WO2020228006A1 - Adjustable cable actuating mechanism - Google Patents

Adjustable cable actuating mechanism Download PDF

Info

Publication number
WO2020228006A1
WO2020228006A1 PCT/CN2019/087163 CN2019087163W WO2020228006A1 WO 2020228006 A1 WO2020228006 A1 WO 2020228006A1 CN 2019087163 W CN2019087163 W CN 2019087163W WO 2020228006 A1 WO2020228006 A1 WO 2020228006A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
connector
coupling mechanism
adjustable cable
brake
Prior art date
Application number
PCT/CN2019/087163
Other languages
French (fr)
Inventor
Yi Shi
Dongfang CAO
Original Assignee
Neutron Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neutron Holdings, Inc. filed Critical Neutron Holdings, Inc.
Priority to CN201990000076.0U priority Critical patent/CN212047759U/en
Priority to PCT/CN2019/087163 priority patent/WO2020228006A1/en
Publication of WO2020228006A1 publication Critical patent/WO2020228006A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K3/00Bicycles
    • B62K3/002Bicycles without a seat, i.e. the rider operating the vehicle in a standing position, e.g. non-motorized scooters; non-motorized scooters with skis or runners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/20Arrangements of batteries characterised by the mounting
    • B62J43/28Arrangements of batteries characterised by the mounting hidden within the cycle frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L3/00Brake-actuating mechanisms; Arrangements thereof
    • B62L3/02Brake-actuating mechanisms; Arrangements thereof for control by a hand lever
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M25/00Actuators for gearing speed-change mechanisms specially adapted for cycles
    • B62M25/02Actuators for gearing speed-change mechanisms specially adapted for cycles with mechanical transmitting systems, e.g. cables, levers
    • B62M25/04Actuators for gearing speed-change mechanisms specially adapted for cycles with mechanical transmitting systems, e.g. cables, levers hand actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B41/00Measures against loss of bolts, nuts, or pins; Measures against unauthorised operation of bolts, nuts or pins
    • F16B41/005Measures against unauthorised operation of bolts, nuts or pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K2204/00Adaptations for driving cycles by electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B39/00Locking of screws, bolts or nuts
    • F16B39/02Locking of screws, bolts or nuts in which the locking takes place after screwing down
    • F16B39/12Locking of screws, bolts or nuts in which the locking takes place after screwing down by means of locknuts

