WO2020224331A1 - 一种防追踪通信调制系统及通信方法 - Google Patents

一种防追踪通信调制系统及通信方法 Download PDF

Info

Publication number
WO2020224331A1
WO2020224331A1 PCT/CN2020/079654 CN2020079654W WO2020224331A1 WO 2020224331 A1 WO2020224331 A1 WO 2020224331A1 CN 2020079654 W CN2020079654 W CN 2020079654W WO 2020224331 A1 WO2020224331 A1 WO 2020224331A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
resistor
pin
integrated chip
capacitor
Prior art date
Application number
PCT/CN2020/079654
Other languages
English (en)
French (fr)
Inventor
徐磊
Original Assignee
南京瑞贻电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京瑞贻电子科技有限公司 filed Critical 南京瑞贻电子科技有限公司
Publication of WO2020224331A1 publication Critical patent/WO2020224331A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5563Digital frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • H04K1/02Secret communication by adding a second signal to make the desired signal unintelligible
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/60Jamming involving special techniques
    • H04K3/68Jamming involving special techniques using passive jamming, e.g. by shielding or reflection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/80Jamming or countermeasure characterized by its function
    • H04K3/82Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection

Definitions

  • the invention relates to a communication modulation technology, in particular to an anti-tracking communication modulation system.
  • An anti-tracking communication modulation system is provided to solve the above problems.
  • An anti-tracking communication modulation system including a control unit, a signal receiving unit, a signal processing unit, a coherent optical communication shielding unit, and a communication set transmitting unit;
  • the control unit performs overall control of each link of signal reception, processing and transmission, and at the same time improves power support for the operation of each unit of the system;
  • the signal receiving unit receives communication signals
  • the coherent optical communication shielding unit adds an anti-tracking signal to the modulated signal through the coherent optical signal, thereby improving the anti-tracking ability of the communication signal;
  • the communication set transmitting unit performs signal output after channel modulation of the final transmission signal
  • the signal processing unit is characterized in that it includes a signal processing circuit that modulates the received communication signal through a timing control module, a signal parallel modulation module, and a signal transmission module, so that the received signal is controlled by a stable clock signal. Signal modulation and further transmission;
  • the timing control module includes integrated chip U1, integrated chip U2, converter U4, clock signal CLK1, resistor R1, resistor R2, resistor R3, resistor R14, resistor R15, capacitor C1, capacitor C2, capacitor C5, capacitor C7,
  • the diode D2, the diode D5 and the buzzer BUZ1 the first pin of the integrated chip U1 is respectively connected to the first pin of the converter U4 and the voltage signal +12V, the twelfth lead of the integrated chip U1
  • the pins are respectively connected to the output end of the clock signal CLK1 and the sixth pin of the integrated chip U2.
  • the second pin of the converter U4 is connected to the fourth pin of the integrated chip U1.
  • the third pin of the chip U1 is connected to one end of the resistor R1, the other end of the resistor R1 is connected to the fifth pin of the integrated chip U2, and the second pin of the integrated chip U1 is connected to the resistor R1.
  • One end of R2 is connected, the other end of the resistor R2 is connected to the third pin of the integrated chip U2, the thirteenth pin of the integrated chip U1 and one end of the capacitor C2 are both grounded, and the capacitor C2
  • the other end of the integrated chip U2 is connected to the second pin, the fourth pin of the integrated chip U2 is respectively connected to one end of the resistor R3 and one end of the capacitor C1, and the other end of the resistor R3 Are respectively connected to the other end of the capacitor C1 and the eleventh pin of the integrated chip U2, the ninth pin of the integrated chip U2 is connected to one end of the resistor R14, and the other end of the resistor R14 is connected to One end of the capacitor C7 is connected, the other end of the capacitor C7 is connected to one end of
  • the signal parallel modulation module includes operational amplifier U6, triode Q1, triode Q2, triode Q3, rectifier U5, adjustable resistor VR1, adjustable resistor VR2, resistor R4, resistor R5, resistor R6, resistor R7, resistor R8, resistor R9, resistor R10, resistor R11, resistor R12, resistor R13, capacitor C3, capacitor C4, capacitor C6, diode D1, diode D3, diode D4, inductor L1, inductor L2, and inductor L3, one end of the resistor R10 is connected to the voltage
  • the signal Vin1 is connected to one end of the adjustable resistor VR1, the other end of the resistor R10 is connected to the base of the transistor Q2, and the other end of the adjustable resistor VR1 is connected to one end of the inductor L4, the One end of the inductor L5 is connected to the voltage signal Vin2, the other end of the inductor L4 is connected to the anode of the diode D3, the other end of the inductor L5 is connected to one end of
  • the anode of the diode D3 is connected to the anode
  • the other end of the resistor R9 is connected to the cathode of the diode D4, the cathode of the rectifier U5, one end of the inductor L1, and the base of the transistor Q3, respectively
  • the other end of the inductor L1 is connected to the emitter of the transistor Q1
  • the collector of the transistor Q1 is connected to the other end of the capacitor C3 and one end of the resistor R5
  • the other end of the resistor R5 is connected to
  • the seventh pin of the integrated chip U2 is connected
  • the emitter of the transistor Q3 is connected to one end of the resistor R12 and one end of the inductor L3, and the other end of the resistor R12 is grounded.
  • the collector is connected to one end of the resistor R6, the other end of the resistor R6 is connected to one end of the inductor L2, and the other end of the inductor L2 is connected to the cathode of the diode D1 and the first end of the operational amplifier U6.
  • the anode of the diode D1 is connected to one end of the resistor R11; the third pin of the operational amplifier U6 is connected to one end of the resistor R13 and one end of the capacitor C6, respectively, The other end of the resistor R13 limit is connected to the sixth pin of the operational amplifier U6, the fourth pin of the operational amplifier U6 and the seventh pin of the operational amplifier U6 are both open, and the other end of the capacitor C6 Connected to one end of the adjustable resistor VR2, and the other end of the adjustable resistor VR2 is connected to the fifteenth pin of the integrated chip U2;
  • the signal transmission module includes an integrated chip U3, a resistor R16, a resistor R17, a resistor R18, a diode D6, and a transformer TR1.
  • the first pin of the integrated chip U3 is connected to the other end of the resistor R11, and the integrated chip
  • the sixth pin of U3 is connected to the other end of the inductor L3, the third pin of the integrated chip U3 is grounded, the fifth pin of the integrated chip U3 is open, and the ninth pin of the integrated chip U3 Is connected to one end of the resistor R17, the other end of the resistor R17 is connected to the second pin of the transformer TR1, and the fourth pin of the integrated chip U3 is connected to one end of the resistor R16 and the capacitor
  • One end of C8 is connected, the other end of the capacitor C8 is grounded, the other end of the resistor R16 is connected to the first pin of the transformer TR1, and the eighth pin of the integrated chip U3 is connected to the anode of the diode D6
  • the model of the integrated chip U1 is 74LS107, and the clock is modulated according to the period of the clock signal CLK1, and the received signal is debugged uniquely in the time domain to provide a reference for the time period of subsequent signal modulation.
  • the rectifier U5 is a three-pin rectifier, which performs parallel modulation of two input signals by connecting the positive pole of the rectifier U5 and the reference terminal of the rectifier U5 with the negative pole of the rectifier U5 to maintain The frequency band of communication signal modulation.
  • the triode Q1, the triode Q2, and the triode Q3 complete a cascade two-stage connection, and the total current signal is amplified by the triode Q1 and then passes through the triode Q2 and the triode Q3, respectively.
