WO2020220390A1 - 一种同向差速多螺杆挤出机以及加工方法 - Google Patents

一种同向差速多螺杆挤出机以及加工方法 Download PDF

Info

Publication number
WO2020220390A1
WO2020220390A1 PCT/CN2019/086329 CN2019086329W WO2020220390A1 WO 2020220390 A1 WO2020220390 A1 WO 2020220390A1 CN 2019086329 W CN2019086329 W CN 2019086329W WO 2020220390 A1 WO2020220390 A1 WO 2020220390A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
step structure
same direction
meshing
arcs
Prior art date
Application number
PCT/CN2019/086329
Other languages
English (en)
French (fr)
Other versions
WO2020220390A9 (zh
Inventor
徐百平
喻慧文
杜遥雪
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2020220390A1 publication Critical patent/WO2020220390A1/zh
Publication of WO2020220390A9 publication Critical patent/WO2020220390A9/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/27Cleaning; Purging; Avoiding contamination
    • B29C48/2715Cleaning; Purging; Avoiding contamination of plasticising units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/251Design of extruder parts, e.g. by modelling based on mathematical theories or experiments
    • B29C48/2517Design of extruder parts, e.g. by modelling based on mathematical theories or experiments of intermeshing screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/425Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders using three or more screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/59Screws characterised by details of the thread, i.e. the shape of a single thread of the material-feeding screw