Definitions

  • the present application relates to a cable actuating mechanism, and in particular to a cable actuating mechanism with an adjustable initial actuating position.
  • Cable actuating mechanism is often mounted on a brake mechanism, shifting mechanism, or the like of a bicycle.
  • the cable actuating mechanism transmits the user’s action on the bicycle brake levers to the action executing component, such as the brake arm or the shift fork, through a cable, such as a wire, to complete the braking, shifting or other actions.
  • the brake mechanism 100 includes a cable actuating mechanism and a brake hub 50.
  • the cable actuating mechanism includes a brake arm 40, a brake cable 10, a screw 20, and a nut 30.
  • One end of the screw 20 may be connected to an end of the brake cable 10, and the other end of the screw 20 has a threaded section 24.
  • One end of the brake arm 40 may be connected to the brake hub 50, and the other end of the brake arm 40 may be a actuation end.
  • a pivot 42 passes through a through-hole provided at the actuation end, and the threaded section 24 passes through the pivot 42 at the actuation end from the left side of the brake arm 40 to the right.
  • the nut 30 may be threadedly engaged with the threaded section 24 of the screw 20 from the right side of the actuation end. Since the diameter of the nut 30 may be larger than the screw 20, the left end face of the nut 30 abuts against the outer surface of the pivot 42 around the through hole from the right side of the brake arm 40. The user may adjust the position of the nut 30 on the screw 20 by screwing or unscrewing the nut 30. To this end, the nut 30 further includes a protruding hex head to be turned by a hexagonal wrench.
  • a protruding portion 24a of the threaded section 24 of the screw 20 that extends beyond the actuation end must be long enough to leave the user with sufficient margin for adjusting the position of the nut 30.
  • this increases the likelihood that the protruding portion 24a of the threaded section 24 hits a pedestrian or the ground obstacle when the bicycle is moving, especially when the wheel diameter is small. This is detrimental to the miniaturization of the wheels.
  • the brake mechanism 100 is usually required to have a retaining nut 32 mounted behind the nut 30. What’s more, due to the easy adjustment by an ordinary wrench or even by hand, the nut 30 may be moved by mistake or even stolen by others, thereby causing the failure of the brake mechanism 100.
  • an aspect of the present application provides an adjustable cable actuating mechanism, including: a cable; a first connector including: a first connecting end connected to an end of the cable, and a first coupling mechanism; a second connector including: a second coupling mechanism coupled to the first coupling mechanism, and a second connecting end; and an actuating member connected to the second connecting end, wherein reciprocating movement of the cable is sequentially transmitted to the actuating member through the first connector, a mutual coupling portion between the first coupling mechanism and the second coupling mechanism, and the second connector, wherein the mutual coupling portion is located inside the actuating member, and an initial position of the actuating member is adjusted by the mutual coupling portion.
  • the first coupling mechanism includes an external thread
  • the second coupling mechanism includes an internal thread
  • the second connecting end is rotatably coupled to the actuating member.
  • the first coupling mechanism includes an internal thread
  • the second coupling mechanism includes an external thread
  • the second connecting end is rotatably coupled to the actuating member.
  • the first connecting end of the first connector has a flat surface adapted to be clamped by a clamping tool
  • the second connecting end of the second connector includes an anti-theft nut that may only be driven by a tool specific to the anti-theft nut to rotate relative to the first connector
  • the anti-theft nut has a hexagonal star recess or a triangular recess. In some embodiments, the anti-theft nut has a hexagonal star protrusion or a triangular protrusion.
  • the first coupling mechanism and the second coupling mechanism are rotary locking mechanism, pinhole mechanism, elastic protrusion, annular groove mechanism, or magnetic coupling mechanism.
  • the actuating mechanism includes a brake arm of a brake mechanism or a shifting fork of a shifting mechanism.
  • a vehicle such as a bike or scooter, includes a frame; at least one wheel rotatably connected to the frame; at least one brake connected to the at least one wheel; and the above-mentioned adjustable cable actuating mechanism coupled to the at least one brake.
  • FIG. 1 shows a front view of the adjustable cable actuating mechanism according to conventional art
  • FIG. 2 shows a front view of an adjustable cable actuating mechanism according to some embodiments of the present application
  • FIG. 3 shows a perspective view of an adjustable cable actuating mechanism according to some embodiments of the present application
  • FIG. 4 is a cross-sectional view showing the coupling mechanism of the first connector and the second connector in the adjustable cable actuating mechanism according to some embodiments of the present application;
  • FIG. 5 is a cross-sectional view showing the coupling mechanism of the first connector and the second connector in the adjustable cable actuating mechanism according to some embodiments of the present application;
  • FIG. 6 is a cross-sectional view showing the coupling mechanism of the first connector and the second connector in the adjustable cable actuating mechanism according to some embodiments of the present application.
  • FIG. 7 shows a vehicle including the adjustable cable actuating mechanism according to some embodiments of the present application.
  • the term "A on B” means that A is directly adjacent to B (from above or below) , and may also mean that A is indirectly adjacent to B (i.e., there is some element between A and B) ; the term “A in B” means that A is all in B, or it may also mean that A is partially in B.
  • the present application sometimes combines various features in a single embodiment, a figure, or the description thereof for the purpose of simplifying the disclosure.
  • the present application is to disperse various features in various embodiments of the disclosure.
  • this does not mean that the combination of these features is necessary, and it is entirely possible for those skilled in the art to extract a part of the features as a separate embodiment when reading this application.
  • the embodiments in the present application may also be understood as the integration of a plurality of secondary embodiments.
  • the content of each of the secondary embodiments when less than all of the features of a single previously disclosed embodiment, is also true.
  • numbers expressing quantities or properties used to describe and claim certain embodiments of the present application are to be understood as being modified by the term “about” , “approximately” or “substantially” in some instances.
  • the term “about” , “approximately” or “substantially” may mean a change of ⁇ 20%of the value this term describes, unless otherwise stated.
  • the numerical parameters set forth in the written description and the appended claims are approximations, which may vary depending on the desired properties sought to be obtained in a particular embodiment.
  • numerical parameters should be interpreted in accordance with the number of significant figures reported and by applying ordinary rounding techniques.
  • the adjustable cable actuating mechanism of the present application may include: a cable; a first connector, a second connector and an actuating member.
  • the first connector may include a first connecting end and a first coupling mechanism, wherein the first connecting end may be connected to an end of the cable.
  • the second connector may include a second coupling mechanism and a second connecting end, wherein the second coupling mechanism may be coupled to the first coupling mechanism.
  • the actuating member may couple to the second connecting end.
  • FIG. 2 shows a front view of an adjustable cable actuation mechanism according to some embodiments of the present application.
  • the adjustable cable actuating mechanism may be applied to a brake mechanism 2000.
  • the first connector may be a screw rod 200.
  • the second connector may be a screw tube 300.