  • Two-stage amplification is used as a two-way reference for signal parallel processing.
  • the model of the integrated chip U3 is LTC3026, which can regulate the transformation coefficient of the transformer TR1 with two inputs and two outputs.
  • the buzzer BUZ1 is connected in parallel with the diode D5 to monitor the stability of the input signal frequency. When the output current is too large to turn on the diode D5, the buzzer BUZ1 will emit Siren.
  • the communication method based on the above-mentioned anti-tracking communication modulation system includes a coherent optical communication modulation method.
  • the interference signal is formed according to the four stored signals and the corresponding half-wave delay signal, which is linearly added to the received signal to form an anti-interference transmission Signal, thereby reducing the signal distortion effect caused by random signal interference on the original signal;
  • Step 1 Define the four kinds of interference signals respectively, specifically:
  • F 11 A 1 sin (W 1 t+J 1 ), where A 1 represents amplitude, W 1 t represents angular frequency, and J 1 represents angle;
  • Step 2 Define the half-wave delayed signals of the four interference signals respectively and perform the final interference signal integration
  • Step 21 Define the half-wave delayed signals of the four interference signals:
  • F 12 A 1 sin (W 1 t+ ⁇ 1 t/2+J 1 ), where ⁇ 1 is the wavelength of signal 1;
  • F 32 sin(t+ ⁇ 3 t/2+K 1 ⁇ )/t, where ⁇ 3 is the wavelength of signal 3;
  • Step 22 Linear addition completes the final interference signal, which is specifically:
  • Step 3 Perform interference signal synthesis on the received signal according to the interference signal ranking table generated by the control unit, thereby completing the content protection of the received signal.
  • the interference signal ranking table is specifically a random number generation table between 1-4 generated inside the system; in the case that the interference condition is not met, the types of interference signals can be further expanded ; At the same time, the increase mode of interference signals can be further upgraded to a variety of different interference signal permutations and combinations.
  • the communication method based on the above anti-tracking communication modulation system includes a method of resetting the channel of the transmitted signal. Since the channel coding technology is limited by the Shannon limit, the signal is transmitted directly at the transmitting end, and the information redundancy is used to perform the error correction of the transmitted signal. To reduce the bit error rate, the specific steps are:
  • Step 1 Use the CRC code to detect the transmitted signal, segment the transmitted signal according to the length of 8bit and 16bit, and use the CRC code to detect and adjust the rate within the corresponding information length;
  • Step 2 Use Turbo code to correct the transmitted signal, and use the random information generator of Turbo code to directly correct the sudden random error data in the transmitted information;
  • Step 3 Use the modes of 0db, 6db, 12db and 18db to perform spread spectrum processing on the segments of the transmission information, thereby reducing the peak-to-average ratio of the signal and enhancing the stability of transmission information transmission.
  • the OVSF code when spreading the transmission information, is specifically used to ensure that the transmission information between different channels is transmitted in an orthogonal mode, and the anti-interference of the information transmission is enhanced.
  • the present invention can solve the problem of easy tracking and content viewing of communication system propagation in the prior art.
  • the confidentiality of signal transmission is strengthened and the problem of increasing random noise signal is solved.
  • the double error check of the signal in the signal transmission process further strengthens the accuracy of the transmitted information and avoids the signal deviation caused by the addition of noise.
  • Figure 1 is a system control block diagram of the present invention.
  • Fig. 2 is a schematic diagram of the signal processing circuit of the present invention.
  • Figure 3 is a diagram of four interference signal patterns of the present invention.
  • an anti-tracking communication modulation system includes a control unit, a signal receiving unit, a signal processing unit, a coherent optical communication shielding unit, and a communication set transmitting unit;
  • the control unit performs overall control of each link of signal reception, processing and transmission, and at the same time improves power support for the operation of each unit of the system;
  • the signal receiving unit receives communication signals
  • the coherent optical communication shielding unit adds an anti-tracking signal to the modulated signal through the coherent optical signal, thereby improving the anti-tracking ability of the communication signal;
  • the communication set transmitting unit performs signal output after channel modulation of the final transmission signal
  • the signal processing unit is characterized in that it includes a signal processing circuit that modulates the received communication signal through the timing control module, the signal parallel modulation module, and the signal transmission module respectively, so that the received signal is stable Under the control of the clock signal, complete signal modulation and further transmission;
  • the timing control module includes integrated chip U1, integrated chip U2, converter U4, clock signal CLK1, resistor R1, resistor R2, resistor R3, resistor R14, resistor R15, capacitor C1, capacitor C2, capacitor C5, capacitor C7,
  • the diode D2, the diode D5 and the buzzer BUZ1 the first pin of the integrated chip U1 is respectively connected to the first pin of the converter U4 and the voltage signal +12V, the twelfth lead of the integrated chip U1
  • the pins are respectively connected to the output end of the clock signal CLK1 and the sixth pin of the integrated chip U2.
  • the second pin of the converter U4 is connected to the fourth pin of the integrated chip U1.
  • the third pin of the chip U1 is connected to one end of the resistor R1, the other end of the resistor R1 is connected to the fifth pin of the integrated chip U2, and the second pin of the integrated chip U1 is connected to the resistor R1.
  • One end of R2 is connected, the other end of the resistor R2 is connected to the third pin of the integrated chip U2, the thirteenth pin of the integrated chip U1 and one end of the capacitor C2 are both grounded, and the capacitor C2
  • the other end of the integrated chip U2 is connected to the second pin, the fourth pin of the integrated chip U2 is respectively connected to one end of the resistor R3 and one end of the capacitor C1, and the other end of the resistor R3 Are respectively connected to the other end of the capacitor C1 and the eleventh pin of the integrated chip U2, the ninth pin of the integrated chip U2 is connected to one end of the resistor R14, and the other end of the resistor R14 is connected to One end of the capacitor C7 is connected, the other end of the capacitor C7 is connected to one end of
  • the signal parallel modulation module includes operational amplifier U6, triode Q1, triode Q2, triode Q3, rectifier U5, adjustable resistor VR1, adjustable resistor VR2, resistor R4, resistor R5, resistor R6, resistor R7, resistor R8, resistor R9, resistor R10, resistor R11, resistor R12, resistor R13, capacitor C3, capacitor C4, capacitor C6, diode D1, diode D3, diode D4, inductor L1, inductor L2, and inductor L3, one end of the resistor R10 is connected to the voltage
  • the signal Vin1 is connected to one end of the adjustable resistor VR1, the other end of the resistor R10 is connected to the base of the transistor Q2, and the other end of the adjustable resistor VR1 is connected to one end of the inductor L4, the One end of the inductor L5 is connected to the voltage signal Vin2, the other end of the inductor L4 is connected to the anode of the diode D3, the other end of the inductor L5 is connected to one end of
  • the anode of the diode D3 is connected to the anode
  • the other end of the resistor R9 is connected to the cathode of the diode D4, the cathode of the rectifier U5, one end of the inductor L1, and the base of the transistor Q3, respectively
  • the other end of the inductor L1 is connected to the emitter of the transistor Q1
  • the collector of the transistor Q1 is connected to the other end of the capacitor C3 and one end of the resistor R5