Definitions

  • the invention relates to the field of multi-screw extruders, in particular to a same direction differential speed multi-screw extruder and a processing method.
  • the co-rotating multi-screw extruder mainly includes a barrel and multiple screws installed in the cavity of the barrel.
  • the co-rotating twin-screw extruder is the most widely used co-rotating multi-screw extruder.
  • the traditional co-rotating twin-screw extruder adopts the working mode of two screws rotating at equal speed.
  • the disturbance of the meshing zone is weak, and there is even a relaxation effect, which limits the co-rotating twin-screw extrusion Blending effect of melting and plasticizing out of the machine.
  • the working mode of the existing co-rotating multi-screw extruder is changed from constant speed to differential speed.
  • the purpose of the present invention is to solve at least one of the technical problems existing in the prior art, and to provide a co-rotating differential speed multi-screw extruder and processing method, which can produce strong turbulence and strong interference in the meshing area between multiple screws.
  • the stretching function improves the melting and plasticizing mixing effect of the same direction differential speed multi-screw extruder.
  • the first aspect of the present invention provides a co-rotating differential speed multi-screw extruder, including:
  • a barrel the barrel has an inner cavity, and the barrel further has an opening;
  • the screw structure is installed in the inner cavity of the barrel;
  • the screw structure includes a first screw and a second screw that rotate in the same direction with a differential speed, the first screw and the second screw are meshed with each other Area;
  • a first step structure is provided between the root diameter and the top diameter of the first screw; a second step structure is provided between the root diameter and the top diameter of the second screw, and the first step structure is connected to the first step structure.
  • the two-step structure has interlaced meshing in the meshing area.
  • the above-mentioned co-rotating differential speed multi-screw extruder has at least the following beneficial effects: the same-direction differential rotation is performed between the first screw and the second screw with the same outer diameter, so that the two screws can wipe each other and realize the processing
  • the process is self-cleaning; the first step structure and the second step structure are arranged between the root diameter and the top diameter of the two screws, and the first step structure and the second step structure are staggered in the meshing area, so that the meshing area
  • the topological structure of the runner is changed, which effectively introduces the strong stretching effect and the strong disturbance effect of the meshing zone, which improves the melting and plasticization mixing effect; at the same time, the use of kneading blocks between the two screws is reduced, which greatly improves
  • the self-cleaning effect narrows the distribution of materials during processing and improves efficiency.
  • the first screw and the second screw are arranged in a vertical direction or a horizontal direction in the barrel, so The outer edges of the first screw and the second screw are both tangent to the inner wall of the barrel.
  • the two screws can be arranged vertically or horizontally in the barrel, which can be automatically matched according to the model of the barrel, and the two screws are always in meshing contact with each other to achieve self-cleaning function.
  • the outer edges of the two screws All of them are tangent to the inner wall of the barrel and have the effect of promoting stronger stretching in the meshing area.
  • the first screw has a single-threaded structure
  • the second screw has a double-threaded structure
  • the outer diameters of the first screw and the second screw are equal.
  • the cross-sectional profile of the first screw includes a multi-section curved arc
  • the multi-section curved arc on the cross-sectional profile of the first screw includes Multi-segment circular arcs and multi-segment non-circular curved arcs
  • the cross-sectional profile of the second screw also includes multi-segment curved arcs
  • the multi-segment curved arcs on the cross-sectional profile of the second screw also include multi-segment circular arcs and multi-segment non-circular arcs
  • the multi-segment curve arc on the cross-sectional profile of the second screw is twice the number of the multi-segment curve arc on the cross-sectional profile of the first screw
  • the multi-segment curve arc on the cross-sectional profile of the first screw is Asymmetrical, the multi-segment curve arc on the cross
  • Both screws adopt the form of constant cross-sectional structure, which makes the manufacturing process of the screw relatively simple, while avoiding the symmetry between the two screws and the axial symmetry of the single screw, and the cross-sectional profile of the first screw Completely asymmetric, using the asymmetry effect of the screw can improve the melting and plasticizing mixing effect of the same direction differential multi-screw extruder.
  • the rotation speed ratio of the first screw and the second screw is 2.
  • the differential rotation of the two screws is realized, which has the effect of strong stretching of the material.
  • the edges of the first screw and the second screw are both smooth spiral structure. It can make the same direction differential speed multi-screw extruder completely self-cleaning in the processing process.
  • a co-rotating differential speed multi-screw extruder the meshing area includes an upper meshing area and a lower meshing area, the first step structure and the second step structure are in the The upper engagement area is staggered engagement; the first step structure and the second step structure are parallel engagement in the lower engagement area.
  • the two screws realize the staggered and parallel meshing relationship of the step structure in the upper and lower meshing areas, which effectively introduces the strong stretching effect and the strong disturbing effect of the meshing area.
  • the two screws rotate at a high speed and generate high heat, which accelerates the melting process of solid materials.
  • it can also improve the positive displacement conveying efficiency and solid conveying efficiency, can effectively solve the problem of unstable product quality caused by the fluctuation of raw material composition, and can increase the output of extrusion to a greater extent.
  • the screw structure further includes a third screw; the third screw may have the same structure as the first screw or the same structure as the first screw.
  • the second screw has the same structure, and the first screw, the second screw, and the third screw are meshed in a "line" shape.
  • the structure of the third screw is the same as that of the first screw, the first screw, the second screw and the third screw are connected in sequence; if the structure of the third screw is the same as that of the second screw, the second screw, The first screw and the third screw are connected in sequence.
  • the opening includes a feed port, an exhaust port and a discharge port.
  • the material enters from the feed port, and the exhaust port is used to remove exhaust gas.
  • the material is extruded from the discharge port after melting and plasticizing.
  • the second aspect of the present invention provides a processing method of a co-rotating differential speed multi-screw extruder, which includes the following steps:
  • the first screw and the second screw rotate in the same direction at a differential speed to push the material forward in the inner cavity of the barrel;
  • the rotation of the first screw and the second screw generates heat and melts the material.
  • the first step structure provided on the first screw and the second step structure provided on the second screw perform in the meshing area. Staggered meshing, turning and forcibly peeling the material, the material becomes a melt;
  • the periodical interlocking engagement of the first stepped structure and the second stepped structure in the meshing zone produces a strong stretching effect and a strong disturbing effect, which plasticize and mix the material that becomes the melt, and make the material that becomes the melt
  • the material is squeezed out from the outlet stably;
  • the first screw and the second screw are wiped mutually to achieve self-cleaning.
  • the processing method of the same direction differential multi-screw extruder has at least the following beneficial effects: the method uses the first screw and the second screw to rotate in the same direction to generate a force to push the raw material forward, and the first screw and the second screw
  • the heat generated by the high-speed rotation of the screw can melt the raw material.
  • the first stepped structure and the second stepped structure are interlaced in the meshing area to enhance the flipping and forced peeling effect of the raw material.
  • the first stepped structure and the second stepped structure are The periodic interlaced meshing in the meshing zone also produces strong stretching and strong turbulence, which strengthens the plasticizing and mixing effect of the raw materials that become the solution.
  • the first screw and the second screw are also completely self-contained. clean.
  • Figure 1 is a schematic structural diagram of a co-rotating differential twin-screw extruder provided by embodiment 1 of the present invention
  • Fig. 2 is a schematic structural diagram of the working sections of the co-rotating and differential twin-screw extruder provided in the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of staggered meshing in the upper meshing zone of the co-rotating differential twin-screw extruder provided by Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of the cross-sectional profile of the screw of the co-rotating differential twin-screw extruder provided in the first embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a co-rotating differential three-screw extruder provided in the second embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a co-rotating differential three-screw extruder provided in the third embodiment of the present invention.
  • the co-rotating multi-screw extruder mainly includes a barrel and multiple screws installed in the cavity of the barrel.
  • the co-rotating twin-screw extruder is the most widely used co-rotating multi-screw extruder.
  • the traditional co-rotating twin-screw extruder adopts the working mode of two screws rotating at equal speed.
  • the disturbance of the meshing zone is weak, and there is even a relaxation effect, which limits the co-rotating twin-screw extrusion Blending effect of melting and plasticizing out of the machine.
  • the working mode of the existing co-rotating multi-screw extruder is changed from constant speed to differential speed.
  • the invention discloses a co-rotating differential speed multi-screw extruder and a processing method.
  • the co-rotating differential speed multi-screw extruder is performed between a first screw and a second screw with equal outer diameters in the barrel. Differential rotation in the same direction, the two screws wipe each other to achieve self-cleaning in the processing process; and one or more arcs are introduced between the root and top diameters of the two screws to form the first step.
  • the structure and the second step structure break the axial symmetry of the cross-sectional profile of the screw, and the first step structure and the second step structure periodically interlock in the meshing area, so that the flow channel in the meshing area changes the topological structure, which is effective In the meshing zone, a strong stretching effect and a strong disturbance effect are introduced, which comprehensively enhance the melting and plasticizing mixing effect of the material.
  • the first embodiment of the present invention provides a co-rotating differential twin-screw extruder, referring to Figure 1, including: a barrel 10, the barrel 10 has an inner cavity, the The barrel 10 also has an opening 30;
  • the screw structure 20 includes a first screw 21 and a second screw 22 that rotate in the same direction and a differential speed, the first screw 21 and The second screw 22 meshes with each other to create a meshing area; the outer diameters of the first screw 21 and the second screw 22 are equal;
  • a first step structure 211 is provided between the root diameter and the top diameter of the first screw 21;
  • a second step structure 221 is provided between the root diameter and the top diameter of the second screw 22, and the first step structure 211 and the second step structure 221 are interlocked in the engagement area;
  • the rotation speed ratio of the first screw 21 and the second screw 22 is 2, and the edges of the first screw 21 and the second screw 22 are both smooth spiral structure;
  • first screw 21 and the second screw 22 and the inner cavity of the barrel 1 form a flow channel 40, and the flow channel 40 is used for the passage of materials.
  • the first screw 21 and the second screw 22 are arranged in the vertical direction or in the horizontal direction in the barrel 1.
  • the first screw 21 and the second screw 22 The arrangement is shown in a vertical direction. It can be understood that the first screw 21 and the second screw 22 can also be arranged in a horizontal direction, which can be selected according to the actual situation of the barrel 10.
  • the outer edges of the first screw 21 and the second screw 22 are both tangent to the inner wall of the barrel 10.
  • first screw 21 and the first screw 22 perform differential rotation in the same direction, so that the two screws can wipe each other and achieve the effect of self-cleaning.
  • the edges of the first screw 22 are all smooth spiral ridge structures, which reduces the use of kneading blocks and is beneficial to improve the self-cleaning effect.
  • a step structure is provided between the root and top diameters of the two screws. The step structure interlocks in the meshing zone, which causes the flow channel 40 to change the topological structure, effectively introduces the strong stretching effect and the strong turbulence in the meshing zone, and improves the melting and plasticity of the multi-screw extruder with the same direction differential speed. ⁇ mixing effect.
  • the barrel 10 is also provided with a conveying section S1, a melting section S2, an exhaust section S3, and a mixing and extrusion section S4; a conveying section S1, a melting section S2, an exhaust section S3, and a mixing and extrusion section S4, the moving direction of the processed material is from S1 to S2 to S3 to S4, the conveying section S1 is provided with a feed port 31 communicating with the outside, and the exhaust section S3 is provided with an exhaust port 32 communicating with the outside, mixing and extruding The end of the section S4 is provided with a discharge port 33 communicating with the outside.
  • the engagement area includes an upper engagement area and a lower engagement area.
  • the first step structure 211 and the second step structure 221 engage in staggered rows in the upper engagement area; the first step structure 211 and the second The step structure 221 is in parallel engagement in the lower engagement area.
  • the two screws achieve a staggered and side-by-side meshing relationship of the stepped structure in the upper and lower meshing areas, which can introduce a strong stretching effect and a strong disturbance effect in the meshing area.
  • the top view is the upper meshing area
  • the bottom view is the lower meshing area. It can be understood that when the first screw 21 and the second screw 22 are arranged in the vertical direction, the front view is the upper meshing area.
  • the rear view is the lower meshing area.
  • the first screw 21 adopts a single-threaded structure, and a circular arc with a radius of rM is introduced into the cross-sectional profile of the first screw 21 to form the first step structure 211, d/2 ⁇ r M ⁇ D/2, where d is the inner diameter of the first screw 21 and the second screw 22, D is the maximum outer diameter of the first screw 21 and the second screw 22;
  • the second screw 22 adopts a double-threaded structure, and two arcs with a radius of Cr M are introduced into the cross-sectional profile of the second screw 22 to form the second step structure 221, where C is the rotation center of the first screw 21 The distance between O 1 and the rotation center O 2 of the second screw 22.
  • the maximum outer diameters of the first screw 21 and the second screw 22 are both D, the corresponding radius is R, and the inner diameters of the first screw 21 and the second screw 22 are d ,
  • the cross-sectional profile of the first screw 21 is formed by connecting six segments of curved arcs, which are AB, BC, CD, DE, EF, and FA in sequence, wherein BC, DE, and FA are non-circular curved arcs, and AB , CD and EF are arcs.
  • the arcs and non-circular arcs are always connected at intervals.
  • the central angle ⁇ 1 corresponding to the curve arc BC is:
  • the central angle ⁇ 2 corresponding to the curve arc DE is:
  • the central angle ⁇ 3 corresponding to the curve arc FA is:
  • r M is the radius of the arc corresponding to the first step structure 211, and d/2 ⁇ r M ⁇ D/2.
  • the number of multi-segment curved arcs on the cross-sectional profile of the second screw 22 is twice the number of the multi-segment curved arcs on the cross-sectional profile of the first screw 21.
  • the cross-sectional profile of the second screw 22 is formed by twelve-segment curved arcs, which are A 1 B 1 , B 1 C 1 , C 1 D 1 , D 1 E 1 , E 1 F 1 and F 1 A 2 , and A 2 B 2 , B 2 C 2 , C 2 D 2 , D 2 E 2 , E 2 F 2 and F 2 A 1 .
  • the curve arcs A 1 B 1 , B 1 C 1 , C 1 D 1 , D 1 E 1 , E 1 F 1 and F 1 A 2 and the curve arcs A 2 B 2 , B 2 C 2 , C 2 D 2 , D 2 E 2 , E 2 F 2, and F 2 A 1 are symmetric about the rotation center of the second screw 22, and circular arcs and non-circular curved arcs are always connected at intervals.
  • B 1 C 1 , D 1 E 1 and F 1 A 2 are non-circular curve arcs, and the corresponding central angles are ⁇ 1 / 2, ⁇ 2 /2 and ⁇ 3 /2 respectively; similarly, non-circular curve arc B 2 C
  • the central angles corresponding to 2 , D 2 E 2 and F 2 A 1 are also ⁇ 1 /2, ⁇ 2 /2, and ⁇ 3 /2, respectively.
  • the three arcs are A 1 B 1 , C 1 D 1 and E 1 F 1 , and the corresponding radii are d/2, D/2, and Cr M respectively, and the corresponding central angles are ⁇ /2, ⁇ , respectively /2 and ⁇ /2.
  • the other three arcs are A 2 B 2 , C 2 D 2 and E 2 F 2 , and the corresponding radii are d/2, D/2 and Cr M respectively , and the corresponding central angles are also ⁇ / 2. ⁇ /2 and ⁇ /2.
  • the arcs E 1 F 1 and E 2 F 2 are the second step structure 221. Therefore, in this embodiment, the cross-sectional profile of the first screw 21 and the second screw 22 are unchanged, the multi-segment curve arc of the cross-sectional profile of the first screw 21 is asymmetric, and the first screw 21 The multi-section curve arc of the cross-sectional profile of the second screw 22 is symmetrical to the center of rotation.
  • Both screws adopt the form of constant cross-sectional structure, which makes the manufacturing process of the screw relatively simple, while avoiding the symmetry between the two screws and the axial symmetry of the single screw, and the cross-sectional profile of the first screw It is completely asymmetric, and the asymmetry effect of the screw can be used to improve the melting and plasticizing mixing effect of the same direction differential multi-screw extruder.
  • the cross-sectional profile of the first screw 21 includes 3 circular arcs and 3 non-circular arcs
  • the cross-sectional profile of the second screw 22 includes 6 circular arcs and 6 non-circular curves.
  • the cross-sectional profile of the first screw 21 can include N circular arcs and N non-circular arcs
  • the cross-sectional profile of the second screw 22 can include 2N circular arcs and 2N segments.
  • N can take any number under the premise of ensuring the normal use of the first screw 21 and the second screw 22.
  • the processing method for materials in the same-rotating differential twin-screw extruder of this embodiment includes the following steps:
  • the first screw 21 and the second screw 22 respectively rotate in the same direction along the respective screw axes to generate conveying force; at the same time, the first step structure 211 and the second step structure 221 forms staggered meshing in the upper meshing zone, and forming side-by-side meshing in the lower meshing zone, which increases the axial positive displacement conveying force.
  • the material moves to the melting section under the action of the conveying force and the friction between the two screws. Move in the direction of S2;
  • the thrust surface of the first screw 21 and the drag surface of the second screw 22 realize the Forced melting, and as the first stepped structure 211 and the second stepped structure 221 perform staggered and juxtaposed periodic changes in the upper and lower meshing areas, the flipping and forced peeling of the material is realized, which promotes the renewal of the interface and strengthens the transfer
  • the thermal process accelerates the melting process of solid materials, and the materials become melt;
  • the pushing and scraping action formed by the engagement of the first step structure 211 and the second step structure 221 promotes the renewal of the interface and enlarges the exhaust Air area, where the materials are collected to produce negative pressure, which accelerates the exhaust gas from the exhaust port, while the molten materials continue to move in the direction of the flow channel of the mixing and extrusion section S4;
  • the first screw 21 and the second screw 22 are meshed and operated in the same direction at a differential speed.
  • the first stepped structure 211 and the second stepped structure 221 are also intertwined and melted.
  • the material undergoes periodic action in the process of moving to the discharge port 33, and is subjected to strong stretching and strong disturbance action in the meshing area. At the same time, it is also subject to the action of different topological flow channel mechanisms, which strengthens the plasticization and mixing effect and makes it melt.
  • the body material is stably extruded from the discharge port, and at the same time, the mutual wiping between the first screw 21 and the second screw 22 also achieves complete self-cleaning.
  • the second embodiment of the present invention provides a co-rotating differential three-screw extruder, different from the first embodiment, the screw structure 20 further includes a third screw 23, the third screw 23 and The structure of the first screw 21 in the first embodiment is the same, and the first screw 21, the second screw 22, and the third screw 23 are meshed in a "line" shape in sequence.
  • the third embodiment of the present invention provides a co-rotating differential three-screw extruder, different from the first embodiment, the screw structure 20 further includes a third screw 23, the third screw 23 and The structure of the second screw 22 in the first embodiment is the same, and the second screw 22, the first screw 21, and the third screw 23 are meshed in a "line" shape in sequence.

