WO2020218345A1 - Functional fluid state determination apparatus and functional fluid state determination system - Google Patents

Functional fluid state determination apparatus and functional fluid state determination system Download PDF

Info

Publication number
WO2020218345A1
WO2020218345A1 PCT/JP2020/017347 JP2020017347W WO2020218345A1 WO 2020218345 A1 WO2020218345 A1 WO 2020218345A1 JP 2020017347 W JP2020017347 W JP 2020017347W WO 2020218345 A1 WO2020218345 A1 WO 2020218345A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
functional fluid
state
scattered light
spectrum
Prior art date
Application number
PCT/JP2020/017347
Other languages
French (fr)
Japanese (ja)
Inventor
橋本谷 磨志
雄介 北川
謙司 永冨
靖之 祖父江
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020218345A1 publication Critical patent/WO2020218345A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present disclosure relates to a functional fluid state determination device and a functional fluid state determination system that determine the state of oils used in mechanical devices.
  • the mainstream method for analyzing functional fluids in mechanical devices is to sample functional fluids such as oil from mechanical devices and request an analysis by a specialized inspection agency. It has become.
  • it is troublesome because it is necessary to stop the operation of the mechanical device in order to sample the functional fluid such as oil from the mechanical device.
  • Patent Document 1 discloses a deterioration determination method and a deterioration determination device for engine oil using infrared absorption spectroscopy.
  • the absorbance in a specific wavenumber region is calculated by detecting infrared light transmitted through engine oil passing through the cell.
  • the deterioration of the engine oil is determined by deriving the rate of change in kinematic viscosity from the calculated absorbance.
  • Patent Document 2 distinguishes between abnormal oil deterioration and abnormal viscosity by detecting or estimating the degree of oil deterioration using an optical or electric resistance type sensor and detecting or estimating the viscosity of oil. It discloses an oil abnormality diagnostic device that can make a diagnosis.
  • Patent Document 3 describes an impurity measuring unit that measures an electromagnetic induction voltage generated in a coil that is circulated in a sample bottle containing oil, and a deterioration that measures the deterioration of oil by irradiating the sample bottle with light.
  • a fluid measuring device including a measuring unit and a fluid measuring method are disclosed.
  • Patent Document 1 Since the prior art described in Patent Document 1 needs to detect the light transmitted through the oil in the cell and also needs to cool the infrared detector to an extremely low temperature, the place where the detection device is installed is used. There are restrictions. Further, since the infrared detector is expensive, it is difficult to apply the prior art described in Patent Document 1 to in-line measurement in a mechanical device.
  • Patent Document 2 Since the conventional technique described in Patent Document 2 uses a light transmission type sensor when detecting the degree of deterioration of oil by an optical sensor, the detection device is similar to the conventional technique described in Patent Document 1. There are restrictions on where to install. Further, when the degree of deterioration of oil is detected by an electric resistance type sensor, the information that can be obtained is limited, and it is difficult to accurately determine the degree of deterioration of oil.
  • Patent Document 3 The conventional technique described in Patent Document 3 is a technique in which oil can be sampled from a mechanical device and the state of the oil can be measured relatively easily. However, in order to sample the oil from the mechanical device, the operation of the mechanical device is performed. Need to stop.
  • the present disclosure provides a functional fluid state determination device and a functional fluid state determination system that can determine the state of the functional fluid in the mechanical device in-line.
  • the functional fluid state determination device disperses a light source that irradiates a functional fluid that stores or circulates in a flow path in a mechanical device with an electromagnetic wave and Raman scattered light scattered from the functional fluid.
  • a spectroscope for deriving the spectrum of the Raman scattered light and a determination unit for determining the state of the functional fluid based on the spectrum of the Raman scattered light derived by the spectroscope are provided.
  • the functional fluid state determination system is the functional fluid state determination device that determines the state of the functional fluid, the mechanical device into which the functional fluid is injected, and the functional fluid in the mechanical device. And.
  • FIG. 1 is a diagram showing an example of a functional fluid state determination system according to the embodiment.
  • FIG. 2 is an enlarged schematic view of the area A surrounded by the broken line shown in FIG.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the functional fluid state determination device according to the embodiment.
  • FIG. 4 is a schematic top view showing an example of the spectroscope in the embodiment viewed from the light receiving side.
  • FIG. 5 is a schematic cross-sectional view taken along the line VV of FIG.
  • FIG. 6 is a flowchart showing an example of the operation of the functional fluid state determination device according to the embodiment.
  • FIG. 7 is a diagram showing the results of analysis of oils having different deterioration states by infrared absorption spectroscopy and Raman spectroscopy.
  • the functional fluid (for example, oil) used in the mechanical device has a lubricating action that lubricates the movement of each part in the mechanical device, for example, seals the gap between the piston and the piston cylinder to prevent gas leakage and maintain airtightness. It has a sealing action, a cooling action that absorbs and releases heat generated by combustion, a cleaning and dispersing action that takes in dirt generated by combustion, and an anticorrosion action that protects mechanical devices from corrosion such as rust. Due to the reduction of these actions, a malfunction of the mechanical device occurs. Therefore, it is necessary to grasp the state of the functional fluid such as oil in the mechanical device and replace it with a new functional fluid at an appropriate time.
  • oils hereinafter, also referred to as oil
  • Analysis of oils used in machinery is usually performed for the following purposes.
  • the purpose of the analysis is, for example, to determine an appropriate oil change time, to grasp the state of a mechanical device, to detect a sign of a mechanical device failure, and to detect a mechanical device failure. To identify the state of the device and the cause of the failure.
  • the analysis of oil determines the analysis method and the analysis target in the oil according to these purposes.
  • the analysis of chemical changes in oil is performed by infrared absorption spectroscopy or gas chromatography.
  • the detection of solid components mixed from the outside of the mechanical device such as abrasion powder and earth and sand generated inside the mechanical device is performed by using a particle counter.
  • the component analysis of the contaminants in the oil is performed by an analysis method such as plasma fluorescence spectroscopy.
  • the physical properties of the oil are analyzed using a viscometer.
  • the analyzers used for these analyzes are generally large and very expensive, and lack versatility. Further, if these analyzers are miniaturized, the analysis accuracy is lowered. In addition, these analyzers are vulnerable to movement and vibration due to their precise mechanical structure. That is, these analyzers are extremely low in portability. Therefore, it is difficult to incorporate these analyzers into mechanical devices that involve movement, such as construction machinery and vehicles. It is also difficult to incorporate these analyzers into stationary mechanical devices that do not involve movement, such as wind power generators.
  • the analysis of oil used in machinery is performed by a specialized analytical institution equipped with the above analytical equipment. Therefore, the user of the mechanical device needs to sample the oil from the mechanical device and send the oil sample to the analysis institution.
  • the oil data analyzed by the analytical institution is highly accurate and reliable, it usually takes about 3 weeks for the user of the mechanical device to know the result.
  • Analytical costs are also high due to the use of expensive equipment. Therefore, it is difficult to analyze the oil frequently, and it is insufficient to predict the precursor of a failure, for example. It may also be necessary to shut down the machinery in order to sample oil from the machinery. Along with this, the progress of the work performed by the mechanical device is delayed, and it becomes necessary to prepare an alternative device. In the worst case, the construction period may be delayed. Thus, the potential for additional costs or losses can also be a factor in reducing the frequency of oil analysis. In terms of cost, there is also a labor cost for the user to sample the oil from the machinery.
  • the state of oil in a machine device differs depending on the environment in which the machine device is used, even if the machine device is of the same type. Therefore, for example, even if the operating time is the same, the deterioration state is not always the same.
  • the mechanical device is a construction machine
  • the magnitude of the load applied to the mechanical device and the internal combustion engine such as the engine included in the mechanical device differs depending on the environment in which the mechanical device is used. Therefore, the deterioration rate of oils such as lubricating oils is not uniform.
  • construction machinery is currently changing oil at very short intervals. Typically, manufacturers recommend that construction machinery lubricants be replaced every 500 hours of operation.
  • the deterioration rate of the oil in the mechanical device varies greatly depending on the environment in which the mechanical device is used. Therefore, in the usage environment where the load applied to the mechanical device is small, the operating time is 500 hours. However, the oil is often in good condition. Therefore, if the oil is changed uniformly during the operating time of the mechanical device, the oil that is still sufficiently usable may be discarded as deteriorated oil. This is a matter to be improved from the viewpoint of cost and environmental protection.
  • the oil Since it takes time to reach the oil, the oil is often changed within the specified operating time. If the condition of the oil deteriorates and the oil needs to be changed before the user of the machinery receives the analysis result of the oil sample from the analysis institution, the deteriorated oil may cause the machinery to fail. .. In such a case, even if the oil is analyzed, it does not make sense for the control of the state of the oil and the maintenance of the mechanical device.
  • oil analysis is an important means for obtaining information on the inside of a mechanical device without disassembling the mechanical device, it is actually effectively used for maintenance and management of the mechanical device. It is hard to say that it is.
  • in-line analysis In contrast to the idea of requesting an inspection organization for analysis, there is an idea of in-line analysis in which an analyzer is installed inside the mechanical device and oil is analyzed at any time. If in-line analysis can be applied to the oil in the machine, the oil can be analyzed on the spot without sampling from the machine. As a result, the user of the mechanical device can easily grasp the state of the oil, so that maintenance necessary for the mechanical device such as oil change can be appropriately performed according to the state of the oil. In addition, mechanical equipment users do not have to wait for oil sampling, sending oil samples to analysis institutions, and the arrival of analysis results of oil samples, thus reducing costs and improving work efficiency. be able to.
  • an in-line analyzer that can analyze the state of oil with high accuracy under adverse conditions such as vibration generated by the operation of mechanical devices and high temperature environment.
  • an oil analyzer that can be attached to a mechanical device, for example, an analyzer using a viscometer that estimates a change in oil viscosity from a change in the resonance frequency of a microtranslator in oil, and an oil.
  • an analyzer that detects a change in the state of oil by measuring the electric capacity between the electrodes immersed in the oil, for example, by measuring the ratio of soot and water contained in the oil.
  • These analyzers analyze changes in the state of oil by measuring the physical properties of the oil, such as viscosity or permittivity.
  • the viscosity of oil is one of the important indicators for the maintenance of machinery and equipment, but the viscosity of oil changes not only as a result of chemical changes in oil, but also, for example, depending on temperature conditions or. Since it changes with the mixing of other oils, the information that can be obtained regarding the state of the oil is limited only by the viscosity. Even if such physical properties of an oil are the result of a chemical change in the oil, the changes in the physical properties of the oil do not necessarily have a one-to-one correspondence with a single factor. Therefore, the measurement of the physical properties of oil does not provide enough information to provide useful insights into the causes of changes in the state of the oil and the useful life of the oil (that is, the remaining life).
  • optical analytical instruments such as infrared absorption spectrophotometers are extremely vulnerable to vibration because their structures require precise alignment of optical components such as diffraction gratings and fine slits. ..
  • optical path length that is, the physical size of the spectroscope. Therefore, in order to realize the miniaturization of the analyzer that can be attached to the mechanical device, it is necessary to sacrifice the optical performance of the spectroscope.
  • the measurement wavelength band is in the mid-infrared region (several microns), and a detector capable of using light having a wavelength in this band is generally cooled to an extremely low temperature (for example, liquid nitrogen temperature). Needed and very expensive. Since the infrared absorption spectrophotometer has the above characteristics, it is very difficult to apply an analyzer including the infrared absorption spectrophotometer to a mechanical device. In particular, it is considered virtually impossible to implement infrared absorption spectroscopic analyzers around operating machinery, such as construction machinery and internal combustion engines such as automobile engines.
  • Patent Document 4 discloses an analyzer that is installed in a lubricating oil reservoir of a mechanical device and detects an odor or scent component released from the lubricating oil.
  • the analyzer includes a sensor and an injector, and the injector injects a chemical substance into the lubricating oil or into the air around the lubricating oil (that is, the air containing the vaporized lubricating oil component) to lubricate the chemical substance. Detects interactions with oil scent molecules (ie, scent molecules in vaporized lubricating oil components).
  • Raman spectroscopy As an example of a sensor that can be used to detect such an interaction, a sensor that uses Raman spectroscopy is disclosed.
  • Raman spectroscopy has extremely low signal strength obtained as compared with infrared absorption spectroscopy.
  • Molecules in the gas, especially the lubricating oil vapor (so-called vaporized lubricating oil component) in the air around the lubricating oil, especially the fragrance molecules related to the deterioration of the lubricating oil are particularly low in concentration, especially in machinery. It is difficult to detect weak Raman scattered light with a small sensor that is used by attaching it to a device.
  • the inventors of the present application make it possible to perform in-line analysis at a level at which chemical changes and composition changes of oil in a mechanical device can be quantitatively evaluated.
  • a functional fluid state determination device equipped with the device. This makes it possible to determine the state of functional fluid (for example, oil) in the machine in-line, manage the appropriate replacement of functional fluids such as lubricating oil and hydraulic oil used in the machine, and manage the machine. Monitoring of the state of the device can be realized.
  • Raman spectroscopy refers to irradiating a substance to be measured (hereinafter, also referred to as an object to be measured or an object to be analyzed) with excitation light having a single wavelength, generally laser light, and the reflected light (Rayleigh light).
  • excitation light having a single wavelength, generally laser light
  • Rayleigh light the reflected light
  • This is a technique for obtaining information on the chemical properties of the substance to be measured from the spectrum of light (Raman scattered light) having a wavelength different from that of the excitation light, which is obtained by mixing with the light.
  • the Raman scattered light has an intensity of only about 10 to 6 with respect to the intensity of the reflected light or the scattered light having the same wavelength as the excitation light, which is extremely weak.
  • Raman spectroscopy the difference in the number of waves between Raman scattered light and excitation light (so-called Raman shift) corresponds to the energy difference between the vibrational levels of the chemical bonds of the molecules that make up the substance under test, which is typical.
  • Raman shift the difference in the number of waves between Raman scattered light and excitation light
  • infrared absorption spectroscopy which is vibrational spectroscopy
  • the wavelength shift from the excitation light indicates the correspondence with the chemical bond.
  • the wavelength of the excitation light is arbitrary, and as the excitation light, light having an arbitrary wavelength from ultraviolet light, visible light, near-infrared light, or the like can be used.
  • Raman spectroscopy light with a wavelength in the visible light region can be used as excitation light, so an image sensor using CMOS semiconductor technology, which has made remarkable progress in consumer digital cameras in recent years, can be used as a detector almost as it is. Therefore, ordinary optical materials (glass, resin, etc.) can be used for the optical system.
  • high-performance semiconductor laser diodes have become available at low cost, and Raman spectroscopic analyzers can be manufactured at relatively low cost. Therefore, the industrial application of Raman spectroscopy is attracting attention.
  • the spectroscope it is possible to realize miniaturization of the spectroscope and improvement of vibration resistance performance, which was extremely difficult in the past, in combination with more advanced semiconductor technology, especially micro-optical technology using an optical waveguide. Possible technologies have also been proposed.
  • the spectroscopic device technology that can operate even in a vibrating environment, for example, the spectroscopic technology disclosed in Japanese Patent Application Laid-Open No. 2017-506738 (Patent Document 5) can be mentioned.
  • Patent Document 5 By directly forming an interference-type spectroscopic structure using an optical waveguide on the CMOS image sensor, the spectroscope achieves both optical performance and miniaturization, which were inevitable in principle with a general distributed spectroscopic structure. There is.
  • the technique does not require precise optical axis alignment. Therefore, by combining the spectroscopic device technology described above with an analyzer that uses Raman spectroscopy, in-line chemical analysis of oil used in mechanical devices is possible even in harsh conditions such as vibration. It is thought that
  • Non-Patent Document 1 ASTM E2412-10 "Standard Specite for Condition Monitoring of In-Service Lubricants BiTrens by Trend” (Transform Infrared (FT-IR) Spectrum. ”2018) can be mentioned.
  • the wave number region and the substance belonging to the characteristic signal on the infrared absorption spectrum that should be monitored in the monitoring of the state of the lubricating oil by the Fourier transform infrared absorption spectroscopy (FT-IR) method are defined. It is stipulated.
  • Raman spectroscopy such a standard does not exist. From the physical principle, both infrared absorption spectroscopy and Raman spectroscopy are molecular vibrational spectroscopy, and the characteristic signal on the spectrum is the energy corresponding to the binding energy of each molecule contained in the oil. Appears at the position of.
  • the physical element process that absorbs infrared light with energy showing a characteristic signal in infrared absorption spectroscopy is different from the physical element process that produces Raman scattered light with energy showing a characteristic signal in Raman spectroscopy.
  • signals belonging to the same molecular vibration have different signal intensities. This is called the selection rule, and sometimes even if the same substance is measured by infrared absorption spectroscopy and Raman spectroscopy, completely different spectra can be obtained.
  • the inventors of the present application analyzed a large number of oil samples by making full use of various analytical techniques including Raman spectroscopy, and as a result of diligent studies, a plurality of spectral features peculiar to Raman spectroscopy were found. For example, we have found that it is associated with multiple chemical changes associated with changes in the state of functional fluids such as deterioration due to the use of oil.
  • Raman spectroscopy in principle, irradiates an object to be measured (here, oils) with an electromagnetic wave of a specific wavelength, generally a visible light laser. Since the laser has a very high energy density, it may induce autofluorescence of the object to be measured. That is, depending on the components contained in the object to be measured, autofluorescence with a signal much higher than that of Raman scattered light may occur, and this autofluorescence becomes an obstacle in the analysis of weak Raman scattered light. For example, in order to detect weak Raman scattered light, it is generally required to lengthen the exposure time for spectrum acquisition.
  • the autofluorescence can saturate the output of the photodetector for spectral measurement. It is also known that the intensity of autofluorescence decreases with the irradiation time of the laser due to the continuous irradiation of the laser. Therefore, the intensity of autofluorescence fluctuates during the measurement, which may adversely affect the detection accuracy of the relatively weak Raman scattered light.
  • the present disclosure provides an oil state determination device and an oil state determination method that can determine the state of a functional fluid in a mechanical device in-line.
  • the functional fluid state determination device disperses a light source that irradiates a functional fluid that stores or circulates in a flow path in a mechanical device with an electromagnetic wave and Raman scattered light scattered from the functional fluid.
  • a spectroscope for deriving the spectrum of the Raman scattered light and a determination unit for determining the state of the functional fluid based on the spectrum of the Raman scattered light derived by the spectroscope are provided.
  • the functional fluid state determination device can be manufactured at a relatively low cost and can be miniaturized. This makes it easy to incorporate the functional fluid state determination device into the mechanical device.
  • Raman spectroscopy an object to be measured (here, a functional fluid) is irradiated with light, and Raman scattered light among the reflected light and scattered light is separated. Therefore, as in infrared absorption spectroscopy, for example, the object is subject to light.
  • the state of the functional fluid in the mechanical device can be determined in-line.
  • the light source transmits the electromagnetic wave to the functional fluid that is in direct contact with the optical window via an optical window provided on the flow path in the mechanical device. May be irradiated.
  • the functional fluid state determination device since the functional fluid state determination device according to one aspect of the present disclosure is mounted on the mechanical device, the state of the functional fluid in the flow path can be determined in-line.
  • the functional fluid is oil
  • the determination unit has a Raman scattered light intensity indicating oxidation of the oil as seen in the spectrum of the Raman scattered light.
  • the state of the oil may be determined based on an increase or decrease.
  • the oil component (for example, the oil component (for example,) is based on the increase or decrease of the signal intensity of the Raman scattered light in the wave band indicating the chemical bond generated by the oxidation of the oil.
  • Information on changes in the chemical bonds of the base oil and additives, that is, changes in the chemical state of the oil (hereinafter, also referred to as chemical changes) can be obtained. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the state of the oil can be determined based on the information of the chemical change accompanying the oxidation of the oil.
  • the functional fluid is oil
  • the determination unit indicates Raman scattering indicating an additive contained in the oil as seen in the spectrum of the Raman scattered light.
  • the state of the oil may be determined based on the decrease in light intensity.
  • the chemical bond is formed based on the decrease in the signal intensity of the Raman scattered light in the wave frequency band indicating the chemical bond of the additive contained in the oil.
  • Information about changes, that is, chemical changes of the additive can be obtained. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the state of the oil can be determined based on the information of the chemical change of the additive contained in the oil.
  • the functional fluid is oil
  • the determination unit shows decomposition of the base oil constituting the oil as seen in the spectrum of the Raman scattered light.
  • the state of the oil may be determined based on the decrease in Raman scattered light intensity.
  • the chemistry of the base oil is based on the decrease in the signal intensity of the Raman scattered light in the wave number band indicating the chemical bond broken by the decomposition of the base oil. You can get information about changes. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the state of the oil can be determined based on the information of the chemical change due to the decomposition of the base oil contained in the oil.
  • the functional fluid is oil
  • the determination unit indicates Raman scattered light intensity indicating sulfonation of the oil as seen in the spectrum of the Raman scattered light.
  • the state of the oil may be determined based on the increase in.
  • the chemical change of the oil (here, sulfonation) is based on the increase in the signal intensity of the Raman scattered light in the wave number band indicating the sulfation of the oil. ) Can be obtained. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the state of the oil can be determined based on the information of the chemical change due to the sulfonation of the oil.
  • the functional fluid is oil
  • the determination unit indicates the nitration of the oil as seen in the spectrum of the Raman scattered light.
  • the state of the oil may be determined based on the increase in.
  • a chemical change (here, nitration) of the oil is based on an increase in the signal intensity of Raman scattered light in the wave number band indicating the nitration of the oil. ) Can be obtained. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the state of the oil can be determined based on the information of the chemical change due to the nitration of the oil.
  • the functional fluid is oil
  • the determination unit determines the Raman scattered light intensity of soot in the oil as seen in the spectrum of the Raman scattered light.
  • the state of the oil may be determined based on the increase.
  • the functional fluid state determination device for example, the signal intensity of Raman scattered light in the wave frequency band indicating soot (carbon) generated by incomplete combustion of fuel used in a mechanical device is used. Based on the increase, information about the condition of the oil can be obtained. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the state of the oil can be determined based on the information regarding the soot generated or mixed in the oil.
  • the functional fluid is an oil, wherein the determination unit, based on the spectrum of the Raman scattered light at a wave number range of 300 cm -1 or more 4000 cm -1 or less The state of the oil may be determined.
  • the functional fluid state determination device According to the functional fluid state determination device according to one aspect of the present disclosure, it is possible to obtain information equivalent to that of infrared absorption spectroscopy regarding the chemical state of oil.
  • the functional fluid is an oil
  • the determination unit based on the spectrum of the Raman scattered light at a wave number range of 300 cm -1 or more 2500 cm -1 or less The state of the oil may be determined.
  • a strong signal can be detected in the spectrum of Raman scattered light in the wave number range, so that information on chemical changes in oil can be detected with high efficiency and accuracy. Can be obtained.
  • the functional fluid is oil
  • the determination unit is based on the spectrum of the Raman scattered light in a wave number range of 750 cm -1 or more and 1150 cm -1 or less.
  • the state of the oil may be determined.
  • the oil is oxidized and sulfonated, the base oil component is decomposed, and the oil is added. Information on the oxidation of the agent can be obtained.
  • the functional fluid is oil
  • the determination unit has a spectrum of the Raman scattered light in a wave number range exceeding 1150 cm -1 and 1500 cm -1 or less.
  • the state of the oil may be determined based on the above.
  • the functional fluid state determination device based on the change in the spectrum of Raman scattered light in the wavenumber range, the oil is nitrated, the base oil component is decomposed, and the oil is contained. Information on soot generated or mixed can be obtained.
  • the functional fluid is an oil, wherein the determination unit, based on the spectrum of the Raman scattered light at a wave number range of 1600 cm -1 or 1900 cm -1 or less The state of the oil may be determined.
  • the oil is oxidized, the base oil component is decomposed, and the oil is generated based on the change in the spectrum of the Raman scattered light in the wave number range.
  • information on the mixed soot can be obtained.
  • the determination unit has a storage unit, and Raman scattering of the functional fluid immediately after the functional fluid in the mechanical device is replaced with a new functional fluid.
  • the Raman spectrum of light is stored in the storage unit as information indicating the initial state of the functional fluid, and the Raman spectrum of the functional fluid is compared with the Raman spectrum of the functional fluid immediately after being replaced with the new functional fluid. May determine the state of the functional fluid.
  • the derived spectrum of the Raman scattered light of the functional fluid and the Raman scattered light of the functional fluid in the initial state of the functional fluid that is, the state immediately after the functional fluid in the mechanical device is replaced with a new functional fluid.
  • the functional fluid state determination device can predict the transition of the change in the state of the functional fluid, so that the user of the mechanical device can know, for example, a guideline for the replacement time of the functional fluid.
  • the functional fluid state determination device can predict, for example, troubles that occur or may occur in a mechanical device from changes in the rate of change in the chemical state of the functional fluid (for example, the rate of deterioration of the functional fluid). It will be possible. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the user can easily and appropriately manage the replacement timing of the functional fluid and the maintenance management of the mechanical device.
  • the functional fluid state determination system has any of the above functions of determining the state of the functional fluid, the mechanical device into which the functional fluid is injected, and the functional fluid in the mechanical device. It is provided with a fluid state determination device.
  • the state of the functional fluid in the mechanical device can be determined in-line.
  • oil will be used as an example of the functional fluid, and deterioration of the oil will be described as an example of the state of the functional fluid.
  • the state of the functional fluid is not limited to the deterioration of the oil.
  • FIG. 1 is a diagram showing a functional fluid state determination system 400 and a functional fluid state determination system 410, which are examples of the functional fluid state determination system according to the embodiment.
  • FIG. 2 is an enlarged schematic view of the area A surrounded by the broken line in FIG.
  • the functional fluid state determination system 400 is a functional fluid state determination device 100 that determines the state of the functional fluid 200, the mechanical device 300 into which the functional fluid 200 is injected, and the functional fluid in the mechanical device 300. And.
  • the mechanical device 300 is a device that internally stores or circulates a functional fluid 200, for example, various large or small machinery and equipment installed inside and outside factories, offices, public facilities and houses, and for construction that operates outdoors. Machines, trucks, buses, passenger cars, motorcycles, ships, aircraft, trains, industrial vehicles, various vehicles such as construction vehicles, or machinery such as engines, transmissions, and hydraulic actuators provided by them. Including. Further, the mechanical device 300 may include equipment such as pumps, heat exchangers, pressure gauges and actuators, or members such as cylinders, gears, bearings, bearings and gears.
  • the functional fluid 200 is an oil that functions as a lubricating medium, a cooling medium, or a power transmission medium for the mechanical device 300. More specifically, the functional fluid 200 includes oils such as engine lubricating oil, gear lubricating oil, sliding part lubricating oil, bearing lubricating oil, hydraulic hydraulic oil, cooling oil, insulating oil, or contact protection oil. It may be. The oils are not particularly limited.
  • the functional fluid 200 is injected into the mechanical device 300 and is repeatedly used in the mechanical device 300 by reciprocating or circulating. Therefore, in the functional fluid 200, the organic compound which is the main component of the functional fluid 200 is oxidized and decomposed in a chain reaction due to the stress of heat and oxidation associated with repeated use.
  • the function of the functional fluid 200 may be deteriorated due to the decomposition of the functional fluid 200 or the change in the chemical structure of the functional fluid 200 (hereinafter, also referred to as the change in the chemical state). This phenomenon is also referred to as deterioration of the functional fluid 200.
  • the functional fluid state determination system 400 can determine the state of the functional fluid 200 by acquiring information on changes in the chemical state such as decomposition of the functional fluid 200 or changes in the chemical structure.
  • the state of the functional fluid 200 may be a deterioration (that is, deterioration) of the function of the functional fluid 200, or may be an improvement of the function. Further, the state of the functional fluid 200 may be a state in which the functional change (for example, reduction or improvement) does not occur only by the change of the chemical component of the functional fluid 200.
  • oils in the present specification also include oils in which additives are added to liquid hydrocarbons called base oils.
  • the additive is added to enhance or maintain the function required depending on the use of the oil, and examples thereof include antioxidants, detergent dispersants, viscosity modifiers, and extreme pressure additives.
  • the functional fluid 200 is not limited to the above oil, and may be, for example, a fluid such as a cooling liquid, an exhaust gas purification catalyst liquid, a cleaning liquid, or a hydraulic hydraulic liquid.
  • a fluid such as a cooling liquid, an exhaust gas purification catalyst liquid, a cleaning liquid, or a hydraulic hydraulic liquid.
  • mechanical devices 300 in which these functional fluids are used are construction machinery, mining machinery, ships, hydraulic presses, hydraulic jacks, engines, reducers, generators, transformers, switches, exhaust purifiers. , Hydraulic jacks, air conditioners, and the like.
  • the functional fluid state determination device 100 is attached to the flow path 310 of the mechanical device 300.
  • the flow path 310 is not limited to the piping as shown in FIG. 1, and may be any one as long as the functional fluid 200 can flow inside.
  • the flow path 310 may be a housing in which a filtration member such as a filter element and a strainer is stored, an oil tank, a cylinder, a pump, a gear, a bearing, a bearing, or a member in which a gear or the like is stored.
  • the functional fluid state determination device 100 may include a presentation unit and an input unit.
  • the presenting unit presents the determination result of the state of the functional fluid to the user.
  • the presenting unit is, for example, an organic EL (electroluminescence) or a liquid crystal display, a speaker, a lamp, or the like.
  • the input unit receives the input of the user's operation signal.
  • the input unit is, for example, a touch panel, an operation button, a microphone, or the like. Since the functional fluid state determination device 100 has the above configuration, the user can change settings such as the determination frequency of the functional fluid state, confirm the determination result, and extract the necessary determination result. ..
  • the presentation unit and the input unit may be provided in a device other than the functional fluid state determination device 100.
  • the functional fluid state determination system 410 will be described.
  • the presentation unit and the input unit are provided in the computer device 500.
  • the computer device 500 is connected to the functional fluid state determination device 100 by communication.
  • the communication method may be wireless communication such as Bluetooth (registered trademark) or wired communication such as Ethernet (registered trademark).
  • the computer device 500 is, for example, a terminal device incorporated in a mobile phone, a smartphone, a tablet terminal, a personal computer, or a device (for example, an automobile in FIG. 1) including a mechanical device 300 (for example, an engine in FIG. 1). ..
  • the input unit is, for example, a keyboard, a mouse, a microphone, a sensor for detecting the movement of a part of the user's body (for example, eyes, head, lips, fingers, etc.). May be good.
  • the user can easily change the setting such as the determination frequency of the state of the functional fluid, confirm the determination result, and extract the necessary determination result at a desired timing.
  • the computer device 500 may be able to connect to the database via a network such as the Internet.
  • the functional fluid state determination system 410 outputs information indicating the state of the functional fluid 200 to the database via the computer device 500, and generates the remaining life of the functional fluid 200 derived from the database and the mechanical device 300. Information such as troubles to be obtained may be acquired.
  • the user can more efficiently manage the functional fluid 200 and the mechanical device 300.
  • the state of the functional fluid 200 in the mechanical device 300 can be analyzed in-line to determine the degree of deterioration of the functional fluid. Therefore, the user does not need to stop the operation of the mechanical device 300 and sample the functional fluid 200. Further, since the user can easily grasp the state of the functional fluid 200, the functional fluid can be replaced at an appropriate time. Therefore, according to the functional fluid state determination system 400, it is possible to reduce the cost and the load on the environment.
  • the functional fluid 200 is an oil used for an automobile engine
  • the functional fluid 200 is not limited to the oil.
  • the rate of change of the chemical state of the functional fluid 200 becomes even faster.
  • hydraulic systems for construction vehicles such as excavators and engines have a very high rate of change in the chemical state of the functional fluid 200.
  • the rate of change in the chemical state of the functional fluid 200 becomes faster, so that the rate of functional deterioration of the functional fluid 200 (hereinafter, also referred to as deterioration rate) also increases. It will be faster.
  • the functional fluid state determination device 100 is attached to the flow path 310 to inline.
  • the state of the functional fluid 200 can be determined with. Therefore, according to the functional fluid state determination systems 400 and 410, the state of the functional fluid 200 in the mechanical device 300 can be appropriately determined for the mechanical device 300 in various usage environments.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the functional fluid state determination device 100 according to the embodiment.
  • the functional fluid state determination device 100 includes a light source 10, a spectroscope 20, and a determination unit 30.
  • the determination unit 30 has a storage unit 40.
  • each configuration will be described.
  • the light source 10 irradiates the functional fluid 200 that stores or circulates the flow path 310 in the mechanical device 300 with electromagnetic waves.
  • the light source 10 irradiates the functional fluid 200 with electromagnetic waves while the functional fluid 200 circulates in the flow path 310.
  • the light source 10 may irradiate the functional fluid 200 directly in contact with the optical window 112 with an electromagnetic wave via the optical window 112 provided on the flow path 310 in the mechanical device 300.
  • the light source 10 may irradiate the functional fluid 200 in direct contact with the optical window 112 with an electromagnetic wave via an optical fiber (not shown).
  • the electromagnetic wave may be ultraviolet light, visible light, or near-infrared light.
  • the light source 10 is preferably a light source that emits light having a wavelength in the visible light region.
  • an inexpensive visible light laser can be used as the light source 10.
  • an inexpensive optical system for visible light can be used as the optical system. Therefore, since the functional fluid state determination device 100 can be manufactured at low cost, the versatility of the functional fluid state determination device 100 is improved.
  • fluorescence is emitted from the functional fluid 200.
  • This fluorescence is, for example, autofluorescence of a component in the functional fluid 200 or fluorescence emitted by a fluorescent substance. Since background fluorescence affects the analysis, background correction is generally performed. However, if the substance that emits fluorescence is continuously irradiated with the excitation light, the fluorescence intensity gradually decreases. Therefore, when the functional fluid 200 is stagnant (that is, does not move) and the electromagnetic wave is irradiated to a predetermined portion of the functional fluid 200, the electromagnetic wave continues to be irradiated to the predetermined substance, so that the background fluorescence gradually decreases. To do.
  • the light source 10 irradiates the functional fluid 200 with electromagnetic waves when the functional fluid 200 circulates in the flow path 310, the electromagnetic waves are irradiated to a predetermined substance in the functional fluid 200. Continuing is reduced. Therefore, the time change of background fluorescence due to irradiating the functional fluid with electromagnetic waves can be reduced, and the accuracy of background correction is improved.
  • the spectroscope 20 derives a spectrum of Raman scattered light by dispersing Raman scattered light scattered from the functional fluid 200. As shown in FIG. 2, the Raman scattered light enters the housing 110 of the functional fluid state determination device 100 through the optical window 112 and is received by the spectroscope 20. The received Raman scattered light is separated into light for each wavelength band by a plurality of detection channels 22 (see FIG. 4) arranged on the light receiving surface of the spectroscope 20.
  • a plurality of detection channels 22 see FIG. 4
  • FIG. 4 is a schematic top view showing an example of the spectroscope 20 viewed from the light receiving side.
  • FIG. 5 is a schematic cross-sectional view taken along the line VV of FIG.
  • the waveguide input coupling diffraction grating, the waveguide output coupling diffraction grating, and other elements generally used in the waveguide are omitted.
  • only the codes of the two detection channels described with reference to FIG. 5 have alphabets after the numbers.
  • the spectroscope 20 includes an image pickup element 50 and a plurality of detection channels 22 having different lengths on the image pickup element 50.
  • the image sensor 50 is, for example, an image sensor such as a CMOS (Complementary MOS) or a CCD (Charge Coupled Device).
  • the length of the detection channel 22 corresponds to the wavelength of detectable (ie, spectroscopic) light. Therefore, the spectroscope 20 includes a number of detection channels 22 corresponding to the number of wavelengths to be separated. The light of each wavelength dispersed in each detection channel 22 is independently converted into an electric signal by the image sensor 50 for each detection channel 22.
  • the configuration and function of the detection channel 22 will be described by taking the detection channel 22a and the detection channel 22b as examples.
  • the configuration of the detection channel 22 will be described by taking the detection channel 22a as an example.
  • the detection channel 22a includes a waveguide input coupling diffraction grating 24a, an optical waveguide 26a, and a waveguide output coupling diffraction grating 28a.
  • the waveguide input coupled diffraction grating 24a inputs the Raman scattered light received by the spectroscope 20 into the detection channel 22a, and outputs the light in a predetermined propagation direction (here, the direction of the optical waveguide 26a). ..
  • the waveguide output coupled diffraction grating 28a outputs the diffracted light propagating in the optical waveguide 26a to the image pickup device 50.
  • the output diffracted light is light having a wavelength corresponding to the length of the optical waveguide 26a.
  • the diffracted light input to and output from the detection channel 22b is light having a wavelength corresponding to the length of the optical waveguide 26b.
  • the image sensor 50 independently receives the diffracted light output from the detection channel 22a to the image sensor 50 and the diffracted light output from the detection channel 22b to the image sensor 50 and converts them into an electric signal. That is, the image sensor 50 independently receives the diffracted light of different wavelengths output from each detection channel 22 at the location corresponding to each detection channel 22, and converts the diffracted light of each wavelength into an electric signal.
  • the image sensor 50 outputs the converted electric signal as a digital value to a calculation unit (not shown).
  • the spectroscope 20 has a calculation unit and derives a spectrum of Raman scattered light from the dispersed Raman scattered light.
  • the diffraction grating shown in FIG. 5 may be a mirror or a prism. Further, the positions of these diffraction gratings may be configured so that the mutual relationship of the diffraction gratings is satisfied in each detection channel 22.
  • the determination unit 30 determines the state of the functional fluid 200 (for example, oil) based on the spectrum of Raman scattered light derived by the spectroscope 20 (hereinafter, also referred to as Raman spectrum). As shown in FIG. 3, the determination unit 30 has a storage unit 40, and when the functional fluid 200 in the mechanical device 300 is replaced with a new functional fluid, the determination unit 30 is replaced with a new functional fluid. Immediately after, the Raman spectrum of the Raman scattered light of the functional fluid 200 is stored in the storage unit 40 as information indicating the initial state of the functional fluid 200.
  • the determination unit 30 uses the Raman spectrum of the functional fluid 200 derived by the spectroscope 20 and the new functional fluid read from the storage unit 40.
  • the state of the functional fluid 200 is determined by comparing it with the Raman spectrum of the functional fluid 200 immediately after being replaced with (so-called information indicating the initial state of the functional fluid 200).
  • Functional fluids 200 is, for example oil
  • spectra of the Raman scattered light determination unit 30 is used to determine the state of the oil, for example, it may be a spectrum in the wave number range of 300 cm -1 or more 4000 cm -1 or less ..
  • the spectrum of the Raman scattered light may be spectrum in the wave number range of 300 cm -1 or more 2500 cm -1 or less.
  • a strong signal can be detected in the spectrum of Raman scattered light, so that information on the chemical change of oil can be obtained with high efficiency and accuracy.
  • the spectrum of the Raman scattered light may be spectrum in the wave number range of 900 cm -1 or more 1500 cm -1 or less.
  • the change in spectral characteristics due to changes in the chemical structure of the oil is much larger than in infrared absorption spectroscopy. Information on chemical changes in oil can be obtained with higher efficiency and accuracy.
  • the storage unit 40 includes data on the spectrum of Raman scattered light of the functional fluid 200 acquired by the determination unit 30 from the spectroscope 20, a determination result regarding the state of the functional fluid 200 (for example, oil) determined by the determination unit 30, and determination.
  • This is a storage device in which a computer program or the like executed by the unit 30 is stored.
  • the storage unit 40 may store, for example, a database in which data such as a determination index and a threshold value for determining the state of the functional fluid 200 are stored according to the type of the functional fluid 200.
  • the storage unit 40 is realized by, for example, a semiconductor memory or the like.
  • FIG. 6 is a flowchart showing an example of the operation of the functional fluid state determination device 100 according to the embodiment.
  • the light source 10 irradiates the functional fluid 200 circulating in the flow path 310 in the mechanical device 300 with an electromagnetic wave (step S001). More specifically, the light source 10 irradiates the functional fluid 200 in direct contact with the optical window 112 with an electromagnetic wave through the optical window 112 provided on the flow path 310 in the mechanical device 300.
  • the functional fluid 200 is oil.
  • the electromagnetic wave may be ultraviolet light, visible light, or near-infrared light, but may be light having a wavelength in the visible light region.
  • the spectroscope 20 disperses the Raman scattered light scattered from the oil (step S002). Then, the spectroscope 20 derives a spectrum of the dispersed Raman scattered light (so-called Raman spectrum) (step S003).
  • the determination unit 30 acquires the Raman spectrum derived by the spectroscope 20 (step S004).
  • the determination unit 30 a spectrometer 20, and acquires a spectrum of 300 cm -1 or more 2500 cm -1 following wavenumber range.
  • the determination unit 30 determines whether or not the oil in the mechanical device 300 has been replaced with new oil (step S005).
  • the information indicating that the oil in the mechanical device 300 has been changed to new oil may be input by the user via an input unit (not shown) when the oil change is performed, and is in the flow path 310. It may be derived by the determination unit 30 based on the detection result of the sensor that detects the amount of oil in the above.
  • the determination unit 30 determines that the oil in the mechanical device 300 has been replaced with new oil (Yes in step S005), the determination unit 30 stores the acquired Raman spectrum in the storage unit 40 as information indicating the initial state of the oil (step S006). ). The details of the information indicating the initial information of the oil will be described in Operation Example 2 of the determination unit 30.
  • the determination unit 30 determines that the oil in the mechanical device 300 has not been replaced with new oil (No in step S005), it is based on the spectrum of Raman scattered light acquired in step S004 (so-called Raman spectrum). To determine the state of the oil (step S007).
  • the functional fluid state determination device 100 may execute the above flow at a predetermined timing.
  • the above flow may be executed when the mechanical device 300 is started (that is, when the power is turned on), and is executed after a predetermined time has elapsed since the mechanical device 300 was turned on. May be good. Further, for example, the above flow may be executed for a predetermined period (for example, every other week).
  • step S005 when the determination unit 30 determines that the oil in the mechanical device 300 has not been replaced with new oil (No in step S005), the determination unit 30 of the oil is based on the Raman spectrum acquired in step S004. The state is determined (step S007).
  • the determination unit 30 determines the state of the oil based on the intensity and shape of the peak of the Raman spectrum in a specific wave number range (hereinafter, a specific region) of the Raman spectrum. To do.
  • the signal intensity of the Raman spectrum changes due to changes in the chemical structure of the main component (for example, the component of the base oil) and additives such as antioxidants contained in the oil.
  • the oil is an oil in which an additive is added to the base oil.
  • Chemical reactions associated with changes in the chemical structure of the chemical components contained in the oil include, for example, oxidation, nitration, and sulfation of the oil (for example, base oil) components, decomposition of the base oil contained in the oil, and , Consumption of additives (eg, antioxidants), etc.
  • the specific regions are, for example, the specific regions E, F, G and H shown in FIG. 7. A specific description of the specific areas E to H will be described later.
  • the determination unit 30 determines the state of oil (for example, the state of deterioration of oil) by detecting changes in the Raman spectrum in each of the plurality of specific regions.
  • the determination unit 30 determines the degree of change in the oil state (for example, the degree of deterioration) based on the difference between the signal intensity of the Raman scattered light spectrum (so-called Raman spectrum) in each specific region and the threshold value. You may. Information such as the spectrum of Raman scattered light and the threshold value is stored in the storage unit 40. The determination unit 30 reads these data from the storage unit 40 and performs arithmetic processing such as calculation of the difference.
  • the determination unit 30 compares the spectrum of the Raman scattered light of the oil acquired in step S004 with the past data stored in the storage unit 40, and derives the rate of change of the spectrum in each specific region. Therefore, the degree of change in the state of the oil (for example, the degree of deterioration) may be determined.
  • the data is data on the spectrum of Raman scattered light of oil, and the past is, for example, a period from several days ago to half a year ago.
  • the determination unit 30 can accurately determine the degree of change in the oil state (for example, the degree of deterioration).
  • the threshold value in each specific region may be determined according to the magnitude of the influence on the oil due to the chemical reaction accompanying the change (for example, deterioration) of the oil state.
  • each threshold value may be determined according to the rate of progress of the chemical reaction or the degree to which the substance generated by the chemical reaction affects the functional deterioration of the oil. Further, each threshold value may be appropriately changed depending on the type of oil, the type of additives contained in the oil, and the like.
  • step S007 the determination unit 30 determines the state of the oil and then stores the determination result in the storage unit 40.
  • the determination unit 30 may output information indicating the determination result of the degree of change in the oil state (for example, the degree of deterioration) to the presentation unit.
  • the information indicating the determination result may be, for example, a numerical value such as a percentage or a five-step display, a color such as red, blue, or yellow, or a message.
  • This information may be audio or an image.
  • operation example 2 of the determination unit 30 will be described with reference to FIG.
  • operation example 2 another example of the operation of the determination unit 30 in the process of step 007 will be described.
  • the determination unit 30 has described an example of determining the oil state based on the intensity and shape of the peak of the Raman spectrum in a specific wave number range (hereinafter, specific region) of the acquired Raman spectrum.
  • operation example 2 an example of determining the oil state by comparing the acquired Raman spectrum with the Raman spectrum of the oil immediately after the oil change (information indicating the initial state of the oil) will be described.
  • the description overlapping with the operation example 1 will be omitted, and the points different from the operation example 1 will be mainly described.
  • the determination unit 30 obtains a spectrum of Raman scattered light of the oil immediately after the replacement with the new oil. It is stored in the storage unit 40 as information indicating the initial state of the oil (step S006).
  • the determination unit 30 determines the state of the oil in the process of step S007, from the storage unit 40 to the initial stage of the oil. Read and use the information indicating the status. More specifically, the determination unit 30 compares the spectrum of the Raman scattered light of the oil in the mechanical device 300 with the spectrum of the Raman scattered light of the oil immediately after being replaced with new oil. The state of the oil in 300 is determined.
  • the determination unit 30 compares the derived Raman scattered light spectrum of the oil with the spectrum of the Raman scattered light of the oil in the initial state of the oil, that is, the state immediately after the oil change. Not only can the oil state be determined based on the degree of change in the chemical state of the oil, but the rate of change in the chemical state of the oil can also be derived. As a result, the determination unit 30 can predict the transition of the change in the oil state, so that the user can know, for example, a guideline for the oil replacement time. Further, the determination unit 30 can predict the trouble that occurs or may occur in the mechanical device 300 from the change in the rate of change in the chemical state of the oil (for example, the rate of deterioration of the oil). Therefore, the user can easily and appropriately manage the oil change timing and the maintenance management of the mechanical device 300.
  • the information indicating the initial information of the oil is, for example, the spectrum of the Raman scattered light of the new oil measured immediately after the oil in the mechanical device 300 is replaced with the new oil.
  • immediately after changing to new oil may be the time immediately after changing the old oil in the mechanical device 300 to new oil, and may be the time before the mechanical device 300 is driven. It may be the time immediately after the device 300 is driven for a predetermined time.
  • a predetermined time means that new oil is circulated in the flow path 310 in the mechanical device 300 a predetermined number of times, and old oil and dirt remaining in the mechanical device 300 are uniformly dispersed in the new oil. It is the time to carry out the required number of cycles.
  • the information indicating the initial state of the oil is not the data of the new oil itself, but the measurement data immediately after the new oil is injected into the oil system of the mechanical device.
  • the determination unit 30 determines the state of the oil in consideration of the carry-over of the deteriorated oil before the replacement with new oil and the influence of dirt such as soot remaining in the mechanical device 300. can do. Further, the determination unit 30 can predict the change in the state of the oil in consideration of the above influence. Even if the oil in the mechanical device 300 is changed, the residue of the old oil taken out from the mechanical device 300 by the oil change may be mixed with the new oil injected into the mechanical device 300.
  • the new oil injected into the mechanical device 300 may show a change different from the time course of the oil itself. Since the determination unit 30 can make a determination in consideration of the above influences, it is possible to more accurately determine the state of the oil in the mechanical device 300 and the guideline of the oil change timing.
  • the information indicating the initial state of the oil includes not only the spectrum of the Raman scattered light of the oil immediately after being replaced with the new oil described above, but also, for example, information on the oil, information on the measurement, information on the mechanical device 300, and the like. May be included.
  • Information about oil is the type of oil, composition of oil, opening date, manufacturer, lot number, etc.
  • the information regarding the measurement includes the measurement date and time, the number of measurements, the measurement data, the spectrum of the excitation light, and the conditions for deriving the spectrum (for example, the extraction conditions for the measurement data to be used).
  • Information about the mechanical device 300 includes, for example, the manufacturer, serial number, type of mechanical device 300, usage environment, frequency of use, and usage status.
  • the determination unit 30 may select and use necessary information from these information according to the phase of the deterioration state of the oil.
  • the determination unit 30 acquires information on the operating environment of the mechanical device 300 (for example, air temperature, humidity, etc.) and the operating state of the mechanical device 300 (engine speed, oil temperature, etc.) at each measurement. Therefore, the determination result may be corrected based on the information.
  • the determination unit 30 can present necessary information to the user according to the degree of deterioration of the oil. Since the presentation unit, the input unit, and the computer device 500 have been described above, the description thereof will be omitted here.
  • FIG. 7 is a diagram showing the results of analysis of oils having different deterioration states by infrared absorption spectroscopy and Raman spectroscopy.
  • FIG. 7A is an absorption spectrum of the above three types of oil by the FT-IR method
  • FIG. 7B is a Raman spectrum of the above three types of oil by Raman spectroscopy.
  • Areas E, F, G, and H surrounded by broken lines in the figure each indicate the above-mentioned specific areas (hereinafter, simply referred to as "areas").
  • region E a change in the spectrum derived from the antioxidant ZnDTP (Zinc Dithioldithiophosphate) in the oil was confirmed.
  • region F changes in the spectrum due to oil nitration were confirmed.
  • region G a change in the spectrum derived from the oxidation of the oil was confirmed.
  • Each of the items confirmed in these three areas is defined in the conventional standard for monitoring lubricating oil (see Non-Patent Document 1).
  • the items confirmed in the area H are not defined in the above standard.
  • the shape of the absorption spectrum of FT-IR and the Raman spectrum in the region H hardly changed among the three oils, but the Raman spectrum showed little change.
  • the shape and peak signal intensity also referred to as signal intensity
  • the Raman spectra of the three types of oils in the region H characteristically indicate the state of the chemical reaction of the oils due to deterioration.
  • the oil state can be accurately determined in-line by Raman spectroscopy.
  • Non-Patent Document 1 defines the wavenumber region and the substance belonging to the characteristic signal on the infrared absorption spectrum obtained by the FT-IR method. Has been done. On the other hand, in Raman spectroscopy, such a standard does not exist.
  • the inventors of the present application repeatedly conducted diligent measurement experiments on a large number of oil samples, and found that the chemical change, which is a judgment index capable of effectively determining the state of oil by Raman spectroscopy, and the Raman spectrum caused by the chemical change.
  • the relationship between the peak wavenumber band and the change in signal strength of the peak was clarified.
  • Table 1 shows an example of a judgment index that can be used to judge the state of oil.
  • the oil is a base oil with an additive added.
  • the chemical changes shown in Table 1 that are indicators of the state of oil are (1) oxidation of oil, (2) consumption of additives, (3) decomposition of base oil, (4) sulfation of oil, and (5).
  • Oil is nitrated, and (6) Soot is generated or mixed in the oil.
  • the state of the oil can be determined based on the changes in the chemical bonds of the base oil and the additives contained in the oil caused by these chemical changes, and the changes in the signal intensity of the Raman spectrum attributed to the soot in the oil. it can. Specifically, it is as follows.
  • additives is a chemical change including a change in a chemical bond due to cleavage of a characteristic functional group contained in the additive.
  • Additives eg, antioxidants
  • the additive is decomposed by being oxidized by itself, or its chemical structure is changed.
  • the amount of the additive is reduced, so that the Raman signal intensity attributed to the characteristic functional group contained in the additive is reduced.
  • the additive is an amine-based additive
  • vibration of the C—NC bond of the secondary amine is observed.
  • the Raman signal intensity attributed to the vibration of the CNC bond decreases as the additive is consumed.
  • the Raman signal intensity attributed to the vibration of various bonds forming the aromatic ring contained in the additive also decreases as the additive is consumed.
  • Decomposition of base oil is a chemical change including a change in chemical bond due to cleavage and decomposition of carbon chains constituting the base oil.
  • the Raman signal intensity attributed to the CC bond of the carbon chain of the hydrocarbon in the base oil decreases with the decomposition of the base oil.
  • the Raman signal intensity attributed to the ester bond COC contained in the base oil also decreases with the decomposition of the base oil.
  • the Raman signal intensity attributed to the methylene group -CH 2- also decreases with the decomposition of the base oil.
  • Oil sulfonation is a chemical change in which carbon in the base oil reacts with impurities or sulfur in exhaust gas to form sulfonic acid and acidify it.
  • Acid R-SO 3 H: R is a substituent
  • Oil nitration is a chemical change in which the carbon of the base oil mainly reacts with nitrogen in the exhaust gas to form nitric acid.
  • the Raman signal intensity attributed to NOO of nitric acid increases with oil nitration.
  • soot in oil is a chemical change caused by soot (carbon) generated by incomplete combustion of the fuel used in the mechanical device 300.
  • the Raman signal intensity attributed to soot (carbon) increases as the amount of soot generated or mixed in the oil increases.
  • the peak wave number band of the Raman spectrum due to the chemical change is a wave number band A, which is a wave number range of 750 cm -1 or more and 1150 cm -1 or less, and more than 1150 cm -1 and 1500 cm -1 or less.
  • frequency band B the wave number range
  • a frequency band C is a wave number range of 1600 cm -1 or 1900 cm -1 or less.
  • the determination unit 30 oxidizes and sulfates the oil from the spectrum of the Raman scattered light derived by the spectroscope 20, for example, based on the signal intensity of the peak observed in the spectrum of the Raman scattered light located in the wave number band A.
  • the state of the oil is determined by acquiring information on the decomposition of the base oil component and the oxidation of the additive. Further, the determination unit 30 uses the spectrum of the Raman scattered light derived by the spectroscope 20 to nitrate the oil based on, for example, the signal intensity of the peak observed in the spectrum of the Raman scattered light located in the wave number band B. The state of the oil is determined by decomposing the base oil component and acquiring information on the soot generated or mixed in the oil. Further, the determination unit 30 oxidizes and groups the oil based on the spectrum of the Raman scattered light derived by the spectroscope 20, for example, based on the signal intensity of the peak observed in the spectrum of the Raman scattered light located in the wave number band C. The state of the oil is determined by decomposing the oil component and acquiring information on the soot generated or mixed in the oil.
  • the functional fluid 200 has been described by taking the oil in the mechanical device 300 as an example, but the functional fluid 200 is not limited to this. It is also applicable to various analysis targets exemplified as the functional fluid 200. It is also applicable to, for example, liquid raw materials, processed products, products, etc. in a food processing process.
  • the state of the functional fluid 200 has been described by taking deterioration as an example, but the state is not limited to this. It may be an improvement of the function exemplified as the state of the functional fluid 200, or may be a state in which the functional change (for example, reduction or improvement) does not occur only by the component change of the functional fluid 200.
  • the storage unit 40 is provided in the determination unit 30, but the determination unit 30 may not be provided.
  • the storage unit 40 may be a storage unit on a cloud server.
  • the storage unit 40 may determine not only the state of the functional fluid 200 but also the state of the mechanical device 300 in which the functional fluid 200 is used, and further manage the mechanical device 300 based on the determination result. You may derive information about.
  • a part or all of the components included in the functional fluid state determination device in the above embodiment may be composed of one system LSI (Large Scale Integration: large-scale integrated circuit).
  • the functional fluid state determination device may be composed of a system LSI having a light source, a spectroscopic unit, and a determination unit.
  • the system LSI does not have to include a light source.
  • a system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip. Specifically, a microprocessor, a ROM (Read Only Memory), a RAM (Random Access Memory), etc. It is a computer system configured to include. A computer program is stored in the ROM. The system LSI achieves its function by operating the microprocessor according to the computer program.
  • a system LSI it may be referred to as an IC (Integrated Circuit), an LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of forming an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • one aspect of the present disclosure may be not only such a functional fluid state determination device but also a functional fluid state determination method in which a characteristic component included in the device is a step. Further, one aspect of the present disclosure may be a computer program that causes a computer to execute each characteristic step included in the functional fluid state determination method. Also, one aspect of the present disclosure may be a computer-readable, non-temporary recording medium on which such a computer program is recorded.
  • the state of the functional fluid in the mechanical device can be determined in-line. According to the present disclosure, since the state of the functional fluid can be determined even in a vibration and high temperature environment, it can be applied to all machinery and devices that use the working fluid, such as construction machinery, vehicles, power generation devices, and internal combustion engines. Therefore, the state of the functional fluid can be monitored even while these mechanical devices are in operation.