  • the other end of the resistor R5 is connected to
  • the seventh pin of the integrated chip U2 is connected
  • the emitter of the transistor Q3 is connected to one end of the resistor R12 and one end of the inductor L3, and the other end of the resistor R12 is grounded.
  • the collector is connected to one end of the resistor R6, the other end of the resistor R6 is connected to one end of the inductor L2, and the other end of the inductor L2 is connected to the cathode of the diode D1 and the first end of the operational amplifier U6.
  • the anode of the diode D1 is connected to one end of the resistor R11; the third pin of the operational amplifier U6 is connected to one end of the resistor R13 and one end of the capacitor C6, respectively, The other end of the resistor R13 limit is connected to the sixth pin of the operational amplifier U6, the fourth pin of the operational amplifier U6 and the seventh pin of the operational amplifier U6 are both open, and the other end of the capacitor C6 Connected to one end of the adjustable resistor VR2, and the other end of the adjustable resistor VR2 is connected to the fifteenth pin of the integrated chip U2;
  • the signal transmission module includes an integrated chip U3, a resistor R16, a resistor R17, a resistor R18, a diode D6, and a transformer TR1.
  • the first pin of the integrated chip U3 is connected to the other end of the resistor R11, and the integrated chip
  • the sixth pin of U3 is connected to the other end of the inductor L3, the third pin of the integrated chip U3 is grounded, the fifth pin of the integrated chip U3 is open, and the ninth pin of the integrated chip U3 Is connected to one end of the resistor R17, the other end of the resistor R17 is connected to the second pin of the transformer TR1, and the fourth pin of the integrated chip U3 is connected to one end of the resistor R16 and the capacitor
  • One end of C8 is connected, the other end of the capacitor C8 is grounded, the other end of the resistor R16 is connected to the first pin of the transformer TR1, and the eighth pin of the integrated chip U3 is connected to the anode of the diode D6
  • the model of the integrated chip U1 is 74LS107
  • the clock modulation is performed according to the period of the clock signal CLK1
  • the unique time domain debugging of the received signal is performed to provide a reference for the time period of subsequent signal modulation.
  • the clock signal CLK1 is directly connected to the clock signal input terminal of the integrated chip U1 and the clock signal input terminal of the integrated chip U2, respectively, and is completed under the control of the control unit Synchronous operation eliminates the time difference caused by different line connections.
  • the rectifier U5 is a three-pin rectifier, by connecting the positive pole of the rectifier U5 and the reference terminal of the rectifier U5 to the negative pole of the rectifier U5 to perform parallel modulation of two input signals to maintain The frequency band of communication signal modulation.
  • the triode Q1, the triode Q2 and the triode Q3 complete a cascade two-stage connection, and the total current signal is amplified by the triode Q1 and then passes through the triode Q2 and the triode Q3, respectively.
  • Two-stage amplification is used as a two-way reference for signal parallel processing.
  • the base of the transistor Q1 is directly connected to the emitter of the transistor Q2, and the emission current of the transistor Q2 affects the charge accumulation on the base of the transistor Q1 to ensure Continuity of current transfer.
  • the model of the integrated chip U3 is LTC3026, which can regulate the transformation coefficient of the transformer TR1 with two inputs and two outputs.
  • the buzzer BUZ1 is connected in parallel with the diode D5 to monitor the stability of the input signal frequency. When the output current is too large to turn on the diode D5, the buzzer BUZ1 will emit Siren.
  • a coherent optical communication modulation method which forms an interference signal based on the four stored signals and the corresponding half-wave delay signal, which is linearly added to the received signal to form an anti-interference transmission signal, thereby reducing the generation of the original signal due to random signal interference Signal distortion effect;
  • Step 1 Define four kinds of interference signals respectively, as shown in Figure 3, specifically:
  • F 11 A 1 sin (W 1 t+J 1 ), where A 1 represents amplitude, W 1 t represents angular frequency, and J 1 represents angle;
  • Step 2 Define the half-wave delayed signals of the four interference signals respectively and perform the final interference signal integration
  • Step 21 Define the half-wave delayed signals of the four interference signals:
  • F 12 A 1 sin (W 1 t+ ⁇ 1 t/2+J 1 ), where ⁇ 1 is the wavelength of signal 1;
  • F 32 sin(t+ ⁇ 3 t/2+K 1 ⁇ )/t, where ⁇ 3 is the wavelength of signal 3;
  • Step 22 Linear addition completes the final interference signal, which is specifically:
  • Step 3 Perform interference signal synthesis on the received signal according to the interference signal ranking table generated by the control unit, thereby completing the content protection of the received signal.
  • the interference signal ranking table is specifically a random number generation table between 1-4 generated inside the system; in the case that the interference conditions are not met, the types of interference signals can be further expanded ; At the same time, the increase mode of interference signals can be further upgraded to a variety of different interference signal permutations and combinations.
  • the added interference signal may be the result of cross-processing the original original interference signal.
  • a specific example is: the interference signal 1 and the interference signal 2 are linearly increased.
  • the new interference signal 2F 1 +4F 2 as long as the generation mode of the used interference signal has a corresponding record, the corresponding stripping of the interference signal can be completed, thereby reducing the storage space occupation caused by the generation of a completely new interference signal, and further speeding up the signal Processing accuracy and calculation speed.
  • a method for resetting the transmission signal channel Because the channel coding technology is limited by the Shannon limit, it uses the redundancy of the information to correct the error of the transmitted signal directly at the signal transmitting end to reduce the bit error rate. The specific steps are:
  • Step 1 Use the CRC code to detect the transmitted signal, segment the transmitted signal according to the length of 8bit and 16bit, and use the CRC code to detect and adjust the rate within the corresponding information length;
  • Step 2 Use Turbo code to correct the transmitted signal, and use the random information generator of Turbo code to directly correct the sudden random error data in the transmitted information;
  • Step 3 Use the modes of 0db, 6db, 12db and 18db to perform spread spectrum processing on the segments of the transmission information, thereby reducing the peak-to-average ratio of the signal and enhancing the stability of transmission information transmission.
  • the OVSF code when spreading the transmission information, is specifically used to ensure that the transmitted information between different channels is transmitted in an orthogonal mode, and the anti-interference of the information transmission is enhanced.
  • the same component encoder is used for the two different error correction codes, and the zero-forcing grid is terminated based on more requirements, so that the extra grid is used as further error correction accommodation.
  • the radiation gain of the two encoding error correction modes is directly compared, and the comparison result is stored and then the intelligent error correction adjustment is performed to improve the error correction effect.
  • the present invention has the following advantages: by adding timing control and two parallel modulation branches to the information modulation unit, the frequency specificity during information modulation is strengthened; the addition of orderly interference signals strengthens the protection and reprocessing of signals.
  • the extraction function can effectively prevent the tracking of communication information; the signal deviation increased due to the processed signal can be corrected by two signal detection and channel spreading, ensuring the superiority of the overall device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Transmitters (AREA)