  • the first connector and the second connector of the adjustable cable actuating mechanism may be coupled with each other through a threaded connection.
  • the actuating member may be a brake arm 40.
  • the adjustable cable actuation mechanism may also be applied to a shifting mechanism, such as a shifting mechanism of a bike.
  • the brake mechanism 2000 further may include a brake hub 50, a brake cable 10, and a spring (not shown) surrounding the outer circumference of the screw rod 200.
  • the screw rod 200 may have a rod shape.
  • the screw rod 200 may include a first connecting end 202 at one end and a first coupling mechanism 204 at the other end.
  • the first coupling mechanism 204 may be opposite to the first connecting end 202.
  • An end of the brake cable 10 may be coupled to the first connecting end 202 of the screw rod 200.
  • the first coupling mechanism 204 may include external threads distributed on the outer wall of the screw rod 200.
  • the screw tube 300 may be tubular.
  • the screw tube 300 may include a second coupling mechanism 304 in the body of the screw tube 300 near one end and a second connecting end 302 at the other end.
  • the second connecting end 302 may include a protrusion.
  • the protrusion may be a nut structure or other type of protrusion to serve as a stopper.
  • the second coupling mechanism 304 may be opposite to the second connecting end 302.
  • the second coupling mechanism 304 may include internal threads distributed on the inner wall of the screw tube 300.
  • the first coupling mechanism 204 may extend at least partially into the second coupling mechanism 304 and may be coupled to the second coupling mechanism 304 in the manner of a threaded connection.
  • the length of a mutual coupling portion 234 between the first coupling mechanism 204 and the second coupling mechanism 234 may be adjusted by the relative rotation between the screw rod 200 and the screw tube 300.
  • the positions of the screw rod 200 and the screw tube 300 may be interchanged, that is, the first connector may be a screw tube, and the second connector may be a screw rod.
  • the first coupling mechanism 204 may include internal threads
  • the second coupling mechanism 304 may include external threads
  • the second coupling mechanism 304 may extend at least partially into the first coupling mechanism 204.
  • the first coupling mechanism 204 may extend fully into the second coupling mechanism 304.
  • the first coupling mechanism 304 may extend fully into the first coupling mechanism 204.
  • One end of the brake arm 40 may be a pivot end, and the other end of the brake arm 40 may be a actuation end.
  • the pivot end of the brake arm 40 may be pivotally secured to the brake hub 50 by a first pivot 45.
  • the actuation end of the brake arm 40 may have a U-shape cross section.
  • each leg of the U-shape actuation end may have a hole.
  • these two holes are aligned with each other.
  • the second pivot 42 passes through two holes of the actuation end and thus may be pivotably connected to the actuation end. In some embodiments, there may be a through-hole in the second pivot 42.
  • the through-hole may have a diameter larger than an external diameter of the second connector.
  • the diameter of the through-hole of the second pivot 42 may be larger than the external diameter of the second coupling mechanism 304 of the screw tube 300.
  • the screw tube 300 may pass through the through-hole from the right side of the brake arm 40 to the left and may pivot around the second pivot 42.
  • the left side of the brake arm 40 may be referred to as the inner side of the brake arm 40 where the mutual coupling portion 234 may be located, and the right side of the brake arm 40 may be referred to as the outer side of the brake arm 40 which is opposite to the inner side.
  • the mutual coupling portion 234 may be on the left side of the brake arm 40.
  • a first connecting end 202 of the screw rod 200 may be connected to an end of the brake cable 10.
  • the first coupling mechanism 204 of the screw rod 200 may be coupled to the second coupling mechanism 304 of the screw tube 300 in the manner of threaded connection.
  • the second connecting end 302 of screw tube 300 passes through the through-hole of the pivot 42 from the left side of the actuation end of the brake arm 40 to the right. Since the diameter of the protrusion at the free end of the second connecting end 302 may be larger than the through-hole of the second pivot 42, when the screw tube 300 is pulled to the left side of the brake arm 40 by the brake cable 10, the end face of the protrusion (the face towards left in FIGs. 2 and 3) may abut against the outer surface of the second pivot 42 around the through-hole from the right side of the brake arm 40, thereby making the brake arm 40 rotates clockwise around the first pivot 45.
  • the second connecting end 302 of the screw tube 300 may be coupled to the driving end of the brake arm 40 to drive the brake arm 40 to pivot.
  • the threaded connection between the screw rod 200 and the screw tube 300 allows the screw tube 300 to rotate, by screwing in and out from the screw rod 200, thereby adjusting the length of the mutual coupling portion 234, thereby changing the initial position of the brake arm 40 when brake is not applied.
  • the initial position of the brake arm 40 is shown in solid line.
  • the reciprocating motion of the brake cable 10 causes the brake arm 40 to pivot back and forth around the first pivot 45 in the direction indicated by the arced arrow 60.
  • the dotted line indicates illustrates the braking position at which the brake arm 40 is driven by the brake cable 10 to perform the braking action.
  • the reciprocating motion of the brake cable 10 may be sequentially transmitted through the screw rod 200, the mutual coupling portion 234, and the screw tube 300, to the brake arm 40. Since the second connecting end of the screw 300 may abut against the second pivot 42 from the right side of the brake arm 40, when the user applies the brake, the brake cable 10 may be pulled back and the brake arm 40 may be rotated by the screw tube 300 from the initial position to the braking position. Through the first pivot 45, the brake arm 40 drives a brake pad (not shown) in the brake hub 50 to perform a braking action by pivotal movement.
  • the brake cable 10 When the user releases the brake, the brake cable 10 may be released, and the actuation end of the brake arm 40 may be returned from the braking position to the initial position by resilience.
  • the resilience may be provided by a spring (not shown) wound around the outer circumference of the screw rod 200 and/or a spring (not shown) in the brake hub 50.
  • the user determines an appropriate initial position of the brake arm 40 by adjusting the screw tube 300. After the brake mechanism 2000 is used for a period of time, the brake pads are worn and become thinner and thinner, so that even if the user pinches the brake lever to the bottom, the brake pads are still not able to generate sufficient friction. At this time, it is necessary to readjust the length of the mutual coupling portion 234. To this end, the user may rotate the screw tube 300 to make the screw rod 200 have a longer mutual coupling portion 234 to adjust the initial position of the brake arm 40 and increase the pre-tensioning amount of the cable actuating mechanism, thereby restoring the braking function of the brake mechanism 100.
  • the mutual coupling portion 234 between the screw rod 200 and the solenoid 300 in the present application is located inside the brake arm 40, that is, on the side where the brake cable 10 may be located, corresponding to the left side of the brake arm shown in FIG. 2.
  • Such arrangement improves safety by eliminating the protruding portion 24a of the screw 20 and the nut 30 of FIG. 1 which protrudes to the outside of the brake arm 40.
  • the first connecting end 202 may have a flat surface adapted to be gripped by a gripping tool, such as wrench or plier.
  • the first connecting end 202 may have a square or hexagonal cross section.
  • the second connecting end 302 of the screw tube 300 may be provided as an anti-theft nut to prevent it from being easily adjusted or even stolen by any person.
  • the perspective view of FIG. 3 shows that the second connecting end 302 is configured as a female hex star anti-theft nut.
  • the female hex star anti-theft nut may include a nut and a hexagonal star-shaped recess on top of the nut.