Abstract

This functional fluid state determination apparatus (100) is provided with: a light source (10) which irradiates, with electromagnetic radiation, a functional fluid (200) that is retained or circulated in a flow channel (310) within machinery (300); a spectrometer (20) which derives a Raman scattering light spectrum by dispersing Raman scattering light scattered from the functional fluid (200); and a determination unit (30) which determines a state of the functional fluid (200) on the basis of the Raman scattering light spectrum derived by the spectrometer (20).

Description

機能流体状態判定装置及び機能流体状態判定システムFunctional fluid state determination device and functional fluid state determination system
 本開示は、機械装置に使用される油類の状態を判定する機能流体状態判定装置及び機能流体状態判定システムに関する。 The present disclosure relates to a functional fluid state determination device and a functional fluid state determination system that determine the state of oils used in mechanical devices.
 従来、機械装置内の機能流体(例えば、潤滑油及びエンジンオイルなどのオイル)の分析は、機械装置からオイルなどの機能流体をサンプリングして、専門の検査機関に分析を依頼する方法が主流となっている。しかしながら、機械装置からオイルなどの機能流体をサンプリングするために機械装置の稼働を止める必要があるため、手間がかかる。また、機械装置からサンプリングした機能流体を専門の検査機関に送付してから分析結果が返ってくるまでに時間がかかる。そのため、インラインで機械装置内のオイルなどの機能流体の物性を測定して、当該機能流体の状態を比較的容易に判定することが求められている。 Conventionally, the mainstream method for analyzing functional fluids in mechanical devices (for example, oils such as lubricating oil and engine oil) is to sample functional fluids such as oil from mechanical devices and request an analysis by a specialized inspection agency. It has become. However, it is troublesome because it is necessary to stop the operation of the mechanical device in order to sample the functional fluid such as oil from the mechanical device. In addition, it takes time from sending the functional fluid sampled from the mechanical device to a specialized inspection organization until the analysis result is returned. Therefore, it is required to measure the physical properties of a functional fluid such as oil in a mechanical device in-line to determine the state of the functional fluid relatively easily.
 例えば、特許文献1は、赤外吸収分光法を用いたエンジン油の劣化判定方法及び劣化判定装置を開示している。特許文献1に記載の技術では、セル内を通過するエンジン油を透過した赤外光を検出することにより、特定波数領域の吸光度を算出する。そして、算出された吸光度から動粘度変化率を導出することにより、エンジン油の劣化を判定する。 For example, Patent Document 1 discloses a deterioration determination method and a deterioration determination device for engine oil using infrared absorption spectroscopy. In the technique described in Patent Document 1, the absorbance in a specific wavenumber region is calculated by detecting infrared light transmitted through engine oil passing through the cell. Then, the deterioration of the engine oil is determined by deriving the rate of change in kinematic viscosity from the calculated absorbance.
 例えば、特許文献2は、光学式又は電気抵抗式のセンサを用いてオイル劣化度を検出又は推定するとともに、オイルの粘度を検出又は推定することにより、オイルの劣化異常と粘度異常とを区別して診断することができるオイル異常診断装置を開示している。 For example, Patent Document 2 distinguishes between abnormal oil deterioration and abnormal viscosity by detecting or estimating the degree of oil deterioration using an optical or electric resistance type sensor and detecting or estimating the viscosity of oil. It discloses an oil abnormality diagnostic device that can make a diagnosis.
 例えば、特許文献3は、オイルが収容されたサンプルボトルに卷回されているコイルに発生する電磁誘導電圧を測定する不純物測定部と、サンプルボトルに光を照射してオイルの劣化を測定する劣化測定部とを備える流体測定装置及び流体測定方法を開示している。 For example, Patent Document 3 describes an impurity measuring unit that measures an electromagnetic induction voltage generated in a coil that is circulated in a sample bottle containing oil, and a deterioration that measures the deterioration of oil by irradiating the sample bottle with light. A fluid measuring device including a measuring unit and a fluid measuring method are disclosed.
特開2003-107000号公報Japanese Unexamined Patent Publication No. 2003-107000 特開2011-196220号公報Japanese Unexamined Patent Publication No. 2011-196220 特開2018-017642号公報JP-A-2018-017642
 特許文献1に記載の従来技術は、セル内のオイルを透過した光を検出する必要があるため、及び、赤外検出器を極低温に冷却する必要があるため、検出装置を設置する場所に制約がある。さらに、赤外検出器が高価であるため、特許文献1に記載の従来技術を機械装置でのインライン測定に適用することが困難である。 Since the prior art described in Patent Document 1 needs to detect the light transmitted through the oil in the cell and also needs to cool the infrared detector to an extremely low temperature, the place where the detection device is installed is used. There are restrictions. Further, since the infrared detector is expensive, it is difficult to apply the prior art described in Patent Document 1 to in-line measurement in a mechanical device.
 特許文献2に記載の従来技術は、光学式のセンサによりオイルの劣化度を検出する場合、光透過型のセンサを使用しているため、特許文献1に記載の従来技術と同様に、検出装置を設置する場所に制約がある。また、電気抵抗式のセンサによりオイルの劣化度を検出する場合、得られる情報が限定的であり、精度良くオイルの劣化度を判定することが困難である。 Since the conventional technique described in Patent Document 2 uses a light transmission type sensor when detecting the degree of deterioration of oil by an optical sensor, the detection device is similar to the conventional technique described in Patent Document 1. There are restrictions on where to install. Further, when the degree of deterioration of oil is detected by an electric resistance type sensor, the information that can be obtained is limited, and it is difficult to accurately determine the degree of deterioration of oil.
 特許文献3に記載の従来技術は、機械装置からオイルをサンプリングして比較的容易にオイルの状態を測定することができる技術であるが、機械装置からオイルをサンプリングするために、機械装置の稼働を止める必要がある。 The conventional technique described in Patent Document 3 is a technique in which oil can be sampled from a mechanical device and the state of the oil can be measured relatively easily. However, in order to sample the oil from the mechanical device, the operation of the mechanical device is performed. Need to stop.
 そこで、本開示は、機械装置内の機能流体の状態をインラインで判定できる機能流体状態判定装置及び機能流体状態判定システムを提供する。 Therefore, the present disclosure provides a functional fluid state determination device and a functional fluid state determination system that can determine the state of the functional fluid in the mechanical device in-line.
 本開示の一態様に係る機能流体状態判定装置は、機械装置内の流路を貯留又は循環する機能流体に電磁波を照射する光源と、前記機能流体から散乱されるラマン散乱光を分光することにより前記ラマン散乱光のスペクトルを導出する分光器と、前記分光器により導出された前記ラマン散乱光のスペクトルに基づいて前記機能流体の状態を判定する判定部と、を備える。 The functional fluid state determination device according to one aspect of the present disclosure disperses a light source that irradiates a functional fluid that stores or circulates in a flow path in a mechanical device with an electromagnetic wave and Raman scattered light scattered from the functional fluid. A spectroscope for deriving the spectrum of the Raman scattered light and a determination unit for determining the state of the functional fluid based on the spectrum of the Raman scattered light derived by the spectroscope are provided.
 また、本開示の一態様に係る機能流体状態判定システムは、機能流体と、前記機能流体が注入される機械装置と、前記機械装置内の前記機能流体の状態を判定する前記機能流体状態判定装置と、を備える。 Further, the functional fluid state determination system according to one aspect of the present disclosure is the functional fluid state determination device that determines the state of the functional fluid, the mechanical device into which the functional fluid is injected, and the functional fluid in the mechanical device. And.
 本開示によれば、機械装置内の機能流体の状態をインラインで判定できる機能流体状態判定装置及び機能流体状態判定システムを提供することができる。 According to the present disclosure, it is possible to provide a functional fluid state determination device and a functional fluid state determination system that can determine the state of a functional fluid in a mechanical device in-line.
図1は、実施の形態に係る機能流体状態判定システムの一例を示す図である。FIG. 1 is a diagram showing an example of a functional fluid state determination system according to the embodiment. 図2は、図1に示す破線で囲まれた領域Aの拡大模式図である。FIG. 2 is an enlarged schematic view of the area A surrounded by the broken line shown in FIG. 図3は、実施の形態に係る機能流体状態判定装置の機能構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of the functional configuration of the functional fluid state determination device according to the embodiment. 図4は、実施の形態における分光器を受光側から見た一例を示す概略上面図である。FIG. 4 is a schematic top view showing an example of the spectroscope in the embodiment viewed from the light receiving side. 図5は、図4のV-V線における概略断面図である。FIG. 5 is a schematic cross-sectional view taken along the line VV of FIG. 図6は、実施の形態に係る機能流体状態判定装置の動作の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of the operation of the functional fluid state determination device according to the embodiment. 図7は、劣化状態の異なるオイルを赤外吸収分光法及びラマン分光法で分析した結果を示す図である。FIG. 7 is a diagram showing the results of analysis of oils having different deterioration states by infrared absorption spectroscopy and Raman spectroscopy.
 (本開示に至った知見)
 機械装置に使用される機能流体(例えば、オイル)は、機械装置内の各部の動きを潤滑にする潤滑作用、例えば、ピストンとピストンシリンダとの隙間を密閉してガス抜けを防ぎ気密性を保つ密封作用、燃焼などで発生する熱を吸収して放出する冷却作用、燃焼によって発生した汚れを取り込む清浄分散作用、及び、錆などの腐食から機械装置を守る防腐食作用を有する。これらの作用の低下により、機械装置の不具合が発生する。そのため、機械装置内のオイルなどの機能流体の状態を把握して、適切な時期に新しい機能流体に交換する必要がある。以下、機能流体として、油類(以下、オイルともいう)を例に説明する。
(Findings leading to this disclosure)
The functional fluid (for example, oil) used in the mechanical device has a lubricating action that lubricates the movement of each part in the mechanical device, for example, seals the gap between the piston and the piston cylinder to prevent gas leakage and maintain airtightness. It has a sealing action, a cooling action that absorbs and releases heat generated by combustion, a cleaning and dispersing action that takes in dirt generated by combustion, and an anticorrosion action that protects mechanical devices from corrosion such as rust. Due to the reduction of these actions, a malfunction of the mechanical device occurs. Therefore, it is necessary to grasp the state of the functional fluid such as oil in the mechanical device and replace it with a new functional fluid at an appropriate time. Hereinafter, oils (hereinafter, also referred to as oil) will be described as an example of the functional fluid.
 機械装置に使用される油類の分析は、通常、以下の目的で行われている。当該分析の目的は、例えば、適切なオイル交換時期を判断すること、機械装置の状態を把握すること、機械装置の故障の前兆などを検知すること、並びに、機械装置が故障した場合に、機械装置の状態及び故障の原因などを特定すること、である。オイルの分析は、これらの目的に応じて、分析手法及びオイル中の分析対象物を決定する。例えば、オイルの化学変化の分析は、赤外吸収分光法又はガスクロマトグラフィーにより行われる。また、機械装置の内部で発生する摩耗粉及び土砂などの機械装置の外部から混入する固体成分の検出は、粒子計数器を用いて行われる。また、オイルへの混入物の成分分析は、プラズマ蛍光分光法などの分析法により行われる。また、オイルの物理特性の分析は、粘度計を用いて行われる。 Analysis of oils used in machinery is usually performed for the following purposes. The purpose of the analysis is, for example, to determine an appropriate oil change time, to grasp the state of a mechanical device, to detect a sign of a mechanical device failure, and to detect a mechanical device failure. To identify the state of the device and the cause of the failure. The analysis of oil determines the analysis method and the analysis target in the oil according to these purposes. For example, the analysis of chemical changes in oil is performed by infrared absorption spectroscopy or gas chromatography. Further, the detection of solid components mixed from the outside of the mechanical device such as abrasion powder and earth and sand generated inside the mechanical device is performed by using a particle counter. Further, the component analysis of the contaminants in the oil is performed by an analysis method such as plasma fluorescence spectroscopy. In addition, the physical properties of the oil are analyzed using a viscometer.
 しかしながら、これらの分析に使用される分析装置は、一般に大型かつ非常に高価であり、汎用性に乏しい。また、これらの分析装置を小型化すると、分析精度が低下する。また、これらの分析装置は、精密な機械構造を備えるため、移動及び振動に対し脆弱である。つまり、これらの分析装置は、可搬性が極めて低い。そのため、これらの分析装置を、例えば、建設機械及び乗り物などの移動を伴う機械装置に組み込むことは難しい。また、これらの分析装置を、例えば、風力発電装置などの移動を伴わない据置型の機械装置に組み込むことも難しい。 However, the analyzers used for these analyzes are generally large and very expensive, and lack versatility. Further, if these analyzers are miniaturized, the analysis accuracy is lowered. In addition, these analyzers are vulnerable to movement and vibration due to their precise mechanical structure. That is, these analyzers are extremely low in portability. Therefore, it is difficult to incorporate these analyzers into mechanical devices that involve movement, such as construction machinery and vehicles. It is also difficult to incorporate these analyzers into stationary mechanical devices that do not involve movement, such as wind power generators.
 したがって、機械装置に使用されるオイルの分析には、上記の分析機器を備える専門の分析機関で行われる。そのため、機械装置の使用者は、機械装置からオイルをサンプリングし、オイルサンプルを分析機関に送付する必要がある。分析機関で分析されたオイルのデータは、高精度で、かつ、信頼性の高いものではあるものの、機械装置の使用者がその結果を知ることができるまでに、通常、3週間程度の時間を要し、また高価な装置を使用するために分析費用もまた高価である。そのため、オイルの分析を高頻度に行うことは難しく、例えば故障の前兆予知を行うには不十分であった。また、機械装置からオイルをサンプリングするために、機械装置の運転を停止する必要がある場合がある。それに伴って、当該機械装置が行っていた作業の進捗が滞るため、代替装置を準備する必要性が生じる。また、最悪の場合、工期の遅延が生じる可能性もある。このように、追加のコスト又は損失が生じる可能性があることも、オイルの分析の頻度を下げる要因となり得る。コストに関しては、使用者が、機械装置からオイルをサンプリングするための人件費も生じる。 Therefore, the analysis of oil used in machinery is performed by a specialized analytical institution equipped with the above analytical equipment. Therefore, the user of the mechanical device needs to sample the oil from the mechanical device and send the oil sample to the analysis institution. Although the oil data analyzed by the analytical institution is highly accurate and reliable, it usually takes about 3 weeks for the user of the mechanical device to know the result. Analytical costs are also high due to the use of expensive equipment. Therefore, it is difficult to analyze the oil frequently, and it is insufficient to predict the precursor of a failure, for example. It may also be necessary to shut down the machinery in order to sample oil from the machinery. Along with this, the progress of the work performed by the mechanical device is delayed, and it becomes necessary to prepare an alternative device. In the worst case, the construction period may be delayed. Thus, the potential for additional costs or losses can also be a factor in reducing the frequency of oil analysis. In terms of cost, there is also a labor cost for the user to sample the oil from the machinery.
 機械装置内のオイルの状態は、同じ種類の機械装置であっても、当該機械装置が使用される環境によって異なるため、例えば、稼働時間が同じであっても劣化状態が同じとは限らない。とりわけ、機械装置が建設機械の場合には、機械装置が使用される環境によって機械装置及び機械装置が備えるエンジンなどの内燃機関にかかる負荷の大きさが異なる。そのため、潤滑油をはじめとするオイルの劣化速度も一様ではない。これに対応するため、建設機械では、現状、非常に短い間隔でオイルの交換が行われている。代表的には、建設機械の潤滑油については、稼働時間500時間毎に交換するようにメーカーから推奨されている。しかしながら上述の通り、機械装置内のオイルの劣化速度は、当該機械装置が使用される環境によって大きく異なるため、機械装置にかかる負荷の大きさが小さい使用環境においては、稼働時間が500時間であってもオイルの状態が良好である場合も多い。そのため、機械装置の稼働時間で一様にオイル交換を行うと、まだ十分に使用可能なオイルを劣化したオイルとして廃棄する場合がある。これは、コスト及び環境保全の観点から、改善すべき事項である。しかしながら、現状、機械装置の使用者は、オイルの状態、つまり、オイルの劣化度合いを、その場で確認することが難しいこと、及び、分析機関に送付したオイルサンプルの分析結果が使用者の手元に届くまでに時間がかかることから、所定の稼働時間でオイル交換することが多い。機械装置の使用者が分析機関からオイルサンプルの分析結果を受け取る前に、オイルの状態が劣化してオイル交換をすべき状態になった場合、劣化したオイルにより機械装置が故障する可能性がある。そのような場合、オイルの分析を行っても、オイルの状態の管理、ひいては、機械装置の保守管理に対して意味をなさないことになる。 The state of oil in a machine device differs depending on the environment in which the machine device is used, even if the machine device is of the same type. Therefore, for example, even if the operating time is the same, the deterioration state is not always the same. In particular, when the mechanical device is a construction machine, the magnitude of the load applied to the mechanical device and the internal combustion engine such as the engine included in the mechanical device differs depending on the environment in which the mechanical device is used. Therefore, the deterioration rate of oils such as lubricating oils is not uniform. In response to this, construction machinery is currently changing oil at very short intervals. Typically, manufacturers recommend that construction machinery lubricants be replaced every 500 hours of operation. However, as described above, the deterioration rate of the oil in the mechanical device varies greatly depending on the environment in which the mechanical device is used. Therefore, in the usage environment where the load applied to the mechanical device is small, the operating time is 500 hours. However, the oil is often in good condition. Therefore, if the oil is changed uniformly during the operating time of the mechanical device, the oil that is still sufficiently usable may be discarded as deteriorated oil. This is a matter to be improved from the viewpoint of cost and environmental protection. However, at present, it is difficult for the user of the mechanical device to check the state of the oil, that is, the degree of deterioration of the oil on the spot, and the analysis result of the oil sample sent to the analysis organization is in the user's hand. Since it takes time to reach the oil, the oil is often changed within the specified operating time. If the condition of the oil deteriorates and the oil needs to be changed before the user of the machinery receives the analysis result of the oil sample from the analysis institution, the deteriorated oil may cause the machinery to fail. .. In such a case, even if the oil is analyzed, it does not make sense for the control of the state of the oil and the maintenance of the mechanical device.
 以上のように、オイルの分析は、機械装置を分解せずに機械装置の内部の情報を得られる重要な手段であるにも関わらず、実際には、機械装置の保守管理にあたって有効に活用されているとは言い難い。 As described above, although oil analysis is an important means for obtaining information on the inside of a mechanical device without disassembling the mechanical device, it is actually effectively used for maintenance and management of the mechanical device. It is hard to say that it is.
 検査機関に依頼して分析するという考え方に対して、分析装置を機械装置内に設置し、任意のタイミングで油の分析を行うインライン分析という考え方がある。機械装置内のオイルにインライン分析を適用できれば、機械装置からオイルをサンプリングせずに、その場で分析することができる。これにより、機械装置の使用者は、オイルの状態を容易に把握することができるため、オイルの状態に応じて、オイル交換など機械装置に必要なメンテナンスを適切に行うことができる。また、機械装置の使用者は、オイルのサンプリング、分析機関へのオイルサンプルの送付、及び、オイルサンプルの分析結果の到着を待つ時間が不要になるため、コストの削減及び作業の効率化を図ることができる。例えば、機械装置にインライン分析を適用できれば、十分に使用可能な状態のオイルを廃棄すること、又は、過剰に劣化が進んだオイルを使用継続することによる機械装置への悪影響を排除することが可能となる。また、機械装置の稼働中にオイルの分析を行うことができるため、オイルのサンプリング分析のために機械装置の稼働を止める必要がなくなる。さらに、オイルのサンプリングを行う作業者の人件費も削減制可能となる。 In contrast to the idea of requesting an inspection organization for analysis, there is an idea of in-line analysis in which an analyzer is installed inside the mechanical device and oil is analyzed at any time. If in-line analysis can be applied to the oil in the machine, the oil can be analyzed on the spot without sampling from the machine. As a result, the user of the mechanical device can easily grasp the state of the oil, so that maintenance necessary for the mechanical device such as oil change can be appropriately performed according to the state of the oil. In addition, mechanical equipment users do not have to wait for oil sampling, sending oil samples to analysis institutions, and the arrival of analysis results of oil samples, thus reducing costs and improving work efficiency. be able to. For example, if in-line analysis can be applied to machinery, it is possible to eliminate the adverse effects on machinery due to discarding oil that is sufficiently usable or continuing to use oil that has deteriorated excessively. It becomes. Further, since the oil can be analyzed during the operation of the mechanical device, it is not necessary to stop the operation of the mechanical device for the sampling analysis of the oil. Furthermore, the labor cost of workers who sample oil can be reduced.
 しかしながら、機械装置の稼働により発生する振動、及び、高温環境といった悪条件下で、オイルの状態を高精度に分析することができるインライン分析装置を実現することは極めて困難である。現在、機械装置に取り付け可能なオイルの分析装置の例として、例えば、微小振動子のオイル中での共振周波数の変化からオイルの粘度の変化を推定する粘度計を用いた分析装置、及び、オイル中に浸漬された電極間の電気容量を測定することにより、例えば、オイル中に含まれる煤及び水分などの割合を測定してオイルの状態の変化を検知するタイプの分析装置がある。 However, it is extremely difficult to realize an in-line analyzer that can analyze the state of oil with high accuracy under adverse conditions such as vibration generated by the operation of mechanical devices and high temperature environment. Currently, as an example of an oil analyzer that can be attached to a mechanical device, for example, an analyzer using a viscometer that estimates a change in oil viscosity from a change in the resonance frequency of a microtranslator in oil, and an oil. There is a type of analyzer that detects a change in the state of oil by measuring the electric capacity between the electrodes immersed in the oil, for example, by measuring the ratio of soot and water contained in the oil.
 これらの分析装置は、粘度又は誘電率といったオイルの物理特性を測定することにより、オイルの状態の変化を分析している。特にオイルの粘度は、機械装置の保守管理上の重要な指標の1つではあるが、オイルの粘度は、オイルの化学的変化の結果変化するだけでなく、例えば、温度条件によっても、又は、他の油類の混入によっても変化するため、粘度だけではオイルの状態に関して得られる情報が限定的である。このようなオイルの物理特性は、オイルの化学変化の結果として生じるものであったとしても、オイルの物理特性の変化は、必ずしも単一の要因と一対一対応するものではない。そのため、オイルの物理特性の測定では、オイルの状態の変化の原因及びオイルの使用可能な期間(つまり、余寿命)などに対して有益な知見が得られるほどの情報量は得られない。 These analyzers analyze changes in the state of oil by measuring the physical properties of the oil, such as viscosity or permittivity. In particular, the viscosity of oil is one of the important indicators for the maintenance of machinery and equipment, but the viscosity of oil changes not only as a result of chemical changes in oil, but also, for example, depending on temperature conditions or. Since it changes with the mixing of other oils, the information that can be obtained regarding the state of the oil is limited only by the viscosity. Even if such physical properties of an oil are the result of a chemical change in the oil, the changes in the physical properties of the oil do not necessarily have a one-to-one correspondence with a single factor. Therefore, the measurement of the physical properties of oil does not provide enough information to provide useful insights into the causes of changes in the state of the oil and the useful life of the oil (that is, the remaining life).
 一方、赤外吸収分光分析器に代表される光学的な分析機器は、その構造上、回折格子及び微細スリットなどの光学部品の精密な軸合わせが必須であり、振動に対して極めて脆弱である。また一般に回折格子を用いた分散型の分光光学系では、原理的に高い分解能及び光学系の明るさと、光路長、すなわち、分光器の物理的サイズとは、必ず、トレードオフの関係となる。したがって、機械装置に取り付け可能な分析装置の小型化を実現するためには、分光器の光学性能を犠牲にする必要があった。さらに、赤外吸収分光法では、測定波長帯域が中赤外領域(数ミクロン)であり、この帯域の波長の光を使用可能な検出器は、一般に極低温(例えば液体窒素温度)に冷却する必要があり、また非常に高価である。赤外吸収分光分析器は、上記の特性を有するため、赤外吸収分光分析器を備える分析装置を機械装置に適用することが非常に困難である。特に、稼働中の機械装置、例えば、建設機械、及び、自動車のエンジンなどの内燃機関の周りに赤外吸収分光分析装置を実装することは、事実上、不可能であると考えられている。 On the other hand, optical analytical instruments such as infrared absorption spectrophotometers are extremely vulnerable to vibration because their structures require precise alignment of optical components such as diffraction gratings and fine slits. .. In general, in a distributed spectroscopic optical system using a diffraction grating, there is always a trade-off between high resolution and brightness of the optical system and the optical path length, that is, the physical size of the spectroscope. Therefore, in order to realize the miniaturization of the analyzer that can be attached to the mechanical device, it is necessary to sacrifice the optical performance of the spectroscope. Further, in infrared absorption spectroscopy, the measurement wavelength band is in the mid-infrared region (several microns), and a detector capable of using light having a wavelength in this band is generally cooled to an extremely low temperature (for example, liquid nitrogen temperature). Needed and very expensive. Since the infrared absorption spectrophotometer has the above characteristics, it is very difficult to apply an analyzer including the infrared absorption spectrophotometer to a mechanical device. In particular, it is considered virtually impossible to implement infrared absorption spectroscopic analyzers around operating machinery, such as construction machinery and internal combustion engines such as automobile engines.
 また、オイルの香り特性を測定することにより、オイルの状態の変化を分析するタイプの分析装置がある。例えば、特開2019-70635号公報(特許文献4)には、機械装置の潤滑油リザーバに設置され、潤滑油から放出される臭い又は香り成分を検出する分析装置が開示されている。当該分析装置は、センサとインジェクタとを含み、インジェクタにより潤滑油に、又は、潤滑油の周囲の空気(つまり、気化した潤滑油成分を含む空気)に化学物質を注入し、当該化学物質と潤滑油の香り分子(つまり、気化した潤滑油成分中の香り分子)との相互作用を検出する。当該相互作用の検出に使用可能なセンサの一例として、ラマン分光法を使用するセンサが開示されている。しかしながら、一般にラマン分光法は、赤外吸収分光法に比べて得られる信号強度が極めて低い。気体中の分子、特に潤滑油の周囲の空気中の潤滑油蒸気(いわゆる、気化した潤滑油成分)、その中でも、潤滑油の劣化に関連する香り分子は、濃度が非常に低いため、特に機械装置に取り付けて使用するような小型センサでは微弱なラマン散乱光の検知が困難である。 In addition, there is a type of analyzer that analyzes changes in the state of oil by measuring the scent characteristics of oil. For example, Japanese Patent Application Laid-Open No. 2019-70635 (Patent Document 4) discloses an analyzer that is installed in a lubricating oil reservoir of a mechanical device and detects an odor or scent component released from the lubricating oil. The analyzer includes a sensor and an injector, and the injector injects a chemical substance into the lubricating oil or into the air around the lubricating oil (that is, the air containing the vaporized lubricating oil component) to lubricate the chemical substance. Detects interactions with oil scent molecules (ie, scent molecules in vaporized lubricating oil components). As an example of a sensor that can be used to detect such an interaction, a sensor that uses Raman spectroscopy is disclosed. However, in general, Raman spectroscopy has extremely low signal strength obtained as compared with infrared absorption spectroscopy. Molecules in the gas, especially the lubricating oil vapor (so-called vaporized lubricating oil component) in the air around the lubricating oil, especially the fragrance molecules related to the deterioration of the lubricating oil, are particularly low in concentration, especially in machinery. It is difficult to detect weak Raman scattered light with a small sensor that is used by attaching it to a device.