Abstract

本发明公开了一种防追踪通信调制系统及通信方法,包括控制单元、信号接收单元、信号处理单元、相干光通信屏蔽单元和通信集合发射单元;所述控制单元管理其余各单元完成信号从接收到处理传递的整个过程;所述信号处理单元通过三部分电路结构对接收的信号进行基础调制处理,保障接收信号的信号完成度;进一步通过所述相干光通信屏蔽单元防止外界信号追踪,保证信号的保密程度;所述通信集合发射单元针对发射信号的过程加强了抗干扰的操作。本发明通过对通信信号的处理步骤进行有序干扰信号的加密措施,提高了对信号追踪的屏蔽效果,发射前的误差检测和信道扩频进一步消除了因干扰信号加入引起的信号误差。

Description

一种防追踪通信调制系统及通信方法 技术领域
本发明涉及一种通信调制技术,尤其是一种防追踪通信调制系统。
背景技术
在信息技术飞速发展的今天,对信息的处理技术也在不断地提升当中。为了保障通信安全,重要手段之一就是对通信信息进行信息反追踪措施,具体可以分为,追踪信息干扰和传递原始信息调制干扰。由于对追踪信息的不确定度,后者的使用成功率要远远大于前者。
对追中信息直接进行干扰,需要准确地接收到原始信息进行进一步的处理,这种方法不仅耗时时间长,而且处理的效果也比较薄弱。与之相对的,对原始信息进行调制干扰是目前在信息安全中受到不断重视的一个举措。由于对原始信息需要进行多步处理,这种措施往往会带来原始信息丢失和因添加干扰信号带来的信息畸变、信息丢失。这些副作用因信息调制的精细度会有程度区分,严重的话直接导致原始信息破损。
为了更好地实现高效的信息防追踪, 需要对信息的干扰信息加入的方式进行更加智能化的改进,从而更好地完成反追踪的效果,更好地保护原始信息的完整度。
技术问题
提供一种防追踪通信调制系统,以解决上述问题。
技术解决方案
一种防追踪通信调制系统,包括控制单元、信号接收单元、信号处理单元、相干光通信屏蔽单元和通信集合发射单元;
控制单元,对信号的接收、处理和发送的各个环节进行整体控制,同时为系统各个单元的运行提高电源支持;
信号接收单元,接收通信信号;
相干光通信屏蔽单元,通过相干光信号对调制过的信号进行防追踪信号添加,从而提高通信信号的防追踪能力;
通信集合发射单元,将最终的传递信号进行信道调制后,进行信号输出;
信号处理单元,其特征在于,包括一种信号处理电路,将接收的通信信号分别经过时序控制模块、信号并行调制模块和信号传输模块进行信号调制,从而使接收信号在稳定时钟信号控制下,完成信号调制和进一步的传输;
所述时序控制模块,包括集成芯片U1、集成芯片U2、转换器U4、时钟信号CLK1、电阻R1、电阻R2、电阻R3、电阻R14、电阻R15、电容C1、电容C2、电容C5、电容C7、二极管D2、二极管D5和蜂鸣器BUZ1,所述集成芯片U1的第一引脚分别与所述转换器U4的第一引脚、电压信号+12V连接,所述集成芯片U1的第十二引脚分别与所述时钟信号CLK1的输出端、所述集成芯片U2的第六引脚连接,所述转换器U4的第二引脚与所述集成芯片U1的第四引脚连接,所述集成芯片U1的第三引脚与所述电阻R1的一端连接,所述电阻R1的另一端与所述集成芯片U2的第五引脚连接,所述集成芯片U1的第二引脚与所述电阻R2的一端连接,所述电阻R2的另一端与所述集成芯片U2的第三引脚连接,所述集成芯片U1的第十三引脚与所述电容C2的一端均接地,所述电容C2的另一端与所述集成芯片U2的第二引脚连接,所述集成芯片U2的第四引脚分别与所述电阻R3的一端、所述电容C1的一端连接,所述电阻R3的另一端分别与所述电容C1的另一端、所述集成芯片U2的第十一引脚连接,所述集成芯片U2的第九引脚与所述电阻R14的一端连接,所述电阻R14的另一端与所述电容C7的一端连接,所述电容C7的另一端分别与所述电阻R15的一端、所述二极管D5的正极、所述蜂鸣器BUZ1的一端连接,所述电阻R15的另一端与所述集成芯片U2的第十引脚连接,所述二极管D5的负极分别与所述集成芯片U2的第十二引脚、所述蜂鸣器BUZ1的另一端、所述电容C5的一端连接,所述电容C5的另一端与所述二极管D2的负极连接,所述二极管D2的正极与所述集成芯片U2的第十四引脚连接,所述集成芯片U2的第十三引脚断路;
所述信号并行调制模块,包括运算放大器U6、三极管Q1、三极管Q2、三极管Q3、整流器U5、可调电阻VR1、可调电阻VR2、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、电阻R11、电阻R12、电阻R13、电容C3、电容C4、电容C6、二极管D1、二极管D3、二极管D4、电感L1、电感L2和电感L3,所述电阻R10的一端分别与电压信号Vin1、所述可调电阻VR1的一端连接,所述电阻R10的另一端与所述三极管Q2的基极连接,所述可调电阻VR1的另一端分别与所述电感L4的一端、所述电感L5的一端、电压信号Vin2连接,所述电感L4的另一端与所述二极管D3的正极连接,所述电感L5的另一端与所述电感L5的一端连接,所述三极管Q2的集电极与所述电阻R7的一端连接,所述电阻R7的另一端分别与所述电容C3的一端、所述电容C4的一端、所述电阻R4的一端连接,所述电容C4的另一端分别与所述电阻R8的一端、所述电阻R9的一端连接,所述三极管Q2的发射极分别与所述电阻R8的另一端、所述三极管Q1的基极、所述整流器U5的参考端、所述整流器U5的正极、所述二极管D3的负极连接,所述电阻R9的另一端分别与所述二极管D4的负极、所述整流器U5的负极、所述电感L1的一端、所述三极管Q3的基极连接,所述电感L1的另一端与所述三极管Q1的发射极连接,所述三极管Q1的集电极分别与所述电容C3的另一端、所述电阻R5的一端连接,所述电阻R5的另一端与所述集成芯片U2的第七引脚连接,所述三极管Q3的发射极分别与所述电阻R12的一端、所述电感L3的一端连接,所述电阻R12的另一端接地,所述三极管Q3的集电极与所述电阻R6的一端连接,所述电阻R6的另一端与所述电感L2的一端连接,所述电感L2的另一端分别与所述二极管D1的负极、所述运算放大器U6的第二引脚连接,所述二极管D1的正极与所述电阻R11的一端;连接,所述运算放大器U6的第三引脚分别与所述电阻R13的一端、所述电容C6的一端连接,所述电阻R13限额另一端与所述运算放大器U6的第六引脚连接,所述运算放大器U6的第四引脚与所述运算放大器U6的第七引脚均为断路,所述电容C6的另一端与所述可调电阻VR2的一端连接,所述可调电阻VR2的另一端与所述集成芯片U2的第十五引脚连接;
所述信号传输模块,包括集成芯片U3、电阻R16、电阻R17、电阻R18、二极管D6和变压器TR1,所述集成芯片U3的第一引脚与所述电阻R11的另一端连接,所述集成芯片U3的第六引脚与所述电感L3的另一端连接,所述集成芯片U3的第三引脚接地,所述集成芯片U3的第五引脚断路,所述集成芯片U3的第九引脚与所述电阻R17的一端连接,所述电阻R17的另一端与所述变压器TR1的第二引脚连接,所述集成芯片U3的第四引脚分别与所述电阻R16的一端、所述电容C8的一端连接,所述电容C8的另一端接地,所述电阻R16的另一端与所述变压器TR1的第一引脚连接,所述集成芯片U3的第八引脚与所述二极管D6的正极连接,所述集成芯片U3的第七引脚与所述电阻R18的一端连接,所述电阻R18的另一端与所述二极管D6的负极连接,所述变压器TR1的第三引脚与电压信号Vout1连接,所述变压器TR1的第四引脚与电压信号Vout2连接。
根据本发明的一个方面,所述集成芯片U1的型号是74LS107,根据所述时钟信号CLK1的周期进行时钟调制,对接收信号进行唯一化的时域调试,为后续信号调制的时间周期提供基准。