  • the second connecting end may be configured as a female triangular anti-theft nut (a nut with triangular recess on the top thereof) , or a male hexagonal star anti-theft nut (a nut with hexagonal star protrusion on the top thereof) , a male triangular anti-theft nut (a nut with triangular protrusion on the top thereof) , or an anti-theft nut having a combination of any convex and concave shapes on the end surface.
  • the user grips the surface of the first connecting end 202 with a tool such as a wrench, and then applies a specially designed anti-theft wrench to the anti-theft nut, thereby driving the screw tube 300 to rotate relative to the screw rod 200, thereby changing the length of the mutual coupling portion 234, so as to achieve the purpose of adjusting the initial position of the brake arm 40.
  • a tool such as a wrench
  • the end surface of the special anti-theft wrench may have a shape that matches the end surface of the anti-theft nut.
  • the anti-theft nut may be a female hexagonal star anti-theft nut (hexagonal star recess)
  • the end face of the anti-theft wrench may be a male hexagonal star (hexagonal star protrusion) .
  • the coupling mechanism of the first connector and the second connector may be a rotary-locking mechanism, as shown in FIG. 4.
  • an inner rotary-locking mechanism 210 as the first connector may have at least one projection 211 on its outer surface
  • an outer rotary-locking mechanism 310 as the second connector may have at least one curved groove 311 on its inner wall.
  • the protrusion 211 may be embedded in the curved groove 311 of the outer rotary-locking mechanism 310 and slide inwardly along the curved groove 311 until the protrusion 211 may be stuck in a positioning groove 312 at the end of the curved groove 311.
  • the positions of the inner and outer rotary-locking mechanisms are interchangeable, that is, the outer connecting mechanism may be disposed on the first connector, and the inner locking mechanism may be disposed on the second connector may be an inner rotary-locking mechanism.
  • the curved groove may have more than one positioning grooves.
  • the cable actuation mechanism may also include a separate length adjustment device, such as a screw-tube-screw-rod adjustment device.
  • the coupling mechanism of the first connector and the second connector may be a pinhole mechanism as shown in FIG. 5.
  • the rod-shaped first connector 220 may have a first coupling hole 221
  • the tubular second connector 320 may have a second coupling hole 321 thereon.
  • a coupling pin 232 may be inserted the two coupling holes 221 and 321 in the direction of the arrow shown in FIG. 5, such that, the first connector 220 and the second connector 320 are completely coupled.
  • the rod-shaped first connector and the tubular second connector are interchangeable, that is, the first connector may be provided as a tubular structure, and the second connector may be provided in a rod-like structure.
  • the first connector 220 may have more than one coupling hole so as to provide multi-segment adjustment.
  • the second connector 320 may have more than one pinhole so as to provide multi-segment adjustment.
  • the cable actuation mechanism may also include a separate length adjustment device, such as a screw-tube-screw-rod adjustment device.
  • the coupling mechanism of the first connector and the second connector may be a resilient projection-annular groove mechanism, as shown in FIG. 6.
  • the first connector 230 may have a rod-like structure and may have an elastic protrusion 231 thereon. Under external pressure, the elastic protrusions 231 may be retracted toward the inside of the first connector 230.
  • the distance between the two elastic protrusions 231 may be shortened, thereby facilitating the insertion into the second connector 330, which may have a tubular structure.
  • the two elastic protrusions 231 are steel balls.
  • an elastic body 234 may be installed between the two elastic protrusions 231.
  • the elastic body 234 may be a spring or other resilient material or structure such as rubber. Under the external pressure, the elastic body 234 may be compressed, and the elastic protrusion 231 may be retracted towards the inside of the first connector 230.
  • the inner wall of the second connector 330 may have an annular groove 331 that cooperates with the elastic protrusion 231.
  • the elastic protrusion 231 When the first connector 230 is inserted into the second connector 330, the elastic protrusion 231 may be elastically engaged with the annular groove 331, so that the first connector 230 and the second connector 330 are coupled with each other.
  • the first connector and the second connector are interchangeable, i.e.
  • the first connector may be provided as a tubular structure and the second connector may be provided as a rod-like structure.
  • the cable actuation mechanism may also include a separate length adjustment device, such as a screw-tube-screw-rod adjustment device.
  • the first connector and the second connector are magnetic connectors that are coupled with each other by magnetic force.
  • the cable actuation mechanism may also include a separate length adjustment device, such as a screw-tube-screw-rod adjustment device.
  • FIG. 7 shows a vehicle 700 on which the above brake mechanism is installed.
  • the vehicle 700 may be a human driven, electric, or gasoline powered scooter, bicycle, motorcycle, motorboat, and the like.
  • the present disclosure will be described with an electric scooter as an example.
  • the electric scooter 700 may include a handlebar portion, a body portion 720, a brake portion 740, and a wheel portion.
  • the brake portion 740 may be the brake mechanism 2000 described above.
  • both front and rear wheels are equipped with the brake mechanism 2000.
  • the coupling mechanism of the first connector and the second connector may be any of the coupling mechanisms described in the above embodiments.
  • the handlebar portion may include a headlight 702, a handlebar 704, and a head tube 706.
  • the headlights 702 may be mounted on the head tube 706.
  • the handlebar 704 may be located at an upper portion of the head tube 706 and form a substantially T shape along with the first head tube 706.
  • the wheel portion may include at least one front wheel 712, at least one front wheel fender 716, at least one rear wheel 714, and at least one rear wheel fender 718.
  • the front wheel fender 716 may be generally coaxial with the front wheel 712.
  • the rear wheel fender 718 may be generally coaxially aligned with the rear wheel 714.
  • the rear wheel fender 718 may block the sediment brought by the rear wheel 714 due to rolling.
  • the rear wheel fender 718 may also function as a brake pad.
  • the rear wheel fender 718 When the user presses the outer side of the rear wheel fender 718 with his foot from above, the rear wheel fender 718 may be bent downward, and the inner side thereof may be in contact with the rear wheel 714 to form a frictional force, thereby performing braking function on the electric scooter 700.
  • the body portion 720 may be connected to the front wheel 712 and the rear wheel 714.
  • the body portion may be generally rectangular.
  • the battery of the electric scooter 700 may be placed in the body portion.
  • the body portion may include an upper surface 722 and a side surface 724.
  • a pedal may be provided on the upper surface 722. The user may stand on the pedal while operating the electric scooter 700.
  • the electric scooter 700 also may include a handle mechanism 730, which may assist the user to grasp and apply force when moving the electric scooter 700.
  • the handle mechanism 730 may be mounted on the side surface 724 of the body portion 720.
  • the handle mechanism 730 may be mounted on the upper surface 722 of the body portion 720, that is, the handle mechanism 730 may be mounted on the pedal.
  • the flowcharts used in the present disclosure illustrate system implemented operations according to some embodiments in the present disclosure. It should be understood that, the operations of the flowchart may or may not be implemented in the order shown. Conversely, the operations may be implemented in an inverted order, or simultaneously. Moreover, one or more other operations may be added to the flowcharts. One or more operations may be removed from the flowcharts.
  • system and method in the present disclosure are described primarily in regard to a brake mechanism, it should also be understood that this is only one exemplary embodiment.
  • the system or method of the present disclosure may be applied to any other systems, such as shifting mechanism of a bike.