 それに対して、本願では、流路中を貯留または循環する液相の機能流体を直接分析するため、気相中よりも測定対象分子の数は飛躍的に多くなる。そのため、小型のセンサであっても、測定対象分子の検出が可能となる(つまり、測定対象物の分析が可能となる)。具体的な構成については、後述する。 On the other hand, in the present application, since the functional fluid of the liquid phase stored or circulated in the flow path is directly analyzed, the number of molecules to be measured is dramatically larger than that in the gas phase. Therefore, even a small sensor can detect the molecule to be measured (that is, it can analyze the object to be measured). The specific configuration will be described later.
 本願発明者らは、上記課題を鑑み、鋭意検討した結果、機械装置内のオイルの化学変化、及び、組成変化を定量的に評価可能なレベルの分析をインラインで行うことを可能にするインライン分析装置を備える機能流体状態判定装置を見出すに至った。これにより、機械装置内の機能流体(例えば、オイル)の状態をインラインで判定することが可能となり、機械装置に使用される潤滑油及び作動油などの機能流体の適切な交換の管理及び当該機械装置の状態の監視が実現することができる。 As a result of diligent studies in view of the above problems, the inventors of the present application make it possible to perform in-line analysis at a level at which chemical changes and composition changes of oil in a mechanical device can be quantitatively evaluated. We have found a functional fluid state determination device equipped with the device. This makes it possible to determine the state of functional fluid (for example, oil) in the machine in-line, manage the appropriate replacement of functional fluids such as lubricating oil and hydraulic oil used in the machine, and manage the machine. Monitoring of the state of the device can be realized.
 以下、本開示に適用される分析法について説明する。 The analysis method applied to this disclosure will be described below.
 近年、物質の化学分析の手法として、ラマン分光法が注目されている。ラマン分光法とは、被測定物質(以下、測定対象物又は分析対象物ともいう)に対して単一波長の励起光を、一般的にはレーザー光を照射し、その反射光(レイリー光)に混じって得られる、励起光とは異なる波長の光(ラマン散乱光)のスペクトルから、被測定物質の化学的性質の情報を得る技術である。しかしながら、ラマン散乱光は、励起光と同じ波長の反射光又は散乱光であるレイリー光の強度に対して10-6程度の強度しかなく、極めて微弱である。そのため高感度の検出器及び光学系が必要であり、また励起光源となるレーザーに関しても波長安定性及び単色性などの高い性能が要求される。こうした理由から、ラマン分光法は、その高い有用性にも関わらず、赤外吸収分光法に比べて産業への応用はあまり進んでいない。 In recent years, Raman spectroscopy has been attracting attention as a method for chemical analysis of substances. Raman spectroscopy refers to irradiating a substance to be measured (hereinafter, also referred to as an object to be measured or an object to be analyzed) with excitation light having a single wavelength, generally laser light, and the reflected light (Rayleigh light). This is a technique for obtaining information on the chemical properties of the substance to be measured from the spectrum of light (Raman scattered light) having a wavelength different from that of the excitation light, which is obtained by mixing with the light. However, the Raman scattered light has an intensity of only about 10 to 6 with respect to the intensity of the reflected light or the scattered light having the same wavelength as the excitation light, which is extremely weak. Therefore, a highly sensitive detector and an optical system are required, and a laser as an excitation light source is also required to have high performance such as wavelength stability and monochromaticity. For this reason, Raman spectroscopy has not been widely applied to industry as compared to infrared absorption spectroscopy, despite its high usefulness.
 ラマン分光法では、ラマン散乱光と励起光との波数の差(いわゆる、ラマンシフト)は、被測定物質を構成する分子の化学結合の振動準位間のエネルギー差に相当するため、代表的な振動分光法である赤外吸収分光と概略では同じ化学結合に関する情報が得られる。ここで注目すべきは、ラマン散乱光においては励起光そのものではなく、励起光からの波長のずれ(光量子論的にはエネルギーの逆数の差)が化学結合との対応を示すことである。すなわち、励起光の波長は任意であり、励起光として、紫外光、可視光、及び、近赤外光などから任意の波長の光を使用可能である。これにより、赤外吸収分光法のように特殊な検出器及び光学素子を使用することなく、汎用の可視光領域の光学要素を使用することが可能である。例えば、ラマン分光法では、励起光として可視光領域の波長の光を使用可能であるため、検出器として、近年、民生用デジタルカメラなどで進歩の著しいCMOS半導体技術による撮像素子をほぼそのまま使用可能であり、光学系にも通常の光学材料(ガラス、樹脂など)を使用可能である。また、近年、高性能の半導体レーザーダイオードが安価に使用可能となってきていることもあり、ラマン分光分析装置は、比較的安価に製造可能である。そのため、ラマン分光法の産業への応用が注目されつつある。 In Raman spectroscopy, the difference in the number of waves between Raman scattered light and excitation light (so-called Raman shift) corresponds to the energy difference between the vibrational levels of the chemical bonds of the molecules that make up the substance under test, which is typical. In general, information on the same chemical bond as infrared absorption spectroscopy, which is vibrational spectroscopy, can be obtained. What should be noted here is that in Raman scattered light, not the excitation light itself, but the wavelength shift from the excitation light (difference in the reciprocal of energy in photon theory) indicates the correspondence with the chemical bond. That is, the wavelength of the excitation light is arbitrary, and as the excitation light, light having an arbitrary wavelength from ultraviolet light, visible light, near-infrared light, or the like can be used. This makes it possible to use general-purpose optical elements in the visible light region without using special detectors and optical elements as in infrared absorption spectroscopy. For example, in Raman spectroscopy, light with a wavelength in the visible light region can be used as excitation light, so an image sensor using CMOS semiconductor technology, which has made remarkable progress in consumer digital cameras in recent years, can be used as a detector almost as it is. Therefore, ordinary optical materials (glass, resin, etc.) can be used for the optical system. Further, in recent years, high-performance semiconductor laser diodes have become available at low cost, and Raman spectroscopic analyzers can be manufactured at relatively low cost. Therefore, the industrial application of Raman spectroscopy is attracting attention.
 また、分光器に関しては、より高度な半導体技術、特に光導波路を使った微小光学技術との組み合わせにおいて、従来は極めて困難であった分光器の小型化及び耐振動性能の向上を実現することが可能な技術も提案されている。振動環境下でも動作可能な分光デバイス技術の例として、例えば、特表2017-506738号公報(特許文献5)に開示された分光計の技術が挙げられる。当該分光計は、光導波路による干渉型の分光構造をCMOS撮像素子上に直接形成することにより、一般的な分散型の分光構造では原理上不可避であった光学性能と小型化とを両立している。さらに、当該技術では、精密な光軸合わせが不要である。したがって、ラマン分光法を利用した分析装置に、上記のような分光デバイス技術を組み合わせることにより、振動等の厳しい条件の環境下においても、機械装置に使用されるオイルのインラインでの化学分析が可能となると考えられる。 In addition, regarding the spectroscope, it is possible to realize miniaturization of the spectroscope and improvement of vibration resistance performance, which was extremely difficult in the past, in combination with more advanced semiconductor technology, especially micro-optical technology using an optical waveguide. Possible technologies have also been proposed. As an example of the spectroscopic device technology that can operate even in a vibrating environment, for example, the spectroscopic technology disclosed in Japanese Patent Application Laid-Open No. 2017-506738 (Patent Document 5) can be mentioned. By directly forming an interference-type spectroscopic structure using an optical waveguide on the CMOS image sensor, the spectroscope achieves both optical performance and miniaturization, which were inevitable in principle with a general distributed spectroscopic structure. There is. Further, the technique does not require precise optical axis alignment. Therefore, by combining the spectroscopic device technology described above with an analyzer that uses Raman spectroscopy, in-line chemical analysis of oil used in mechanical devices is possible even in harsh conditions such as vibration. It is thought that
 しかしながら、上述のようにラマン分光法はいまだに産業分野への応用が進んでいないため、機械装置の油類の分析に対する十分な知見があるとは言い難い。従来の機械装置の油類の分析に関する知見としては、例えば、潤滑油の状態のモニタリングに関する規格(非特許文献1:ASTM E2412-10 “Standard Practice for Condition Monitoring of In-Service Lubricants by Trend Analysis Using Fourier Transform Infrared (FT-IR) Spectrometry.” 2018)が挙げられる。当該規格では、フーリエ変換赤外吸収分光(以下、FT-IR)法による潤滑油の状態のモニタリングにおいて監視すべき、赤外吸収スペクトル上の特徴的なシグナルについて、その波数領域と帰属物質とが規定されている。一方、ラマン分光法では、このような規格は存在しない。また、物理的な原理からは、赤外吸収分光法もラマン分光法も分子振動分光法であり、そのスペクトル上の特徴的なシグナルは、オイル中に含まれる各分子の結合エネルギーに相当するエネルギーの位置に現れる。しかしながら、赤外吸収分光法において特徴的なシグナルを示すエネルギーの赤外光を吸収する物理素過程と、ラマン分光法において特徴的なシグナルを示すエネルギーのラマン散乱光を生じる物理素過程とは異なっており、一般に同じ分子振動に帰属するシグナルであってもシグナルの強度が異なる。これを選択律と呼び、時として同じ物質を赤外吸収分光法とラマン分光法とで測定しても、全く異なるスペクトルが得られることがある。 However, as mentioned above, Raman spectroscopy has not yet been applied to the industrial field, so it cannot be said that there is sufficient knowledge for the analysis of oils in machinery. As a finding regarding the analysis of oils in conventional machinery, for example, a standard for monitoring the state of lubricating oil (Non-Patent Document 1: ASTM E2412-10 "Standard Specite for Condition Monitoring of In-Service Lubricants BiTrens by Trend" (Transform Infrared (FT-IR) Spectrum. ”2018) can be mentioned. In this standard, the wave number region and the substance belonging to the characteristic signal on the infrared absorption spectrum that should be monitored in the monitoring of the state of the lubricating oil by the Fourier transform infrared absorption spectroscopy (FT-IR) method are defined. It is stipulated. On the other hand, in Raman spectroscopy, such a standard does not exist. From the physical principle, both infrared absorption spectroscopy and Raman spectroscopy are molecular vibrational spectroscopy, and the characteristic signal on the spectrum is the energy corresponding to the binding energy of each molecule contained in the oil. Appears at the position of. However, the physical element process that absorbs infrared light with energy showing a characteristic signal in infrared absorption spectroscopy is different from the physical element process that produces Raman scattered light with energy showing a characteristic signal in Raman spectroscopy. In general, even signals belonging to the same molecular vibration have different signal intensities. This is called the selection rule, and sometimes even if the same substance is measured by infrared absorption spectroscopy and Raman spectroscopy, completely different spectra can be obtained.
 本願発明者らは、上記課題を鑑み、ラマン分光法を含む様々な分析技術を駆使して多数の油類サンプルの分析を行い、鋭意検討した結果、ラマン分光法特有の複数のスペクトル特徴が、例えばオイルの使用による劣化等の機能流体の状態の変化に伴う複数の化学変化と紐づけられることを見出した。 In view of the above problems, the inventors of the present application analyzed a large number of oil samples by making full use of various analytical techniques including Raman spectroscopy, and as a result of diligent studies, a plurality of spectral features peculiar to Raman spectroscopy were found. For example, we have found that it is associated with multiple chemical changes associated with changes in the state of functional fluids such as deterioration due to the use of oil.
 また、ラマン分光法は、その原理上、測定対象物(ここでは油類)に対して、特定の波長の電磁波、一般的には可視光レーザーを照射する。レーザーは非常に高いエネルギー密度を有するため、測定対象物の自家蛍光を誘起する場合がある。つまり、測定対象物中に含まれる成分によっては、ラマン散乱光のシグナルに比べてはるかに高いシグナルの自家蛍光が生じる場合があり、この自家蛍光が微弱なラマン散乱光の分析にあたって障害となる。例えば、微弱なラマン散乱光を検出するためには、スペクトル取得のための露光時間を長くすることが一般的に求められる。しかしながら、ラマン散乱光のシグナルよりもはるかに高いシグナルの自家蛍光が生じると、自家蛍光によってスペクトル測定用の光検出器の出力が飽和する可能がある。また、レーザーが持続的に照射されることによって、自家蛍光の強度はレーザーの照射時間とともに低下することが知られている。したがって、測定中に自家蛍光の強度が変動することになり、相対的に弱いラマン散乱光の検出精度に悪影響を与えうる。 In addition, Raman spectroscopy, in principle, irradiates an object to be measured (here, oils) with an electromagnetic wave of a specific wavelength, generally a visible light laser. Since the laser has a very high energy density, it may induce autofluorescence of the object to be measured. That is, depending on the components contained in the object to be measured, autofluorescence with a signal much higher than that of Raman scattered light may occur, and this autofluorescence becomes an obstacle in the analysis of weak Raman scattered light. For example, in order to detect weak Raman scattered light, it is generally required to lengthen the exposure time for spectrum acquisition. However, if autofluorescence occurs with a signal much higher than the Raman scattered light signal, the autofluorescence can saturate the output of the photodetector for spectral measurement. It is also known that the intensity of autofluorescence decreases with the irradiation time of the laser due to the continuous irradiation of the laser. Therefore, the intensity of autofluorescence fluctuates during the measurement, which may adversely affect the detection accuracy of the relatively weak Raman scattered light.
 本願発明者らは、上記課題を鑑みて鋭意検討した結果、ラマン分光法において、機械装置内の機能流体由来の自家蛍光の影響を低減できる方法を見出した。 As a result of diligent studies in view of the above problems, the inventors of the present application have found a method capable of reducing the influence of autofluorescence derived from a functional fluid in a mechanical device in Raman spectroscopy.
 そこで、本開示は、機械装置内の機能流体の状態をインラインで判定できるオイル状態判定装置及びオイル状態判定方法を提供する。 Therefore, the present disclosure provides an oil state determination device and an oil state determination method that can determine the state of a functional fluid in a mechanical device in-line.
 本開示の一態様の概要は、以下の通りである。 The outline of one aspect of the present disclosure is as follows.
 本開示の一態様に係る機能流体状態判定装置は、機械装置内の流路を貯留又は循環する機能流体に電磁波を照射する光源と、前記機能流体から散乱されるラマン散乱光を分光することにより前記ラマン散乱光のスペクトルを導出する分光器と、前記分光器により導出された前記ラマン散乱光のスペクトルに基づいて前記機能流体の状態を判定する判定部と、を備える。 The functional fluid state determination device according to one aspect of the present disclosure disperses a light source that irradiates a functional fluid that stores or circulates in a flow path in a mechanical device with an electromagnetic wave and Raman scattered light scattered from the functional fluid. A spectroscope for deriving the spectrum of the Raman scattered light and a determination unit for determining the state of the functional fluid based on the spectrum of the Raman scattered light derived by the spectroscope are provided.
 これにより、励起光として可視光領域の光を使用することができるため、安価な可視光領域の光学系を使用することができる。そのため、本開示の一態様に係る機能流体状態判定装置は、比較的安価に製造可能であり、かつ、小型化が可能である。これにより、当該機能流体状態判定装置を機械装置内に組み込むことが容易になる。また、ラマン分光法では、被測定物(ここでは、機能流体)に光を照射し、その反射光及び散乱光のうちのラマン散乱光を分光するため、例えば赤外吸収分光法のように被測定物に光を透過させる必要がないため、当該機能流体状態判定装置を機械装置への設置に関する自由度が高くなる。したがって、本開示の一態様に係る機能流体状態判定装置によれば、機械装置内の機能流体の状態をインラインで判定することができる。 As a result, light in the visible light region can be used as excitation light, so that an inexpensive optical system in the visible light region can be used. Therefore, the functional fluid state determination device according to one aspect of the present disclosure can be manufactured at a relatively low cost and can be miniaturized. This makes it easy to incorporate the functional fluid state determination device into the mechanical device. Further, in Raman spectroscopy, an object to be measured (here, a functional fluid) is irradiated with light, and Raman scattered light among the reflected light and scattered light is separated. Therefore, as in infrared absorption spectroscopy, for example, the object is subject to light. Since it is not necessary to transmit light through the object to be measured, the degree of freedom regarding the installation of the functional fluid state determination device in the mechanical device is increased. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the state of the functional fluid in the mechanical device can be determined in-line.
 例えば、本開示の一態様に係る機能流体状態判定装置では、前記光源は、前記機械装置内の前記流路上に設けられた光学窓を介して、前記光学窓に直接接する前記機能流体に前記電磁波を照射してもよい。 For example, in the functional fluid state determination device according to one aspect of the present disclosure, the light source transmits the electromagnetic wave to the functional fluid that is in direct contact with the optical window via an optical window provided on the flow path in the mechanical device. May be irradiated.
 これにより、本開示の一態様に係る機能流体状態判定装置は、機械装置に実装されるため、流路内の機能流体の状態をインラインで判定することができる。 As a result, since the functional fluid state determination device according to one aspect of the present disclosure is mounted on the mechanical device, the state of the functional fluid in the flow path can be determined in-line.
 例えば、本開示の一態様に係る機能流体状態判定装置は、前記機能流体はオイルであって、前記判定部は、前記ラマン散乱光のスペクトルにみられる前記オイルの酸化を示すラマン散乱光強度の増加または減少に基づいて前記オイルの状態を判定してもよい。 For example, in the functional fluid state determination device according to one aspect of the present disclosure, the functional fluid is oil, and the determination unit has a Raman scattered light intensity indicating oxidation of the oil as seen in the spectrum of the Raman scattered light. The state of the oil may be determined based on an increase or decrease.
 これにより、本開示の一態様に係る機能流体状態判定装置によれば、オイルの酸化により生じる化学結合を示す波数帯域のラマン散乱光の信号強度の増加または減少に基づいて、オイル成分(例えば、基油及び添加剤)の化学結合の変化、つまり、オイルの化学状態の変化(以下、化学変化ともいう)に関する情報を取得することができる。したがって、本開示の一態様に係る機能流体状態判定装置によれば、オイルの酸化に伴う化学変化の情報に基づいて、オイルの状態を判定することができる。 Thereby, according to the functional fluid state determination device according to one aspect of the present disclosure, the oil component (for example, the oil component (for example,) is based on the increase or decrease of the signal intensity of the Raman scattered light in the wave band indicating the chemical bond generated by the oxidation of the oil. Information on changes in the chemical bonds of the base oil and additives, that is, changes in the chemical state of the oil (hereinafter, also referred to as chemical changes) can be obtained. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the state of the oil can be determined based on the information of the chemical change accompanying the oxidation of the oil.
 例えば、本開示の一態様に係る機能流体状態判定装置は、前記機能流体はオイルであって、前記判定部は、前記ラマン散乱光のスペクトルにみられる前記オイルに含まれる添加剤を示すラマン散乱光強度の低下に基づいて前記オイルの状態を判定してもよい。 For example, in the functional fluid state determination device according to one aspect of the present disclosure, the functional fluid is oil, and the determination unit indicates Raman scattering indicating an additive contained in the oil as seen in the spectrum of the Raman scattered light. The state of the oil may be determined based on the decrease in light intensity.
 これにより、本開示の一態様に係る機能流体状態判定装置によれば、オイルに含まれる添加剤が有する化学結合を示す波数帯域のラマン散乱光の信号強度の低下に基づいて、当該化学結合の変化、つまり、当該添加剤の化学変化に関する情報を取得することができる。したがって、本開示の一態様に係る機能流体状態判定装置によれば、オイルに含まれる添加剤の化学変化の情報に基づいて、オイルの状態を判定することができる。 As a result, according to the functional fluid state determination device according to one aspect of the present disclosure, the chemical bond is formed based on the decrease in the signal intensity of the Raman scattered light in the wave frequency band indicating the chemical bond of the additive contained in the oil. Information about changes, that is, chemical changes of the additive, can be obtained. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the state of the oil can be determined based on the information of the chemical change of the additive contained in the oil.
 例えば、本開示の一態様に係る機能流体状態判定装置は、前記機能流体はオイルであって、前記判定部は、前記ラマン散乱光のスペクトルにみられる前記オイルを構成する基油の分解を示すラマン散乱光強度の低下に基づいて前記オイルの状態を判定してもよい。 For example, in the functional fluid state determination device according to one aspect of the present disclosure, the functional fluid is oil, and the determination unit shows decomposition of the base oil constituting the oil as seen in the spectrum of the Raman scattered light. The state of the oil may be determined based on the decrease in Raman scattered light intensity.
 これにより、本開示の一態様に係る機能流体状態判定装置によれば、基油の分解により切断される化学結合を示す波数帯域のラマン散乱光の信号強度の低下に基づいて、基油の化学変化に関する情報を取得することができる。したがって、本開示の一態様に係る機能流体状態判定装置によれば、オイルに含まれる基油の分解による化学変化の情報に基づいて、オイルの状態を判定することができる。 As a result, according to the functional fluid state determination device according to one aspect of the present disclosure, the chemistry of the base oil is based on the decrease in the signal intensity of the Raman scattered light in the wave number band indicating the chemical bond broken by the decomposition of the base oil. You can get information about changes. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the state of the oil can be determined based on the information of the chemical change due to the decomposition of the base oil contained in the oil.
 例えば、本開示の一態様に係る機能流体状態判定装置は、前記機能流体はオイルであって、前記判定部は、前記ラマン散乱光のスペクトルにみられる前記オイルのスルホ化を示すラマン散乱光強度の増加に基づいて前記オイルの状態を判定してもよい。 For example, in the functional fluid state determination device according to one aspect of the present disclosure, the functional fluid is oil, and the determination unit indicates Raman scattered light intensity indicating sulfonation of the oil as seen in the spectrum of the Raman scattered light. The state of the oil may be determined based on the increase in.
 これにより、本開示の一態様に係る機能流体状態判定装置によれば、オイルのスルホ化を示す波数帯域のラマン散乱光の信号強度の増加に基づいて、オイルの化学変化(ここでは、スルホ化)に関する情報を取得することができる。したがって、本開示の一態様に係る機能流体状態判定装置によれば、オイルのスルホ化による化学変化の情報に基づいて、オイルの状態を判定することができる。 As a result, according to the functional fluid state determination device according to one aspect of the present disclosure, the chemical change of the oil (here, sulfonation) is based on the increase in the signal intensity of the Raman scattered light in the wave number band indicating the sulfation of the oil. ) Can be obtained. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the state of the oil can be determined based on the information of the chemical change due to the sulfonation of the oil.
 例えば、本開示の一態様に係る機能流体状態判定装置は、前記機能流体はオイルであって、前記判定部は、前記ラマン散乱光のスペクトルにみられる前記オイルのニトロ化を示すラマン散乱光強度の増加に基づいて前記オイルの状態を判定してもよい。 For example, in the functional fluid state determination device according to one aspect of the present disclosure, the functional fluid is oil, and the determination unit indicates the nitration of the oil as seen in the spectrum of the Raman scattered light. The state of the oil may be determined based on the increase in.
 これにより、本開示の一態様に係る機能流体状態判定装置によれば、オイルのニトロ化を示す波数帯域のラマン散乱光の信号強度の増加に基づいて、オイルの化学変化(ここでは、ニトロ化)に関する情報を取得することができる。したがって、本開示の一態様に係る機能流体状態判定装置によれば、オイルのニトロ化による化学変化の情報に基づいて、オイルの状態を判定することができる。 As a result, according to the functional fluid state determination device according to one aspect of the present disclosure, a chemical change (here, nitration) of the oil is based on an increase in the signal intensity of Raman scattered light in the wave number band indicating the nitration of the oil. ) Can be obtained. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the state of the oil can be determined based on the information of the chemical change due to the nitration of the oil.
 例えば、本開示の一態様に係る機能流体状態判定装置は、前記機能流体はオイルであって、前記判定部は、前記ラマン散乱光のスペクトルにみられる前記オイル中の煤のラマン散乱光強度の増加に基づいて前記オイルの状態を判定してもよい。 For example, in the functional fluid state determination device according to one aspect of the present disclosure, the functional fluid is oil, and the determination unit determines the Raman scattered light intensity of soot in the oil as seen in the spectrum of the Raman scattered light. The state of the oil may be determined based on the increase.
 これにより、本開示の一態様に係る機能流体状態判定装置によれば、例えば機械装置で使用される燃料の不完全燃焼により発生する煤(炭素)を示す波数帯域のラマン散乱光の信号強度の増加に基づいて、オイルの状態に関する情報を取得することができる。したがって、本開示の一態様に係る機能流体状態判定装置によれば、オイル中に発生又は混入する煤に関する情報に基づいて、オイルの状態を判定することができる。 As a result, according to the functional fluid state determination device according to one aspect of the present disclosure, for example, the signal intensity of Raman scattered light in the wave frequency band indicating soot (carbon) generated by incomplete combustion of fuel used in a mechanical device is used. Based on the increase, information about the condition of the oil can be obtained. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the state of the oil can be determined based on the information regarding the soot generated or mixed in the oil.
 例えば、本開示の一態様に係る機能流体状態判定装置では、前記機能流体はオイルであって、前記判定部は、300cm-1以上4000cm-1以下の波数範囲における前記ラマン散乱光のスペクトルに基づいて前記オイルの状態を判定してもよい。 For example, in a functional fluid state determination device according to one embodiment of the present disclosure, the functional fluid is an oil, wherein the determination unit, based on the spectrum of the Raman scattered light at a wave number range of 300 cm -1 or more 4000 cm -1 or less The state of the oil may be determined.
 これにより、本開示の一態様に係る機能流体状態判定装置によれば、オイルの化学状態に関して、赤外吸収分光法と同等の情報を得ることができる。 As a result, according to the functional fluid state determination device according to one aspect of the present disclosure, it is possible to obtain information equivalent to that of infrared absorption spectroscopy regarding the chemical state of oil.
 例えば、本開示の一態様に係るオイル状態判定装置では、前記機能流体はオイルであって、前記判定部は、300cm-1以上2500cm-1以下の波数範囲における前記ラマン散乱光のスペクトルに基づいて前記オイルの状態を判定してもよい。 For example, in an oil state determination device according to one embodiment of the present disclosure, the functional fluid is an oil, wherein the determination unit, based on the spectrum of the Raman scattered light at a wave number range of 300 cm -1 or more 2500 cm -1 or less The state of the oil may be determined.
 これにより、本開示の一態様に係るオイル状態判定装置によれば、当該波数範囲のラマン散乱光のスペクトルにおいて強いシグナルを検出することができるため、高効率かつ高精度にオイルの化学変化の情報を得ることができる。 As a result, according to the oil state determination device according to one aspect of the present disclosure, a strong signal can be detected in the spectrum of Raman scattered light in the wave number range, so that information on chemical changes in oil can be detected with high efficiency and accuracy. Can be obtained.