根据本发明的一个方面,所述整流器U5是三引脚式整流器,通过连接所述整流器U5的正极和所述整流器U5的参考端与所述整流器U5的负极进行两路输入信号并行调制,保持通信信号调制的频率段。
根据本发明的一个方面,所述三极管Q1和所述三极管Q2、所述三极管Q3完成级联两级连接,通过所述三极管Q1进行总电流信号放大后分别经由所述三极管Q2和所述三极管Q3进行两级放大,作为信号并行处理的两路基准。
根据本发明的一个方面,所述集成芯片U3的型号是LTC3026,可以调控两输入两输出的所述变压器TR1的变压系数。
根据本发明的一个方面,所述蜂鸣器BUZ1与所述二极管D5并联,从而监控输入信号频率的稳定性,当输出电流过大导通所述二极管D5之后,所述蜂鸣器BUZ1将发出警报声。
基于上述防追踪通信调制系统的通信方法,包括一种相干光通讯调制方法,根据已经存储的四种信号和对应的半波延迟信号组成干扰信号,与接收信号进行线性相加后组成抗干扰传送信号,从而减少因为随机信号干扰对原信号产生的信号畸变效果;
步骤1、分别对四种干扰信号进行定义,具体为:
信号1:F 11=A 1sin(W 1t+J 1),其中,A 1表示振幅,W 1t表示角频率,J 1表示角度;
信号2:F 21=B 1e atsin(W 2t),其中,B 1是整数倍数,a是指数控制的角频率,W 2是正弦函数的角频率;
信号3:F 31=sin(t+K 1π)/t, 其中,K 1是移位周期的整数倍数;
信号4:F 41=U(t)-U(t-T 1),其中,T 1是周期,U(t)是周期阶跃信号;
步骤2、分别定义四种干扰信号的半波延迟信号并进行最终的干扰信号整合;
步骤21、定义四种干扰信号的半波延迟信号:
信号1的延迟信号:F 12=A 1sin(W 1t+λ 1t/2+J 1),其中,λ 1是信号1的波长;
信号2的延迟信号:F 22=B 1e atsin(W 2t+λ 2t/2) ,其中,λ 2是信号2的波长;
信号3的延迟信号:F 32=sin(t+λ 3t/2+K 1π)/t ,其中,λ 3是信号3的波长;
信号4的延迟信号:F 42=U(t)-U(t-T 1-T 1/2);
步骤22、线性相加完成最终的干扰信号,具体为:
干扰信号1:F 1=F 11+F 12
干扰信号2:F 2=F 21+F 22
干扰信号3:F 3=F 31+F 32
干扰信号4:F 4=F 41+F 42
步骤3、根据所述控制单元生成的干扰信号排序表,对接收信号进行干扰信号合成,从而完成对接收信号的内容保护。
根据本发明的一个方面,所述干扰信号排序表,具体就是系统内部生成的1-4之间的随机数字生成表;在干扰条件不满足的情况下,可以对干扰信号的种类进行进一步的扩充;同时,干扰信号的增加方式可以进一步升级成为多种不同的干扰信号的排列组合形式。
基于上述防追踪通信调制系统的通信方法,包括一种发射信号信道重置方法,由于信道编码技术受到香农极限的限制,直接在信号的发射端,利用信息的冗余进行发射信号的纠错,降低误码率,具体的步骤为:
步骤1、采用CRC码对发射信号进行检测,分别根据8bit和16bit的长度对发射信号进行信息分段,使用CRC码在对应信息长度内进行检测和速率调控;
步骤2、利用Turbo码对发射信号进行纠错,利用Turbo码的随机信息生成器,直接对发射信息中的突发性随机误差数据进行校正;
步骤3、分别采用0db、6db、12db和18db的模式对发射信息的分段进行扩频处理,从而降低信号的峰均比,增强发射信息传递的稳定性。
根据本发明的一个方面,对发射信息进行扩频处理的时候,具体使用的是OVSF码,以保证不同信道之间的传递信息以正交的模式进行传输,增强信息传送的抗干扰性。
有益效果
本发明能够解决现有的技术中通信系统传播易被追踪和内容查看的问题,通过增加了自生成的复杂干扰信号,既加强了信号传送的保密性,又解决了因增加随机噪声信号而产生的信号畸变;同时,信号发送过程中的信号两次误差检查进一步加强了传递信息的准确性,避免了因噪声加入引起的信号偏差。
附图说明
图1是本发明的系统控制框图。
图2是本发明的信号处理电路的原理图。
图3是本发明的四种干扰信号模式图。
本发明的实施方式
如图1所示,在该实施例中,一种防追踪通信调制系统,包括控制单元、信号接收单元、信号处理单元、相干光通信屏蔽单元和通信集合发射单元;
控制单元,对信号的接收、处理和发送的各个环节进行整体控制,同时为系统各个单元的运行提高电源支持;
信号接收单元,接收通信信号;
相干光通信屏蔽单元,通过相干光信号对调制过的信号进行防追踪信号添加,从而提高通信信号的防追踪能力;
通信集合发射单元,将最终的传递信号进行信道调制后,进行信号输出;
信号处理单元,如图2所示,其特征在于,包括一种信号处理电路,将接收的通信信号分别经过时序控制模块、信号并行调制模块和信号传输模块进行信号调制,从而使接收信号在稳定时钟信号控制下,完成信号调制和进一步的传输;
所述时序控制模块,包括集成芯片U1、集成芯片U2、转换器U4、时钟信号CLK1、电阻R1、电阻R2、电阻R3、电阻R14、电阻R15、电容C1、电容C2、电容C5、电容C7、二极管D2、二极管D5和蜂鸣器BUZ1,所述集成芯片U1的第一引脚分别与所述转换器U4的第一引脚、电压信号+12V连接,所述集成芯片U1的第十二引脚分别与所述时钟信号CLK1的输出端、所述集成芯片U2的第六引脚连接,所述转换器U4的第二引脚与所述集成芯片U1的第四引脚连接,所述集成芯片U1的第三引脚与所述电阻R1的一端连接,所述电阻R1的另一端与所述集成芯片U2的第五引脚连接,所述集成芯片U1的第二引脚与所述电阻R2的一端连接,所述电阻R2的另一端与所述集成芯片U2的第三引脚连接,所述集成芯片U1的第十三引脚与所述电容C2的一端均接地,所述电容C2的另一端与所述集成芯片U2的第二引脚连接,所述集成芯片U2的第四引脚分别与所述电阻R3的一端、所述电容C1的一端连接,所述电阻R3的另一端分别与所述电容C1的另一端、所述集成芯片U2的第十一引脚连接,所述集成芯片U2的第九引脚与所述电阻R14的一端连接,所述电阻R14的另一端与所述电容C7的一端连接,所述电容C7的另一端分别与所述电阻R15的一端、所述二极管D5的正极、所述蜂鸣器BUZ1的一端连接,所述电阻R15的另一端与所述集成芯片U2的第十引脚连接,所述二极管D5的负极分别与所述集成芯片U2的第十二引脚、所述蜂鸣器BUZ1的另一端、所述电容C5的一端连接,所述电容C5的另一端与所述二极管D2的负极连接,所述二极管D2的正极与所述集成芯片U2的第十四引脚连接,所述集成芯片U2的第十三引脚断路;