Abstract

The present application discloses an adjustable cable actuating mechanism including a cable; a first connector including a first connecting end connected to the end of the cable, and a first coupling mechanism; and a second connector including the a second coupling mechanism coupled by the first coupling mechanism, and a second connecting end; an actuating member connected to the second connecting end, wherein the reciprocating movement of the cable sequentially passes through the first connector, the a mutual coupling portion between the first coupling mechanism and the second coupling mechanism, the second connector is transmitted to the actuating member, and the mutual coupling portion is located inside the actuating member, the actuating member. The initial position is adjusted by the mutual coupling portion to improve safety, and the anti-theft property may be improved when the anti-theft nut is used at the second connecting end.

Description

ADJUSTABLE CABLE ACTUATING MECHANISM TECHNICAL FIELD
The present application relates to a cable actuating mechanism, and in particular to a cable actuating mechanism with an adjustable initial actuating position.
BACKGROUND
Cable actuating mechanism is often mounted on a brake mechanism, shifting mechanism, or the like of a bicycle. When a user of the bicycle brakes, the cable actuating mechanism transmits the user’s action on the bicycle brake levers to the action executing component, such as the brake arm or the shift fork, through a cable, such as a wire, to complete the braking, shifting or other actions.
For example, as shown in FIG. 1, the brake mechanism 100 includes a cable actuating mechanism and a brake hub 50. The cable actuating mechanism includes a brake arm 40, a brake cable 10, a screw 20, and a nut 30. One end of the screw 20 may be connected to an end of the brake cable 10, and the other end of the screw 20 has a threaded section 24. One end of the brake arm 40 may be connected to the brake hub 50, and the other end of the brake arm 40 may be a actuation end. As shown in FIG. 1, a pivot 42 passes through a through-hole provided at the actuation end, and the threaded section 24 passes through the pivot 42 at the actuation end from the left side of the brake arm 40 to the right. The nut 30 may be threadedly engaged with the threaded section 24 of the screw 20 from the right side of the actuation end. Since the diameter of the nut 30 may be larger than the screw 20, the left end face of the nut 30 abuts against the outer surface of the pivot 42 around the through hole from the right side of the brake arm 40. The user may adjust the position of the nut 30 on the screw 20 by screwing or unscrewing the nut 30. To this end, the nut 30 further includes a protruding hex head to be turned by a hexagonal wrench.
However, this structure has the following problems. First of all, a protruding portion 24a of the threaded section 24 of the screw 20 that extends beyond the actuation end must be long enough to leave the user with sufficient margin for adjusting the position of the nut 30. However, this increases the likelihood that the protruding portion 24a of the threaded section 24 hits a pedestrian or the ground obstacle when the bicycle is moving, especially when the wheel diameter is small.  This is detrimental to the miniaturization of the wheels. In addition, to prevent the nut 30 from falling off, the brake mechanism 100 is usually required to have a retaining nut 32 mounted behind the nut 30. What’s more, due to the easy adjustment by an ordinary wrench or even by hand, the nut 30 may be moved by mistake or even stolen by others, thereby causing the failure of the brake mechanism 100.
SUMMARY
In order to solve at least one of the above technical problem, an aspect of the present application provides an adjustable cable actuating mechanism, including: a cable; a first connector including: a first connecting end connected to an end of the cable, and a first coupling mechanism; a second connector including: a second coupling mechanism coupled to the first coupling mechanism, and a second connecting end; and an actuating member connected to the second connecting end, wherein reciprocating movement of the cable is sequentially transmitted to the actuating member through the first connector, a mutual coupling portion between the first coupling mechanism and the second coupling mechanism, and the second connector, wherein the mutual coupling portion is located inside the actuating member, and an initial position of the actuating member is adjusted by the mutual coupling portion.
In some embodiments, the first coupling mechanism includes an external thread, the second coupling mechanism includes an internal thread, and the second connecting end is rotatably coupled to the actuating member. In some embodiments, the first coupling mechanism includes an internal thread, the second coupling mechanism includes an external thread, and the second connecting end is rotatably coupled to the actuating member.
In some embodiments, the first connecting end of the first connector has a flat surface adapted to be clamped by a clamping tool, and the second connecting end of the second connector includes an anti-theft nut that may only be driven by a tool specific to the anti-theft nut to rotate relative to the first connector.
In some embodiments, the anti-theft nut has a hexagonal star recess or a triangular recess. In some embodiments, the anti-theft nut has a hexagonal star protrusion or a triangular protrusion.
In some embodiments, the first coupling mechanism and the second coupling  mechanism are rotary locking mechanism, pinhole mechanism, elastic protrusion, annular groove mechanism, or magnetic coupling mechanism.
In some embodiments, the actuating mechanism includes a brake arm of a brake mechanism or a shifting fork of a shifting mechanism.
According to another aspect of the present application, a vehicle, such as a bike or scooter, includes a frame; at least one wheel rotatably connected to the frame; at least one brake connected to the at least one wheel; and the above-mentioned adjustable cable actuating mechanism coupled to the at least one brake.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention may be better understood by referring to the following description in conjunction with the accompanying drawings, wherein the same or similar reference numerals are used to refer to the same or similar parts.
FIG. 1 shows a front view of the adjustable cable actuating mechanism according to conventional art;
FIG. 2 shows a front view of an adjustable cable actuating mechanism according to some embodiments of the present application;
FIG. 3 shows a perspective view of an adjustable cable actuating mechanism according to some embodiments of the present application;
FIG. 4 is a cross-sectional view showing the coupling mechanism of the first connector and the second connector in the adjustable cable actuating mechanism according to some embodiments of the present application;
FIG. 5 is a cross-sectional view showing the coupling mechanism of the first connector and the second connector in the adjustable cable actuating mechanism according to some embodiments of the present application;
FIG. 6 is a cross-sectional view showing the coupling mechanism of the first connector and the second connector in the adjustable cable actuating mechanism according to some embodiments of the present application; and
FIG. 7 shows a vehicle including the adjustable cable actuating mechanism according to some embodiments of the present application.
DETAILED DESCRIPTION
The specific embodiments of the present application are described in detail  below with reference to the accompanying drawings. Elements and features described in one figure or one embodiment of the present application may be combined with elements and features illustrated in one or more of other figures or embodiments. It should be noted that, for the sake of clarity, representations and descriptions of components and processes that are known to those of ordinary skill in the art and not relevant to the present application are omitted from the drawings and the description.
The following description provides specific application scenarios and requirements of the present application in order to enable any person skilled in the art to make and use. Various modifications to the disclosed embodiments will be obvious to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present disclosure is not limited to the embodiments shown, but is to be interpreted according to the widest scope consistent with the claims.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a” , “an” and “the” may include their plural forms as well, unless the context clearly indicates otherwise. When used in this specification, the terms “comprises” , “comprising” , “includes” and/or “including” specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used in this specification, the term "A on B" means that A is directly adjacent to B (from above or below) , and may also mean that A is indirectly adjacent to B (i.e., there is some element between A and B) ; the term "A in B" means that A is all in B, or it may also mean that A is partially in B.
In view of the following description, these and other features of the present disclosure, as well as operations and functions of related elements of the structure, and the economic efficiency of the combination and manufacture of the components, may be significantly improved. All of these form part of the disclosure with reference to the drawings. However, it should be clearly understood that the drawings are only for the purpose of illustration and description, and are not intended to limit the scope  of the disclosure. It is understood that the drawings are not drawn to scale.
In view of the foregoing, it will be understood by those skilled in the art that the above detailed disclosure may be presented by way of example only and may not be limiting. Although not explicitly stated herein, those skilled in the art will understand that the present invention is intended to cover various changes, improvements and modifications of the embodiments. These changes, improvements, and modifications are intended to be made by the present disclosure and are within the spirit and scope of the exemplary embodiments of the present disclosure.
In addition, some of the terms in this application have been used to describe embodiments of the present disclosure. For example, "one embodiment" , "an embodiment" and/or "some embodiments" means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the present disclosure. Therefore, it is to be understood that two or more references to “one embodiment” , “an embodiment” and/or “alternative embodiment” do not necessarily refer to the same embodiment. In addition, certain features, structures, or characteristics may be combined as appropriate in one or more embodiments of the present disclosure.
It is to be understood that, in the foregoing description of the embodiments of the present application, to assist in understanding a feature, the present application sometimes combines various features in a single embodiment, a figure, or the description thereof for the purpose of simplifying the disclosure. Alternatively, the present application is to disperse various features in various embodiments of the disclosure. However, this does not mean that the combination of these features is necessary, and it is entirely possible for those skilled in the art to extract a part of the features as a separate embodiment when reading this application. That is to say, the embodiments in the present application may also be understood as the integration of a plurality of secondary embodiments. Furthermore, the content of each of the secondary embodiments, when less than all of the features of a single previously disclosed embodiment, is also true.
In some embodiments, numbers expressing quantities or properties used to describe and claim certain embodiments of the present application are to be understood as being modified by the term "about" , "approximately" or "substantially" in some instances. For example, the term "about" , "approximately" or "substantially"  may mean a change of ±20%of the value this term describes, unless otherwise stated. Accordingly, in some embodiments, the numerical parameters set forth in the written description and the appended claims are approximations, which may vary depending on the desired properties sought to be obtained in a particular embodiment. In some embodiments, numerical parameters should be interpreted in accordance with the number of significant figures reported and by applying ordinary rounding techniques. Although some embodiments of the present application provide a broad range of numerical ranges and parameters that are approximations, the values are listed in the specific embodiments as accurately as possible.
Each of the patents, patent applications, publications of patent applications, and other materials, such as articles, books, specifications, publications, documents, articles, etc., cited herein are hereby incorporated by reference. If there is any inconsistency or conflict between the terms, definitions, and/or uses of terms associated with any of the materials contained in this document, the terms used in this document shall prevail.
Finally, it is to be understood that the embodiments of the application disclosed herein are illustrative of the principles of the embodiments of the application. Other modified embodiments are also within the scope of this application. Therefore, the embodiments disclosed herein are by way of example only and not limitation. Those skilled in the art may adopt alternative configurations to implement the invention in this application in accordance with embodiments of the present application. Therefore, the embodiments of the present application are not limited to the embodiments that have been precisely described in the application.
The adjustable cable actuating mechanism of the present application may include: a cable; a first connector, a second connector and an actuating member. The first connector may include a first connecting end and a first coupling mechanism, wherein the first connecting end may be connected to an end of the cable. The second connector may include a second coupling mechanism and a second connecting end, wherein the second coupling mechanism may be coupled to the first coupling mechanism. The actuating member may couple to the second connecting end.
FIG. 2 shows a front view of an adjustable cable actuation mechanism according to some embodiments of the present application. The adjustable cable  actuating mechanism may be applied to a brake mechanism 2000. The first connector may be a screw rod 200. The second connector may be a screw tube 300. The first connector and the second connector of the adjustable cable actuating mechanism may be coupled with each other through a threaded connection. The actuating member may be a brake arm 40. In other embodiments, the adjustable cable actuation mechanism may also be applied to a shifting mechanism, such as a shifting mechanism of a bike. The brake mechanism 2000 further may include a brake hub 50, a brake cable 10, and a spring (not shown) surrounding the outer circumference of the screw rod 200.
The screw rod 200 may have a rod shape. The screw rod 200 may include a first connecting end 202 at one end and a first coupling mechanism 204 at the other end. The first coupling mechanism 204 may be opposite to the first connecting end 202. An end of the brake cable 10 may be coupled to the first connecting end 202 of the screw rod 200. The first coupling mechanism 204 may include external threads distributed on the outer wall of the screw rod 200.
The screw tube 300 may be tubular. The screw tube 300 may include a second coupling mechanism 304 in the body of the screw tube 300 near one end and a second connecting end 302 at the other end. The second connecting end 302 may include a protrusion. For example, the protrusion may be a nut structure or other type of protrusion to serve as a stopper. The second coupling mechanism 304 may be opposite to the second connecting end 302. The second coupling mechanism 304 may include internal threads distributed on the inner wall of the screw tube 300.
The first coupling mechanism 204 may extend at least partially into the second coupling mechanism 304 and may be coupled to the second coupling mechanism 304 in the manner of a threaded connection. The length of a mutual coupling portion 234 between the first coupling mechanism 204 and the second coupling mechanism 234 may be adjusted by the relative rotation between the screw rod 200 and the screw tube 300. In some embodiments, the positions of the screw rod 200 and the screw tube 300 may be interchanged, that is, the first connector may be a screw tube, and the second connector may be a screw rod. In some embodiments, the first coupling mechanism 204 may include internal threads, and the second coupling mechanism 304 may include external threads, and the second coupling mechanism 304 may extend at least partially into the first coupling mechanism 204. In some  embodiments, the first coupling mechanism 204 may extend fully into the second coupling mechanism 304. In some embodiments, the first coupling mechanism 304 may extend fully into the first coupling mechanism 204.
One end of the brake arm 40 may be a pivot end, and the other end of the brake arm 40 may be a actuation end. The pivot end of the brake arm 40 may be pivotally secured to the brake hub 50 by a first pivot 45. In the embodiment shown in FIG. 3, the actuation end of the brake arm 40 may have a U-shape cross section. In some embodiments, each leg of the U-shape actuation end may have a hole. In some embodiments, these two holes are aligned with each other. In some embodiments, the second pivot 42 passes through two holes of the actuation end and thus may be pivotably connected to the actuation end. In some embodiments, there may be a through-hole in the second pivot 42. The through-hole may have a diameter larger than an external diameter of the second connector. In the embodiment shown in FIG. 2, the diameter of the through-hole of the second pivot 42 may be larger than the external diameter of the second coupling mechanism 304 of the screw tube 300. Thus, the screw tube 300 may pass through the through-hole from the right side of the brake arm 40 to the left and may pivot around the second pivot 42. In the present application, the left side of the brake arm 40 may be referred to as the inner side of the brake arm 40 where the mutual coupling portion 234 may be located, and the right side of the brake arm 40 may be referred to as the outer side of the brake arm 40 which is opposite to the inner side. For example, as shown in FIG. 2, the mutual coupling portion 234 may be on the left side of the brake arm 40.
As shown in FIG. 2, a first connecting end 202 of the screw rod 200 may be connected to an end of the brake cable 10. The first coupling mechanism 204 of the screw rod 200 may be coupled to the second coupling mechanism 304 of the screw tube 300 in the manner of threaded connection. The second connecting end 302 of screw tube 300 passes through the through-hole of the pivot 42 from the left side of the actuation end of the brake arm 40 to the right. Since the diameter of the protrusion at the free end of the second connecting end 302 may be larger than the through-hole of the second pivot 42, when the screw tube 300 is pulled to the left side of the brake arm 40 by the brake cable 10, the end face of the protrusion (the face towards left in FIGs. 2 and 3) may abut against the outer surface of the second pivot  42 around the through-hole from the right side of the brake arm 40, thereby making the brake arm 40 rotates clockwise around the first pivot 45.
Accordingly, the second connecting end 302 of the screw tube 300, such as the nut structure, may be coupled to the driving end of the brake arm 40 to drive the brake arm 40 to pivot. The threaded connection between the screw rod 200 and the screw tube 300 allows the screw tube 300 to rotate, by screwing in and out from the screw rod 200, thereby adjusting the length of the mutual coupling portion 234, thereby changing the initial position of the brake arm 40 when brake is not applied. In FIG. 2, the initial position of the brake arm 40 is shown in solid line. When the brake mechanism 2000 is in operation, the reciprocating motion of the brake cable 10 causes the brake arm 40 to pivot back and forth around the first pivot 45 in the direction indicated by the arced arrow 60. In FIG. 2, the dotted line indicates illustrates the braking position at which the brake arm 40 is driven by the brake cable 10 to perform the braking action.
As may be seen from the above connection relationship, the reciprocating motion of the brake cable 10 may be sequentially transmitted through the screw rod 200, the mutual coupling portion 234, and the screw tube 300, to the brake arm 40. Since the second connecting end of the screw 300 may abut against the second pivot 42 from the right side of the brake arm 40, when the user applies the brake, the brake cable 10 may be pulled back and the brake arm 40 may be rotated by the screw tube 300 from the initial position to the braking position. Through the first pivot 45, the brake arm 40 drives a brake pad (not shown) in the brake hub 50 to perform a braking action by pivotal movement. When the user releases the brake, the brake cable 10 may be released, and the actuation end of the brake arm 40 may be returned from the braking position to the initial position by resilience. The resilience may be provided by a spring (not shown) wound around the outer circumference of the screw rod 200 and/or a spring (not shown) in the brake hub 50.
When the brake mechanism 2000 is assembled, the user determines an appropriate initial position of the brake arm 40 by adjusting the screw tube 300. After the brake mechanism 2000 is used for a period of time, the brake pads are worn and become thinner and thinner, so that even if the user pinches the brake lever to the bottom, the brake pads are still not able to generate sufficient friction. At this time, it is necessary to readjust the length of the mutual coupling portion 234. To this end, the  user may rotate the screw tube 300 to make the screw rod 200 have a longer mutual coupling portion 234 to adjust the initial position of the brake arm 40 and increase the pre-tensioning amount of the cable actuating mechanism, thereby restoring the braking function of the brake mechanism 100.
Different from the mutual coupling portion between the screw 20 and the nut 30 that is located outside of the brake arm in FIG. 1, the mutual coupling portion 234 between the screw rod 200 and the solenoid 300 in the present application is located inside the brake arm 40, that is, on the side where the brake cable 10 may be located, corresponding to the left side of the brake arm shown in FIG. 2. Such arrangement improves safety by eliminating the protruding portion 24a of the screw 20 and the nut 30 of FIG. 1 which protrudes to the outside of the brake arm 40.
In some embodiments, the first connecting end 202 may have a flat surface adapted to be gripped by a gripping tool, such as wrench or plier. For example, the first connecting end 202 may have a square or hexagonal cross section. The second connecting end 302 of the screw tube 300 may be provided as an anti-theft nut to prevent it from being easily adjusted or even stolen by any person. The perspective view of FIG. 3 shows that the second connecting end 302 is configured as a female hex star anti-theft nut. The female hex star anti-theft nut may include a nut and a hexagonal star-shaped recess on top of the nut. In some embodiments, the second connecting end may be configured as a female triangular anti-theft nut (a nut with triangular recess on the top thereof) , or a male hexagonal star anti-theft nut (a nut with hexagonal star protrusion on the top thereof) , a male triangular anti-theft nut (a nut with triangular protrusion on the top thereof) , or an anti-theft nut having a combination of any convex and concave shapes on the end surface. During adjustment, the user grips the surface of the first connecting end 202 with a tool such as a wrench, and then applies a specially designed anti-theft wrench to the anti-theft nut, thereby driving the screw tube 300 to rotate relative to the screw rod 200, thereby changing the length of the mutual coupling portion 234, so as to achieve the purpose of adjusting the initial position of the brake arm 40. In some embodiments, the end surface of the special anti-theft wrench may have a shape that matches the end surface of the anti-theft nut. In some embodiments, the anti-theft nut may be a female hexagonal star anti-theft nut (hexagonal star recess) , and the end face of the anti-theft wrench may be a male hexagonal star (hexagonal star protrusion) .
In some embodiments, the coupling mechanism of the first connector and the second connector may be a rotary-locking mechanism, as shown in FIG. 4. As shown, an inner rotary-locking mechanism 210 as the first connector may have at least one projection 211 on its outer surface, and an outer rotary-locking mechanism 310 as the second connector may have at least one curved groove 311 on its inner wall. When the inner rotary-locking mechanism 210 may be inserted into the outer rotary-locking mechanism 310, the protrusion 211 may be embedded in the curved groove 311 of the outer rotary-locking mechanism 310 and slide inwardly along the curved groove 311 until the protrusion 211 may be stuck in a positioning groove 312 at the end of the curved groove 311. In some embodiments, the positions of the inner and outer rotary-locking mechanisms are interchangeable, that is, the outer connecting mechanism may be disposed on the first connector, and the inner locking mechanism may be disposed on the second connector may be an inner rotary-locking mechanism. In some embodiments, the curved groove may have more than one positioning grooves. In order to adjust the initial position of the brake arm 40, the cable actuation mechanism may also include a separate length adjustment device, such as a screw-tube-screw-rod adjustment device.
In some embodiments, the coupling mechanism of the first connector and the second connector may be a pinhole mechanism as shown in FIG. 5. As shown, the rod-shaped first connector 220 may have a first coupling hole 221, and the tubular second connector 320 may have a second coupling hole 321 thereon. When the first connector 220 is inserted into the second connector 320 and the first coupling hole 221 may be aligned with the second coupling hole 321 (i.e., the state shown in FIG. 5) , a coupling pin 232 may be inserted the two  coupling holes  221 and 321 in the direction of the arrow shown in FIG. 5, such that, the first connector 220 and the second connector 320 are completely coupled. In some embodiments, the rod-shaped first connector and the tubular second connector are interchangeable, that is, the first connector may be provided as a tubular structure, and the second connector may be provided in a rod-like structure. In some embodiments, the first connector 220 may have more than one coupling hole so as to provide multi-segment adjustment. In some embodiments, the second connector 320 may have more than one pinhole so as to provide multi-segment adjustment. In order to adjust the initial position of the brake arm 40, the cable actuation mechanism may also include a  separate length adjustment device, such as a screw-tube-screw-rod adjustment device.
In some embodiments, the coupling mechanism of the first connector and the second connector may be a resilient projection-annular groove mechanism, as shown in FIG. 6. As shown in FIG. 6, the first connector 230 may have a rod-like structure and may have an elastic protrusion 231 thereon. Under external pressure, the elastic protrusions 231 may be retracted toward the inside of the first connector 230. In some embodiments, there are two elastic protrusions 231. In some embodiments, the distance between the two elastic protrusions 231 may be shortened, thereby facilitating the insertion into the second connector 330, which may have a tubular structure. In some embodiments, the two elastic protrusions 231 are steel balls. In some embodiments, an elastic body 234 may be installed between the two elastic protrusions 231. In some embodiments, the elastic body 234 may be a spring or other resilient material or structure such as rubber. Under the external pressure, the elastic body 234 may be compressed, and the elastic protrusion 231 may be retracted towards the inside of the first connector 230. The inner wall of the second connector 330 may have an annular groove 331 that cooperates with the elastic protrusion 231. When the first connector 230 is inserted into the second connector 330, the elastic protrusion 231 may be elastically engaged with the annular groove 331, so that the first connector 230 and the second connector 330 are coupled with each other. In some embodiments, the first connector and the second connector are interchangeable, i.e. the first connector may be provided as a tubular structure and the second connector may be provided as a rod-like structure. In order to adjust the initial position of the brake arm 40, the cable actuation mechanism may also include a separate length adjustment device, such as a screw-tube-screw-rod adjustment device.
In some embodiments, the first connector and the second connector are magnetic connectors that are coupled with each other by magnetic force. In order to adjust the initial position of the brake arm 40, the cable actuation mechanism may also include a separate length adjustment device, such as a screw-tube-screw-rod adjustment device.
FIG. 7 shows a vehicle 700 on which the above brake mechanism is installed. The vehicle 700 may be a human driven, electric, or gasoline powered scooter,  bicycle, motorcycle, motorboat, and the like. For the sake of explanation, the present disclosure will be described with an electric scooter as an example.
The electric scooter 700 may include a handlebar portion, a body portion 720, a brake portion 740, and a wheel portion. In this embodiment, the brake portion 740 may be the brake mechanism 2000 described above. In some embodiments, both front and rear wheels are equipped with the brake mechanism 2000. The coupling mechanism of the first connector and the second connector may be any of the coupling mechanisms described in the above embodiments.
The handlebar portion may include a headlight 702, a handlebar 704, and a head tube 706. The headlights 702 may be mounted on the head tube 706. The handlebar 704 may be located at an upper portion of the head tube 706 and form a substantially T shape along with the first head tube 706.
The wheel portion may include at least one front wheel 712, at least one front wheel fender 716, at least one rear wheel 714, and at least one rear wheel fender 718. The front wheel fender 716 may be generally coaxial with the front wheel 712. When the electric scooter 700 moves on the road, the front wheel fender 716 may block the sediment brought by the front wheel 712 due to rolling. The rear wheel fender 718 may be generally coaxially aligned with the rear wheel 714. When the electric scooter 700 moves on the road, the rear wheel fender 718 may block the sediment brought by the rear wheel 714 due to rolling. The rear wheel fender 718 may also function as a brake pad. When the user presses the outer side of the rear wheel fender 718 with his foot from above, the rear wheel fender 718 may be bent downward, and the inner side thereof may be in contact with the rear wheel 714 to form a frictional force, thereby performing braking function on the electric scooter 700.
The body portion 720 may be connected to the front wheel 712 and the rear wheel 714. The body portion may be generally rectangular. In some embodiments, the battery of the electric scooter 700 may be placed in the body portion. The body portion may include an upper surface 722 and a side surface 724. In some embodiments, a pedal may be provided on the upper surface 722. The user may stand on the pedal while operating the electric scooter 700. The electric scooter 700 also may include a handle mechanism 730, which may assist the user to grasp and apply force when moving the electric scooter 700. The handle mechanism 730 may  be mounted on the side surface 724 of the body portion 720. In some embodiments, the handle mechanism 730 may be mounted on the upper surface 722 of the body portion 720, that is, the handle mechanism 730 may be mounted on the pedal.
The flowcharts used in the present disclosure, if any, illustrate system implemented operations according to some embodiments in the present disclosure. It should be understood that, the operations of the flowchart may or may not be implemented in the order shown. Conversely, the operations may be implemented in an inverted order, or simultaneously. Moreover, one or more other operations may be added to the flowcharts. One or more operations may be removed from the flowcharts.
Moreover, while the system and method in the present disclosure are described primarily in regard to a brake mechanism, it should also be understood that this is only one exemplary embodiment. The system or method of the present disclosure may be applied to any other systems, such as shifting mechanism of a bike.

Claims (15)

  1. An adjustable cable actuating mechanism, comprising:
    a cable;
    a first connector including:
    a first connecting end connected to an end of the cable, and
    a first coupling mechanism;
    a second connector including:
    a second coupling mechanism coupled to the first coupling mechanism, and
    a second connecting end; and
    an actuating member connected to the second connecting end,
    wherein a mutual coupling portion of the first coupling mechanism and the second coupling mechanism is located inside the actuating member,
    an initial position of the actuating member is adjustable by the mutual coupling portion, and
    reciprocating movement of the cable is sequentially transmitted to the actuating member through the first connector, a mutual coupling portion between the first coupling mechanism and the second coupling mechanism, and the second connector.
  2. The adjustable cable actuating mechanism according to claim 1, wherein
    the first coupling mechanism includes an external thread,
    the second coupling mechanism includes an internal thread, and
    the second connecting end is rotatably coupled to the actuating member.
  3. The adjustable cable actuating mechanism according to claim 1, wherein
    the first coupling mechanism includes an internal thread,
    the second coupling mechanism includes an external thread, and
    the second connecting end is rotatably coupled to the actuating member.
  4. The adjustable cable actuating mechanism according to claim 2 or 3, wherein the first connecting end of the first connector has a flat surface adapted to be clamped by a clamping tool, and
    the second connecting end of the second connector includes an anti-theft nut that may be driven by a tool specific to the anti-theft nut to rotate relative to the first connector.
  5. The adjustable cable actuating mechanism according to claim 4, wherein the anti-theft nut has a hexagonal star recess or a triangular recess.
  6. The adjustable cable actuating mechanism according to claim 4, wherein the anti-theft nut has a hexagonal star protrusion or a triangular protrusion.
  7. The adjustable cable actuation mechanism of claim 1, wherein
    the first coupling mechanism includes an outer rotary locking mechanism;
    the second coupling mechanism includes an inner rotary locking mechanism configured to couple to the outer rotary locking mechanism; and
    a length adjustment device.
  8. The adjustable cable actuating mechanism of claim 1, wherein
    the first coupling mechanism includes an inner locking mechanism;
    the second coupling mechanism includes an outer latching mechanism configured to couple to the inner locking mechanism; and
    a length adjustment device.
  9. The adjustable cable actuating mechanism of claim 1, wherein
    the first coupling mechanism includes a first coupling hole;
    the second coupling mechanism includes a second coupling hole;
    a coupling pin passing through the first coupling hole and the second coupling hole, thereby coupling the first connector with the second connector; and
    a length adjustment device.
  10. The adjustable cable actuation mechanism of claim 1, wherein
    the first coupling mechanism includes a rod-shaped structure, wherein the outer wall of the rod-shaped structure includes an elastic protrusion retractable to inside of the rod-shaped structure under external pressure;
    the second coupling mechanism includes a tubular structure, wherein an inner wall of the tubular structure includes an annular groove configured to couple with the elastic protrusion; and
    a length adjustment device.
  11. The adjustable cable actuation mechanism of claim 1, wherein
    the second coupling mechanism includes a rod-shaped structure, wherein the outer wall of the rod-shaped structure includes an elastic protrusion retractable to inside of the rod-shaped structure under external pressure;
    the first coupling mechanism includes a tubular structure, wherein an inner wall of the tubular structure includes an annular groove configured to couple with the elastic protrusion; and
    a length adjustment device.
  12. The adjustable cable actuation mechanism of claim 1, wherein
    the first coupling mechanism includes a first magnetic coupling member;
    the second coupling mechanism includes a second magnetic coupling member; and
    a length adjustment device.
  13. The adjustable cable actuating mechanism of claim 1 wherein the actuating member includes a brake arm of the brake mechanism.
  14. The adjustable cable actuating mechanism of claim 1 wherein
    the actuating member includes a shifting fork of the shifting mechanism.
  15. A vehicle, comprising:
    a frame;
    at least one wheel rotatably connected to the frame;
    at least one brake connected to the at least one wheel; and
    the adjustable cable actuating mechanism of claim 1 coupled to the at least one brake.
PCT/CN2019/087163 2019-05-16 2019-05-16 Adjustable cable actuating mechanism WO2020228006A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201990000076.0U CN212047759U (en) 2019-05-16 2019-05-16 Adjustable cable actuating mechanism and vehicle
PCT/CN2019/087163 WO2020228006A1 (en) 2019-05-16 2019-05-16 Adjustable cable actuating mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/087163 WO2020228006A1 (en) 2019-05-16 2019-05-16 Adjustable cable actuating mechanism

Publications (1)

Publication Number Publication Date
WO2020228006A1 true WO2020228006A1 (en) 2020-11-19

Family

ID=73290009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087163 WO2020228006A1 (en) 2019-05-16 2019-05-16 Adjustable cable actuating mechanism

Country Status (2)

Country Link
CN (1) CN212047759U (en)
WO (1) WO2020228006A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103569309A (en) * 2012-07-23 2014-02-12 坎培诺洛有限公司 Command inverter for a bicycle gearshift control device
CN104254716A (en) * 2012-04-25 2014-12-31 Zf腓德烈斯哈芬股份公司 Control device, auxiliary control device, and control system for a transmission of a vehicle, and method for assembling a control system for a transmission of a vehicle
CN109660077A (en) * 2017-10-11 2019-04-19 保时捷股份公司 Electric drive unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254716A (en) * 2012-04-25 2014-12-31 Zf腓德烈斯哈芬股份公司 Control device, auxiliary control device, and control system for a transmission of a vehicle, and method for assembling a control system for a transmission of a vehicle
CN103569309A (en) * 2012-07-23 2014-02-12 坎培诺洛有限公司 Command inverter for a bicycle gearshift control device
CN109660077A (en) * 2017-10-11 2019-04-19 保时捷股份公司 Electric drive unit

Also Published As

Publication number Publication date
CN212047759U (en) 2020-12-01

Similar Documents

Publication Publication Date Title
US20050061587A1 (en) Brake device having adjustable spring member
US9663184B2 (en) Hydraulic rim brake
CN103625596A (en) Bicycle hydraulic brake actuation device
CN107234924B (en) Device for mounting a wheel on a bicycle frame
US8720650B2 (en) Hub assembly for a wheelchair
TWI630142B (en) Quick release structure
CN216269734U (en) Hydraulic brake mechanism
WO2020228006A1 (en) Adjustable cable actuating mechanism
US20110155525A1 (en) Adjustable brake lever assembly for bicycle
JP2002206576A (en) Disc brake for mechanical vehicle
CN109806078A (en) A kind of wheelchair vehicle linkage brake
JP5836154B2 (en) Hydraulic master cylinder device for vehicles
TWM520048U (en) Brake control set featuring adjustable grasp distance
JP7210594B2 (en) Actuator device for a motorcycle brake or clutch hydraulic actuation system with independent adjustment of actuation lever distance and pitch
TWI715355B (en) Improved structure of interlocking brake system
US6032766A (en) Seat for fastening curved tube of V-type brake of bicycle
GB2344859A (en) A bicycle v-type brake
JP3577102B2 (en) Bicycle braking device
JPH08119177A (en) Brake unit and brake lever for bicycle
JP7430275B2 (en) Equipment and saddle type vehicles
JP5048744B2 (en) Bicycle brake
TWI532614B (en) Breaking coordinating apparatus
TWI809549B (en) Hydraulic brake parking mechanism
KR101951341B1 (en) Bicycle Break Device
TWM430427U (en) Brake caliper for bicycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929170

Country of ref document: EP

Kind code of ref document: A1