 例えば、本開示の一態様に係る機能流体状態判定装置は、前記機能流体はオイルであって、前記判定部は、750cm-1以上1150cm-1以下の波数範囲における前記ラマン散乱光のスペクトルに基づいて前記オイルの状態を判定してもよい。 For example, in the functional fluid state determination device according to one aspect of the present disclosure, the functional fluid is oil, and the determination unit is based on the spectrum of the Raman scattered light in a wave number range of 750 cm -1 or more and 1150 cm -1 or less. The state of the oil may be determined.
 これにより、本開示の一態様に係る機能流体状態判定装置によれば、当該波数範囲のラマン散乱光のスペクトルの変化に基づいて、オイルの酸化及びスルホ化、基油成分の分解、並びに、添加剤の酸化に関する情報を取得することができる。 As a result, according to the functional fluid state determination device according to one aspect of the present disclosure, based on the change in the spectrum of Raman scattered light in the wave number range, the oil is oxidized and sulfonated, the base oil component is decomposed, and the oil is added. Information on the oxidation of the agent can be obtained.
 例えば、本開示の一態様に係る機能流体状態判定装置は、前記機能流体はオイルであって、前記判定部は、1150cm-1を超え1500cm-1以下の波数範囲における前記ラマン散乱光のスペクトルに基づいて前記オイルの状態を判定してもよい。 For example, in the functional fluid state determination device according to one aspect of the present disclosure, the functional fluid is oil, and the determination unit has a spectrum of the Raman scattered light in a wave number range exceeding 1150 cm -1 and 1500 cm -1 or less. The state of the oil may be determined based on the above.
 これにより、本開示の一態様に係る機能流体状態判定装置によれば、当該波数範囲のラマン散乱光のスペクトルの変化に基づいて、オイルのニトロ化、基油成分の分解、及び、オイル中に発生又は混入する煤に関する情報を取得することができる。 As a result, according to the functional fluid state determination device according to one aspect of the present disclosure, based on the change in the spectrum of Raman scattered light in the wavenumber range, the oil is nitrated, the base oil component is decomposed, and the oil is contained. Information on soot generated or mixed can be obtained.
 例えば、本開示の一態様に係る機能流体状態判定装置は、前記機能流体はオイルであって、前記判定部は、1600cm-1以上1900cm-1以下の波数範囲における前記ラマン散乱光のスペクトルに基づいて前記オイルの状態を判定してもよい。 For example, functional fluid state determination device according to one embodiment of the present disclosure, the functional fluid is an oil, wherein the determination unit, based on the spectrum of the Raman scattered light at a wave number range of 1600 cm -1 or 1900 cm -1 or less The state of the oil may be determined.
 これにより、本開示の一態様に係る機能流体状態判定装置によれば、当該波数範囲のラマン散乱光のスペクトルの変化に基づいて、オイルの酸化、基油成分の分解、及び、オイル中に発生又は混入する煤に関する情報を取得することができる。 As a result, according to the functional fluid state determination device according to one aspect of the present disclosure, the oil is oxidized, the base oil component is decomposed, and the oil is generated based on the change in the spectrum of the Raman scattered light in the wave number range. Alternatively, information on the mixed soot can be obtained.
 例えば、本開示の一態様に係る機能流体状態判定装置では、前記判定部は、記憶部を有し、前記機械装置内の前記機能流体が新しい機能流体に交換された直後の機能流体のラマン散乱光のラマンスペクトルを前記機能流体の初期状態を示す情報として前記記憶部に格納し、前記機能流体のラマンスペクトルと、前記新しい機能流体に交換された直後の機能流体のラマンスペクトルとを比較することにより、前記機能流体の状態を判定してもよい。 For example, in the functional fluid state determination device according to one aspect of the present disclosure, the determination unit has a storage unit, and Raman scattering of the functional fluid immediately after the functional fluid in the mechanical device is replaced with a new functional fluid. The Raman spectrum of light is stored in the storage unit as information indicating the initial state of the functional fluid, and the Raman spectrum of the functional fluid is compared with the Raman spectrum of the functional fluid immediately after being replaced with the new functional fluid. May determine the state of the functional fluid.
 これにより、導出した機能流体のラマン散乱光のスペクトルと、当該機能流体の初期の状態、つまり、機械装置内の機能流体が新しい機能流体に交換された直後の状態の機能流体のラマン散乱光のスペクトルと比較することにより、機能流体の化学状態の変化の度合いに基づいて機能流体の状態を判定するだけでなく、機能流体の化学状態の変化の速度も導出することができる。これにより、機能流体状態判定装置は、機能流体の状態の変化の推移を予測することが可能となるため、機械装置の使用者は、例えば、機能流体の交換時期の目安を知ることができる。また、機能流体状態判定装置は、機能流体の化学状態の変化の速度(例えば、機能流体の劣化速度)の変化から、例えば、機械装置で生じている、又は、生じ得るトラブルを予測することが可能となる。したがって、本開示の一態様に係る機能流体状態判定装置によれば、使用者は、機能流体の交換時期の管理及び機械装置の保守管理を、容易に、かつ、適切に行うことができる。 As a result, the derived spectrum of the Raman scattered light of the functional fluid and the Raman scattered light of the functional fluid in the initial state of the functional fluid, that is, the state immediately after the functional fluid in the mechanical device is replaced with a new functional fluid. By comparing with the spectrum, not only the state of the functional fluid can be determined based on the degree of change in the chemical state of the functional fluid, but also the rate of change in the chemical state of the functional fluid can be derived. As a result, the functional fluid state determination device can predict the transition of the change in the state of the functional fluid, so that the user of the mechanical device can know, for example, a guideline for the replacement time of the functional fluid. In addition, the functional fluid state determination device can predict, for example, troubles that occur or may occur in a mechanical device from changes in the rate of change in the chemical state of the functional fluid (for example, the rate of deterioration of the functional fluid). It will be possible. Therefore, according to the functional fluid state determination device according to one aspect of the present disclosure, the user can easily and appropriately manage the replacement timing of the functional fluid and the maintenance management of the mechanical device.
 また、本開示の一態様に係る機能流体状態判定システムは、機能流体と、前記機能流体が注入される機械装置と、前記機械装置内の前記機能流体の状態を判定する上記のいずれかの機能流体状態判定装置と、を備える。 Further, the functional fluid state determination system according to one aspect of the present disclosure has any of the above functions of determining the state of the functional fluid, the mechanical device into which the functional fluid is injected, and the functional fluid in the mechanical device. It is provided with a fluid state determination device.
 これにより、本開示の一態様に係る機能流体状態判定システムによれば、機械装置内の機能流体の状態をインラインで判定することができる。 Thereby, according to the functional fluid state determination system according to one aspect of the present disclosure, the state of the functional fluid in the mechanical device can be determined in-line.
 なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム、又は、コンピュータで読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 It should be noted that these comprehensive or specific aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium such as a computer-readable CD-ROM, and the system, the method, the integrated circuit. , A computer program and any combination of recording media.
 以下、本開示の実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, embodiments of the present disclosure will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化することがある。 It should be noted that all of the embodiments described below show comprehensive or specific examples. Numerical values, shapes, components, arrangement positions and connection forms of components, steps, step order, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept are described as arbitrary components. Moreover, each figure is not necessarily exactly illustrated. In each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description may be omitted or simplified.
 以下では、機能流体の一例としてオイルを用い、機能流体の状態の一例としてオイルの劣化を例に説明する。なお、機能流体の状態は、オイルの劣化に限定されない。 In the following, oil will be used as an example of the functional fluid, and deterioration of the oil will be described as an example of the state of the functional fluid. The state of the functional fluid is not limited to the deterioration of the oil.
 (実施の形態)
 [機能流体状態判定システム]
 まず、実施の形態に係る機能流体状態判定システムの概要について説明する。図1は、実施の形態に係る機能流体状態判定システムの一例である機能流体状態判定システム400及び機能流体状態判定システム410を示す図である。図2は、図1中の破線で囲まれた領域Aの拡大模式図である。
(Embodiment)
[Functional fluid state judgment system]
First, an outline of the functional fluid state determination system according to the embodiment will be described. FIG. 1 is a diagram showing a functional fluid state determination system 400 and a functional fluid state determination system 410, which are examples of the functional fluid state determination system according to the embodiment. FIG. 2 is an enlarged schematic view of the area A surrounded by the broken line in FIG.
 まず、機能流体状態判定システム400について説明する。図1に示すように、機能流体状態判定システム400は、機能流体200と、機能流体200が注入される機械装置300と、機械装置300内の機能流体の状態を判定する機能流体状態判定装置100と、を備える。 First, the functional fluid state determination system 400 will be described. As shown in FIG. 1, the functional fluid state determination system 400 is a functional fluid state determination device 100 that determines the state of the functional fluid 200, the mechanical device 300 into which the functional fluid 200 is injected, and the functional fluid in the mechanical device 300. And.
 機械装置300は、内部で機能流体200を貯留又は循環する装置であり、例えば、工場、事務所、公共施設及び住宅の内外に設置される大型又は小型の各種機械器具、屋外で稼働する建設用機械、トラック、バス、乗用車、二輪車、船舶、航空機、列車、産業用車両、及び、建設用車両などの各種車両、又は、それらが備えるエンジン、変速機、及び、油圧作動装置などの機械類を含む。さらに、機械装置300は、ポンプ、熱交換器、圧力計、及び、アクチュエータなどの機器類、又は、シリンダ、ギヤ、ベアリング、軸受け、歯車などの部材を含んでもよい。 The mechanical device 300 is a device that internally stores or circulates a functional fluid 200, for example, various large or small machinery and equipment installed inside and outside factories, offices, public facilities and houses, and for construction that operates outdoors. Machines, trucks, buses, passenger cars, motorcycles, ships, aircraft, trains, industrial vehicles, various vehicles such as construction vehicles, or machinery such as engines, transmissions, and hydraulic actuators provided by them. Including. Further, the mechanical device 300 may include equipment such as pumps, heat exchangers, pressure gauges and actuators, or members such as cylinders, gears, bearings, bearings and gears.
 機能流体200は、機械装置300の潤滑媒体、冷却媒体、又は、動力伝達媒体として機能する油類である。より具体的には、機能性流体200は、例えばエンジン潤滑油、歯車潤滑油、摺動部潤滑油、軸受け潤滑油、油圧作動油、冷却油、絶縁油、又は、接点保護油などの油類であってもよい。なお、これらの油類は、特に限定されない。機能流体200は、機械装置300に注入され、往復又は循環等により、機械装置300内で繰り返し使用される。そのため、機能流体200は、繰り返しの使用に伴う熱及び酸化のストレスにより、その主成分である有機化合物が酸化されて連鎖的に分解される。または化学反応により高分子化、不溶化する。このように、機能流体200の分解又は機能流体200の化学構造の変化(以下、化学状態の変化ともいう)に伴い、機能流体200の機能は低下する場合がある。この現象を機能流体200の劣化ともいう。機能流体状態判定システム400は、機能流体200の分解又は化学構造の変化などの化学状態の変化に関する情報を取得することにより、機能流体200の状態を判定することができる。機能流体200の状態は、機能流体200の機能の低下(つまり、劣化)であってもよく、機能の向上であってもよい。また、機能流体200の状態は、機能流体200の化学成分の変化のみで機能変化(例えば、低下又は向上など)が起きていない状態であってもよい。 The functional fluid 200 is an oil that functions as a lubricating medium, a cooling medium, or a power transmission medium for the mechanical device 300. More specifically, the functional fluid 200 includes oils such as engine lubricating oil, gear lubricating oil, sliding part lubricating oil, bearing lubricating oil, hydraulic hydraulic oil, cooling oil, insulating oil, or contact protection oil. It may be. The oils are not particularly limited. The functional fluid 200 is injected into the mechanical device 300 and is repeatedly used in the mechanical device 300 by reciprocating or circulating. Therefore, in the functional fluid 200, the organic compound which is the main component of the functional fluid 200 is oxidized and decomposed in a chain reaction due to the stress of heat and oxidation associated with repeated use. Alternatively, it is polymerized or insolubilized by a chemical reaction. As described above, the function of the functional fluid 200 may be deteriorated due to the decomposition of the functional fluid 200 or the change in the chemical structure of the functional fluid 200 (hereinafter, also referred to as the change in the chemical state). This phenomenon is also referred to as deterioration of the functional fluid 200. The functional fluid state determination system 400 can determine the state of the functional fluid 200 by acquiring information on changes in the chemical state such as decomposition of the functional fluid 200 or changes in the chemical structure. The state of the functional fluid 200 may be a deterioration (that is, deterioration) of the function of the functional fluid 200, or may be an improvement of the function. Further, the state of the functional fluid 200 may be a state in which the functional change (for example, reduction or improvement) does not occur only by the change of the chemical component of the functional fluid 200.
 なお、本明細書においてオイルと総称する油類は、基油(ベースオイル)と呼ばれる液体状の炭化水素に、添加剤が添加された油類も含む。当該添加剤は、油類の用途に応じて求められる機能を強化又は維持するために添加され、例えば、酸化防止剤、清浄分散剤、粘度調整剤、又は、極圧添加剤などが挙げられる。 The oils collectively referred to as oils in the present specification also include oils in which additives are added to liquid hydrocarbons called base oils. The additive is added to enhance or maintain the function required depending on the use of the oil, and examples thereof include antioxidants, detergent dispersants, viscosity modifiers, and extreme pressure additives.
 また、機能性流体200は、上記のオイルに限られず、例えば、冷却液、排気ガス浄化触媒液、洗浄液、又は、水圧作動液などの流体であってもよい。これらの機能性流体が使用される機械装置300の例としては、建設機械、鉱山採掘機械、船舶、油圧プレス機、油圧ジャッキ、エンジン、減速機、発電機、変圧器、開閉器、排気浄化器、水圧ジャッキ、又は、空調機などが挙げられる。 Further, the functional fluid 200 is not limited to the above oil, and may be, for example, a fluid such as a cooling liquid, an exhaust gas purification catalyst liquid, a cleaning liquid, or a hydraulic hydraulic liquid. Examples of mechanical devices 300 in which these functional fluids are used are construction machinery, mining machinery, ships, hydraulic presses, hydraulic jacks, engines, reducers, generators, transformers, switches, exhaust purifiers. , Hydraulic jacks, air conditioners, and the like.
 機能流体状態判定装置100は、機械装置300の流路310に取り付けられている。流路310は、図1に示すような配管に限られず、機能流体200が内部を流動し得るものであればよい。例えば、流路310は、フィルタエレメント及びストレーナ等などの濾過部材が格納された筐体、オイルタンク、シリンダ、ポンプ、ギヤ、軸受け、ベアリング、又は歯車などが格納された部材であってもよい。 The functional fluid state determination device 100 is attached to the flow path 310 of the mechanical device 300. The flow path 310 is not limited to the piping as shown in FIG. 1, and may be any one as long as the functional fluid 200 can flow inside. For example, the flow path 310 may be a housing in which a filtration member such as a filter element and a strainer is stored, an oil tank, a cylinder, a pump, a gear, a bearing, a bearing, or a member in which a gear or the like is stored.
 図示していないが、機能流体状態判定装置100は、提示部及び入力部を備えてもよい。提示部は、機能流体の状態の判定結果を使用者に提示する。提示部は、例えば、有機EL(エレクトロルミネッセンス)又は液晶ディスプレイ、スピーカー、若しくは、ランプなどである。入力部は、使用者の操作信号の入力を受ける。入力部は、例えば、タッチパネル、操作ボタン、又は、マイクなどである。機能流体状態判定装置100が上記構成を有することにより、使用者は、機能流体の状態の判定頻度などの設定変更、判定結果の確認、及び、必要な判定結果の抽出などを実施することができる。 Although not shown, the functional fluid state determination device 100 may include a presentation unit and an input unit. The presenting unit presents the determination result of the state of the functional fluid to the user. The presenting unit is, for example, an organic EL (electroluminescence) or a liquid crystal display, a speaker, a lamp, or the like. The input unit receives the input of the user's operation signal. The input unit is, for example, a touch panel, an operation button, a microphone, or the like. Since the functional fluid state determination device 100 has the above configuration, the user can change settings such as the determination frequency of the functional fluid state, confirm the determination result, and extract the necessary determination result. ..
 なお、提示部及び入力部は、機能流体状態判定装置100以外の装置に備えられてもよい。このような構成を有する機能流体状態判定システムの一例として、機能流体状態判定システム410について説明する。 The presentation unit and the input unit may be provided in a device other than the functional fluid state determination device 100. As an example of the functional fluid state determination system having such a configuration, the functional fluid state determination system 410 will be described.
 例えば、機能流体状態判定システム410では、提示部及び入力部は、コンピュータ装置500に備えられている。コンピュータ装置500は、通信により、機能流体状態判定装置100と接続されている。通信方式は、Bluetooth(登録商標)などの無線通信であってもよく、Ethernet(登録商標)などの有線通信であってもよい。コンピュータ装置500は、例えば、携帯電話、スマートフォン、タブレット端末、パソコン、又は、機械装置300(例えば、図1ではエンジン)を備える装置(例えば、図1では自動車)に組み込まれている端末装置である。このとき、入力部は、上記の構成の他に、例えば、キーボード、マウス、マイク、使用者の身体の一部分(例えば、目、頭、唇又は指など)の動きを検知するセンサなどであってもよい。これにより、使用者は、機能流体の状態の判定頻度などの設定変更、判定結果の確認、及び、必要な判定結果の抽出などを、所望のタイミングで簡便に実施することができる。 For example, in the functional fluid state determination system 410, the presentation unit and the input unit are provided in the computer device 500. The computer device 500 is connected to the functional fluid state determination device 100 by communication. The communication method may be wireless communication such as Bluetooth (registered trademark) or wired communication such as Ethernet (registered trademark). The computer device 500 is, for example, a terminal device incorporated in a mobile phone, a smartphone, a tablet terminal, a personal computer, or a device (for example, an automobile in FIG. 1) including a mechanical device 300 (for example, an engine in FIG. 1). .. At this time, in addition to the above configuration, the input unit is, for example, a keyboard, a mouse, a microphone, a sensor for detecting the movement of a part of the user's body (for example, eyes, head, lips, fingers, etc.). May be good. As a result, the user can easily change the setting such as the determination frequency of the state of the functional fluid, confirm the determination result, and extract the necessary determination result at a desired timing.
 なお、コンピュータ装置500は、インターネットなどのネットワークを介してデータベースに接続可能であってもよい。このとき、機能流体状態判定システム410は、機能流体200の状態を示す情報を、コンピュータ装置500を介してデータベースに出力し、データベースで導出された機能流体200の余寿命及び機械装置300で発生し得るトラブルなどの情報を取得してもよい。これにより、機能流体状態判定システム410によれば、使用者は、機能流体200及び機械装置300の管理をより効率的に実施することができる。 Note that the computer device 500 may be able to connect to the database via a network such as the Internet. At this time, the functional fluid state determination system 410 outputs information indicating the state of the functional fluid 200 to the database via the computer device 500, and generates the remaining life of the functional fluid 200 derived from the database and the mechanical device 300. Information such as troubles to be obtained may be acquired. As a result, according to the functional fluid state determination system 410, the user can more efficiently manage the functional fluid 200 and the mechanical device 300.
 以上により、機能流体状態判定システム400によれば、機械装置300内の機能流体200の状態をインラインで分析して、機能流体の劣化度合いを判定することができる。そのため、使用者は、機械装置300の稼働を止めて機能流体200をサンプリングする必要がない。また、使用者は、機能流体200の状態を簡便に把握することができるため、適切な時期に機能流体の交換を実施することができる。したがって、機能流体状態判定システム400によれば、コストの削減、及び、環境への負荷の低減が可能となる。 From the above, according to the functional fluid state determination system 400, the state of the functional fluid 200 in the mechanical device 300 can be analyzed in-line to determine the degree of deterioration of the functional fluid. Therefore, the user does not need to stop the operation of the mechanical device 300 and sample the functional fluid 200. Further, since the user can easily grasp the state of the functional fluid 200, the functional fluid can be replaced at an appropriate time. Therefore, according to the functional fluid state determination system 400, it is possible to reduce the cost and the load on the environment.
 ここでは、機能流体200が自動車のエンジンに使用されるオイルである例を説明したが、機能流体200は、オイルに限られない。また、自動車よりも過酷な条件で使用される機械装置300では、機能流体200の化学状態の変化の速度がさらに速くなる。特に、油圧ショベルなどの建設用車両の油圧システム、及び、エンジンは、機能流体200の化学状態の変化の速度が非常に速い。このように、機械装置300がより過酷な条件で使用されるほど、機能流体200の化学状態の変化の速度が速くなるため、機能流体200の機能低下の速度(以下、劣化速度ともいう)も速くなる。本実施の形態に係る機能流体状態判定システム400及び410では、このような過酷な条件で使用される機械装置300に対しても、機能流体状態判定装置100を流路310に取り付けることにより、インラインで機能流体200の状態を判定することができる。そのため、機能流体状態判定システム400及び410によれば、様々な使用環境における機械装置300について、機械装置300内の機能流体200の状態を適切に判定することができる。 Here, an example in which the functional fluid 200 is an oil used for an automobile engine has been described, but the functional fluid 200 is not limited to the oil. Further, in the mechanical device 300 used under harsher conditions than the automobile, the rate of change of the chemical state of the functional fluid 200 becomes even faster. In particular, hydraulic systems for construction vehicles such as excavators and engines have a very high rate of change in the chemical state of the functional fluid 200. As described above, as the mechanical device 300 is used under more severe conditions, the rate of change in the chemical state of the functional fluid 200 becomes faster, so that the rate of functional deterioration of the functional fluid 200 (hereinafter, also referred to as deterioration rate) also increases. It will be faster. In the functional fluid state determination systems 400 and 410 according to the present embodiment, even for the mechanical device 300 used under such severe conditions, the functional fluid state determination device 100 is attached to the flow path 310 to inline. The state of the functional fluid 200 can be determined with. Therefore, according to the functional fluid state determination systems 400 and 410, the state of the functional fluid 200 in the mechanical device 300 can be appropriately determined for the mechanical device 300 in various usage environments.
 [機能流体状態判定装置]
 [構成]
 続いて、機能流体状態判定装置100について図2及び図3を参照しながら説明する。図3は、実施の形態に係る機能流体状態判定装置100の機能構成の一例を示すブロック図である。
[Functional fluid state determination device]
[Constitution]
Subsequently, the functional fluid state determination device 100 will be described with reference to FIGS. 2 and 3. FIG. 3 is a block diagram showing an example of the functional configuration of the functional fluid state determination device 100 according to the embodiment.
 図3に示されるように、機能流体状態判定装置100は、光源10と、分光器20と、判定部30と、を備える。判定部30は、記憶部40を有する。以下、各構成について説明する。 As shown in FIG. 3, the functional fluid state determination device 100 includes a light source 10, a spectroscope 20, and a determination unit 30. The determination unit 30 has a storage unit 40. Hereinafter, each configuration will be described.
 [光源]
 光源10は、機械装置300内の流路310を貯留又は循環する機能流体200に電磁波を照射する。例えば、図2に示すように、光源10は、機能流体200が流路310を循環しているときに機能流体200に電磁波を照射する。このとき、光源10は、機械装置300内の流路310上に設けられた光学窓112を介して、光学窓112に直接接する機能流体200に電磁波を照射してもよい。なお、光源10は、光ファイバ(不図示)を介して、光学窓112に直接接する機能流体200に電磁波を照射してもよい。電磁波は、紫外光であってもよく、可視光であってもよく、近赤外光であってもよい。中でも、光源10は、可視光領域の波長の光を出射する光源であるとよい。これにより、光源10として、安価な可視光レーザーを使用することができる。また、光学系も安価な可視光用の光学系を使用することができる。したがって、機能流体状態判定装置100を安価に製造することができるため、機能流体状態判定装置100は汎用性が向上される。
[light source]
The light source 10 irradiates the functional fluid 200 that stores or circulates the flow path 310 in the mechanical device 300 with electromagnetic waves. For example, as shown in FIG. 2, the light source 10 irradiates the functional fluid 200 with electromagnetic waves while the functional fluid 200 circulates in the flow path 310. At this time, the light source 10 may irradiate the functional fluid 200 directly in contact with the optical window 112 with an electromagnetic wave via the optical window 112 provided on the flow path 310 in the mechanical device 300. The light source 10 may irradiate the functional fluid 200 in direct contact with the optical window 112 with an electromagnetic wave via an optical fiber (not shown). The electromagnetic wave may be ultraviolet light, visible light, or near-infrared light. Above all, the light source 10 is preferably a light source that emits light having a wavelength in the visible light region. As a result, an inexpensive visible light laser can be used as the light source 10. Further, as the optical system, an inexpensive optical system for visible light can be used. Therefore, since the functional fluid state determination device 100 can be manufactured at low cost, the versatility of the functional fluid state determination device 100 is improved.
 なお、機能流体200に電磁波を照射すると、機能流体200から蛍光が発せられる。これをバックグラウンド蛍光という。この蛍光は、例えば機能流体200中の成分の自家蛍光又は蛍光物質が発する蛍光である。バックグラウンド蛍光は、分析に影響を与えるため、一般に、バックグラウンド補正が行われる。しかしながら、蛍光を発する物質に励起光を照射し続けると、その蛍光強度は徐々に低下する。そのため、機能流体200が停滞している(つまり、動かない)ときに、機能流体200の所定の箇所に電磁波を照射すると、所定の物質に電磁波が照射され続けるため、バックグラウンド蛍光は徐々に低下する。一方、本実施の形態では、光源10は、機能流体200が流路310を循環しているときに、機能流体200に電磁波を照射するため、機能流体200中の所定の物質に電磁波が照射され続けることが低減される。したがって、機能流体に電磁波を照射することによるバックグラウンド蛍光の時間変化を低減することができるため、バックグラウンド補正の精度が向上される。 When the functional fluid 200 is irradiated with electromagnetic waves, fluorescence is emitted from the functional fluid 200. This is called background fluorescence. This fluorescence is, for example, autofluorescence of a component in the functional fluid 200 or fluorescence emitted by a fluorescent substance. Since background fluorescence affects the analysis, background correction is generally performed. However, if the substance that emits fluorescence is continuously irradiated with the excitation light, the fluorescence intensity gradually decreases. Therefore, when the functional fluid 200 is stagnant (that is, does not move) and the electromagnetic wave is irradiated to a predetermined portion of the functional fluid 200, the electromagnetic wave continues to be irradiated to the predetermined substance, so that the background fluorescence gradually decreases. To do. On the other hand, in the present embodiment, since the light source 10 irradiates the functional fluid 200 with electromagnetic waves when the functional fluid 200 circulates in the flow path 310, the electromagnetic waves are irradiated to a predetermined substance in the functional fluid 200. Continuing is reduced. Therefore, the time change of background fluorescence due to irradiating the functional fluid with electromagnetic waves can be reduced, and the accuracy of background correction is improved.