所述信号并行调制模块,包括运算放大器U6、三极管Q1、三极管Q2、三极管Q3、整流器U5、可调电阻VR1、可调电阻VR2、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、电阻R11、电阻R12、电阻R13、电容C3、电容C4、电容C6、二极管D1、二极管D3、二极管D4、电感L1、电感L2和电感L3,所述电阻R10的一端分别与电压信号Vin1、所述可调电阻VR1的一端连接,所述电阻R10的另一端与所述三极管Q2的基极连接,所述可调电阻VR1的另一端分别与所述电感L4的一端、所述电感L5的一端、电压信号Vin2连接,所述电感L4的另一端与所述二极管D3的正极连接,所述电感L5的另一端与所述电感L5的一端连接,所述三极管Q2的集电极与所述电阻R7的一端连接,所述电阻R7的另一端分别与所述电容C3的一端、所述电容C4的一端、所述电阻R4的一端连接,所述电容C4的另一端分别与所述电阻R8的一端、所述电阻R9的一端连接,所述三极管Q2的发射极分别与所述电阻R8的另一端、所述三极管Q1的基极、所述整流器U5的参考端、所述整流器U5的正极、所述二极管D3的负极连接,所述电阻R9的另一端分别与所述二极管D4的负极、所述整流器U5的负极、所述电感L1的一端、所述三极管Q3的基极连接,所述电感L1的另一端与所述三极管Q1的发射极连接,所述三极管Q1的集电极分别与所述电容C3的另一端、所述电阻R5的一端连接,所述电阻R5的另一端与所述集成芯片U2的第七引脚连接,所述三极管Q3的发射极分别与所述电阻R12的一端、所述电感L3的一端连接,所述电阻R12的另一端接地,所述三极管Q3的集电极与所述电阻R6的一端连接,所述电阻R6的另一端与所述电感L2的一端连接,所述电感L2的另一端分别与所述二极管D1的负极、所述运算放大器U6的第二引脚连接,所述二极管D1的正极与所述电阻R11的一端;连接,所述运算放大器U6的第三引脚分别与所述电阻R13的一端、所述电容C6的一端连接,所述电阻R13限额另一端与所述运算放大器U6的第六引脚连接,所述运算放大器U6的第四引脚与所述运算放大器U6的第七引脚均为断路,所述电容C6的另一端与所述可调电阻VR2的一端连接,所述可调电阻VR2的另一端与所述集成芯片U2的第十五引脚连接;
所述信号传输模块,包括集成芯片U3、电阻R16、电阻R17、电阻R18、二极管D6和变压器TR1,所述集成芯片U3的第一引脚与所述电阻R11的另一端连接,所述集成芯片U3的第六引脚与所述电感L3的另一端连接,所述集成芯片U3的第三引脚接地,所述集成芯片U3的第五引脚断路,所述集成芯片U3的第九引脚与所述电阻R17的一端连接,所述电阻R17的另一端与所述变压器TR1的第二引脚连接,所述集成芯片U3的第四引脚分别与所述电阻R16的一端、所述电容C8的一端连接,所述电容C8的另一端接地,所述电阻R16的另一端与所述变压器TR1的第一引脚连接,所述集成芯片U3的第八引脚与所述二极管D6的正极连接,所述集成芯片U3的第七引脚与所述电阻R18的一端连接,所述电阻R18的另一端与所述二极管D6的负极连接,所述变压器TR1的第三引脚与电压信号Vout1连接,所述变压器TR1的第四引脚与电压信号Vout2连接。
在进一步的实施例中,所述集成芯片U1的型号是74LS107,根据所述时钟信号CLK1的周期进行时钟调制,对接收信号进行唯一化的时域调试,为后续信号调制的时间周期提供基准。
在更进一步的实施例中,所述时钟信号CLK1分别与所述集成芯片U1的时钟信号输入端和所述集成芯片U2的时钟信号输入端进行直接连接,在所述控制单元的调控下,完成同步运行,消除因线路连接不同产生的时间差。
在进一步的实施例中,所述整流器U5是三引脚式整流器,通过连接所述整流器U5的正极和所述整流器U5的参考端与所述整流器U5的负极进行两路输入信号并行调制,保持通信信号调制的频率段。
在进一步的实施例中,所述三极管Q1和所述三极管Q2、所述三极管Q3完成级联两级连接,通过所述三极管Q1进行总电流信号放大后分别经由所述三极管Q2和所述三极管Q3进行两级放大,作为信号并行处理的两路基准。
在更进一步的实施例中,所述三极管Q1的基极直接与所述三极管Q2的发射极连接,以所述三极管Q2的发射电流对所述三极管Q1的基极上的电荷积累进行影响,保证电流传递的连续性。
在进一步的实施例中,所述集成芯片U3的型号是LTC3026,可以调控两输入两输出的所述变压器TR1的变压系数。
在进一步的实施例中,所述蜂鸣器BUZ1与所述二极管D5并联,从而监控输入信号频率的稳定性,当输出电流过大导通所述二极管D5之后,所述蜂鸣器BUZ1将发出警报声。
一种相干光通讯调制方法,根据已经存储的四种信号和对应的半波延迟信号组成干扰信号,与接收信号进行线性相加后组成抗干扰传送信号,从而减少因为随机信号干扰对原信号产生的信号畸变效果;
步骤1、分别对四种干扰信号进行定义,如图3所示,具体为:
信号1:F 11=A 1sin(W 1t+J 1),其中,A 1表示振幅,W 1t表示角频率,J 1表示角度;
信号2:F 21=B 1e atsin(W 2t),其中,B 1是整数倍数,a是指数控制的角频率,W 2是正弦函数的角频率;
信号3:F 31=sin(t+K 1π)/t, 其中,K 1是移位周期的整数倍数;
信号4:F 41=U(t)-U(t-T 1),其中,T 1是周期,U(t)是周期阶跃信号;
步骤2、分别定义四种干扰信号的半波延迟信号并进行最终的干扰信号整合;
步骤21、定义四种干扰信号的半波延迟信号:
信号1的延迟信号:F 12=A 1sin(W 1t+λ 1t/2+J 1),其中,λ 1是信号1的波长;
信号2的延迟信号:F 22=B 1e atsin(W 2t+λ 2t/2) ,其中,λ 2是信号2的波长;
信号3的延迟信号:F 32=sin(t+λ 3t/2+K 1π)/t ,其中,λ 3是信号3的波长;
信号4的延迟信号:F 42=U(t)-U(t-T 1-T 1/2);
步骤22、线性相加完成最终的干扰信号,具体为:
干扰信号1:F 1=F 11+F 12
干扰信号2:F 2=F 21+F 22
干扰信号3:F 3=F 31+F 32
干扰信号4:F 4=F 41+F 42
步骤3、根据所述控制单元生成的干扰信号排序表,对接收信号进行干扰信号合成,从而完成对接收信号的内容保护。
在进一步的实施例中,所述干扰信号排序表,具体就是系统内部生成的1-4之间的随机数字生成表;在干扰条件不满足的情况下,可以对干扰信号的种类进行进一步的扩充;同时,干扰信号的增加方式可以进一步升级成为多种不同的干扰信号的排列组合形式。
在更进一步的实施例中,所增加的干扰信号可以是对原有的原始干扰信号的交叉处理后的结果,具体示例为:通过对所述干扰信号1和所述干扰信号2进行线性增加得到新的干扰信号2F 1+4F 2,只要使用的干扰信号的生成模式有对应记录,就可以完成对干扰信号的对应剥离,从而减小生成完全新型干扰信号造成的存储空间占用,进一步加快对信号处理的准确性和计算速度。
一种发射信号信道重置方法,由于信道编码技术受到香农极限的限制,直接在信号的发射端,利用信息的冗余进行发射信号的纠错,降低误码率,具体的步骤为:
步骤1、采用CRC码对发射信号进行检测,分别根据8bit和16bit的长度对发射信号进行信息分段,使用CRC码在对应信息长度内进行检测和速率调控;
步骤2、利用Turbo码对发射信号进行纠错,利用Turbo码的随机信息生成器,直接对发射信息中的突发性随机误差数据进行校正;
步骤3、分别采用0db、6db、12db和18db的模式对发射信息的分段进行扩频处理,从而降低信号的峰均比,增强发射信息传递的稳定性。
在进一步的实施例中,对发射信息进行扩频处理的时候,具体使用的是OVSF码,以保证不同信道之间的传递信息以正交的模式进行传输,增强信息传送的抗干扰性。
在更进一步的实施例中,对于两种不同的纠错编码使用相同的分量编码器,以较多的需求为标准,进行迫零网格终止,从而以多余网格作为进一步的纠错容纳,从而对两种编码纠错的模式进行辐射增益的直接对比,存储对比结果后进行智能化的纠错调整,完善纠错效果。
总之,本发明具有以下优点:通过对信息调制单元加入时序控制和两路并行的调制支路,加强了信息调制时的频率专一性;有序干扰信号的加入加强了对信号的保护和再提取功能,可以有效地防止对通信信息的追踪;因处理信号增加的信号偏差可以通过两次信号检测和信道扩频进行修正,保证了整体装置的优越性。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (10)

