
本实施例中,第二部分Ⅱ的重量包括供电元件(电源4)及对供电元件散热的部件的重量,第三部分Ⅲ的重量包括发光单元2的重量及对发光单元2进行散热的部件的重量。第二部分Ⅱ的长度设置,用于提供容纳供电元件(电源4)的纵向空间,第三部分Ⅲ的长度设置,用于提供设置发光体21的纵向空间及散热部件的纵向空间。上述的设计,在确保灯头71的力矩不超过灯头71所能承受的范围的前提下,保证每部分的供电、发光或散热的功能。
其他实施例中,灯头71的力矩满足以下条件:
1NM<d 1*g*W 1+(d 2+d 3)*g*W 2<1.6NM
参见图7,LED照明设备安装后,其与水平面具有一夹角(灯头71的轴向与水平面具有一小于45度的锐角)。此时,灯头71的力矩F=d 1*g*W 1*cosA+(d 2+d 3)*g*W 2*cosA。
A为灯头71的轴向与水平面之间的夹角。
在LED照明设备整灯总量确定的情况下(或整灯重量受限制,如重量为1kg至1.7kg),灯头71的力矩同样需满足以下条件:
1NM<d 1*g*W 1cosA+(d 2+d 3)*g*W 2cosA<2NM
其他实施例中,1NM<d 1*g*W 1cosA+(d 2+d 3)*g*W 2cosA<1.6NM。
上述设计力矩的实施例中,LED照明设备的整体的长度小于350mm,且大于200mm。当灯头71采用固定型号时,如E39灯头时(其长度为40mm左右),第二部分Ⅱ和第三部分Ⅲ的长度之和小于310mm,且大于160mm。进一步的,第二部分Ⅱ和第三部分Ⅲ的长度之和小于260mm,且大于180mm。
参见图10,电源4与灯壳32的端面(该端面设置于灯壳32靠近第三部分Ⅲ的一端)保持间距,以防止第三部分Ⅲ(发光单元2)工作时产生的热传导至电源4,或者防止电源4产生的热与第三部分Ⅲ产生的热相互影响。具体的,电源4的电源板41与灯壳32的端面保持间距。该间距内具有空气,以形成较好的热隔离。具体的,可在灯壳32内设置凸块3201,以使电源板41可支撑于所述凸块3201上,从而使电源板41与灯壳32的端面保持间距。另外,由于间距的设置,可进一步调整第二部分Ⅱ的重心,以最终降低灯头71的力矩。
本实施例中,由于LED灯是横向安装,考虑到灯头71的承重,当LED灯重量相对确定的情况下,力矩的大小主要取决于力臂,即整灯的重量分布。在综合考量灯头71的承重及发光单元2、电源4的散热后,本实施例中,第二部分Ⅱ为更靠近灯头71的部分,LED灯第二部分Ⅱ的重量配置为占整灯的重量的30%以上,优选的,LED灯第二部分Ⅱ的重量配置为占整灯的重量的35%以上,更优选的,LED照明设备第二部分Ⅱ的重量配置为占整灯的重量的 35%~50%,以使得第二部分Ⅱ具有更多的可用作散热的重量,且这部分重量相对靠近第一部分Ⅰ,因此相对第一部分Ⅰ,其力臂较短。而第三部分Ⅲ的重量占整灯的重量不超过60%,优选的,第三部分Ⅲ的重量占整灯的重量不超过55%,更优选的,第三部分Ⅲ的重量占整灯的重量的50%~55%,以此,一方面可满足发光单元2的散热,另一方面控制第三部分Ⅲ的重量,从而利于控制力矩。
在具体到第一部分Ⅰ、第二部分Ⅱ及第三部分Ⅲ的重量分布设计时,其中的第二部分Ⅱ的长度占LED灯整体的长度不超过25%,以控制第二部分Ⅱ的力臂(控制力臂长度,利于控制第二部分Ⅱ相对灯头71的力矩)。优选的第二部分Ⅱ的长度占LED灯整体的长度不超过20%。更优选的,第二部分Ⅱ的长度占LED灯整体的长度的15%~25%,以此,在控制力矩的同时,提供足够的空间来容纳电源4。其中的第三部分Ⅲ的长度占LED灯整体的长度不超过70%,优选的,第三部分Ⅲ的长度占LED灯整体的长度的60%~70%,从而使第三部分Ⅲ的力矩与散热能力间达到平衡(第三部分Ⅲ长度越长,热交换单元1的设置更加合理,可拥有更多的用于散热的空间,第三部分Ⅲ长度越短,则第三部分Ⅲ的力矩相对较小)。
[第一部分I]
参见图1,一实施例中,第一部分I的灯头模块7,是提供连接外部供电端与LED照明设备的电性连接端口。所述灯头模块7可以包括灯头71,灯头71配置为用于连接至与之相配的灯座,灯头71具有连接外接灯座的外部螺纹。
所述灯头71可沿着第一方向X的方向设置,例如LED照明设备的长度方向延伸设置,所述灯头71可按照LED照明灯具的具体应用场景设置,所述灯头71可以是E型灯头,例如E39或者E40的灯头,其中E代表爱迪生螺口灯泡,即带有可旋入灯座的螺纹,39/40指代灯泡螺纹的公称直径。E39是美国标准规格,E40是欧洲标准规格,材质可含有铜镀镍、铝合金等。
可以明确,当将LED照明设备用于其它特定的应用场景时,所述灯头71也可以是其它类型的灯头,如插入式的灯头GU10等,其中G表示灯头类型是插入式,U表示灯头部分呈现U字形,后面数字表示灯脚孔中心距为10mm。或者灯头71也可是卡扣式的。
灯头模块7还可以包括如图2所示的灯头转接器711,灯头转接器711具有连接外部灯座的外部螺纹712,以及具有内部螺纹713。灯头转接器711可以提供第二部分II与第一部分I之间的连接,灯头转接器711还可以设计成方便不同灯头与灯座之间的适配。例如,通过灯头转接器711可将E27的灯头安装在E40灯座上。
[第二部分Ⅱ]
参见图1和5,一实施例中,第二部分II的壳体3用于容纳电源4且限定了第二部分Ⅱ的外形尺寸,壳体3还分别与灯头模块7和热交换单元1相连接。考虑到绝缘爬电距离要求,壳体3通常采用塑料材质。其他实施例中,壳体3也可采用金属材质,但须做好壳体3与电源4的电隔离。壳体3限定一腔体301,电源4设置于所述腔体101中。
LED照明设备工作时,电源4会产生热量,因此,第二部分Ⅱ设置散热装置,以对电源4进行散热,以消散电源4工作时产生的热量,防止电源4过热。
图10为一局部剖视图,显示第二部分Ⅱ的剖面结构。如图1和图10所示,一实施例中,第二部分Ⅱ具有第一区域302、第二区域303和第三区域304,其中,第三区域304为壳体3外部的区域,电源4通过第二区域303与第一区域302对电源4形成导热路径,第一区域302和第二区域303的导热系数均大于第三区域304的导热系数。从而使得LED照明设备工作时,电源4产生的热量可快速通过热传导的方式而散至LED照明设备的外部。具体的,第一区域302的导热系数为第三区域304的8倍以上,优选的,第一区域302的导热系数为第三区域304的9-15倍。第二区域303的导热系数为第三区域304的5倍以上,优选的,第二区域303的导热系数为第三区域304的6至9倍。第一区域302的具体的导热系数在0.2~0.5之间,第二区域303的具体的导热系数在0.1至0.3之间。优选的第一区域302的具体的导热系数在0.25~0.35之间,第二区域303的具体的导热系数在0.15至0.25之间。而第三区域304的导热系数在0.02至0.05之间。
以上述各区域的导热系数,应当被理解为各区域中所包括的材料的平均导热系数值。
本实施例公开内容中的第二区域303设置导热材料305,电源4通过第二区域303的导热材料305而与第一区域302形成导热路径。示例性的,所述导热材料305可以为导热胶。也就是说,前述所讲的第二部分Ⅱ设置散热装置,该散热装置可以是第二区域302的导热材料305。其他实施例中,散热装置还可以其他形式出现,例如,壳体3内通过对流对电源4产生的热进行散热时,散热装置可以是开设于壳体3上的孔洞,又例如散热装置可以是风扇,以加速对电源4的对流散热,再如,散热装置可以是辐射层,辐射层可以设置于电源4表面或壳体3表面,以加速电源产生的热以辐射的形式消散。
本实施例中,电源4包括发热元件,发热元件为LED照明设备工作时,产生热量相对较高的电子元件,例如电阻,变压器,电感,IC,晶体管等。根据热传导基本原理可知,热传导影响因素主要包括导热材料305的导热系数,导热材料305的导热的截面积及导热材料305的厚度(发热单元至第一区域302的距离,取最近点的距离),其中,导热材料305确定的情 况下,热传导主要影响因素为后两者。假设发热元件产生的热量沿最短路径(传热路径越短,传热效果越好)传导至第一区域302,则热传导公式为Q=λAΔT/d;
其中,Q为通过导热材料305的热流量;λ为导热材料305的导热系数;A为发热单元与导热材料305接触的面积;ΔT为导热通路上的温差(发热元件的温度与导热材料305在导热通路末端的温度的差值);d为发热元件至第一区域302的最近距离。本实施例中的发热元件为变压器、电感、IC(控制电路)、晶体管或电阻等。
为尽快将发热元件产生的热量散去,在设置导热材料305时,应使发热元件表面被导热材料305附着的面积(A的值)尽量的大。在一实施例中,为保证发热元件工作时产生的热量尽快的通过导热材料305的热传导而散去,发热元件露于外部的表面积(除去与电源板安装时的接触面)的至少80%附着所述导热材料。在一实施例中,发热元件露于外部的表面积(除去与电源板安装时的接触面)的至少90%附着所述导热材料。在一实施例中,发热元件露于外部的表面积(除去与电源板安装时的接触面)的至少95%附着所述导热材料305。在一实施例中,任意一发热元件露于外部的表面积(除去与电源板安装时的接触面)的至少80%、90%或95%附着所述导热材料305。以此,可尽量避免导热通路上的热流瓶颈。
为了使发热元件产生的热量尽快传导至第一区域302,还可对应设计发热元件至第一区域302的最短距离,以提高热传导效率。具体的,本实施例中的第二部分Ⅱ的宽度尺寸为W(此处的第二部分Ⅱ的截面形状可能为圆形、多边形或其他不规则形状,而宽度尺寸指的是第二部分Ⅱ截面轮廓线上任意两点之间的最短距离连线距离,且该两点之间的连线穿过灯头71轴心线),而发热元件在第二部分Ⅱ宽度方向上至第二部分Ⅱ边界(第一区域302)的最短距离为d(发热元件中心至第二部分Ⅱ边界的最短距离),为将发热元件的热量尽快传导至第一区域302,发热元件至第二部分Ⅱ边界(第一区域302)的最短距离d与第二部分Ⅱ的宽度尺寸L满足以下关系:
d≤5/11W
其他实施例中,发热元件在第二部分Ⅱ宽度方向上至第二部分Ⅱ边界(第一区域302)的最短距离d与第二部分Ⅱ的宽度尺寸W满足以下关系:
d≤4/11W
另外,为了满足爬电距离的要求,发热元件应于第二部分Ⅱ的边界保持一定的间距。因此,综合来讲,发热元件在第二部分Ⅱ宽度方向上至第二部分Ⅱ边界(第一区域302)的最短距离d与第二部分Ⅱ的宽度尺寸W满足以下关系:
1/20W≤d≤4/11W
在一实施例中,W的范围为50~150mm之间。在一实施例中,W的范围为55~130mm之间。
上述的发热元件可以是变压器、电感、IC(控制电路)、晶体管或电阻等。
热阻是热量转移过程中的阻力,表示单位热流量引起的温差。其中一发热元件产生的热量在第二部分Ⅱ宽度方向上经最短路径传导至第三区域304时,其依次通过第二区域303及第一区域302,其总的热阻R为第一区域302的热阻R 1加上第二区域303的热阻R 2
其中,第二区域303的热阻R 2=d 22A 2;其中,d2为所述发热元件在第二部分Ⅱ宽度方向上至第二区域303的界面(第一区域302与第二区域303的连接面)最短距离;λ 2为第二区域303的导热系数,A 2为发热元件与第二区域303(导热材料305)的接触面积。
其中,第一区域302的热阻R 1=d 11A 1;其中,d1为所述第二区域303至第一区域302的外侧面的最短距离(第一区域302的厚度);λ 1为第一区域302的导热系数,A 1为第一区域的表面积。
第二区域303的热量主要通过传导至第一区域302,而第一区域302的热量主要是热辐射至第三区域304,发热元件热量更迫切的需要传导至第二区域303,因此,本实施例中,将第二区域303的热阻R 2设置为小于第一区域302的热阻R 1,即d 22A 2<d 11A 1
一实施例中,为降低第二区域303的热阻R 2,所述发热元件在第二部分Ⅱ宽度方向上至第二区域303的界面(第一区域302与第二区域303的连接面)最短距离及发热元件表面被导热材料305附着的面积等均可采用前述的热设计,即d 2满足以下关系:1/20W≤d 2≤4/11W;发热元件露于外部的表面积(除去与电源板安装时的接触面)的至少80%、90%或95%附着所述导热材料305。
一实施例中,电源4的电子元件42中包括电解电容421,电解电容421的寿命取决于所设置的环境温度。因此电解电容421的设置位置或方式会影响到其寿命。参见图44A,一实施例中,将电解电容421设置于电源板41的相对的外侧,电解电容421通过导热材料305而直接热连接至第一区域302,也就是说,电解电容421至第一区域302的最短的路径上无其他电子元件,特别是发热元件,从而保证电解电容具有较佳的热传导。在一实施例中,电解电容421至第一区域302的最短距离d3满足以下关系:d 3≤5/11W。在一其他实施例中,电解电容421至第一区域302的最短距离d3满足以下关系:d 3≤4/11W。
其中W为第二部分Ⅱ的宽度尺寸(此处的第二部分Ⅱ的截面形状可能为圆形、多边形或其他不规则形状,而宽度尺寸指的是第二部分Ⅱ截面轮廓线上任意两点之间的最短距离连线距离,且该两点之间的连线穿过灯头71轴心线),d 3为电解电容421在第二部分Ⅱ宽度方向 上至第一区域302的最短距离(电解电容421的中心至第一区域302的最短距离)。
一实施例中,为降低电子元件之间的分布电容且同时满足散热需求,还可对电子元件在电源板41上的位置进行相应设计。如图44A所示,电源板41具有第一面4101,所述第一面4101上设置有电子元件。第一面4101上设置一第一平面4102及第二平面4103,其中,第一面4101上的电子元件均设置于第二平面4103上,该第二平面4103为一环状区域,也就是说,电子元件分布于一环状区域,且围绕第一平面4102设置,从而可相对增加电子元件之间的距离(非相邻的电子元件之间),从而降低分布电容。
第一平面4102处会设置导热材料305,因此,电子元件工作时产生的一部分热可通过第一平面4102处的导热材料305散发,进一步提升散热效果。本实施例中,电子元件中包括发热元件(如变压器、电感、晶体管、电阻等),为提升散热效率,至少一部分的发热元件可对应于第一平面4102(发热元件的至少一侧直接对应于第一平面4102的导热材料305)。
电子元件中,晶体管422为工作时发热较多的元件,为此,可将晶体管422设置于第二平面4103上对应于第一平面4102的区域,以使晶体管422工作时产生的热经由第一平面4102的导热材料305快速散去。另外,也可将晶体管422设置于第二平面4103上相对的外围,以使晶体管422具有相对较短的散热路径(至壳体外)。进一步的,当晶体管422有多个(至少为两个)时,其中一部分晶体管422设置于第二平面4103上对应于第一平面4102的区域,而另一部分晶体管422则设置于第二平面4103上相对的外围,从而对多个晶体管422进行合理的排布,保证散热效果。当晶体管422与第一平面4102之间设置有其他元件,但该元件遮挡晶体管422面对第一平面4102的一侧的侧面面积不超过晶体管422面对第一平面4102的一侧的侧面面积的一半时,仍认为该晶体管422对应于第一平面4102。
如图44A和图44B所示,第一平面4102为最靠近电源板41的中间位置的一圈电子元件共同围成。
第一平面4102的面积设置为至少占第一面4101的总面积的1/20,以降低分布电容和提升散热效果。另外,由于壳体的内部空间的限制,第一平面4102的面积占第一面4101的总面积不超过1/10。
如图44C所示,一些实施例中,第一平面4102处可开设孔洞41021,以此,导热材料灌注时,可充分接触电源板41,并通过孔洞41021贯穿电源板41,从而可进一步提升散热效果,另一方面,导热材料贯穿电源板41,还可对电源板41起到加固作用。
如图1、图5、图10和图44A所述,在壳体3内设置导热材料305后,导热材料305一部分填充在第一平面4102的对应处(第一平面4102上方),从而形成第一导热部分,导热材 料305的一部分填充至电源4与壳体3的内壁之间的区域(电子元件与壳体3内壁之间的空隙处),从而形成第二导热部分。第一导热部分与第二导热部分通过电子元件隔开,从而使第一导热部分与第二导热部分具有不同的热传导路径,使得位于第二平面4103的外侧的电子元件与位于第二平面4103的内侧的电子元件于工作时产生的热以不同的路径进行传导,以提升散热效果。
参见图10,图11和图12,壳体3包括第一部件32和第二部件33,其中,灯头71与第一部件32固定连接。具体的,第一部件32外表面具有与灯头71的内螺纹713相匹配的结构(如设于第一部件32外表面的外螺纹)。而第一部件32与第二部件33可转动式的连接。因此,当灯头71安装至灯座时,通过转动第二部件33,可调节LED灯的出光方向。
具体的,第一部件32具有一环状凹部321,第二部件33具有一凸部331,凸部331与环状凹部321配合,且两者之间可实现转动,最终实现第一部件32与第二部件33的可转动式连接。其他实施例中,第一部件32和第二部件33还可通过现有技术中的其他结构实现转动,例如将第一部件32设置为凸部,而将第二部件33设置为环状凹部。
第一部件32可进一步包括第一止挡部322,而第二部件33可进一步包括第二止挡部332,第一止挡部322与第二止挡部332相配。具体的,第一部件32和第二部件33相对转动至第一止挡部322与第二止挡部332相抵时,便可限制第一部件32和第二部件33的进一步转动,以防止过度转动而影响甚至拉断内部的连接导线。在一实施例中,由于第一止挡部322与第二止挡部332的设置,第一部件32和第二部件33之间的相对的转动角度的范围为0~355度。在一实施例中,第一部件32和第二部件33之间的相对的转动角度的范围为0~350度。第一部件32和第二部件33之间的相对的转动角度的范围为0~340度。上述转动角度的限制,可通过设置第一止挡部322与第二止挡部332在周向上的厚度(即所占的角度即可)。在一实施例中,第一止档部322为三角形,第二止档部332的形状为L形,但可以理解的是,所述第一和第二止档凸起的形状可以不限,以旋转中能互相作用阻挡运动即可。在其他实施例中,第一部件32和第二部件33还可通过现有技术中的其他结构实现转动,此处不再赘述。
第二部件33包括若干杆部333,若干杆部333沿一圆周均匀分布,相邻杆部333之间具有间距,所述的凸部331形成于杆部333上。相邻杆部333之间具有间距,因此,利于杆部333发生弹性形变,利于将其插入到第一部件32中。
第一部件32上沿一圆周设置若干齿部323,齿部323可以是连续的,也可以是间隔的。第二部件33上设置有阻尼部334,所述阻尼部334与所述齿部323对应配合。阻尼部334可 形成于第二止挡部332上,即第二止挡部332的一部分用于与齿部323配合,而另一部分与第一止挡部322配合。通过阻尼部334与齿部323的配合,可提升第一部件32相对第二部件33相对转动时的质感。另外,通过阻尼部334与齿部323的配合,防止第一部件32与第二部件33在无外力的情况下发生不必要的松动,甚至转动。
[第三部分Ⅲ]
参见图1,图4和图9,在一实施例,在第三部分Ⅲ中设置的热交换单元1与发光单元2连接并形成导热路径,当LED照明设备工作时,发光单元2产生的热量可通过热传导的方式传导至热交换单元1,并借由热交换单元1进行散热。
热交换单元1为一体式构件形成,其包括散热鳍片101及一基座102,散热鳍片101连接至基座102。散热鳍片101提供散热面积,以消散发光体21(例如是LED照明设备的灯珠)工作时产生的热量,防止发光体21过热(温度超出发光体21的正常工作范围,如温度超过120度),而影响发光体21的寿命。
散热鳍片101沿一第二方向Y延伸设置,其中,第二方向Y为LED照明设备的宽度方向,其垂直于前述的第一方向X。散热鳍片101沿第二方向Y的方向设置时,其具有相对较短的长度(相比于散热鳍片101沿第一方向X设置),因此,相邻两散热鳍片101之间形成对流通道时,假设空气沿LED照明设备的宽度方向对流,则其具有相对较短的对流路径,利于将散热鳍片101处的热量快速散去。本实施例中,散热鳍片101之间平行设置,且散热鳍片101在第一方向X上均匀分布。
热交换单元1在第一方向X方向上,其重量均匀或大致均匀的分布。在一实施例中,在X方向上,任意截取一段热交换单元1,与另一任意截取的相同长度的另一段热交换单元1的重量比值为1:0.8~1.2(这两段热交换单元包括相同或大致相同的散热鳍片101的数量)。
散热鳍片101之间的间距值为8~30mm。在一实施例中,散热鳍片101之间的间距值为8~15mm。间距值可根据散热时的辐射和对流进行确定。
为了顾及LED照明设备具有足够的散热面积,同时使LED在水平安装的状态下能减少力矩对连接部(例如灯头)的影响,可以针对热交换单元的形式进行不对称设计。在第一方向X上的任意两个散热鳍片101,其中,更靠近灯头71的散热鳍片101具有更多的散热面积(靠近灯头71的散热鳍片101高度相对更高,因此可具有更多的散热面积)。
在一实施例中,散热鳍片101在其高度方向上具有一第一部分及一第二部分,该第一部分设置为靠近基座102,该第二部分设置为远离基座102,该第一部分的任意位置的截面厚度 大于第二部分的任意位置的截面厚度。一实施例中,散热鳍片101高度上分为高度相同的两部分,即第一部分和第二部分。由于散热鳍片101下部主要用于传导发光单元2工作时产生的热量,而上部主要用于将热量辐射至周围空气,基于此,设置散热鳍片101靠近散热基板的部分(即第一部分)的截面厚度较大,而远离散热基板的散热鳍片部分(即第二部分)的截面厚度较小,因此,第一部分可保证将发光单元2工作时产生的热量传导散热鳍片,而第二部分在保证热辐射的前提下,可减轻整个散热鳍片101的重量。总的来说,上述设置方式,不但可以实现良好的散热效果,也可减轻整个LED照明设备的重量。
发光单元2工作时产生的热量,热传导至散热鳍片101,热量在散热鳍片101上,从下至上传导(假设LED照明设备水平安装前提下),期间,一部分的热量在散热鳍片101上的传导过程中,通过辐射的方式传导至周围空气。也就是说,越往上,散热鳍片101传导的热量越小。傅里叶导热定律如下:Q=-λAdT/dx,其中,λ为导热系数,A为导热截面的面积,单位为m 2,dT/dx为热流方向上的温度梯度,单位为K/m。
一实施例中,假设λ为一定值(散热鳍片101材料确定的情况下,λ的值不变),则,热流量Q主要取决于导热截面的面积及热流方向上的温度梯度。在一实施例中,忽略温度梯度的变化时,则热流量Q主要取决于导热截面的面积。由于热量在散热鳍片101上传导过程中存在热辐射的散热,则在散热鳍片101的热流方向上,越往后,其热量越少,则散热鳍片101的厚度也可以相应调整(假设散热鳍片101的宽度为一定值,在散热鳍片101高度方向上,其宽度尺寸的偏差小于30%),以保证散热的前提下,进一步降低灯头71的力矩。参见图1和图3,一实施例中,散热鳍片101设置有若干组,本处仅以一组散热鳍片101的厚度进行说明,建立坐标系,以散热鳍片101底部的厚度方向作为X轴,以散热鳍片101的高度方向作为Y轴,则散热鳍片101的厚度与高度满足以下公式:
y=ax+K
其中,y为散热鳍片101的高度值;a为一常数,且a为负数;x为散热鳍片101的厚度;K为一常数。
a为负数时,随着散热鳍片101的高度值y的增加,散热鳍片101的厚度值x减小,如此一来,一方面,散热鳍片101的辐射散热的关系,散热鳍片101往上时厚度减小,依然能满足热传导的需求,另一方面,散热鳍片101往上时的厚度的减小,可降低其重量,从而降低灯头71的力矩,以提供更从容的重量设计。
一实施例中,a的值为-40~-100之间,K的值为80~150之间。x及y的值的单位均为毫米。
一实施例中,a的值为-50~-90之间,K的值为100~140之间。
一实施例中,散热鳍片101之间采用相同的设计,散热鳍片101的数量为n,则总体上,散热鳍片101的总厚度(所有散热鳍片101的厚度之和)与高度满足以下公式:
sn=(y-K)n/a
其中,y为散热鳍片101的高度值;a为一常数,且a为负数;x为散热鳍片101的厚度;K为一常数;x*n为散热鳍片101的总厚度。
一实施例中,散热鳍片101的截面面积等于其厚度值乘以宽度值,假设散热鳍片101的宽度值为L为一定值(此处散热鳍片101的宽度值为定值,指的是在散热鳍片101高度方向上,其宽度尺寸的偏差小于30%),散热鳍片101的厚度与高度满足以下公式:
y=ax+K,即x=(y-K)/a
即散热鳍片的截面积Lx=(y-K)L/a
其中,y为散热鳍片101的高度值;a为一常数,且a为负数;x为散热鳍片101的厚度;K为一常数。