 [分光器]
 分光器20は、機能流体200から散乱されるラマン散乱光を分光することによりラマン散乱光のスペクトルを導出する。図2に示すように、ラマン散乱光は、光学窓112を介して、機能流体状態判定装置100の筐体110内に入射し、分光器20で受光される。受光されたラマン散乱光は、分光器20の受光面に配置された複数の検出チャネル22(図4参照)により波長帯域毎の光に分光される。以下、分光器20の模式図を参照しながら、分光器20の構成及び機能について説明する。
[Spectroscope]
The spectroscope 20 derives a spectrum of Raman scattered light by dispersing Raman scattered light scattered from the functional fluid 200. As shown in FIG. 2, the Raman scattered light enters the housing 110 of the functional fluid state determination device 100 through the optical window 112 and is received by the spectroscope 20. The received Raman scattered light is separated into light for each wavelength band by a plurality of detection channels 22 (see FIG. 4) arranged on the light receiving surface of the spectroscope 20. Hereinafter, the configuration and function of the spectroscope 20 will be described with reference to the schematic diagram of the spectroscope 20.
 図4は、分光器20を受光側から見た一例を示す概略上面図である。図5は、図4のV-V線における概略断面図である。なお、これらの図では、説明の容易のために、導波路入力結合回折格子、導波路出力結合回折格子、及び導波路で一般的に使用される他の要素を省略している。また、図4では、図5で説明する2つの検出チャネルの符号にのみ数字の後にアルファベットを付している。 FIG. 4 is a schematic top view showing an example of the spectroscope 20 viewed from the light receiving side. FIG. 5 is a schematic cross-sectional view taken along the line VV of FIG. In these figures, for the sake of simplicity, the waveguide input coupling diffraction grating, the waveguide output coupling diffraction grating, and other elements generally used in the waveguide are omitted. Further, in FIG. 4, only the codes of the two detection channels described with reference to FIG. 5 have alphabets after the numbers.
 図4に示すように、分光器20は、撮像素子50と、撮像素子50上に、長さが異なる複数の検出チャネル22と、を備える。撮像素子50は、例えば、CMOS(Complementary MOS)又はCCD(Charge Coupled Device)などのイメージセンサである。検出チャネル22の長さは、検出可能な(つまり、分光可能な)光の波長に対応している。そのため、分光器20は、分光する波長の数に対応した個数の検出チャネル22を備えている。各検出チャネル22で分光された各波長の光は、撮像素子50により、検出チャネル22毎に独立して電気信号に変換される。 As shown in FIG. 4, the spectroscope 20 includes an image pickup element 50 and a plurality of detection channels 22 having different lengths on the image pickup element 50. The image sensor 50 is, for example, an image sensor such as a CMOS (Complementary MOS) or a CCD (Charge Coupled Device). The length of the detection channel 22 corresponds to the wavelength of detectable (ie, spectroscopic) light. Therefore, the spectroscope 20 includes a number of detection channels 22 corresponding to the number of wavelengths to be separated. The light of each wavelength dispersed in each detection channel 22 is independently converted into an electric signal by the image sensor 50 for each detection channel 22.
 続いて、検出チャネル22の構成及び機能について、検出チャネル22a及び検出チャネル22bを例に挙げて説明する。なお、検出チャネル22の構成については、検出チャネル22aを例に説明する。 Subsequently, the configuration and function of the detection channel 22 will be described by taking the detection channel 22a and the detection channel 22b as examples. The configuration of the detection channel 22 will be described by taking the detection channel 22a as an example.
 図5に示すように、検出チャネル22aは、導波路入力結合回折格子24aと、光導波路26aと、導波路出力結合回折格子28aと、を備える。導波路入力結合回折格子24aは、分光器20で受光されたラマン散乱光を検出チャネル22a内に入力し、かつ、その光を所定の伝播方向(ここでは、光導波路26aの方向)に出力する。導波路出力結合回折格子28aは、光導波路26a内を伝播した回折光を撮像素子50に出力する。出力された回折光は、光導波路26aの長さに対応した波長の光である。同様に、検出チャネル22bに入力されて出力された回折光は、光導波路26bの長さに対応した波長の光である。撮像素子50は、検出チャネル22aから撮像素子50に出力された回折光と、検出チャネル22bから撮像素子50に出力された回折光とを、それぞれ独立して受光して電気信号に変換する。つまり、撮像素子50は、各検出チャネル22から出力された波長の異なる回折光を、各検出チャネル22に対応した箇所で独立して受光し、各波長の回折光を電気信号に変換する。撮像素子50は、変換した電気信号をデジタル値で演算部(不図示)に出力する。図示していないが、分光器20は、演算部を有し、分光されたラマン散乱光からラマン散乱光のスペクトルを導出する。 As shown in FIG. 5, the detection channel 22a includes a waveguide input coupling diffraction grating 24a, an optical waveguide 26a, and a waveguide output coupling diffraction grating 28a. The waveguide input coupled diffraction grating 24a inputs the Raman scattered light received by the spectroscope 20 into the detection channel 22a, and outputs the light in a predetermined propagation direction (here, the direction of the optical waveguide 26a). .. The waveguide output coupled diffraction grating 28a outputs the diffracted light propagating in the optical waveguide 26a to the image pickup device 50. The output diffracted light is light having a wavelength corresponding to the length of the optical waveguide 26a. Similarly, the diffracted light input to and output from the detection channel 22b is light having a wavelength corresponding to the length of the optical waveguide 26b. The image sensor 50 independently receives the diffracted light output from the detection channel 22a to the image sensor 50 and the diffracted light output from the detection channel 22b to the image sensor 50 and converts them into an electric signal. That is, the image sensor 50 independently receives the diffracted light of different wavelengths output from each detection channel 22 at the location corresponding to each detection channel 22, and converts the diffracted light of each wavelength into an electric signal. The image sensor 50 outputs the converted electric signal as a digital value to a calculation unit (not shown). Although not shown, the spectroscope 20 has a calculation unit and derives a spectrum of Raman scattered light from the dispersed Raman scattered light.
 なお、図5に示す回折格子は、ミラーであってもよく、またプリズムであってもよい。また、これらの回折格子の位置は、回折格子の相互関係が各検出チャネル22内で満足されるように構成されていればよい。 The diffraction grating shown in FIG. 5 may be a mirror or a prism. Further, the positions of these diffraction gratings may be configured so that the mutual relationship of the diffraction gratings is satisfied in each detection channel 22.
 [判定部]
 判定部30は、分光器20により導出されたラマン散乱光のスペクトル(以下、ラマンスペクトルともいう)に基づいて機能流体200(例えば、オイル)の状態を判定する。図3に示されるように、判定部30は、記憶部40を有し、機械装置300内の機能流体200が新しい機能流体に交換された場合、判定部30は、新しい機能流体に交換された直後の機能流体200のラマン散乱光のラマンスペクトルを機能流体200の初期状態を示す情報として記憶部40に格納する。一方、機械装置300内の機能流体200が新しい機能流体に交換されていない場合、判定部30は、分光器20により導出された機能流体200のラマンスペクトルと、記憶部40から読み出した新しい機能流体に交換された直後の機能流体200のラマンスペクトル(いわゆる、機能流体200の初期状態を示す情報)とを比較することにより、機能流体200の状態を判定する。
[Judgment unit]
The determination unit 30 determines the state of the functional fluid 200 (for example, oil) based on the spectrum of Raman scattered light derived by the spectroscope 20 (hereinafter, also referred to as Raman spectrum). As shown in FIG. 3, the determination unit 30 has a storage unit 40, and when the functional fluid 200 in the mechanical device 300 is replaced with a new functional fluid, the determination unit 30 is replaced with a new functional fluid. Immediately after, the Raman spectrum of the Raman scattered light of the functional fluid 200 is stored in the storage unit 40 as information indicating the initial state of the functional fluid 200. On the other hand, when the functional fluid 200 in the mechanical device 300 is not replaced with a new functional fluid, the determination unit 30 uses the Raman spectrum of the functional fluid 200 derived by the spectroscope 20 and the new functional fluid read from the storage unit 40. The state of the functional fluid 200 is determined by comparing it with the Raman spectrum of the functional fluid 200 immediately after being replaced with (so-called information indicating the initial state of the functional fluid 200).
 機能流体200は、例えばオイルであって、判定部30がオイルの状態の判定に使用するラマン散乱光のスペクトルは、例えば、300cm-1以上4000cm-1以下の波数範囲におけるスペクトルであってもよい。これにより、オイルの化学状態に関して、赤外吸収分光法と同等の情報を得ることができる。また、当該ラマン散乱光のスペクトルは、300cm-1以上2500cm-1以下の波数範囲におけるスペクトルであってもよい。これにより、ラマン散乱光のスペクトルにおいて強いシグナルを検出することができるため、高効率かつ高精度にオイルの化学変化の情報を得ることができる。また、当該ラマン散乱光のスペクトルは、900cm-1以上1500cm-1以下の波数範囲におけるスペクトルであってもよい。これにより、赤外吸収分光法に比べて、オイルの化学構造の変化(より具体的には、オイル中の化学成分の分解又は化学構造の変化)によるスペクトルの特徴の変化が非常に大きいため、より高効率かつ高精度にオイルの化学変化の情報を得ることができる。 Functional fluids 200 is, for example oil, spectra of the Raman scattered light determination unit 30 is used to determine the state of the oil, for example, it may be a spectrum in the wave number range of 300 cm -1 or more 4000 cm -1 or less .. As a result, it is possible to obtain information on the chemical state of the oil, which is equivalent to that of infrared absorption spectroscopy. Further, the spectrum of the Raman scattered light may be spectrum in the wave number range of 300 cm -1 or more 2500 cm -1 or less. As a result, a strong signal can be detected in the spectrum of Raman scattered light, so that information on the chemical change of oil can be obtained with high efficiency and accuracy. Further, the spectrum of the Raman scattered light may be spectrum in the wave number range of 900 cm -1 or more 1500 cm -1 or less. As a result, the change in spectral characteristics due to changes in the chemical structure of the oil (more specifically, the decomposition of chemical components in the oil or the change in the chemical structure) is much larger than in infrared absorption spectroscopy. Information on chemical changes in oil can be obtained with higher efficiency and accuracy.
 [記憶部]
 記憶部40は、判定部30が分光器20から取得した機能流体200のラマン散乱光のスペクトルに関するデータ、判定部30が判定した機能流体200(例えば、オイル)の状態に関する判定結果、及び、判定部30が実行するコンピュータプログラムなどが格納されている記憶装置である。記憶部40には、例えば、機能流体200の状態を判定するための判定指標及び閾値などのデータが機能流体200の種類に応じて格納されたデータベースが格納されてもよい。記憶部40は、例えば、半導体メモリなどによって実現される。
[Memory]
The storage unit 40 includes data on the spectrum of Raman scattered light of the functional fluid 200 acquired by the determination unit 30 from the spectroscope 20, a determination result regarding the state of the functional fluid 200 (for example, oil) determined by the determination unit 30, and determination. This is a storage device in which a computer program or the like executed by the unit 30 is stored. The storage unit 40 may store, for example, a database in which data such as a determination index and a threshold value for determining the state of the functional fluid 200 are stored according to the type of the functional fluid 200. The storage unit 40 is realized by, for example, a semiconductor memory or the like.
 [動作]
 続いて、機能流体状態判定装置100の動作について図2及び図6を参照しながら説明する。図6は、実施の形態に係る機能流体状態判定装置100の動作の一例を示すフローチャートである。
[motion]
Subsequently, the operation of the functional fluid state determination device 100 will be described with reference to FIGS. 2 and 6. FIG. 6 is a flowchart showing an example of the operation of the functional fluid state determination device 100 according to the embodiment.
 まず、光源10は、機械装置300内の流路310を循環する機能流体200に電磁波を照射する(ステップS001)。より具体的には、光源10は、機械装置300内の流路310上に設けられた光学窓112を介して、光学窓112に直接接する機能流体200に電磁波を照射する。ここでは、機能流体200は、オイルである。上述したように、電磁波は、紫外光であってもよく、可視光であってもよく、近赤外光であってもよいが、可視光領域の波長の光であるとよい。 First, the light source 10 irradiates the functional fluid 200 circulating in the flow path 310 in the mechanical device 300 with an electromagnetic wave (step S001). More specifically, the light source 10 irradiates the functional fluid 200 in direct contact with the optical window 112 with an electromagnetic wave through the optical window 112 provided on the flow path 310 in the mechanical device 300. Here, the functional fluid 200 is oil. As described above, the electromagnetic wave may be ultraviolet light, visible light, or near-infrared light, but may be light having a wavelength in the visible light region.
 次いで、分光器20は、オイルから散乱されるラマン散乱光を分光する(ステップS002)。そして、分光器20は、分光されたラマン散乱光のスペクトル(いわゆる、ラマンスペクトル)を導出する(ステップS003)。 Next, the spectroscope 20 disperses the Raman scattered light scattered from the oil (step S002). Then, the spectroscope 20 derives a spectrum of the dispersed Raman scattered light (so-called Raman spectrum) (step S003).
 判定部30は、分光器20により導出されたラマンスペクトルを取得する(ステップS004)。このとき、例えば、判定部30は、分光器20から、300cm-1以上2500cm-1以下の波数範囲のスペクトルを取得する。 The determination unit 30 acquires the Raman spectrum derived by the spectroscope 20 (step S004). In this case, for example, the determination unit 30, a spectrometer 20, and acquires a spectrum of 300 cm -1 or more 2500 cm -1 following wavenumber range.
 次いで、判定部30は、機械装置300内のオイルが新しいオイルに交換されたか否かを判定する(ステップS005)。例えば、機械装置300内のオイルが新しいオイルに交換されたことを示す情報は、オイル交換が行われた際にユーザにより入力部(不図示)を介して入力されてもよく、流路310内のオイル量を検知するセンサの検知結果に基づいて判定部30により導出されてもよい。判定部30は、機械装置300内のオイルが新しいオイルに交換されたと判定した場合(ステップS005でYes)、取得したラマンスペクトルをオイルの初期状態を示す情報として記憶部40に格納する(ステップS006)。オイルの初期情報を示す情報の詳細については、判定部30の動作例2で説明する。 Next, the determination unit 30 determines whether or not the oil in the mechanical device 300 has been replaced with new oil (step S005). For example, the information indicating that the oil in the mechanical device 300 has been changed to new oil may be input by the user via an input unit (not shown) when the oil change is performed, and is in the flow path 310. It may be derived by the determination unit 30 based on the detection result of the sensor that detects the amount of oil in the above. When the determination unit 30 determines that the oil in the mechanical device 300 has been replaced with new oil (Yes in step S005), the determination unit 30 stores the acquired Raman spectrum in the storage unit 40 as information indicating the initial state of the oil (step S006). ). The details of the information indicating the initial information of the oil will be described in Operation Example 2 of the determination unit 30.
 一方、判定部30は、機械装置300内のオイルが新しいオイルに交換されていないと判定した場合(ステップS005でNo)、ステップS004で取得したラマン散乱光のスペクトル(いわゆる、ラマンスペクトル)に基づいてオイルの状態を判定する(ステップS007)。 On the other hand, when the determination unit 30 determines that the oil in the mechanical device 300 has not been replaced with new oil (No in step S005), it is based on the spectrum of Raman scattered light acquired in step S004 (so-called Raman spectrum). To determine the state of the oil (step S007).
 なお、機能流体状態判定装置100は、上記のフローを所定のタイミングで実行してもよい。例えば、上記のフローは、機械装置300の起動時(つまり、電源が入れられた時)に実行されてもよく、機械装置300の電源が入れられてから所定の時間が経過した後に実行されてもよい。また、例えば、上記のフローは、所定の期間(例えば、1週間おきなど)に実行されてもよい。 The functional fluid state determination device 100 may execute the above flow at a predetermined timing. For example, the above flow may be executed when the mechanical device 300 is started (that is, when the power is turned on), and is executed after a predetermined time has elapsed since the mechanical device 300 was turned on. May be good. Further, for example, the above flow may be executed for a predetermined period (for example, every other week).
 [判定部の動作例1]
 続いて、判定部30の動作例1について図6を参照しながら説明する。動作例1では、ステップ007の処理における判定部30の動作の一例について説明する。
[Operation example 1 of the judgment unit]
Subsequently, operation example 1 of the determination unit 30 will be described with reference to FIG. In operation example 1, an example of the operation of the determination unit 30 in the process of step 007 will be described.
 図6に示されるように、判定部30は、機械装置300内のオイルが新しいオイルに交換されていないと判定した場合(ステップS005でNo)、ステップS004で取得したラマンスペクトルに基づいてオイルの状態を判定する(ステップS007)。 As shown in FIG. 6, when the determination unit 30 determines that the oil in the mechanical device 300 has not been replaced with new oil (No in step S005), the determination unit 30 of the oil is based on the Raman spectrum acquired in step S004. The state is determined (step S007).
 より具体的には、ステップS007の処理では、判定部30は、当該ラマンスペクトルのうち特定の波数範囲(以下、特定領域)におけるラマンスペクトルのピークの強度及び形状に基づいて、オイルの状態を判定する。 More specifically, in the process of step S007, the determination unit 30 determines the state of the oil based on the intensity and shape of the peak of the Raman spectrum in a specific wave number range (hereinafter, a specific region) of the Raman spectrum. To do.
 特定領域では、オイルに含まれる主成分(例えば、基油の成分)及び酸化防止剤などの添加剤の化学構造の変化に起因して、ラマンスペクトルのシグナル強度が変化する。ここでは、オイルは、基油に添加剤が添加された油類である。オイルに含まれる化学成分の化学構造の変化などに伴う化学反応は、例えば、オイル(例えば、基油など)成分の酸化、ニトロ化、及び、スルホ化、オイルに含まれる基油の分解、並びに、添加剤(例えば、酸化防止剤)の消耗などである。なお、特定領域は、例えば、図7に示される特定領域E、F、G及びHである。特定領域E~Hに関する具体的な説明は、後述する。判定部30は、複数の特定領域のそれぞれにおけるラマンスペクトルの変化を検出することにより、オイルの状態(例えば、オイルの劣化の状態)を判定する。 In a specific region, the signal intensity of the Raman spectrum changes due to changes in the chemical structure of the main component (for example, the component of the base oil) and additives such as antioxidants contained in the oil. Here, the oil is an oil in which an additive is added to the base oil. Chemical reactions associated with changes in the chemical structure of the chemical components contained in the oil include, for example, oxidation, nitration, and sulfation of the oil (for example, base oil) components, decomposition of the base oil contained in the oil, and , Consumption of additives (eg, antioxidants), etc. The specific regions are, for example, the specific regions E, F, G and H shown in FIG. 7. A specific description of the specific areas E to H will be described later. The determination unit 30 determines the state of oil (for example, the state of deterioration of oil) by detecting changes in the Raman spectrum in each of the plurality of specific regions.
 例えば、判定部30は、各特定領域におけるラマン散乱光のスペクトル(いわゆる、ラマンスペクトル)のシグナル強度と、閾値との差に基づいて、オイルの状態の変化の度合い(例えば劣化の度合い)を判定してもよい。ラマン散乱光のスペクトル、及び、閾値などの情報は、記憶部40に格納されている。判定部30は、これらのデータを記憶部40から読み出して、差分の算出などの演算処理を行う。 For example, the determination unit 30 determines the degree of change in the oil state (for example, the degree of deterioration) based on the difference between the signal intensity of the Raman scattered light spectrum (so-called Raman spectrum) in each specific region and the threshold value. You may. Information such as the spectrum of Raman scattered light and the threshold value is stored in the storage unit 40. The determination unit 30 reads these data from the storage unit 40 and performs arithmetic processing such as calculation of the difference.
 また、例えば、判定部30は、ステップS004で取得したオイルのラマン散乱光のスペクトルを、記憶部40に格納された過去のデータと比較して、各特定領域におけるスペクトルの変化率を導出することにより、オイルの状態の変化の度合い(例えば、劣化の度合い)を判定してもよい。ここで、データとは、オイルのラマン散乱光のスペクトルのデータであり、過去とは、例えば、数日前から半年前までの期間である。これにより、判定部30は、オイルの状態の変化の度合い(例えば、劣化の度合い)を精度良く判定することができる。 Further, for example, the determination unit 30 compares the spectrum of the Raman scattered light of the oil acquired in step S004 with the past data stored in the storage unit 40, and derives the rate of change of the spectrum in each specific region. Therefore, the degree of change in the state of the oil (for example, the degree of deterioration) may be determined. Here, the data is data on the spectrum of Raman scattered light of oil, and the past is, for example, a period from several days ago to half a year ago. As a result, the determination unit 30 can accurately determine the degree of change in the oil state (for example, the degree of deterioration).
 なお、各特定領域における閾値は、オイルの状態の変化(例えば劣化)に伴う化学反応によりオイルが受ける影響の大きさに応じて決定されてもよい。例えば、各閾値は、化学反応の進行速度、又は、化学反応により生じる物質がオイルの機能低下に及ぼす度合いに応じて決定されてもよい。また、各閾値は、オイルの種類、及び、オイルに含まれる添加剤の種類などに応じて、適宜変更されてもよい。 The threshold value in each specific region may be determined according to the magnitude of the influence on the oil due to the chemical reaction accompanying the change (for example, deterioration) of the oil state. For example, each threshold value may be determined according to the rate of progress of the chemical reaction or the degree to which the substance generated by the chemical reaction affects the functional deterioration of the oil. Further, each threshold value may be appropriately changed depending on the type of oil, the type of additives contained in the oil, and the like.
 ステップS007の処理において、判定部30は、オイルの状態を判定した後、判定結果を記憶部40に格納する。 In the process of step S007, the determination unit 30 determines the state of the oil and then stores the determination result in the storage unit 40.
 なお、判定部30は、オイルの状態の変化の度合い(例えば劣化の度合い)の判定結果を示す情報を提示部に出力してもよい。判定結果を示す情報は、例えば、百分率又は5段階表示などの数値であってもよく、赤青黄色などの色であってもよく、メッセージであってもよい。これらの情報は、音声であってもよく、画像であってもよい。 Note that the determination unit 30 may output information indicating the determination result of the degree of change in the oil state (for example, the degree of deterioration) to the presentation unit. The information indicating the determination result may be, for example, a numerical value such as a percentage or a five-step display, a color such as red, blue, or yellow, or a message. This information may be audio or an image.
 [判定部の動作例2]
 続いて、判定部30の動作例2について図6を参照しながら説明する。動作例2では、ステップ007の処理における判定部30の動作の他の例について説明する。動作例1では、判定部30は、取得したラマンスペクトルのうち特定の波数範囲(以下、特定領域)におけるラマンスペクトルのピークの強度及び形状に基づいて、オイルの状態を判定する例について説明した。動作例2では、取得したラマンスペクトルと、オイル交換直後のオイルのラマンスペクトル(オイルの初期状態を示す情報)とを比較することにより、オイルの状態を判定する例について説明する。ここでは、動作例1と重複する説明を省略し、動作例1と異なる点を中心に説明する。
[Operation example 2 of the judgment unit]
Subsequently, operation example 2 of the determination unit 30 will be described with reference to FIG. In operation example 2, another example of the operation of the determination unit 30 in the process of step 007 will be described. In operation example 1, the determination unit 30 has described an example of determining the oil state based on the intensity and shape of the peak of the Raman spectrum in a specific wave number range (hereinafter, specific region) of the acquired Raman spectrum. In operation example 2, an example of determining the oil state by comparing the acquired Raman spectrum with the Raman spectrum of the oil immediately after the oil change (information indicating the initial state of the oil) will be described. Here, the description overlapping with the operation example 1 will be omitted, and the points different from the operation example 1 will be mainly described.
 図6に示されるように、判定部30は、機械装置300内のオイルが新しいオイルに交換された場合(ステップS005でYes)、新しいオイルに交換された直後のオイルのラマン散乱光のスペクトルをオイルの初期状態を示す情報として記憶部40に格納する(ステップS006)。 As shown in FIG. 6, when the oil in the mechanical device 300 is replaced with a new oil (Yes in step S005), the determination unit 30 obtains a spectrum of Raman scattered light of the oil immediately after the replacement with the new oil. It is stored in the storage unit 40 as information indicating the initial state of the oil (step S006).
 一方、判定部30は、機械装置300内のオイルが新しいオイルに交換されていない場合(ステップS005でNo)、ステップS007の処理においてオイルの状態を判定する際に、記憶部40からオイルの初期状態を示す情報を読み出して使用する。より具体的には、判定部30は、機械装置300内のオイルのラマン散乱光のスペクトルと、新しいオイルに交換された直後のオイルのラマン散乱光のスペクトルと、を比較することにより、機械装置300内のオイルの状態を判定する。 On the other hand, when the oil in the mechanical device 300 is not replaced with new oil (No in step S005), the determination unit 30 determines the state of the oil in the process of step S007, from the storage unit 40 to the initial stage of the oil. Read and use the information indicating the status. More specifically, the determination unit 30 compares the spectrum of the Raman scattered light of the oil in the mechanical device 300 with the spectrum of the Raman scattered light of the oil immediately after being replaced with new oil. The state of the oil in 300 is determined.
 このように、判定部30は、導出したオイルのラマン散乱光のスペクトルと、当該オイルの初期の状態、つまり、オイル交換した直後の状態の当該オイルのラマン散乱光のスペクトルと比較することにより、オイルの化学状態の変化の度合いに基づいてオイルの状態を判定するだけでなく、オイルの化学状態の変化の速度も導出することができる。これにより、判定部30は、オイルの状態の変化の推移を予測することが可能となるため、使用者は、例えば、オイルの交換時期の目安を知ることができる。また、判定部30は、オイルの化学状態の変化の速度(例えば、オイルの劣化速度)の変化から、機械装置300で生じている、又は、生じ得るトラブルを予測することが可能となる。したがって、使用者は、オイルの交換時期の管理及び機械装置300の保守管理を、容易に、かつ、適切に行うことができる。 In this way, the determination unit 30 compares the derived Raman scattered light spectrum of the oil with the spectrum of the Raman scattered light of the oil in the initial state of the oil, that is, the state immediately after the oil change. Not only can the oil state be determined based on the degree of change in the chemical state of the oil, but the rate of change in the chemical state of the oil can also be derived. As a result, the determination unit 30 can predict the transition of the change in the oil state, so that the user can know, for example, a guideline for the oil replacement time. Further, the determination unit 30 can predict the trouble that occurs or may occur in the mechanical device 300 from the change in the rate of change in the chemical state of the oil (for example, the rate of deterioration of the oil). Therefore, the user can easily and appropriately manage the oil change timing and the maintenance management of the mechanical device 300.
 オイルの初期情報を示す情報は、例えば、機械装置300内のオイルを新しいオイルに交換した直後に測定される新しいオイルのラマン散乱光のスペクトルである。例えば、新しいオイルに交換した直後とは、機械装置300内の古いオイルを新しいオイルに交換して間もない時間であって、機械装置300が駆動される前の時間であってもよく、機械装置300が所定の時間駆動された直後の時間であってもよい。例えば、所定の時間とは、新しいオイルが機械装置300内の流路310を所定回数循環され、機械装置300内に残っている古いオイル及び汚れなどが新しいオイル中に均一に分散されるのに要する循環回数を実施する時間である。 The information indicating the initial information of the oil is, for example, the spectrum of the Raman scattered light of the new oil measured immediately after the oil in the mechanical device 300 is replaced with the new oil. For example, immediately after changing to new oil may be the time immediately after changing the old oil in the mechanical device 300 to new oil, and may be the time before the mechanical device 300 is driven. It may be the time immediately after the device 300 is driven for a predetermined time. For example, a predetermined time means that new oil is circulated in the flow path 310 in the mechanical device 300 a predetermined number of times, and old oil and dirt remaining in the mechanical device 300 are uniformly dispersed in the new oil. It is the time to carry out the required number of cycles.