  1. 一种防追踪通信调制系统,包括控制单元、信号接收单元、信号处理单元、相干光通信屏蔽单元和通信集合发射单元;
    控制单元,对信号的接收、处理和发送的各个环节进行整体控制,同时为系统各个单元的运行提高电源支持;
    信号接收单元,接收通信信号;
    相干光通信屏蔽单元,通过相干光信号对调制过的信号进行防追踪信号添加,从而提高通信信号的防追踪能力;
    通信集合发射单元,将最终的传递信号进行信道调制后,进行信号输出;
    信号处理单元,其特征在于,包括一种信号处理电路,将接收的通信信号分别经过时序控制模块、信号并行调制模块和信号传输模块进行信号调制,从而使接收信号在稳定时钟信号控制下,完成信号调制和进一步的传输;
    所述时序控制模块,包括集成芯片U1、集成芯片U2、转换器U4、时钟信号CLK1、电阻R1、电阻R2、电阻R3、电阻R14、电阻R15、电容C1、电容C2、电容C5、电容C7、二极管D2、二极管D5和蜂鸣器BUZ1,所述集成芯片U1的第一引脚分别与所述转换器U4的第一引脚、电压信号+12V连接,所述集成芯片U1的第十二引脚分别与所述时钟信号CLK1的输出端、所述集成芯片U2的第六引脚连接,所述转换器U4的第二引脚与所述集成芯片U1的第四引脚连接,所述集成芯片U1的第三引脚与所述电阻R1的一端连接,所述电阻R1的另一端与所述集成芯片U2的第五引脚连接,所述集成芯片U1的第二引脚与所述电阻R2的一端连接,所述电阻R2的另一端与所述集成芯片U2的第三引脚连接,所述集成芯片U1的第十三引脚与所述电容C2的一端均接地,所述电容C2的另一端与所述集成芯片U2的第二引脚连接,所述集成芯片U2的第四引脚分别与所述电阻R3的一端、所述电容C1的一端连接,所述电阻R3的另一端分别与所述电容C1的另一端、所述集成芯片U2的第十一引脚连接,所述集成芯片U2的第九引脚与所述电阻R14的一端连接,所述电阻R14的另一端与所述电容C7的一端连接,所述电容C7的另一端分别与所述电阻R15的一端、所述二极管D5的正极、所述蜂鸣器BUZ1的一端连接,所述电阻R15的另一端与所述集成芯片U2的第十引脚连接,所述二极管D5的负极分别与所述集成芯片U2的第十二引脚、所述蜂鸣器BUZ1的另一端、所述电容C5的一端连接,所述电容C5的另一端与所述二极管D2的负极连接,所述二极管D2的正极与所述集成芯片U2的第十四引脚连接,所述集成芯片U2的第十三引脚断路;
    所述信号并行调制模块,包括运算放大器U6、三极管Q1、三极管Q2、三极管Q3、整流器U5、可调电阻VR1、可调电阻VR2、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、电阻R11、电阻R12、电阻R13、电容C3、电容C4、电容C6、二极管D1、二极管D3、二极管D4、电感L1、电感L2和电感L3,所述电阻R10的一端分别与电压信号Vin1、所述可调电阻VR1的一端连接,所述电阻R10的另一端与所述三极管Q2的基极连接,所述可调电阻VR1的另一端分别与所述电感L4的一端、所述电感L5的一端、电压信号Vin2连接,所述电感L4的另一端与所述二极管D3的正极连接,所述电感L5的另一端与所述电感L5的一端连接,所述三极管Q2的集电极与所述电阻R7的一端连接,所述电阻R7的另一端分别与所述电容C3的一端、所述电容C4的一端、所述电阻R4的一端连接,所述电容C4的另一端分别与所述电阻R8的一端、所述电阻R9的一端连接,所述三极管Q2的发射极分别与所述电阻R8的另一端、所述三极管Q1的基极、所述整流器U5的参考端、所述整流器U5的正极、所述二极管D3的负极连接,所述电阻R9的另一端分别与所述二极管D4的负极、所述整流器U5的负极、所述电感L1的一端、所述三极管Q3的基极连接,所述电感L1的另一端与所述三极管Q1的发射极连接,所述三极管Q1的集电极分别与所述电容C3的另一端、所述电阻R5的一端连接,所述电阻R5的另一端与所述集成芯片U2的第七引脚连接,所述三极管Q3的发射极分别与所述电阻R12的一端、所述电感L3的一端连接,所述电阻R12的另一端接地,所述三极管Q3的集电极与所述电阻R6的一端连接,所述电阻R6的另一端与所述电感L2的一端连接,所述电感L2的另一端分别与所述二极管D1的负极、所述运算放大器U6的第二引脚连接,所述二极管D1的正极与所述电阻R11的一端;连接,所述运算放大器U6的第三引脚分别与所述电阻R13的一端、所述电容C6的一端连接,所述电阻R13限额另一端与所述运算放大器U6的第六引脚连接,所述运算放大器U6的第四引脚与所述运算放大器U6的第七引脚均为断路,所述电容C6的另一端与所述可调电阻VR2的一端连接,所述可调电阻VR2的另一端与所述集成芯片U2的第十五引脚连接;
    所述信号传输模块,包括集成芯片U3、电阻R16、电阻R17、电阻R18、二极管D6和变压器TR1,所述集成芯片U3的第一引脚与所述电阻R11的另一端连接,所述集成芯片U3的第六引脚与所述电感L3的另一端连接,所述集成芯片U3的第三引脚接地,所述集成芯片U3的第五引脚断路,所述集成芯片U3的第九引脚与所述电阻R17的一端连接,所述电阻R17的另一端与所述变压器TR1的第二引脚连接,所述集成芯片U3的第四引脚分别与所述电阻R16的一端、所述电容C8的一端连接,所述电容C8的另一端接地,所述电阻R16的另一端与所述变压器TR1的第一引脚连接,所述集成芯片U3的第八引脚与所述二极管D6的正极连接,所述集成芯片U3的第七引脚与所述电阻R18的一端连接,所述电阻R18的另一端与所述二极管D6的负极连接,所述变压器TR1的第三引脚与电压信号Vout1连接,所述变压器TR1的第四引脚与电压信号Vout2连接。
  2. 根据权利要求1所述的一种防追踪通信调制系统,其特征在于,所述集成芯片U1的型号是74LS107,根据所述时钟信号CLK1的周期进行时钟调制,对接收信号进行唯一化的时域调试,为后续信号调制的时间周期提供基准。
  3. 根据权利要求1所述的一种防追踪通信调制系统,其特征在于,所述整流器U5是三引脚式整流器,通过连接所述整流器U5的正极和所述整流器U5的参考端与所述整流器U5的负极进行两路输入信号并行调制,保持通信信号调制的频率段。
  4. 根据权利要求1所述的一种防追踪通信调制系统,其特征在于,所述三极管Q1和所述三极管Q2、所述三极管Q3完成级联两级连接,通过所述三极管Q1进行总电流信号放大后分别经由所述三极管Q2和所述三极管Q3进行两级放大,作为信号并行处理的两路基准。
  5. 根据权利要求1所述的一种防追踪通信调制系统,其特征在于,所述集成芯片U3的型号是LTC3026,可以调控两输入两输出的所述变压器TR1的变压系数。
  6. 根据权利要求1所述的一种防追踪通信调制系统,其特征在于,所述蜂鸣器BUZ1与所述二极管D5并联,从而监控输入信号频率的稳定性,当输出电流过大导通所述二极管D5之后,所述蜂鸣器BUZ1将发出警报声。
  7. 基于权利要求1至6任一项所述的防追踪通信调制系统的通信方法,其特征在于,所述相干光通信屏蔽单元的工作过程如下:根据已经存储的四种信号和对应的半波延迟信号组成干扰信号,与接收信号进行线性相加后组成抗干扰传送信号,从而减少因为随机信号干扰对原信号产生的信号畸变效果;
    步骤1、分别对四种干扰信号进行定义,具体为:
    信号1:F 11=A 1sin(W 1t+J 1),其中,A 1表示振幅,W 1t表示角频率,J 1表示角度;
    信号2:F 21=B 1e atsin(W 2t),其中,B 1是整数倍数,a是指数控制的角频率,W 2是正弦函数的角频率;
    信号3:F 31=sin(t+K 1π)/t, 其中,K 1是移位周期的整数倍数;
    信号4:F 41=U(t)-U(t-T 1),其中,T 1是周期,U(t)是周期阶跃信号;
    步骤2、分别定义四种干扰信号的半波延迟信号并进行最终的干扰信号整合;
    步骤21、定义四种干扰信号的半波延迟信号:
    信号1的延迟信号:F 12=A 1sin(W 1t+λ 1t/2+J 1),其中,λ 1是信号1的波长;
    信号2的延迟信号:F 22=B 1e atsin(W 2t+λ 2t/2) ,其中,λ 2是信号2的波长;
    信号3的延迟信号:F 32=sin(t+λ 3t/2+K 1π)/t ,其中,λ 3是信号3的波长;
    信号4的延迟信号:F 42=U(t)-U(t-T 1-T 1/2);
    步骤22、线性相加完成最终的干扰信号,具体为:
    干扰信号1:F 1=F 11+F 12
    干扰信号2:F 2=F 21+F 22
    干扰信号3:F 3=F 31+F 32
    干扰信号4:F 4=F 41+F 42
    步骤3、根据所述控制单元生成的干扰信号排序表,对接收信号进行干扰信号合成,从而完成对接收信号的内容保护。
  8. 根据权利要求7所述的基于防追踪通信调制系统的通信方法,其特征在于,所述干扰信号排序表,具体就是系统内部生成的1-4之间的随机数字生成表;在干扰条件不满足的情况下,可以对干扰信号的种类进行进一步的扩充;同时,干扰信号的增加方式可以进一步升级成为多种不同的干扰信号的排列组合形式。
  9. 根据权利要求7所述的基于防追踪通信调制系统的通信方法,其特征在于,
    还包括发射信号信道重置,由于信道编码技术受到香农极限的限制,直接在信号的发射端,利用信息的冗余进行发射信号的纠错,降低误码率,发射信号信道重置的步骤具体为:
    步骤1、采用CRC码对发射信号进行检测,分别根据8bit和16bit的长度对发射信号进行信息分段,使用CRC码在对应信息长度内进行检测和速率调控;
    步骤2、利用Turbo码对发射信号进行纠错,利用Turbo码的随机信息生成器,直接对发射信息中的突发性随机误差数据进行校正;
    步骤3、分别采用0db、6db、12db和18db的模式对发射信息的分段进行扩频处理,从而降低信号的峰均比,增强发射信息传递的稳定性。
  10. 根据权利要求9所述的基于防追踪通信调制系统的通信方法,其特征在于,对发射信息进行扩频处理的时候,具体使用的是OVSF码,以保证不同信道之间的传递信息以正交的模式进行传输,增强信息传送的抗干扰性。
PCT/CN2020/079654 2019-05-06 2020-03-17 一种防追踪通信调制系统及通信方法 WO2020224331A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910370126.0A CN110086543B (zh) 2019-05-06 2019-05-06 一种防追踪通信调制系统及通信方法
CN201910370126.0 2019-05-06

Publications (1)

Publication Number Publication Date
WO2020224331A1 true WO2020224331A1 (zh) 2020-11-12

Family

ID=67418512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079654 WO2020224331A1 (zh) 2019-05-06 2020-03-17 一种防追踪通信调制系统及通信方法

Country Status (2)

Country Link
CN (2) CN111147151B (zh)
WO (1) WO2020224331A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111147151B (zh) * 2019-05-06 2021-02-12 南京瑞贻电子科技有限公司 一种防追踪通信调制系统及通信方法
CN112272050B (zh) * 2020-09-21 2021-08-10 南京驭逡通信科技有限公司 一种基于图像采集的mimo光无线通信系统及其通信处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1627840A (zh) * 2003-12-11 2005-06-15 日本电气株式会社 蜂窝无线电通信系统、蜂窝无线电通信方法及瑞克接收方法
CN101267221A (zh) * 2008-04-30 2008-09-17 浙江大学 利用混沌信号源的通信干扰系统
US20110019817A1 (en) * 2009-07-22 2011-01-27 Harris Corporation Permission-based tdma chaotic communication systems
CN110086543A (zh) * 2019-05-06 2019-08-02 南京瑞贻电子科技有限公司 一种防追踪通信调制系统及通信方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101262300B (zh) * 2008-04-30 2011-12-21 浙江大学 利用混沌同步的混沌干扰系统
CN106161302A (zh) * 2015-04-09 2016-11-23 电信科学技术研究院 一种信息传输的方法及装置
CN105119645B (zh) * 2015-09-15 2018-03-30 国网山东省电力公司莱芜供电公司 Mimo系统中接收天线跳空的保密通信方法
CN108111679B (zh) * 2017-12-15 2021-04-02 Oppo广东移动通信有限公司 电子装置的抗干扰方法及相关产品
CN108521315A (zh) * 2018-04-08 2018-09-11 北京东远润兴科技有限公司 干扰模拟器及数据链路可靠性辅助验证系统
CN109412689B (zh) * 2018-10-19 2023-06-27 苏州融萃特种机器人有限公司 一种基于图像处理的机器人激光通信系统及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1627840A (zh) * 2003-12-11 2005-06-15 日本电气株式会社 蜂窝无线电通信系统、蜂窝无线电通信方法及瑞克接收方法
CN101267221A (zh) * 2008-04-30 2008-09-17 浙江大学 利用混沌信号源的通信干扰系统
US20110019817A1 (en) * 2009-07-22 2011-01-27 Harris Corporation Permission-based tdma chaotic communication systems
CN110086543A (zh) * 2019-05-06 2019-08-02 南京瑞贻电子科技有限公司 一种防追踪通信调制系统及通信方法

Also Published As

Publication number Publication date
CN111147151A (zh) 2020-05-12
CN111147151B (zh) 2021-02-12
CN110086543A (zh) 2019-08-02
CN110086543B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2020224331A1 (zh) 一种防追踪通信调制系统及通信方法
CN108255545A (zh) 组件间的功能调用方法、装置及组件化架构系统
CN104301521B (zh) 一种基于手机音频接口的调制方式、通信电路及其通信方法
WO2021103978A1 (zh) 一种极化码编码方法及装置
JPH09504670A (ja) スペクトル拡散のスペクトル密度技術
CN108988957B (zh) 一种基于线性调频的空气声波通信编码方法
CN104090283B (zh) 一种生成定位信号的方法和装置
CN208282941U (zh) 一种基于usb的红外热成像实时传输系统
CN103327191A (zh) 基于音频通讯的ZigBee网络协调系统及手机移动监控方法
Oh et al. Secure key extraction for IoT devices integrating IEEE 802.15. 4g/k transceiver
US20150131705A1 (en) Modulation scheme for communication
KR102382301B1 (ko) Aclr 불량을 결정하는 방법 및 장치
CN115598600B (zh) 一种二次雷达信号动态编码系统、方法、电子设备及介质
WO2020191687A1 (zh) 一种数据处理方法及装置
CN103247292B (zh) 音频通信方法及装置
CN211050716U (zh) 电子耳蜗体外信号调制电路及电子耳蜗体外机
JPS6083444A (ja) 電力線通信装置
CN112702701B (zh) 一种蓝牙芯片的广播通道实现方法及装置
CN210721825U (zh) 一种基于lora物联网无线数据传输信号转换设备
CN204013607U (zh) 一种农业答疑音频安全传递系统
Chaudhary et al. Design and simulation of physical layer blocks of ZigBee transmitter
CN207782804U (zh) 电力载波隔离器
CN107359871A (zh) 一种多种电力波输出系统
CN102857252B (zh) 基于广播定位信号的跟踪方法和装置
CN111654254A (zh) 射频功率合成自适应调节方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20801628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20801628

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20801628

Country of ref document: EP

Kind code of ref document: A1