Abstract

一种同向差速多螺杆挤出机以及加工方法,同向差速多螺杆挤出机通过在机筒(10)内使两根外径相等第一螺杆(21)与第二螺杆(22)之间进行同向差速旋转,两根螺杆之间相互擦拭,实现了加工过程的自洁;并且分别在两根螺杆的根径与顶径之间设置相互啮合的圆弧,形成第一台阶结构(211)和第二台阶结构(221),打破螺杆横截面轮廓的轴对称性,而且第一台阶结构(211)和第二台阶结构(221)在啮合区发生周期性交错啮合,使啮合区的流道发生拓扑结构的变化,有效的在啮合区引入了强拉伸作用和强扰动作用,全面提升了对物料的熔融和塑化混合效果。

Description

一种同向差速多螺杆挤出机以及加工方法 技术领域
本发明涉及多螺杆挤出机领域,特别涉及一种同向差速多螺杆挤出机以及加工方法。
背景技术
同向多螺杆挤出机主要包括机筒和安装于机筒内腔的多根螺杆,其中,同向双螺杆挤出机是同向多螺杆挤出机中应用最广泛的。传统的同向双螺杆挤出机采用两根螺杆等速旋转的工作模式,但是由于左右两根螺杆存在左右对称性,导致啮合区扰动较弱,甚至存在松弛效应,限制了同向双螺杆挤出机的熔融和塑化混合效果。现有的同向多螺杆挤出机的工作模式将等速改为了差速。虽然在双螺杆之间加入了速度差,引入了部分拉伸力场的作用,但是仍然无法在啮合区产生强扰动作用以及强拉伸作用,因此目前的同向多螺杆挤出机对物料的熔融和塑化混合效果的提升仍然有限。
发明内容
本发明的目的在于至少解决现有技术中存在的技术问题之一,提供一种同向差速多螺杆挤出机以及加工方法,能够在多个螺杆之间的啮合区产生强扰动作用和强拉伸作用,提升同向差速多螺杆挤出机对物料的熔融和塑化混合效果。
本发明的第一方面,提供一种同向差速多螺杆挤出机,包括:
机筒,所述机筒具有内腔,所述机筒还具有开口;
螺杆结构,所述螺杆结构安装在所述机筒内腔;所述螺杆结构包括同向差速旋转的第一螺杆以及第二螺杆,所述第一螺杆与所述第二螺杆相互啮合产生啮合区;
所述第一螺杆的根径与顶径之间设置有第一台阶结构;所述第二螺杆的根径与顶径之间设置有第二台阶结构,所述第一台阶结构与所述第二台阶结构在所述啮合区发生交错啮合。
上述同向差速多螺杆挤出机至少具有以下有益效果:在两根外径相等第一螺杆与第二螺杆之间进行同向差速旋转,实现两根螺杆之间相互擦拭,实现了加工过程的自洁;通过在两根螺杆的根径与顶径之间设置第一台阶结构和第二台阶结构,且第一台阶结构和第二台阶结构在啮合区发生交错啮合,使啮合区的流道发生拓扑结构的变化,有效的引入了强拉伸作用和啮合区强扰动作用,提升了熔融和塑化混合效果;同时,在两根螺杆之间减少捏合块的使用,大幅度提升了自洁效果,使加工过程中物料的分布更窄,提升了效率。
根据本发明第一方面所述的一种同向差速多螺杆挤出机,所述第一螺杆与所述第二螺杆在所述机筒内呈竖直方向排列或呈水平方向排列,所述第一螺杆以及所述第二螺杆的外侧边沿均与所述机筒内壁相切。两根螺杆可在机筒内呈竖直方向排列或呈水平方向排列,能够根据机筒的型号进行自动匹配,且两根螺杆始终保持彼此啮合接触能够实现自洁功能,两根螺杆的外侧边沿均与机筒内壁相切,有着促进啮合区产生更强拉伸的作用。
根据本发明第一方面所述的一种同向差速多螺杆挤出机,所述第一螺杆为单头螺纹结构,所述第二螺杆为双头螺纹结构。
根据本发明第一方面所述的一种同向差速多螺杆挤出机,所述第一螺杆以及所述第二螺杆的外径相等。
根据本发明第一方面所述的一种同向差速多螺杆挤出机,所述第一螺杆的横截面轮廓包括多段曲线弧,所述第一螺杆的横截面轮廓上的多段曲线弧包括多段圆弧以及多段非圆曲线弧;所述第二螺杆的横截面轮廓也包括多段曲线弧,所述第二螺杆的横截面轮廓上的多段曲线弧也包括多段圆弧以及多段非圆曲线弧;所述第二螺杆的横截面轮廓上的多段曲线弧是所述第一螺杆的横截面轮廓上的多段曲线弧数量的2倍;所述第一螺杆的横截面轮廓上的多段曲线弧为非对称,所述第二螺杆的横截面轮廓上的多段曲线弧为中心对称。
两根螺杆均采用横截面结构不变的形式,使螺杆的制造过程相对简单,同时避免两根螺杆之间的对称性,也避免单个螺杆的轴对称性,而且,第一螺杆的横截面轮廓完全非对称,利用螺杆的非对称效应,能够提升同向差速多螺杆挤出 机的熔融和塑化混合效果。
根据本发明第一方面所述的一种同向差速多螺杆挤出机,所述第一螺杆与所述第二螺杆的转速比为2。实现了两根螺杆的差速旋转,起到对物料强拉伸的效果。
根据本发明第一方面所述的一种同向差速多螺杆挤出机,所述第一螺杆以及所述第二螺杆的边沿均为光滑的螺棱结构。能够使同向差速多螺杆挤出机在加工过程中实现完全自洁。
根据本发明第一方面所述的一种同向差速多螺杆挤出机,所述啮合区包括上啮合区以及下啮合区,所述第一台阶结构与所述第二台阶结构在所述上啮合区为错列啮合;所述第一台阶结构与所述第二台阶结构在所述下啮合区为并列啮合。两根螺杆在上下啮合区实现了台阶结构的错列、并列的啮合关系,有效的引入了强拉伸作用和啮合区强扰动作用。而且,两根螺杆高速旋转,产生高热,加速了固体物料的熔融进程。同时,也能提升了正位移输送效率和固体输送效率,能够有效解决因原料成分波动所带来的产品质量不稳定问题,可以更大程度的增加挤出的产量。
根据本发明第一方面所述的一种同向差速多螺杆挤出机,所述螺杆结构还包括第三螺杆;所述第三螺杆可与所述第一螺杆的结构相同或者与所述第二螺杆的结构相同,所述第一螺杆、第二螺杆以及第三螺杆成“一字型”啮合。
若第三螺杆的结构与第一螺杆的结构相同时,则第一螺杆、第二螺杆和第三螺杆依次连接;若第三螺杆的结构与第二螺杆的结构相同时,则第二螺杆、第一螺杆和第三螺杆依次连接。
根据本发明第一方面所述的一种同向差速多螺杆挤出机,所述开口包括进料口、排气口以及出料口。物料从进料口进入,排气口用于排除废气,物料经过熔融和塑化混合之后从出料口挤出。
本发明的第二方面,提供一种同向差速多螺杆挤出机的加工方法,包括以下步骤:
第一螺杆和第二螺杆进行同向差速旋转,推动物料在机筒的内腔中前进;
所述第一螺杆和所述第二螺杆旋转产生热量,对物料进行熔融,同时所述第一螺杆上设置的第一台阶结构以及所述第二螺杆上设置的第二台阶结构在啮合区进行交错啮合,对物料进行翻动和强制剥离,物料成为熔体;
所述第一台阶结构以及所述第二台阶结构在啮合区进行的周期性交错啮合产生的强拉伸作用和强扰动作用,对成为熔体的物料进行塑化混合,并使成为熔体的物料稳定从出口挤出;
所述第一螺杆和所述第二螺杆之间进行相互擦拭,实现了自洁。
上述同向差速多螺杆挤出机的加工方法至少具有以下有益效果:该方法利用第一螺杆和第二螺杆进行同向差速旋转产生作用力推动原料向前进,而且第一螺杆和第二螺杆高速旋转产生的热量能够对原料进行熔融,第一台阶结构以及第二台阶结构在啮合区进行交错啮合,加强对原料的翻动和强制剥离效果,同时,第一台阶结构以及第二台阶结构在啮合区进行周期性的交错啮合,也产生了强拉伸作用和强扰动作用,加强了对成为溶体的原料的塑化混合效果,最后,第一螺杆和第二螺杆之间也实现了完全自洁。
附图说明
下面结合附图和实施例对本发明进一步地说明;
图1为本发明实施例一所提供的同向差速双螺杆挤出机的结构示意图;
图2为本发明实施例一所提供的同向差速双螺杆挤出机区分工作段的结构示意图;
图3为本发明实施例一所提供的同向差速双螺杆挤出机的上啮合区发生错列啮合的示意图;
图4为本发明实施例一所提供的同向差速双螺杆挤出机的下啮合区发生并列啮合的示意图;
图5为本发明实施例一所提供的同向差速双螺杆挤出机的螺杆横截面轮廓示意图;
图6为本发明实施例二所提供的同向差速三螺杆挤出机的结构示意图;
图7为本发明实施例三所提供的同向差速三螺杆挤出机的结构示意图。
具体实施方式
同向多螺杆挤出机主要包括机筒和安装于机筒内腔的多根螺杆,其中,同向双螺杆挤出机是同向多螺杆挤出机中应用最广泛的。传统的同向双螺杆挤出机采用两根螺杆等速旋转的工作模式,但是由于左右两根螺杆存在左右对称性,导致啮合区扰动较弱,甚至存在松弛效应,限制了同向双螺杆挤出机的熔融和塑化混合效果。现有的同向多螺杆挤出机的工作模式将等速改为了差速。虽然在双螺杆之间加入了速度差,引入了部分拉伸力场的作用,但是仍然无法在啮合区产生更强的扰动以及无法提供更强的拉伸作用,因此目前的同向多螺杆挤出机的熔融和塑化混合效果的提升仍然有限。
本发明公开了一种同向差速多螺杆挤出机以及加工方法,该同向差速多螺杆挤出机通过在机筒内使两根外径相等第一螺杆与第二螺杆之间进行同向差速旋转,两根螺杆之间相互擦拭,实现了加工过程的自洁;并且分别在两根螺杆的根径与顶径之间引入一段或者多段相互啮合的圆弧,形成第一台阶结构和第二台阶结构,打破螺杆横截面轮廓的轴对称性,而且第一台阶结构和第二台阶结构在啮合区发生周期性交错啮合,使啮合区的流道发生拓扑结构的变化,有效的在啮合区引入了强拉伸作用和强扰动作用,全面提升了对物料的熔融和塑化混合效果。
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上, 大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参照图1至图5,本发明的第一实施例,提供了一种同向差速双螺杆挤出机,参照图1,包括:机筒10,所述机筒10具有内腔,所述机筒10还具有开口30;
还包括螺杆结构20,所述螺杆结构20安装在所述机筒10内腔;所述螺杆结构20包括同向差速旋转的第一螺杆21以及第二螺杆22,所述第一螺杆21与所述第二螺杆22相互啮合产生啮合区;所述第一螺杆21以及所述第二螺杆22的外径相等;
所述第一螺杆21的根径与顶径之间设置有第一台阶结构211;所述第二螺杆22的根径与顶径之间设置有第二台阶结构221,所述第一台阶结构211与所述第二台阶结构221在所述啮合区发生交错啮合;
所述第一螺杆21与所述第二螺杆22的转速比为2,并且所述第一螺杆21与所述第二螺杆22的边沿均为光滑的螺棱结构;
在本实施例中,所述第一螺杆21以及所述第二螺杆22与机筒1的内腔形成流道40,所述流道40用于物料通行。
所述第一螺杆21与所述第二螺杆22在所述机筒1内呈竖直方向排列或呈水平方向排列,在图1中,优选所述第一螺杆21与所述第二螺杆22呈竖直方向排列来作为展示,可以理解的是,所述第一螺杆21与所述第二螺杆22还可以呈水平方向排列,可根据机筒10的实际情况进行选择。所述第一螺杆21以及所述第二螺杆22的外侧边沿均与所述机筒10内壁相切。
其中,所述第一螺杆21与所述第一螺杆22之间的进行同向差速旋转,能够实现两根螺杆之间相互擦拭,达到了自洁的效果,所述第一螺杆21与所述第一螺杆22的边沿均为光滑的螺棱结构,减少了捏合块的使用,有利于提升自洁效果,而且两根螺杆的根径与顶径之间设置有台阶结构,两根螺杆的台阶结构在啮合区发生相互交错啮合,使流道40发生拓扑结构的变化,有效的引入了强拉伸作用和啮合区强扰动作用,提升了同向差速多螺杆挤出机的熔融和塑化混合效果。
参照图2,所述机筒10还设有输送段S1、熔融段S2、排气段S3以及混炼挤出段S4;输送段S1、熔融段S2、排气段S3和混炼挤出段S4,加工的物料的移动方向为S1至S2至S3至S4,输送段S1设有与外界连通的进料口31,排气段S3设有与外界连通的排气口32,混炼挤出段S4的末端设有与外界连通的出料口33。
参照图3与图4,啮合区包括上啮合区和下啮合区,第一台阶结构211与第二台阶结构221在上啮合区为错列啮合;所述第一台阶结构211与所述第二台阶结构221在下啮合区为并列啮合。两根螺杆在上下啮合区实现了台阶结构的错列、并列的啮合关系,能够引入了强拉伸作用和啮合区强扰动作用,其中,在本实施例中,当第一螺杆21与第二螺杆22为水平方向排列时,俯视图为上啮合区,仰视图为下啮合区,可以理解的是,当第一螺杆21与第二螺杆22为竖直方向排列时,正视图为上啮合区,后视图为下啮合区。
参照图5,所述第一螺杆21采用单头螺纹结构,在所述第一螺杆21横截面轮廓内引入一段半径为rM的圆弧构成所述第一台阶结构211,d/2<r M<D/2,其中,d为所述第一螺杆21和所述第二螺杆22的内径,D为所述第一螺杆21和所述第二螺杆22的最大外径;所述第二螺杆22采用双头螺纹结构,在所述第二螺杆22的横截面轮廓内引入两段半径为C-r M的圆弧构成所述第二台阶结构221,其中C为所述第一螺杆21的旋转中心O 1与所述第二螺杆22的旋转中心O 2之间连线的距离。
如图5所示,所述第一螺杆21和所述第二螺杆22的最大外径均为D,对应的半径为R,所述第一螺杆21和所述第二螺杆22的内径为d,对应的半径为r,那么有:d=2C-D。所述第一螺杆21的横截面轮廓由六段曲线弧连接构成,六段曲线弧依次为AB、BC、CD、DE、EF和FA,其中,BC、DE和FA为非圆曲线弧,AB、CD和EF为圆弧,圆弧和非圆曲线弧总是间隔连接,曲线弧BC对应的圆心角β 1为:
β 1=3arcos  (C/D),
以O 1B为极轴,引入辅助角ε,逆时针方向为正,曲线弧BC在极角θ为:θ=2ε+atan((Dsinε)/(2C-Dcosε)),对应的极径ρ(θ)为:
Figure PCTCN2019086329-appb-000001
曲线弧DE对应的圆心角β 2为:
Figure PCTCN2019086329-appb-000002
以O 1E为极轴,引入辅助角ε,顺时针方向为正,曲线弧DE在极角θ为:
θ=2ε+atan((Dsinε)/(2C-Dcosε)),对应的极径ρ(θ)为:
Figure PCTCN2019086329-appb-000003
曲线弧FA对应的圆心角β 3为:
Figure PCTCN2019086329-appb-000004
以O 1F为极轴,引入辅助角ε,顺时针方向为正,曲线弧FA在极角θ为:
θ=2ε+atan((C-r M)sinε/(C-(C-r M)cosε)),对应的极径ρ(θ)为:
Figure PCTCN2019086329-appb-000005
其中,r M为构成所述第一台阶结构211对应的圆弧半径,有d/2<r M<D/2。三段圆弧分别为AB、CD和EF,对应的半径分别为d/2、D/2和r M,对应的圆心角分别为α、γ和φ,则圆心角φ满足:α+γ+φ=2π-β 123,其中,圆弧EF为所述第一台阶结构211。
所述第二螺杆22的横截面轮廓上的多段曲线弧是所述第一螺杆21的横截面轮廓上的多段曲线弧数量的2倍。如图5所示,A和A 1点重合,所述第二螺 杆22的横截面轮廓由十二段曲线弧连接构成,十二段曲线弧依次为A 1B 1、B 1C 1、C 1D 1、D 1E 1、E 1F 1和F 1A 2,以及A 2B 2、B 2C 2、C 2D 2、D 2E 2、E 2F 2和F 2A 1。其中,曲线弧A 1B 1、B 1C 1、C 1D 1、D 1E 1、E 1F 1和F 1A 2与曲线弧A 2B 2、B 2C 2、C 2D 2、D 2E 2、E 2F 2和F 2A 1关于所述第二螺杆22的旋转中心中心对称,圆弧和非圆曲线弧总是间隔连接。B 1C 1、D 1E 1和F 1A 2为非圆曲线弧,对应的圆心角分别为β 1/2、β 2/2和β 3/2;同样,非圆曲线弧B 2C 2、D 2E 2、F 2A 1对应的圆心角也分别为β 1/2、β 2/2和β 3/2。而且,三段圆弧分别为A 1B 1、C 1D 1和E 1F 1,对应的半径分别为d/2、D/2和C-r M,对应的圆心角分别为α/2、γ/2和φ/2。同样,另外三段圆弧分别为A 2B 2、C 2D 2和E 2F 2,对应的半径也分别为d/2、D/2和C-r M,对应的圆心角也分别为α/2、γ/2和φ/2。其中,圆弧E 1F 1和E 2F 2为所述第二台阶结构221。因此,在本实施例中,所述第一螺杆21以及所述第二螺杆22的横截面轮廓均不变,所述第一螺杆21的横截面轮廓的多段曲线弧为非对称,所述第二螺杆22的横截面轮廓的多段曲线弧为旋转中心中心对称。两根螺杆均采用横截面结构不变的形式,使螺杆的制造过程相对简单,同时避免两根螺杆之间的对称性,也避免单个螺杆的轴对称性,而且,第一螺杆的横截面轮廓完全非对称,利用螺杆的非对称效应,能够提升同向差速多螺杆挤出机的熔融和塑化混合效果。可以理解的是,本实施例中,第一螺杆21的横截面轮廓包括3段圆弧和3段非圆曲线弧,第二螺杆22的横截面轮廓包括6段圆弧和6段非圆曲线弧,只是优选方案;在实际应用中,第一螺杆21的横截面轮廓可包括N段圆弧和N段非圆曲线弧,第二螺杆22的横截面轮廓可包括2N段圆弧和2N段非圆曲线弧,其中,在保证第一螺杆21和第二螺杆22正常使用的前提下,N可取任意数。
参照图2,物料在本实施例的同向差速双螺杆挤出机的加工方法,包括以下步骤:
物料从进料口31进入输送段S1的流道后,第一螺杆21和第二螺杆22分别沿各自螺杆轴线进行同向差速转动产生输送力;同时第一台阶结构211与第二台阶结构221在上啮合区形成错列啮合,而在下啮合区形成并列的啮合,增加了轴向正位移输送力,物料在输送力的作用下以及两根螺杆之间的摩擦力共同作用下 向熔融段S2的方向移动;
物料流至熔融段S2的流道处时,由于两根螺杆高速旋转产生的热量以及台阶结构的交错啮合,在第一螺杆21的推力面和第二螺杆22的拖曳面位置实现了对物料的强制熔融,而且随着第一台阶结构211与第二台阶结构221在上下啮合区进行错列和并列的周期性变化,实现对物料的翻动和强制剥离,促进了界面更新作用,同时强化了传热过程,加速了固体物料的熔融进程,物料成为熔体;
成为熔体的物料从熔融段S2的流道进入排气段S3的流道后,第一台阶结构211与第二台阶结构221的相互啮合形成的推、刮作用促进了界面更新,扩大了排气面积,物料汇集在此处产生负压作用,加速了废气从排气口排出,同时熔融的物料继续向混炼挤出段S4的流道方向运动;
成为熔体的物料进入混炼挤出段S4的流道后,第一螺杆21和第二螺杆22同向差速啮合运转,第一台阶结构211与第二台阶结构221也相互交错啮合,熔融的物料在向出料口33运动过程中受到周期性作用,在啮合区受到强拉伸和强扰动作用,同时也受到不同拓扑流道机理作用,这样强化了塑化混合效果,并使成为熔体的物料稳定从出料口挤出,同时,第一螺杆21和第二螺杆22之间进行相互擦拭也实现了完全自洁。
参照图6,本发明的第二实施例,提供了一种同向差速三螺杆挤出机,不同于第一实施例,螺杆结构20还包括第三螺杆23,所述第三螺杆23与第一实施例中的第一螺杆21的结构相同,第一螺杆21、第二螺杆22以及第三螺杆23依次成“一字型”啮合。
参照图7,本发明的第三实施例,提供了一种同向差速三螺杆挤出机,不同于第一实施例,螺杆结构20还包括第三螺杆23,所述第三螺杆23与第一实施例中的第二螺杆22的结构相同,第二螺杆22、第一螺杆21以及第三螺杆23依次成“一字型”啮合。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (10)

  1. 一种同向差速多螺杆挤出机,其特征在于,包括:
    机筒(10),所述机筒(10)具有内腔,所述机筒(10)还具有开口(30);
    螺杆结构(20),所述螺杆结构(20)安装在所述机筒(10)内腔;所述螺杆结构(20)包括同向差速旋转的第一螺杆(21)以及第二螺杆(22),所述第一螺杆(21)与所述第二螺杆(22)相互啮合产生啮合区;
    所述第一螺杆(21)的根径与顶径之间设置有第一台阶结构(211);所述第二螺杆(22)的根径与顶径之间设置有第二台阶结构(221),所述第一台阶结构(211)与所述第二台阶结构(221)在所述啮合区发生交错啮合。
  2. 根据权利要求1所述的一种同向差速多螺杆挤出机,其特征在于:所述第一螺杆(21)与所述第二螺杆(22)在所述机筒(10)内呈竖直方向排列或呈水平方向排列,所述第一螺杆(21)以及所述第二螺杆(22)的外侧边沿均与所述机筒(10)内壁相切。
  3. 根据权利要求1所述的一种同向差速多螺杆挤出机,其特征在于:所述第一螺杆(21)为单头螺纹结构,所述第二螺杆(22)为双头螺纹结构。
  4. 根据权利要求1所述的一种同向差速多螺杆挤出机,其特征在于:所述第一螺杆(21)以及所述第二螺杆(22)的外径相等。
  5. 根据权利要求1所述的一种同向差速多螺杆挤出机,其特征在于:所述第一螺杆(21)的横截面轮廓包括多段曲线弧,所述第一螺杆(21)的横截面轮廓上的多段曲线弧包括多段圆弧以及多段非圆曲线弧;
    所述第二螺杆(22)的横截面轮廓也包括多段曲线弧,所述第二螺杆(22)的横截面轮廓上的多段曲线弧也包括多段圆弧以及多段非圆曲线弧;
    所述第二螺杆(22)的横截面轮廓上的多段曲线弧是所述第一螺杆(21)的横截面轮廓上的多段曲线弧数量的2倍;
    所述第一螺杆(21)的横截面轮廓上的多段曲线弧为非对称,所述第二螺杆(22)的横截面轮廓上的多段曲线弧为中心对称。
  6. 根据权利要求1所述的一种同向差速多螺杆挤出机,其特征在于:所述第一螺杆(21)与所述第二螺杆(22)的转速比为2。
  7. 根据权利要求1所述的一种同向差速多螺杆挤出机,其特征在于:所述啮合区包括上啮合区以及下啮合区,所述第一台阶结构(211)与所述第二台阶结构(221)在所述上啮合区为错列啮合;所述第一台阶结构(211)与所述第二台阶结构(221)在所述下啮合区为并列啮合。
  8. 根据权利要求1所述的一种同向差速多螺杆挤出机,其特征在于:所述螺杆结构(20)还包括第三螺杆(23);所述第三螺杆(23)与所述第一螺杆(21)的结构相同或者与所述第二螺杆(22)的结构相同,所述第一螺杆(21)、第二螺杆(22)以及第三螺杆(23)成“一字型”啮合。
  9. 根据权利要求1所述的一种同向差速多螺杆挤出机,其特征在于:所述开口(30)包括进料口(31)、排气口(32)以及出料口(33)。
  10. 一种同向差速多螺杆挤出机的加工方法,其特征在于,包括以下步骤:
    第一螺杆(21)和第二螺杆(22)进行同向差速旋转,推动物料在机筒(10)的内腔中前进;
    所述第一螺杆(21)和所述第二螺杆(22)旋转产生热量,对物料进行熔融,同时所述第一螺杆(21)上设置的第一台阶结构(211)以及所述第二螺杆(22)上设置的第二台阶结构(221)在啮合区进行交错啮合,对物料进行翻动和强制剥离,物料成为熔体;
    所述第一台阶结构(211)以及所述第二台阶结构(221)在啮合区进行的周期性交错啮合产生的强拉伸作用和强扰动作用,对成为熔体的物料进行塑化混合,并使成为熔体的物料稳定从出口挤出;
    所述第一螺杆(21)和所述第二螺杆(22)之间进行相互擦拭,实现了自洁。
PCT/CN2019/086329 2019-04-28 2019-05-10 一种同向差速多螺杆挤出机以及加工方法 WO2020220390A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910349687.2 2019-04-28
CN201910349687.2A CN110116488B (zh) 2019-04-28 2019-04-28 一种同向差速多螺杆挤出机以及加工方法

Publications (2)

Publication Number Publication Date
WO2020220390A1 true WO2020220390A1 (zh) 2020-11-05
WO2020220390A9 WO2020220390A9 (zh) 2021-11-11

Family

ID=67521621

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/086329 WO2020220390A1 (zh) 2019-04-28 2019-05-10 一种同向差速多螺杆挤出机以及加工方法
PCT/CN2019/098961 WO2020220495A1 (zh) 2019-04-28 2019-08-02 一种同向差速多螺杆挤出机以及加工方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098961 WO2020220495A1 (zh) 2019-04-28 2019-08-02 一种同向差速多螺杆挤出机以及加工方法

Country Status (3)

Country Link
US (1) US11648721B2 (zh)
CN (1) CN110116488B (zh)
WO (2) WO2020220390A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111152440B (zh) * 2020-01-15 2021-04-23 五邑大学 一种异向旋转挤出装置、挤出机及物料制作方法
CN111391274B (zh) * 2020-03-25 2022-04-05 五邑大学 一种异向差速旋转挤出装置、挤出机及物料制作方法
CN113400617A (zh) * 2021-05-27 2021-09-17 华南理工大学 垂直式多螺杆强剪切塑化混炼挤出加工装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106476242A (zh) * 2016-12-09 2017-03-08 广东轻工职业技术学院 嵌入式矮螺棱同向非对称多螺杆挤出机及其加工方法
CN107139425A (zh) * 2017-07-11 2017-09-08 广东轻工职业技术学院 强拉伸同向差速多螺杆挤出机及其加工方法
WO2019070797A1 (en) * 2017-10-05 2019-04-11 Corning Incorporated SCREW ELEMENTS FOR EXTRUSION APPARATUS AND METHODS OF MANUFACTURING HONEYCOMB BODY

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826323A (en) * 1988-05-23 1989-05-02 Apv Chemical Machinery Inc. Self-wiping continuous mixer with enlarged bore section
CN201752925U (zh) * 2010-05-17 2011-03-02 南京橡塑机械厂有限公司 双螺杆挤出机用驼峰曲线螺纹元件
CN101879777A (zh) * 2010-06-12 2010-11-10 广东轻工职业技术学院 同向旋转非一致自洁多螺杆塑化排气挤出装置及方法
CN103057089B (zh) * 2013-01-07 2014-12-24 大连理工大学 一种具有特制阴阳转子型线的双螺杆挤出机
CN104527025B (zh) * 2014-12-29 2017-05-17 广东轻工职业技术学院 带有折流板的同向自洁双螺杆挤出机及其加工方法
CN206967925U (zh) * 2016-12-09 2018-02-06 广东轻工职业技术学院 嵌入式矮螺棱同向非对称多螺杆挤出机
CN206840670U (zh) * 2017-05-09 2018-01-05 徐百平 螺纹头数渐变式的同向差速多螺杆挤出机
CN107031015A (zh) * 2017-05-09 2017-08-11 徐百平 螺纹头数渐变式的同向差速多螺杆挤出机及其加工方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106476242A (zh) * 2016-12-09 2017-03-08 广东轻工职业技术学院 嵌入式矮螺棱同向非对称多螺杆挤出机及其加工方法
CN107139425A (zh) * 2017-07-11 2017-09-08 广东轻工职业技术学院 强拉伸同向差速多螺杆挤出机及其加工方法
WO2019070797A1 (en) * 2017-10-05 2019-04-11 Corning Incorporated SCREW ELEMENTS FOR EXTRUSION APPARATUS AND METHODS OF MANUFACTURING HONEYCOMB BODY

Also Published As

Publication number Publication date
CN110116488A (zh) 2019-08-13
US11648721B2 (en) 2023-05-16
WO2020220390A9 (zh) 2021-11-11
WO2020220495A1 (zh) 2020-11-05
US20200338802A1 (en) 2020-10-29
CN110116488B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2020220495A1 (zh) 一种同向差速多螺杆挤出机以及加工方法
EP0002131B2 (en) Improved self-cleaning type extruder
CN106476242B (zh) 嵌入式矮螺棱同向非对称多螺杆挤出机及其加工方法
WO2011153725A1 (zh) 同向旋转非一致自洁多螺杆塑化排气挤出装置及方法
WO2016112777A1 (zh) 一种挤出装置
CN206066912U (zh) 具有动态连续密炼功能的锥形双螺杆挤出机
WO2018196274A1 (en) Co-rotating self-cleaning multi-screw extruder with speed ratio of 2.5 and extruding method therefor
CN107139425A (zh) 强拉伸同向差速多螺杆挤出机及其加工方法
CN206840670U (zh) 螺纹头数渐变式的同向差速多螺杆挤出机
CN111391274B (zh) 一种异向差速旋转挤出装置、挤出机及物料制作方法
CN215203386U (zh) 一种平双聚氯乙烯粉料高效造粒专用挤出螺杆
CN107031015A (zh) 螺纹头数渐变式的同向差速多螺杆挤出机及其加工方法
CN210733220U (zh) 一种非对称同向多螺杆挤出装置及其挤出机
CN213564269U (zh) 一种pp熔喷布专用挤出螺杆
CN208529693U (zh) 一种高密度聚乙烯挤出管材专用螺杆
CN113492513B (zh) 一种双螺杆挤出元件及双螺杆挤出机
WO2021142903A1 (zh) 一种异向旋转挤出装置、挤出机及物料制作方法
CN107584745A (zh) 一种挤塑螺杆
WO2021017103A1 (zh) 一种非对称同向多螺杆挤出装置、挤出机及其加工方法
CN206465435U (zh) 一种同向双螺杆挤出机用螺杆
CN209504860U (zh) 一种高速高产的单螺杆
CN206967928U (zh) 强拉伸同向差速多螺杆挤出机
CN202491414U (zh) 一种锥双螺杆
CN116277868A (zh) 双螺杆的制作方法、双螺杆及挤出机
CN216732940U (zh) 一种高效聚乙烯管材挤出机专用螺杆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926811

Country of ref document: EP

Kind code of ref document: A1