 なお、オイルの初期状態を示す情報は、新しいオイルそのもののデータではなく、新しいオイルを機械装置のオイル系統に注入した直後の測定データである。当該データを使用することにより、判定部30は、新しいオイルに交換する前の劣化したオイルの持ち越し、及び、機械装置300内に残った煤などの汚れの影響を加味してオイルの状態を判定することができる。さらに、判定部30は、上記の影響を加味してオイルの状態の変化を予測することが可能となる。機械装置300内のオイルを交換しても、オイル交換により機械装置300内から取り出された古いオイルの残渣が機械装置300内に注入された新しいオイルに混入する場合がある。この影響により、機械装置300内に注入された新しいオイルは、オイルそのものの経時変化と異なる変化を示す場合がある。判定部30は、上記の影響を加味して判定することが可能であるため、機械装置300内のオイルの状態及びオイル交換時期の目安をより精度良く判定することができる。 The information indicating the initial state of the oil is not the data of the new oil itself, but the measurement data immediately after the new oil is injected into the oil system of the mechanical device. By using the data, the determination unit 30 determines the state of the oil in consideration of the carry-over of the deteriorated oil before the replacement with new oil and the influence of dirt such as soot remaining in the mechanical device 300. can do. Further, the determination unit 30 can predict the change in the state of the oil in consideration of the above influence. Even if the oil in the mechanical device 300 is changed, the residue of the old oil taken out from the mechanical device 300 by the oil change may be mixed with the new oil injected into the mechanical device 300. Due to this effect, the new oil injected into the mechanical device 300 may show a change different from the time course of the oil itself. Since the determination unit 30 can make a determination in consideration of the above influences, it is possible to more accurately determine the state of the oil in the mechanical device 300 and the guideline of the oil change timing.
 なお、オイルの初期状態を示す情報には、上述の新しいオイルに交換された直後のオイルのラマン散乱光のスペクトルだけでなく、例えば、オイルに関する情報、測定に関する情報、機械装置300に関する情報などが含まれてもよい。 The information indicating the initial state of the oil includes not only the spectrum of the Raman scattered light of the oil immediately after being replaced with the new oil described above, but also, for example, information on the oil, information on the measurement, information on the mechanical device 300, and the like. May be included.
 オイルに関する情報は、オイルの種類、オイルの配合組成、開封日、製造メーカー、及び、ロット番号などである。測定に関する情報は、測定日時、測定回数、測定データ、励起光のスペクトル、及び、スペクトルの導出条件(例えば、使用する測定データの抽出条件)などである。機械装置300に関する情報は、例えば、製造メーカー、シリアル番号、機械装置300の種類、使用環境、使用頻度及び使用状況などである。 Information about oil is the type of oil, composition of oil, opening date, manufacturer, lot number, etc. The information regarding the measurement includes the measurement date and time, the number of measurements, the measurement data, the spectrum of the excitation light, and the conditions for deriving the spectrum (for example, the extraction conditions for the measurement data to be used). Information about the mechanical device 300 includes, for example, the manufacturer, serial number, type of mechanical device 300, usage environment, frequency of use, and usage status.
 判定部30は、これらの情報のうち、オイルの劣化状態のフェーズに合わせて必要な情報を選択して使用してもよい。また、判定部30は、測定の都度、その時点での機械装置300の使用環境(例えば気温、湿度など)及び機械装置300の運転状態に関する情報(エンジンの回転数、油温など)を取得して、当該情報に基づいて判定結果を補正してもよい。これにより、オイルの劣化の度合いに応じて、判定部30は、使用者に必要な情報を提示することができる。提示部、入力部、及び、コンピュータ装置500については、上述したため、ここでの説明を省略する。 The determination unit 30 may select and use necessary information from these information according to the phase of the deterioration state of the oil. In addition, the determination unit 30 acquires information on the operating environment of the mechanical device 300 (for example, air temperature, humidity, etc.) and the operating state of the mechanical device 300 (engine speed, oil temperature, etc.) at each measurement. Therefore, the determination result may be corrected based on the information. As a result, the determination unit 30 can present necessary information to the user according to the degree of deterioration of the oil. Since the presentation unit, the input unit, and the computer device 500 have been described above, the description thereof will be omitted here.
 [分析例]
 図7は、劣化状態の異なるオイルを赤外吸収分光法及びラマン分光法で分析した結果を示す図である。劣化状態の異なるオイルは、オイル交換により機械装置内に注入された直後の新品のオイル、使用中のオイル、及び、オイル交換が必要な程度に劣化した劣化オイルの3種類である。図7の(a)は、FT-IR法による上記3種類のオイルの吸収スペクトルであり、図7の(b)は、ラマン分光法による上記3種類のオイルのラマンスペクトルである。
[Analysis example]
FIG. 7 is a diagram showing the results of analysis of oils having different deterioration states by infrared absorption spectroscopy and Raman spectroscopy. There are three types of oils with different deterioration states: new oil immediately after being injected into the mechanical device by oil change, oil in use, and deteriorated oil that has deteriorated to the extent that oil change is necessary. FIG. 7A is an absorption spectrum of the above three types of oil by the FT-IR method, and FIG. 7B is a Raman spectrum of the above three types of oil by Raman spectroscopy.
 図中の破線で囲まれた領域E、F、G、及び、Hは、それぞれ、上述した特定領域(以下、単に「領域」という)を示している。 Areas E, F, G, and H surrounded by broken lines in the figure each indicate the above-mentioned specific areas (hereinafter, simply referred to as "areas").
 領域Eでは、オイル中の酸化防止剤ZnDTP(Zinc Dialkyldithiophosphate)由来のスペクトルの変化が確認された。領域Fでは、オイルのニトロ化由来のスペクトルの変化が確認された。領域Gでは、オイルの酸化由来のスペクトルの変化が確認された。これらの3つの領域で確認される項目は、それぞれ、従来の潤滑油のモニタリングに関する規格(非特許文献1参照)に規定されている。一方、領域Hで確認される項目については、上記の規格に規定されていない。 In region E, a change in the spectrum derived from the antioxidant ZnDTP (Zinc Dithioldithiophosphate) in the oil was confirmed. In region F, changes in the spectrum due to oil nitration were confirmed. In region G, a change in the spectrum derived from the oxidation of the oil was confirmed. Each of the items confirmed in these three areas is defined in the conventional standard for monitoring lubricating oil (see Non-Patent Document 1). On the other hand, the items confirmed in the area H are not defined in the above standard.
 領域HにおけるFT-IRの吸収スペクトルとラマンスペクトルとを比較したところ、FT-IRの吸収スペクトルの形状及びピークのシグナル強度は、3種類のオイルの間で殆ど変化しなかったが、ラマンスペクトルの形状及びピークのシグナル強度(信号強度ともいう)は、3種類のオイルの間で大きく異なっていた。そのため、領域Hにおける3種類のオイルのラマンスペクトルは、劣化に伴うオイルの化学反応の状態を特徴的に示していることが分かった。 Comparing the absorption spectrum of FT-IR and the Raman spectrum in the region H, the shape of the absorption spectrum of FT-IR and the signal intensity of the peak hardly changed among the three oils, but the Raman spectrum showed little change. The shape and peak signal intensity (also referred to as signal intensity) differed significantly among the three oils. Therefore, it was found that the Raman spectra of the three types of oils in the region H characteristically indicate the state of the chemical reaction of the oils due to deterioration.
 したがって、本実施の形態に係る機能流体状態判定装置100によれば、ラマン分光法によりオイルの状態をインラインで精度良く判定することができることが確認できた。 Therefore, according to the functional fluid state determination device 100 according to the present embodiment, it was confirmed that the oil state can be accurately determined in-line by Raman spectroscopy.
 [判定指標]
 続いて、機能流体200の状態の判定指標についてオイルを例に説明する。
[Judgment index]
Subsequently, the determination index of the state of the functional fluid 200 will be described using oil as an example.
 上述したように、機械装置300中で機能流体200(以下、オイルという)が使用されて行く過程において、さまざまな物理的(例えば、加熱、加圧又は摩擦など)及び化学的要因(例えば、酸化など)によりオイルの性状が化学的に変化し、多くの場合、オイルに期待される機能が低下する。このような機能流体200の化学変化(いわゆる、化学状態の変化)は、ラマン分光法において、オイル中の各々の化学成分に含まれる化学結合の変化に帰属されるスペクトル上のピークの信号強度の変動として観測される。このように、ラマンスペクトルにおける複数のピークの信号強度の変動に基づいて、オイルの状態を判定することが可能である。 As described above, in the process of using the functional fluid 200 (hereinafter referred to as oil) in the mechanical device 300, various physical (eg, heating, pressurizing or rubbing, etc.) and chemical factors (eg, oxidation) Etc.), which chemically changes the properties of the oil and often reduces the expected function of the oil. Such a chemical change in the functional fluid 200 (so-called change in chemical state) is the signal intensity of the peak on the spectrum attributable to the change in the chemical bond contained in each chemical component in the oil in Raman spectroscopy. Observed as fluctuation. In this way, it is possible to determine the state of oil based on fluctuations in signal intensities of a plurality of peaks in the Raman spectrum.
 上述したように、従来の潤滑油のモニタリングに関する規格(非特許文献1参照)では、FT-IR法により得られる赤外吸収スペクトル上の特徴的なシグナルについて、その波数領域と帰属物質とが規定されている。一方、ラマン分光法では、このような規格は存在しない。 As described above, the conventional standard for monitoring lubricating oil (see Non-Patent Document 1) defines the wavenumber region and the substance belonging to the characteristic signal on the infrared absorption spectrum obtained by the FT-IR method. Has been done. On the other hand, in Raman spectroscopy, such a standard does not exist.
 上述の通り、ラマン分光法及びFT-IR法は同じ化学結合の振動変化を検知するため、化学物質の変化に対して近似的には等価な分析結果を得ることが出来る。しかしながら原理的にはラマン分光法とFT-IR法とでは測定が依拠する物理素過程に違いがあるため、一般に同じ分子振動に帰属するシグナルであってもシグナル強度が異なる場合がある。そのため、これらの測定では得られるスペクトルに差異が生じる。一般にはラマン分光法で強い信号が得られる化学結合はFT-IR法では信号が弱い傾向があり、その逆も同様であるが、化学結合が含まれる化学物質の状態又は化学結合に付加する官能基の違いなどによって必ずしも上記傾向は一様ではない。 As described above, since Raman spectroscopy and FT-IR method detect the vibration change of the same chemical bond, it is possible to obtain an analysis result approximately equivalent to the change of the chemical substance. However, in principle, since there is a difference in the physical element process on which the measurement depends between the Raman spectroscopy and the FT-IR method, the signal intensity may be different even if the signals belong to the same molecular vibration. Therefore, there are differences in the spectra obtained in these measurements. In general, a chemical bond that gives a strong signal by Raman spectroscopy tends to have a weak signal by the FT-IR method, and vice versa, but the state of the chemical substance containing the chemical bond or the function added to the chemical bond. The above tendency is not always uniform due to differences in groups.
 そこで本願発明者らは数多くのオイルサンプルに対して鋭意測定実験を重ね、ラマン分光法によって効果的にオイルの状態を判定しうる判定指標となる化学変化と、当該化学変化に起因するラマンスペクトルのピークの波数帯域と、当該ピークの信号強度の変化との関係を明らかにした。オイルの状態の判定に用いられ得る判定指標の例を表1に示す。 Therefore, the inventors of the present application repeatedly conducted diligent measurement experiments on a large number of oil samples, and found that the chemical change, which is a judgment index capable of effectively determining the state of oil by Raman spectroscopy, and the Raman spectrum caused by the chemical change. The relationship between the peak wavenumber band and the change in signal strength of the peak was clarified. Table 1 shows an example of a judgment index that can be used to judge the state of oil.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上述したように、オイルは、基油に添加剤が添加されたものである。表1に示されるオイルの状態の判定指標となる化学変化は、(1)オイルの酸化、(2)添加剤の消耗、(3)基油の分解、(4)オイルのスルホ化、(5)オイルのニトロ化、及び、(6)オイル中の煤の発生又は混入である。これらの化学変化により生じる基油及びオイルに含まれる添加剤の化学結合の変化、並びに、オイル中の煤に帰属されるラマンスペクトルの信号強度の変化に基づいて、オイルの状態を判定することができる。具体的には以下の通りである。 As mentioned above, the oil is a base oil with an additive added. The chemical changes shown in Table 1 that are indicators of the state of oil are (1) oxidation of oil, (2) consumption of additives, (3) decomposition of base oil, (4) sulfation of oil, and (5). ) Oil is nitrated, and (6) Soot is generated or mixed in the oil. The state of the oil can be determined based on the changes in the chemical bonds of the base oil and the additives contained in the oil caused by these chemical changes, and the changes in the signal intensity of the Raman spectrum attributed to the soot in the oil. it can. Specifically, it is as follows.
 (1)オイルの酸化
 オイルの酸化は、基油及び添加剤中の炭化水素(C2n:nは自然数)が酸化されてC-Hの結合がC-Oの結合に変化する化学変化である。また基油に含まれる不飽和炭素結合C=Cが酸化されてC-O及びC-Cに変化する。C-O、C=O及び酸化の中間生成物であるC-O-OのO-O結合に帰属されるラマン信号強度は、オイルの酸化に伴い増加する。一方、基油に含まれる不飽和炭素結合C=Cに帰属されるラマン信号強度が、オイルの酸化に伴い減少する。
(1) Oxidation of oil Oxidation of oil is a chemical change in which hydrocarbons (C n H 2n : n are natural numbers) in the base oil and additives are oxidized and the CH bond changes to the CO bond. Is. Further, the unsaturated carbon bond C = C contained in the base oil is oxidized and changed to CO and CC. The Raman signal intensity attributed to the OO bond of CO, C = O and the intermediate product of oxidation, COO, increases with the oxidation of the oil. On the other hand, the Raman signal intensity attributed to the unsaturated carbon bond C = C contained in the base oil decreases with the oxidation of the oil.
 (2)添加剤の消耗
 添加剤の消耗は、添加剤に含まれる特徴的な官能基が切断されることに伴う化学結合の変化を含む化学変化である。添加剤(例えば、酸化防止剤)は、自身が酸化されることによりオイルの酸化を防止する。このとき、添加剤は、自身が酸化されることにより分解される、又は、その化学構造が変化する。その結果、添加剤の量が減少するため、添加剤に含まれる特徴的な官能基に帰属されるラマン信号強度は減少する。例えば、添加剤がアミン系添加剤であれば第2級アミンのC-N-C結合の振動が観測される。このC-N-C結合の振動に帰属されるラマン信号強度は、添加剤の消耗に伴い減少する。また、添加剤に含まれる芳香環を形成する各種結合の振動に帰属されるラマン信号強度も、添加剤の消耗に伴い減少する。
(2) Consumption of Additives Consumption of additives is a chemical change including a change in a chemical bond due to cleavage of a characteristic functional group contained in the additive. Additives (eg, antioxidants) prevent the oil from oxidizing by oxidizing itself. At this time, the additive is decomposed by being oxidized by itself, or its chemical structure is changed. As a result, the amount of the additive is reduced, so that the Raman signal intensity attributed to the characteristic functional group contained in the additive is reduced. For example, if the additive is an amine-based additive, vibration of the C—NC bond of the secondary amine is observed. The Raman signal intensity attributed to the vibration of the CNC bond decreases as the additive is consumed. In addition, the Raman signal intensity attributed to the vibration of various bonds forming the aromatic ring contained in the additive also decreases as the additive is consumed.
 (3)基油の分解
 基油の分解は、基油を構成する炭素鎖が切断分解されることに伴う化学結合の変化を含む化学変化である。基油中の炭化水素の炭素鎖のC-C結合に帰属されるラマン信号強度は、基油の分解に伴い減少する。さらに、基油に含まれるエステル結合C-O-Cに帰属されるラマン信号強度も、基油の分解に伴い減少する。また、メチレン基-CH-に帰属されるラマン信号強度も、基油の分解に伴い減少する。
(3) Decomposition of base oil Decomposition of base oil is a chemical change including a change in chemical bond due to cleavage and decomposition of carbon chains constituting the base oil. The Raman signal intensity attributed to the CC bond of the carbon chain of the hydrocarbon in the base oil decreases with the decomposition of the base oil. Further, the Raman signal intensity attributed to the ester bond COC contained in the base oil also decreases with the decomposition of the base oil. In addition, the Raman signal intensity attributed to the methylene group -CH 2- also decreases with the decomposition of the base oil.
 (4)オイルのスルホ化
 オイルのスルホ化は、基油の炭素が不純物又は排気ガス中の硫黄と反応してスルホン酸を形成し酸性化する化学変化である。スルホン酸(R-SOH:Rは置換基)のS=O-O結合に帰属されるラマン信号強度がオイルのスルホ化に伴い増加する。
(4) Oil sulfonation Oil sulfonation is a chemical change in which carbon in the base oil reacts with impurities or sulfur in exhaust gas to form sulfonic acid and acidify it. Acid (R-SO 3 H: R is a substituent) Raman signal intensity attributed to S = O-O bonds is increased with the sulfonated oil.
 (5)オイルのニトロ化
 オイルのニトロ化は、基油の炭素が主に排気ガス中の窒素と反応して硝酸を形成する化学変化である。硝酸のN-O-Oに帰属されるラマン信号強度がオイルのニトロ化に伴い増加する。
(5) Oil nitration Oil nitration is a chemical change in which the carbon of the base oil mainly reacts with nitrogen in the exhaust gas to form nitric acid. The Raman signal intensity attributed to NOO of nitric acid increases with oil nitration.
 (6)オイル中の煤の発生又は混入
 オイル中の煤の発生又は混入は、機械装置300で使用される燃料の不完全燃焼により発生する煤(炭素)に起因する化学変化である。煤(炭素)に帰属されるラマン信号強度は、オイル中に発生又は混入する煤量の増加に伴い増加する。
(6) Generation or mixing of soot in oil The generation or mixing of soot in oil is a chemical change caused by soot (carbon) generated by incomplete combustion of the fuel used in the mechanical device 300. The Raman signal intensity attributed to soot (carbon) increases as the amount of soot generated or mixed in the oil increases.
 当該化学変化に起因するラマンスペクトルのピークの波数帯域は、表1に示されるように、750cm-1以上1150cm-1以下の波数範囲である波数帯域A、1150cm-1を超え1500cm-1以下の波数範囲である波数帯域B、及び、1600cm-1以上1900cm-1以下の波数範囲である波数帯域Cである。判定部30は、分光器20により導出されたラマン散乱光のスペクトルから、例えば、波数帯域Aに位置するラマン散乱光のスペクトルにみられるピークの信号強度に基づいて、オイルの酸化及びスルホ化、基油成分の分解、並びに、添加剤の酸化に関する情報を取得することにより、オイルの状態を判定する。また、判定部30は、分光器20により導出されたラマン散乱光のスペクトルから、例えば、波数帯域Bに位置するラマン散乱光のスペクトルにみられるピークの信号強度に基づいて、オイルのニトロ化、基油成分の分解、及び、オイル中に発生又は混入する煤に関する情報を取得することにより、オイルの状態を判定する。また、判定部30は、分光器20により導出されたラマン散乱光のスペクトルから、例えば、波数帯域Cに位置するラマン散乱光のスペクトルにみられるピークの信号強度に基づいて、オイルの酸化、基油成分の分解、及び、オイル中に発生又は混入する煤に関する情報を取得することにより、オイルの状態を判定する。 As shown in Table 1, the peak wave number band of the Raman spectrum due to the chemical change is a wave number band A, which is a wave number range of 750 cm -1 or more and 1150 cm -1 or less, and more than 1150 cm -1 and 1500 cm -1 or less. frequency band B the wave number range, and a frequency band C is a wave number range of 1600 cm -1 or 1900 cm -1 or less. The determination unit 30 oxidizes and sulfates the oil from the spectrum of the Raman scattered light derived by the spectroscope 20, for example, based on the signal intensity of the peak observed in the spectrum of the Raman scattered light located in the wave number band A. The state of the oil is determined by acquiring information on the decomposition of the base oil component and the oxidation of the additive. Further, the determination unit 30 uses the spectrum of the Raman scattered light derived by the spectroscope 20 to nitrate the oil based on, for example, the signal intensity of the peak observed in the spectrum of the Raman scattered light located in the wave number band B. The state of the oil is determined by decomposing the base oil component and acquiring information on the soot generated or mixed in the oil. Further, the determination unit 30 oxidizes and groups the oil based on the spectrum of the Raman scattered light derived by the spectroscope 20, for example, based on the signal intensity of the peak observed in the spectrum of the Raman scattered light located in the wave number band C. The state of the oil is determined by decomposing the oil component and acquiring information on the soot generated or mixed in the oil.
 なお、上記の判定指標は、油種及び油類の使用環境によっても影響を受けるため、限定的に理解されるべきではなく、複数の指標の組み合わせも検討考慮した上で判定されるべき場合もあり得る。 In addition, since the above judgment index is also affected by the oil type and the usage environment of oils, it should not be understood in a limited manner, and there are cases where the judgment should be made after considering the combination of multiple indexes. possible.
 なお、上記の実施の形態では、機能流体200は、機械装置300中のオイルを例に説明したが、これに限定されるものではない。機能流体200として例示した各種の分析対象に対しても適用可能である。また例えば、食品加工工程における液体状の原料、加工品、又は、製品等に対しても適用可能である。 In the above embodiment, the functional fluid 200 has been described by taking the oil in the mechanical device 300 as an example, but the functional fluid 200 is not limited to this. It is also applicable to various analysis targets exemplified as the functional fluid 200. It is also applicable to, for example, liquid raw materials, processed products, products, etc. in a food processing process.
 なお、上記の実施の形態では、機能流体200の状態は、劣化を例に説明したが、これに限定されるものではない。機能流体200の状態として例示した機能の向上であってもよく、機能流体200の成分変化のみで機能変化(例えば、低下又は向上など)が起きていない状態であってもよい。 In the above embodiment, the state of the functional fluid 200 has been described by taking deterioration as an example, but the state is not limited to this. It may be an improvement of the function exemplified as the state of the functional fluid 200, or may be a state in which the functional change (for example, reduction or improvement) does not occur only by the component change of the functional fluid 200.
 [他の実施の形態]
 以上、本開示の1つ又は複数の態様に係る機能流体状態判定装置及び機能流体状態判定システムについて、上記の実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構成される形態も、本開示の1つ又は複数の態様の範囲内に含まれてもよい。
[Other embodiments]
The functional fluid state determination device and the functional fluid state determination system according to one or more aspects of the present disclosure have been described above based on the above embodiments, but the present disclosure is limited to these embodiments. It's not something. As long as the gist of the present disclosure is not deviated, one or a plurality of embodiments of the present disclosure may be obtained by subjecting various modifications that can be conceived by those skilled in the art to the embodiments or by combining components in different embodiments. It may be included in the range of.
 上記の実施の形態では、記憶部40は、判定部30に備えられるが、判定部30に備えられなくてもよい。例えば、記憶部40は、クラウドサーバ上の記憶部であってもよい。この場合、記憶部40は、機能流体200の状態の判定だけでなく、機能流体200が使用される機械装置300の状態を判定してもよく、さらに、判定結果に基づいて機械装置300の管理に関する情報などを導出してもよい。 In the above embodiment, the storage unit 40 is provided in the determination unit 30, but the determination unit 30 may not be provided. For example, the storage unit 40 may be a storage unit on a cloud server. In this case, the storage unit 40 may determine not only the state of the functional fluid 200 but also the state of the mechanical device 300 in which the functional fluid 200 is used, and further manage the mechanical device 300 based on the determination result. You may derive information about.
 例えば、上記実施の形態における機能流体状態判定装置が備える構成要素の一部又は全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。例えば、機能流体状態判定装置は、光源と、分光部と、判定部と、を有するシステムLSIから構成されてもよい。なお、システムLSIは、光源を含んでいなくてもよい。 For example, a part or all of the components included in the functional fluid state determination device in the above embodiment may be composed of one system LSI (Large Scale Integration: large-scale integrated circuit). For example, the functional fluid state determination device may be composed of a system LSI having a light source, a spectroscopic unit, and a determination unit. The system LSI does not have to include a light source.
 システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)などを含んで構成されるコンピュータシステムである。ROMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。 A system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip. Specifically, a microprocessor, a ROM (Read Only Memory), a RAM (Random Access Memory), etc. It is a computer system configured to include. A computer program is stored in the ROM. The system LSI achieves its function by operating the microprocessor according to the computer program.
 なお、ここでは、システムLSIとしたが、集積度の違いにより、IC(Integrated Circuit)、LSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法は、LSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、あるいは、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Although it is referred to as a system LSI here, it may be referred to as an IC (Integrated Circuit), an LSI, a super LSI, or an ultra LSI depending on the degree of integration. Further, the method of forming an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてあり得る。 Furthermore, if an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology or another technology derived from it, it is naturally possible to integrate functional blocks using that technology. The application of biotechnology, etc. is possible.
 また、本開示の一態様は、このような機能流体状態判定装置だけではなく、当該装置に含まれる特徴的な構成部をステップとする機能流体状態判定方法であってもよい。また、本開示の一態様は、機能流体状態判定方法に含まれる特徴的な各ステップをコンピュータに実行させるコンピュータプログラムであってもよい。また、本開示の一態様は、そのようなコンピュータプログラムが記録された、コンピュータで読み取り可能な非一時的な記録媒体であってもよい。 Further, one aspect of the present disclosure may be not only such a functional fluid state determination device but also a functional fluid state determination method in which a characteristic component included in the device is a step. Further, one aspect of the present disclosure may be a computer program that causes a computer to execute each characteristic step included in the functional fluid state determination method. Also, one aspect of the present disclosure may be a computer-readable, non-temporary recording medium on which such a computer program is recorded.
 本開示に係る機能流体状態判定装置及び機能流体状態判定システムによれば、機械装置内の機能流体の状態をインラインで判定することができる。本開示によれば、振動及び高温環境下においても機能流体の状態を判定することができるため、作動流体を使用するあらゆる機械装置、例えば建設機械、車両、発電装置、及び内燃機関などに適用可能であり、これらの機械装置が稼働している間も機能流体の状態をモニタリングすることができる。 According to the functional fluid state determination device and the functional fluid state determination system according to the present disclosure, the state of the functional fluid in the mechanical device can be determined in-line. According to the present disclosure, since the state of the functional fluid can be determined even in a vibration and high temperature environment, it can be applied to all machinery and devices that use the working fluid, such as construction machinery, vehicles, power generation devices, and internal combustion engines. Therefore, the state of the functional fluid can be monitored even while these mechanical devices are in operation.
 10 光源
 20 分光器
 22、22a、22b 検出チャネル
 24a、24b 導波路入力結合回折格子
 26a、26b 光導波路
 28a、28b 導波路出力結合回折格子
 30 判定部
 40 記憶部
 50 撮像素子
 100 機能流体状態判定装置
 110 筐体
 112 光学窓
 200 機能流体
 300 機械装置
 310 流路
 400、410 機能流体状態判定システム
 500 コンピュータ装置
10 Light source 20 Spectrometer 22, 22a, 22b Detection channel 24a, 24b Wavewire input coupling diffraction grating 26a, 26b Optical waveguide 28a, 28b Waveguide output coupling diffraction grating 30 Judgment unit 40 Storage unit 50 Imaging element 100 Functional fluid state determination device 110 Housing 112 Optical window 200 Functional fluid 300 Mechanical device 310 Flow path 400, 410 Functional fluid state determination system 500 Computer device