a为负数时,随着散热鳍片101的高度值y的增加,散热鳍片101的截面面积减小,如此一来,一方面,散热鳍片101的辐射散热的关系,散热鳍片101往上时截面面积减小,依然能满足热传导的需求,另一方面,散热鳍片101往上时的截面面积的减小,可降低其重量,从而降低灯头71的力矩,以提供更从容的重量设计。
一实施例中,散热鳍片101的总的截面面积(所有散热鳍片101的截面面积之和)等于散热鳍片101总的厚度值乘以宽度值,而所有散热鳍片101,假设散热鳍片101的宽度值为L为一定值(此处散热鳍片101的宽度值为定值,指的是在散热鳍片101高度方向上,其宽度尺寸的偏差小于30%),则散热鳍片101的总的截面面积满足以下公式:
nLx=(y-K)nL/a
n为散热鳍片101的数量。
a为负数时,随着散热鳍片101的高度值y的增加,散热鳍片101的总的截面面积减小,如此一来,一方面,散热鳍片101的辐射散热的关系,散热鳍片101往上时截面面积减小,依然能满足热传导的需求,另一方面,散热鳍片101往上时的截面面积的减小,可降低其重量,从而降低灯头71的力矩,以提供更从容的重量设计。、
上述实施例中,考虑散热鳍片101的厚度时,需排除散热鳍片101的端部的倒角或圆角的部分。
一实施例中,LED照明设备的散热鳍片101的散热面积(单位为CM 2)与LED照明设 备的功率(单位为W)的比值小于28。一实施例中,热交换单元1的重量0.6、0.7、0.8或0.9kg,在该重量限制下,设计出上述的散热面积,散热鳍片101厚度等。
一实施例中,单片散热鳍片101的散热面积近似为散热鳍片101的侧面面积加上散热鳍片101的厚度面的面积(散热鳍片101的顶面的面积相对较小,因此基本可省略顶面的面积),以公式表示如下:
S=S1+S2;S1=2hLn
其中,h为散热鳍片101的高度,L为散热鳍片101的长度(如果散热鳍片101侧部为不规则形状,则此处的长度可以指的是散热鳍片101的平均长度),S为单片散热面积101的总的散热面积,S1为散热鳍片101的侧面面积,S2为散热鳍片101的厚度面的面积,n为散热鳍片的数量。
散热鳍片101的厚度面为梯形,其面积近似于等于散热鳍片101底部厚度加上顶部厚度乘以散热鳍片101的高度,又结合散热鳍片101的厚度与高度公式y=ax+K,则可知底部的厚度为y为0时的x值,而顶部的厚度为y为h时的x值,则散热鳍片101的厚度面的公式表示如下:
S2=[-K/a+(h-K)/a]hn
因此,S=2hLn+[-K/a+(h-K)/a]hn=2hLn+[(h-2K)/a]hn
本实施例中,为保证散热鳍片101的辐射效率可满足对LED照明设备的散热,同时控制热交换单元1的重量,将LED照明设备的散热鳍片101的散热面积S(单位为CM 2)与LED照明设备的功率P(单位为W)的比值小于28,而大于18,也就是说,18<S/P<28,即18<2hLn/P+[(h-2K)/a]hn/p<28。在此比值下,LED照明设备的光效可达到至少125流明每瓦。
一实施例中,还需控制散热鳍片101的重量,以控制灯头71的力矩。一实施例中,散热鳍片101的重量为小于0.4、0.5、0.6、0.7、0.8或0.9kg,也就是说,在上述重量限制下,须确保散热鳍片101的厚度和散热面积满足以上公式。
如图13所示,在一些实施例中,散热鳍片101形状可以选自方形,扇形,弧形,曲线型等中的一种或多种的组合;散热鳍片101的形状还可以选自中间高,两侧低的凸形形状,或者中间低,两侧高的凹形形状;至少一个散热鳍片101可以是连续的一整片结构也可以是不连续的多个小散热鳍片的组合结构;在至少一个散热鳍片101表面上可以设置有导流槽和/或通孔,以增强流体的扰动作用,强化传热效果。参见图19,(a)-(d)给出了根据本实施例内容的散热鳍片的可选的几种形状的示意图,(e)-(h)示出了其上还具有通流孔和导流槽的示意图。
在一实施例中,为了提升散热鳍片的辐射率或辐射系数(提高散热鳍片表面的发射率),还可以对散热鳍片的表面进行相应处理,例如,在散热鳍片的表面设置用于提高散热鳍片表面的发射率的散热单元,散热单元可以是油漆或辐射散热涂料(主要使用如碳化硅系或纳米碳系等),以提高辐射散热的效率,从而将散热鳍片的热量快速散去。另外,散热单元也可以是是通过在电解液中通过阳极氧化在散热鳍片的表面形成纳米结构的多孔氧化铝层,如此即可在散热鳍片的表面形成一层氧化铝纳米孔,在不增加散热鳍片数量的同时增强散热片的散热能力。最后,散热单元还可以在散热鳍片的表面镀上一层石墨烯,石墨烯是一种由碳原子组成六角型呈蜂巢晶格的二维碳纳米材料,具有优异的光学、电学、力学特性,导热系数高达5300W/m.k,因此非常适合用来帮助LED照明设备散热。一实施例中,散热鳍片表面设置散热单元后,其表面的发射率大于0.7,从而提高散热鳍片表面的热辐射效率。
如图1、图4和图14所示,在一实施例中,基板22与热交换单元1的基座102固定,且形成导热路径。为提升散热效果,基板22上开设孔洞2201,使用状态时,基板22的两侧通过孔洞2201连通,利于热交换单元1的对流散热。相应的,热交换单元1的基座102上开设与孔洞2201对应的对流开口1021。其他实施例中,如果散热性能已能满足LED照明设备的散热,则基板22上可不设置上述的孔洞2201。
如图1,图4和图5所示,在一实施例中,发光体21设置于基板22上,并与电源4电连接。在一实施例中,发光体21之间可以是以并联、串联或串并联的方式连接的。在一实施例中,基板22采用铝基板,其主要材料成分为铝。而热交换单元1的基座102采用铝的材质。当基板22与热交换单元1采用相同材质时,两者拥有相同或大致相同的伸缩率,也就是说,LED照明设备长时间使用下,基板22与热交换单元1不会因反复的冷热交替,而出现不同的伸缩率,防止造成松动。
如图8和图9所示,在一实施例中,发光体21具有多个且设置于基板22上。第三部分Ⅲ以一平面A(该平面垂直于灯头71的轴向)而分为第一区域和第二区域(第一区域或第二区域在LED照明设备长度方向上的长度尺寸在第三部分Ⅲ的总长度的30%以上,以排除某些极端情况的影响,如第一区域为第三部分Ⅲ的端部不设置发光体21的区域)。第一区域中包括的发光体21的数量为X 1,第二区域中包括的发光体21的数量为X 2。第一区域中包括的散热鳍片11的散热面积为Y 1,第二区域中包括的散热鳍片101的散热面积为Y 2,散热面积与发光体21的数量的关系满足以下条件:
X 1/X 2:Y 1/Y 2=0.8~1.2
上述比值位于0.8~1.2之间,可确保发光体21具有相应的,且足够的散热面积作散热。 特别是在发光体21分布存在差异或散热面积分布存在差异时,可防止上述差异过大,而影响部分发光体21的散热。
如图8和图9所示,一实施例中,发光体21具有多个且设置于基板22上。第三部分Ⅲ以一平面A(该平面垂直于灯头71的轴向)而分为第一区域和第二区域(第一区域或第二区域在LED照明设备长度方向上的长度尺寸在第三部分Ⅲ的总长度的30%以上,以排除某些极端情况的影响,如第一区域为第三部分Ⅲ的端部不设置发光体21的区域)。第一区域的总的光通量为N 1,第二区域中包括的发光体21的数量为N 2。第一区域中包括的散热鳍片11的散热面积为Y 1,第二区域中包括的散热鳍片101的散热面积为Y 2,散热面积与发光体21的数量的关系满足以下条件:
N 1/N 2:Y 1/Y 2=0.8~1.2
上述比值位于0.8~1.2之间,可确保发出一定的光通量时,具有相应的,且足够的散热面积作散热。特别是在光通量在第一区域和第二区域的分布存在差异或散热面积分布存在差异时,可防止上述差异过大,而影响散热。
一实施例中,基板22可以是PCB硬板,也可以是FPC软板,或者是铝基板。所述基板22上示例性的可以具有控制电路,以进一步控制发光体21,实现各种期望的功能。
如图14,图15、图16A,图16B和图17所示,一实施例中,壳体3和热交换单元1通过一固定单元6进行连接。具体的,固定单元6包括第一构件61、第二构件62和定位单元63。第一构件61与第二构件62可滑动式的连接。第一构件61可设置于灯壳3上,第二构件62可设置于热交换单元1上。其他实施例中,第一构件61可设置于热交换器上,而第二构件62可设置于灯壳3上。第一构件61可配置为一滑槽,而第二构件62可配置为一导轨。
定位单元63用于在第一构件61和第二构件62相互配合时,使第一构件61和第二构件62相对固定,此时,热交换单元1和壳体3相对固定。具体的,第一构件61和第二构件62上对应设置有定位槽611,621,定位单元63配合在定位槽611,612中,以限制第一构件61和第二构件62的相互间的滑动。一实施例中,定位单元63设置于光输出单元5上。
在一实施例中,光输出单元5设置有紧固装置。在一实施例中,紧固装置为卡扣51,光输出单元5通过卡扣而固定至热交换单元1上,已完成光输出单元5的固定。其他实施例中,光输出单元5还可采用卡接、螺纹连接等现有技术中的结构来实现与热交换单元1的固定。
在一实施例中,光输出单元5可另外配置光学装置,光学装置可配置反射、折射和/或散射的程度,以提供反射、折射和/或散射的任意合适的组合,例如采用反射装置、扩散装置等。在一实施例中,光学装置还可配置为用于增加穿过光输出单元5的光通量,例如采用增透膜。 在一实施例中,光学装置还可配置为用于调整光型,例如采用透镜、反射装置等。
如图17所示,显示散热鳍片101与发光体21的配合示意图。在发光体21所在平面上,任意一发光体21至相邻散热鳍片101(当散热鳍片101投影至发光体21所在平面,其与前述发光体21的距离)的距离大于该发光体21至任意其他发光体21之间的间距。从热传导路径来讲,发光体21产生的热可更快的传导至相邻的散热鳍片101,从而减小该发光体21产生的热对其他发光体21的影响。
参见图45和图46,在一实施例中,光输出单元5包括第一出光区域52和第二出光区域53,第一出光区域52配置为用于接收发光体21工作时直接射出的光(未经反射的光),且发光体21直接射出的光至少部分从第一出光区域52射出,而第二出光区域53仅接收经过反射的光,且经过反射的光的至少一部分从第二出光区域53射出。
一实施例中,LED照明设备设置有反射装置,发光体21工作时产生的至少一部分光线通过反射装置进行一次或多次反射后,从第二出光区域53射出。其中,第二出光区域53射出的总的光通量占发光体21发出的总的光通量的0.01%~40%。一些实施例中,第二出光区域53射出的总的光通量占发光体21发出的总的光通量的1%~10%。以此,可解决光输出单元5因局部强光而造成的眩光问题,使得出光更加均匀。在一实施例中,第二出光区域53上的平均照度至少为第一出光区域52上的平均照度的0.01%以上,且不大于35%。一些实施例中,第二出光区域53上的平均照度至少为第一出光区域52上的平均照度1%~20%。
一实施例中,反射装置包括第一反射表面521,第一反射表面521配置为反射至少部分发光体21直接射出的光。一实施例中,反射装置包括第二反射表面223,第二反射表面223配置为用于反射第一反射表面521反射回的光,并将所述第一反射表面521反射回的光的至少一部分反射至第二出光区域53。
一实施例中,第一反射表面521设于第一出光区域52的内表面。第一反射表面521可以是涂覆于第一出光区域52的内表面,以使得可透射一部分的光及反射一部分的光。其他实施例中,第一反射表面521也可以直接是第一出光区域52的内表面,第一反射表面521以第一出光区域52的材料属性而具有透射及反射的功能。以上实施例中,从第一反射表面521反射的光通量与从第一反射表面521透过的光通量的比值为0.003~0.1之间。如果第一反射表面521以第一出光区域52的材料属性而具有透射及反射的功能,则第一出光区域52的折射率配置为1.4~1.7之间,以使得第一反射表面521的透光性与反射性能达到较佳值。
一实施例中,第二反射表面223设于发光单元2的基板22的表面。具体的,基板22表面涂覆反射层,以形成所述第二反射表面223。第二反射表面223可以是现有技术中的具有 反射功能的材料,此处不再例举。
在一实施例中,LED照明设备的总的透光率(光输出单元5透过的光与发光体21发出的光的比值)大于90%。在一实施例中,LED照明设备的总的透光率(光输出单元5透过的光与发光体21发出的光的比值)大于93%。在一实施例中,LED照明设备的光效大于130流明每瓦。
一实施例中,为提升LED照明设备的透光率,可在光输出单元5上设置抗反射涂层,以此减少光线射至光输出单元5时的反射,从而提高透光率,以使得LED照明设备的光效可达到至少135流明每瓦。
如图47所示,第一发光区域52和第二发光区域53具体划分如下,发光体21的发光角度为a,则发光体21直接发出的光投射至光输出单元5的区域为第一发光区域52,光输出单元5上有光线射出的其他区域则为第二发光区域52。
如图48所述,一实施例中,光输出单元5的内表面设置增透膜54,以使LED照明设备的透光率达到95%以上。发光体21工作时产生的光线依序经过第一介质(可以是发光体21与光输出单元5之间的空气)、增透膜54及光输出单元5。本实施例中,第一介质的折射率为n1,光输出单元5的折射率为n2,增透膜54的折射率为n,其中增透膜54的折射率符合以下公式:
Figure PCTCN2020089097-appb-000001
一实施例中,增透膜54的厚度为d,其厚度d=(2k+1)L/4,其中,k为自然数,L为光在增透膜54中的波长。
在一实施例中,光输出单元5采用透光材料,如玻璃、塑料等。在一实施例中,光输出单元5为一体式结构或多块拼接而成的结构。
在一实施例中,光输出单元5上具有孔洞,以对应基板22上的孔洞2201。
在一实施例中,光输出单元5的截面形状为波浪形、圆弧形或直线形。采用波浪形或圆弧形时,可以使光输出单元5具有较好的强度。
发光单元工作时产生的热,需要尽快传导至热交换单元,并借由热交换单元进行散热。发光单元的热传导至热交换单元时,影响传导速度的因素之一是发光单元与热交换单元之间的热阻。
一实施例中,为降低发光单元2与热交换单元1之间的热阻,需增加发光单元2(发光单元2的基板22)与热交换单元1的接触面积。具体的,发光单元2与热交换单元1之间设 置导热胶。导热胶具体可选用导热硅脂或其他类似材质。通过导热胶的设置,可填充发光单元2与热交换单元1之间的空隙,从而达到增加发光单元2与热交换单元1接触面积的目的,使得发光单元2与热交换单元1之间的热阻降低。通常,导热胶先涂覆在发光单元2上,再将发光单元2与热交换单元1连接。其他实施例中,也可将导热胶先涂覆在热交换单元1上。
如图16B,17,图18和图19所示,一实施例中,热交换单元1上设置有用于固定发光单元2的固定结构。具体的,热交换单元1包括固定单元12,固定单元12与发光单元2的基板22的外缘配合固定。
热交换单元1包括一基座102,固定单元12包括第一固定单元121和第二固定单元122,第一固定单元121和第二固定单元122在热交换单元1的长度方向上排布设置且均固设在基座13上。第一固定单元121和第二固定单元122设置于基座102上相对散热鳍片101的另一侧。第一固定单元121和第二固定单元122分别与基板22长度方向的两端配合。
第一固定单元121包括第一槽部1211,第二固定单元122包括第二槽部1221,第一槽部1211与第二槽部1221的开口方向相对设置,基板22长度方向上的一端卡入第一槽部1211中,而基板22长度方向上的另一端卡入第二槽部1221中。
进一步的,第一固定单元121上设置第一壁1212,第一壁1212与基座13之间形成所述第一槽部1211。第二固定单元122上设置第二壁1222,第二壁1222与基座13之间形成所述第二槽部1221。当基板22的两端分别卡入第一槽部1211和第二槽部1221后,施力于第一壁1212和第二壁1222,使第一壁1212和第二壁1222变形并分别压紧于基板22的表面,使得基板22相对基座13固定(图23显示第一壁1212和第二壁1222变形并分别压紧于基板22的表面)。
基板22的一侧的端部抵在第二槽部1221的底部12211,以此控制基板22的安装位置,保证不同LED照明设备的基板22的安装位置的一致性。基板22的另一侧与第一槽部1211的底部12111保持间隙,该间隙的设置,可防止基板22受基座13挤压而变形。具体来讲,基板22和基座13可能因材质不同,而具有不同的收缩率,经长时间冷热交替,基板22在长度方向上可能被基座13挤压,造成基板22隆起。而间隙的设置,则可有效避免这种情况的发生。
第一壁1212的厚度尺寸在靠近第二壁1222的方向上逐渐递减。以此使得第一壁1212在其相对的外侧更易受力变形。相应的,第二壁1222也可采用相同的设置方式,即,第二壁1222的厚度尺寸在靠近第一壁1212的方向上逐渐递减。
一实施例中,基板22的两端在侧向方向上同时插入第一槽部1211和第二槽部1221(图 未示),此时第一槽部1211和第二槽部1221提供近似于滑槽、导轨的结构,与基板22进行安装配置。采用这种方式,基板22的安装方式较为简便。
参见图16B至图23,一实施例中,为避免预先涂布于基板22背面的导热胶在安装过程中溢出,基板22可采用不同的安装方式。具体的,基板22从基座13的上方直接贴合在基座13上,并将基板22的两端分别插入第一槽部1211和第二槽部1221。
参见图18,一实施例中,第一壁1212具有一第一状态(第一壁1212未受力变形前),在第一状态时,第一壁1212的内侧表面设置为一斜面12121,该斜面12121距离基座13的距离在往第二壁1222的方向上逐渐递减,以使得第一槽部1211的开口呈扩口状,从而方便基板22直接在基座13的上方斜向(基板22与基座13保持一夹角)插入第一槽部1211。本实施例中,第一槽部1211的底部12111至第二壁1222的端部的距离大于基板22的长度尺寸。因此,基板22的一端插入第一槽部1211并使其端部抵在第一槽部1211的底部12111时,基板22可直接向下贴合在基座13上。然后,平移基座13,使基座13的一端抵在第二槽部1221的底部12211,此时第一壁1212的端部和第二壁1222的端部在基板22的厚度方向上对应到基板22,最后通过第一壁1212和第二壁1222压紧基板22即可。
参见图16B至图23,本实施例中的基板22的安装方法,包括以下步骤:
配置一基板22,并在基板22的表面设置导热胶;
配置一基座13;
将基板22的长度方向的一端斜向插入第一槽部1211中(参考图20);
将基板22与基座13贴合(参考图21);
平移基板22,使基板22的一端抵在第二槽部1221的底部12211(参考图22);
施力于第一壁1212和第二壁1222,使第一壁1212和第二壁1222分别压紧在基板22的表面(参考图23)。
参见图24和图25,在一其他实施例中,第一壁1212和第二壁1222可采用不同的形态。具体的,第一壁1212和第二壁1222在未变形前均以垂直于基座13的表面的形式而设置,第一壁1212和第二壁1222之间的距离大于或略大于基板22的长度(具体的,第一壁1212和第二壁1222之间的距离与基板22的长度的差值为0~3mm),以使基板22可直接从基座13的上方而放入到第一壁1212和第二壁1222之间。参见图25,然后通过弯折第一壁1212和第二壁1222,使第一壁1212和第二壁1222压紧在基板22上。本实施例中的基板22的安装方法,包括以下步骤:
配置一基板22,并在基板22的表面设置导热胶;
配置一基座13,基座13上设置第一壁1212及第二壁1222;
将基板22在其厚度方向上贴覆至基座13;
施力于第一壁1212和第二壁1222,使第一壁1212和第二壁1222分别压紧在基板22的表面。
如图26和图27所示,一实施例中,热交换单元1,可对基板22和热交换单元1进行进一步的固定。如通过螺栓或铆钉进一步进行连接。具体的,在散热鳍片101之间的基座102上设置连接孔116,以进行连接。此时,基板22上需对应连接孔116而进行开孔,此处不再赘述。
为进一步防止基板和基座贴合时的导热胶的溢胶问题,可相应设计导热胶的位置。具体的,参见图16B至图19,及图27至图28,一实施例中,导热胶23涂覆于基板22相对发光体21的另一面时,导热胶23与基板22的外缘保持间距。因而,基板22与基座13贴合时,导热胶23具有一定的往外的流动空间,以避免导热胶溢出。一实施例中,基板22贴合安装在基座13后,导热胶23至基板22的外缘保持间距,该间距值范围为0~10mm。一实施例中,溢胶主要影响的地方在于:导热胶从基板22宽度方向上的两侧溢出,影响美观性,而基座22长度方向上的两侧则卡入第一槽部1211和第二槽部1221,因而即使导热胶溢出,也被第一槽部1211和第二槽部1221遮挡。因此,在设置导热胶的时候,在基板22和基座13安装完成后,设置为导热胶至基板22的宽度方向上的两侧保持一间距,该间距值范围为0~10mm。优选的,该间距值范围为0~5mm。
为避免导热胶的溢胶问题,还可设置其他的溢胶的结构。如图28和图29所示,一其他实施例中,基座13上开设第一容置槽131,基板22安装于基座13上时,第一容置槽131对应于基板22的外缘,且不超出基板22的外侧的边界。第一容置槽131的截面形状可设置为方形、弧形或三角形等。因此,在基板22和基座13安装时,导热胶可流动至第一容置槽131,以避免多于的导热胶溢出。如图30所示,其他实施例中,基板22可设置类似的结构,具体的,可在基板22相对基座的表面开设第二容置槽222。第二容置槽222可开设置基板22的宽度方向的两侧。同样的,第二容置槽222的截面形状可设置为方形、弧形或三角形等。其他实施例中,可同时采用第一容置槽131和第二容置槽222的设计。
如图27和图28所示,一实施例中,发光单元2工作时,其热源主要产生于发光体21,而发光体21设置于基板22的一设置区域221(设置区域221包括用于电连接发光体21的连接导线),为确保基板22在发光体21处于基座13的接触面积,可将导热胶涂覆于基板22相对发光体21的另一侧,且导热胶23的位置对应于设置区域221的位置(导热胶23的设置位 置至少70%对应于设置区域的位置,即可认为导热胶23的位置对应于设置区域221的位置)。
其他实施例中,热交换单元1还可以采用分体结构。如图31,图32,图33,图34和图25所示,在一实施例中,热交换单元1包括第一散热件11和第二散热件12。第一散热件11和第二散热件12的基本结构大致同前述实施例的一体式结构的热交换单元1。第一散热件11与第二散热件12在第二方向Y上排布设置。在第二方向Y上,所述第一散热件11和所述第二散热件12以其相互位置的不同,使热交换单元1具有一收拢状态及一展开状态。所述热交换单元1可在收拢状态及展开状态间切换。所述热交换单元1在收拢状态时具有一宽度尺寸A,所述热交换单元1在展开状态时具有一宽度尺寸B,所述热交换单元1在收拢状态时的宽度尺寸A小于所述热交换单元1在展开状态时的宽度尺寸B。当热交换单元1处于收拢状态时,热交换单元1具有更小的体积(亦或具有更小的宽度尺寸),有利于LED照明设备的包装、运输及安装。从安装角度来讲,当LED照明设备需要装入灯具内使用时,当热交换单元1处于收拢状态时,更利于LED照明设备以旋转的方式装入灯具,使得热交换单元1不易碰撞到灯具,而造成灯具的损伤。当热交换单元1处于展开状态,其具有更大的可用作散热的面积或空间,更利于LED照明设备的散热。从使用角度来讲,当安装时,可先将热交换单元1收拢,而利于安装,安装完成后,再将热交换单元1展开,以利于LED照明设备的散热。本实施例中的第二方向Y为LED灯使用状态时的宽度方向。其他实施例中,第二方向Y可以是不同的方向,比如第二方向Y与基板22呈一定的角度,又比如第二方向Y是沿一圆周的方向。
如图31和图35所示,本实施例中,所述热交换单元1在展开状态时的宽度尺寸B与所述热交换单元1在收拢状态时的宽度尺寸A的比值不小于1.1,且不大于2。优选的,所述热交换单元1在展开状态时的宽度尺寸B与所述热交换单元1在收拢状态时的宽度尺寸A的比值不小于1.2,且不大于1.8。以此,使热交换单元1获得足够的调节空间。以使得热交换单元1具有足够的调节空间。
如图31所示,第一散热件11包括第一散热鳍片111,所述第二散热件12包括第二散热鳍片121,在所述收拢状态时,所述第一散热鳍片111与所述第二散热鳍片121在所述第一方向X上至少部分重叠。在所述展开状态时,所述第一散热鳍片111与所述第二散热鳍片121在所述第一方向X上不重叠,或者所述第一散热鳍片111与所述第二散热鳍片121在所述第一方向X上重叠的部分的尺寸较收拢状态时小。在一实施例中,第一散热鳍片111和第二散热鳍片121在第一方向X上具有间距,因此,不论是收拢状态或展开状态时,第一散热鳍片111和第二散热鳍片121均不接触,以避免热相互影响。本实施例中的第一散热鳍片111与第 二散热鳍片121平行或大致平行的设置。
第一散热鳍片111之间的间距值8~25mm,优选值为8~15mm,间距值可根据散热时的辐射和对流进行确定。第二散热鳍片121之间的间距值可与第一散热鳍片111之间的间距值相同,这样不但使得在控制重量的情况下可以满足散热需求,还可以便于热交换单元1在收拢状态与展开状态之间切换时,第一散热鳍片111与第二散热鳍片121之间不发生相互抵接摩擦。当然也可以在第一散热鳍片111与第二散热鳍片121之间不发生相互抵接摩擦的设计范围内,去设置第二散热鳍片121之间的间距值不同于第一散热鳍片111。
如图31至图40所示,为实现热交换单元1的收拢状态和展开状态,具体还包括一调节单元8,调节单元8可直接设置在壳体3的面向热交换单元1的表面上,且与壳体3一体成型,也可采用其他方式形成,然后固定于壳体3上。所述调节单元8包括滑轨81、第一定位单元82、第二定位单元83和弹性部件84,所述滑轨81沿所述第二方向Y延伸设置,所述第一散热件11和所述第二散热件12均设置相应构件来匹配所述滑轨81,以使得第一散热件11和所述第二散热件12可沿滑轨81(第二方向Y)定向移动。具体的,第一散热件11设置有第一元件112来匹配滑轨81,而第二散热件12设置有第二元件122来匹配滑轨81。滑轨81的数量可设置多组,已提供连接的稳定性。举例来讲,壳体3的端部在LED照明设备的厚度方向上的一侧设置一个长度较长的长滑轨,由所述第一散热件11的第一元件112和所述第二散热件12的第二元件122共用,而壳体3的端部在LED照明设备的厚度方向上的另一侧部则分别设置两个长度较短的短滑轨,分别匹配第一散热件11的第一元件112和所述第二散热件12的第二元件122。可以理解的是,滑轨的设置还可以为其他任意数量。示例性的,壳体3的上下端部分别设置两个短滑轨以分别匹配第一散热件11的第一元件112和所述第二散热件12的第二元件122等。
通过第一定位单元82和第二定位单元83来限制第一散热件11及第二散热件12的滑动时的行程,也就是说,收拢状态和展开状态的保持分别是通过所述第一定位单元82和第二定位单元83来实现。当热交换单元1处于收拢状态时,第一定位单元82将第一散热件11和第二散热件12定位固定,当热交换单元1处于展开状态时,第二定位单元83定位第一散热件11和第二散热件12,以限制第一散热件11和第二散热件12展开的尺寸。热交换单元1在收拢状态时,弹性部件84设置在热交换单元1上并以其弹性势能同时施力于第一散热件11和第二散热件12。当解除第一定位单元82对第一散热件11和第二散热件12定位固定时,第一散热件11和第二散热件12将自动展开,由第二定位单元83限制第一散热件11和第二散热件12的展开尺寸。
第一定位单元82包括第一扣合部821、第二扣合部822、弹性臂部823及按压部824,所述第一扣合部821、第二扣合部822和按压部824均固定在所述弹性臂部823上,所述弹性臂部823固定至所述壳体3。所述第一散热件11上具有第一凹部113,所述第一凹部113与所述第一扣合部821匹配。所述第二散热件12上具有第二凹部123,所述第二凹部123与所述第二扣合部822匹配。在收拢状态时,第一扣合部821卡入第一凹部113,第二扣合部822卡入第二凹部123,当按下按压部824时,弹性臂部823以其弹性变形而改变第一扣合部821、第二扣合部822的位置,使第一扣合部821、第二扣合部822从第一凹部113和第二凹部123中脱出,此时,第一散热件11和第二散热件12通过弹性部件84的作用而自动展开。
第二定位单元83包括第一定位部831和第二定位部832,第一定位部831和第二定位部832均设置在壳体3上,第一散热件11上开设有第一定位孔114,第二散热件12上开设有第二定位孔124,第一定位部831与第一定位孔114匹配,第二定位部832与第二定位孔124匹配,从而限制第一散热件11和第二散热件12展开时位置。第一定位部831和第二定位部832在无外力情况下,其均凸起于壳体3的端面。其他实施例中,第一定位部831和第二定位部832可设置在热交换单元1上,而第一定位孔114和第二定位孔124可设置在壳体3上。
第二定位单元83的第一定位部831和第二定位部832各自包括一弹性臂8311,8321,在将第一散热件11和第二散热件12组装到壳体3上时,随着第一散热件11和第二散热件12的第一元件112以及第二元件122沿着滑轨81由壳体3的两侧向中轴线移动,第一定位部831和第二定位部832各自的弹性臂8311,8312先被下压,然后分别在第一散热件11的第一定位孔114以及第二散热件12上的第二定位孔124中弹起,以实现第一散热件11和所述第二散热件12的限位固定。
在其他实施例中,也可采用非弹性势能施力于第一散热件11和第二散热件12的方式来实现热交换单元1在收拢状态与展开状态之间的切换,例如直接采用外力的方式实现。
如图36至图40所示,还可以在壳体3上设置第三定位单元85,与之相匹配的分别在第一元件112和第二元件122上设置第一定位凹槽1121与第二定位凹槽1221,当热交换单元处于收拢状态时,第三定位单元85分别抵接第一定位凹槽1121与第二定位凹槽1221,从而限制第一散热件11和第二散热件12在收拢状态时继续相向移动。
具体的,弹性臂部823上设置所述第三定位单元85,可选的,第三定位单元85为一凸起结构。在一实施例中,第三定位单元85形成为圆柱状。第一散热件11的第一元件112上对应于第三定位单元85的位置处设置有第一定位凹槽1121,第一定位凹槽1121设置为与第三定位单元85相匹配的形状,当第三定位单元85为圆柱状时,则第一定位凹槽1121设置为 半圆形凹槽。同样的,第二散热件12的第二元件122上对应于第三定位单元85的位置处设置有第二定位凹槽1221,第二定位凹槽1221同样设置为与第三定位单元85相匹配的形状,当第三定位单元85设置为圆柱状时,第二定位凹槽1221设置为半圆形凹槽。基于此设计,当热交换单元1处于收拢状态时,第三定位单元85的圆柱状凸起分别抵接所述第一定位凹槽1121与所述第二定位凹槽1221,从而进一步限制第一散热件11和第二散热件12在收拢状态时继续相向移动。
在一其他实施例中,第三定位单元85也可形成为任意其他凸起形状,例如椭圆形,方形,菱形,球形,任意多边形等等,只需能够满足限位的功能即可,数量上可以是1个,2个或者多个。
在一其他实施例中,第三定位单元85的位置可以设置于壳体3上的除弹性臂部823之外的其他合适位置,优选设置于壳体3的面向热交换单元1的表面的中轴线上。
在一其他实施例中,第三定位单元85也可仅仅只在第一散热件11的第一元件112和第二散热件12的第二元件122上相互对应的位置处分别设置定位部件(图未示)来进一步限制第一散热件11和第二散热件12在收拢状态时继续相向移动,例如在所述第一元件112和所述第二元件122的相对应位置处分别设置一凸起,当热交换单元处于收拢状态时,所述第一元件112的凸起抵接所述第二元件122的对应凸起,从而进一步限制第一散热件11和第二散热件12在收拢状态时继续相向移动。凸起可形成为任意合适的凸起形状,只需能够满足限位的功能,数量也可以是1个,2个或者多个。
如图33至图37所示,在一实施例中,为了增加第一散热件11和第二散热件12相对滑动的稳定性,并进一步在展开时减少第一散热件11和第二散热件12相互倾斜的问题,可设计相应的导向结构。具体来讲,第一散热件11和第二散热件12上分别设置导向孔115,125,然后通过一定位轴穿设过导向孔115,125,从而提升第一散热件11和第二散热件12相对滑动时的稳定性,避免在展开时发生第一散热件11和第二散热件12相互倾斜。一实施例中,导向孔115,125设于第一散热鳍片111和第二散热鳍片121靠近发光单元2的端部。一实施例中,弹性部件84可设置于其中一导向孔内,通过与定位轴上的定位部件(例如凸起)来实现对第一散热件11和第二散热件12的弹性势能的施加。在一实施例中,仅在所述第一散热件11和第二散热件12任意之一上设置导向孔,在另一散热件上相应于导向孔的位置处设置定位轴,从而通过将所述导向定位轴穿插于所述导向孔内,以提升第一散热件11和第二散热件12相对滑动时的稳定性,避免在展开时发生第一散热件11和第二散热件12相互倾斜。
在一实施例中,上述导向孔115,125的数量在每个散热件上至少设置一个。在一实施例 总,导向孔115,125在热交换单元1的长度方向上可设置多个,例如,在热交换单元1靠近壳体3处的一端及远离壳体3处的一端各设置一个。
如图32至图35所示,在一实施例中,第一散热件11的一第一散热鳍片111设置间隔部1111,以此,一方面可在间隔部1111处设置连接孔116,另一方面,可增加间隔处1111的对流。连接孔116的设置,用于固定基板22,以防止基板22隆起,从而使基板22与热交换单元1的接触面积降低,并最终降低热传导效率。具体的,通过连接孔116的设置,可采用螺栓、铆钉等穿过连接孔116,实现基板22与热交换单元1的连接。由于第一散热鳍片111和第二散热鳍片121的位置关系,则第二散热鳍片121上的连接孔126位于两第二散热鳍片121之间,因此,无需设置连接孔116。其他实施例中,也可通过连接孔116的调整,而不设置间隔部,因此,第一散热件11的连接孔116和第二散热件12上的连接孔126的在第一方向X上的位置不同。
如图32至图35所示,在一实施例中,当热交换单元1具有第一散热件11和第二散热件12时,对应设置两组发光单元2和两组光输出单元5。具体的,第一散热件11包括第一基座117,第二散热件12包括第二基座127,两组发光单元2分别设置于第一基座117和第二基座127上。两组光输出单元5分别罩设于两组发光单元2上。
如图32至图41所示,第一基座117与第二基座127的任意一个上对应导向孔115或125的位置处设置有开槽128,在图17的本实施例公开内容中,开槽128设置在第二散热基板127上,当定位轴插进导向孔115,125后,外部冲压设备通过开槽128冲压定位轴,使定位轴固定,另外,在设置开槽128的情况下,基板22在工艺上更容易加工。
如图33所示,一实施例中,当热交换单元1处于展开状态时,两组发光单元2(具体指的是两组发光单元2的基板22)之间距离随之增加,使得所述LED照明设备的出光范围更大。
如图33所示,一实施例中,两组基板22均开设孔洞2211,使用状态时,基板22的两侧通过上述孔洞2211而连通,有利于热交换单元1的对流散热。每组基板22上的孔洞2211的数量可设置为一个或多个。
如图42所示,在一实施例中,两组基板22之间还可配置为互相构成一夹角C,以调整LED照明设备的出光角度,具体的,LED照明设备的出光角度随之增加。一实施例中,两组基板间的夹角C的角度可在120度至170度之间,从而获得了更大的出光范围。总之,两组基板22相互间构成的夹角C的设置,能确保LED照明设备下方的亮度及LED照明设备整体的出光角度。
如图43所示,在一实施例中,为增加LED照明设备的出光角度,还可设置透镜。具体的,发光体21上可进一步设置透镜201,以增加LED照明设备的出光角度。示例性的,透镜201的设置可以设置在单个发光体21上,可以明确的是,透镜3211也可以设置在多个发光体21上,即单个透镜201对应多个发光体21(图未示)。
发光模块3200与热交换模块3100连接并形成导热路径,当LED照明设备工作时,发光模块3200产生的热量可通过热传导的方式传导至热交换模块3100,并借由热交换模块3100进行散热。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照所附权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并不是为了放弃该主体内容,也不应该认为发明人没有将该主题考虑为所公开的发明主题的一部分。

Claims (24)

  1. 一种LED照明设备,其特征在于,包括:
    第一部分,所述第一部分包括灯头;
    第二部分,所述第二部分包括壳体和电源,所述电源设置于所述壳体内;
    第三部分,所述第三部分中设置热交换单元和发光单元,所述发光单元与所述热交换单元连接并形成导热路径,所述发光单元与所述电源电连接;
    所述第一部分、第二部分和第三部分依次设置;
    所述灯头沿一第一方向延伸设置,所述发光单元包括发光体和基板,所述基板提供一安装面,所述发光体安装在所述安装面上,所述安装面与所述第一方向平行设置;
    所述第二部分的起始至所述LED照明设备的重心所在的平面的距离b满足以下关系:
    (L 2+L 3)/5<b<3(L 2+L 3)/7;
    其中,L 2为所述第二部分的长度;L 3为所述第三部分的长度。
  2. 根据权利要求1所述的LED照明设备,其特征在于:给所述LED照明设备提供不超过110瓦的电能,所述发光单元点亮,且使所述LED照明设备发出至少15000流明的光通量。
  3. 根据权利要求1所述的LED照明设备,其特征在于:给所述LED照明设备提供不超过80瓦的电能,所述发光单元点亮,且使得所述LED照明设备发出至少12000流明的光通量。
  4. 根据权利要求1所述的LED照明设备,其特征在于:给所述LED照明设备提供不超过60瓦的电能,所述发光单元点亮,且使得所述LED照明设备发出至少9000流明的光通量。
  5. 根据权利要求1所述的LED照明设备,其特征在于:给所述LED照明设备提供不超过40瓦的电能,所述发光单元点亮,且使得所述LED照明设备发出至少6000流明的光通量。
  6. 根据权利要求1所述的LED照明设备,其特征在于:所述LED照明设备沿水平安装后,所述灯头安装后的力矩F=d 1*g*W 1+(d 2+d 3)*g*W 2,该力矩满足以下条件:
    1NM<d 1*g*W 1+(d 2+d 3)*g*W 2<2NM;
    其中,W 1为所述第二部分的重量;
    d 2为所述第二部分的长度;
    d 3为所述第二部分至所述第三部分Ⅲ的重心所在的平面的距离;
    W 2为所述第三部分的重量。
  7. 根据权利要求6所述的LED照明设备,其特征在于:所述灯头的力矩满足以下条件:
    1NM<d 1*g*W 1+(d 2+d 3)*g*W 2<1.6NM。
  8. 根据权利要求1所述的LED照明设备,其特征在于:所述第二部分的重量占整灯的 重量的30%以上。
  9. 根据权利要求1所述的LED照明设备,其特征在于:所述第三部分的重量占整灯的重量不超过60%。
  10. 根据权利要求1所述的LED照明设备,其特征在于:所述第二部分的长度占整灯的长度不超过25%。
  11. 根据权利要求1所述的LED照明设备,其特征在于:所述第三部分的长度占整灯的长度不超过70%。
  12. 根据权利要求1所述的LED照明设备,其特征在于:所述LED照明设备的长度为L,所述灯头端部至所述LED照明设备的重心所在的平面的直线距离为a,L和a满足以下关系:a/L=0.2~0.45。
  13. 一种LED照明设备,其特征在于,包括:
    第一部分,所述第一部分包括灯头;
    第二部分,所述第二部分包括壳体和电源,所述电源设置于所述壳体内;
    第三部分,所述第三部分中设置热交换单元和发光单元,所述发光单元与所述热交换单元连接并形成导热路径,所述发光单元与所述电源电连接;
    所述第一部分、第二部分和第三部分依次设置;
    所述灯头沿一第一方向延伸设置,所述发光单元包括发光体和基板,所述基板提供一安装面,所述发光体安装在所述安装面上,所述安装面与所述第一方向平行设置;
    所述第二部分具有第一区域、第二区域和第二区域,其中,所述第三区域为所述壳体外部的区域,所述电源通过所述第二区域与所述第一区域形成导热路径,所述第一区域和所述第二区域的导热系数均大于所述第三区域的导热系数。
  14. 根据权利要求13所述的LED照明设备,其特征在于:所述第一区域的导热系数为第三区域的导热系数的8倍以上。
  15. 根据权利要求13所述的LED照明设备,其特征在于:所述第二区域的导热系数为所述第三区域的5倍以上。
  16. 根据权利要求13所述的LED照明设备,其特征在于:所述第二区域设置导热材料。
  17. 根据权利要求16所述的LED照明设备,其特征在于:所述电源包括发热元件,所述发热元件露于外部的表面积的至少80%以上附着所述导热材料。
  18. 根据权利要求13所述的LED照明设备,其特征在于:所述电源包括电源板,所述电源板具有第一面,所述第一面上设置有电子元件,所述第一面上设置第一平面及第二平面, 其中,所述第一面上的电子元件均设置于所述第二平面上。
  19. 根据权利要求18所述的LED照明设备,其特征在于:所述第二平面为一环状区域,所述电子元件围绕所述第一平面设置。
  20. 根据权利要求18所述的LED照明设备,其特征在于:所述第一平面的面积至少占所述第一面的总面积的1/20。
  21. 根据权利要求16所述的LED照明设备,其特征在于:所述导热材料一部分填充在所述第一平面的对应出,从而形成第一导热部分,所述导热材料的一部分填充至所述电源与所述壳体的内壁之间的区域,从而形成第二导热部分,所述第一导热部分与所述第二导热部分通过所述电子元件隔开。
  22. 根据权利要求13所述的LED照明设备,其特征在于:位于所述第二区域的外侧的所述电子元件与位于所述第二区域的内侧的所述电子元件于工作时产生的热以不同的路径进行传导。
  23. 一种LED照明设备,其特征在于,包括:
    第一部分,所述第一部分包括灯头;
    第二部分,所述第二部分包括壳体和电源,所述电源设置于所述壳体内;
    第三部分,所述第三部分中设置热交换单元、发光单元和光输出单元,所述发光单元与所述热交换单元连接并形成导热路径,所述发光单元与所述电源电连接;
    所述发光单元包括发光体和基板;所述光输出单元包括第一出光区域和第二出光区域,所述第一出光区域配置为用于接收所述发光体工作时直接射出的光,所述第二出光区域仅接收经过发射的光,且经过反射的光的至少一部分从所述第二出光区域射出。
  24. 根据权利要求23所述的LED照明设备,其特征在于:从所述第二出光区域射出的总的光通量占所述发光体发出的总的光通量的0.01%~40%。
PCT/CN2020/089097 2019-05-10 2020-05-08 一种led照明设备 WO2020228590A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20805412.2A EP3967922A4 (en) 2019-05-10 2020-05-08 Led lighting device
JP2021600169U JP3237179U (ja) 2019-05-10 2020-05-08 Led照明装置
CN202090000548.5U CN217816654U (zh) 2019-05-10 2020-05-08 一种led照明设备

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
CN201910389791 2019-05-10
CN201910389791.4 2019-05-10
CN201910823909 2019-09-02
CN201910824645.X 2019-09-02
CN201910823909.X 2019-09-02
CN201910824645 2019-09-02
CN201910829903 2019-09-04
CN201910829903.3 2019-09-04
CN201910933782.7 2019-09-29
CN201910933782 2019-09-29
CN201911223302.4 2019-12-03
CN201911222383 2019-12-03
CN201911223302 2019-12-03
CN201911222383.6 2019-12-03
CN201911292035 2019-12-16
CN201911292035.6 2019-12-16
CN202010147591 2020-03-05
CN202010147591.0 2020-03-05

Publications (1)

Publication Number Publication Date
WO2020228590A1 true WO2020228590A1 (zh) 2020-11-19

Family

ID=73238005

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/089136 WO2020228598A1 (en) 2019-05-10 2020-05-08 Led lighting device
PCT/CN2020/089097 WO2020228590A1 (zh) 2019-05-10 2020-05-08 一种led照明设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089136 WO2020228598A1 (en) 2019-05-10 2020-05-08 Led lighting device

Country Status (5)

Country Link
US (6) US11262062B2 (zh)
EP (1) EP3967922A4 (zh)
JP (3) JP3237179U (zh)
CN (9) CN213452918U (zh)
WO (2) WO2020228598A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD928994S1 (en) * 2019-08-12 2021-08-24 Xiamen Eco Lighting Co., Ltd. Street light

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201318602Y (zh) * 2008-12-15 2009-09-30 东莞市邦臣光电有限公司 路灯散热外壳
CN201396646Y (zh) * 2009-04-13 2010-02-03 赵党生 一种具有高效散热的led路灯
CN201983034U (zh) * 2011-01-28 2011-09-21 深圳市裕富照明有限公司 Led爪形散热球泡灯
CN102927476A (zh) * 2012-11-08 2013-02-13 浙江阳光照明电器集团股份有限公司 一种液体传热的led球形灯
CN104566309A (zh) * 2014-12-25 2015-04-29 上海三思电子工程有限公司 一种散热器的制备方法及具有该散热器的灯具
CN204717441U (zh) * 2015-06-26 2015-10-21 纪启源 一种采用卡扣连接的内外空气对流的led球泡灯
CN205716515U (zh) * 2016-04-19 2016-11-23 李志林 一种高效节能且具有远程控制功能的led光源
CN106287269A (zh) * 2016-11-07 2017-01-04 贵州光浦森光电有限公司 一种带筒形热辐射环的贴片式发光灯泡及其应用
CN205877783U (zh) * 2016-07-20 2017-01-11 山东晶泰星光电科技有限公司 一种带有热辐射材料的电源内置led灯丝灯
CN206207076U (zh) * 2016-11-04 2017-05-31 嘉兴市正大照明有限公司 一种带波纹效果的led灯
CN207486493U (zh) * 2017-07-21 2018-06-12 刘锋 一种定向发光led灯
WO2018134906A1 (ja) * 2017-01-18 2018-07-26 三菱電機株式会社 ランプ
CN208186068U (zh) * 2018-05-16 2018-12-04 安徽富实光电科技有限公司 一种便于散热的展示柜led灯具
CN109416153A (zh) * 2017-06-12 2019-03-01 波位里斯株式会社 Led灯
CN208817121U (zh) * 2018-11-19 2019-05-03 廊坊耀星光电科技有限公司 一种节能型led灯具

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7686469B2 (en) * 2006-09-30 2010-03-30 Ruud Lighting, Inc. LED lighting fixture
USD569538S1 (en) 2007-04-13 2008-05-20 Masterwise International Limited Flashlight
US8066410B2 (en) * 2007-10-24 2011-11-29 Nuventix, Inc. Light fixture with multiple LEDs and synthetic jet thermal management system
WO2009091562A2 (en) * 2008-01-15 2009-07-23 Philip Premysler Omnidirectional led light bulb
US7637637B2 (en) * 2008-04-16 2009-12-29 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Outdoor LED lamp assembly
US7815333B2 (en) * 2008-09-26 2010-10-19 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Solar LED lamp
CN101684931A (zh) * 2008-09-26 2010-03-31 富准精密工业(深圳)有限公司 发光二极管灯具
US20100135011A1 (en) * 2008-12-03 2010-06-03 Richardson Ben Osman Pest and vandal resistant solid state luminaire
CN201615396U (zh) 2009-09-14 2010-10-27 东莞东海龙环保科技有限公司 横向安装可调角度的led室内照明灯具
CN101749603B (zh) 2010-01-14 2011-07-27 沈锦祥 一种led路灯灯头
JP5747546B2 (ja) * 2010-03-29 2015-07-15 東芝ライテック株式会社 照明装置
US8403509B2 (en) 2010-10-05 2013-03-26 Hua-Chun Chin LED lamp whose lighting direction can be adjusted easily and quickly
CN201858554U (zh) * 2010-10-19 2011-06-08 深圳市旭明光电有限公司 一种led照明灯
US8783917B2 (en) * 2010-12-28 2014-07-22 GE Lighting Solutions, LLC LED retrofit module for roadway fixture
US8882297B2 (en) 2011-02-09 2014-11-11 Differential Energy Products, Llc Flat LED lamp assembly
CN102322595A (zh) 2011-08-31 2012-01-18 江门市三泰照明制品有限公司 一种横插式led灯
CN203082587U (zh) * 2011-10-10 2013-07-24 Rab照明设备公司 带有外围冷却渠道的照明装置
USD695938S1 (en) * 2011-12-16 2013-12-17 Rodolfo Martinez Galvan Industrial model LED lamp
CN103453343A (zh) 2012-05-31 2013-12-18 全亿大科技(佛山)有限公司 发光二极管灯具
CN203115646U (zh) 2012-07-21 2013-08-07 沈镇旭 一种360度发光led日光灯管
CN202747296U (zh) 2012-08-27 2013-02-20 张兵 普通导热塑胶内嵌合高导热导电塑胶的散热器结构
CN203099736U (zh) 2012-11-26 2013-07-31 汤德明 横插灯胆
CN203162729U (zh) 2013-02-01 2013-08-28 李世俊 一种改良的led路灯
US9518716B1 (en) 2013-03-26 2016-12-13 Universal Lighting Technologies, Inc. Linear wide area lighting system
CN203743968U (zh) * 2014-02-20 2014-07-30 深圳市巨特光电科技有限公司 一种落地灯具
CN204005325U (zh) 2014-05-27 2014-12-10 广州盛龙照明有限公司 一种多功能模组式灯
CA2893564A1 (en) 2014-06-04 2015-12-04 RAB Lighting Inc. Modular light fixture with adjustable light distribution pattern
JP6332631B2 (ja) 2014-09-12 2018-05-30 東芝ライテック株式会社 ランプ装置および照明装置
US9851077B2 (en) 2015-02-25 2017-12-26 Cree, Inc. LED lamp with compact fluorescent lamp form factor
US10260718B2 (en) 2015-04-30 2019-04-16 Hubbell Incorporated Area luminaire
CN204678291U (zh) 2015-06-11 2015-09-30 杨小晨 一种散热器及led灯
US10354938B2 (en) 2016-01-12 2019-07-16 Greentech LED Lighting device using short thermal path cooling technology and other device cooling by placing selected openings on heat sinks
US11346541B2 (en) 2016-08-19 2022-05-31 Frederick Janse Van Rensburg Heat sink
CN106247187B (zh) 2016-09-20 2023-03-28 深圳市冠科科技有限公司 Led灯
US9951931B1 (en) 2016-10-12 2018-04-24 Shenzhen Guanke Technologies Co., Ltd. LED lamp
CN206929575U (zh) 2017-06-29 2018-01-26 深圳市冠科科技有限公司 一种led灯
CN107255239B (zh) 2017-07-10 2019-02-01 深圳福凯半导体技术股份有限公司 照明灯
CN107345628A (zh) 2017-07-25 2017-11-14 深圳市冠科科技有限公司 一种led灯
US11168872B2 (en) 2017-11-15 2021-11-09 Michael W. May Mounting clip for networked LED lighting system
CN208418308U (zh) 2018-05-23 2019-01-22 梅州绿灯侠科技有限公司 Led横插灯
CN208222100U (zh) 2018-05-31 2018-12-11 李秀兰 一种侧发光分体式散热器的led灯具
CN208735589U (zh) * 2018-09-30 2019-04-12 广东耀邦新能源股份有限公司 一种灯具能量信号传输装置分离的安装结构
US10995941B2 (en) 2018-12-17 2021-05-04 MaxLite, Inc. Adjustable, modular flood light fixture
CN209294980U (zh) 2019-01-25 2019-08-23 深圳市冠科科技有限公司 一种多角度发光的电光源装置
US10655834B1 (en) 2019-03-06 2020-05-19 Irwin Kotovsky Lighting apparatus with screens and method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201318602Y (zh) * 2008-12-15 2009-09-30 东莞市邦臣光电有限公司 路灯散热外壳
CN201396646Y (zh) * 2009-04-13 2010-02-03 赵党生 一种具有高效散热的led路灯
CN201983034U (zh) * 2011-01-28 2011-09-21 深圳市裕富照明有限公司 Led爪形散热球泡灯
CN102927476A (zh) * 2012-11-08 2013-02-13 浙江阳光照明电器集团股份有限公司 一种液体传热的led球形灯
CN104566309A (zh) * 2014-12-25 2015-04-29 上海三思电子工程有限公司 一种散热器的制备方法及具有该散热器的灯具
CN204717441U (zh) * 2015-06-26 2015-10-21 纪启源 一种采用卡扣连接的内外空气对流的led球泡灯
CN205716515U (zh) * 2016-04-19 2016-11-23 李志林 一种高效节能且具有远程控制功能的led光源
CN205877783U (zh) * 2016-07-20 2017-01-11 山东晶泰星光电科技有限公司 一种带有热辐射材料的电源内置led灯丝灯
CN206207076U (zh) * 2016-11-04 2017-05-31 嘉兴市正大照明有限公司 一种带波纹效果的led灯
CN106287269A (zh) * 2016-11-07 2017-01-04 贵州光浦森光电有限公司 一种带筒形热辐射环的贴片式发光灯泡及其应用
WO2018134906A1 (ja) * 2017-01-18 2018-07-26 三菱電機株式会社 ランプ
CN109416153A (zh) * 2017-06-12 2019-03-01 波位里斯株式会社 Led灯
CN207486493U (zh) * 2017-07-21 2018-06-12 刘锋 一种定向发光led灯
CN208186068U (zh) * 2018-05-16 2018-12-04 安徽富实光电科技有限公司 一种便于散热的展示柜led灯具
CN208817121U (zh) * 2018-11-19 2019-05-03 廊坊耀星光电科技有限公司 一种节能型led灯具

Also Published As

Publication number Publication date
CN213236994U (zh) 2021-05-18
CN213452919U (zh) 2021-06-15
CN212840770U (zh) 2021-03-30
CN213452918U (zh) 2021-06-15
WO2020228598A1 (en) 2020-11-19
JP3237142U (ja) 2022-04-15
US11262062B2 (en) 2022-03-01
US11415309B2 (en) 2022-08-16
CN212840766U (zh) 2021-03-30
JP3237143U (ja) 2022-04-15
US20210278075A1 (en) 2021-09-09
US20220090773A1 (en) 2022-03-24
US11754274B2 (en) 2023-09-12
EP3967922A1 (en) 2022-03-16
JP3237179U (ja) 2022-04-19
US11402090B2 (en) 2022-08-02
CN213236995U (zh) 2021-05-18
US20210270453A1 (en) 2021-09-02
EP3967922A4 (en) 2023-06-28
US20210140621A1 (en) 2021-05-13
CN111911820A (zh) 2020-11-10
CN217816654U (zh) 2022-11-15
US11543114B2 (en) 2023-01-03
US20210388978A1 (en) 2021-12-16
US11774085B2 (en) 2023-10-03
CN212840768U (zh) 2021-03-30
US20220049844A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2014201918A1 (zh) 灯具散热器及led工矿灯
WO2012116478A1 (zh) 一种led灯
WO2020228590A1 (zh) 一种led照明设备
US20120168129A1 (en) Adaptive heat dissipating device
WO2014063488A1 (zh) 灯具散热器及led节能灯
CN202747287U (zh) 一种大功率led灯散热器
TWI544175B (zh) Light emitting diode lamp with high efficiency heat dissipation structure
CN209909625U (zh) 一种大功率led灯及其散热器
CN108119775A (zh) 一种具有平行流均温板散热器的led灯具
CN102767810B (zh) 一种大功率led灯散热器
CN105402610B (zh) 一种瓦楞灯
CN2797872Y (zh) 带有散热模组的发光二极管固态照明装置
CN212851102U (zh) 一种led照明设备
CN203848038U (zh) Led球泡灯
CN216532387U (zh) 一种散热结构及具有散热结构的设备
CN214619396U (zh) 一种led灯具带反射罩的散热及防眩光结构
CN207674130U (zh) 一种带铜管散热器的led灯具
CN205002077U (zh) 一种led模组的散热结构
CN207179570U (zh) 一种新型的节能照明灯具
CN204153703U (zh) 一种光照均匀且利于散热的led路灯
CN203757461U (zh) 一种具有轻型散热片的led灯泡
KR101034813B1 (ko) 다운라이트 led 조명 기구용 방열 구조체
CN103148387A (zh) Led灯具
CN102927459A (zh) 高散热led日光灯管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021600169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020805412

Country of ref document: EP

Effective date: 20211210