Claims (15)

  1.  機械装置内の流路を貯留又は循環する機能流体に電磁波を照射する光源と、
     前記機能流体から散乱されるラマン散乱光を分光することにより前記ラマン散乱光のスペクトルを導出する分光器と、
     前記分光器により導出された前記ラマン散乱光のスペクトルに基づいて前記機能流体の状態を判定する判定部と、
     を備える、
     機能流体状態判定装置。
    A light source that irradiates a functional fluid that stores or circulates in a flow path in a mechanical device with electromagnetic waves,
    A spectroscope that derives the spectrum of the Raman scattered light by dispersing the Raman scattered light scattered from the functional fluid, and
    A determination unit that determines the state of the functional fluid based on the spectrum of the Raman scattered light derived by the spectroscope, and a determination unit.
    To prepare
    Functional fluid state determination device.
  2.  前記光源は、前記機械装置内の前記流路上に設けられた光学窓を介して、前記光学窓に直接接する前記機能流体に前記電磁波を照射する、
     請求項1に記載の機能流体状態判定装置。
    The light source irradiates the functional fluid in direct contact with the optical window with the electromagnetic wave through an optical window provided on the flow path in the mechanical device.
    The functional fluid state determination device according to claim 1.
  3.  前記機能流体はオイルであって、前記判定部は、前記ラマン散乱光のスペクトルにみられる前記オイルの酸化を示すラマン散乱光強度の増加または減少に基づいて前記オイルの状態を判定する、
     請求項1又は2に記載の機能流体状態判定装置。
    The functional fluid is oil, and the determination unit determines the state of the oil based on an increase or decrease in Raman scattered light intensity indicating oxidation of the oil as seen in the spectrum of the Raman scattered light.
    The functional fluid state determination device according to claim 1 or 2.
  4.  前記機能流体はオイルであって、前記判定部は、前記ラマン散乱光のスペクトルにみられる前記オイルに含まれる添加剤を示すラマン散乱光強度の低下に基づいて前記オイルの状態を判定する、
     請求項1又は2に記載の機能流体状態判定装置。
    The functional fluid is an oil, and the determination unit determines the state of the oil based on a decrease in Raman scattered light intensity indicating an additive contained in the oil as seen in the spectrum of the Raman scattered light.
    The functional fluid state determination device according to claim 1 or 2.
  5.  前記機能流体はオイルであって、前記判定部は、前記ラマン散乱光のスペクトルにみられる前記オイルを構成する基油の分解を示すラマン散乱光強度の低下に基づいて前記オイルの状態を判定する、
     請求項1又は2に記載の機能流体状態判定装置。
    The functional fluid is oil, and the determination unit determines the state of the oil based on a decrease in Raman scattered light intensity indicating decomposition of the base oil constituting the oil, which is seen in the spectrum of the Raman scattered light. ,
    The functional fluid state determination device according to claim 1 or 2.
  6.  前記機能流体はオイルであって、前記判定部は、前記ラマン散乱光のスペクトルにみられる前記オイルのスルホ化を示すラマン散乱光強度の増加に基づいて前記オイルの状態を判定する、
     請求項1又は2に記載の機能流体状態判定装置。
    The functional fluid is an oil, and the determination unit determines the state of the oil based on an increase in Raman scattered light intensity indicating sulfonation of the oil in the spectrum of the Raman scattered light.
    The functional fluid state determination device according to claim 1 or 2.
  7.  前記機能流体はオイルであって、前記判定部は、前記ラマン散乱光のスペクトルにみられる前記オイルのニトロ化を示すラマン散乱光強度の増加に基づいて前記オイルの状態を判定する、
     請求項1又は2に記載の機能流体状態判定装置。
    The functional fluid is an oil, and the determination unit determines the state of the oil based on an increase in Raman scattered light intensity indicating nitration of the oil in the spectrum of the Raman scattered light.
    The functional fluid state determination device according to claim 1 or 2.
  8.  前記機能流体はオイルであって、前記判定部は、前記ラマン散乱光のスペクトルにみられる前記オイル中の煤のラマン散乱光強度の増加に基づいて前記オイルの状態を判定する、
     請求項1又は2に記載の機能流体状態判定装置。
    The functional fluid is oil, and the determination unit determines the state of the oil based on an increase in the Raman scattered light intensity of soot in the oil as seen in the spectrum of the Raman scattered light.
    The functional fluid state determination device according to claim 1 or 2.
  9.  前記機能流体はオイルであって、前記判定部は、300cm-1以上4000cm-1以下の波数範囲における前記ラマン散乱光のスペクトルに基づいて前記オイルの状態を判定する、
     請求項1又は2に記載の機能流体状態判定装置。
    The functional fluid is an oil, wherein the determination unit determines the state of the oil based on the spectrum of the Raman scattered light at a wave number range of 300 cm -1 or more 4000 cm -1 or less,
    The functional fluid state determination device according to claim 1 or 2.
  10.  前記機能流体はオイルであって、前記判定部は、300cm-1以上2500cm-1以下の波数範囲における前記ラマン散乱光のスペクトルに基づいて前記オイルの状態を判定する、
     請求項1又は2に記載の機能流体状態判定装置。
    The functional fluid is an oil, wherein the determination unit determines the state of the oil based on the spectrum of the Raman scattered light at a wave number range of 300 cm -1 or more 2500 cm -1 or less,
    The functional fluid state determination device according to claim 1 or 2.
  11.  前記機能流体はオイルであって、前記判定部は、750cm-1以上1150cm-1以下の波数範囲における前記ラマン散乱光のスペクトルに基づいて前記オイルの状態を判定する、
     請求項1又は2に記載の機能流体状態判定装置。
    The functional fluid is oil, and the determination unit determines the state of the oil based on the spectrum of the Raman scattered light in the wave number range of 750 cm -1 or more and 1150 cm -1 or less.
    The functional fluid state determination device according to claim 1 or 2.
  12.  前記機能流体はオイルであって、前記判定部は、1150cm-1を超え1500cm-1以下の波数範囲における前記ラマン散乱光のスペクトルに基づいて前記オイルの状態を判定する、
     請求項1又は2に記載の機能流体状態判定装置。
    The functional fluid is an oil, wherein the determination unit determines the state of the oil based on the spectrum of the Raman scattered light at a wave number range of 1500 cm -1 from more than 1150 cm -1,
    The functional fluid state determination device according to claim 1 or 2.
  13.  前記機能流体はオイルであって、前記判定部は、1600cm-1以上1900cm-1以下の波数範囲における前記ラマン散乱光のスペクトルに基づいて前記オイルの状態を判定する、
     請求項1又は2に記載の機能流体状態判定装置。
    The functional fluid is an oil, wherein the determination unit determines the state of the oil based on the spectrum of the Raman scattered light at a wave number range of 1600 cm -1 or 1900 cm -1 or less,
    The functional fluid state determination device according to claim 1 or 2.
  14.  前記判定部は、記憶部を有し、前記機械装置内の前記機能流体が新しい機能流体に交換された直後の機能流体のラマン散乱光のスペクトルを前記機能流体の初期状態を示す情報として前記記憶部に格納し、前記機能流体のラマン散乱光のスペクトルと、前記新しい機能流体に交換された直後の機能流体のラマン散乱光のスペクトルとを比較することにより、前記機能流体の状態を判定する、
     請求項1~13のいずれか1項に記載の機能流体状態判定装置。
    The determination unit has a storage unit, and stores the spectrum of Raman scattered light of the functional fluid immediately after the functional fluid in the mechanical device is replaced with a new functional fluid as information indicating an initial state of the functional fluid. The state of the functional fluid is determined by storing it in a unit and comparing the spectrum of the Raman scattered light of the functional fluid with the spectrum of the Raman scattered light of the functional fluid immediately after being replaced with the new functional fluid.
    The functional fluid state determination device according to any one of claims 1 to 13.
  15.  機能流体と、
     前記機能流体が注入される機械装置と、
     前記機械装置内の前記機能流体の状態を判定する請求項1~14のいずれか1項に記載の機能流体状態判定装置と、
     を備える、
     機能流体状態判定システム。
    With functional fluids
    The mechanical device into which the functional fluid is injected and
    The functional fluid state determination device according to any one of claims 1 to 14, which determines the state of the functional fluid in the mechanical device.
    To prepare
    Functional fluid condition determination system.
PCT/JP2020/017347 2019-04-22 2020-04-22 Functional fluid state determination apparatus and functional fluid state determination system WO2020218345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-080720 2019-04-22
JP2019080720 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020218345A1 true WO2020218345A1 (en) 2020-10-29

Family

ID=72942211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017347 WO2020218345A1 (en) 2019-04-22 2020-04-22 Functional fluid state determination apparatus and functional fluid state determination system

Country Status (1)

Country Link
WO (1) WO2020218345A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114681A (en) * 2003-10-10 2005-04-28 Horiba Ltd Method and apparatus for measuring oil
WO2008123530A1 (en) * 2007-03-27 2008-10-16 Nippon Oil Corporation Method for production of solid acid catalyst comprising carbonaceous material having sulfonate group, and use of the solid acid catalyst
WO2013031896A1 (en) * 2011-09-01 2013-03-07 三菱重工業株式会社 Fluid composition analysis mechanism, heat generation amount measurement device and power plant, and liquid composition analysis method
WO2014192912A1 (en) * 2013-05-30 2014-12-04 ナブテスコ 株式会社 Assessment system and assessment method
WO2018160756A1 (en) * 2017-02-28 2018-09-07 Marqmetrix Inc Fluid flow cell including a spherical lens
JP2018526614A (en) * 2015-04-27 2018-09-13 バーチャル・フルイド・モニタリング・サービシズ,エルエルシー Systems, devices, and methods for fluid analysis and monitoring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114681A (en) * 2003-10-10 2005-04-28 Horiba Ltd Method and apparatus for measuring oil
WO2008123530A1 (en) * 2007-03-27 2008-10-16 Nippon Oil Corporation Method for production of solid acid catalyst comprising carbonaceous material having sulfonate group, and use of the solid acid catalyst
WO2013031896A1 (en) * 2011-09-01 2013-03-07 三菱重工業株式会社 Fluid composition analysis mechanism, heat generation amount measurement device and power plant, and liquid composition analysis method
WO2014192912A1 (en) * 2013-05-30 2014-12-04 ナブテスコ 株式会社 Assessment system and assessment method
JP2018526614A (en) * 2015-04-27 2018-09-13 バーチャル・フルイド・モニタリング・サービシズ,エルエルシー Systems, devices, and methods for fluid analysis and monitoring
WO2018160756A1 (en) * 2017-02-28 2018-09-07 Marqmetrix Inc Fluid flow cell including a spherical lens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOHANNES KIEFER: "Recent Advances in the Characterization of Gaseous and Liquid Fuels by Vibratinal Spectroscopy", ENERGIES, vol. 8, no. 4, 20 April 2015 (2015-04-20), pages 3165 - 3197, XP055758805, ISSN: 1996-1073, DOI: 10.3390/en8043165 *

Similar Documents

Publication Publication Date Title
Zhu et al. Survey of lubrication oil condition monitoring, diagnostics, and prognostics techniques and systems
US9063075B2 (en) Method and device for determining the state of degradation of a lubricant oil
JP2008542713A (en) Method for determining iron content of lubricating oil in use and test kit
Omrani et al. Assessment of the oxidative stability of lubricant oil using fiber-coupled fluorescence excitation–emission matrix spectroscopy
Felkel et al. Determination of the total acid number (TAN) of used gas engine oils by IR and chemometrics applying a combined strategy for variable selection
Elnasharty et al. Diagnosis of lubricating oil by evaluating cyanide and carbon molecular emission lines in laser induced breakdown spectra
CN106932378A (en) The on-line detecting system and method for a kind of sour gas composition based on Raman spectrum
Wolak et al. Identifying and modelling changes in chemical properties of engine oils by use of infrared spectroscopy
Bley et al. Multi-channel IR sensor system for determination of oil degradation
Shinde et al. Evaluating petrol engine oil deterioration through oxidation and nitration parameters by low-cost IR sensor
Toms et al. Oil analysis and condition monitoring
Sharma et al. IoT based dipstick type engine oil level and impurities monitoring system: a portable online spectrophotometer
Mignani et al. Optical fiber spectroscopy for measuring quality indicators of lubricant oils
WO2020218345A1 (en) Functional fluid state determination apparatus and functional fluid state determination system
Stellman et al. Monitoring the degradation of a synthetic lubricant oil using infrared absorption, fluorescence emission and multivariate analysis: a feasibilty study
JP2020176990A (en) Oil filter state determining device and oil filter state determining system
Vähäoja et al. Trends in industrial oil analysis–a review
Geach Infrared analysis as a tool for assessing degradation in used engine lubricants
Dong et al. A continuous oil analysis and treatment (COAT) system for the monitoring of oil quality and performance of additives
WO2021149762A1 (en) Oil state diagnostic method and oil state diagnostic device
Zhi-Na et al. Rapid measurement of diesel engine oil quality by near infrared spectroscopy (NIRS)
Sharma et al. IoT based engine oil sludge monitoring system: a portable colorimetric analyzer
Paschoal et al. Analysis of contaminants in lubricant oil by near infrared spectroscopy and interval partial least-squares
Toms FT-IR for effective, low-cost oil condition monitoring
Benhabib et al. Surface-Enhanced Raman Spectroscopy for Rapid and Cost-Effective Quantification of Amines in Sour Water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP